TPS56C20PWP [TI]

具有电压调节的 4.5V 至 17V、12A 同步降压转换器 | PWP | 24 | -40 to 85;
TPS56C20PWP
型号: TPS56C20PWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电压调节的 4.5V 至 17V、12A 同步降压转换器 | PWP | 24 | -40 to 85

开关 光电二极管 输出元件 转换器
文件: 总47页 (文件大小:2340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
具有电压调节功能 TPS56x20 4.5V 17V 输入、12A/9A/7A/5A 输出、同  
步降压电压稳压器  
1 特性  
2 应用范围  
1
D-CAP2™控制  
用于消费类应用的 媒体处理器:  
数字电视、机顶盒(STBDVD/蓝光播放器、有线  
/卫星调制解调器)  
输入电压范围:4.5V 17V  
开关频率:500kHz  
片上系统处理器  
高密度配电系统  
已针对 1.0µH 2.2µH 电感器进行优化  
输出电压精度为 ±1%  
经由 I2C 兼容接口实现的特性  
3 说明  
输出电压 (VID)0.6V 1.8V,步长 10mV  
自动跳跃 Eco-mode™ON/OFF(轻负载)  
电流限制目标:40% 60%  
TPS56X20 一款同步直流-直流转换器 IC(集成电  
路),此转换器具有电压调节控制功能,以便为要求内  
核电压 (VCORE) 调整的微处理器 (MCU) 供电。最初加  
电后,输出电压可由 I2C 兼容总线上发送的 VID 代码  
编程/调节。  
使能集成电路 (IC),回读电源正常 (Power-  
good)  
断续模式保护 ON/OFF  
这个降压转换器采用一个自适应接通时间 D-CAP2 模  
式控制,此模式控制在无需外部组件的情况下提供极快  
的瞬态响应。与传统的电压/电流模式控制不同,D-  
CAP2 支持较高负载下的 PWM 模式与轻负载情况下的  
Eco-mode™模式之间的无缝转换。Eco-mode 在轻负  
载时保持高效率。  
IC 端子 特性  
使用外部电阻器启动  
VFB 引脚上的输出电压:0.6V 1.8V  
可调节软启动,  
单调预偏置启动  
Power-good  
I2C 地址编程(2 位)  
器件信息  
逐周期过流限制控制  
热关断 (TSD)  
器件型号  
封装  
封装尺寸  
带散热片薄型小外形  
尺寸封装 (HTSSOP) 7.80mm × 4.40mm  
欠压闭锁 (UVLO)  
TPS56C20  
(24)  
薄型小外形尺寸封装 (TSSOP) (PWP),此类封装  
具有 PowerPAD™  
TPS56920  
TPS56720  
TPS56520  
HTSSOP (20)  
6.50mm x 4.40mm  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCB6  
 
 
 
 
 
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
典型应用电路  
3.3 V  
U1  
R1  
1.0kΩ  
R2  
1.0kΩ  
R3  
1.0kΩ  
R4  
10.0k  
TPS56520  
TPS56720  
TPS56920  
PWRGD  
20  
19  
18  
17  
16  
15  
14  
13  
11  
12  
1
2
3
4
EN  
VFB  
VOUT  
SS  
VIN  
SDA  
SDA  
SCL  
A1  
µProcessor SCL  
R5  
18.2kΩ  
A1  
A0  
GND  
5
6
A0  
VREG5  
PGOOD  
VBST  
SW  
VIN  
C4  
2.2µF  
C5  
0.01µF  
R6  
22kΩ  
7
VIN  
PVIN  
PVIN  
PGND  
PGND  
8
C3  
0.1µF  
AGND  
C1  
10µF  
C2  
4.7µF  
9
L1  
SW  
VOUT  
10  
SW  
PGND  
AGND  
1.5µH  
C6  
100µF  
PGND  
PGND  
PGND  
2
版权 © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
目录  
8.4 Device Functional Modes........................................ 19  
8.5 Programming........................................................... 19  
8.6 Register Maps......................................................... 21  
Applications and Implementation ...................... 25  
9.1 Application Information............................................ 25  
9.2 Typical Application .................................................. 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information ................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements.............................................. 10  
7.7 Switching Characteristics........................................ 10  
7.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 33  
11 Layout................................................................... 33  
11.1 Layout Guidelines ................................................. 33  
11.2 Layout Example .................................................... 34  
12 器件和文档支持 ..................................................... 35  
12.1 器件支持................................................................ 35  
12.2 文档支持 ............................................................... 35  
12.3 相关链接................................................................ 35  
12.4 ....................................................................... 35  
12.5 静电放电警告......................................................... 35  
12.6 Glossary................................................................ 35  
13 机械、封装和可订购信息....................................... 35  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (February 2016) to Revision E  
Page  
Changed TJ MAX from 125°C to 150°C in Absolute Maximum Ratings ................................................................................ 7  
Changes from Revision C (July 2014) to Revision D  
Page  
从数据表标题中删除了 SWIFT............................................................................................................................................ 1  
Moved the Storage Temperature to the Absolute Maximum Ratings ................................................................................... 7  
Changed Handling Ratings To: ESD Ratings ........................................................................................................................ 7  
Changes from Revision B (March 2014) to Revision C  
Page  
Changed Figure 57 image for clarification. .......................................................................................................................... 34  
内容表,并已将修订历史记录移至第 2 页。  
Changes from Revision A (January 2014) to Revision B  
Page  
已更改为新的数据表格式。..................................................................................................................................................... 1  
已添加 添加了器件信息表 ....................................................................................................................................................... 1  
已添加 .................................................................................................................................................................................... 3  
Moved Abs Max Ratings, Handling Ratings, Recommended Operating Conditions, Thermal Info, and Elec  
Characteristics tables to the "Specifications" section ............................................................................................................ 7  
Changes from Original (November 2013) to Revision A  
Page  
已更改 数据表标题以包括“SWIFTTM 稳压器...” ...................................................................................................................... 1  
版权 © 2013–2017, Texas Instruments Incorporated  
3
 
 
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
5 说明 (续)  
TPS56X20 支持超低 ESR 陶瓷电容器和低等效串联电阻 (ESR) 输出电容器,诸如高分子钽固体电解电容器  
(POSCAP) 或高分子聚合物电容器 (SP-CAP)。此器件针对小尺寸 1.0µH 2.2µH 电感器进行了优化,节省了印刷  
电路板 (PCB) 面积。  
TPS56X20 器件采用 HTSSOP 封装。  
Table 1. List of Devices  
TPS56520  
5A  
TPS56720  
7A  
TPS56920  
9A  
TPS56C20  
12A  
Output Current  
HS/LS Rdson Numbers  
Package  
44mΩ/32mΩ  
PWP-20  
30mΩ/24mΩ  
PWP-20  
26mΩ/19mΩ  
PWP-20  
13mΩ/9mΩ  
PWP-24  
4
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
6 Pin Configuration and Functions  
TPS56520/720/920  
20-Pin PWP Package with PowerPAD  
(TOP VIEW)  
1
EN  
VFB 20  
19  
2
3
4
5
6
7
VOUT  
SDA  
SCL  
SS 18  
17  
A1  
A0  
GND  
(PowerPAD)  
16  
VREG5  
HTSSOP-20  
PGOOD 15  
VIN  
VBST  
14  
13  
12  
PVIN  
8
9
PVIN  
SW  
SW  
PGND  
10  
SW 11  
PGND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NUMBER  
1
2
I
I/O  
I/O  
I
Enable. Pull High to enable converter.  
Data I/O terminal.  
SDA  
SCL  
3
Clock I/O terminal.  
A1, A0  
VIN  
4,5  
6
Chip address.  
I
Supply Input for 5.5V linear regulator.  
PVIN  
PGND  
7,8  
9,10  
I
Power inputs and connects to high side MOSFET drains.  
I/O  
Ground returns for low-side MOSFETs. Input of current comparator.  
Switch node connections for both the high-side NFETs and low-side NFETs. Input of current  
comparator.  
SW  
11,12,13  
14  
I/O  
I
Supply input for high-side NFET gate drive circuit. Connect 0.1µF ceramic capacitor between  
VBST and SW terminals. An internal diode is connected between VREG5 and VBST.  
VBST  
PGOOD  
Open drain power good output. Low means the output voltage of the corresponding output is  
out of regulation.  
15  
O
Output of 5.5V linear regulator. Bypass to GND with a high-quality ceramic capacitor of at  
least 2.0µF ceramic capacitor. Do not connect any other circuitry to the terminal. VREG5 is  
active when EN is H-level.  
VREG5  
16  
O
GND  
SS  
17  
18  
I/O  
O
Signal GND. Connect sensitive SS and VFB returns to GND at a single point.  
Soft-Start Programming terminal. Connect Capacitor from SS terminal to GND to program  
Soft-Start time.  
VOUT  
VFB  
19  
20  
I
I
Connection to output voltage  
D-CAP2 feedback input. Connect to output voltage with resistor divider.  
Exposed Thermal  
Pad  
Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Must be  
connected to GND.  
Back side  
I/O  
Copyright © 2013–2017, Texas Instruments Incorporated  
5
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
TPS56C20  
24-Pin PWP Package with PowerPAD  
(TOP VIEW)  
1
EN  
VFB  
VOUT  
SS  
24  
23  
2
3
4
5
6
SDA  
SCL  
A1  
22  
21  
20  
GND  
A0  
VREG5  
TPS56C20  
PGOOD 19  
VIN  
HTSSOP 24  
(PowerPAD)  
7
8
PVIN  
18  
17  
16  
VBST  
SW  
PVIN  
9
PGND  
SW  
10  
PGND  
15  
14  
13  
SW  
SW  
SW  
11 PGND  
12 PGND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
EN  
1
I
I/O  
I/O  
I
Enable. Pull High to enable according converter.  
Data I/O terminal.  
SDA  
SCL  
2
3
Clock I/O terminal.  
A1, A0  
VIN  
4,5  
Chip address.  
6
I
Supply Input for 5.5V linear regulator.  
Power inputs and connects to both high side NFET drains.  
Ground returns for low-side MOSFETs. Input of current comparator.  
PVIN  
PGND  
7,8  
I
9,10,11,12  
I/O  
13,14,15,  
16, 17  
Switch node connections for both the high-side NFETs and low-side NFETs. Input of current  
comparator.  
SW  
I/O  
I
Supply input for high-side NFET gate drive circuit. Connect 0.1µF ceramic capacitor between  
VBST and SW terminals. An internal diode is connected between VREG5 and VBST.  
VBST  
PGOOD  
18  
19  
Open drain power good output. Low means the output voltage of the corresponding output is  
out of regulation.  
O
Output of 5.5V linear regulator. Bypass to GND with a high-quality ceramic capacitor of at least  
3.0µF ceramic capacitor. Do not connect any other circuitry to the terminal. VREG5 is active  
when EN is H-level.  
VREG5  
20  
O
GND  
SS  
21  
22  
I/O  
O
Signal GND. Connect sensitive SS and VFB returns to GND at a single point.  
Soft-Start Programming terminal. Connect Capacitor from SS terminal to GND to program Soft-  
Start time.  
VOUT  
VFB  
23  
24  
I
I
Connection to output voltage  
D-CAP2 feedback inputs. Connect to output voltage with resistor divider.  
Exposed Thermal  
Pad  
Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Must be  
connected to GND.  
Back side  
I/O  
6
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
20  
VIN,PVIN, EN  
VBST  
26  
VBST (10ns transient)  
28  
VFB, VOUT, SDA, SCL  
3.6  
6.5  
6.5  
20  
Input voltage  
A0, A1  
V
V
VBST–SW  
SW  
SW (10ns transient)  
–3  
22  
VREG5,SS,PGOOD  
–0.3  
–0.3  
–0.1  
–40  
–55  
6.5  
0.3  
5
Overvoltage  
PGND  
Sink Current  
PGOOD  
mA  
°C  
TJ  
Operating Junction temperature  
Storage temperature  
150  
150  
TSTG  
°C  
(1) These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those  
indicated under Recommended Operating Conditions.  
(2) All voltages are with respect to IC GND terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human Body Model (HBM)(2)  
Charged Device Model (CDM)(3)  
Electrostatic  
discharge(1)  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe  
manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
0.6  
0
NOM  
MAX  
17  
1.87  
5
UNIT  
V
VIN  
Operating input voltage  
Output voltage  
VOUT  
V
TPS56520  
TPS56720  
TPS56920  
TPS56C20  
0
7
IOUT  
Output current  
A
0
9
0
12  
125  
TJ  
Operating junction temperature range  
–40  
°C  
Copyright © 2013–2017, Texas Instruments Incorporated  
7
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
TPS56520/720/920  
TPS56C20  
PWP (24)  
32.8  
THERMAL METRIC(1)  
PWP (20)  
36.8  
22.5  
19.5  
0.6  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
16  
14.2  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
19.2  
1.4  
14  
θJCbot  
0.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN=4.5V to 17V, PVIN=4.5V to 17V (Unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE  
VIN  
Operating input voltage  
VIN supply current  
VIN, PVIN  
4.5  
17  
1150  
200  
V
IIN  
25°C, EN=5V, VFB=0.8V (non switching), VIN=12V  
25°C, EN=0V, VIN=12V  
920  
140  
µA  
µA  
IVINSDN  
VIN shutdown current  
FEEDBACK VOLTAGE  
25°C, external regulation mode, PVIN=12V,  
VOUT=1.1V, IOUT=50mA, pulse skipping  
0.594  
0.594  
0.591  
0.6  
0.6  
0.6  
0.606  
0.606  
0.609  
V
V
V
25°C, external regulation mode, VOUT=1.1V,  
continuous current mode  
VVFB  
VFB voltage  
External regulation mode, VOUT=1.1V, continuous  
current mode  
VOUT VOLTAGE (INTERNAL VID CONTROL)  
25°C, relative to target VOUT, PVIN=12V,  
VOUT=0.6V~1.87V, LOUT=1.5µH  
–1%  
0%  
1%  
Target  
VOUT  
VVOUT  
VOUT voltage  
Relative to target VOUT, PVIN=12V, LOUT=1.5µH  
Relative to target VOUT, LOUT=1.5µH  
–1.5%  
–2%  
0%  
0%  
1.5%  
2%  
VREG5 OUTPUT  
VVREG5  
MOSFET  
rDS(on)H  
rDS(on)L  
rDS(on)H  
rDS(on)L  
rDS(on)H  
rDS(on)L  
rDS(on)H  
rDS(on)L  
VREG5 Output Voltage  
25°C , 6V< VIN <17V, IVREG5 = 5mA, VFB=1V  
5.2  
5.5  
5.7  
V
High side switch resistance TPS56520  
Low side switch resistance TPS56520  
High side switch resistance TPS56720  
Low side switch resistance TPS56720  
High side switch resistance TPS56920  
Low side switch resistance TPS56920  
High side switch resistance TPS56C20  
Low side switch resistanceTPS56C20  
VBST-SW=5.5V  
VIN=12V  
44  
32  
30  
24  
26  
19  
13  
9
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
VBST-SW=5.5V  
VIN=12V  
VBST-SW=5.5V  
VIN=12V  
VBST-SW=5.5V  
VIN=12V  
POWER GOOD  
VOUT or VFB falling (fault) VO=1.1V  
VOUT or VFB rising (good) VO=1.1V  
VOUT or VFB rising (fault) VO=1.1V  
VOUT or VFB falling (good) VO=1.1V  
VPGOOD=0.5V  
80%  
85%  
VPGOODTH  
PGOOD threshold  
115%  
110%  
5.2  
IPGOODDLY  
PGOOD sink current  
3.15  
mA  
8
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
Electrical Characteristics (continued)  
TJ = –40°C to 125°C, VIN=4.5V to 17V, PVIN=4.5V to 17V (Unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC THRESHOLD  
VENH  
VENL  
EN H-level threshold voltage  
EN L-level threshold voltage  
1.85  
V
V
0.6  
CURRENT LIMIT(1)  
Current Limit TPS56520  
LOUT= 1.5µH  
LOUT= 1.5µH  
LOUT= 1.5µH  
LOUT= 1.5µH  
LOUT= 1.5µH  
LOUT= 1.5µH  
LOUT= 1.5µH  
LOUT= 1.5µH  
5.6  
7.8  
9
12  
A
A
A
A
A
A
A
A
Current Limit TPS56720  
IOCL  
Current Limit TPS56920  
10  
15  
Current Limit TPS56C20  
13.2  
1.25  
1.75  
2.25  
3
20  
Reverse Current Limit TPS56520  
Reverse Current Limit TPS56720  
Reverse Current Limit TPS56920  
Reverse Current Limit TPS56C20  
5.3  
6.5  
6.2  
8.2  
IOCLR  
OUTPUT UNDERVOLTAGE PROTECTION (UVP)  
VOVP  
VUVP  
Output OVP trip threshold  
Output UVP trip threshold  
OVP detect (L>H)  
UVP detect (H>L)  
125%  
60%  
VOUT  
VOUT  
THERMAL SHUTDOWN  
Shutdown temperature(1)  
Hysteresis(1)  
160  
23  
°C  
°C  
°C  
TSDN  
Thermal shutdown Threshold  
Pre-thermal warning threshold  
130  
UVLO  
UVLO  
UVLO Threshold  
Wake up to VREG5 voltage  
Hysteresis VREG5 voltage  
3.45  
0.45  
3.9  
4.2  
V
V
0.56  
0.61  
(1) Ensured by design. Not production tested.  
Copyright © 2013–2017, Texas Instruments Incorporated  
9
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
SOFT START  
Issc  
SS charge current  
VSS=0.5V , 25 °C  
VSS=0.5V  
–6.4  
0.14  
–6  
–5.6  
0.26  
µA  
IssD  
SS discharge current  
0.2  
mA  
SERIAL INTERFACE(1) (2) (3)  
VIL  
LOW level input voltage  
0.6  
V
V
V
VIH  
Vhys  
HIGH level input voltage  
1.8  
Hysteresis of Schmitt trigger inputs  
0.11  
LOW level output voltage (Open drain, 3mA  
sink current)  
VOL  
tSP  
0.4  
V
Pulse width of spikes suppressed by input  
filter  
32  
ns  
fscl  
SCL clock frequency  
400  
kHz  
us  
us  
us  
us  
ns  
ns  
ns  
ns  
us  
tHD;STA  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Hold time (repeated) START condition.  
LOW period of SCL clock  
HIGH period of SCL clock  
Set-up time for a repeated START condition  
Data Hold time  
0.6  
1.3  
0.6  
0.6  
50  
900  
Data set-up time  
100  
Rise time (SDA or SCL)  
20+0.1Cb(4)  
20+0.1Cb(4)  
0.6  
300  
300  
tf  
Fall time (SDA or SCL)  
tSU;STO  
Set-up time for STOP condition  
Bus free time between STOP and START  
condition  
tBUF  
Cb  
1.3  
us  
Capacitive load for each bus line  
400  
pF  
(1) Ensured by design. Not production tested.  
(2) Refer to Figure 1 below for I2C Timing Definitions  
(3) Cb = capacitance of bus line in pF  
V
IH  
V
IL  
Figure 1. I2C Timing Definitions (reproduced from Phillips I2C spec Version 1.1)  
7.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ON-TIME TIMER CONTROL  
TON  
SW On Time  
SW=12V, VOUT=1.1V  
25°C, VFB= 0.5V  
180  
285  
ns  
ns  
(1)  
TOFF  
SW Minimum off time  
(1) Ensured by design. Not production tested.  
10  
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
7.8 Typical Characteristics  
VIN = 12 V, VOUT = 1.0 V, Ta = 25 °C, unless otherwise specified.  
60  
1,100  
1,050  
1,000  
950  
VIN = 17 V  
50  
40  
30  
20  
10  
0
900  
850  
œ10  
800  
0
2
4
6
8
10  
12  
14  
16  
18  
œ50  
0
50  
100  
150  
C003  
C001  
EN Input Voltage (V)  
TJ Junction Temperature (°C)  
Figure 2. TPS56X20 Enable Input Current  
Figure 3. TPS56520 Quiescent Current  
200  
150  
100  
50  
700  
650  
600  
550  
500  
450  
400  
IOUT = 5 A  
VOUT = 1.8V  
VOUT = 0.6V  
VOUT = 1.0V  
0
œ50  
0
50  
100  
150  
4
6
8
10  
12  
14  
16  
18  
C002  
C004  
TJ Junction Temperature (°C)  
VIN - Input Voltage (V)  
Figure 4. TPS56520 Shutdown Quiescent Current  
Figure 5. TPS56520 Switching Frequency  
600  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
IO = 50 mA, VOUT = 1.1 V  
VOUT = 1.0V  
VOUT = 1.8V  
VOUT = 0.6V  
550  
500  
450  
400  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
œ50  
0
50  
100  
150  
C005  
C006  
IO - Output Current (A)  
TJ Junction Temperature (°C)  
Figure 6. TPS56520 Switching Frequency,  
Eco-mode™ = OFF  
Figure 7. TPS56520 Feedback Voltage  
Copyright © 2013–2017, Texas Instruments Incorporated  
11  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.0 V, Ta = 25 °C, unless otherwise specified.  
8.00  
1,000  
950  
900  
850  
800  
VSS = 0.5 V  
7.50  
7.00  
6.50  
6.00  
5.50  
5.00  
4.50  
4.00  
œ50  
0
50  
100  
150  
œ50  
0
50  
100  
150  
C006  
C008  
TJ Junction Temperature (°C)  
TJ Junction Temperature (°C)  
Figure 8. TPS56520 Soft Start Charging Current  
Figure 9. TPS56720 Quiescent Current  
200  
150  
100  
50  
700  
650  
600  
550  
500  
450  
400  
IOUT = 7 A  
VOUT = 0.6V  
VOUT = 1.0V  
VOUT = 1.8V  
0
œ50  
0
50  
100  
150  
4
6
8
10  
12  
14  
16  
18  
C009  
C011  
TJ Junction Temperature (°C)  
VIN - Input Voltage (V)  
Figure 10. TPS56720 Shutdown Quiescent Current  
Figure 11. TPS56720 Switching Frequency  
600  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
IO = 50 mA, VOUT = 1.1 V  
VOUT = 1.0V  
VOUT = 1.8V  
VOUT = 0.6V  
550  
500  
450  
400  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
œ50  
0
50  
100  
150  
C012  
C013  
IO - Output Current (A)  
TJ Junction Temperature (°C)  
Figure 12. TPS56720 Switching Frequency,  
Eco-mode™ = OFF  
Figure 13. TPS56720 Feedback Voltage  
12  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.0 V, Ta = 25 °C, unless otherwise specified.  
8.00  
1,100  
1,050  
1,000  
950  
VSS = 0.5 V  
7.50  
7.00  
6.50  
6.00  
5.50  
5.00  
4.50  
4.00  
900  
850  
800  
œ50  
0
50  
100  
150  
œ50  
0
50  
100  
150  
C014  
C015  
TJ Junction Temperature (°C)  
TJ Junction Temperature (°C)  
Figure 14. TPS56720 Soft Start Charging Current  
Figure 15. TPS56920 Quiescent Current  
200  
150  
100  
50  
700  
650  
600  
550  
500  
450  
400  
IOUT = 9 A  
VOUT = 1.8V  
VOUT = 1.0V  
VOUT = 0.6V  
0
œ50  
0
50  
100  
150  
4
6
8
10  
12  
14  
16  
18  
C016  
C018  
TJ Junction Temperature (°C)  
VIN - Input Voltage (V)  
Figure 16. TPS56920 Shutdown Quiescent Current  
Figure 17. TPS56920 Switching Frequency  
600  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
IO = 50 mA, VOUT = 1.1 V  
VOUT = 1.0V  
VOUT = 0.6V  
VOUT = 1.8V  
550  
500  
450  
400  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
œ50  
0
50  
100  
150  
C019  
C020  
IO - Output Current (A)  
TJ Junction Temperature (°C)  
Figure 18. TPS56920 Switching Frequency,  
Eco-mode™ = OFF  
Figure 19. TPS56920 Feedback Voltage  
Copyright © 2013–2017, Texas Instruments Incorporated  
13  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.0 V, Ta = 25 °C, unless otherwise specified.  
8.00  
1,100  
1,050  
1,000  
950  
VSS = 0.5 V  
7.50  
7.00  
6.50  
6.00  
5.50  
5.00  
4.50  
4.00  
900  
850  
800  
œ50  
0
50  
100  
150  
œ50  
0
50  
100  
150  
C021  
C022  
TJ Junction Temperature (°C)  
TJ Junction Temperature (°C)  
Figure 20. TPS56920 Soft Start Charging Current  
Figure 21. TPS56C20 Quiescent Current  
200  
150  
100  
50  
700  
650  
600  
550  
500  
450  
400  
IOUT = 12 A  
VOUT = 1.8V  
VOUT = 1.0V  
VOUT = 0.6V  
0
œ50  
0
50  
100  
150  
4
6
8
10  
12  
14  
16  
18  
C023  
C025  
TJ Junction Temperature (°C)  
VIN - Input Voltage (V)  
Figure 22. TPS56C20 Shutdown Quiescent Current  
Figure 23. TPS56C20 Switching Frequency  
600  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
IO = 50 mA, VOUT = 1.1 V  
VOUT = 1.0V  
VOUT = 1.8V  
VOUT = 0.6V  
550  
500  
450  
400  
350  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
œ50  
0
50  
100  
150  
C026  
C027  
IO - Output Current (A)  
TJ Junction Temperature (°C)  
Figure 24. TPS56C20 Switching Frequency,  
Eco-mode™ = OFF  
Figure 25. TPS56C20 Feedback Voltage  
14  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.0 V, Ta = 25 °C, unless otherwise specified.  
8.00  
VSS = 0.5 V  
7.50  
7.00  
6.50  
6.00  
5.50  
5.00  
4.50  
4.00  
œ50  
0
50  
100  
150  
C028  
TJ Junction Temperature (°C)  
Figure 26. TPS56C20 Soft Start Charging Current  
Copyright © 2013–2017, Texas Instruments Incorporated  
15  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS56X20 is a synchronous step-down (buck) converter with two integrated N-channel MOSFETs for each  
channel. It operates using D-CAP2™ control mode. The fast transient response of D-CAP2™ control reduces the  
required output capacitance required to meet a specific level of performance. The output voltage of the  
TPS56X20 can be set by either VFB with divider resistors (Adjusting the Output Voltage by External Regulation  
Mode) or I2C compatible interface (Programming the Output Voltage by Internal Regulation Mode).  
When only external regulation mode is used in a TPS56X20 application, the VOUT terminal should be tied to the  
output voltage of the converter and SDA & SCL terminals should be grounded. A0 & A1 terminals may be  
floating.  
When only internal regulation mode is used in a TPS56X20 application, the VFB terminal should be connected to  
the output voltage of the converter.  
The integrated MOSFETs allow for high efficiency power supply designs. The MOSFETs have been sized to  
optimize efficiency for lower duty cycle applications.  
8.2 Functional Block Diagram  
6
1
16  
VIN  
EN  
VREG5  
VREG5  
EN  
UVLO  
EN  
Logic  
VREG5  
+
7
8
PVIN  
PVIN  
OV  
EN  
-
+25%  
VREG5  
INT  
19  
20  
VOUT  
VFB  
Control Logic  
14  
VBST  
-
EXT  
+PWM  
+
1 shot  
13  
12  
11  
SW  
SW  
SW  
18  
SS  
XCON  
ON  
VREG5  
0,6V  
VREF  
INT  
EXT  
10 PGND  
DAC  
VOUT = 0.6V  
to 1.87V  
9
+
SW  
PGND  
INT=  
VID I2C  
Output  
Voltage  
Selected  
ZC  
-
PGND  
SW  
7 bits  
+
17  
OCP  
GND  
OCP  
-
2
3
4
5
Serial  
Interface  
SDA  
SCL  
A1  
VALLEY CURRENT LIMIT  
EN  
-
+15%  
+
Chip ADDR  
01101 A1A0  
15  
PGOOD  
OV  
UVLO  
TSD  
AO  
PWM  
COMPARATOR  
INPUT  
Protection  
Logic  
-
+
-15%  
Figure 27. TPS56520, TPS56720 and TPS56920 20 Terminal  
16  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
Functional Block Diagram (continued)  
6
20  
VIN  
VREG5  
VREG5  
EN  
UVLO  
1
EN  
EN  
Logic  
VREG5  
+
7
PVIN  
OV  
8
EN  
-
PVIN  
+25%  
VREG5  
INT  
23  
24  
VOUT  
VFB  
Control Logic  
18  
VBST  
-
17  
SW  
EXT  
+PWM  
+
16  
SW  
SW  
SW  
SW  
1 shot  
15  
14  
13  
22  
SS  
XCON  
ON  
VREG5  
0,6V  
VREF  
INT  
EXT  
12  
11  
10  
9
PGND  
PGND  
PGND  
PGND  
DAC  
VOUT = 0.6V  
to 1.87V  
+
SW  
INT=  
VID I2C  
Output  
Voltage  
Selected  
ZC  
-
PGND  
SW  
7 bits  
+
21  
OCP  
GND  
OCP  
-
2
3
4
5
Serial  
Interface  
SDA  
SCL  
A1  
VALLEY CURRENT LIMIT  
EN  
-
+15%  
+
Chip ADDR  
01101 A1A0  
19  
PGOOD  
OV  
UVLO  
TSD  
AO  
PWM  
COMPARATOR  
INPUT  
Protection  
Logic  
-
+
-15%  
Figure 28. TPS56C20 24 Terminal  
8.3 Feature Description  
8.3.1 PWM Operation  
The main control loop of the TPS56X20 is an adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2™ mode control. D-CAP2™ control combines constant on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off when the internal  
timer expires. This timer is set by the converter’s input voltage, VIN, and the output voltage, VOUT, to maintain a  
pseudo-fixed frequency over the input voltage range hence it is called adaptive on-time control. The timer is reset  
and the high-side MOSFET is turned on again when the feedback voltage falls below the nominal output voltage.  
An internal ramp is added to the reference voltage to simulate output voltage ripple, eliminating the need for ESR  
induced output ripple from D-CAP2™ mode control.  
8.3.2 PWM Frequency and Adaptive On-Time Control  
TPS56X20 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The  
TPS56X20 runs with a pseudo-constant frequency of 500 kHz by using the input voltage and output voltage to  
set the on-time timer. The on-time is inversely proportional to the input voltage and proportional to the output  
voltage, therefore, when the duty ratio is VO/PVIN, the frequency is constant.  
Copyright © 2013–2017, Texas Instruments Incorporated  
17  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 VIN and Power VIN Terminals (VIN and PVIN)  
The device allows for a variety of applications by using the VIN and PVIN terminals together or separately. The  
VIN terminal voltage supplies the internal control circuits of the device. The PVIN terminal voltage provides the  
input voltage to the power converter system. The input voltage for VIN and PVIN can range from 4.5V to 17V.  
8.3.4 Auto-Skip Eco-mode™ Control  
The TPS56X20 is designed with Auto-Skip Eco-mode™ to increase light load efficiency.  
8.3.5 Soft Start and Pre-Biased Soft Start  
The soft start function is adjustable. When the EN terminal becomes high, 6-µA current begins charging the  
capacitor which is connected from the SS terminal to GND. Smooth control of the output voltage is maintained  
during start up. The equation for the slow start time is shown in Equation 1. VFB voltage is 0.6 V and SS terminal  
source current is 6µA.  
CSS(nF)´ VFB(V)  
Tss(ms) =  
Issc(mA)  
(1)  
The TPS56X20 contains a unique circuit to prevent current from being pulled from the output during startup if the  
output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft start  
becomes greater than internal feedback voltage, VFB), the controller slowly activates synchronous rectification  
by starting the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a  
cycle-by-cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter.  
This scheme prevents the initial sinking of the pre-biased output, and ensures that the output voltage (VOUT)  
starts and ramps up smoothly into regulation from pre-biased startup to normal mode operation. When pre-  
biased conditions exist, it is recommended to disable the device by pulling the EN terminal to ground.  
8.3.6 Power Good  
The power-good function is activated after soft start has finished. The PGOOD output is an open drain output.  
When the output voltage is between 85% and 110% of the target value, internal comparator detect power good  
state and the power good signal becomes high. If the output voltage is lower than 80% or greater than 115% of  
the target value, the power good signal becomes low.  
8.3.7 Overcurrent Protection  
The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The  
switch current is monitored by measuring the low-side FET switch voltage between the SW terminal and GND.  
This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature  
compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current Iout. The TPS56X20 constantly  
monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side on-time.  
If the measured voltage is above the voltage proportional to the current limit, an internal counter is incremented  
per each switching cycle and the converter maintains the low-side switch on until the measured voltage is below  
the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching  
cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in  
the same manner.  
There are some important considerations for this type of overcurrent protection. The peak current is the average  
load current plus one half of the peak-to-peak inductor current. The valley current is the average load current  
minus one half of the peak-to-peak inductor current. Since the valley current is used to detect the overcurrent  
threshold, the load current is higher than the overcurrent threshold. Also, when the current is being limited, the  
output voltage tends to fall as the demanded load current may be higher than the current available from the  
converter. When the output voltage becomes lower than 60% of the target voltage, the UVP comparator detects  
it. Depending on the values of Hiccup Mode bit and UVP Latchoff Mode bit in the Control A and Control B  
registers, the device may enter Hiccup Mode or Latchoff Mode or keep running under cycle-by-cycle current  
limiting.  
18  
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
Feature Description (continued)  
The TPS56X20 also implements reverse overcurrent protection. When reverse overcurrent protection is  
triggered, the high-side MOSFET turns on for the preset on-time and then the low-side MOSFET turns on to  
monitor the switch valley current. The high-side MOSFET turns on again if either VFB pin voltage drops below  
reference voltage, or the reverse switch current hits the reverse current trip point.  
8.3.8 UVLO Protection  
Under-voltage lock out protection (UVLO) monitors the voltage of the VREG5 terminal. When the VREG5 voltage  
is lower than UVLO threshold voltage, the TPS56X20 is shut off. This protection is non-latching.  
8.4 Device Functional Modes  
8.4.1 Operation at Light Loads  
The TPS56x20 works in Auto-Skip Eco-modeTM at light load to boost the efficiency. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to the where its  
ripple valley touches the zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load  
current further decreases the converter run into discontinuous conduction mode. The on-time is kept same as it  
was in the continuous conduction mode because it takes longer to discharge the output capacitor with smaller  
load current to the level of the nominal output voltage. The transition point to the light load operation IO(LL) current  
can be estimated with Equation 2 with 500kHz used as ƒsw.  
PVIN - V  
´ V  
OUT  
(
)
1
OUT  
IOUT  
=
´
(LL)  
2´LO ´ ƒSW  
PVIN  
(2)  
8.5 Programming  
8.5.1 I2C Interface  
The TPS56X20 implements a subset of the Phillips I2C specification Ver. 1.1. The TPS56X20 is a Slave-Only (it  
never becomes a Master, and so never pulls down the SCL terminal on the I2C bus). An I2C transaction consists  
of either writing a data byte to one of the TPS56X20’s internal registers which requires a 3-byte transaction or  
reading back one byte from a register which requires a 4-byte transaction. The protocols follow the System  
Management Bus (SMBUS) Specification Ver. 2.0 Write Byte and Read Byte protocols. This spec is available on  
the Internet for further reading, but the subset implemented in TPS56X20 is described below.  
Long-form address modes, multi-byte data transfers and Packet Error Code (PEC) protocols are not supported in  
this implementation, though a Check Sum bit unique to the TPS56X20 is implemented and described below. The  
SMBUS Send Byte protocol (the 2-byte protocol used in TPS56921) is not implemented on TPS56X20.  
The I2C interface terminals are composed of the SDA (Data) and SCL (Clock) terminals, and the A0 and A1  
terminals to set up the chip’s address. SDA and SCL are designed to be used with pullup resistors to 3.3V. A0  
and A1 are designed to be either grounded (logic LOW) or left open (logic HIGH) and should not tie to a high  
voltage.  
8.5.2 I2C Protocol  
Input voltage – Logic levels for I2C SDA and SCL terminals are not fixed. For the TPS56X20, a logic “0” (LOW)  
should be 0V and a logic “1” (HIGH) can be any voltage between 1.8V and 3.3V. Logic HIGH is generated by  
external pullup resistors (see next paragraph).  
Output voltage – the I2C bus has external pullup resistors, one for SCL and one for SDA. These pull up to a  
voltage called VDD which must lie between 1.8V and 3.3V. The outputs are pulled down to their logic LOW levels  
by open-drain outputs and pulled up to their logic HIGH levels by these external pullups. The pullups must be  
selected so that the current into any chip when pulled LOW by that chip’s open drain output (=VDD/RPULLUP) is  
less than 3.3mA.  
Data format – One clock pulse on the SCL clock line is generated for each bit of data to be transferred. The data  
on the SDA line must be stable during the HIGH period of the SCL clock line. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW.  
Copyright © 2013–2017, Texas Instruments Incorporated  
19  
 
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
Programming (continued)  
START and STOP conditions – A HIGH to LOW transition on the SDA line while the SCL line is HIGH defines a  
START condition. A LOW to HIGH transition on the SDA line while the SCL line is HIGH defines a STOP  
condition. START and STOP conditions are always generated by the Master. The bus is considered to be BUSY  
after the condition. It is considered to be free again after a minimum of 4.7µS after the STOP condition.  
The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. START and repeated  
START are functionally identical.  
Every byte of data out on the SDA line is 8 bits long. 9 clocks occur for each byte (the additional clock being for  
an ACK signal put onto the bus by the TPS56X20 pulling down on the bus to acknowledge receipt of the data). In  
the following diagrams, shaded blocks indicate SDA data generated by the TPS56X20 being sent to the Master  
I2C controller, while white blocks indicate SDA data generated by the Master being received by the TPS56X20.  
The Master always generates the SCL signal.  
Sending data to the TPS56X20 is accomplished using the following 3-byte sequence, referred to as a Write Byte  
transaction as follows:  
Wr  
S
Chip Address  
A
Register Address  
A
Data Byte  
A
P
A6 A5 A4 A3 A2 A1 A0  
0
ACK R7 R6 R5 R4 R3 R2 R1 R0  
D7 D6 D5 D4 D3 D2 D1 D0 ACK  
ACK  
SDA  
SCL  
Start Condition  
Stop Condition  
Figure 29. A complete Write Byte transfer, adapted from SMBUS spec  
Reading back data from the TPS56X20 is accomplished using the following 4-byte sequence, referred to as a  
Read Byte transaction:  
Wr  
Rd  
S
Chip Address  
A
Register Address  
A
Sr  
Chip Address  
A
Data Byte  
A
P
A6 A5 A4 A3 A2 A1 A0  
0
ACK R7 R6 R5 R4 R3 R2 R1 R0 ACK  
A6 A5 A4 A3 A2 A1 A0  
1
ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
SDA  
SCL  
Start Condition  
Stop Condition  
Repeated Start  
Figure 30. A complete Read Byte transfer, adapted from SMBUS spec  
On the TPS56X20, the I2C bus is inactive until:  
1. Both SDA and SCL have been at a logic high simultaneously to prevent power sequencing issues  
2. VREG5 is in regulation.  
Control registers should not be written to during the Soft Start time, but can be written before VOUT is enabled or  
after the PGOOD terminal or status register go high, indicating that soft start is complete.  
Until a VOUT command has been accepted, the TPS56X20’s output voltage will be determined by the external  
resistor divider feedback to the VFB terminals, the condition of the EN terminals, and the capacitance on the SS  
terminals.  
When the TPS56X20 receives a Chip Address code it recognizes to be its own, it will respond by sending an  
ACK (pulling down on the SDA bus during the next clock on the SCL bus). If the address is not recognized, the  
TPS56X20 assumes that the I2C message is intended for another chip on the bus, and it takes no action. It will  
disregard data sent thereafter until the next START is begun.  
If, after recognizing its Chip Address, the TPS56X20 receives a valid Register Address, it will send an ACK and  
prepare to receive a Data Byte to be sent to that Register.  
If a valid Data Byte is then received, it will send an ACK and will set the output voltage to the desired value. If the  
byte is deemed invalid, ACK will not be sent and the Master will need to retry by sending a STOP sequence  
followed by a new START sequence and an initiating resend of the entire address/data packet. When sending  
data to the Output Voltage register, the output voltage will only change upon receipt of a valid data byte.  
20  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
Programming (continued)  
8.5.3 I2C Chip Address Byte  
The 7-bit address of the TPS56X20 can be any number between 34h (0110100) and 37h (0110111). The 5  
MSB’s are set internally and the 2 LSB’s are customer-selectable via the A1 and A0 terminals, allowing up to 4  
TPS56X20’s to be controlled on the same I2C bus. When the Master is sending the address as an 8-bit value,  
the 7-bit address should be sent followed by a trailing 0 to indicate this is a WRITE operation. A0 and A1 must be  
floated for logic 1. Do not tie them to external voltage source. The following codes assume this trailing zero.  
Table 2. TPS56X20 Address as a Function of A1 and A0 Terminals  
A1  
A0  
Address (binary)  
01101000  
Address (hex)  
Ground (0)  
Ground (0)  
Open (1)  
Open (1)  
Ground (0)  
Open (1)  
Ground (0)  
Open (1)  
68h  
6Ah  
6Ch  
6Eh  
01101010  
01101100  
01101110  
8.6 Register Maps  
8.6.1 I2C Register Address Byte  
The TPS56X20 contains four customer-accessible registers. Register 0 is the Output Voltage register. Registers  
8 and 9 set several operating features for the regulator. The lower 3 bits of Register 9 sets the current limit for  
the high-current, etc. Register 24 provides the status of the regulator. The register map is as follows:  
Register  
Name  
Addr  
(Decimal)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
VOUT[6:0]  
Bit 2  
Bit 1  
Bit 0  
VOUT  
0
Odd Parity  
Internal Mode  
Hiccup  
Mode On  
ECO Mode  
On  
Control A  
8
PGOOD Delay [1:0]  
OVP  
DAC Settle [1:0]  
UVP  
Control B  
9
Enable  
Latchoff  
Mode Off  
Latchoff  
Mode Off  
Current Limit [2:0]  
Status  
(Read Only)  
OT Shut  
Down  
Early OT  
Warn  
24  
TI Only  
TI Only  
TI Only  
TI Only  
PGOOD  
8.6.2 Output Voltage Registers  
The lower 7 bits of the Output Voltage Register controls the VOUT of the TPS56X20. These bits are the 7-bit  
selector for one of the output voltages.  
As previously mentioned, when the IC powers up, the startup and output voltage regulation conditions are set by  
the external resistor divider feedback to the VFB terminal, the condition of the EN terminal, and the capacitance  
on the SS terminal.  
Bringing the EN terminal high (or setting the Enable bit in Control register 9 high) begins a soft-start ramp on the  
regulator.  
After applying VIN, VREG5 will come into regulation and the I2C interface will active. The user can activate soft  
start and VOUT by bring the EN terminal high or programming the Enable bit in Control Register 9.  
By default, the part will regulate VOUT using the external feedback resistors connected to the VFB terminal. The  
user can then program VOUT by writing any VOUT code. Alternatively, if the EN terminal is low, soft start and  
VOUT can be enabled by writing the desired VOUT code and programming the Enable bit to a one.  
Copyright © 2013–2017, Texas Instruments Incorporated  
21  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
Table 3. Ideal VOUT vs VOUT[6:0] Code  
Code  
0
Binary  
VOUT  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
Code  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Binary  
VOUT  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
Code  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Binary  
VOUT  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
Code  
96  
Binary  
VOUT  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
1.68  
1.69  
1.70  
1.71  
1.72  
1.73  
1.74  
1.75  
1.76  
1.77  
1.78  
1.79  
1.80  
1.81  
1.82  
1.83  
1.84  
1.85  
1.86  
1.87  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
1
97  
2
98  
3
99  
4
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
8.6.3 CheckSum Bit (VOUT Register Only)  
The CheckSum bit should be set by the Master controller to be the exclusive-NOR of the D[6:0] bits (odd parity).  
This will be used by the TPS56X20 to check that a valid data byte was received. If CheckSum is not equal to the  
exclusive-NOR of these bits, the TPS56X20 assumes that an error occurred during the data transmission, and it  
will not send an ACK bit, nor will it reset the VOUT to the received code (or, if the Control register, will not reset  
the register contents as requested). The Master should try again to send the data. When reading back the VOUT  
register, the parity bit is also sent back.  
22  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
8.6.4 Control Registers  
There are 4 control registers: Registers 0, 8, 9 and 24.  
Table 4. Summary of Default Control Bits  
DEFAULT  
(BINARY)  
CONTROL BIT(s)  
FUNCTION  
VOUT code, 7 bits VOUT[6:0] + odd parity checksum bit at VOUT[7]  
Writing a valid code to this register also sets Internal Mode.  
VOUT[7:0]  
0110010  
Sending an invalid code (checksum incorrect) to this register does not change register contents  
or set Internal/Enable bits.  
1. If set to 1, the part switches to INTERNAL mode and VOUT register value controls output  
voltage.  
0
Internal Mode  
(EXTERNAL  
mode)  
2. Writing a valid code to the VOUT register sets this Internal Mode bit to 1.  
3. The part can be set back to EXTERNAL control mode at any time by writing this bit to 0.  
Part defaults to PGOOD Delay = 26.4µS  
PGOOD Delay [1:0]  
Hiccup Mode  
11  
1
Part defaults to Hiccup Mode On. If Hiccup Mode is enabled, do not turn on OVP Latchoff  
Mode and/or UVP Latchoff Mode.  
ECO Mode  
0
Part defaults to ECO Mode Off  
Part defaults to DAC Settle = 25µS  
Part defaults to Disabled.  
DAC Settle [1:0]  
11  
Enable  
0
1
This bit can be set to 1 by writing the bit to 1. The external EN terminal being set to 1 overrides  
the register value (you cannot disable the part by writing a 0 if the EN terminal is high).  
OVP Latchoff Mode  
Disable  
Part defaults to Latchoff Mode Off. If Hiccup Mode is enabled, do not turn on OVP Latchoff  
Mode and/or UVP Latchoff Mode.  
UVP Latchoff Mode  
Disable  
Part defaults to Latchoff Mode Off. If Hiccup Mode is enabled, do not turn on OVP Latchoff  
Mode and/or UVP Latchoff Mode.  
1
CurLim[2:0]  
111  
Selects default current limit value  
Enable: This bit can be used to enable the regulator just like setting the EN terminal high. The EN terminal has  
priority (if EN=high, the Enable bit does nothing, the chip is already enabled). This allows the customer to tie EN  
to GND externally or leave the EN terminal floating (the terminal is pulled low internally) and subsequently enable  
the regulator by I2C software control.  
DAC Settle [1:0]: When a new VOUT voltage is selected, this happens by setting an internal DAC to a new  
internal VREF voltage. If this happens instantly, the regulator loop will be thrown out of regulation and the  
DCAP2 loop must respond to bring the VOUT back into regulation at its new chosen value. This can cause  
VOUT overshoots (or undershoots) or head to high transient input currents. Therefore, an analog filter on the  
DAC output causes this internal VREF to change more slowly. The DAC Settle[1:0] bits change the filter time  
constant as follows:  
DAC Settle [1:0]  
Typical Filter Time Constant  
00  
01  
10  
11  
6 µs  
10 µs  
15 µs  
25 µs  
The power-up default value of the DAC Settle[1:0] bits is 11.  
Internal Mode: This bit can be interrogated to discover whether the chip is running in EXT Mode (using external  
resistor dividers to VFB terminal to set the output voltage) or INT Mode (using codes set in Output Voltage  
register to set the output voltage). Further, it can be set by the user to force either Internal or External mode.  
Writing a valid value to a VOUT register always sets External to 1 on the corresponding regulator.  
In default, the TPS56X20 will start up into external mode and the output voltage is set by VFB with divider  
resistors. If starting up into internal VID mode is desired, the input voltage should be applied first, write Internal  
Mode bit to "1" the next, then enable the device by EN terminal or EN bit.  
Copyright © 2013–2017, Texas Instruments Incorporated  
23  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
Current Limit [2:0]: Set the low-side valley current limit threshold for the regulator. Power-up default setting is  
[111].  
TPS56520  
TPS56720  
TPS56920  
TPS56C20  
Typical Current  
Limit  
Typical Current  
Limit  
Typical Current  
Limit  
Typical Current  
Limit  
Current Limit [2:0]  
Units  
000  
001  
010  
011  
100  
101  
110  
111  
1.72  
2.28  
2.88  
3.44  
4.32  
5.32  
6.4  
3
3.8  
4.76  
5.8  
5.08  
6.16  
Amps  
Amps  
Amps  
Amps  
Amps  
Amps  
Amps  
Amps  
3.6  
4.58  
5.52  
6.68  
8.24  
9.92  
12.12  
7.68  
6.88  
8.52  
10.32  
12.52  
15.16  
9.12  
11.16  
13.44  
16.24  
19.76  
7.84  
PGOOD Delay [1:0]: Especially for low load currents, large jumps in the I2C-controlled VOUT setting may have a  
long settling time compared to the UV/OV thresholds. If this happens, it will cause the PGOOD signal to  
temporarily indicate a fault condition. If this is not the desired behavior, it is possible to “blank” the PGOOD being  
pulled down for some number of µS according to the table below.  
PGOOD Delay  
FUNCTION  
[1:0]  
00  
01  
10  
11  
Set delay from PGOOD fault to PGOOD terminal pulldown to 0µS  
Set delay from PGOOD fault to PGOOD terminal pulldown to 6.6µS  
Set delay from PGOOD fault to PGOOD terminal pulldown to 13.2µS  
Set delay from PGOOD fault to PGOOD terminal pulldown to 26.4µS (Default)  
On power-up, the delay defaults to 26.4 µS. The user can reset the blanking time using these codes at any time  
without affecting any other device behavior.  
8.6.5 Latchoff  
Latchoff turns the output voltage off in the event of an overvoltage or undervoltage condition. VOUT will not be  
enabled again until the EN terminal or EN bit is cycled. By default Latchoff Mode is disabled, but overvoltage  
protection (OVP) and undervoltage protection (UVP) Latchoff Modes can be enabled by setting the OVP and  
UVP Latchoff Mode Off bits to zero. Power cycling Vin will reset these bits to their default values. If either  
Latchoff Mode is enabled, Hiccup Mode On should be disabled.  
24  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
9 Applications and Implementation  
9.1 Application Information  
The devices are synchronous step down DC-DC converters rated at different output currents whose output  
voltage can be dynamically scaled by sending commands over an I2C interface. The section below discusses the  
design of the external components to complete the power supply design by using a typical application as a  
reference  
9.2 Typical Application  
9.2.1 TPS56520, TPS56720 and TPS56920, 5-A, 7-A, and 9-A Converter  
3.3 V  
U1  
R1  
1.0kW  
R2  
1.0kW  
R3  
1.0kW  
R4  
10.0kW  
TPS56520  
TPS56720  
TPS56920  
1
1
PWRGD  
20  
19  
18  
17  
16  
15  
14  
13  
11  
12  
EN  
VFB  
VOUT  
SS  
2
3
4
SDA  
SCL  
SDA  
SCL  
A1  
R5  
18.2kW  
C8  
2
A1  
GND  
5
6
A0  
A0  
VREG5  
PGOOD  
VBST  
SW  
VIN = PVIN = 4.5-17V  
VIN  
C5  
2.2µF  
C6  
0.01µF  
R6  
22kW  
7
VIN  
PVIN  
PVIN  
PGND  
PGND  
8
C4  
0.1µF  
C1  
10µF  
C2  
10µF  
C3  
4.7µF  
9
L1  
SW  
AGND  
10  
SW  
VOUT  
PGND  
AGND  
1.5µH  
C7  
100µF  
PGND  
PGND  
PGND  
DNP R3 for digital EN control  
Optional  
1
2
Figure 31. Typical Application Schematic – TPS56520, TPS56720 and TPS56920  
9.2.1.1 Design Requirements  
To begin the design process, the user must know a few application parameters:  
Input voltage range  
Output voltage  
Output current  
Output voltage ripple  
Input voltage ripple  
Copyright © 2013–2017, Texas Instruments Incorporated  
25  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
Table 5. Design Example  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.5V to 17V  
1.1V  
Output voltage  
Transient response, 3A-9A load step  
Output voltage ripple  
Input ripple voltage  
ΔVOUT = ±5%  
25mV  
400mA  
Output current rating  
12A  
Operating Frequency  
500kHz  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB terminal. It is recommended to  
use 1% tolerance or better divider resistors. Start by using Equation 3 to calculate VOUT  
.
To improve efficiency at light loads consider using larger value resistors, high resistance is more susceptible to  
noise, and the voltage errors from the VFB input current are more noticeable.  
R5  
æ
ö
VOUT = 0.6 ´ 1+  
ç
÷
R6  
è
ø
(3)  
9.2.1.2.1.1 Output Filter Selection  
The output filter used with the TPS56X20 is an LC circuit. This LC filter has double pole at:  
1
F =  
P
2p LOUT ´ COUT  
(4)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the TPS56X20. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls  
off at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that  
reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole  
of Equation 4 is located below the high frequency zero but close enough that the phase boost provided be the  
high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the  
values recommended in Table 6.  
Table 6. Recommended Component Values  
Output Voltage (V)  
R5 (kΩ)  
14.7  
18.2  
22  
R6 (kΩ)  
22  
C8 (pF)  
DNP  
L1 (µH)  
1.0-2.2  
1.0-2.2  
1.0-2.2  
1.0-2.2  
1.0-2.2  
C7 (µF)  
44-100  
44-100  
44-100  
44-100  
44-100  
1
1.1  
1.2  
1.5  
1.8  
22  
DNP  
22  
DNP  
33  
22  
DNP  
44.2  
22  
DNP  
For higher output voltages additional phase boost can be achieved by adding a feed forward capacitor (C6) in  
parallel with R5.  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 5,  
Equation 6 and Equation 7. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current. Use 500 kHz for  
fSW  
.
Use 500 kHz for fSW. Make sure the chosen inductor is rated for the peak current of Equation 6 and the RMS  
current of Equation 7.  
V
- VOUT  
VOUT  
IN(MAX)  
IlP-P  
=
´
V
LO ´ ¦SW  
IN(MAX)  
(5)  
26  
Copyright © 2013–2017, Texas Instruments Incorporated  
 
 
 
 
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
IlP-P  
IlPEAK = IO +  
2
(6)  
(7)  
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS56X20 is intended for use  
with ceramic or other low ESR capacitors. Recommended values range from 44µF to 100µF. Use Equation 8 to  
determine the required RMS current rating for the output capacitor.  
V
x (V - V  
)
OUT  
IN  
OUT  
I
=
Co(RMS)  
12 x V x L  
IN  
x
fSW  
O
(8)  
9.2.1.2.2 Input Capacitor Selection  
The TPS56X20 requires an input decoupling capacitor and a bulk capacitor depending on the application. A  
ceramic capacitor of 20µF or above is recommended for the decoupling capacitors from PVIN to PGND.  
Additionally, a 4.7 µF ceramic capacitor from VIN to GND is also recommended. The capacitors voltage rating  
needs to be greater than the maximum input voltage.  
9.2.1.2.3 Bootstrap Capacitor Selection  
The 0.1 µF ceramic capacitors must be connected between the VBST to SW terminals for proper operation. It is  
recommended to use ceramic capacitors with a dielectric of X5R or better.  
9.2.1.2.4 VREG5 Capacitor Selection  
For the TPS56920/720/520, a 2.2 µF ceramic capacitor must be connected between the VREG5 to GND  
terminals for proper operation.  
9.2.2 TPS56520, TPS56720 and TPS56920 Application Performance Curves  
VIN = 12 V, VOUT = 1.0 V, Ta = 25 °C, unless otherwise specified.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 12 V  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
0.01  
0.1  
Output Current - A  
1
10  
C029  
C030  
Output Current - A  
Figure 32. TPS56520 Efficiency  
Figure 33. TPS56520 Eco-mode™ Efficiency  
Copyright © 2013–2017, Texas Instruments Incorporated  
27  
 
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
0.10  
0.08  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
VIN = 12 V  
0.06  
VIN = 12 V  
0.04  
0.02  
0.00  
-0.02  
-0.04  
VIN = 5 V  
VIN = 5 V  
-0.06  
-0.08  
-0.10  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
C031  
C032  
Output Current - A  
Output Current - A  
Figure 34. TPS56520 Load Regulation  
Figure 35. TPS56520 Load Regulation with Eco-mode™  
0.10  
0.08  
100  
90  
IOUT = 10 mA,  
IOUT = 10 mA,  
Eco-mode = OFF  
Eco-mode = ON  
0.06  
80  
0.04  
70  
VIN = 5 V  
0.02  
60  
0.00  
50  
40  
30  
20  
10  
0
VIN = 12 V  
œ0.02  
œ0.04  
œ0.06  
œ0.08  
œ0.10  
IOUT = 5 A  
5
8
11  
14  
17  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
C033  
C034  
Input Voltage - V  
Output Current - A  
Figure 36. TPS56520 Line Regulation  
Figure 37. TPS56720 Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
VIN = 12 V  
VIN = 5 V  
VIN = 12 V  
VIN = 5 V  
0.01  
0.1  
Output Current - A  
1
10  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
C036  
C035  
Output Current - A  
Figure 38. TPS56720 Eco-mode™ Efficiency  
Figure 39. TPS56720 Load Regulation  
28  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
0.20  
0.15  
IOUT = 10 mA,  
Eco-mode = OFF  
IOUT = 10 mA,  
Eco-mode = ON  
VIN = 12 V  
0.10  
0.05  
0.00  
œ0.05  
œ0.10  
œ0.15  
œ0.20  
VIN = 5 V  
IOUT = 7 A  
-0.40  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
5
8
11  
14  
17  
C037  
C038  
Output Current - A  
Input Voltage - V  
Figure 40. TPS56720 Load Regulation with Eco-mode™  
Figure 41. TPS56720 Line Regulation  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
VIN = 5 V  
60  
VIN = 5 V  
VIN = 12 V  
50  
40  
30  
20  
10  
0
VIN = 12 V  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
0.01  
0.1  
Output Current - A  
1
10  
C039  
C040  
Output Current - A  
Figure 42. TPS56920 Efficiency  
Figure 43. TPS56920 Eco-mode™ Efficiency  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
VIN = 12 V  
VIN = 12 V  
VIN = 5 V  
VIN = 5 V  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
C041  
C042  
Output Current - A  
Output Current - A  
Figure 44. TPS56920 Load Regulation  
Figure 45. TPS56520 Load Regulation with Eco-mode™  
Copyright © 2013–2017, Texas Instruments Incorporated  
29  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
0.20  
IOUT = 10 mA,  
Eco-mode = OFF  
IOUT = 10 mA,  
Eco-mode = ON  
0.15  
0.10  
V = 50 mV/div (ac coupled)  
OUT  
0.05  
0.00  
œ0.05  
œ0.10  
œ0.15  
œ0.20  
I
OUT  
= 2 A/div  
IOUT = 9 A  
2.25 A to 6.75 A load step,  
slew rate = 500 mA / µsec  
5
8
11  
14  
17  
C043  
Input Voltage - V  
Time = 200 µs/div  
Figure 46. TPS56920 Line Regulation  
Figure 47. TPS56920 Transient Response  
IOUT = 9 A  
IOUT = 9 A  
V
= 100 mV/div (ac coupled)  
IN  
V
= 20 mV/div (ac coupled)  
OUT  
PH = 5 V/div  
PH = 5 V/div  
Time = 1 µs/div  
Time = 1 µs/div  
Figure 48. TPS56920 Input Voltage Ripple  
Figure 49. TPS56920 Output Voltage Ripple  
V
= 10 V/div  
IN  
EN = 5 V/div  
V
= 1 V/div  
OUT  
PGOOD = 2 V/div  
Time = 2 ms/div  
Figure 50. TPS56920 Start Up Relative to VIN  
30  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
9.2.3 TPS56C20 12-A Converter  
3.3 V  
R1  
1.0kW  
R2  
1.0kW  
R3  
1.0kW  
R4  
10.0kW  
U1  
1
1
PWRGD  
TPS56C20  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
EN  
VFB  
VOUT  
SS  
2
3
4
SDA  
SCL  
SDA  
SCL  
R5  
18.2kW  
C8  
2
A1  
A1  
GND  
VREG5  
PGOOD  
VBST  
SW  
5
6
A0  
A0  
VIN = PVIN = 4.5-17V  
VIN  
7
C5  
3.3µF  
C6  
0.01µF  
R6  
22kW  
VIN  
PVIN  
PVIN  
PGND  
PGND  
PGND  
PGND  
8
C1  
10µF  
C2  
10µF  
C3  
4.7µF  
9
SW  
10  
11  
12  
AGND  
SW  
C4  
0.1µF  
PGND  
AGND  
L1  
SW  
SW  
VOUT  
1.5µH  
PGND  
C7  
100µF  
PGND  
PGND  
DNP R3 for digital EN control  
Optional  
1
2
Figure 51. Typical Schematic – TPS56C20  
9.2.3.1 Design Requirements  
To begin the design process, the user must know a few application parameters:  
Input voltage range  
Output voltage  
Output current  
Output voltage ripple  
Input voltage ripple  
9.2.3.2 Design Procedure  
Follow the design procedure for the TPS56X20 converter listed above. For the TPS56C20, a 3.3 µF ceramic  
capacitor must be connected between the VREG5 to GND terminals for proper operation. Do not load the  
VREG5 terminal with any other load. It is recommended to use a ceramic capacitor with a dielectric of X5R or  
better.  
9.2.3.3 TPS56C20 Application Performance Curves  
VIN = 12 V, VOUT = 1.0 V, Ta = 25 °C, unless otherwise specified.  
Copyright © 2013–2017, Texas Instruments Incorporated  
31  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
VIN = 5 V  
60  
VIN = 5 V  
50  
40  
30  
20  
10  
0
VIN = 12 V  
VIN = 12 V  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
0.01  
0.1  
1
Output Current - A  
10  
100  
C044  
C045  
Output Current - A  
Figure 52. TPS56C20 Efficiency  
Figure 53. TPS56C20 Eco-mode™ Efficiency  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
VIN = 12 V  
VIN = 12 V  
VIN = 5 V  
VIN = 5 V  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
C046  
C047  
Output Current - A  
Output Current - A  
Figure 54. TPS56C20 Load Regulation  
Figure 55. TPS56C20 Load Regulation with Eco-mode™  
0.40  
0.30  
IOUT = 10 mA,  
Eco-mode = OFF  
IOUT = 10 mA,  
Eco-mode = ON  
0.20  
0.10  
0.00  
œ0.10  
œ0.20  
œ0.30  
œ0.40  
IOUT = 12 A  
5
8
11  
Input Voltage - V  
14  
17  
C048  
Figure 56. TPS56C20 Line Regulation  
32  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
10 Power Supply Recommendations  
The devices are designed to operate from an input supply range between 4.5 V and 17 V. This input supply must  
be well regulated. If the input supply is located more than a few inches from the TPS56X20 device, additional  
bulk capacitance may be required in addition to the ceramic bypass capacitors.  
11 Layout  
11.1 Layout Guidelines  
1. Keep the input switching current loop as small as possible. And avoid the input switching current through  
thermal Pad.  
2. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and  
inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the  
feedback terminal of the device.  
3. Keep analog and non-switching components away from switching components.  
4. Make a single point connection from the signal ground to power ground.  
5. Do not allow switching current to flow under the device.  
6. Keep the pattern lines for VIN and PGND broad.  
7. Exposed pad of device must be connected to PGND with solder.  
8. VREG5 capacitor should be placed near the device, and connected to GND.  
9. Output capacitor should be connected to a broad pattern of the PGND.  
10. Voltage feedback loop should be as short as possible, and preferably with ground shield.  
11. Kelvin connections should be brought from the output to the feedback terminal of the device.  
12. Providing sufficient via is preferable for VIN, SW and PGND connection.  
13. PCB pattern for VIN, SW, and PGND should be as broad as possible.  
14. Input capacitors should be placed as near as possible to the device.  
15. The topside and the bottom side of the PCB should be filled with as much ground plane as possible that has  
an uninterrupted heat flow path. The ground plane should be made as large as possible. The PVIN cap  
should connect to PGND and the VIN cap should connect to GND.  
Copyright © 2013–2017, Texas Instruments Incorporated  
33  
TPS56C20, TPS56920, TPS56720, TPS56520  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
www.ti.com.cn  
11.2 Layout Example  
Additional Thermal  
Vias  
Feedback Resistors  
VFB  
VOUT  
SS  
EN  
Analog Traces on  
SDA  
the Bottom Layer  
Soft Start Cap  
SCL  
Exposed Thermal  
Pad Area  
A1  
GND  
AGND  
A0  
VREG5  
PGOOD  
VIN normally  
connected to PVIN  
VREG5 Cap  
VIN  
VBST  
SW  
PVIN Input Bypass  
Capacitors  
PVIN  
PVIN  
PVIN  
PGND  
SW  
SW  
SW  
Trace on the  
Bottom Layer  
PGND  
SW  
SW  
PGND  
PGND  
Power Ground  
Output Inductor  
Power Ground  
Output  
Capacitor  
VOUT  
Figure 57. TPS56X20 Board Layout  
34  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS56C20, TPS56920, TPS56720, TPS56520  
www.ti.com.cn  
ZHCSC57E NOVEMBER 2013REVISED DECEMBER 2017  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
要获得 TPS56C20 Pspice 模型,请访问 www.ti.com.cn/product/cn/tps56x20。  
要获得 TPS56920 Pspice 模型,请访问 www.ti.com.cn/product/cn/tps56x20。  
要获得 TPS56720 Pspice 模型,请访问 www.ti.com.cn/product/cn/tps56x20。  
要获得 TPS56520 Pspice 模型,请访问 www.ti.com.cn/product/cn/tps56x20。  
12.2 文档支持  
12.2.1 相关文档  
TPS56X20-61412ASWIFTTM 稳压器评估模块用户指南》,SBAU227  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及申请样片或购买产品的快速访问  
链接。  
7. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
TPS56C20  
TPS56920  
TPS56720  
TPS56520  
12.4 商标  
D-CAP2, Eco-mode, PowerPAD are trademarks of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2013–2017, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS56520PWP  
TPS56520PWPR  
TPS56720PWP  
TPS56720PWPR  
TPS56920PWP  
TPS56920PWPR  
TPS56C20PWP  
TPS56C20PWPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
20  
20  
20  
20  
20  
20  
24  
24  
70  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
56520  
56520  
56720  
56720  
56920  
56920  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
56C20  
56C20  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS56520PWPR  
TPS56720PWPR  
TPS56920PWPR  
TPS56C20PWPR  
HTSSOP PWP  
HTSSOP PWP  
HTSSOP PWP  
HTSSOP PWP  
20  
20  
20  
24  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
6.95  
6.95  
6.95  
6.95  
7.1  
7.1  
7.1  
8.3  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS56520PWPR  
TPS56720PWPR  
TPS56920PWPR  
TPS56C20PWPR  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
20  
20  
20  
24  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS56520PWP  
TPS56720PWP  
TPS56920PWP  
TPS56C20PWP  
PWP  
PWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
20  
20  
20  
24  
70  
70  
70  
60  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS56C20PWPR

具有电压调节的 4.5V 至 17V、12A 同步降压转换器 | PWP | 24 | -40 to 85
TI

TPS56C215

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器
TI

TPS56C215RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS56C215RNNT

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS56C230

针对解决方案成本进行了优化的 4.5V 至 18V、12A 同步 SWIFT™ 降压转换器
TI

TPS56C230RJER

针对解决方案成本进行了优化的 4.5V 至 18V、12A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125
TI

TPS56C231

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步降压转换器
TI

TPS56C231LRNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步降压转换器 | RNN | 18 | -40 to 125
TI

TPS56C231RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步降压转换器 | RNN | 18 | -40 to 125
TI

TPS57040-Q1

0.5-A 42-V STEP-DOWN SWIFT™ DC/DC CONVERTER WITH Eco-mode™
TI

TPS57040QDGQRQ1

0.5-A 42-V STEP-DOWN SWIFT™ DC/DC CONVERTER WITH Eco-mode™
TI

TPS57040QDRCRQ1

0.5-A 42-V STEP-DOWN SWIFT™ DC/DC CONVERTER WITH Eco-mode™
TI