TPS61021A [TI]

具有 0.5V 超低输入电压的 3A 升压转换器;
TPS61021A
型号: TPS61021A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 0.5V 超低输入电压的 3A 升压转换器

升压转换器
文件: 总27页 (文件大小:5282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61021A  
ZHCSFA0 JUNE 2016  
TPS61021A 具有 0.5V 超低输入电压的 3A 升压转换器  
1 特性  
3 说明  
1
输入电压范围:0.5V 4.4V  
TPS61021A 为由碱性电池、镍氢电池、锂锰电池或锂  
离子电池供电的便携式或智能设备提供了一套电源解决  
方案。TPS61021A 能够在电池放电至 1.8V 的低电压  
时提供 3.3V 电压和 1.5A 电流输出。TPS61021A 支  
0.5V 输入电压,从而延长了电池的运行时间。  
启动时的最小输入电压为 0.9V  
可设置的输出电压范围:1.8V 4.0V  
效率高达 91%VIN = 2.4VVOUT = 3.3V IOUT  
= 1.5A 时)  
2.0MHz 开关频率  
TPS61021A 在重负载条件下以 2MHz 开关频率工作,  
并且可在轻负载时进入省电模式,从而在整个负载电流  
范围内保持高效率。该器件在轻负载条件下从 VOUT 仅  
消耗 17μA 静态电流。在关断期间,负载与输入完全断  
开。此外,TPS61021A 还提供有 4.35V 输出过压保  
护、输出短路保护和热关断保护。  
IOUT > 1.5AVOUT = 3.3VVIN > 1.8V 时)  
17µA 典型静态电流  
-40°C 125°C 温度范围内的基准电压精度为  
±2.5%  
轻负载下的脉冲频率调制 (PFM) 工作模式  
关断时输入与输出真正断开  
输出过压保护  
TPS61021A 需要使用的外部组件数量较少,因此拥有  
非常小巧的解决方案尺寸。该器件支持在 2MHz 开关  
频率下使用低值电感或输出电容。  
输出短路保护  
热关断保护  
2mm × 2mm 晶圆级小外形无引线 (WSON) 封装  
TPS61021A 采用 2.0mm x 2.0mm WSON 封装。  
器件信息(1)  
2 应用  
电池供电类物联网 (IoT) 设备  
器件型号  
TPS61021A  
封装  
WSON (8)  
封装尺寸(标称值)  
2.00mm x 2.00mm  
游戏控制  
温控器  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
便携式医疗设备  
超级电容备用系统  
典型应用电路  
L1  
VIN  
C1  
VIN  
SW  
VOUT  
C2  
VOUT  
C3  
PGND  
R1  
R2  
TPS61021AFB  
ON  
OFF  
EN  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDM0  
 
 
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 17  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes........................................ 10  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
10.3 Thermal Considerations........................................ 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持 ............................................................... 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
12.1 Package Option Addendum .................................. 20  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 6 月  
*
首次发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
5 Pin Configuration and Functions  
DSG Package  
8-Pin WSON with Thermal Pad  
Top View  
AGND  
FB  
VIN  
SW  
SW  
EN  
PGND  
VOUT  
VOUT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AGND  
FB  
NO.  
1
I
I
Signal ground of the IC  
2
Voltage feedback of adjustable output voltage  
Boost converter output  
VOUT  
3,4  
PWR  
Enable logic input. Logic high voltage enables the device. Logic low voltage disables the  
device and turns it into shutdown mode.  
EN  
5
I
SW  
6,7  
8
PWR  
I
The switch pin of the converter. It is connected to the drains of the internal power MOSFETs.  
VIN  
IC power supply input  
Power ground  
PGND  
9
PWR  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
EN, FB  
DC  
3.6  
4.6  
Voltage range at terminals(2)  
DC  
V
VIN, SW, VOUT  
10% duty cycle  
4.8  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.5  
1.8  
0.2  
1.0  
3.0  
10  
NOM  
MAX  
4.4  
UNIT  
V
VIN  
VOUT  
L
Input voltage range  
Output voltage setting range  
Effective inductance range  
Effective input capacitance range  
4.0  
V
0.47  
4.7  
10  
1.3  
µH  
µF  
µF  
µF  
°C  
CIN  
I
OUT 0.3 A  
200  
200  
125  
COUT  
TJ  
Effective output capacitance range  
Operating junction temperature  
IOUT > 0.3 A  
20  
–40  
6.4 Thermal Information  
TPS61021A  
DSG (WSON)  
8 PINS  
71.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
95.2  
41.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.1  
ψJB  
42.0  
RθJC(bot)  
13.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 2.4 V and VOUT = 3.3 V. Typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
0.5  
4.4  
0.9  
0.5  
V
V
V
VIN rising  
0.8  
0.4  
VIN_UVLO  
Under-voltage lockout threshold  
VIN falling  
0.28  
IC enabled, No load, No switching  
Quiescent current into VIN pin  
Quiescent current into VOUT pin  
VIN = 1.8 V to 3.6 V, VFB = VREF  
0.1 V, TJ up to 85°C  
+
3.0  
µA  
IQ  
IC enabled, No load, No switching  
VOUT = 1.8 V to 4.0 V, VFB = VREF  
0.1 V, TJ up to 85°C  
+
17  
30  
µA  
µA  
Shutdown current into VIN and SW  
pin  
IC disabled, VIN = 1.8 V to 3.6 V, TJ  
up to 85°C  
ISD  
0.5  
3.0  
OUTPUT  
VOUT  
Output voltage setting range  
1.8  
4.0  
V
PWM mode  
PFM mode  
775  
795  
801  
815  
mV  
mV  
VREF  
VOVP  
Reference voltage at the FB pin  
Output over-voltage protection  
threshold  
VOUT rising  
4.15  
4.35  
0.1  
4.60  
V
VOVP_HYS  
IFB_LKG  
Over-voltage protection hysteresis  
Leakage current at FB pin  
V
20  
nA  
µA  
ISW_LKG  
Leakage current into SW pin  
IC disabled, TJ up to 85°C  
3.0  
IC disabled, VOUT = 4.0 V, TJ up to  
85°C  
IVOUT_LKG Leakage current into VOUT pin  
1
2
µA  
POWER SWITCH  
High-side MOSFET on resistance  
RDS(on)  
VOUT = 3.3 V  
VOUT = 3.3 V  
51  
58  
mΩ  
mΩ  
Low-side MOSFET on resistance  
VIN = 2.4 V, VOUT = 3.3 V, PWM  
mode  
fSW  
Switching frequency  
2.0  
MHZ  
tOFF_min  
ILIM_SW  
Minimum off time  
Valley current limit  
80  
120  
ns  
A
VIN = 2.4 V, VOUT = 3.3 V  
3.0  
4.3  
LOGIC INTERFACE  
VIN > 1.2 V  
VIN 1.2 V  
VIN > 1.2 V  
VIN 1.2 V  
0.84  
VEN_H EN Logic high threshold  
V
V
0.7 x VIN  
0.36  
VEN_L  
EN Logic Low threshold  
0.3 x VIN  
PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
版权 © 2016, Texas Instruments Incorporated  
5
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 2.4 V, VOUT = 3.3 V, TJ = 25°C, unless otherwise noted  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
20  
10  
Vin = 0.9 V  
Vin = 1.2 V  
Vin = 1.8 V  
Vin = 2.4 V  
Vin = 3.0 V  
Vout = 2.5 V  
Vout = 3.3 V  
Vout = 4.0 V  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 0.9 V, 1.2 V, 1.8 V, 2.4 V, 3.0 V, and VOUT = 3.3 V  
VIN = 2.4 V, and VOUT = 2.5 V, 3.3 V, 4.0 V  
1. Load Efficiency with Different Input  
2. Load Efficiency with Different Output  
5
3.4  
3.35  
3.3  
4
3
2
3.25  
3.2  
Vin = 0.9 V  
1
Vout = 2.5 V  
Vout = 3.3 V  
Vout = 4.0 V  
Vin = 1.6 V  
Vin = 2.4 V  
Vin = 3.0 V  
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Input Voltage (V)  
Output Current (A)  
D001  
D001  
VIN = 0.7 V to 3.6 V, VOUT = 2.5 V, 3.3 V, 4.0 V  
VIN = 0.9 V, 1.6 V, 2.4 V, 3.0 V, and VOUT = 3.3 V  
3. Maximum Output Current vs Input Voltage  
4. Load Regulation  
0.82  
0.81  
0.8  
0.3  
0.25  
0.2  
0.79  
0.78  
0.77  
0.76  
0.15  
0.1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
Temperature (°C)  
Input Voltage (V)  
D001  
D001  
VIN = 2.4 V, VOUT = 3.3 V, T = –40°C to 125°C  
VIN = 0.9 V to 3.6 V, VOUT = 4.0 V, No switching  
5. Reference Voltage vs Temperature  
6. Quiescent Current into VIN vs Input Voltage  
版权 © 2016, Texas Instruments Incorporated  
6
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
Typical Characteristics (接下页)  
VIN = 2.4 V, VOUT = 3.3 V, TJ = 25°C, unless otherwise noted  
20  
22  
21  
20  
19  
18  
17  
16  
15  
14  
19  
18  
17  
16  
15  
14  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
-40  
-20  
0
20  
40  
60  
80 90  
Output Voltage (V)  
Temperature (°C)  
D001  
D001  
VIN = 1.2 V, VOUT = 1.8 V to 4.0 V, No switching  
VIN = 2.4 V, VOUT = 3.3 V, No switching, T = –40°C to 85°C  
7. Quiescent Current into VOUT vs Output Voltage  
8. Quiescent Current into VOUT vs Temperature  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80 90  
Temperature (°C)  
D001  
VIN = 2.4 V, Into VIN and SW, T = –40°C to 85°C  
9. Shutdown Current vs Temperature  
版权 © 2016, Texas Instruments Incorporated  
7
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS61021A synchronous step-up converter is designed to operate from an input voltage supply range  
between 0.5 V and 4.4 V with 3-A valley switch current limit. The TPS61021A typically operates at a quasi-  
constant frequency pulse width modulation (PWM) at moderate to heavy load currents. The switching frequency  
is 2 MHz when the input voltage is above 1.5 V. The switching frequency reduces down to 1 MHz when the input  
voltage goes down from 1.5 V to 1 V. At light load currents, the TPS61021A converter operates in power-save  
mode with pulse frequency modulation (PFM). During PWM operation, the converter uses adaptive constant on-  
time valley current mode control scheme to achieve excellent line/load regulation and allows the use of a small  
inductor and ceramic capacitors. Internal loop compensation simplifies the design process while minimizing the  
number of external components.  
7.2 Functional Block Diagram  
SW  
SW  
7
6
VIN VOUT  
Undervoltage  
Lockout  
VIN  
VOUT  
VOUT  
8
5
3
4
Valley Current  
Sense  
EN  
Logic  
Gate Driver  
PGND  
9
2
Thermal  
Shutdown  
PWM Control  
AGND  
Over Voltage  
FB  
1
Soft Startup  
Protection &  
Short Circuit  
Protection  
ëhÜÇ  
EA  
ëw9C  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Under-Voltage Lockout  
The TPS61021A has a built-in under-voltage lockout (UVLO) circuit to ensure the device working properly. When  
the input voltage is above the UVLO rising threshold of 0.9 V, the TPS61021A can be enabled to boost the  
output voltage. After the TPS61021A starts up and the output voltage is above 1.6 V, the TPS61021A can work  
with the input voltage as low as 0.5 V.  
8
版权 © 2016, Texas Instruments Incorporated  
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
Feature Description (接下页)  
7.3.2 Enable and Soft Start  
When the input voltage is above the under-voltage lockout (UVLO) rising threshold and the EN pin is pulled to  
logic high voltage, the TPS61021A is enabled and starts up. At the beginning, the switching frequency and  
current limit are internally controlled. The load capability is limited. After the output voltage is above 1.6 V, the  
peak current limit is determined by the output of an internal error amplifier which compares the feedback of the  
output voltage and the internal reference voltage. Because the output voltage is below the setting target, the  
peak current limit rises and thus the output voltage ramps quickly. The soft startup time varies with the different  
output capacitance and load condition. The typical startup time is around 200 μs for a 44-μF output capacitor with  
no load.  
7.3.3 Switching Frequency  
The TPS61021A switches at a quasi-constant 2-MHz frequency when the input voltage is above 1.5 V. When the  
input voltage declines from 1.5 V to 1 V, the switching frequency will be reduced gradually to 1-MHz to improve  
the efficiency and get higher boost ratio. When the input voltage is below 1 V, the switching frequency is fixed at  
a quasi-constant 1 MHz.  
7.3.4 Current Limit Operation  
The TPS61021A employs a valley current limit sensing scheme. Current limit detection occurs during the off-time  
by sensing of the voltage drop across the synchronous rectifier switch.  
When the load current is increased such that the inductor current is above the current limit within the whole  
switching cycle time, the off-time is increased to allow the inductor current to decrease to this threshold before  
the next on-time begins (so called frequency fold-back mechanism). When the current limit is reached, the output  
voltage decreases during further load increase.  
The maximum continuous output current (IOUT(CL)), before entering current limit (CL) operation, can be defined by  
公式 1.  
1
2
IOUT(CL) = 1-D ì I  
+
DIL P-P  
(
)
LIM  
÷
(
)
«
(1)  
Where:  
D is the duty cycle  
ΔIL(P-P) is the inductor ripple current  
The duty cycle can be estimated by 公式 2.  
V ì h  
VOUT  
IN  
D = 1-  
(2)  
Where:  
VOUT is the output voltage of the boost converter  
VIN is the input voltage of the boost converter  
η is the efficiency of the converter, use 90% for most applications  
And the peak-to-peak inductor ripple current is calculated by 公式 3.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(3)  
Where:  
L is the inductance value of the inductor  
fSW is the switching frequency  
D is the duty cycle  
VIN is the input voltage of the boost converter  
版权 © 2016, Texas Instruments Incorporated  
9
 
 
 
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5 Pass-Through Operation  
When the input voltage is higher than the setting output voltage, the output voltage is higher than the target  
regulation voltage. When the output voltage is 101% of the setting target voltage, the TPS61021A stops  
switching and turns on the high side PMOS FET. The device works in pass-through mode. The output voltage is  
the input voltage minus the voltage drop across the dc resistance (DCR) of the inductor and the on-resistance  
(RDS(on)) of the PMOS FET. When the output voltage drops below the 98% of the setting target voltage as the  
input voltage declines or the load current increases, the TPS61021A resumes switching again to regulate the  
output voltage.  
7.3.6 Over-Voltage Protection  
The TPS61021A has an output over-voltage protection (OVP) to protect the device in case that the external  
feedback resistor divider is wrongly populated. When the output voltage is above 4.35 V typically, the device  
stops switching. Once the output voltage falls 0.1 V below the OVP threshold, the device resumes operating  
again. To prevent the high overshoot voltage during OVP when the FB pin voltage is too much lower than the  
internal reference voltage, the TPS61021A limits the valley swtich current to approximate 100 mA when the FB  
pin voltage is below 0.2 V and the output voltage is above 2.9V.  
7.3.7 Output Short-to-Ground Protection  
The TPS61021A starts to limit the output current when the output voltage is below 1.6 V. The lower the output  
voltage reaches, the smaller the output current is. When the output voltage is below 1 V, the output current is  
limited to approximate 100 mA. Once the short circuit is released, the TPS61021A goes through the soft startup  
again to output the regulated voltage.  
7.3.8 Thermal Shutdown  
The TPS61021A goes into thermal shutdown once the junction temperature exceeds 150°C. When the junction  
temperature drops below the thermal shutdown temperature threshold less the hysteresis, typically 130°C, the  
device starts operating again.  
7.4 Device Functional Modes  
The TPS61021A has two switching operation modes, PWM mode in moderate to heavy load conditions and  
power save mode with pulse frequency modulation (PFM) in light load conditions.  
7.4.1 PWM Mode  
The TPS61021A uses a quasi-constant 2.0-MHz frequency pulse width modulation (PWM) at moderate to heavy  
load current. Based on the input voltage to output voltage ratio, a circuit predicts the required on-time. At the  
beginning of the switching cycle, the NMOS switching FET, shown in the functional block diagram, is turned on.  
The input voltage is applied across the inductor and the inductor current ramps up. In this phase, the output  
capacitor is discharged by the load current. When the on-time expires, the main switch NMOS FET is turned off,  
and the rectifier PMOS FET is turned on. The inductor transfers its stored energy to replenish the output  
capacitor and supply the load. The inductor current declines because the output voltage is higher than the input  
voltage. When the inductor current hits a value which the error amplifier outputs, the next switching cycle starts  
again.  
The TPS61021A has a built-in compensation circuit that can accommodate a wide range of input voltage, output  
voltage, inductor value and output capacitor value for stable operation.  
10  
版权 © 2016, Texas Instruments Incorporated  
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
Device Functional Modes (接下页)  
7.4.2 Power Save Mode  
The TPS61021A integrates a power save mode with pulse frequency modulation (PFM) to improve efficiency at  
light load. When the load current decreases, the inductor valley current set by the output of the error amplifier  
declines to regulate the output voltage. When the inductor valley current hits the low limit of approximate 100  
mA, the output voltage will exceed the setting voltage as the load current decreases further. When the FB  
voltage hits the PFM reference voltage, the TPS61021A goes into the power save mode. In the power save  
mode, when the FB voltage rises and hits the PFM reference voltage, the device continuous switching for several  
cycles because of the delay time of the internal comparator. Then it stops switching. The load is supplied by the  
output capacitor and the output voltage declines. When the FB voltage falls below the PFM reference voltage,  
after the delay time of the comparator, the device starts switching again to ramp up the output voltage.  
Output  
Voltage  
PFM mode at light load  
1.008 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
10. Output Voltage in PWM Mode and PFM Mode  
版权 © 2016, Texas Instruments Incorporated  
11  
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS61021A is a synchronous boost converter designed to operate from an input voltage supply range  
between 0.5 V and 4.4 V with 3-A valley switch current limit. The TPS61021A typically operates at a quasi-  
constant 2-MHz frequency pulse width modulation (PWM) at moderate to heavy load currents when the input  
voltage is above 1.5 V. The switching frequency changes to 1-MHz gradually with the input voltage changing  
from 1.5 V to 1 V to get better efficiency and high step-up ratio. At light load currents, the TPS61021A converter  
operates in power-save mode with pulse frequency modulation (PFM) to achieve high efficiency over the entire  
load current range.  
8.2 Typical Application  
The TPS61021A provides a power supply solution for portable or smart devices powered by batteries or super-  
capacitors. With 3-A switch current capability, the TPS61021A can output 3.3 V and 1.5 A from two alkaline  
batteries in series even if the battery voltage is down to 1.8 V.  
L1  
1.8 V ~ 3.2 V  
0.47 µH  
C1  
10 µF  
VIN  
SW  
3.3 V  
VOUT  
C3  
C2  
2 x 22 µF  
PGND  
R1  
316 k  
10 pF  
TPS61021A  
ON  
FB  
OFF  
R2  
EN  
100 kꢀ  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
11. 2-Cell Alkaline Battery to 3.3-V Boost Converter  
8.2.1 Design Requirements  
The design parameters are listed in 1.  
1. Design Parameters  
PARAMETERS  
Input voltage  
VALUES  
1.8 V to 3.2 V  
3.3 V  
Output voltage  
Output current  
1.5 A  
Output voltage ripple  
±50 mV  
12  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Output Voltage  
The output voltage is set by an external resistor divider (R1, R2 in 11). When the output voltage is regulated,  
the typical voltage at the FB pin is VREF. Thus the resistor divider is determined by 公式 4.  
«
VOUT  
VREF  
R1=  
Where:  
-1 ìR2  
÷
(4)  
VOUT is the regulated output voltage  
VREF is the internal reference voltage at the FB pin  
For best accuracy, R2 should be kept smaller than 400 kΩ to ensure the current flowing through R2 is at least  
100 times larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity  
against noise injection. Changing the R2 towards a higher value reduces the quiescent current for achieving  
highest efficiency at low load currents.  
8.2.2.2 Inductor Selection  
Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications, inductor value, saturation current, and dc resistance (DCR).  
The TPS61021A is designed to work with inductor values between 0.33 µH and 1.0 µH. Follow 公式 5 to 公式 7  
to calculate the inductor’s peak current for the application. To calculate the current in the worst case, use the  
minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough  
design margins, choose the inductor value with -30% tolerances, and low power-conversion efficiency for the  
calculation.  
In a boost regulator, the inductor dc current can be calculated by 公式 5.  
VOUT ìIOUT  
IL DC  
=
(
)
V ì h  
IN  
(5)  
(6)  
(7)  
Where:  
VOUT is the output voltage of the boost converter  
IOUT is the output current of the boost converter  
VIN is the input voltage of the boost converter  
η is the power conversion efficiency, use 90% for most applications  
The inductor ripple current is calculated by 公式 6.  
V ìD  
IN  
DIL P-P  
=
(
)
L ì fSW  
Where:  
D is the duty cycle, which can be calculated by 公式 2  
L is the inductance value of the inductor  
fSW is the switching frequency  
VIN is the input voltage of the boost converter  
Therefore, the inductor peak current is calculated by 公式 7.  
DIL P-P  
(
2
)
IL P = IL DC  
+
(
)
(
)
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI. But in the same way, load transient response time is increased. The  
inductor’s saturation current must be higher than the calculated peak inductor current. 2 lists the  
recommended inductors for the TPS61021A.  
版权 © 2016, Texas Instruments Incorporated  
13  
 
 
 
 
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
2. Recommended Inductors for the TPS61021A  
DCR MAX SATURATION CURRENT  
SIZE (LxWxH)  
PART NUMBER  
L(µH)  
VENDOR(1)  
(mΩ)  
8.36  
22  
(A)  
6.6  
8.0  
5.7  
5.4  
XFL4015-471ME  
744383360047  
0.47  
0.47  
0.47  
1.0  
4.0×4.0×1.5  
3.0x3.0x2.0  
2.5×2.0×1.2  
4.0×4.0×2.1  
Coilcraft  
Wurth Elecktronik  
Toko  
DFE252012P-R47M  
XFL4020-102ME  
27  
11.9  
Coilcraft  
(1) See Third-party Products disclaimer  
8.2.2.3 Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. The ripple  
voltage is related to the capacitor’s capacitance and its equivalent series resistance (ESR). Assuming a ceramic  
capacitor with zero ESR, the minimum capacitance needed for a given ripple voltage can be calculated by 公式  
8.  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
(8)  
Where:  
DMAX is the maximum switching duty cycle  
VRIPPLE is the peak to peak output ripple voltage  
IOUT is the maximum output current  
fSW is the switching frequency  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used. The output peak to peak ripple voltage caused by the ESR of the output capacitors can be calculated by 公  
9.  
VRIPPLE(ESR) = IL(P) ìRESR  
(9)  
Care must be taken when evaluating a ceramic capacitor’s derating under dc bias voltage, aging, and ac signal.  
For example, the dc bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than  
50% of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure  
adequate capacitance at the required output voltage. Increasing the output capacitor makes the output ripple  
voltage smaller in PWM mode.  
It is recommended to use the X5R or X7R ceramic output capacitor in the range of 10 μF to 200 μF effective  
capacitance. For output current less than 300 mA, the effective output capacitance could be reduced to 3.0 μF.  
The output capacitor affects the small signal control loop stability of the boost regulator. If the output capacitor is  
below the range, the boost regulator can potentially become unstable.  
8.2.2.4 Feedforward Capacitor Selection  
A feedforward capacitor between the VOUT pin and FB pin induces a pair of zero and pole in the loop transfer  
function. Setting the proper zero frequency can increase the phase margin to improve the loop stability. The  
TPS61021A needs a feedforward capacitor (C3 in 11) in most applications. It is recommended to set the zero  
frequency (fFFZ) to 50 kHz when the effective output capacitance is less than 40 μF. For large output capacitance  
more than 40 μF, it is recommended to set the zero frequency (fFFZ) to 5 kHz. The value of the feedforward  
capacitor can be calculated by 公式 10.  
1
C3 =  
2pì fFFZ ìR1  
(10)  
Where:  
R1 is the resistor between the VOUT pin and FB pin  
fFFZ is the zero frequency created by the feedforward capacitor  
14  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
8.2.2.5 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are excellent choices for input decoupling of the step-up converter as  
they have extremely low ESR and are available in small footprints. Input capacitors should be located as close  
as possible to the device. While a 10-μF input capacitor is sufficient for most applications, larger values may be  
used to reduce input current ripple without limitations. Take care when using only ceramic input capacitors. When  
a ceramic capacitor is used at the input and the power is being supplied through long wires, a load step at the  
output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability  
or could even damage the part. Additional bulk capacitance (tantalum or aluminum electrolytic capacitor) should  
in this circumstance be placed between ceramic input capacitor and the power source to reduce ringing that can  
occur between the inductance of the power source leads and ceramic input capacitor.  
版权 © 2016, Texas Instruments Incorporated  
15  
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
8.2.3 Application Curves  
VIN = 2.4 V, VOUT = 3.3 V, IOUT = 2 A  
VIN = 2.4 V, VOUT = 3.3 V, IOUT = 100 mA  
12. Switching Waveform at Heavy Load  
13. Switching Waveform at Light Load  
VIN = 2.4 V, VOUT = 3.3 V, 12 Ω resistance load  
15. Shutdown Waveform  
VIN = 2.4 V, VOUT = 3.3 V, 12 Ω resistance load  
14. Startup Waveform  
VIN = 2.4 V, VOUT = 3.3 V, IOUT = 1 A to 2 A  
VIN = 1.6 V to 2.4 V, VOUT = 3.3 V, IOUT = 1 A  
16. Load Transient  
17. Line Transient  
16  
版权 © 2016, Texas Instruments Incorporated  
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 0.5 V to 4.4 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is a tantalum or  
aluminum electrolytic capacitor with a value of 100 µF. The input power supply’s output current needs to be rated  
according to the supply voltage, output voltage and output current of the TPS61021A.  
版权 © 2016, Texas Instruments Incorporated  
17  
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If the layout is not carefully done, the regulator could suffer from instability  
and noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high  
frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the  
length and area of all traces connected to the SW pin, and always use a ground plane under the switching  
regulator to minimize interplane coupling. The input capacitor needs not only to be close to the VIN pin, but also  
to the PGND pin in order to reduce input supply ripple.  
The most critical current path for all boost converters is from the switching FET, through the rectifier FET, then  
the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise  
and fall time and should be kept as short as possible. Therefore, the output capacitor needs not only to be close  
to the VOUT pin, but also to the PGND pin to reduce the overshoot at the SW pin and VOUT pin.  
10.2 Layout Example  
GND  
AGND  
FB  
VIN  
SW  
SW  
EN  
PGND  
VOUT  
VOUT  
VOUT  
GND  
VIN  
18. Layout Example  
10.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions.  
Calculate the maximum allowable dissipation, PD(max), and keep the actual power dissipation less than or equal to  
PD(max). The maximum-power-dissipation limit is determined using 公式 11.  
125 - TA  
PD max  
=
(
)
RqJA  
(11)  
Where:  
TA is the maximum ambient temperature for the application  
θJA is the junction-to-ambient thermal resistance given in the Thermal Information table.  
R
The TPS61021A comes in a thermally-enhanced WSON package. This package includes a thermal pad that  
improves the thermal capabilities of the package. The real junction-to-ambient thermal resistance of the package  
greatly depends on the PCB type, layout, and thermal pad connection. Using thick PCB copper and soldering the  
thermal pad to a large ground plate to enhance the thermal performance. Using more vias connects the ground  
plate on the top layer and bottom layer around the IC without solder mask also improves the thermal capability.  
18  
版权 © 2016, Texas Instruments Incorporated  
 
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
19  
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
12.1 Package Option Addendum  
12.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
(1)  
(2)  
(3)  
Orderable Device  
TPS61021ADSGR  
TPS61021ADSGT  
Status  
Pins  
Eco Plan  
Lead/Ball Finish MSL Peak Temp  
Op Temp (°C)  
–40 to 125  
Device Marking(4)(5)  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU |  
CU NIPDAUAG  
Level-2-260C-1  
YEAR  
ACTIVE  
ACTIVE  
WSON  
DSG  
DSG  
8
8
3000  
250  
11G  
11G  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU |  
CU NIPDAUAG  
Level-2-260C-1  
YEAR  
WSON  
–40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
20  
版权 © 2016, Texas Instruments Incorporated  
TPS61021A  
www.ti.com.cn  
ZHCSFA0 JUNE 2016  
12.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS61021ADSGR  
TPS61021ADSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
版权 © 2016, Texas Instruments Incorporated  
21  
TPS61021A  
ZHCSFA0 JUNE 2016  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
35.0  
TPS61021ADSGR  
TPS61021ADSGT  
WSON  
WSON  
DSG  
DSG  
8
8
210.0  
210.0  
185.0  
185.0  
35.0  
22  
版权 © 2016, Texas Instruments Incorporated  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS61021ADSGR

具有 0.5V 超低输入电压的 3A 升压转换器 | DSG | 8 | -40 to 125
TI

TPS61021ADSGT

具有 0.5V 超低输入电压的 3A 升压转换器 | DSG | 8 | -40 to 125
TI

TPS61022

具有 0.5V 超低输入电压的 8A 升压转换器
TI

TPS61022RWUR

具有 0.5V 超低输入电压的 8A 升压转换器 | RWU | 7 | -40 to 125
TI

TPS61022RWUT

具有 0.5V 超低输入电压的 8A 升压转换器 | RWU | 7 | -40 to 125
TI

TPS61023

具有 0.5V 超低输入电压的 3.7A 升压转换器
TI

TPS61023DRLR

具有 0.5V 超低输入电压的 3.7A 升压转换器 | DRL | 6 | -40 to 125
TI

TPS61023DRLT

具有 0.5V 超低输入电压的 3.7A 升压转换器 | DRL | 6 | -40 to 125
TI

TPS61024

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER WITH 1.5-A SWITCH
TI

TPS61024DRC

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER WITH 1.5-A SWITCH
TI

TPS61024DRCR

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER
TI

TPS61024DRCRG4

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER
TI