TPS61033DRLR [TI]

5-V, 5-A boost converter with power good, output discharge and PFM/PWM control | DRL | 8 | -40 to 125;
TPS61033DRLR
型号: TPS61033DRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5-V, 5-A boost converter with power good, output discharge and PFM/PWM control | DRL | 8 | -40 to 125

文件: 总28页 (文件大小:2118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61033  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
TPS61033 具有输出放电功能5.5V 5.5A 2.4MHz 全集成同步升压转换器  
1 特性  
3 说明  
• 输入电压范围1.8V 5.5V  
• 输出电压范围2.2V 5.5V  
FB 连接5.0V VIN 输出电压时  
• 两个谷值开关电流限制选项  
TPS610335.5A 典型值  
TPS61033 是一款同步升压转换器。该器件可以为由多  
种电池和其他电源供电的便携式设备和智能设备提供电  
源解决方案。在整个温度范围内TPS61033 有  
5.5A典型值谷值开关电流限制TPS610333 具有  
1.85A典型值谷值开关电流限制。  
TPS6103331.85A 典型值  
• 较高的效率和功率容量  
TPS61033 使用自适应恒定导通时间谷值电流控制拓扑  
来调节输出电压2.4MHz 开关频率下运行。在轻  
负载条件下通过配置 MODE 引脚可实现两种可选模  
自动 PFM 模式和强制 PWM 模式以便在轻负载  
条件下实现效率和抗噪性平衡。在轻负载条件下,  
TPS61033 VIN 消耗 20µA 的静态电流。在关断期  
TPS61033 与输入电源完全断开仅消耗 0.1µA  
的电流从而能够实现较长的电池寿命。TPS61033 具  
5.75V 输出过压保护、输出短路保护和热关断保  
护。  
– 两25mΩ(LS)/46mΩ(HS) MOSFET  
– 支持高2.4MHzL-C 较小  
– 效率高93.42%VIN = 3.3VVOUT = 5V 且  
IOUT = 1A )  
– 效率高90.78%VIN = 3.3VVOUT = 5V 且  
IOUT = 2A )  
• 延长系统运行时间  
– 流VIN 引脚的静态电流典型值20µA  
– 流VOUT 引脚的静态电流典型值5.3μA  
– 关断电流典型值0.1μA  
TPS61033 采用 2.1mm × 1.6mm SOT583 封装最大  
限度地减少了外部元件的数量因而拥有非常小巧的解  
决方案尺寸。  
40°C +125°C 温度范围内基准电压精度  
±1.5%  
器件信息  
封装(1)  
• 具有窗口比较器的电源正常输出  
• 可在轻负载下采用引脚可选的自PFM 模式或强  
PWM 模式  
封装尺寸标称值)  
器件型号  
TPS61033  
SOT583 (8)  
2.10mm × 1.20mm  
VIN > VOUT 时切换为直通模式  
• 安全、可靠运行的特性  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 在关断期间真正断开输入域输出之间的连接  
– 输出过压和热关断保护  
– 输出短路保护  
L1  
0.47 µH  
C1  
2.1mm × 1.6mm SOT583 8 引脚封装  
VIN  
SW  
2 应用  
VOUT  
GND  
C2  
平板电脑多媒体)  
智能扬声器  
POS  
R1  
R2  
PWM  
ON  
PFM  
OFF  
FB  
MODE  
EN  
R3  
PG  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGI6  
 
 
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
4 Device Comparison Table  
4-1. Device comparison table  
PART NUMBER  
TPS61033  
Valley Switch Current Limit (typ)  
Spread Spectrum  
5.5 A  
NO  
NO  
TPS610333  
1.85 A  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
2
Submit Document Feedback  
Product Folder Links: TPS61033  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
Table of Contents  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................16  
9.1 Application Information............................................. 16  
9.2 Typical Application.................................................... 16  
9.3 Power Supply Recommendations.............................20  
9.4 Layout....................................................................... 20  
10 Device and Documentation Support..........................23  
10.1 Device Support....................................................... 23  
10.2 接收文档更新通知................................................... 23  
10.3 支持资源..................................................................23  
10.4 Trademarks.............................................................23  
10.5 静电放电警告.......................................................... 23  
10.6 术语表..................................................................... 23  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Device Comparison Table...............................................2  
5 Revision History.............................................................. 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................8  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
Information.................................................................... 23  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (March 2023) to Revision B (June 2023)  
Page  
Changed unit in 7-7 to μA.............................................................................................................................8  
Changed 80 mA to 800 mA in 9-6 ...............................................................................................................19  
Changes from Revision * (October 2022) to Revision A (March 2023)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
6 Pin Configuration and Functions  
VIN  
EN  
1
8
7
6
5
VOUT  
SW  
2
3
4
MODE  
PG  
GND  
FB  
6-1. DRL Package 8-Pin SOT583 Top View  
6-1. Pin Functions  
DESCRIPTION  
PIN  
I/O  
NO.  
NAME  
1
VIN  
I
I
IC power supply input  
Enable logic input. Logic high voltage enables the device. Logic low voltage disables the  
device and turns it into shutdown mode.  
2
EN  
Operation mode selection in the light load condition. When it is connected to logic high  
voltage, the device works in forced PWM mode. When it is connected to logic low voltage,  
the device works in auto PFM mode.  
3
MODE  
I
4
5
PG  
FB  
O
I
Power good indicator and open drain output  
Voltage feedback of adjustable output voltage, when FB connect to VIN, output voltage is  
fixed 5.0V  
6
7
8
GND  
SW  
PWR  
PWR  
PWR  
Ground pin of the IC  
The switch pin of the converter. It is connected to the drain of the internal low-side power  
MOSFET and the source of the internal high-side power MOSFET.  
VOUT  
Boost converter output  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.7  
0.7  
40  
65  
MAX  
7
UNIT  
V
VIN, EN, FB, SW, VOUT  
Voltage range at terminals(2)  
SW spike at 10ns  
SW spike at 1ns  
8
V
9
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
2.2  
0.33  
1.0  
4
NOM  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
L
Input voltage range  
Output voltage setting range  
Effective inductance range  
Effective input capacitance range  
5.5  
V
0.47  
4.7  
10  
1.3  
µH  
µF  
µF  
µF  
°C  
CIN  
IOUT <= 1A  
IOUT > 1A  
1000  
1000  
125  
COUT  
TJ  
Effective output capacitance range  
Operating junction temperature  
10  
20  
40  
7.4 Thermal Information  
TPS61033  
TPS61033  
THERMAL METRIC(1)  
DRL (SOT583)- 8 PINS  
DRL (SOT583)- 8 PINS  
UNIT  
Standard  
117.5  
40.0  
EVM(2)  
65.8  
NA  
RθJA  
RθJC  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
23.0  
NA  
2.8  
1.0  
22.9  
28.4  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Measured on TPS61033EVM, 4-layer, 2oz copper NA PCB.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
 
 
 
 
 
 
 
 
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
7.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 3.6 V and VOUT = 5.0 V. Typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
1.8  
5.5  
V
V
VIN rising  
VIN falling  
1.7  
1.6  
65  
1.79  
VIN_UVLO  
Under-voltage lockout threshold  
VIN UVLO hysteresis  
V
VIN_HYS  
mV  
IC enabled, No load, No switching VIN  
=
Quiescent current into VIN pin  
1.8 V to 5.5 V, VFB = VREF + 0.1 V, TJ up  
to 125°C  
13  
20  
25  
µA  
IQ  
IC enabled, No load, No switching VOUT  
2.2 V to 5.5 V, VFB = VREF + 0.1 V, TJ up  
to 125°C  
=
Quiescent current into VOUT pin  
5.3  
0.1  
8.4  
0.2  
µA  
µA  
ISD  
Shutdown current into VIN and SW pin  
IC disabled, VIN = VSW = 3.6 V, TJ = 25°C  
OUTPUT  
VOUT  
Output voltage setting range  
2.2  
4.93  
591  
5.5  
5.07  
609  
V
V
FB connected to VIN  
VIN < VOUT, PWM mode  
VOUT (fixed 5V) Fixed output voltage  
5
VREF  
Reference voltage at the FB pin  
Reference voltage at the FB pin  
PWM mode  
PFM mode  
600  
606  
5.75  
0.11  
4
mV  
mV  
V
VREF  
VOVP  
Output over-voltage protection threshold VOUT rising  
Over-voltage protection hysteresis  
5.55  
6.0  
VOVP_HYS  
IFB_LKG  
IFB_LKG  
V
Leakage current at FB pin  
Leakage current at FB pin  
TJ = 25°C  
25  
30  
nA  
nA  
TJ = 125°C  
5
IC disabled, VIN = 0 V, VSW = 0 V, VOUT  
5.5 V, TJ = 25°C  
=
IVOUT_LKG  
Leakage current into VOUT pin  
Soft startup time  
0.2  
0.5  
µA  
ms  
tss  
Internal SS ramp time  
0.86  
POWER SWITCH  
RDS(on)  
High-side MOSFET on resistance  
Low-side MOSFET on resistance  
Switching frequency  
VOUT = 5.0 V  
46  
25  
mΩ  
mΩ  
MHz  
ns  
RDS(on)  
VOUT = 5.0 V  
fSW  
VIN = 3.6 V, VOUT = 5.0 V, PWM mode  
2.0  
20  
2.4  
48  
2.8  
65  
tON_min  
Minimum on time  
tOFF_min  
ILIM_SW  
Minimum off time  
35  
50  
ns  
Valley current limit  
VIN = 3.6 V, VOUT = 5.0 V TPS61033  
VIN = 3.6 V, VOUT = 5.0 V TPS610333  
VIN = 3.6 V, VOUT = 5.0 V; MODE = 1  
VIN = 1.8 - 5.5 V, VOUT < 0.4 V  
4.98  
1.55  
5.5  
1.85  
-1.3  
330  
900  
6.02  
2.15  
A
ILIM_SW  
Valley current limit  
A
IREVERSE  
ILIM_CHG  
ILIM_CHG_max  
Reverse current limit (MODE=1)  
Pre-charge current  
A
mA  
mA  
Maximum pre-charge current  
VIN = 2.4 V, VOUT > 0.4 V ; TPS610333  
1100  
1.2  
LOGIC INTERFACE  
VEN_H  
EN logic high threshold  
VIN > 1.8 V or VOUT > 2.2 V  
VIN > 1.8 V or VOUT > 2.2 V  
VIN > 1.8 V or VOUT > 2.2 V  
VIN > 1.8 V or VOUT > 2.2 V  
V
V
VEN_L  
EN logic low threshold  
0.4  
0.4  
VMODE_H  
VMODE_L  
RDOWN  
MODE Logic high threshold  
MODE Logic Low threshold  
EN pins internal pull-down resistor  
MODE pins internal pull-down resistor  
1.2  
V
V
10  
1
MΩ  
MΩ  
RDOWN  
POWER GOOD  
PGDOV  
PGOOD upper threshold  
% of VOUT setting  
% of VOUT setting  
% of VOUT setting  
105  
91  
107  
93  
110  
95  
%
%
PGDUV  
PGOOD lower threshold  
PGDHYST  
tPGDFLT(rise)  
tPGDFLT(fall)  
PROTECTION  
PGOOD upper threshold (rising&falling)  
Delay time to PGOOD high signal  
Glitch filter time of PGOOD  
2.5  
1.3  
33  
%
ms  
µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
6
Submit Document Feedback  
Product Folder Links: TPS61033  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
TJ = 40°C to 125°C, VIN = 3.6 V and VOUT = 5.0 V. Typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
170  
155  
15  
MAX  
UNIT  
°C  
TSD  
Thermal shutdown threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
TJ falling  
TSD  
°C  
TSD_HYS  
TJ falling below TSD  
°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
7.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 5 V, TJ = 25°C, unless otherwise noted  
100  
90  
80  
70  
60  
50  
40  
100  
95  
90  
85  
80  
75  
70  
30  
VIN=2.0 V  
VIN=3.3 V  
VIN=3.6 V  
VIN=4.2 V  
VIN=2.0 V  
VIN=3.3 V  
VIN=3.6 V  
VIN=4.2 V  
20  
10  
0
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
Output Current (A)  
VIN = 2.0 V, 3.3 V, 3.6 V, 4.2 V; L = 0.47 μH, PWM Mode  
VIN = 2.0 V, 3.3 V, 3.6 V, 4.2 V; L = 0.47 μH, Auto PFM Mode  
7-1. Efficiency vs Output Current VOUT = 5 V  
7-2. Efficiency vs Output Current VOUT = 5 V  
5.07  
5.15  
5.04  
5.01  
4.98  
5.1  
5.05  
4.95  
5
VIN=2.0V  
VIN=2.0V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
4.92  
4.89  
4.95  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
Output Current (A)  
VIN = 2.0 V, 3.3 V, 3.6 V, 4.2 V; VOUT = 5 V  
VIN = 2.0 V, 3.3 V, 3.6 V, 4.2 V; VOUT = 5 V  
7-3. Load Regulation in Auto PWM  
7-4. Load Regulation in Forced PFM  
2000  
1800  
1600  
1400  
1200  
1000  
800  
604  
602  
600  
598  
596  
600  
Tj=-40°C  
Tj=25°C  
Tj=85°C  
400  
200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
-60  
-30  
0
30  
60  
90  
120  
150  
Output Voltage (V)  
Temperature (C)  
VIN = 3.3 V; VOUT = 0 V to 4.5 V  
VIN = 3.3 V; VOUT = 5 V, TJ = 40°C to +125°C  
7-5. Pre-charge Current vs Output Voltage  
7-6. Reference Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
22  
21.5  
21  
7.5  
7
Vout=2.2V  
Vout=3.3V  
Vout=5.0V  
6.5  
6
20.5  
20  
19.5  
19  
5.5  
5
18.5  
18  
4.5  
4
Vin=1.8V  
Vin=3.3V  
Vin=3.6V  
17.5  
17  
-40  
3.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (C)  
Temperature (C)  
VIN = 1.8 V, 3.3 V 3.6 V; VOUT = 5 V, TJ = 40°C to +125°C,  
VIN = 1.8 V; VOUT = 2.2 V, 3.3 V, 5 V, TJ = 40°C to +125°C,  
No switching  
No switching  
7-7. Quiescent Current into VIN vs Temperature  
7-8. Quiescent Current into VOUT vs  
Temperature  
2
115  
VIN=1.8V  
VIN=3.3V  
1.8  
110  
105  
100  
95  
VIN=5.0V  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
90  
OV Tripping  
OV Recovery  
UV Recovery  
UV Tripping  
85  
80  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (C)  
Temperature (C)  
VIN = 3.6 V; VOUT = 5 V; TJ = 40°C to +125°C  
VIN = VSW = 1.8 V, 3.3 V, 5 V; VOUT = 0 V; TJ = 40°C to  
+125°C  
7-10. PGOOD threshold vs Temperature  
7-9. Shutdown Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
8 Detailed Description  
8.1 Overview  
The TPS61033 is a fully-integrated synchronous boost converter and operates from an input voltage supply  
range from 1.8 V to 5.5 V with 5.5-A (typical) valley switch current limit. The TPS61033 operates at 2.4-MHz  
switching frequency. There are two optional modes at light load by configuring the MODE pin: auto PFM mode  
and forced PWM to balance the efficiency and noise immunity in light load. The TPS61033 consumes an 20-μA  
quiescent current from VIN at light load condition. During shutdown, the TPS61033 is completely disconnected  
from the input power and only consumes a 0.1-μA current to achieve long battery life. During PWM operation,  
the converter uses adaptive constant on-time valley current mode control scheme to achieve excellent line  
regulation and load regulation and allows the use of a small inductor and ceramic capacitors. Internal loop  
compensation simplifies the design process while minimizing the number of external components.  
8.2 Functional Block Diagram  
SW  
7
VIN VOUT  
Undervoltage  
Lockout  
VIN  
VOUT  
1
8
EN  
2
3
Valley Current  
Sense  
Gate Driver  
Logic  
MODE  
GND  
6
5
Thermal  
Shutdown  
PG  
4
Over Voltage  
and Short  
Circuit  
PWM Control  
VOUT  
FB  
EA  
So Startup  
+
Protecon  
VREF  
PGOOD  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
10  
Submit Document Feedback  
Product Folder Links: TPS61033  
 
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
8.3 Feature Description  
8.3.1 Undervoltage Lockout  
The TPS61033 has a built-in undervoltage lockout (UVLO) circuit to ensure the device working properly. When  
the input voltage is above the UVLO rising threshold of 1.7 V (typical), the TPS61033 can be enabled to boost  
the output voltage. The device is disabled when the falling voltage at the VIN pin trips the UVLO falling  
threshold, which is 1.6 V (typical). A hysteresis of 100 mV (typical) is added so that the device cannot be  
enabled again until the input voltage exceeds 1.7 V (typical). This function is implemented to prevent the device  
from malfunctioning when the input voltage is between UVLO rising and falling threshold.  
8.3.2 Enable and Soft Start  
When the input voltage is above the UVLO rising threshold and the EN pin is pulled to a voltage above 1.2 V, the  
TPS61033 is enabled and starts up. To minimize the inrush current during start up, the TPS61033 has a soft  
start up function. At the beginning, the TPS61033 enters pre-charge phase and charges the output capacitors  
with a current of approximately 330 mA when the output voltage is below 0.4 V. When the output voltage is  
charged above 0.4 V, the output current is changed to having output current capability to drive the 2-Ω  
resistance load. To minimize the inrush current further, the TPS610333 has a maximum pre-charge current of  
900 mA(typical). After the output voltage reaches the input voltage, the TPS61033 starts switching, and the  
reference voltage ramps up a 0.8 mV/μs. When the voltage at the EN pin is below 0.4 V, the internal enable  
comparator turns the device into shutdown mode. In the shutdown mode, the device is entirely turned off. The  
output is disconnected from input power supply.  
8.3.3 Setting the Output Voltage  
There are two ways to set the output voltage of the TPS61033: adjustable or fixed. If the FB is connected to VIN,  
the TPS61033 works as a fixed 5.0-V output voltage version, the TPS61033 uses the internal resistor divider.  
The output voltage is also can be set by an external resistor divider (R1, R2 in 9-1). When the output voltage  
is regulated, the typical voltage at the FB pin is VREF. Thus the resistor divider is determined by 方程5.  
«
VOUT  
VREF  
R1=  
-1 ìR2  
÷
(1)  
where  
VOUT is the regulated output voltage  
VREF is the internal reference voltage at the FB pin  
8.3.4 Current Limit Operation  
The TPS61033 uses a valley current limit sensing scheme. Current limit detection occurs during the off-time by  
sensing of the voltage drop across the synchronous rectifier.  
When the load current is increased such that the inductor current is above the current limit within the whole  
switching cycle time, the off-time is increased to allow the inductor current to decrease to this threshold before  
the next on-time begins (so called frequency foldback mechanism). When the current limit is reached, the output  
voltage decreases during further load increase.  
The maximum continuous output current (IOUT(LC)), before entering current limit (CL) operation, can be defined  
by 方程2.  
1
IOUT(CL) = 1-D ì I  
+
DIL P-P  
(
)
LIM  
÷
(
)
2
«
(2)  
where  
D is the duty cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
• ΔIL(P-P) is the inductor ripple current  
The duty cycle can be estimated by 方程3.  
V
IN ì h  
D = 1-  
VOUT  
(3)  
where  
VOUT is the output voltage of the boost converter  
VIN is the input voltage of the boost converter  
ηis the efficiency of the converter, use 90% for most applications  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
12  
Submit Document Feedback  
Product Folder Links: TPS61033  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
The peak-to-peak inductor ripple current is calculated by 方程4.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(4)  
where  
L is the inductance value of the inductor  
fSW is the switching frequency  
D is the duty cycle  
VIN is the input voltage of the boost converter  
8.3.5 Pass-Through Operation  
When the input voltage is higher than the setting output voltage, the output voltage is higher than the target  
regulation voltage, the device works in pass-through mode. When the output voltage is 101% of the setting  
target voltage, the TPS61033 stops switching and fully turns on the high-side PMOS FET. The output voltage is  
the input voltage minus the voltage drop across the DCR of the inductor and the RDS(on) of the PMOS FET.  
When the output voltage drops below the 97% of the setting target voltage as the input voltage declines or the  
load current increases, the TPS61033 resumes switching again to regulate the output voltage.  
8.3.6 Power Good Indicator  
The TPS61033 integrates a power good indicator to simplify sequencing and supervision. The power-good  
output consists of an open-drain NMOS, requiring an external pullup resistor connect to a suitable voltage  
supply. The PG pin goes high with a typical 1.3 ms delay time after VOUT is between 93% (typical) and 107%  
(typical) of the target output voltage. When the output voltage is out of the target output voltage window, the PG  
pin immediately goes low with a 33 μs deglitch filter delay. This deglitch filter also prevents any false pulldown  
of the PGOOD due to transients. When EN is pulled low, the PG pin is also forced low with a 33 μs deglitch filter  
delay. If not used, the PG pin can be left floating or connected to GND.  
8.3.7 Implement Output Discharge by PG function  
The purpose of the output discharge function is to ensure a defined down-ramp of the output voltage and to let  
the output voltage close to 0 V quickly when the device is being disabled. TPS61033 can implement output  
discharge function by PG function that requires a RDummy resistor connected between PG pin and Vout pin. PG  
is an open drain NMOS architecture with up to 50 mA current capability, the PG pin becomes logic high when the  
output voltage reaches the target value, so the dummy load resistor doesn't lead any power loss during normal  
operation. When the EN pin gets low, the TPS61033 is disabled and meanwhile the PG pin gets low with a  
typical 33μs glitch time (tglitch). With PG pin keeps low, the RDummy works as a dummy load to discharge output  
voltage. Changing RDummy can adjust the output discharge rate.  
L1  
Output  
Output voltage  
Voltage  
discharge from RDummy  
C1  
VIN  
SW  
time  
VOUT  
GND  
C2  
R1  
R2  
FB  
PG  
EN  
MODE  
EN  
tglitch  
RDummy  
PG  
time  
8-1. Implement Output Discharge by PG function  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
8.3.8 Overvoltage Protection  
The TPS61033 has an output overvoltage protection (OVP) to protect the device if the external feedback resistor  
divider is wrongly populated. When the output voltage is above 5.75 V typically, the device stops switching. Once  
the output voltage falls 0.1 V below the OVP threshold, the device resumes operating again.  
8.3.9 Output Short-to-Ground Protection  
The TPS61033 starts to limit the output current when the output voltage is below 1.8 V. The lower the output  
voltage reaches, the smaller the output current is. When the VOUT pin is short to ground, and the output voltage  
becomes less than 0.4 V, the output current is limited to approximately 330 mA. Once the short circuit is  
released, the TPS61033 goes through the soft start-up again to the regulated output voltage.  
8.3.10 Thermal Shutdown  
The TPS61033 goes into thermal shutdown once the junction temperature exceeds 170°C. When the junction  
temperature drops below the thermal shutdown recovery temperature, typically 155°C, the device starts  
operating again.  
8.4 Device Functional Modes  
TPS61033 has two optional modes in light load by configuring the MODE pin: auto PFM mode and forced PWM  
to balance the efficiency and noise immunity in light load.  
8.4.1 PWM Mode  
The TPS61033 uses a quasi-constant 2.4-MHz frequency pulse width modulation (PWM) at moderate to heavy  
load current. Based on the input voltage to output voltage ratio, a circuit predicts the required on-time. At the  
beginning of the switching cycle, the NMOS switching FET. The input voltage is applied across the inductor and  
the inductor current ramps up. In this phase, the output capacitor is discharged by the load current. When the  
on-time expires, the main switch NMOS FET is turned off, and the rectifier PMOS FET is turned on. The inductor  
transfers its stored energy to replenish the output capacitor and supply the load. The inductor current declines  
because the output voltage is higher than the input voltage. When the inductor current hits the valley current  
threshold determined by the output of the error amplifier, the next switching cycle starts again.  
The TPS61033 has a built-in compensation circuit that can accommodate a wide range of input voltage, output  
voltage, inductor value, and output capacitor value for stable operation.  
8.4.2 Power-Save Mode  
The TPS61033 integrates a power-save mode with PFM to improve efficiency at light load. When the load  
current decreases, the inductor valley current set by the output of the error amplifier no longer regulates the  
output voltage. When the inductor valley current hits the low limit, the output voltage exceeds the setting voltage  
as the load current decreases further. When the FB voltage hits the PFM reference voltage, the TPS61033 goes  
into the power-save mode. In the power-save mode, when the FB voltage rises and hits the PFM reference  
voltage, the device continues switching for several cycles because of the delay time of the internal comparator  
then it stops switching. The load is supplied by the output capacitor, and the output voltage declines. When  
the FB voltage falls below the PFM reference voltage, after the delay time of the comparator, the device starts  
switching again to ramp up the output voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
14  
Submit Document Feedback  
Product Folder Links: TPS61033  
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
Output  
Voltage  
PFM mode at light load  
1.01 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
8-2. Output Voltage in PWM Mode and PFM Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS61033 is a synchronous boost converter designed to operate from an input voltage supply range  
between 1.8 V and 5.5 V with a 5.5-A (typical) valley switch current limit. The TPS61033 typically operates at a  
quasi-constant 2.4-MHz frequency PWM at moderate-to-heavy load currents. At light load currents, the  
TPS61033 converter operates in power-save mode with PFM to achieve high efficiency over the entire load  
current range.  
9.2 Typical Application  
The TPS61033 provides a power supply solution for portable devices powered by batteries. With 5.5-A (typical)  
switch current capability, the TPS61033 can output 5 V and 2 A from a single-cell Li-ion battery.  
L1  
0.47 µH  
C1  
VIN  
SW  
VOUT  
GND  
C2  
R1  
R2  
PWM  
ON  
PFM  
OFF  
FB  
MODE  
EN  
R3  
PG  
9-1. Li-ion Battery to 5-V Boost Converter  
9.2.1 Design Requirements  
The design parameters are listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Input voltage  
VALUES  
3.0 V to 4.35 V  
5 V  
Output voltage  
Output current  
2.0 A  
9.2.2 Detailed Design Procedure  
9.2.2.1 Setting the Output Voltage  
The output voltage is set by an external resistor divider (R1, R2 in 9-1). When the output voltage is regulated,  
the typical voltage at the FB pin is VREF. Thus the resistor divider is determined by 方程5.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
16  
Submit Document Feedback  
Product Folder Links: TPS61033  
 
 
 
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
VOUT  
R1=  
-1 ìR2  
«
÷
VREF  
(5)  
where  
VOUT is the regulated output voltage  
VREF is the internal reference voltage at the FB pin  
For the best accuracy, keep R2 smaller than 300 kΩ to ensure the current flowing through R2 is at least 100  
times larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity against  
noise injection. Changing the R2 towards a higher value reduces the quiescent current for achieving highest  
efficiency at low load currents.  
9.2.2.2 Inductor Selection  
Because the selection of the inductor affects steady-state operation, transient behavior, and loop stability. The  
inductor is the most important component in power regulator design. There are three important inductor  
specifications, inductor value, saturation current, and dc resistance (DCR).  
The TPS61033 is designed to work with inductor values between 0.37 µH and 2.9 µH. Follow 方程式 6 to 方程式  
8 to calculate the inductor peak current for the application. To calculate the current in the worst case, use the  
minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough  
design margins, choose the inductor value with 30% tolerances, and low power-conversion efficiency for the  
calculation.  
In a boost regulator, the inductor dc current can be calculated by 方程6.  
VOUT ìIOUT  
IL DC  
=
(
)
V ì h  
IN  
(6)  
(7)  
(8)  
where  
VOUT is the output voltage of the boost converter  
IOUT is the output current of the boost converter  
VIN is the input voltage of the boost converter  
ηis the power conversion efficiency, use 90% for most applications  
The inductor ripple current is calculated by 方程7.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
where  
D is the duty cycle, which can be calculated by 方程3  
L is the inductance value of the inductor  
fSW is the switching frequency  
VIN is the input voltage of the boost converter  
Therefore, the inductor peak current is calculated by 方程8.  
DIL P-P  
(
)
IL P = IL DC  
+
(
)
(
)
2
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI. But in the same way, load transient response time is increased. The  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
 
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
saturation current of the inductor must be higher than the calculated peak inductor current. 9-2 lists the  
recommended inductors for the TPS61033.  
9-2. Recommended Inductors for the TPS61033  
DCR MAX  
(mΩ)  
SATURATION CURRENT  
(A)  
PART NUMBER(1)  
L (µH)  
SIZE (LxWxH)  
VENDOR  
XGL4020-471MEC  
XGL4020-102MEC  
0.47  
1
5.1  
9.0  
6.1  
3.8  
4 x 4 x 2.1  
4 x 4 x 2.1  
Coilcraft  
Coilcraft  
(1) See Third-party Products disclaimer  
9.2.2.3 Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. The ripple  
voltage is related to capacitor capacitance and its equivalent series resistance (ESR). Assuming a ceramic  
capacitor with zero ESR, the minimum capacitance needed for a given ripple voltage can be calculated by 方程  
9.  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
(9)  
where  
DMAX is the maximum switching duty cycle  
VRIPPLE is the peak-to-peak output ripple voltage  
IOUT is the maximum output current  
fSW is the switching frequency  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used. The output peak-to-peak ripple voltage caused by the ESR of the output capacitors can be calculated by  
方程10.  
VRIPPLE(ESR) = IL(P) ìRESR  
(10)  
Take care when evaluating the derating of a ceramic capacitor under dc bias voltage, aging, and ac signal. For  
example, the dc bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than 50%  
of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure adequate  
capacitance at the required output voltage. Increasing the output capacitor makes the output ripple voltage  
smaller in PWM mode.  
TI recommends using the X5R or X7R ceramic output capacitor in the range of 4-μF to 1000-μF effective  
capacitance. The output capacitor affects the small signal control loop stability of the boost regulator. If the  
output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output  
capacitor makes the output ripple voltage smaller in PWM mode.  
9.2.2.4 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are excellent choices for the input decoupling of the step-up converter  
as they have extremely low ESR and are available in small footprints. Input capacitors must be located as close  
as possible to the device. While a 10-μF input capacitor is sufficient for most applications, larger values may be  
used to reduce input current ripple without limitations. Take care when using only ceramic input capacitors.  
When a ceramic capacitor is used at the input and the power is being supplied through long wires, a load step at  
the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop  
instability or even damage the part. In this circumstance, place additional bulk capacitance (tantalum or  
aluminum electrolytic capacitor) between ceramic input capacitor and the power source to reduce ringing that  
can occur between the inductance of the power source leads and ceramic input capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
18  
Submit Document Feedback  
Product Folder Links: TPS61033  
 
 
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
9.2.3 Application Curves  
Vout(5V o set)  
40mV/div  
Vout(5V o set)  
100mV/div  
Inductor Current  
1A/div  
Inductor Current  
500mA/div  
SW  
2V/div  
SW  
2V/div  
Time Scale: 200ns/div  
Time Scale: 10μs/div  
VIN = 3.3 V, VOUT = 5 V, IOUT = 2 A  
VIN = 3.3 V, VOUT = 5 V, IOUT = 100 mA  
9-2. Switching Waveform at Heavy Load  
9-3. Switching Waveform at Light Load  
EN  
2.0V/div  
EN  
2.0V/div  
Vout  
2.0V/div  
Vout  
2.0V/div  
Inductor Current  
2A/div  
Inductor Current  
2A/div  
Time Scale: 5 s/div  
Time Scale: 200 s/div  
VIN = 3.3 V, VOUT = 5 V, 2.5-Ωresistance load  
9-4. Start-up Waveform  
VIN = 3.3 V, VOUT = 5 V, 2.5-Ωresistance load  
9-5. Shutdown Waveform  
Vout (5V o set)  
500mV/div  
Vout (5V o set)  
500mV/div  
Vin  
1V/div  
Output Current  
500mA/div  
Time Scale: 50μs/div  
Time Scale: 200μs/div  
VIN = 3.3 V, VOUT = 5 V, IOUT = 1 A to 2 A with 20-μs slew  
VIN = 2.7 V to 4.5 V with 20-μs slew rate, VOUT = 5 V, IOUT = 2  
rate  
A
9-6. Load Transient  
9-7. Line Transient  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
Vin  
2V/div  
Vout (5V o set)  
100mV/div  
Vout (5V o set)  
100mV/div  
Output Current  
500mA/div  
Inductor Current  
2A/div  
Time Scale: 500us/div  
VIN = 3.3 V, VOUT = 5 V, IOUT = 50 mA to 2 A Sweep  
9-8. Load Sweep  
Time Scale: 5ms/div  
VIN = 1 V to 4.5 V Sweep, VOUT = 5 V, IOUT = 1 A  
9-9. Line Sweep  
Vout  
2V/div  
SW  
2V/div  
SW  
2V/div  
Vout  
2V/div  
Inductor Current  
2A/div  
Inductor Current  
2A/div  
Time Scale: 200 s/div  
Time Scale: 2 s/div  
VIN = 3.3 V, VOUT = 5 V, IOUT = 2 A  
VIN = 3.3 V, VOUT = 5 V, IOUT = 2 A  
9-10. Output Short Protection (Entry)  
9-11. Output Short Protection (Recover)  
9.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 1.8 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is a tantalum or  
aluminum electrolytic capacitor with a value of 100 µF. Output current of the input power supply must be rated  
according to the supply voltage, output voltage, and output current of the TPS61033.  
9.4 Layout  
9.4.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If the layout is not carefully done, the regulator suffers from instability and  
noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high  
frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the  
length and area of all traces connected to the SW pin, and always use a ground plane under the switching  
regulator to minimize interplane coupling. The input capacitor needs not only to be close to the VIN pin, but also  
to the GND pin in order to reduce input supply ripple.  
The most critical current path for all boost converters is from the switching FET, through the rectifier FET, then  
the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise  
and fall time and must be kept as short as possible. Therefore, the output capacitor not only must be close to the  
VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin.  
For better thermal performance, TI suggest to make copper polygon connected with each pin bigger.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
20  
Submit Document Feedback  
Product Folder Links: TPS61033  
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
9.4.2 Layout Example  
VIN  
VOUT  
Output caps  
GND  
GND  
Input cap  
VIN  
EN  
VOUT  
SW  
PWM  
MODE  
PG  
GND  
FB  
PFM  
VOUT  
Blue line represents  
trace on bottom layer  
9-12. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
9.4.3 Thermal Considerations  
Restrict the maximum IC junction temperature to 125°C under normal operating conditions. Calculate the  
maximum allowable dissipation, PD(max), and keep the actual power dissipation less than or equal to PD(max). The  
maximum-power-dissipation limit is determined using 方程11.  
125 - TA  
RqJA  
PD max  
=
(
)
(11)  
where  
TA is the maximum ambient temperature for the application  
RθJA is the junction-to-ambient thermal resistance given in 9.4.3  
The TPS61033 comes in a SOT583 package. The real junction-to-ambient thermal resistance of the package  
greatly depends on the PCB type, layout. Using larger and thicker PCB copper for the power pads (GND, SW,  
and VOUT) to enhance the thermal performance. Using more vias connects the ground plate on the top layer  
and bottom layer around the IC without solder mask also improves the thermal capability.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGI6  
22  
Submit Document Feedback  
Product Folder Links: TPS61033  
 
 
TPS61033  
www.ti.com.cn  
ZHCSOQ1B OCTOBER 2022 REVISED JUNE 2023  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61033  
English Data Sheet: SLVSGI6  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61033DRLR  
ACTIVE  
SOT-5X3  
DRL  
8
4000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-40 to 125  
033  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/E 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4224486/E 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/E 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61040

LOW POWER DC/DC BOOST CONVERTER IN SOT-23 PACKAGE
TI

TPS61040-Q1

LOW POWER DC/DC BOOST CONVERTER IN SOT-23 PACKAGE
TI

TPS61040-Q1_16

Low-Power DC-DC Boost Converter in SOT-23 Package
TI

TPS61040AQDBVRQ1

符合 AEC-Q100 标准的 1.8V 至 6V 输入范围、400mA 升压转换器 | DBV | 5 | -40 to 125
TI

TPS61040DBV

LOW POWER DC/DC BOOST CONVERTER IN SOT-23 PACKAGE
TI

TPS61040DBVR

LOW-POWER DC/DC BOOST CONVERTER IN SOT-23 AND SON PACKAGES
TI

TPS61040DBVRG4

LOW-POWER DC/DC BOOST CONVERTER IN SOT-23 AND SON PACKAGES
TI

TPS61040DBVT

Analog IC
ETC

TPS61040DDC

暂无描述
TI

TPS61040DDCR

LOW-POWER DC/DC BOOST CONVERTER IN SOT-23 AND SON PACKAGES
TI

TPS61040DDCT

LOW-POWER DC/DC BOOST CONVERTER IN SOT-23 AND SON PACKAGES
TI

TPS61040DRV

LOW-POWER DC/DC BOOST CONVERTER IN SOT-23 AND SON PACKAGES
TI