TPS61175QPWPRQ1 [TI]

具有软启动功能和可编程开关频率的 3A、40V 高压升压转换器 | PWP | 14 | -40 to 125;
TPS61175QPWPRQ1
型号: TPS61175QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有软启动功能和可编程开关频率的 3A、40V 高压升压转换器 | PWP | 14 | -40 to 125

升压转换器 开关 高压 软启动
文件: 总27页 (文件大小:1438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
TPS61175-Q1 具有软启动和可编程开关频率的 3A 高电压升压转换器  
1 特性  
3 说明  
1
具有符合 AEC-Q100 的下列结果:  
TPS61175-Q1 是一款单片开关稳压器,带有集成的  
3A/40V 电源开关。 此器件可配置成多种标准开关稳压  
器拓扑,包括升压、SEPIC 和反激式。 此器件具有宽  
输入电压范围,可支持输入电压来自多节电池或者  
5V12V 稳压电源轨的应用。  
器件温度 1 级:-40℃ 至 125°C 结温工作温度  
范围  
输入电压范围为 2.9V 18V  
3A40V 内部开关  
高效率电源转换:高达 93%  
由外部电阻设置频率:200KHz 2.2MHz  
同步外部开关频率  
TPS61175-Q1 使用电流模式脉宽调制 (PWM) 控制来  
调节输出电压。 PWM 的开关频率可由外部电阻或外  
部时钟信号设定。 用户可将开关频率编程设定在  
200kHz 2.2MHz 之间。  
满载条件下采用用户定义的软启动  
轻载条件下输出调节可跳过开关周期  
此器件的可编程软启动功能可限制启动期间的浪涌电  
流,并且还具有逐脉冲过流限制和热关断等其它内置保  
护特性。 TPS61175-Q1 采用带有 PowerPAD 14  
引脚 HTSSOP 封装。  
14 引脚散热薄型小外形尺寸 (HTSSOP) 封装,具  
PowerPAD™  
2 应用范围  
5V 12V24V 的功率转换  
器件信息(1)  
支持单端初级电感转换器 (SEPIC)、反激式拓扑  
非对称用户数字环路 (ADSL) 调制解调器  
TV 调谐器  
器件型号  
封装  
封装尺寸(标称值)  
TPS61175-Q1  
HTSSOP (14)  
5.00mm x 4.40mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
V
D1  
V
IN  
OUT  
L1  
C2  
C1  
TPS61175  
R1  
VIN  
SW  
SW  
EN  
FREQ  
SS  
FB  
PGND  
PGND  
PGND  
NC  
R2  
COMP  
Syn  
R4  
R3  
C3  
AGND  
C4  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCN9  
 
 
 
 
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical Application ................................................. 11  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
11.3 Thermal Considerations........................................ 20  
12 器件和文档支持 ..................................................... 21  
12.1 ....................................................................... 21  
12.2 静电放电警告......................................................... 21  
12.3 术语表 ................................................................... 21  
13 机械封装和可订购信息 .......................................... 21  
8
5 修订历史记录  
日期  
修订版本  
注释  
201412月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
6 Pin Configuration and Functions  
TSSOP 14-PIN  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
PGND  
PGND  
PGND  
NC  
SW  
SW  
VIN  
EN  
FREQ  
FB  
SS  
SYNC  
AGND  
8
COMP  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VIN  
NO.  
The input supply pin for the IC. Connect VIN to a supply voltage between 2.9 V and 18 V. It is acceptable  
for the voltage on the pin to be different from the boost power stage input for applications requiring voltage  
beyond VIN range.  
3
I
SW  
FB  
1,2  
9
I
I
This is the switching node of the IC. Connect SW to the switched side of the indu1ctor.  
Feedback pin for positive voltage regulation. Connect to the center tap of a resistor divider to program the  
output voltage.  
Enable pin. When the voltage of this pin falls below the enable threshold for more than 10 ms, the IC turns  
off.  
EN  
4
8
I
Output of the internal transconductance error amplifier. An external RC network is connected to this pin to  
compensate the regulator.  
COMP  
SS  
O
O
O
Soft start programming pin. A capacitor between the SS pin and GND pin programs soft start timing. See  
application section for information on how to size the SS capacitor.  
5
Switch frequency program pin. An external resistor is connected to this pin to set switch frequency. See  
application section for information on how to size the FREQ resistor.  
FREQ  
10  
AGND  
PGND  
7
I
I
I
Signal ground of the IC  
12,13,14  
Power ground of the IC. It is connected to the source of the PWM switch.  
Switch frequency synchronous pin. Customers can use an external signal to set the IC switch frequency  
between 200-kHz and 2.2-MHz. If not used, this pin should be tied to AGND as short as possbile to avoid  
noise coupling.  
SYNC  
6
NC  
11  
I
Reserved pin. Must connect this pin to ground.  
The thermal pad should be soldered to the analog ground. If possible, use thermal via to connect to top and  
internal ground plane layers for ideal power dissipation.  
Thermal Pad  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
20  
20  
3
(2)  
Supply Voltages on pin VIN  
Voltages on pins EN(2)  
V
V
V
V
V
Voltage on pin FB, FREQ and COMP(2)  
Voltage on pin SYNC, SS(2)  
Voltage on pin SW(2)  
7
40  
Continuous Power Dissipation  
Operating Junction Temperature Range  
Storage temperature, Tstg  
See the Thermal Information Table  
–40  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
±2000  
All pins except 1, 7, 8,  
and 14  
V(ESD)  
Electrostatic discharge  
±500  
±750  
V
Charged-device model (CDM), per AEC  
Q100-011  
Pins 1, 7, 8, and 14  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.9  
VIN  
4.7  
200  
4.7  
4.7  
NOM  
MAX  
18  
UNIT  
V
VIN  
VO  
L
Input voltage range  
Output voltage range  
Inductor(1)  
38  
V
47  
μH  
kHz  
μF  
μF  
V
fSW  
CI  
Switching frequency  
2200  
Input Capacitor  
CO  
VSYN  
TA  
Output Capacitor  
External Switching Frequency Logic  
Operating ambient temperature  
Operating junction temperature  
5
125  
125  
–40  
–40  
°C  
°C  
TJ  
(1) The inductance value depends on the switching frequency and end application. While larger values may be used, values between 4.7-  
μH and 47-μH have been successfully tested in various applications. Refer to the Inductor Selection for detail.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
7.4 Thermal Information  
TPS61175-Q1  
THERMAL METRIC(1)  
PWP  
14 PINS  
45.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
34.9  
30.1  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ψJB  
29.9  
RθJC(bot)  
5.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
FSW = 1.2 MHz (Rfreq = 80 k), VIN = 3.6V, TA = TJ = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VIN  
Input voltage range  
2.9  
18  
3.5  
1.5  
2.7  
V
IQ  
Operating quiescent current into Vin  
Shutdown current  
Device PWM switching without load  
EN = GND  
mA  
μA  
V
ISD  
VUVLO  
Vhys  
Under-voltage lockout threshold  
Under-voltage lockout hysteresis  
2.5  
130  
mV  
ENABLE AND REFERENCE CONTROL  
V(ENh)  
V(ENl)  
EN logic high voltage  
EN logic low voltage  
SYN logic high voltage  
SYN logic low voltage  
EN pull down resistor  
VIN = 2.9 V to 18 V  
VIN = 2.9 V to 18 V  
1.2  
1.2  
V
V
0.4  
V(SYNh)  
V(SYNl)  
R(EN)  
V
0.4  
V
400  
800  
1600  
kΩ  
VOLTAGE AND CURRENT CONTROL  
VREF  
IFB  
Voltage feedback regulation voltage  
Voltage feedback input bias current  
Comp pin sink current  
1.204  
1.229  
1.254  
200  
V
nA  
μA  
μA  
V
Isink  
VFB = VREF + 200 mV, VCOMP = 1 V  
VFB = VREF –200 mV, VCOMP = 1 V  
50  
Isource  
VCCLP  
Comp pin source current  
130  
Comp pin Clamp Voltage  
High Clamp, VFB = 1 V  
Low Clamp, VFB = 1.5 V  
3
0.75  
V(CTH)  
Gea  
Rea  
Comp pin threshold  
Duty cycle = 0%  
0.95  
340  
10  
V
Error amplifier transconductance  
Error amplifier output resistance  
Error amplifier crossover frequency  
240  
440  
μmho  
MΩ  
fea  
500  
KHz  
FREQUENCY  
Rfreq = 480 kΩ  
0.16  
1.0  
0.21  
1.2  
0.26  
1.4  
fS  
Oscillator frequency  
Rfreq = 80 kΩ  
MHz  
V
Rfreq = 40 kΩ  
1.76  
89%  
2.2  
2.64  
Dmax  
Maximum duty cycle  
FREQ pin voltage  
VFB = 1.0 V, Rfreq = 80 kΩ  
93%  
1.229  
V(FREQ)  
Copyright © 2014, Texas Instruments Incorporated  
5
 
 
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
FSW = 1.2 MHz (Rfreq = 80 k), VIN = 3.6V, TA = TJ = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SWITCH  
RDS(ON)  
N-channel MOSFET on-resistance  
N-channel leakage current  
VIN = VGS = 3.6 V  
VIN = VGS = 3.0 V  
0.13  
0.13  
0.25  
0.3  
ILN_NFET  
OC, OVP AND SS  
ILIM N-Channel MOSFET current limit  
ISS Soft start bias current  
THERMAL SHUTDOWN  
Tshutdown Thermal shutdown threshold  
Thysteresis Thermal shutdown threshold hysteresis  
VDS = 40 V, TA = 25°C  
1
μA  
D = Dmax  
VSS = 0 V  
3
3.8  
6
5
A
μA  
160  
15  
°C  
°C  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ms  
ENABLE AND REFERENCE CONTROL  
toff  
FREQUENCY  
tmin_on Minimum on pulse width  
Shutdown delay, SS discharge  
EN high to low  
10  
Rfreq = 80 kΩ  
60  
ns  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
7.7 Typical Characteristics  
100  
90  
100  
V
= 12 V  
V = 12 V  
I
90  
O
V = 5 V  
I
V
= 24 V  
O
80  
70  
80  
V
= 35 V  
O
70  
60  
50  
60  
50  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
I
- Output Current - A  
I
- Output Current - A  
O
O
VO = 24 V  
VI = 5 V  
Figure 2. Efficiency vs Output Current  
Figure 1. Efficiency vs Output Current  
5
400  
380  
4.5  
4
360  
340  
320  
3.5  
3
0.2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0.4  
0.6  
0.8  
1
T
- Free-Air Temperature - °C  
Duty Cycle - %  
A
Figure 3. Error Amplifier Transconductance vs Free-Air  
Temperature  
Figure 4. Overcurrent Limit vs Duty Cycle  
4
1240  
1235  
3.9  
3.8  
3.7  
1230  
1225  
1220  
3.6  
3.5  
80  
60  
- Free-Air Temperature - °C  
-40  
-20  
0
20  
T - Free-Air Temperature - °C  
A
40  
60  
80  
100  
120  
-20  
0
20  
40  
100  
120  
-40  
T
A
Figure 5. Overcurrent Limit vs Free-Air Temperature  
Figure 6. FB Voltages Free-Air Temperature  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS61175-Q1 integrates a 40-V low side switch FET for up to 38-V output. The device regulates the output  
with current mode PWM (pulse width modulation) control. The PWM control circuitry turns on the switch at the  
beginning of each switching cycle. The input voltage is applied across the inductor and stores the energy as  
inductor current ramps up. During this portion of the switching cycle, the load current is provided by the output  
capacitor. When the inductor current rises to the threshold set by the error amplifier output, the power switch  
turns off and the external Schottky diode is forward biased. The inductor transfers stored energy to replenish the  
output capacitor and supply the load current. This operation repeats each every switching cycle. As shown in the  
block diagram, the duty cycle of the converter is determined by the PWM control comparator which compares the  
error amplifier output and the current signal. The switching frequency is programmed by the external resistor or  
synchronized to an external clock signal.  
A ramp signal from the oscillator is added to the current ramp to provide slope compensation. Slope  
compensation is necessary to avoid subharmonic oscillation that is intrinsic to the current mode control at duty  
cycle higher than 50%. If the inductor value is lower than 4.7μH, the slope compensation may not be adequate.  
The feedback loop regulates the FB pin to a reference voltage through a transconductance error amplifier. The  
output of the error amplifier is connected to the COMP pin. An external RC compensation network is connected  
to the COMP pin to optimize the feedback loop for stability and transient response.  
8.2 Functional Block Diagram  
L1  
D1  
C1  
C2  
R1  
R2  
FB  
SW  
VIN  
FB  
EN  
EA  
Gate  
Driver  
1.229 V  
Reference  
COMP  
PWM Control  
R3  
C4  
Current  
Sensor  
Ramp  
Generator  
+
Oscillator  
SS  
C3  
FREQ  
R4  
SYNC  
AGND  
PGND  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
8.3 Feature Description  
8.3.1 Switching Frequency  
The switch frequency is set by a resistor (R4) connected to the FREQ pin of the TPS61175-Q1. Do not leave this  
pin open. A resistor must always be connected for proper operation. See Table 1 and Figure 7 for resistor values  
and corresponding frequencies.  
Table 1. Switching Frequency vs External Resistor  
R4 (k)  
443  
256  
176  
80  
fSW (kHz)  
240  
400  
600  
1200  
2000  
51  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
100  
10  
1000  
External Resistor - kW  
Figure 7. Switching Frequency vs External Resistor  
Alternatively, the TPS61175-Q1 switching frequency will synchronize to an external clock signal that is applied to  
the SYNC pin. The logic level of the external clock is shown in the specification table. The duty cycle of the clock  
is recommended in the range of 10% to 90%. The resistor also must be connected to the FREQ pin when IC is  
switching by the external clock. The external clock frequency must be within ±20% of the corresponding  
frequency set by the resistor. For example, if the corresponding frequency as set by a resistor on the FREQ pin  
is 1.2-MHz, the external clock signal should be in the range of 0.96-MHz to 1.44-MHz.  
If the external clock signal is higher than the frequency per the resistor on the FREQ pin, the maximum duty  
cycle specification (DMAX) should be lowered by 2%. For instance, if the resistor set value is 2.5MHz, and the  
external clock is 3MHz, DMAX is 87% instead of 89%.  
8.3.2 Soft Start  
The TPS61175-Q1 has a built-in soft start circuit which significantly reduces the start-up current spike and output  
voltage overshoot. When the IC is enabled, an internal bias current (6-μA typically) charges a capacitor (C3) on  
the SS pin. The voltage at the capacitor clamps the output of the internal error amplifier that determines the duty  
cycle of PWM control, thereby the input inrush current is eliminated. Once the capacitor reaches 1.8-V, the soft  
start cycle is completed and the soft start voltage no longer clamps the error amplifier output. Refer to Figure 7  
for the soft start waveform. See Table 2 for C3 and corresponding soft start time. A 47-nF capacitor eliminates  
the output overshoot and reduces the peak inductor current for most applications.  
Copyright © 2014, Texas Instruments Incorporated  
9
 
 
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
Table 2. Soft Start Time vs C3  
VIN (V)  
VOUT (V)  
Load (A)  
COUT (μF)  
fSW (MHz)  
C3 (nF)  
47  
tSS(ms)  
4
Overshot (mV)  
none  
210  
5
24  
0.4  
10  
1.2  
10  
0.8  
100  
10  
6.5  
none  
300  
12  
35  
0.6  
10  
2
0.4  
When the EN is pulled low for 10-ms, the IC enters shutdown and the SS capacitor discharges through a 5kΩ  
resistor for the next soft start.  
8.3.3 Overcurrent Protection  
The TPS61175-Q1 has a cycle-by-cycle overcurrent limit protection that turns off the power switch once the  
inductor current reaches the overcurrent limit threshold. The PWM circuitry resets itself at the beginning of the  
next switch cycle. During an overcurrent event, the output voltage begins to droop as a function of the load on  
the output. When the FB voltage drops lower than 0.9-V, the switching frequency is automatically reduced to 1/4  
of the set value. The switching frequency does not reset until the overcurrent condition is removed. This feature  
is disabled during soft start.  
8.3.4 Enable and Thermal Shutdown  
The TPS61175-Q1 enters shutdown when the EN voltage is less than 0.4-V for more than 10-ms. In shutdown,  
the input supply current for the device is less than 1.5-μA (max). The EN pin has an internal 800-kpull down  
resistor to disable the device when it is floating.  
An internal thermal shutdown turns off the device when the typical junction temperature of 160°C is exceeded.  
The IC restarts when the junction temperature drops by 15°C.  
8.3.5 Under Voltage Lockout (UVLO)  
An under voltage lockout circuit prevents mis-operation of the device at input voltages below 2.5-V (typical).  
When the input voltage is below the under voltage threshold, the device remains off and the internal switch FET  
is turned off. The under voltage lockout threshold is set below minimum operating voltage of 2.9V to avoid any  
transient VIN dip triggering the UVLO and causing the device to reset. For the input voltages between UVLO  
threshold and 2.9V, the device attempts to operate, but the specifications are not ensured.  
8.4 Device Functional Modes  
8.4.1 Minimum on Time and Pulse Skipping  
Once the PWM switch is turned on, the TPS61175-Q1 has minimum ON pulse width of 60-ns. This sets the limit  
of the minimum duty cycle of the PWM switch, and it is independent of the set switching frequency. When  
operating conditions result in the TPS61175-Q1 having a minimum ON pulse width less than 60-ns, the IC enters  
pulse-skipping mode. In this mode, the device keeps the power switch off for several switching cycles to keep the  
output voltage from rising above the regulated voltage. This operation typically occurs in light load condition  
when the PWM operates in discontinuous mode. Pulse skipping increases the output voltage ripple, see  
Figure 15.  
If the switching frequency is above 1.2 MHz, the pulse-skipping operation may not function. The TPS61175-Q1  
will always run in PWM mode with minimum ON pulse width. To keep the output voltage in regulation, a  
minimum load is required. The minimum load is related to the input voltage, output voltage, switching frequency,  
external inductor value and the maximum value of the minimum ON pulse width. Use Equation 1 and Equation 2  
to calculate the required minimum load at the worst case. The maximum tmin_ON could be estimated to 80 ns.  
CSW is the total parasite capacitance at the switching node SW pin. It could be estimated to 100 pF.  
2
V
x tmin_ON + (VOUT + VD - V ) x L x CSW  
x ¦SW  
(
)
IN  
IN  
1
2
I(min_load)  
=
x
When VOUT + VD - V < V  
IN IN  
L x V  
(
+ VD - V  
IN  
)
OUT  
(1)  
2
V
x tmin_ON + V  
x
L x CSW  
x ¦SW  
(
)
IN  
IN  
1
2
I(min_load)  
=
x
When VOUT + VD - V > V  
IN IN  
L x V  
(
+ VD - V  
IN  
)
OUT  
(2)  
10  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
9 Application and Implementation  
9.1 Application Information  
The following section provides a step-by-step design approach for configuring the TPS61175-Q1 as a voltage  
regulating boost converter, as shown in Figure 8. When configured as SEPIC or flyback converter, a different  
design approach is required.  
9.2 Typical Application  
V
D1  
V
IN  
OUT  
L1  
C2  
C1  
TPS61175  
R1  
VIN  
SW  
SW  
EN  
FREQ  
SS  
FB  
PGND  
PGND  
PGND  
NC  
R2  
COMP  
Syn  
R4  
R3  
C3  
AGND  
C4  
Figure 8. Boost Converter Configuration  
Table 3. Design Parameters  
9.2.1 Design Requirements  
PARAMETERS  
VALUES  
5 V  
Input voltage  
Output voltage  
24 V  
Operating frequency  
1.2 MHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Determining the Duty Cycle  
The TPS61175-Q1 has a maximum worst case duty cycle of 89% and a minimum on time of 60 ns. These two  
constraints place limitations on the operating frequency that can be used for a given input to output conversion  
ratio. The duty cycle at which the converter operates is dependent on the mode in which the converter is running.  
If the converter is running in discontinuous conduction mode (DCM), where the inductor current ramps to zero at  
the end of each cycle, the duty cycle varies with changes to the load much more than it does when running in  
continuous conduction mode (CCM). In continuous conduction mode, where the inductor maintains a dc current,  
the duty cycle is related primarily to the input and output voltages as computed below:  
V
+ V - V  
D IN  
OUT  
D =  
V
+ V  
D
OUT  
(3)  
In discontinuous mode the duty cycle is a function of the load, input and output voltages, inductance and  
switching frequency as computed below:  
2 ´ (VOUT + VD ) ´ IOUT ´ L ´ ¦SW  
D =  
V
IN  
(4)  
All converters using a diode as the freewheeling or catch component have a load current level at which they  
transition from discontinuous conduction to continuous conduction. This is the point where the inductor current  
just falls to zero. At higher load currents, the inductor current does not fall to zero but remains flowing in a  
positive direction and assumes a trapezoidal wave shape as opposed to a triangular wave shape. This load  
boundary between discontinuous conduction and continuous conduction can be found for a set of converter  
parameters as follows.  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
 
 
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
2
(V  
+ V - V ) ´ V  
D IN IN  
OUT  
I
=
OUT(crit)  
2
2 ´ (V  
+ V ) ´ ¦  
D
´ L  
SW  
OUT  
(5)  
For loads higher than the result of the equation above, the duty cycle is given by Equation 3 and for loads less  
than the results of Equation 4, the duty cycle is given in Equation 5. For Equation 3 through Equation 5, the  
variable definitions are as follows.  
VOUT is the output voltage of the converter in V  
VD is the forward conduction voltage drop across the rectifier or catch diode in V  
VIN is the input voltage to the converter in V  
IOUT is the output current of the converter in A  
L is the inductor value in H  
fSW is the switching frequency in Hz  
Unless otherwise stated, the design equations that follow assume that the converter is running in continuous  
mode.  
9.2.2.2 Selecting the Inductor  
The selection of the inductor affects steady state operation as well as transient behavior and loop stability. These  
factors make it the most important component in power regulator design. There are three important inductor  
specifications, inductor value, DC resistance and saturation current. Considering inductor value alone is not  
enough.  
Inductor values can have ±20% tolerance with no current bias. When the inductor current approaches saturation  
level, its inductance can fall to some percentage of its 0-A value depending on how the inductor vendor defines  
saturation current. For CCM operation, the rule of thumb is to choose the inductor so that its inductor ripple  
current (ΔIL) is no more than a certain percentage (RPL% = 20–40%) of its average DC value (IIN(AVG) = IL(AVG)  
)
V
´ D  
(VOUT + VD - VIN ) ´ (1 - D)  
L ´ ¦SW  
1
IN  
DIL =  
=
=
L ´ ¦SW  
é
ù
ö
æ
ç
è
1
1
L ´ ¦  
´
+
ê
÷ú  
SW  
VOUT + VD - V  
V
ê
ë
ú
û
IN  
IN ø  
POUT  
£ RPL% ´  
V
´ ηest  
IN  
(6)  
(7)  
Rearranging and solving for L gives  
ηest ´ V  
IN  
L ³  
é
ê
ù
ú
æ
ç
è
ö
÷
ø
1
1
¦
+
´ RPL% POUT  
SW  
VOUT + VD - V  
V
IN  
ê
ë
ú
û
IN  
Choosing the inductor ripple current to closer to 20% of the average inductor current results in a larger  
inductance value, maximizes the converter’s potential output current and minimizes EMI. Choosing the inductor  
ripple current closer to 40% of IL(AVG) results in a smaller inductance value, and a physically smaller inductor,  
improves transient response but results in potentially higher EMI and lower efficiency if the DCR of the smaller  
packaged inductor is significantly higher. Using an inductor with a smaller inductance value than computed  
above may result in the converter operating in DCM. This reduces the boost converter’s maximum output current,  
causes larger input voltage and output ripple and typically reduces efficiency. Table 4 lists the recommended  
inductor for the TPS61175-Q1.  
Table 4. Recommended Inductors for TPS61175-Q1  
L
(μH)  
DCR MAX  
(m)  
SATURATION CURRENT  
(A)  
SIZE  
(L × W × H mm)  
PART NUMBER  
VENDOR  
D104C2  
VLF10040  
10  
15  
22  
15  
44  
42  
61  
50  
3.6  
3.1  
2.9  
3.8  
10.4x10.4x4.8  
10.0x9.7x4.0  
10.5x10.3x5.1  
10.0x10.2x3.8  
TOKO  
TDK  
CDRH105RNP  
MSS1038  
Sumida  
Coilcraft  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
The device has built-in slope compensation to avoid subharmonic oscillation associated with current mode  
control. If the inductor value is lower than 4.7μH, the slope compensation may not be adequate, and the loop can  
be unstable. Applications requiring inductors above 47μH have not been evaluated. Therefore, the user is  
responsible for verifying operation if they select an inductor that is outside the 4.7μH–47μH recommended range.  
9.2.2.3 Computing the Maximum Output Current  
The over-current limit for the integrated power FET limits the maximum input current and thus the maximum input  
power for a given input voltage. Maximum output power is less than maximum input power due to power  
conversion losses. Therefore, the current limit setting, input voltage, output voltage and efficiency can all change  
the maximum current output (IOUT(MAX)). The current limit clamps the peak inductor current, therefore the ripple  
has to be subtracted to derive maximum DC current.  
V
´ IIN(AVG) ´ ηest  
V
IN(NIM) ´ ILIM ´ ηest  
IN(MIN)  
IOUT(max)  
=
=
VOUT  
VOUT ´ (1 + RPL%/2)  
(8)  
where  
ILIM = over current limit  
ηest= efficiency estimate based on similar applications or computed above  
For instance, when VIN = 12 V is boosted to VOUT = 24 V, the inductor is 10 uH, the Schottky forward voltage is  
0.4-V and the switching frequency is 1.2-MHz; then the maximum output current is 1.2-A in typical condition,  
assuming 90% efficiency and a %RPL = 20%.  
9.2.2.4 Setting Output Voltage  
To set the output voltage in either DCM or CCM, select the values of R1 and R2 according to the following  
equation.  
æ R1  
ö
Vout = 1.229 V ´  
+ 1  
ç
÷
R2  
è
ø
æ Vout  
ö
R1 = R2 ´  
- 1  
ç
÷
1.229V  
è
ø
(9)  
Considering the leakage current through the resistor divider and noise decoupling into FB pin, an optimum value  
for R2 is around 10k. The output voltage tolerance depends on the VFB accuracy and the tolerance of R1 and  
R2.  
9.2.2.5 Setting the Switching Frequency  
Choose the appropriate resistor from the resistance versus frequency table Table 1 or graph Figure 7. A resistor  
must be placed from the FREQ pin to ground, even if an external oscillation is applied for synchronization.  
Increasing switching frequency reduces the value of external capacitors and inductors, but also reduces the  
power conversion efficiency. The user should set the frequency for the minimum tolerable efficiency.  
9.2.2.6 Setting the Soft Start Time  
Choose the appropriate capacitor from the soft start table Table 2. Increasing the soft start time reduces the  
overshoot during start-up.  
9.2.2.7 Selecting the Schottky Diode  
The high switching frequency of the TPS61175-Q1 demands a high-speed rectification for optimum efficiency.  
Ensure that the diode’s average and peak current rating exceed the average output current and peak inductor  
current. In addition, the diode’s reverse breakdown voltage must exceed the switch FET rating voltage of 40V.  
So, the VISHAY SS3P6L-E3/86A is recommended for TPS61175-Q1. The power dissipation of the diode's  
package must be larger than IOUT(max) x VD  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
9.2.2.8 Selecting the Input and Output Capacitors  
The output capacitor is mainly selected to meet the requirements for the output ripple and load transient. Then  
the loop is compensated for the output capacitor selected. The output ripple voltage is related to the capacitor’s  
capacitance and its equivalent series resistance (ESR). Assuming a capacitor with zero ESR, the minimum  
capacitance needed for a given ripple can be calculated by  
(V  
- V )I  
IN out  
OUT  
C
=
out  
V
´ Fs ´ V  
ripple  
OUT  
(10)  
where, Vripple= peak to peak output ripple. The additional output ripple component caused by ESR is calculated  
using:  
Vripple_ESR = I × RESR  
Due to its low ESR, Vripple_ESR can be neglected for ceramic capacitors, but must be considered if tantalum or  
electrolytic capacitors are used.  
The minimum ceramic output capacitance needed to meet a load transient requirement can be estimated by  
Equation 11.  
ΔI  
TRAN  
C
=
OUT  
2 ´ p ´ f  
´ ΔV  
TRAN  
LOOP-BW  
(11)  
Where  
ΔITRAN is the transient load current step  
ΔVTRAN is the allowed voltage dip for the load current step  
fLOOP-BW is the control loop bandwidth (that is, the frequency where the control loop gain crosses zero).  
Care must be taken when evaluating a ceramic capacitor’s derating under dc bias, aging and AC signal. For  
example, larger form factor capacitors (in 1206 size) have their self resonant frequencies in the range of the  
switching frequency. So the effective capacitance is significantly lower. The DC bias can also significantly reduce  
capacitance. Ceramic capacitors can loss as much as 50% of its capacitance at its rated voltage. Therefore, one  
must add margin on the voltage rating to ensure adequate capacitance at the required output voltage.  
For a typical boost converter implementation, at least 4.7μF of ceramic input and output capacitance is  
recommended. Additional input and output capacitance may be required to meet ripple and/or transient  
requirements.  
The popular vendors for high value ceramic capacitors are:  
TDK (http://www.component.tdk.com/components.php)  
Murata (http://www.murata.com/cap/index.html)  
9.2.2.9 Compensating the Small Signal Control Loop  
All continuous mode boost converters have a right half plane zero (ƒRHPZ) due to the inductor being removed  
from the output during charging. In a traditional voltage mode controlled boost converter, the inductor and output  
capacitor form a small signal double pole. For a negative feedback system to be stable, the fed back signal must  
have a gain less than 1 before having 180 degrees of phase shift. With its double pole and RHPZ all providing  
phase shift, voltage mode boost converters are a challenge to compensate. In a converter with current mode  
control, there are essentially two loops, an inner current feedback loop created by the inductor current  
information sensed across RSENSE (40 m) and the output voltage feedback loop. The inner current loop allows  
the switch, inductor and modulator to be lumped together into a small signal variable current source controlled by  
the error amplifier, as shown in Figure 9.  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
(1-D)  
RSENSE  
R1  
_
+
R
C2  
O
2
V
C4  
ref  
C5  
(optional)  
R
R2  
ESR  
R3  
Figure 9. Small Signal Model of a Current Mode Boost in CCM  
The new power stage, including the slope compensation, small signal model becomes:  
æ
ç
è
öæ  
÷ç  
øè  
ö
÷
ø
s
s
1+  
1-  
2´ p´ ¦ESR  
2´ p´ ¦RHPZ  
ROUT ´(1- D)  
2´RSENSE  
GPS(s) =  
´
´He(s)  
s
1+  
2´ p´ ¦P  
(12)  
Where  
2
¦
=
P
2p ´ R ´ C2  
O
(13)  
(14)  
1
¦
»
ESR  
2p ´ RESR ´ C2  
æ
ç
è
ö2  
÷
RO  
V
IN  
¦
=
´
RHPZ  
2p ´ L  
VOUT ø  
(15)  
And  
1
He(s) =  
é
ù
æ
Se ö  
s ´ 1+  
êç  
´ (1 - D) - 0.5  
÷
ú
s2  
Sn  
è
ø
ë
û
1+  
+
2
¦
SW  
(p ´ ¦SW )  
(16)  
He(s) models the inductor current sampling effect as well as the slope compensation effect on the small signal  
response.  
NOTE  
If Se slope dominates Sn, that is, when the inductance is oversized in order to give ripple  
current much smaller than the recommended 0.2 – 0.4 times the average input current,  
then the converter behaves more like a voltage mode converter, and the above model no  
longer holds.  
The slope compensation in TPS61175-Q1 is shown as follow  
VOUT + VD - V  
IN  
Sn =  
´ RSENSE  
L
(17)  
15  
Copyright © 2014, Texas Instruments Incorporated  
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
0.32 V / R4  
16´ 1-D ´ 6pF  
0.5 mA  
Se =  
+
6 pF  
(
)
Where R4 is the frequency setting resistor  
(18)  
Figure 10 shows a bode plot of a typical CCM boost converter power stage  
180  
120  
60  
Gain  
0
–60  
–120  
–180  
Phase  
f
P
f − Frequency − kHz  
Figure 10. Bode Plot of Power Stage Gain and Phase  
The TPS61175-Q1 COMP pin is the output of the internal trans-conductance amplifier. Equation 19 shows the  
equation for feedback resistor network and the error amplifier.  
s
1+  
2´ p´ ¦Z  
R2  
HEA = GEA ´REA  
´
´
R2 + R1  
æ
ç
è
ö æ  
ö
÷
ø
s
s
1+  
´ 1+  
÷ ç  
ø è  
2´ p´ ¦P1  
2´ p´ ¦P2  
(19)  
where GEA and REA are the amplifier’s trans-conductance and output resistance located in the Electrical  
Characteristics table.  
1
¦
=
P1  
2p ´ REA ´ C4  
(20)  
1
¦
=
(optional)  
P2  
2p´R3´ C5  
C5 is optional and can be modeled as 10 pF stray capacitance.  
(21)  
and  
1
¦
=
Z
2p ´ R3 ´ C4  
(22)  
Figure 11 shows a typical bode plot for transfer function H(s).  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
180  
90  
Phase  
0
Kcomp  
Gain  
–90  
–180  
<–f 1  
p
f 2  
p
f
C
f
Z
f − Frequency − kHz  
Figure 11. Bode Plot of Feedback Resistors and Compensated Amplifier Gain and Phase  
The next step is to choose the loop crossover frequency, fC. The higher in frequency that the loop gain stays  
above zero before crossing over, the faster the loop response will be and therefore the lower the output voltage  
will droop during a step load. It is generally accepted that the loop gain cross over no higher than the lower of  
either 1/5 of the switching frequency, fSW, or 1/3 of the RHPZ frequency, fRHPZ. To approximate a single pole roll-  
off up to fP2, select R3 so that the compensation gain, KCOMP, at fC on Figure 11 is the reciprocal of the gain, KPW  
,
read at frequency fC from the Figure 10 bode plot or more simply  
KCOMP(fC) = 20 × log(GEA × R3 × R2/(R2+R1)) = 1/KPW(fC)  
This makes the total loop gain, T(s) = GPS(s) × HEA(s), zero at the fC. Then, select C4 so that fZ fC/10 and  
optional fP2> fC *10. Following this method should lead to a loop with a phase margin near 45 degrees. Lowering  
R3 while keeping fZ fC/10 increases the phase margin and therefore increases the time it takes for the output  
voltage to settle following a step load.  
In the TPS61175-Q1, if the FB pin voltage changes suddenly due to a load step on the output voltage, the error  
amplifier increases its transconductance for 8-ms in an effort to speed up the IC’s transient response and reduce  
output voltage droop due to the load step. For example, if the FB voltage decreases 10-mV due to load change,  
the error amplifier increases its source current through COMP by 5 times; if FB voltage increases 11-mV, the  
sink current through COMP is increased to 3.5 times normal value. This feature often results in saw tooth ringing  
on the output voltage, shown as Figure 13. Designing the loop for greater than 45 degrees of phase margin and  
greater than 10db gain margin minimizes the amplitude of this ringing. This feature is disabled during soft start.  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
9.2.3 Application Curves  
VOUT  
500 mV/div  
AC  
VIN  
1 V/div  
AC  
VOUT  
100 mV/div  
AC  
ILOAD  
200 mA/div  
t - 100 ms/div  
t - 200 ms/div  
Figure 13. Load Transient Response  
Figure 12. Line Transient Response  
VOUT  
1 V/div  
SW  
20 V/div  
20 V offset  
VOUT  
20 mV/div  
AC  
IL  
500 mA/div  
IL  
100 mA/div  
VOUT  
100 mV/div  
AC  
t - 400 ms/div  
t - 400 ns/div  
Figure 14. PWM Operation  
Figure 15. Pulse Skipping  
EN  
2 V/div  
VOUT  
5 V/div  
IL  
500 mA/div  
t - 1 ms/div  
Figure 16. Soft Startup  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.9 V and 18 V. The input power  
supply’s output current needs to be rated according to the supply voltage, output voltage and output current of  
the TPS61175-Q1.  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If layout is not carefully done, the regulator could suffer from instability as  
well as noise problems. To maximize efficiency, switch rise and fall times are fast. To prevent radiation of  
high frequency noise (this is, EMI), proper layout of the high frequency switching path is essential.  
Minimize the length and area of all traces connected to the SW pin and always use a ground plane under the  
switching regulator to minimize interplane coupling.  
The high current path including the switch, Schottky diode, and output capacitor, contains nanosecond rise  
and fall times and should be kept as short as possible.  
The input capacitor needs not only to be close to the VIN pin, but also to the GND pin in order to reduce the  
input supply ripple.  
11.2 Layout Example  
VIN  
INPUT  
CAPACITOR  
VOUT  
INDUCTOR  
SCHOTTKEY  
OUTPUT  
CAPACITOR  
SW  
SW  
PGND  
PGND  
PGND  
NC  
Minimize the area  
of SW trace  
SW  
PGND  
VIN  
EN  
SS  
FREQ  
FB  
SYNC  
AGND  
FEEDBACK  
COMP  
Place enough  
VIAs around  
COMPESNATION  
NETWORK  
AGND  
thermal pad to  
enhance thermal  
performance  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS61175-Q1  
ZHCSD56 DECEMBER 2014  
www.ti.com.cn  
11.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. This  
restriction limits the power dissipation of the TPS61175-Q1. Calculate the maximum allowable dissipation,  
PD(max), and keep the actual dissipation less than or equal to PD(max). The maximum-power-dissipation limit is  
determined using the following equation:  
125°C - T  
A
P
=
D(max)  
R
qJA  
(23)  
where, TA is the maximum ambient temperature for the application. RθJA is the thermal resistance junction-to-  
ambient given in the Thermal Information table.  
The TPS61175-Q1 comes in a thermally enhanced TSSOP package. This package includes a thermal pad that  
improves the thermal capabilities of the package. The RθJA of the TSSOP package greatly depends on the PCB  
layout and thermal pad connection. The thermal pad must be soldered to the analog ground on the PCB. Using  
thermal vias underneath the thermal pad.  
20  
版权 © 2014, Texas Instruments Incorporated  
TPS61175-Q1  
www.ti.com.cn  
ZHCSD56 DECEMBER 2014  
12 器件和文档支持  
12.1 商标  
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61175QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
14  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
61175Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
PACKAGE OUTLINE  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X (0.6)  
NOTE 5  
2X (0.4)  
NOTE 5  
THERMAL  
PAD  
7
8
0.25  
1.2 MAX  
GAGE PLANE  
2.59  
1.89  
15  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
1
14  
DETAIL A  
TYPICAL  
2.6  
1.9  
4229706/A 06/2023  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.6)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
14X (1.5)  
(1.2) TYP  
14  
14X (0.45)  
1
(5)  
NOTE 9  
(R0.05) TYP  
SYMM  
(0.6)  
15  
(2.59)  
12X (0.65)  
7
8
(
0.2) TYP  
VIA  
SEE DETAILS  
(1.1) TYP  
SOLDER MASK  
DEFINED PAD  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4229706/A 06/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
14X (1.5)  
14X (0.45)  
14  
1
(R0.05) TYP  
(2.59)  
SYMM  
15  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
7
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 12X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 2.90  
2.60 X 2.59 (SHOWN)  
2.37 X 2.36  
0.125  
0.15  
0.175  
2.20 X 2.19  
4229706/A 06/2023  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61175_11

3-A High Voltage Boost Converter with Soft-start and Programmable Switching Frequency
TI

TPS61176

High-Efficiency 6-Channel WLED Driver Supporting Single-Cell Li-Ion Battery Input
TI

TPS61176RTER

High-Efficiency 6-Channel WLED Driver Supporting Single-Cell Li-Ion Battery Input
TI

TPS61176_15

High-Efficiency 6-Channel WLED Driver Supporting Single-Cell Li-Ion Battery Input
TI

TPS61177

适用于笔记本和平板电脑显示屏的 WLED 驱动器,具有固定模式调光功能
TI

TPS61177A

适用于笔记本和平板电脑显示屏的 WLED 驱动器
TI

TPS61177ARGRR

适用于笔记本和平板电脑显示屏的 WLED 驱动器 | RGR | 20 | -40 to 85
TI

TPS61177RGRR

适用于笔记本和平板电脑显示屏的 WLED 驱动器,具有固定模式调光功能 | RGR | 20 | -40 to 85
TI

TPS61178

具有负载断开控制功能的 20V、10A 全集成同步升压
TI

TPS611781RNWR

具有负载断开控制功能的 20V、10A 全集成同步升压 | RNW | 13 | -40 to 85
TI

TPS611781RNWT

具有负载断开控制功能的 20V、10A 全集成同步升压 | RNW | 13 | -40 to 85
TI

TPS61178RNWR

具有负载断开控制功能的 20V、10A 全集成同步升压 | RNW | 13 | -40 to 85
TI