TPS61193 [TI]

低 EMI、高性能 3 通道 LED 驱动器;
TPS61193
型号: TPS61193
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低 EMI、高性能 3 通道 LED 驱动器

驱动 驱动器
文件: 总34页 (文件大小:2172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61193  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
TPS61193 高性能三通道 LED 驱动器  
1 特性  
2 应用  
输入电压工作范围4.5V 40V  
三路高精度电流阱  
控制面板中的工业背光系统  
工业 PC  
测试和测量设备  
– 电流匹配度为 1%典型值)  
LED 灯串电流高达 100mA/通道  
– 输出可在外部合并从而提高电流能力  
100Hz 时具有 10 000:1 的高调光比  
用于 LED 灯串电源的集成升压/SEPIC 转换器  
3 说明  
TPS61193 是一款高效、低 EMI、易于使用的 LED 驱  
动器可灵活支持各类应用。该器件具有三路高精度电  
流阱可组合在一起使用以提高电流能力。  
– 输出电压高达 45V  
– 开关频率为 300kHz 2.2MHz  
– 开关同步输入  
– 扩频以实现更低的 EMI  
丰富的故障检测功能  
TPS61193 配备的集成式 DC-DC 转换器支持升压和  
SEPIC 工作模式。转换器可基于 LED 电流阱余量电压  
提供自适应输出电压控制。该特性可在所有条件下将电  
压调节到能够满足需要的最低水平从而更大限度降低  
功耗。对于 EMI 控制DC-DC 转换器支持针对开关频  
率进行扩频以及使用专用引脚实现外部同步。  
– 故障输出  
– 输入电压 OVPUVLO OCP  
– 开路和短路 LED 故障检测  
– 热关断保护  
TPS61193 具有 4.5V 40V 的宽输入电压范围可为  
各种不同应用提供可靠支持。TPS61193 集成了丰富的  
故障检测功能。对于 100Hz 输入 PWM 频率该器件  
支持高达 10 000:1 PWM 亮度调光比率。  
有效减少外部组件数  
空白  
L1  
D1  
VOUT up to 45 V  
VIN 4.5...40 V  
器件信息(1)  
C
IN  
封装尺寸标称值)  
器件型号  
TPS61193  
封装  
C
OUT  
HTSSOP (20)  
6.50mm × 4.40mm  
R2  
R1  
SW  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
FB  
C
FB  
VIN  
100  
95  
90  
85  
80  
75  
70  
Up to 100 mA/string  
LDO  
CLDO  
OUT1  
TPS61193  
OUT2  
OUT3  
RFSET  
FSET  
SYNC  
BRIGHTNESS  
EN  
65  
PWM  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
60  
VDDIO/EN  
FAULT  
55  
50  
ISET  
0
10  
20  
30  
40  
50  
60  
Brightness (%)  
70  
80  
90 100  
PGND  
GND PAD  
D001  
RISET  
系统效率  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAF4  
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
Table of Contents  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 20  
9 Power Supply Recommendations................................25  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Device Support........................................................28  
11.2 Documentation Support.......................................... 28  
11.3 接收文档更新通知................................................... 28  
11.4 支持资源..................................................................28  
11.5 Trademarks............................................................. 28  
11.6 静电放电警告...........................................................28  
11.7 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics(1) (2) ....................................5  
6.6 Internal LDO Electrical Characteristics....................... 5  
6.7 Protection Electrical Characteristics........................... 6  
6.8 Current Sinks Electrical Characteristics......................6  
6.9 PWM Brightness Control Electrical Characteristics.... 6  
6.10 Boost and SEPIC Converter Characteristics............ 7  
6.11 Logic Interface Characteristics..................................7  
6.12 Typical Characteristics..............................................8  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (June 2017) to Revision C (February 2021)  
更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
Updated Device states section......................................................................................................................... 18  
Page  
Changes from Revision A (September 2016) to Revision B (June 2017)  
Page  
Enhanced pin descriptions for pins 3, 10, and 16 in Pin Functions table........................................................... 3  
Deleted "IOUT = 100 mA" from tON/OFF row of PWM Brightness Control Electrical Characteristics ....................6  
Changed "0.5" from MAX to TYP column in tON/OFF row of PWM Brightness Control Electrical  
Characteristics ; add note 1 to PWM Brightness Control Electrical Characteristics .......................................... 6  
Added table note 1 for Boost and SEPIC Converter Characteristics .................................................................7  
Deleted "Initial DC-DC voltage is about 88% of VMAX BOOST." from Integrated DC-DC Converter; change  
wording in last sentence before 方程式 1 ........................................................................................................ 12  
Changed 方程式 1 and added "K" eq definitions; added new paragraph after 7-1 ..................................... 12  
Added new paragraph before 7.3.2 .............................................................................................................12  
Deleted "Dimming ratio is calculated as ratio between the input PWM period and minimum on/off time (0.5  
µs). " from Brightness Control ..........................................................................................................................14  
Changes from Revision * (October 2015) to Revision A (September 2016)  
Page  
更改了特性 中若干项的一些措辞........................................................................................................................ 1  
将“在 200Hz 时具有 10 000:1 的高调光比”更改为“在 100Hz 时具有 10 000:1 的高调光比”..................... 1  
添加了说明 部分中第一段的最后一句................................................................................................................. 1  
将“200Hz 时的调光比率为 10 000:1”更改为“100Hz 时的调光比率为 10 000:1........................................1  
添加了说明 部分的最后一句................................................................................................................................1  
Added standard footnotes for the ESD Ratings table ........................................................................................4  
Added Figures 7 and 8 - new graphs..................................................................................................................8  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61193  
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
5 Pin Configuration and Functions  
VIN  
1
2
3
4
5
6
7
8
9
20  
19  
VIN  
NC  
LDO  
FSET  
18 SW  
PGND  
VDDIO/EN  
FAULT  
17  
16 FB  
SYNC  
PWM  
15  
14  
13  
12  
11  
OUT1  
OUT2  
OUT3  
GND  
NC  
GND  
EP*  
ISET 10  
GND  
*EXPOSED PAD  
5-1. PWP Package 20-Pin TSSOP With Exposed Thermal Pad Top View  
5-1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
VIN  
A
A
Input power pin  
2
LDO  
Output of internal LDO; connect a 1-μF decoupling capacitor between this pin and noise-free GND.  
DC-DC (boost or SEPIC) switching frequency setting resistor; for normal operation, resistor value from  
24 kto 219 kmust be connected between this pin and ground.  
3
FSET  
A
4
5
VDDIO/EN  
FAULT  
I
Enable input for the device as well as supply input (VDDIO) for digital pins  
Fault signal output. If unused, the pin may be left floating.  
OD  
Input for synchronizing boost. If synchronization is not used, connect this pin to GND to disable spread  
spectrum or to VDDIO/EN to enable spread spectrum.  
6
SYNC  
I
I
7
8
9
PWM  
NC  
PWM dimming input.  
No connect  
GND  
G
Ground.  
LED current setting resistor; for normal operation, resistor value from 24 kto 129 kmust be  
connected between this pin and ground.  
10  
ISET  
A
11  
12  
13  
GND  
GND  
G
G
A
Ground  
Ground  
OUT3  
Current sink output; this pin must be connected to GND if not used.  
Current sink output  
This pin must be connected to GND if not used.  
14  
15  
16  
OUT2  
OUT1  
FB  
A
A
A
Current sink output  
This pin must be connected to GND if not used.  
Boost/SEPIC feedback input; for normal operation this pin must be connected to the middle of a resistor  
divider between VOUT and ground using feedback resistor values between 5 kand 150 k.  
17  
18  
19  
20  
PGND  
SW  
G
A
A
A
DC-DC (boost or SEPIC) power ground  
DC-DC (boost or SEPIC) switch pin  
No connect  
NC  
VIN  
Input power pin  
(1) A: Analog pin, G: Ground pin, P: Power pin, I: Input pin, I/O: Input/Output pin, O: Output pin, OD: Open Drain pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61193  
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0.3  
MAX  
UNIT  
VIN, SW, FB  
50  
45  
Voltage on pins  
OUT1, OUT2, OUT3  
V
LDO, SYNC, FSET, ISET, PWM, VDDIO/EN, FAULT  
5.5  
Continuous power dissipation(3)  
Internally Limited  
(4)  
Ambient temperature range TA  
Junction temperature range TJ  
125  
°C  
°C  
40  
40  
(4)  
150  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
See(5)  
150  
°C  
65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 165°C (typical)  
and disengages at TJ = 145°C (typical).  
(4) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature  
may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature  
(TJ-MAX-OP = 150°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal  
resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP (RθJA × PD-MAX).  
(5) For detailed soldering specifications and information, refer to PowerPAD™ Thermally Enhanced Package.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per JESD22-A114, JS-001(1)  
All other pins  
Corner pins (1,10,11,20)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JESD22-C101  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VIN  
4.5  
0
45  
45  
SW  
Voltage on pins  
OUT1, OUT2, OUT3  
0
40  
V
FB, FSET, LDO, ISET, VDDIO/EN, FAULT  
SYNC, PWM  
0
5.25  
0
VDDIO/EN  
(1) All voltages are with respect to the potential at the GND pins.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
 
 
 
 
 
 
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
6.4 Thermal Information  
TPS61193  
THERMAL METRIC(1)  
PWP (TSSOP)  
20 PINS  
44.2  
UNIT  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
26.5  
Junction-to-board thermal resistance  
22.4  
0.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.2  
ψJB  
RθJCbot  
2.5  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
6.5 Electrical Characteristics(1) (2)  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device disabled, VVDDIO/EN = 0 V, VIN  
= 12 V  
Standby supply current  
4.5  
20  
μA  
IQ  
VIN = 12 V, VOUT = 26 V, output  
current 80 mA/channel, converter  
ƒSW = 300 kHz  
Active supply current  
5
12  
mA  
VPOR_R  
VPOR_F  
TTSD  
Power-on reset rising threshold  
LDO pin voltage  
2.7  
V
V
Power-on reset falling threshold LDO pin voltage  
Thermal shutdown threshold  
1.5  
150  
165  
20  
175  
°C  
°C  
TTSD_HYST  
Thermal shutdown hysteresis  
(1) All voltages are with respect to the potential at the GND pins.  
(2) Minimum and maximum limits are specified by design, test, or statistical analysis.  
6.6 Internal LDO Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
4.15  
120  
TYP  
4.3  
300  
50  
MAX  
4.55  
430  
UNIT  
V
VLDO  
VDR  
Output voltage  
VIN = 12 V  
Dropout voltage  
mV  
mA  
ISHORT  
Short circuit current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61193  
 
 
 
 
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
6.7 Protection Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
42  
4
MAX  
UNIT  
V
VOVP  
VIN OVP threshold voltage  
VIN UVLO  
41  
44  
VUVLO  
V
VUVLO_HYST  
VIN UVLO hysteresis  
LED short detection threshold  
100  
6
mV  
V
5.6  
7
6.8 Current Sinks Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.1  
MAX UNIT  
ILEAKAGE  
IMAX  
Leakage current  
Outputs OUT1 to OUT3 , VOUTx = 45 V  
OUT1, OUT2, OUT3  
5
µA  
Maximum current  
100  
mA  
IOUT  
Output current accuracy  
Output current matching(1)  
Saturation voltage(2)  
IOUT = 100 mA  
5%  
5%  
0.7  
5%  
IMATCH  
VSAT  
IOUT = 100 mA, PWM duty =100%  
IOUT = 100 mA  
1%  
0.4  
V
(1) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current.  
Matching is the maximum difference from the average. For the constant current sinks on the part (OUTx), the following are determined:  
the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG). Matching  
number is calculated: (MAX-MIN)/AVG. The typical specification provided is the most likely norm of the matching figure for all parts.  
LED current sinks were characterized with 1-V headroom voltage. Note that some manufacturers have different definitions in use.  
(2) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1 V.  
6.9 PWM Brightness Control Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Hz  
PWM input frequency  
Minimum on/off time(1)  
100  
20 000  
ƒPWM  
tON/OFF  
0.5  
µs  
(1) This specification is not ensured by ATE.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
 
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
6.10 Boost and SEPIC Converter Characteristics  
TJ = 40°C to +125°C (unless otherwise noted). Unless otherwise specified: VIN = 12 V, VEN/VDDIO = 3.3 V, L = 22 μH, CIN  
=
2 × 10-μF ceramic and 33-μF electrolytic, COUT = 2 × 10-μF ceramic and 33-μF electrolytic, D = NRVB460MFS, ƒSW  
=
300 kHz.  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
4.5  
6
TYP  
MAX  
40  
UNIT  
VIN  
V
VOUT  
Output voltage  
45  
Minimum switching frequency  
(central frequency if spread  
spectrum is enabled)  
300  
kHz  
kHz  
ƒSW_MIN  
Defined by RFSET resistor  
Maximum switching frequency  
(central frequency if spread  
spectrum is enabled)  
2 200  
ƒSW_MAX  
VOUT/VIN  
TOFF  
Conversion ratio  
10  
55  
Minimum switch OFF time(1)  
SW current limit  
ns  
A
ƒSW 1.15 MHz  
ISW_MAX  
RDSON  
1.8  
2
2.2  
FET RDSON  
Pin-to-pin  
240  
400  
mΩ  
kHz  
ns  
fSYNC  
External SYNC frequency  
External SYNC minimum on time(1)  
External SYNC minimum off time(1)  
300  
2 200  
tSYNC_ON_MIN  
tSYNC_OFF_MIN  
150  
150  
ns  
(1) This specification is not ensured by ATE.  
6.11 Logic Interface Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC INPUT VDDIO/EN  
VIL  
VIH  
II  
Input low level  
Input high level  
Input current  
0.4  
V
1.65  
5
30  
0.2 × VDDIO/EN  
1
µA  
1  
LOGIC INPUT SYNC/FSET, PWM  
VIL  
VIH  
II  
Input low level  
Input high level  
Input current  
V
0.8 × VDDIO/EN  
1  
μA  
LOGIC OUTPUT FAULT  
VOL  
Output low level  
Output leakage current  
Pullup current 3 mA  
V = 5.5 V  
0.3  
0.5  
1
V
ILEAKAGE  
μA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61193  
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
6.12 Typical Characteristics  
Unless otherwise specified: D = NRVB460MFS, T = 25°C  
1000  
900  
800  
700  
600  
500  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
25  
Vboost = 22 V  
400  
300  
200  
Vboost = 30V  
Vboost = 37 V  
5
10  
15  
20  
30  
5
10  
15  
20  
25  
30  
Input Voltage (V)  
Input Voltage (V)  
C001  
C002  
DC Load (PWM = 100%)  
DC Load (PWM = 100%)  
ƒSW = 300 kHz  
L = 33 μH  
ƒSW = 800 kHz  
L = 15 μH  
CIN and COUT = 33 µF + 2 × 10 µF (ceramic)  
CIN and COUT = 2 × 10 µF (ceramic)  
6-1. Maximum Boost Current  
6-2. Maximum Boost Current  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
Input Voltage (V)  
Input Voltage (V)  
C003  
C004  
DC Load (PWM = 100%)  
DC Load (PWM = 100%)  
ƒSW = 1.5 MHz  
L = 8.2 μH  
ƒSW = 2.2 MHz  
CIN and COUT = 2 × 10 µF (ceramic)  
6-4. Maximum Boost Current  
L = 4.7 μH  
CIN and COUT = 2 × 10 µF (ceramic)  
6-3. Maximum Boost Current  
100  
80  
60  
40  
20  
0
2200  
1800  
1400  
1000  
600  
200  
20  
60  
100  
140  
180  
220  
20  
40  
60  
80  
100  
120  
140  
160  
RFSET (k)  
C009  
RISET (k)  
C005  
6-6. Boost Switching Frequency ƒSW vs RFSET  
6-5. LED Current vs RISET  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61193  
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
6.12 Typical Characteristics (continued)  
Unless otherwise specified: D = NRVB460MFS, T = 25°C  
6
120  
100  
80  
60  
40  
20  
0
5
4
3
2
1
0
40  
50  
60  
70  
80  
90  
100  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output current (mA)  
Voltage (V)  
C013  
C014  
6-7. LED Current Sink Matching  
RISET = 24 kΩ  
6-8. LED Current Sink Saturation Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61193  
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
7 Detailed Description  
7.1 Overview  
The TPS61193 is a highly integrated LED driver for medium-sized LCD backlight applications. It includes a DC-  
DC with an integrated FET, supporting both boost and SEPIC modes, an internal LDO enabling direct connection  
to battery without need for a pre-regulated supply and three LED current sinks. The VDDIO/EN pin provides the  
supply voltage for digital IOs (PWM and SYNC inputs) and at the same time enables the device.  
The switching frequency on the DC-DC converter is set by a resistor connected to the FSET pin. The maximum  
voltage of the DC-DC is set by a resistive divider connected to the FB pin. For the best efficiency the output  
voltage is adapted automatically to the minimum necessary level needed to drive the LED strings. This is done  
by monitoring LED output voltage drop in real time. For EMI reduction and control two optional features are  
available:  
Spread spectrum, which reduces EMI noise around the switching frequency and its harmonic frequencies  
DC-DC can be synchronized to an external frequency connected to SYNC pin  
The three constant current sinks OUT1, OUT2, and OUT3 provide LED current up to 100 mA. Value for the  
current per OUT pin is set with a resistor connected to ISET pin. Current sinks that are not used must be  
connected to ground. Grounded current sink is disabled and excluded from adaptive voltage detection loop.  
Brightness is controlled with the PWM input. Frequency range for the input PWM is from 100 Hz to 20 kHz. LED  
output PWM follows the input PWM so the output frequency is equal to the input frequency.  
TPS61193 has extensive fault detection features:  
Open-string and shorted LED detections  
LED fault detection prevents system overheating in case of open or short in some of the LED strings  
VIN input overvoltage protection  
Threshold sensing from VIN pin  
VIN input undervoltage protection  
Threshold sensing from VIN pin  
Thermal shutdown in case of die overtemperature  
Fault condition is indicated through the FAULT output pin.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
7.2 Functional Block Diagram  
L
D
VOUT  
VIN  
CIN  
COUT  
VIN  
LDO  
LDO  
CLDO  
SW  
SYNC  
PGND  
FB  
BOOST  
CONTROLLER  
RFSET  
FSET  
ISET  
R1  
RISET  
R2  
LED  
CURRENT  
SINKS  
CURRENT  
SETTING  
OUT1  
OUT2  
PWM  
VDDIO/EN  
FAULT  
OUT3  
GND  
DIGITAL BLOCKS  
(FSM, ADAPTIVE VOLTAGE  
CONTROL, SAFETY LOGIC  
etc.)  
ANALOG BLOCKS  
(CLOCK GENERATOR,  
VREF, TSD etc.)  
VDDIO  
EXPOSED PAD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61193  
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
7.3 Feature Description  
7.3.1 Integrated DC-DC Converter  
The TPS61193 DC-DC converter generates supply voltage for the LEDs and can operate in boost mode or in  
SEPIC mode. The maximum output voltage VOUT_MAX is defined by an external resistive divider (R1, R2).  
VOUT_MAX voltage should be chosen based on the maximum voltage required for LED strings. Recommended  
maximum voltage is about 30% higher than maximum LED string voltage. DC-DC output voltage is adjusted  
automatically based on LED current sink headroom voltage. Maximum, minimum, and initial boost voltages can  
be calculated with 方程式 1:  
V
BG  
VBOOST  
=
+K ì 0.0387 ì R1+ VBG  
«
÷
R2  
(1)  
where  
VBG = 1.2 V  
R2 recommended value is 130 kΩ  
Resistor values are in kΩ  
K = 1 for maximum adaptive boost voltage (typical)  
K = 0 for minimum adaptive boost voltage (typical)  
K = 0.88 for initial boost voltage (typical)  
45  
40  
35  
30  
25  
20  
15  
10  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
R1 (k)  
C008  
7-1. Maximum Converter Output Voltage vs R1 Resistance  
Alternatively, a T-divider can be used if resistance less than 100 kΩ is required for the external resistive divider.  
Refer to Using the TPS61193EVM and TPS61193-Q1EVM Evaluation Module for details.  
The converter is a current mode DC-DC converter, where the inductor current is measured and controlled with  
the feedback. Switching frequency is adjustable between 250 kHz and 2.2 MHz with RFSET resistor as 方程式 2:  
ƒSW = 67600 / (RFSET + 6.4)  
(2)  
where  
ƒSW is switching frequency, kHz  
RFSET is frequency setting resistor, kΩ  
In most cases lower frequency has higher system efficiency. DC-DC internal parameters are chosen  
automatically according to the selected switching frequency (see 7-2) to ensure stability. In boost mode a 15-  
pF capacitor CFB must be placed across resistor R1 when operating in 300-kHz to 500-kHz range (see Typical  
Application for 3 LED Strings). When operating in the 1.8-MHz to 2.2-MHz range CFB = 4.7 pF.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
D
VIN  
VOUT  
CIN  
COUT  
R1  
SW  
OCP  
ADAPTIVE  
VOLTAGE  
CONTROL  
R2  
LIGHT  
LOAD  
CURRENT  
SENSE  
OVP  
RC  
R
S
R
R
filter  
FB  
-
GM  
PGND  
R
+
SYNC  
FSET  
GM  
FSET  
BLANK  
TIME  
CTRL  
BOOST  
OFF/BLANK  
TIME  
CURRENT  
RAMP  
OSCILLATOR  
PULSE  
GENERATOR  
RFSET  
GENERATOR  
7-2. Boost Block Diagram  
DC-DC can be driven by an external SYNC signal between 300 kHz and 2.2 MHz. If the external synchronization  
input disappears, DC-DC continues operation at the frequency defined by RFSET resistor. When external  
frequency disappears and SYNC pin level is low, converter continues operation without spread spectrum  
immediately. If SYNC remains high, converter continues switching with spread spectrum enabled after 256 µs.  
External SYNC frequency must be 1.2 to 1.5 times higher than the frequency defined by RFSET resistor.  
Minimum frequency setting with RFSET is 250 kHz to support 300-kHz switching with external clock.  
The optional spread spectrum feature (±3% from central frequency, 1-kHz modulation frequency) reduces EMI  
noise at the switching frequency and its harmonic frequencies. When external synchronization is used, spread  
spectrum is not available.  
7-1. DC-DC Synchronization Mode  
SYNC PIN INPUT  
MODE  
Low  
High  
Spread spectrum disabled  
Spread spectrum enabled  
300 to 2200-kHz frequency  
Spread spectrum disabled, external synchronization mode  
7-2. DC-DC Parameters(1)  
TYPICAL BOOST INPUT  
AND OUTPUT  
CAPACITORS (µF)  
TYPICAL  
INDUCTANCE (µH)  
MINIMUM SWITCH  
OFF TIME (ns)(2)  
BLANK  
TIME (ns)  
CURRENT  
RAMP (A/s)  
CURRENT RAMP  
DELAY (ns)  
RANGE  
FREQUENCY (kHz)  
1
2
3
4
300 to 480  
480 to 1150  
1150 to 1650  
1650 to 2200  
33  
15  
10  
4.7  
2 ×10 (cer.) + 33 (electr.)  
10 (cer.) + 33 (electr.)  
3 × 10 (cer.)  
150  
60  
95  
95  
95  
70  
24  
43  
550  
300  
0
40  
79  
3 × 10 (cer.)  
40  
145  
0
(1) Parameters are for reference only.  
(2) Due to current sensing comparator delay the actual minimum off time is 6 ns (typical) longer than in the table.  
The converter SW pin DC current is limited to 2 A (typical). To support short-term transient conditions the current  
limit is automatically increased to 2.5 A for a short period of 1.5 seconds when a 2-A limit is reached.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61193  
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
Note  
Application condition where the 2-A limit is exceeded continuously is not allowed. In this case the  
current limit would be 2 A for 1.5 seconds followed by 2.5-A limit for 1.5 seconds, and this 3-second  
period repeats.  
To keep switching voltage within safe levels there is a 48-V limit comparator in the event that FB loop is broken.  
7.3.2 Internal LDO  
The internal LDO regulator converts the input voltage at VIN to a 4.3-V output voltage for internal use. Connect a  
minimum of 1-µF ceramic capacitor from LDO pin to ground, as close to the LDO pin as possible.  
7.3.3 LED Current Sinks  
7.3.3.1 Output Configuration  
TPS61193 detects LED output configuration during start-up. Any current sink output connected to ground is  
disabled and excluded from the adaptive voltage control of the DC-DC and fault detections.  
7.3.3.2 Current Setting  
Maximum current for the LED outputs is controlled with external RISET resistor. RISET value for target maximum  
current can be calculated using 方程式 3:  
RISET = 2342 / (IOUT œ 2.5)  
(3)  
where  
RISET is current setting resistor, kΩ  
ILED is output current per output, mA  
7.3.3.3 Brightness Control  
TPS61193 controls the brightness of the display with conventional PWM. Output PWM directly follows the input  
PWM. Input PWM frequency can be in the range of 100 Hz to 20 kHz.  
7.3.4 Protection and Fault Detections  
The TPS61193 has fault detection for LED open and short, VIN input overvoltage protection (VIN_OVP) , VIN  
undervoltage lockout (VIN_UVLO), and thermal shutdown (TSD).  
7.3.4.1 Adaptive DC-DC Voltage Control and Functionality of LED Fault Comparators  
Adaptive voltage control function adjusts the DC-DC output voltage to the minimum sufficient voltage for proper  
LED current sink operation. The current sink with highest VF LED string is detected and DC-DC output voltage  
adjusted accordingly. DC-DC adaptive control voltage step size is defined by maximum voltage setting, VSTEP  
=
(VOUT_MAX VOUT_MIN) / 256. Periodic down pressure is applied to the target voltage to achieve better system  
efficiency.  
Every LED current sink has 3 comparators for the adaptive DC-DC control and LED fault detections. Comparator  
outputs are filtered, filtering time is 1 µs.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
OUT#  
SHORT STRING  
DETECTION LEVEL  
HIGH_COMP  
VOLTAGE THRESHOLD  
LOWEST VOLTAGE  
MID_COMP  
LOW_COMP  
CURRENT/PWM  
CONTROL  
7-3. Comparators for Adaptive Voltage Control and LED Fault Detection  
7-4 shows different cases which cause DC-DC voltage increase, decrease, or generate faults. In normal  
operation voltage at all the OUT# pins is between LOW_COMP and MID_COMP levels, and boost voltage stays  
constant. LOW_COMP level is the minimum for proper LED current sink operation, 1.1 × VSAT + 0.2 V (typical).  
MID_COMP level is 1.1 × VSAT + 1.2 V (typical) so typical headroom window is 1 V.  
When voltage at all the OUT# pins increases above MID_COMP level, DC-DC voltage adapts downwards.  
When voltage at any of the OUT# pins falls below LOW_COMP threshold, DC-DC voltage adapts upwards. In  
the condition where DC-DC voltage reaches the maximum and there are one or more outputs still below  
LOW_COMP level, an open LED fault is detected.  
HIGH_COMP level, 6-V typical, is the threshold for shorted LED detection. When the voltage of one or more of  
the OUT# pins increases above HIGH_COMP level and at least one of the other outputs is within the normal  
headroom window, shorted LED fault is detected.  
Shorted LED fault (at  
least one output should  
be between  
LOW_COMP and  
MID_COMP)  
DCDC  
decreases  
voltage  
DCDC  
increases  
voltage  
No actions  
No actions  
Open LED fault when  
VOUT=V OUT_MAX  
Minimum  
headroom  
level  
Shorted  
LED fault  
All outputs are  
above headroom  
window  
Open LED  
fault  
reached  
HIGH_COMP  
MID_COMP  
HEADROOM  
WINDOW  
LOW_COMP  
7-4. Protection and DC-DC Voltage Adaptation Algorithms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61193  
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
7.3.4.2 Overview of the Fault/Protection Schemes  
A summary of the TPS61193 fault detection behavior is shown in 7-3. Detected faults (excluding LED open or  
short) cause device to enter FAULT_RECOVERY state. In FAULT_RECOVERY the DC-DC and LED current  
sinks of the device are disabled, and the FAULT pin is pulled low. The device recovers automatically and enters  
normal operating mode (ACTIVE) after a recovery time of 100 ms if the fault condition has disappeared. When  
recovery is succesful, FAULT pin is released.  
If a LED fault is detected, the device continues normal operation and only the faulty string is disabled. The fault  
is indicated via the FAULT pin which can be released by toggling VDDIO/EN pin low for a short period of 2 µs to  
20 µs. LEDs are turned off for this period but the device stays in ACTIVE mode. If VDDIO/EN is low longer, the  
device goes to STANDBY and restarts when EN goes high again.  
7-3. Fault Detections  
FAULT_  
RECOVERY  
STATE  
FAULT/  
PROTECTION  
FAULT  
PIN  
FAULT NAME  
THRESHOLD  
ACTION  
1. Overvoltage is monitored from the beginning of soft  
start. Fault is detected if the duration of overvoltage  
condition is 100-µs minimum.  
1. VIN > 42 V  
2. VOUT  
>
VSET_DCDC + 6..10  
V.  
VSET_DCDC is  
voltage value  
defined by logic  
during adaptation  
2. Overvoltage is monitored from the beginning of  
normal operation (ACTIVE mode). Fault is detected if  
over-voltage condition duration is 560-ms minimum  
(tfilter). After the first fault, detection filter time is reduced  
to 50 ms for following recovery cycles. When the device  
recovers and has been in ACTIVE mode for 160 ms,  
filter time is increased back to 560 ms.  
VIN overvoltage  
protection  
VIN_OVP  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
VIN  
undervoltage  
lockout  
Detects undervoltage condition at VIN pin. Sensed in all  
operating modes. Fault is detected if undervoltage  
condition duration is 100-µs minimum.  
Falling 3.9 V  
Rising 4 V  
VIN_UVLO  
OPEN_LED  
Detected if the voltage of one or more current sinks is  
below threshold level, and DC-DC adaptive control has  
reached maximum voltage. Open string is removed  
from the DC-DC voltage control loop and current sink is  
disabled.  
Fault pin is released by toggling VDDIO/EN pin. If  
VDDIO/EN is low for a period of 2 µs to 20 µs, LEDs  
are turned off for this period but device stays ACTIVE. If  
VDDIO/EN is low longer, device goes to STANDBY and  
restarts when EN goes high again.  
LOW_COMP  
threshold  
Open LED fault  
Detected if the voltage of one or more current sinks is  
above shorted string detection level and at least one  
OUTx voltage is within headroom window. Shorted  
string is removed from the DC-DC voltage control loop  
and current sink is disabled.  
Fault pin is released by toggling VDDIO/EN pin. If  
VDDIO/EN is low for a period of 220 µs, LEDs are  
turned off for this period but device stays ACTIVE. If  
VDDIO/EN is low longer, device goes to STANDBY and  
restarts when EN goes high again.  
Shorted LED  
fault  
Shorted string  
detection level 6 V  
SHORT_LED  
Yes  
Yes  
No  
165°C  
Thermal shutdown  
hysteresis 20°C  
Thermal shutdown is monitored from the beginning of  
soft start. Die temperature must decrease by 20°C for  
device to recover.  
Thermal  
protection  
TSD  
Yes  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
Time is not enough to  
discharge COUT  
VIN OVERVOLTAGE  
VIN OK  
VIN  
VOUT  
VSET_DCDC + 6...10 V  
IOUT  
FAULT  
tFILTER = 560 ms  
tRECOVERY  
100 ms  
=
tSOFTSTART  
tBOOST START  
+
tFILTER  
50 ms  
=
tRECOVERY  
100 ms  
=
tSOFTSTART  
+
tFILTER  
tBOOST START 40 - 50 ms  
=
tRECOVERY  
100 ms  
=
tSOFTSTART + tFILTER =  
tBOOST START 50 ms  
7-5. VIN Overvoltage Protection (DC-DC OVP)  
VIN OVP threshold  
VIN  
DCDC OVP threshold  
FB  
ttSOFTSTART +t  
FAULT  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
ttBOOST STARTUP  
t
7-6. VIN Overvoltage Protection (VIN OVP)  
UVLO rising threshold  
UVLO falling threshold  
VIN  
FB  
ttSOFTSTART +t  
ttBOOST STARTUP  
FAULT  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
t
7-7. VIN Undervoltage Lockout  
VOUT_MAX  
VOUT  
OUT# pin  
Other LEDs  
OUT# pin  
Open LED  
LOW_COMP level  
t = 2...20 µs  
VDDIO/EN  
FAULT  
7-8. LED Open Fault  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61193  
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
MID_COMP level  
LOW_COMP level  
OUT# pin  
Other LEDs  
OUTT# pin  
Shorted LED  
HIGH_COMP level  
t = 2...20 µs  
VDDIO/EN  
FAULT  
7-9. LED Short Fault  
7.4 Device Functional Modes  
7.4.1 Device States  
The TPS61193 enters STANDBY mode when the internal LDO output rises above the power-on reset level, VLDO  
> VPOR. In STANDBY mode the device is able to detect VDDIO/EN signal. When VDDIO/EN is pulled high, the  
device powers up. After start LED outputs are sensed to detect grounded outputs. Grounded outputs are  
disabled and excluded from the adaptive voltage control loop of the DC-DC. Please note that the input transient  
current would be maximum 1.2 mA while VDDIO/EN is powering up.  
If a fault condition is detected, the device enters FAULT_RECOVERY state. Faults that cause the device to enter  
FAULT_RECOVERY are listed in 7-3. When LED open or short is detected, the faulty string is disabled, but  
device stays in ACTIVE mode.  
POR=1  
STANDBY  
VDDIO/EN=1  
VIN_OVP  
100 ms  
VIN_UVLO  
SOFT START  
65 ms  
50 ms  
TSD  
FAULT RECOVERY  
BOOST START  
FAULTS  
VDDIO/EN=0  
NO  
FAULT  
RECOVERY?  
FAULTS  
FAULTS:  
- VIN_OVP  
- VIN_UVLO  
- TSD  
LED OUTPUT  
CONFIGURATION  
DETECTION  
YES  
ACTIVE  
VDDIO/EN=0  
SHUTDOWN  
DC-DC AND LED CURRENT  
SINKS ARE DISABLED IN  
FAULT RECOVERY STATE  
7-10. State Diagram  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
T=50s  
t>500s  
VIN  
LDO  
VDDIO/EN  
SYNC  
Headroom adaptation  
VOUT=VIN level œ diode drop  
VOUT  
PWM OUT  
IQ  
Active mode  
SOFT  
START  
BOOST  
START  
7-11. Timing Diagram for the Typical Start-Up and Shutdown  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61193  
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS61193 supports input voltage range from 4.5 V to 40 V. Device internal circuitry is powered from the  
integrated LDO.  
The TPS61193 uses a simple four-wire control:  
VDDIO/EN for enable  
PWM input for brightness control  
SYNC pin for boost synchronisation (optional)  
FAULT output to indicate fault condition (optional)  
8.2 Typical Applications  
8.2.1 Typical Application for 3 LED Strings  
8-1 shows the typical application for TPS61193 which supports 3 LED strings with maximum current 100 mA,  
with a boost switching frequency of 300 kHz.  
VIN  
4.5...28 V  
L1  
D1  
Up to 37 V  
CIN BOOST  
C
OUT  
R2  
R1  
SW  
FB  
C
FB  
VIN  
C
IN  
Up to 100 mA/string  
LDO  
CLDO  
RFSET  
OUT1  
OUT2  
OUT3  
TPS61193  
FSET  
SYNC  
PWM  
BRIGHTNESS  
EN  
VDDIO/EN  
FAULT  
FAULT  
ISET  
R3  
PGND GND PAD  
RISET  
VDDIO  
8-1. Three Strings 100-mA/String Configuration  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
 
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
8.2.1.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
4.5 V 28 V  
3P8S LEDs (30 V)  
100 mA  
VIN voltage range  
LED string  
LED string current  
Maximum boost voltage  
37 V  
Boost switching frequency  
300 kHz  
External boost sync  
not used  
Boost spread spectrum  
enabled  
L1  
CIN  
33 μH  
100 µF, 50 V  
CIN BOOST  
COUT  
CFB  
2 × (10-µF, 50-V ceramic) + 33-µF, 50-V electrolytic  
2 × (10-µF, 50-V ceramic) + 33-µF, 50-V electrolytic  
15 pF  
1 µF, 10 V  
24 kΩ  
CLDO  
RISET  
RFSET  
R1  
210 kΩ  
750 kΩ  
130 kΩ  
10 kΩ  
R2  
R3  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Inductor Selection  
There are two main considerations when choosing an inductor; the inductor must not saturate, and the inductor  
current ripple must be small enough to achieve the desired output voltage ripple. Different saturation current  
rating specifications are followed by different manufacturers so attention must be given to details. Saturation  
current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of  
application should be requested from the manufacturer. Shielded inductors radiate less noise and are preferred.  
The saturation current must be greater than the sum of the maximum load current, and the worst case average-  
to-peak inductor current. 方程式 4 shows the worst case conditions  
IOUTMAX  
ISAT  
>
+ IRIPPLE  
For Boost  
D‘  
VIN  
x
VOUT  
(VOUT - VIN)  
(2 x L x f)  
Where IRIPPLE  
=
(VOUT œ VIN)  
and D‘ = (1 - D)  
Where D =  
(VOUT  
)
(4)  
IRIPPLE - peak inductor current  
IOUTMAX - maximum load current  
VIN - minimum input voltage in application  
L - min inductor value including worst case tolerances  
f - minimum switching frequency  
VOUT - output voltage  
D - Duty Cycle for CCM Operation  
As a result, the inductor should be selected according to the ISAT. A more conservative and recommended  
approach is to choose an inductor that has a saturation current rating greater than the maximum current limit. A  
saturation current rating of at least 2.5 A is recommended for most applications. See 7-2 for recommended  
inductance value for the different switching frequency ranges. The inductors resistance should be less than  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61193  
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
300 mΩ for good efficiency.  
See detailed information in Understanding Boost Power Stages in Switch Mode Power Supplies. Power Stage  
Designer™ Tool can be used for the boost calculation: http://www.ti.com/tool/powerstage-designer.  
8.2.1.2.2 Output Capacitor Selection  
A ceramic capacitor with 2 × VMAX BOOST or more voltage rating is recommended for the output capacitor. The  
DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance  
value selection. Capacitance recommendations for different switching frequencies are shown in 7-2. To  
minimize audible noise of ceramic capacitors their physical size should typically be minimized.  
8.2.1.2.3 Input Capacitor Selection  
A ceramic capacitor with 2 × VIN MAX or more voltage rating is recommended for the input capacitor. The DC-bias  
effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance value  
selection. Capacitance recommendations for different boost switching frequencies are shown in 7-2.  
8.2.1.2.4 LDO Output Capacitor  
A ceramic capacitor with at least 10-V voltage rating is recommended for the output capacitor of the LDO. The  
DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance  
value selection. Typically a 1-µF capacitor is sufficient.  
8.2.1.2.5 Diode  
A Schottky diode should be used for the boost output diode. Do not use ordinary rectifier diodes because slow  
switching speeds and long recovery times degrade the efficiency and the load regulation. Diode rating for peak  
repetitive current should be greater than inductor peak current (up to 3 A) to ensure reliable operation in boost  
mode. Average current rating should be greater than the maximum output current. Schottky diodes with a low  
forward drop and fast switching speeds are ideal for increasing efficiency. Choose a reverse breakdown voltage  
of the Schottky diode significantly larger than the output voltage.  
8.2.1.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
0
10  
20  
30  
40  
Brightness (%)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Brightness (%)  
50  
60  
70  
80  
90 100  
D001  
D001  
Load 3 strings, 8 LEDs per string  
Load 3 strings, 8 LEDs per string  
ƒsw = 300 kHz, 33 μH  
ƒsw = 300 kHz, 33 μH  
100 mA/string for VIN = 12 V and VIN = 16 V  
60 mA/string for VIN = 8 V  
100 mA/string for VIN = 12 V and VIN = 16 V  
60 mA/string for VIN = 8 V  
50 mA/string for VIN = 5 V  
50 mA/string for VIN = 5 V  
8-2. Boost Efficiency  
8-3. System Efficiency  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61193  
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
20ms/div  
OUT1/OUT2/BOOST 10V/div  
FAULT 2V/div  
8-5. Open LED Fault  
8-4. Typical Start-Up  
8.2.2 SEPIC Mode Application  
When LED string voltage can be above or below VIN voltage, SEPIC configuration can be used. In this example,  
two separate coils are used for SEPIC. This can enable lower height external components to be used, compared  
to a coupled coil solution. On the other hand, coupled coil typically maximizes the efficiency. Also, in this  
example, an external clock is used to synchronize SEPIC switching frequency. External clock input can be  
modulated to spread switching frequency spectrum.  
L2  
VIN  
4.5...30 V  
D1  
Up to 8.5 V  
L1  
C1  
C
OUT  
CIN SEPIC  
R2  
R1  
SW  
FB  
VIN  
Up to 100 mA/string  
CLDO  
C
IN  
LDO  
OUT1  
OUT2  
RFSET  
TPS61193  
FSET  
OUT3  
BOOST SYNC  
BRIGHTNESS  
SYNC  
PWM  
EN  
VDDIO/EN  
FAULT  
FAULT  
ISET  
R3  
GND  
PGND  
PAD  
VDDIO  
RISET  
8-6. SEPIC Mode, 3 Strings, 100-mA/String Configuration  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61193  
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
8.2.2.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
VIN voltage range  
4.5 V 30 V  
LED string  
3P2S LEDs (7.2 V)  
LED string current  
100 mA  
Maxmum output voltage  
10 V  
SEPIC switching frequency  
2.2 MHz  
External sync for SEPIC  
used  
Spread spectrum  
Internal spread spectrum disabled (external sync used)  
L1, L2  
CIN  
10 µH  
10 µF 50 V  
CIN SEPIC  
C1  
2 × 10-µF, 50-V ceramic + 33 µF 50-V electrolytic  
10-µF 50-V ceramic  
COUT  
CLDO  
RISET  
RFSET  
R1  
2 × 10-µF, 50-V ceramic + 33 µF 50-V electrolytic  
1 µF, 10 V  
24 kΩ  
24 kΩ  
184 kΩ  
130 kΩ  
10 kΩ  
R2  
R3  
8.2.2.2 Detailed Design Procedure  
In SEPIC mode the maximum voltage at the SW pin is equal to the sum of the input voltage and the output  
voltage. Because of this, the maximum sum of input and output voltage must be limited below 50 V. See 节  
8.2.1.2 for general external component guidelines. Main differences of SEPIC compared to boost are described  
below.  
Power Stage Designer™ Tool can be used for modeling SEPIC behavior: http://www.ti.com/tool/powerstage-  
designer. For detailed explanation on SEPIC see Texas Instruments Analog Applications Journal Designing  
DC/DC Converters Based on SEPIC Topology.  
8.2.2.2.1 Inductor  
In SEPIC mode, currents flowing through the coupled inductors or the two separate inductors L1 and L2 are the  
input current and output current, respectively. Values can be calculated using Power Stage Designer™ Tool or  
using equations in Designing DC/DC Converters Based on SEPIC Topology.  
8.2.2.2.2 Diode  
In SEPIC mode diode peak current is equal to the sum of input and output currents. Diode rating for peak  
repetitive current should be greater than SW pin current limit (up to 3 A for transients) to ensure reliable  
operation in boost mode. Average current rating should be greater than the maximum output current. Diode  
voltage rating must be higher than sum of input and output voltages.  
8.2.2.2.3 Capacitor C1  
Ti recommends a ceramic capacitor with low ESR. Diode voltage rating must be higher than maximum input  
voltage.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61193  
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
8.2.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN=5V  
VIN=5V  
VIN=12V  
VIN=15V  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=15V  
0
10  
20  
30  
40  
Brightness (%)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Brightness (%)  
50  
60  
70  
80  
90 100  
D001  
D001  
Load 100mA per string, 3 strings, 2 LEDs per string  
ƒsw = 2.2 MHz  
Load 100mA per string, 3 strings, 2 LEDs per string  
ƒsw = 2.2 MHz  
2 × 10 μH, IHLP2525BDER100M  
2 × 10 μH, IHLP2525BDER100M  
8-7. SEPIC Efficiency  
8-8. System Efficiency  
9 Power Supply Recommendations  
The resistance of the input supply rail must be low enough so that the input current transient does not cause too  
high drop at TPS61193 VIN pin. If the input supply is connected by using long wires additional bulk capacitance  
may be required in addition to the ceramic bypass capacitors in the VIN line.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61193  
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
10 Layout  
10.1 Layout Guidelines  
10-1 is a layout recommendation for TPS61193 used to demonstrate the principles of a good layout. This  
layout can be adapted to the actual application layout if or where possible. It is important that all boost  
components are close to the chip, and the high current traces must be wide enough. By placing boost  
components on one side of the chip it is easy to keep the ground plane intact below the high current paths. This  
way other chip pins can be routed more easily without splitting the ground plane. Bypass LDO capacitor must as  
close as possible to the device.  
Here are some main points to help the PCB layout work:  
Current loops need to be minimized:  
For low frequency the minimal current loop can be achieved by placing the boost components as close as  
possible to the SW and PGND pins. Input and output capacitor grounds must be close to each other to  
minimize current loop size.  
Minimal current loops for high frequencies can be achieved by making sure that the ground plane is intact  
under the current traces. High-frequency return currents find a route with minimum impedance, which is  
the route with minimum loop area, not necessarily the shortest path. Minimum loop area is formed when  
return current flows just under the positivecurrent route in the ground plane, if the ground plane is intact  
under the route.  
The GND plane must be intact under the high current boost traces to provide shortest possible return path  
and smallest possible current loops for high frequencies.  
Current loops when the boost switch is conducting and not conducting must be on the same direction in  
optimal case.  
Inductors must be placed so that the current flows in the same direction as in the current loops. Rotating  
inductor 180° changes current direction.  
Use separate power and noise-free grounds. Power ground is used for boost converter return current and  
noise-free ground for more sensitive signals, such as LDO bypass capacitor grounding as well as grounding  
the GND pin of the device.  
Boost output feedback voltage to LEDs must be taken out after the output capacitors, not straight from the  
diode cathode.  
Place LDO 1-µF bypass capacitor as close as possible to the LDO pin.  
Input and output capacitors require strong grounding (wide traces, many vias to GND plane).  
If two output capacitors are used they must have symmetrical layout to get both capacitors working ideally.  
Output ceramic capacitors have a DC-bias effect. If the output capacitance is too low, it can cause boost to  
become unstable on some loads, and this increases EMI. DC-bias characteristics should be obtained from  
the component manufacturer; they are not taken into account on component tolerance. TI recommends  
X5R/X7R capacitors.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
10.2 Layout Example  
VIN  
VIN  
VIN  
1
2
20  
19  
18  
17  
16  
15  
14  
LDO  
LDO  
NC  
RFSET  
SW  
3
FSET  
4
VDDIO/EN  
FAULT  
PGND  
FB  
5
6
OUT1  
OUT2  
SYNC  
PWM  
VBOOST  
7
8
13  
12  
NC  
OUT3  
GND  
GND  
GND  
9
RISET  
11  
10  
ISET  
10-1. TPS61193 Boost Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS61193  
 
 
TPS61193  
www.ti.com.cn  
ZHCSEP0C OCTOBER 2015 REVISED FEBRUARY 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
Power Stage DesignerTool can be used for both boost and SEPIC: http://www.ti.com/tool/powerstage-designer  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
SNVU491  
PowerPAD™ Thermally Enhanced Package  
Understanding Boost Power Stages in Switch Mode Power Supplies  
Designing DC-DC Converters Based on SEPIC Topology  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
Power Stage Designeris a trademark of TI.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS61193  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61193PWPR  
ACTIVE  
HTSSOP  
PWP  
20  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
TPS61193  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61193PWPR  
HTSSOP PWP  
20  
2000  
330.0  
16.4  
6.95  
7.1  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS61193PWPR  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TPS61193-Q1

适用于汽车照明的低 EMI、高性能 3 通道 LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61193PWPR

低 EMI、高性能 3 通道 LED 驱动器 | PWP | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61193PWPRQ1

适用于汽车照明的低 EMI、高性能 3 通道 LED 驱动器 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61194

低 EMI、高性能 4 通道 LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61194-Q1

适用于汽车照明的低 EMI、高性能 4 通道 LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61194PWPR

低 EMI、高性能 4 通道 LED 驱动器 | PWP | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61194PWPRQ1

适用于汽车照明的低 EMI、高性能 4 通道 LED 驱动器 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61195

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61195RUY

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61195RUYR

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61195RUYT

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61195_1

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI