TPS61194PWPRQ1 [TI]

适用于汽车照明的低 EMI、高性能 4 通道 LED 驱动器 | PWP | 20 | -40 to 125;
TPS61194PWPRQ1
型号: TPS61194PWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于汽车照明的低 EMI、高性能 4 通道 LED 驱动器 | PWP | 20 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总35页 (文件大小:1117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
TPS61194-Q1 具有四条 100mA 通道的低 EMI 汽车 LED 驱动器  
1 特性  
2 应用  
1
符合汽车应用 要求  
为以下应用提供背光:  
具有符合 AEC-Q100 标准的下列结果:  
汽车信息娱乐系统  
汽车仪表盘  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
智能车镜  
输入工作电压范围:4.5V 40V  
抬头显示屏 (HUD)  
中央信息显示屏 (CID)  
音视频导航 (AVN)  
四路高精度电流阱  
电流匹配率为 1%(典型值)  
发光二极管 (LED) 灯串电流高达 100mA/通道  
输出可在外部合并,从而提高每条灯串的电流  
3 说明  
100Hz 频率下的调光比率高达 10000:1  
TPS61194-Q1 是一款集成 DC-DC 转换器的低电磁干  
(EMI) 且易于使用的汽车类高效 LED 驱动器。DC-  
DC 转换器支持升压和 SEPIC 工作模式。该器件具备  
的四路高精度电流阱可进行组合,以提高电流能力。  
适用于 LED 灯串电源的集成升压/SEPIC 转换器  
输出电压高达 45V  
开关频率:300kHz 2.2MHz  
开关同步输入  
DC-DC 转换器可基于 LED 电流阱余量电压提供自适  
应输出电压控制。该特性可在所有条件下将电压调节到  
能够满足需要的最低水平,从而最大限度降低功耗。为  
了降低 EMIDC-DC 转换器支持针对开关频率进行扩  
频以及使用专用引脚实现外部同步。凭借较大的可调节  
频率范围,TPS61194-Q1 能够避免调幅无线电频带干  
扰。  
扩展频谱,用于降低电磁干扰 (EMI)  
丰富的故障检测功能 特性  
故障输出  
输入过压保护 (OVP) 和欠压锁定 (UVLO)  
开路和短路 LED 故障检测  
热关断  
最大限度减少外部组件数  
TPS61194-Q1 的输入电压范围为 4.5V 40V,支持  
汽车启动/停止以及负载突降情况。TPS61194-Q1 集成  
了丰富的故障检测 功能的反馈。  
简化电路原理图  
L1  
D1  
VOUT up to 45 V  
VIN 4.5...40 V  
C
IN  
器件信息(1)  
C
OUT  
器件型号  
封装  
封装尺寸(标称值)  
R2  
R1  
SW  
TPS61194-Q1  
HTSSOP (20)  
6.50mm x 4.40mm  
FB  
C
FB  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
VIN  
Up to 100 mA/string  
LDO  
CLDO  
RFSET  
TPS61194-Q1OUT1  
系统效率  
OUT2  
100  
95  
FSET  
OUT3  
OUT4  
SYNC  
PWM  
90  
BRIGHTNESS  
EN  
85  
VDDIO/EN  
FAULT  
80  
ISET  
VIN=5V  
75  
70  
65  
VIN=8V  
PGND  
GND PAD  
VIN=12V  
VIN=16V  
RISET  
0
20  
40  
60  
80  
100  
Brightness (%)  
C012  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAE9  
 
 
 
 
 
 
 
 
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 21  
9.1 Application Information............................................ 21  
9.2 Typical Applications ................................................ 21  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics .......................................... 6  
7.6 Internal LDO Electrical Characteristics ..................... 6  
7.7 Protection Electrical Characteristics ......................... 6  
7.8 Current Sinks Electrical Characteristics.................... 7  
7.9 PWM Brightness Control Electrical Characteristics .. 7  
7.10 Boost and SEPIC Converter Characteristics .......... 7  
7.11 Logic Interface Characteristics................................ 7  
7.12 Typical Characteristics............................................ 9  
Detailed Description ............................................ 11  
9
10 Power Supply Recommendations ..................... 26  
11 Layout................................................................... 27  
11.1 Layout Guidelines ................................................. 27  
11.2 Layout Example .................................................... 28  
12 器件和文档支持 ..................................................... 29  
12.1 器件支持................................................................ 29  
12.2 文档支持................................................................ 29  
12.3 接收文档更新通知 ................................................. 29  
12.4 社区资源................................................................ 29  
12.5 ....................................................................... 29  
12.6 静电放电警告......................................................... 29  
12.7 Glossary................................................................ 29  
13 机械、封装和可订购信息....................................... 29  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (April 2017) to Revision D  
Page  
Enhanced pin descriptions for pins 3, 10 and 16 in Pin Functions ....................................................................................... 4  
Deleted "Dimming ratio is calculated as ratio between the input PWM period and minimum on/off time (0.5 µs). "  
from Brightness Control........................................................................................................................................................ 15  
Changes from Revision B (October 2016) to Revision C  
Page  
Deleted "IOUT = 100 mA" from tON/OFF row of Table 7.9 .......................................................................................................... 7  
Changed "0.5" from MAX to TYP column in tON/OFF row of Table 7.9 ................................................................................... 7  
Added table note 1 for Tables 7.9 and 7.10........................................................................................................................... 7  
Deleted "Initial DC-DC voltage is about 88% of VMAX BOOST." from Integrated DC-DC Converter; change wording in  
last sentence before equation 1. .......................................................................................................................................... 13  
Changed eq. 1; added "K" eq definitions for eq. 1 and paragraph after Fig. 9 ................................................................... 13  
Added new paragraph before Internal LDO ......................................................................................................................... 15  
Changes from Revision A (January 2016) to Revision B  
Page  
已删除 特性中多个条目的措辞 ............................................................................................................................................... 1  
已更改 输出电流“LED 灯串电流以及“200Hz 频率下的调光比率高达 10000:1”“100Hz 频率下的调光比率高达  
10000:1”.................................................................................................................................................................................. 1  
已添加 其他应用 .................................................................................................................................................................... 1  
已更改 说明中的多处措辞 - 为了清晰起见 .............................................................................................................................. 1  
已更改 高开关频率更改为宽范围可调频率” ......................................................................................................................... 1  
已添加 器件比较.................................................................................................................................................................. 3  
Added 2 new LED Current graphs ....................................................................................................................................... 10  
2
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
Changes from Original (December 2015) to Revision A  
Page  
已更改 将预览更改为生产数据” ........................................................................................................................................... 1  
5 器件比较表  
LP8860-Q1  
LP8862-Q1  
LP8861-Q1  
TPS61193-Q1  
TPS61194-Q1  
TPS61196-Q1  
VIN 范围  
3V 48V  
4.5V 40V  
4.5V 45V  
4.5V 40V  
4.5V 40V  
8V 30V  
LED 通道的数量  
LED 电流/通道  
I2C/SPI 支持  
SEPIC 支持  
4
150mA  
2
160mA  
4
100mA  
3
100mA  
4
100mA  
6
200mA  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
PWP Package  
20-Pin HTSSOP With Exposed Thermal Pad  
Top View  
VIN  
LDO  
1
2
3
4
5
6
7
8
9
20  
19  
VIN  
NC  
FSET  
18 SW  
PGND  
VDDIO/EN  
FAULT  
17  
16 FB  
SYNC  
PWM  
15  
14  
13  
12  
11  
OUT1  
OUT2  
OUT3  
OUT4  
NC  
GND  
EP*  
ISET 10  
GND  
*EXPOSED PAD  
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
VIN  
A
A
Input power pin  
2
LDO  
Output of internal LDO; connect a 1-μF decoupling capacitor between this pin and noise-free GND.  
DC-DC (boost or SEPIC) switching frequency setting resistor; for normal operation, resistor value  
from 24 kto 219 kmust be connected between this pin and ground.  
3
FSET  
A
4
5
VDDIO/EN  
FAULT  
I
Enable input for the device as well as supply input (VDDIO) for digital pins  
Fault signal output. If unused, the pin may be left floating.  
OD  
Input for synchronizing boost. If synchronization is not used, connect this pin to GND to disable  
spread spectrum or to VDDIO/EN to enable spread spectrum.  
6
SYNC  
I
7
8
9
PWM  
NC  
I
PWM dimming input.  
No connect  
G
GND  
Ground.  
LED current setting resistor; for normal operation, resistor value from 24 kto 129 kmust be  
connected between this pin and ground.  
10  
11  
12  
ISET  
GND  
A
G
A
Ground  
Current sink output  
This pin must be connected to GND if not used.  
OUT4  
Current sink output  
This pin must be connected to GND if not used.  
13  
14  
15  
OUT3  
OUT2  
OUT1  
A
A
A
Current sink output  
This pin must be connected to GND if not used.  
Current sink output  
This pin must be connected to GND if not used.  
DC-DC (boost or SEPIC) feedback input; for normal operation this pin must be connected to the  
middle of a resistor divider between VOUT and ground using feedback resistor values from 5 kto  
150 k.  
16  
FB  
A
17  
18  
19  
20  
PGND  
SW  
G
A
A
A
DC-DC (boost or SEPIC) power ground  
DC-DC (boost or SEPIC) switch pin  
No connect  
NC  
VIN  
Input power pin  
(1) A: Analog pin, G: Ground pin, P: Power pin, I: Input pin, I/O: Input/Output pin, O: Output pin, OD: Open Drain pin  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
50  
UNIT  
VIN, SW, FB  
Voltage on pins  
OUT1, OUT2, OUT3, OUT4  
45  
V
LDO, SYNC, FSET, ISET, PWM, VDDIO/EN, FAULT  
5.5  
Continuous power dissipation(3)  
Internally Limited  
(4)  
Ambient temperature range TA  
Junction temperature range TJ  
–40  
–40  
125  
°C  
°C  
(4)  
150  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
See(5)  
–65  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 165°C (typical) and  
disengages at TJ = 145°C (typical).  
(4) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
150°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
(5) For detailed soldering specifications and information, refer to the PowerPAD™ Thermally Enhanced Package .  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All other pins  
V
Charged-device model (CDM), per AEC Q100-  
011  
Corner pins (1,10,11,20)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VIN  
4.5  
0
45  
45  
SW  
Voltage on pins  
OUT1, OUT2, OUT3, OUT4  
FB, FSET, LDO, ISET, VDDIO/EN, FAULT  
SYNC, PWM  
0
40  
V
0
5.25  
0
VDDIO/EN  
(1) All voltages are with respect to the potential at the GND pins.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
7.4 Thermal Information  
TPS61194-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
20 PINS  
44.2  
26.5  
22.4  
0.9  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
22.2  
2.5  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
7.5 Electrical Characteristics(1)(2)  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device disabled, VVDDIO/EN = 0 V,  
VIN = 12 V  
Standby supply current  
4.5  
20  
μA  
IQ  
VIN = 12 V, VOUT = 26 V, output  
current 80 mA/channel, converter  
ƒSW = 300 kHz  
Active supply current  
5
12  
mA  
VPOR_R  
VPOR_F  
TTSD  
Power-on reset rising threshold  
Power-on reset falling threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
LDO pin voltage  
LDO pin voltage  
2.7  
V
V
1.5  
150  
165  
20  
175  
°C  
°C  
TTSD_HYST  
(1) All voltages are with respect to the potential at the GND pins.  
(2) Minimum and maximum limits are specified by design, test, or statistical analysis.  
7.6 Internal LDO Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
Output voltage  
TEST CONDITIONS  
VIN = 12 V  
MIN  
4.15  
120  
TYP  
4.3  
MAX  
4.55  
430  
UNIT  
V
VLDO  
VDR  
Dropout voltage  
300  
50  
mV  
mA  
ISHORT  
Short circuit current  
7.7 Protection Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
42  
4
MAX  
UNIT  
V
VOVP  
VIN OVP threshold voltage  
VIN UVLO  
41  
44  
VUVLO  
V
VUVLO_HYST  
VIN UVLO hysteresis  
LED short detection threshold  
100  
6
mV  
V
5.6  
7
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
7.8 Current Sinks Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.1  
MAX UNIT  
ILEAKAGE  
IMAX  
Leakage current  
Outputs OUT1 to OUT4 , VOUTx = 45 V  
OUT1, OUT2, OUT3, OUT4  
IOUT = 100 mA  
5
µA  
Maximum current  
100  
mA  
IOUT  
Output current accuracy  
Output current matching(1)  
Saturation voltage(2)  
5%  
5%  
5%  
0.7  
IMATCH  
VSAT  
IOUT = 100 mA, PWM duty =100%  
IOUT = 100 mA  
1%  
0.4  
V
(1) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current.  
Matching is the maximum difference from the average. For the constant current sinks on the part (OUTx), the following are determined:  
the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG). Matching  
number is calculated: (MAX-MIN)/AVG. The typical specification provided is the most likely norm of the matching figure for all parts. LED  
current sinks were characterized with 1-V headroom voltage. Note that some manufacturers have different definitions in use.  
(2) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1 V.  
7.9 PWM Brightness Control Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Hz  
ƒPWM  
PWM input frequency  
Minimum on/off time(1)  
100  
20 000  
tON/OFF  
0.5  
µs  
(1) This specification is not ensured by ATE.  
7.10 Boost and SEPIC Converter Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
Unless otherwise specified: VIN = 12 V, VEN/VDDIO = 3.3 V, L = 22 μH, CIN = 2 × 10-μF ceramic and 33-μF electrolytic,  
COUT = 2 × 10-μF ceramic and 33-μF electrolytic, D = NRVB460MFS, ƒSW = 300 kHz.  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
4.5  
6
TYP  
MAX  
40  
UNIT  
VIN  
V
VOUT  
Output voltage  
45  
Minimum switching frequency  
(central frequency if spread  
spectrum is enabled)  
ƒSW_MIN  
300  
kHz  
kHz  
Defined by RFSET resistor  
Maximum switching frequency  
(central frequency if spread  
spectrum is enabled)  
ƒSW_MAX  
2 200  
VOUT/VIN  
TOFF  
Conversion ratio  
Minimum switch OFF time(1)  
10  
55  
ƒ
SW 1.15 MHz  
ns  
A
ISW_MAX  
RDSON  
SW current limit  
1.8  
2
2.2  
FET RDSON  
Pin-to-pin  
240  
400  
mΩ  
kHz  
ns  
fSYNC  
External SYNC frequency  
External SYNC minimum on time(1)  
External SYNC minimum off time(1)  
300  
2 200  
tSYNC_ON_MIN  
tSYNC_OFF_MIN  
150  
150  
ns  
(1) This specification is not ensured by ATE.  
7.11 Logic Interface Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC INPUT VDDIO/EN  
VIL  
VIH  
II  
Input low level  
Input high level  
Input current  
0.4  
30  
V
1.65  
1  
5
µA  
LOGIC INPUT SYNC/FSET, PWM  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
Logic Interface Characteristics (continued)  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
Input low level  
Input high level  
Input current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIL  
VIH  
II  
0.2 × VDDIO/EN  
0.8 × VDDIO/EN  
1  
1
μA  
LOGIC OUTPUT FAULT  
VOL  
Output low level  
Pullup current 3 mA  
V = 5.5 V  
0.3  
0.5  
1
V
ILEAKAGE  
Output leakage current  
μA  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
7.12 Typical Characteristics  
Unless otherwise specified: D = NRVB460MFS, T = 25°C  
1000  
900  
800  
700  
600  
500  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
Vboost = 22 V  
Vboost = 30V  
Vboost = 37 V  
400  
300  
200  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
Input Voltage (V)  
Input Voltage (V)  
C001  
C002  
ƒSW = 300 kHz  
L = 33 μH  
DC Load (PWM = 100%)  
ƒSW = 800 kHz  
L = 15 μH  
DC Load (PWM = 100%)  
CIN and COUT = 33 µF + 2 × 10 µF (ceramic)  
CIN and COUT = 2 ×10 µF (ceramic)  
Figure 1. Maximum Boost Current  
Figure 2. Maximum Boost Current  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
Input Voltage (V)  
Input Voltage (V)  
C003  
C004  
ƒSW = 1.5 MHz  
L = 8.2 μH  
DC Load (PWM = 100%)  
ƒSW = 2.2 MHz  
L = 4.7 μH  
DC Load (PWM = 100%)  
CIN and COUT = 2 × 10 µF (ceramic)  
CIN and COUT = 2 × 10 µF (ceramic)  
Figure 3. Maximum Boost Current  
Figure 4. Maximum Boost Current  
100  
80  
60  
40  
20  
0
2200  
1800  
1400  
1000  
600  
200  
20  
60  
100  
140  
180  
220  
20  
40  
60  
80  
100  
120  
140  
160  
RFSET (k)  
C009  
RISET (k)  
C005  
Figure 6. Boost Switching Frequency ƒSW vs RFSET  
Figure 5. LED Current vs RISET  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise specified: D = NRVB460MFS, T = 25°C  
120  
100  
80  
60  
40  
20  
0
6
5
4
3
2
1
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
40  
50  
60  
70  
80  
90  
100  
Voltage (V)  
C014  
Output current (mA)  
C013  
RISET = 24 kΩ  
Figure 8. LED Current Sink Saturation Voltage  
Figure 7. LED Current Sink Matching  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
8 Detailed Description  
8.1 Overview  
The TPS61194-Q1 is a highly integrated LED driver for automotive infotainment, lighting system and medium-  
sized LCD backlight applications. It includes a DC-DC with an integrated FET, supporting both boost and SEPIC  
modes, an internal LDO enabling direct connection to battery without need for a pre-regulated supply and four  
LED current sinks. The VDDIO/EN pin provides the supply voltage for digital IOs (PWM and SYNC inputs) and at  
the same time enables the device.  
The switching frequency on the DC-DC converter is set by a resistor connected to the FSET pin. The maximum  
voltage of the DC-DC is set by a resistive divider connected to the FB pin. For the best efficiency the output  
voltage is adapted automatically to the minimum necessary level needed to drive the LED strings. This is done  
by monitoring LED output voltage drop in real time. For EMI reduction and control two optional features are  
available:  
Spread spectrum, which reduces EMI noise around the switching frequency and its harmonic frequencies  
DC-DC can be synchronized to an external frequency connected to SYNC pin  
The four constant current outputs OUT1, OUT2, OUT3, and OUT4 provide LED current up to 100 mA.Value for  
the current per OUT pin is set with a resistor connected to ISET pin. Current sinks that are not used must be  
connected to ground. Grounded current sink is disabled and excluded from adaptive voltage detection loop.  
Brightness is controlled with the PWM input. Frequency range for the input PWM is from 100 Hz to 20 kHz. LED  
output PWM follows the input PWM so the output frequency is equal to the input frequency.  
TPS61194-Q1 has extensive fault detection features :  
Open-string and shorted LED detections  
LED fault detection prevents system overheating in case of open or short in some of the LED strings  
VIN input overvoltage protection  
Threshold sensing from VIN pin  
VIN input undervoltage protection  
Threshold sensing from VIN pin  
Thermal shutdown in case of die overtemperature  
Fault condition is indicated through the FAULT output pin.  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
L
D
VOUT  
VIN  
CIN  
COUT  
VIN  
LDO  
LDO  
CLDO  
SW  
SYNC  
PGND  
FB  
BOOST  
CONTROLLER  
RFSET  
FSET  
ISET  
R1  
RISET  
R2  
LED  
CURRENT  
SINKS  
CURRENT  
SETTING  
OUT1  
OUT2  
OUT3  
PWM  
VDDIO/EN  
FAULT  
DIGITAL BLOCKS  
(FSM, ADAPTIVE VOLTAGE  
CONTROL, SAFETY LOGIC  
etc.)  
OUT4  
GND  
ANALOG BLOCKS  
(CLOCK GENERATOR,  
VREF, TSD etc.)  
VDDIO  
EXPOSED PAD  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
8.3 Feature Description  
8.3.1 Integrated DC-DC Converter  
The TPS61194-Q1 DC-DC converter generates supply voltage for the LEDs and can operate in boost mode or in  
SEPIC mode. The maximum output voltage VOUT_MAX is defined by an external resistive divider (R1, R2).  
VOUT_MAX voltage should be chosen based on the maximum voltage required for LED strings. Recommended  
maximum voltage is about 30% higher than maximum LED string voltage. DC-DC output voltage is adjusted  
automatically based on LED current sink headroom voltage. Maximum, minimum, and initial boost voltages can  
be calculated with Equation 1:  
V
BG  
VBOOST  
=
+K ì 0.0387 ì R1+ VBG  
«
÷
R2  
where  
VBG = 1.2 V  
R2 recommended value is 130 kΩ  
Resistor values are in kΩ  
K = 1 for maximum adaptive boost voltage (typical)  
K = 0 for minimum adaptive boost voltage (typical)  
K = 0.88 for initial boost voltage (typical)  
(1)  
45  
40  
35  
30  
25  
20  
15  
10  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
R1 (k)  
C008  
Figure 9. Maximum Converter Output Voltage vs R1 Resistance  
Alternatively, a T-divider can be used if resistance less than 100 kΩ is required for the external resistive divider.  
Refer to Using the TPS61194xEVM Evaluation Module for details.  
The converter is a current mode DC-DC converter, where the inductor current is measured and controlled with  
the feedback. Switching frequency is adjustable between 250 kHz and 2.2 MHz with RFSET resistor as  
Equation 2:  
ƒSW = 67600 / (RFSET + 6.4)  
where  
ƒSW is switching frequency, kHz  
RFSET is frequency setting resistor, kΩ  
(2)  
In most cases lower frequency has higher system efficiency. DC-DC internal parameters are chosen  
automatically according to the selected switching frequency (see Table 2) to ensure stability. In boost mode a 15-  
pF capacitor CFB must be placed across resistor R1 when operating in 300-kHz to 500-kHz range (see Typical  
Application for 4 LED Strings). When operating in the 1.8-MHz to 2.2-MHz range CFB = 4.7 pF.  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
 
 
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
Feature Description (continued)  
D
VIN  
VOUT  
CIN  
COUT  
R1  
SW  
OCP  
ADAPTIVE  
VOLTAGE  
CONTROL  
RC  
R2  
LIGHT  
LOAD  
CURRENT  
SENSE  
OVP  
R
S
R
R
filter  
FB  
-
GM  
PGND  
R
+
SYNC  
GM  
FSET  
FSET  
CTRL  
BLANK  
TIME  
BOOST  
OSCILLATOR  
OFF/BLANK  
TIME  
CURRENT  
RAMP  
PULSE  
GENERATOR  
GENERATOR  
RFSET  
Figure 10. Boost Block Diagram  
DC-DC can be driven by an external SYNC signal between 300 kHz and 2.2 MHz. If the external synchronization  
input disappears, DC-DC continues operation at the frequency defined by RFSET resistor. When external  
frequency disappears and SYNC pin level is low, converter continues operation without spread spectrum  
immediately. If SYNC remains high, converter continues switching with spread spectrum enabled after 256 µs.  
External SYNC frequency must be 1.2 to 1.5 times higher than the frequency defined by RFSET resistor. Minimum  
frequency setting with RFSET is 250 kHz to support 300-kHz switching with external clock.  
The optional spread spectrum feature (±3% from central frequency, 1-kHz modulation frequency) reduces EMI  
noise at the switching frequency and its harmonic frequencies. When external synchronization is used, spread  
spectrum is not available.  
Table 1. DC-DC Synchronization Mode  
SYNC PIN INPUT  
MODE  
Low  
High  
Spread spectrum disabled  
Spread spectrum enabled  
300 to 2200 kHz frequency  
Spread spectrum disabled, external synchronization mode  
Table 2. DC-DC Parameters(1)  
TYPICAL BOOST INPUT  
AND OUTPUT  
CAPACITORS (µF)  
FREQUENCY  
(kHz)  
TYPICAL  
INDUCTANCE (µH)  
MINIMUM SWITCH  
OFF TIME (ns)(2)  
BLANK  
TIME (ns)  
CURRENT  
RAMP (A/s)  
CURRENT RAMP  
DELAY (ns)  
RANGE  
1
2
3
4
300 to 480  
480 to 1150  
1150 to 1650  
1650 to 2200  
33  
15  
10  
4.7  
2 ×10 (cer.) + 33 (electr.)  
10 (cer.) + 33 (electr.)  
3 × 10 (cer.)  
150  
60  
95  
95  
95  
70  
24  
43  
550  
300  
0
40  
79  
3 × 10 (cer.)  
40  
145  
0
(1) Parameters are for reference only  
(2) Due to current sensing comparator delay the actual minimum off time is 6 ns (typical) longer than in the table.  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
The converter SW pin DC current is limited to 2 A (typical). To support warm-start transient condition the current  
limit is automatically increased to 2.5 A for a short period of 1.5 seconds when a 2-A limit is reached.  
NOTE  
Application condition where the 2-A limit is exceeded continuously is not allowed. In this  
case the current limit would be 2 A for 1.5 seconds followed by 2.5-A limit for 1.5 seconds,  
and this 3-second period repeats.  
To keep switching voltage within safe levels there is a 48-V limit comparator in the event that FB loop is broken.  
8.3.2 Internal LDO  
The internal LDO regulator converts the input voltage at VIN to a 4.3-V output voltage for internal use. Connect a  
minimum of 1-µF ceramic capacitor from LDO pin to ground, as close to the LDO pin as possible.  
8.3.3 LED Current Sinks  
8.3.3.1 Output Configuration  
TPS61194-Q1 detects LED output configuration during start-up. Any current sink output connected to ground is  
disabled and excluded from the adaptive voltage control of the DC-DC and fault detections.  
8.3.3.2 Current Setting  
Maximum current for the LED outputs is controlled with external RISET resistor. RISET value for target maximum  
current can be calculated using Equation 3:  
RISET = 2342 / (IOUT œ 2.5)  
where  
RISET is current setting resistor, kΩ  
ILED is output current per output, mA  
(3)  
8.3.3.3 Brightness Control  
TPS61194-Q1 controls the brightness of the display with conventional PWM. Output PWM directly follows the  
input PWM. Input PWM frequency can be in the range of 100 Hz to 20 kHz.  
8.3.4 Protection and Fault Detections  
The TPS61194-Q1 has fault detection for LED open and short, VIN input overvoltage protection (VIN_OVP) , VIN  
undervoltage lockout (VIN_UVLO), and thermal shutdown (TSD).  
8.3.4.1 Adaptive DC-DC Voltage Control and Functionality of LED Fault Comparators  
Adaptive voltage control function adjusts the DC-DC output voltage to the minimum sufficient voltage for proper  
LED current sink operation. The current sink with highest VF LED string is detected and DC-DC output voltage  
adjusted accordingly. DC-DC adaptive control voltage step size is defined by maximum voltage setting, VSTEP  
=
(VOUT_MAX – VOUT_MIN) / 256. Periodic down pressure is applied to the target voltage to achieve better system  
efficiency.  
Every LED current sink has 3 comparators for the adaptive DC-DC control and LED fault detections. Comparator  
outputs are filtered, filtering time is 1 µs.  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
 
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
OUT#  
SHORT STRING  
DETECTION LEVEL  
HIGH_COMP  
VOLTAGE THRESHOLD  
MID_COMP  
LOW_COMP  
LOWEST VOLTAGE  
CURRENT/PWM  
CONTROL  
Figure 11. Comparators for Adaptive Voltage Control and LED Fault Detection  
Figure 12 shows different cases which cause DC-DC voltage increase, decrease, or generate faults. In normal  
operation voltage at all the OUT# pins is between LOW_COMP and MID_COMP levels, and boost voltage stays  
constant. LOW_COMP level is the minimum for proper LED current sink operation, 1.1 × VSAT + 0.2 V (typical).  
MID_COMP level is 1.1 × VSAT + 1.2 V (typical) so typical headroom window is 1 V.  
When voltage at all the OUT# pins increases above MID_COMP level, DC-DC voltage adapts downwards.  
When voltage at any of the OUT# pins falls below LOW_COMP threshold, DC-DC voltage adapts upwards. In  
the condition where DC-DC voltage reaches the maximum and there are one or more outputs still below  
LOW_COMP level, an open LED fault is detected.  
HIGH_COMP level, 6 V typical, is the threshold for shorted LED detection. When the voltage of one or more of  
the OUT# pins increases above HIGH_COMP level and at least one of the other outputs is within the normal  
headroom window, shorted LED fault is detected.  
Shorted LED fault (at  
DCDC  
decreases  
voltage  
DCDC  
increases  
voltage  
least one output should  
be between LOW_COMP  
and MID_COMP)  
Open LED fault when  
VOUT = VOUT_MAX  
No actions  
No actions  
Shorted  
LED fault  
Minimum  
headroom  
level reached  
All outputs are  
above headroom  
window  
Open LED  
fault  
HIGH_COMP  
MID_COMP  
HEADROOM  
WINDOW  
LOW_COMP  
Figure 12. Protection and DC-DC Voltage Adaptation Algorithms  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
8.3.4.2 Overview of the Fault/Protection Schemes  
A summary of the TPS61194-Q1fault detection behavior is shown in Table 3. Detected faults (excluding LED  
open or short) cause device to enter FAULT_RECOVERY state. In FAULT_RECOVERY the DC-DC and LED  
current sinks of the device are disabled, and the FAULT pin is pulled low. The device recovers automatically and  
enters normal operating mode (ACTIVE) after a recovery time of 100 ms if the fault condition has disappeared.  
When recovery is succesful, FAULT pin is released.  
If a LED fault is detected, the device continues normal operation and only the faulty string is disabled. The fault is  
indicated via the FAULT pin which can be released by toggling VDDIO/EN pin low for a short period of 2 µs to 20  
µs. LEDs are turned off for this period but the device stays in ACTIVE mode. If VDDIO/EN is low longer, the  
device goes to STANDBY and restarts when EN goes high again.  
Table 3. Fault Detections  
FAULT_  
RECOVERY  
STATE  
FAULT/  
PROTECTION  
FAULT  
PIN  
FAULT NAME  
VIN_OVP  
THRESHOLD  
ACTION  
1. Overvoltage is monitored from the beginning of soft  
start. Fault is detected if the duration of overvoltage  
condition is 100 µs minimum.  
2. Overvoltage is monitored from the beginning of  
normal operation (ACTIVE mode). Fault is detected if  
over-voltage condition duration is 560 ms minimum  
(tfilter). After the first fault, detection filter time is reduced  
to 50 ms for following recovery cycles. When the device  
recovers and has been in ACTIVE mode for 160 ms,  
filter time is increased back to 560 ms .  
1. VIN > 42 V  
2. VOUT  
>
VSET_DCDC + 6..10  
V.  
VSET_DCDC is  
voltage value  
defined by logic  
during adaptation  
VIN  
overvoltage  
protection  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
VIN  
undervoltage  
lockout  
Detects undervoltage condition at VIN pin. Sensed in all  
operating modes. Fault is detected if undervoltage  
condition duration is 100 µs minimum.  
Falling 3.9 V  
Rising 4 V  
VIN_UVLO  
OPEN_LED  
Detected if the voltage of one or more current sinks is  
below threshold level, and DC-DC adaptive control has  
reached maximum voltage. Open string is removed from  
the DC-DC voltage control loop and current sink is  
disabled.  
Fault pin is released by toggling VDDIO/EN pin. If  
VDDIO/EN is low for a period of 2 µs to 20 µs, LEDs are  
turned off for this period but device stays ACTIVE. If  
VDDIO/EN is low longer, device goes to STANDBY and  
restarts when EN goes high again.  
LOW_COMP  
threshold  
Open LED fault  
Detected if the voltage of one or more current sinks is  
above shorted string detection level and at least one  
OUTx voltage is within headroom window. Shorted string  
is removed from the DC-DC voltage control loop and  
current sink is disabled.  
Fault pin is released by toggling VDDIO/EN pin. If  
VDDIO/EN is low for a period of 2…20 µs, LEDs are  
turned off for this period but device stays ACTIVE. If  
VDDIO/EN is low longer, device goes to STANDBY and  
restarts when EN goes high again..  
Shorted LED  
fault  
Shorted string  
detection level 6 V  
SHORT_LED  
Yes  
Yes  
No  
165ºC  
Thermal shutdown  
hysteresis 20ºC  
Thermal shutdown is monitored from the beginning of  
soft start. Die temperature must decrease by 20ºC for  
device to recover.  
Thermal  
protection  
TSD  
Yes  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
 
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
Time is not enough to  
discharge COUT  
VIN OVERVOLTAGE  
VIN OK  
VIN  
VOUT  
VSET_DCDC + 6...10 V  
IOUT  
FAULT  
tFILTER = 560 ms  
tRECOVERY  
100 ms  
=
tSOFTSTART  
tBOOST START  
+
tFILTER  
50 ms  
=
tRECOVERY  
100 ms  
=
tSOFTSTART  
tBOOST START 40 - 50 ms  
+
tFILTER  
=
tRECOVERY  
100 ms  
=
tSOFTSTART + tFILTER =  
tBOOST START 50 ms  
Figure 13. VIN Overvoltage Protection (DC-DC OVP)  
VIN OVP threshold  
VIN  
DCDC OVP threshold  
FB  
ttSOFTSTART +t  
ttBOOST STARTUP  
FAULT  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
t
Figure 14. VIN Overvoltage Protection (VIN OVP)  
UVLO rising threshold  
UVLO falling threshold  
VIN  
FB  
ttSOFTSTART +t  
ttBOOST STARTUP  
FAULT  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
t
Figure 15. VIN Undervoltage Lockout  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
VOUT_MAX  
VOUT  
OUT# pin  
Other LEDs  
OUT# pin  
Open LED  
LOW_COMP level  
t = 2...20 µs  
VDDIO/EN  
FAULT  
Figure 16. LED Open Fault  
MID_COMP level  
LOW_COMP level  
OUT# pin  
Other LEDs  
OUTT# pin  
Shorted LED  
HIGH_COMP level  
t = 2...20 µs  
VDDIO/EN  
FAULT  
Figure 17. LED Short Fault  
8.4 Device Functional Modes  
8.4.1 Device States  
The TPS61194-Q1 enters STANDBY mode when the internal LDO output rises above the power-on reset level,  
VLDO > VPOR. In STANDBY mode the device is able to detect VDDIO/EN signal. When VDDIO/EN is pulled high,  
the device powers up. After start LED outputs are sensed to detect grounded outputs. Grounded outputs are  
disabled and excluded from the adaptive voltage control loop of the DC-DC.  
If a fault condition is detected, the device enters FAULT_RECOVERY state. Faults that cause the device to enter  
FAULT_RECOVERY are listed in Table 3. When LED open or short is detected, the faulty string is disabled, but  
device stays in ACTIVE mode.  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
POR=1  
STANDBY  
VDDIO/EN=1  
VIN_OVP  
VIN_UVLO  
TSD  
100 ms  
SOFT START  
65 ms  
50 ms  
FAULT RECOVERY  
BOOST START  
FAULTS  
VDDIO/EN=0  
NO  
FAULT  
RECOVERY?  
FAULTS  
FAULTS:  
- VIN_OVP  
- VIN_UVLO  
- TSD  
LED OUTPUT  
CONFIGURATION  
DETECTION  
YES  
ACTIVE  
VDDIO/EN=0  
DC-DC AND LED CURRENT  
SINKS ARE DISABLED IN  
FAULT RECOVERY STATE  
SHUTDOWN  
Figure 18. State Diagram  
T=50s  
t>500s  
VIN  
LDO  
VDDIO/EN  
SYNC  
Headroom adaptation  
VOUT=VIN level œ diode drop  
VOUT  
PWM OUT  
IQ  
Active mode  
SOFT  
START  
BOOST  
START  
Figure 19. Timing Diagram for the Typical Start-Up and Shutdown  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS61194-Q1 is designed for automotive applications, and an input voltage (VIN), intended to be connected  
to the automotive battery, supports input voltage range from 4.5 V to 40 V. Device internal circuitry is powered  
from the integrated LDO.  
The TPS61194-Q1 uses a simple four-wire control:  
VDDIO/EN for enable  
PWM input for brightness control  
SYNC pin for boost synchronisation (optional)  
FAULT output to indicate fault condition (optional)  
9.2 Typical Applications  
9.2.1 Typical Application for 4 LED Strings  
Figure 20 shows the typical application for TPS61194-Q1 which supports 4 LED strings, 80 mA per string, , with  
a boost switching frequency of 300 kHz.  
VIN  
5...28 V  
L1  
D1  
Up to 37 V  
CIN BOOST  
C
OUT  
R2  
R1  
SW  
FB  
C
FB  
VIN  
C
IN  
Up to 100 mA/string  
LDO  
CLDO  
RFSET  
TPS61194-Q1OUT1  
OUT2  
OUT3  
OUT4  
FSET  
SYNC  
PWM  
BRIGHTNESS  
EN  
VDDIO/EN  
FAULT  
FAULT  
ISET  
R3  
PGND GND PAD  
RISET  
VDDIO  
Figure 20. Four Strings 80 mA per String Configuration  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
 
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
VIN voltage range  
4.5 V – 28 V  
LED string  
4P8S LEDs (30 V)  
LED string current  
100 mA  
Maximum boost voltage  
37 V  
Boost switching frequency  
300 kHz  
External boost sync  
not used  
Boost spread spectrum  
enabled  
L1  
CIN  
33 μH  
100 µF, 50 V  
CIN BOOST  
COUT  
CFB  
2 × (10-µF, 50-V ceramic) + 33-µF, 50-V electrolytic  
2 × (10-µF, 50-V ceramic) + 33-µF, 50-V electrolytic  
15 pF  
1 µF, 10 V  
24 kΩ  
CLDO  
RISET  
RFSET  
R1  
210 kΩ  
750 kΩ  
130 kΩ  
10 kΩ  
R2  
R3  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Inductor Selection  
There are two main considerations when choosing an inductor; the inductor must not saturate, and the inductor  
current ripple must be small enough to achieve the desired output voltage ripple. Different saturation current  
rating specifications are followed by different manufacturers so attention must be given to details. Saturation  
current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of  
application should be requested from the manufacturer. Shielded inductors radiate less noise and are preferred.  
The saturation current must be greater than the sum of the maximum load current, and the worst case average-  
to-peak inductor current. Equation 4 shows the worst case conditions  
IOUTMAX  
ISAT  
>
+ IRIPPLE  
For Boost  
D‘  
VIN  
x
(VOUT - VIN)  
(2 x L x f)  
Where IRIPPLE  
=
VOUT  
(VOUT œ VIN)  
and D‘ = (1 - D)  
Where D =  
(VOUT  
)
IRIPPLE - peak inductor current  
IOUTMAX - maximum load current  
VIN - minimum input voltage in application  
L - min inductor value including worst case tolerances  
f - minimum switching frequency  
VOUT - output voltage  
D - Duty Cycle for CCM Operation  
(4)  
As a result, the inductor should be selected according to the ISAT. A more conservative and recommended  
approach is to choose an inductor that has a saturation current rating greater than the maximum current limit. A  
saturation current rating of at least 2.5 A is recommended for most applications. See Table 2 for recommended  
inductance value for the different switching frequency ranges. The inductor’s resistance should be less than  
300 mΩ for good efficiency.  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
See detailed information in Understanding Boost Power Stages in Switch Mode Power Supplies. Power Stage  
Designer™ Tool can be used for the boost calculation: http://www.ti.com/tool/powerstage-designer.  
9.2.1.2.2 Output Capacitor Selection  
A ceramic capacitor with 2 × VMAX BOOST or more voltage rating is recommended for the output capacitor. The  
DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance  
value selection. Capacitance recommendations for different switching frequencies are shown in Table 2. To  
minimize audible noise of ceramic capacitors their physical size should typically be minimized.  
9.2.1.2.3 Input Capacitor Selection  
A ceramic capacitor with 2 × VIN MAX or more voltage rating is recommended for the input capacitor. The DC-bias  
effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance value  
selection. Capacitance recommendations for different boost switching frequencies are shown in Table 2.  
9.2.1.2.4 LDO Output Capacitor  
A ceramic capacitor with at least 10-V voltage rating is recommended for the output capacitor of the LDO. The  
DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance  
value selection. Typically a 1-µF capacitor is sufficient.  
9.2.1.2.5 Diode  
A Schottky diode should be used for the boost output diode. Do not use ordinary rectifier diodes because slow  
switching speeds and long recovery times degrade the efficiency and the load regulation. Diode rating for peak  
repetitive current should be greater than inductor peak current (up to 3 A) to ensure reliable operation in boost  
mode. Average current rating should be greater than the maximum output current. Schottky diodes with a low  
forward drop and fast switching speeds are ideal for increasing efficiency. Choose a reverse breakdown voltage  
of the Schottky diode significantly larger than the output voltage.  
9.2.1.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Brightness (%)  
Brightness (%)  
C011  
C012  
Load 4 strings, 8 LEDs per string  
100 mA/string for VIN = 12 V and VIN = 16 V  
60 mA/string for VIN = 8 V  
ƒsw=300 kHz, 33 μH  
Load 4 strings, 8 LEDs per string  
100 mA/string for VIN = 12 V and VIN = 16 V  
60 mA/string for VIN = 8 V  
ƒsw=300 kHz, 33 μH  
50 mA/string for VIN = 5 V  
50 mA/string for VIN = 5 V  
Figure 21. Boost Efficiency  
Figure 22. System Efficiency  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
20ms/div  
OUT1/OUT2/BOOST 10V/div  
FAULT 2V/div  
Figure 24. Open LED Fault  
Figure 23. Typical Start-Up  
9.2.2 SEPIC Mode Application  
When LED string voltage can be above or below VIN voltage, SEPIC configuration can be used. In this example,  
two separate coils are used for SEPIC. This can enable lower height external components to be used, compared  
to a coupled coil solution. On the other hand, coupled coil typically maximizes the efficiency. Also, in this  
example, an external clock is used to synchronize SEPIC switching frequency. External clock input can be  
modulated to spread switching frequency spectrum.  
D1  
VIN  
L1  
C1  
C
OUT  
CIN SEPIC  
R2  
R1  
SW  
FB  
VIN  
Up to 100 mA/string  
CLDO  
C
IN  
LDO  
TPS61194-Q1OUT1  
RFSET  
OUT2  
FSET  
OUT3  
OUT4  
BOOST SYNC  
BRIGHTNESS  
SYNC  
PWM  
EN  
VDDIO/EN  
FAULT  
FAULT  
ISET  
R3  
GND  
PGND  
PAD  
VDDIO  
RISET  
Figure 25. SEPIC Mode, 4 Strings, 100 mA per String Configuration  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
9.2.2.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
VIN voltage range  
4.5 V – 30 V  
LED string  
4P2S LEDs (7.2 V)  
LED string current  
100 mA  
Maxmum output voltage  
10 V  
SEPIC switching frequency  
2.2 MHz  
External sync for SEPIC  
used  
Spread spectrum  
Internal spread spectrum disabled (external sync used)  
L1, L2  
CIN  
10 µH  
10 µF 50 V  
CIN SEPIC  
C1  
2 × 10-µF, 50-V ceramic + 33 µF 50-V electrolytic  
10-µF 50-V ceramic  
COUT  
CLDO  
RISET  
RFSET  
R1  
2 × 10-µF, 50-V ceramic + 33 µF 50-V electrolytic  
1 µF, 10 V  
24 kΩ  
24 kΩ  
184 kΩ  
130 kΩ  
10 kΩ  
R2  
R3  
9.2.2.2 Detailed Design Procedure  
In SEPIC mode the maximum voltage at the SW pin is equal to the sum of the input voltage and the output  
voltage. Because of this, the maximum sum of input and output voltage must be limited below 50 V. See Detailed  
Design Procedure for general external component guidelines. Main differences of SEPIC compared to boost are  
described below.  
Power Stage Designer™ Tool can be used for modeling SEPIC behavior: http://www.ti.com/tool/powerstage-  
designer. For detailed explanation on SEPIC see Texas Instruments Analog Applications Journal Designing  
DC/DC Converters Based on SEPIC Topology (SLYT309).  
9.2.2.2.1 Inductor  
In SEPIC mode, currents flowing through the coupled inductors or the two separate inductors L1 and L2 are the  
input current and output current, respectively. Values can be calculated using Power Stage Designer™ Tool or  
using equations in SLYT309.  
9.2.2.2.2 Diode  
In SEPIC mode diode peak current is equal to the sum of input and output currents. Diode rating for peak  
repetitive current should be greater than SW pin current limit (up to 3 A for transients) to ensure reliable  
operation in boost mode. Average current rating should be greater than the maximum output current. Diode  
voltage rating must be higher than sum of input and output voltages.  
9.2.2.2.3 Capacitor C1  
Ti recommends a ceramic capacitor with low ESR. Diode voltage rating must be higher than maximum input  
voltage.  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
9.2.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 5V  
VIN = 8V  
VIN = 12V  
VIN = 15V  
VIN=5V  
VIN=5V  
VIN=12V  
VIN=15V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Brightness (%)  
Brightness (%)  
D001  
D001  
Load 100mA per string, 4 strings, 2 LEDs per string  
fsw = 2.2 MHz  
Load 100mA per string, 3 strings, 2 LEDs per string  
ƒsw = 2.2 MHz  
2 × 10 μH, IHLP2525BDER100M  
2 × 10 μH, IHLP2525BDER100M  
Figure 27. SEPIC Efficiency  
Figure 26. SEPIC Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VIN = 5V  
VIN = 8V  
VIN = 12V  
VIN = 15V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Brightness (%)  
D001  
Load 100mA/string, 4 strings, 2 LEDs per string  
fsw = 2.2 MHz  
2 x 10 μH, IHLP2525BDER100M  
Figure 28. System Efficiency  
10 Power Supply Recommendations  
The device is designed to operate from an automotive battery. Device should be protected from reversal voltage  
and voltage dump over 50 V. The resistance of the input supply rail must be low enough so that the input current  
transient does not cause too high drop at TPS61194-Q1 VIN pin. If the input supply is connected by using long  
wires additional bulk capacitance may be required in addition to the ceramic bypass capacitors in the VIN line.  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
11 Layout  
11.1 Layout Guidelines  
Figure 29 is a layout recommendation for TPS61194-Q1 used to demonstrate the principles of a good layout.  
This layout can be adapted to the actual application layout if or where possible. It is important that all boost  
components are close to the chip, and the high current traces must be wide enough. By placing boost  
components on one side of the chip it is easy to keep the ground plane intact below the high current paths. This  
way other chip pins can be routed more easily without splitting the ground plane. Bypass LDO capacitor must be  
placed as close as possible to the device.  
Here are some main points to help the PCB layout work:  
Current loops need to be minimized:  
For low frequency the minimal current loop can be achieved by placing the boost components as close as  
possible to the SW and PGND pins. Input and output capacitor grounds must be close to each other to  
minimize current loop size.  
Minimal current loops for high frequencies can be achieved by making sure that the ground plane is intact  
under the current traces. High-frequency return currents find a route with minimum impedance, which is  
the route with minimum loop area, not necessarily the shortest path. Minimum loop area is formed when  
return current flows just under the positivecurrent route in the ground plane, if the ground plane is intact  
under the route.  
The GND plane must be intact under the high current boost traces to provide shortest possible return path  
and smallest possible current loops for high frequencies.  
Current loops when the boost switch is conducting and not conducting must be on the same direction in  
optimal case.  
Inductors must be placed so that the current flows in the same direction as in the current loops. Rotating  
inductor 180° changes current direction.  
Use separate power and noise-free grounds. Power ground is used for boost converter return current and  
noise-free ground for more sensitive signals, such as LDO bypass capacitor grounding as well as grounding  
the GND pin of the device.  
Boost output feedback voltage to LEDs must be taken out after the output capacitors, not straight from the  
diode cathode.  
Place LDO 1-µF bypass capacitor as close as possible to the LDO pin.  
Input and output capacitors require strong grounding (wide traces, many vias to GND plane).  
If two output capacitors are used they must have symmetrical layout to get both capacitors working ideally.  
Output ceramic capacitors have a DC-bias effect. If the output capacitance is too low, it can cause boost to  
become unstable on some loads, and this increases EMI. DC-bias characteristics should be obtained from  
the component manufacturer; they are not taken into account on component tolerance. TI recommends  
X5R/X7R capacitors.  
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
TPS61194-Q1  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
www.ti.com.cn  
11.2 Layout Example  
VIN  
VIN  
VIN  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
LDO  
LDO  
NC  
RFSET  
SW  
FSET  
VDDIO/EN  
FAULT  
PGND  
FB  
OUT1  
SYNC  
PWM  
VBOOST  
OUT2  
OUT3  
OUT4  
GND  
13  
12  
NC  
GND  
RISET  
11  
10  
ISET  
Figure 29. TPS61194-Q1 Boost Layout  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS61194-Q1  
www.ti.com.cn  
ZHCSEO9D JANUARY 2016REVISED MAY 2017  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
Power Stage Designer™工具可用于升压和 SEPIC 模式:http://www.ti.com.cn/tool/cn/powerstage-designer  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
PowerPAD™ 耐热增强型封装》  
《了解开关模式电源中的升压功率级》  
《基于 SEPIC 拓扑设计 DC/DC 转换器》  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
Power Stage Designer, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61194PWPRQ1  
ACTIVE  
HTSSOP  
PWP  
20  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
61194Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS61195

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface
TI

TPS61195RUY

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface
TI

TPS61195RUYR

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface
TI

TPS61195RUYT

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface
TI

TPS61195_1

TPS61195 WLED Driver for LCD Backlighting With PWM and SMBus Control Interface
TI

TPS61196

6-String 400-mA WLED Driver with Independent PWM Dimming for Each String
TI

TPS61196-Q1

每个灯串具有独立的 PWM 调光的 6 灯串 400mA WLED 驱动器
TI

TPS61196PWPR

6-String 400-mA WLED Driver with Independent PWM Dimming for Each String
TI

TPS61196PWPRQ1

每个灯串具有独立的 PWM 调光的 6 灯串 400mA WLED 驱动器 | PWP | 28 | -40 to 125
TI

TPS61196PWPT

6-String 400-mA WLED Driver with Independent PWM Dimming for Each String
TI

TPS61197

Single-String WLED Driver for LCD TV
TI

TPS61197DR

Single-String WLED Driver for LCD TV
TI