TPS61221DCKR [TI]

具有 5.5μA 静态电流的 0.7V 输入电压、3.3V 固定输出电压升压转换器 | DCK | 6 | -40 to 85;
TPS61221DCKR
型号: TPS61221DCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 5.5μA 静态电流的 0.7V 输入电压、3.3V 固定输出电压升压转换器 | DCK | 6 | -40 to 85

升压转换器 光电二极管
文件: 总27页 (文件大小:1512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
TPS6122x Low Input Voltage, 0.7V Boost Converter With 5.5μA Quiescent Current  
1 Features  
3 Description  
The TPS6122x family devices provide a power-supply  
solution for products powered by either a single-cell,  
two-cell, or three-cell alkaline, NiCd or NiMH, or one-  
cell Li-Ion or Li-polymer battery. Possible output  
currents depend on the input-to-output voltage ratio.  
1
Up to 95% Efficiency at Typical Operating  
Conditions  
5.5 μA Quiescent Current  
Startup Into Load at 0.7 V Input Voltage  
Operating Input Voltage from 0.7 V to 5.5 V  
Pass-Through Function during Shutdown  
Minimum Switching Current 200 mA  
Protections:  
The boost converter is based on  
a hysteretic  
controller topology using synchronous rectification to  
obtain maximum efficiency at minimal quiescent  
currents. The output voltage of the adjustable version  
can be programmed by an external resistor divider, or  
is set internally to a fixed output voltage. The  
converter can be switched off by a featured enable  
pin. While being switched off, battery drain is  
minimized. The device is offered in a 6-pin SC-70  
package (DCK) measuring 2 mm x 2 mm to enable  
small circuit layout size.  
Output Overvoltage  
Overtemperature  
Input Undervoltage Lockout  
Adjustable Output Voltage from 1.8 V to 6 V  
Fixed Output Voltage Versions  
Device Information(1)  
Small 6-pin SC-70 Package  
PART NUMBER  
TPS61220  
PACKAGE  
BODY SIZE (NOM)  
2 Applications  
Battery Powered Applications  
TPS61221  
SC-70 (6)  
2.00mm x 1.25mm  
TPS61222  
1 to 3 Cell Alkaline, NiCd or NiMH  
1 cell Li-Ion or Li-Primary  
(1) For all available packages, see the orderable addendum at  
the end of this document.  
Solar or Fuel Cell Powered Applications  
Consumer and Portable Medical Products  
Personal Care Products  
White or Status LEDs  
Smartphones  
4 Simplified Schematic  
L1  
L
VOUT  
V
OUT  
= 3.3V)  
(V  
OUT  
Efficiency vs Output Current and Input Voltage  
µ
H
4.7  
C2  
10µF  
1.8 V to 6 V  
R1  
R2  
0.8  
V
IN  
VIN  
EN  
FB  
70%  
0.7 V to V  
OUT  
C1  
1.3  
1.8  
2.3  
2.8  
10µF  
80%  
GND  
TPS61220  
90%  
0.01  
0.1  
I
100  
1
10  
- Output Current - mA  
OUT  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
Table of Contents  
11.1 Application Information.......................................... 13  
11.2 Typical Applications .............................................. 13  
12 Power Supply Recommendations ..................... 17  
12.1 Typical Power Sources ......................................... 17  
1
2
3
4
5
6
7
8
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Simplified Schematic............................................. 1  
Revision History..................................................... 2  
Device Comparison ............................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
8.1 Absolute Maximum Ratings ...................................... 3  
8.2 Handling Ratings....................................................... 3  
8.3 Recommended Operating Conditions....................... 4  
8.4 Thermal Information.................................................. 4  
8.5 Electrical Characteristics........................................... 4  
8.6 Typical Characteristics.............................................. 5  
Parameter Measurement Information ................ 10  
12.2 Input Voltage Effects On Output Current and  
Efficiency.................................................................. 17  
12.3 Behavior While Disabled....................................... 17  
12.4 Startup................................................................... 17  
13 Layout................................................................... 18  
13.1 Layout Guidelines ................................................. 18  
13.2 Layout Example .................................................... 18  
13.3 Thermal Considerations........................................ 18  
14 Device and Documentation Support ................. 19  
14.1 Device Support...................................................... 19  
14.2 Documentation Support ........................................ 19  
14.3 Related Links ........................................................ 19  
14.4 Trademarks........................................................... 19  
14.5 Electrostatic Discharge Caution............................ 19  
14.6 Glossary................................................................ 19  
9
10 Detailed Description ........................................... 11  
10.1 Overview ............................................................... 11  
10.2 Functional Block Diagrams ................................... 11  
10.3 Feature Description............................................... 11  
10.4 Device Functional Modes...................................... 12  
11 Applications and Implementation...................... 13  
15 Mechanical, Packaging, and Orderable  
Information ........................................................... 20  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (April 2014) to Revision B  
Page  
Changed format of Handling Ratings table. .......................................................................................................................... 3  
Added new note to Application and Implementation section................................................................................................ 13  
Renamed "Thermal Information" section to "Thermal Considerations" section. ................................................................. 18  
Changes from Original (August 2009) to Revision A  
Page  
Updated data sheet format..................................................................................................................................................... 1  
Changed the data sheet title From: LOW INPUT VOLTAGE STEP-UP CONVERTER IN 6 PIN SC-70 PACKAGE  
To: TPS6122x LOW INPUT VOLTAGE, 0.7V BOOST CONVERTER WITH 5.5μA QUIESCENT CURRENT ..................... 1  
Changed Feature bullet and Simplified Schematic text from "....1.8 V to 5.5 V" to "....1.8 V to 6 V"..................................... 1  
Deleted "machine model" ESD rating because JEDEC discontinued its use in 2012. ......................................................... 3  
Changed Overvoltage protect threshold min and VOUT max levels from 5.5V to 6V.............................................................. 4  
Changed Adjustable output voltage version description text string from "....voltage is 5.5 V" to "....voltage is 6.0 V" ........ 16  
Changed Layout diagram to correct typo in resistor numbers. ............................................................................................ 18  
2
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
(1)  
6 Device Comparison  
PACKAGE  
MARKING  
OUTPUT VOLTAGE  
DC/DC  
TA  
PACKAGE(1)  
PART NUMBER(2)  
Adjustable  
3.3 V  
CKR  
CKS  
CKT  
TPS61220DCK  
TPS61221DCK  
TPS61222DCK  
–40°C to 85°C  
6-pin SC-70  
5.0 V  
(1) Contact the factory to check availability of other fixed output voltage versions.  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) The DCK package is available taped and reeled. Add R suffix to device type (e.g., TPS61220DCKR) to order quantities of 3000 devices  
per reel. It is also available in minireels. Add a T suffix to the device type (i.e. TPS61220DCKT) to order quantities of 250 devices per  
reel.  
7 Pin Configuration and Functions  
DCK PACKAGE  
(TOP VIEW)  
VIN  
FB  
EN  
L
GND  
VOUT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
6
I
I
Enable input (1: enabled, 0: disabled). Must be actively tied high or low. Do not leave floating.  
Voltage feedback of adjustable version. Must be connected to VOUT at fixed output voltage versions.  
Control / logic and power ground  
FB  
2
GND  
L
3
5
I
I
Connection for Inductor  
VIN  
1
Boost converter input voltage  
VOUT  
4
O
Boost converter output voltage  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
TPS6122x  
–0.3 to 7.5  
–40 to 150  
UNIT  
V
VIN  
TJ  
Input voltage on VIN, L, VOUT, EN, FB  
Operating junction temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
8.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–65  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
–2  
2
kV  
kV  
001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
–1.5  
1.5  
(1) JEDEC document JEP155 states that 500V HBM rating allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250V CDM rating allows safe manufacturing with a standard ESD control process.  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
8.3 Recommended Operating Conditions  
MIN  
0.7  
NOM  
MAX  
5.5  
UNIT  
V
VIN  
TJ  
Supply voltage at VIN  
Operating virtual junction temperature  
–40  
125  
°C  
8.4 Thermal Information  
TPS6122x  
THERMAL METRIC(1)  
DCK  
6 PINS  
231.2  
61.8  
78.8  
2.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
78.0  
n/a  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
8.5 Electrical Characteristics  
over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature  
range of 25°C) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DC/DC STAGE  
VIN  
Input voltage  
0.7  
5.5  
0.7  
6.0  
V
V
V
VIN  
Minimum input voltage at startup  
TPS61220 output voltage  
RLoad 150 Ω  
VOUT  
VFB  
VOUT  
VOUT  
ILH  
VIN < VOUT  
1.8  
483  
TPS61220 feedback voltage  
TPS61221 output voltage (3.3 V)  
TPS61222 output voltage (5 V)  
Inductor current ripple  
500  
3.30  
5.00  
200  
400  
400  
1000  
700  
600  
550  
0.5%  
0.5%  
0.5  
513 mV  
VIN < VOUT  
VIN < VOUT  
3.20  
4.82  
3.41  
5.13  
V
V
mA  
mA  
mA  
mΩ  
mΩ  
mΩ  
mΩ  
VOUT = 3.3 V, VIN = 1.2 V, TA = 25°C  
VOUT = 3.3 V  
240  
200  
ISW  
switch current limit  
VOUT = 3.3 V  
RDSon_HSD Rectifying switch on resistance  
RDSon_LSD Main switch on resistance  
VOUT = 5.0 V  
VOUT = 3.3 V  
VOUT = 5.0 V  
Line regulation  
Load regulation  
VIN  
VIN < VOUT  
VIN < VOUT  
0.9 μA  
7.5 μA  
0.5 μA  
μA  
IQ  
Quiescent current  
IO = 0 mA, VEN = VIN = 1.2 V, VOUT = 3.3 V  
VOUT  
Shutdown current VIN  
5
ISD  
VEN = 0 V, VIN = 1.2 V, VOUT VIN  
0.2  
ILKG_VOUT Leakage current into VOUT  
ILKG_L Leakage current into L  
IFB  
VEN = 0 V, VIN = 1.2 V, VOUT = 3.3 V  
VEN = 0 V, VIN = 1.2 V, VL = 1.2 V, VOUT VIN  
1
0.01  
0.2 μA  
0.01 μA  
0.1 μA  
TPS61220 Feedback input current VFB = 0.5 V  
EN input current Clamped on GND or VIN (VIN < 1.5 V)  
IEN  
0.005  
CONTROL STAGE  
VIL  
VIH  
VIL  
VIH  
EN input low voltage  
VIN 1.5 V  
0.2 × VIN  
V
V
V
V
EN input high voltage  
EN input low voltage  
EN input high voltage  
VIN 1.5 V  
0.8 × VIN  
1.2  
5 V > VIN > 1.5 V  
5 V > VIN > 1.5 V  
0.4  
4
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
Electrical Characteristics (continued)  
over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature  
range of 25°C) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VUVLO  
Undervoltage lockout threshold for VIN decreasing  
turn off  
0.5  
0.7  
V
Overvoltage protection threshold  
Overtemperature protection  
Overtemperature hysteresis  
6.0  
7.5  
V
140  
20  
°C  
°C  
8.6 Typical Characteristics  
TABLE OF GRAPHS  
versus Input Voltage (TPS61220, TPS61221, TPS61222)  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Maximum Output Current  
versus Output Current, VOUT = 1.8 V, VIN = [0.7 V; 1.2 V; 1.5 V] (TPS61220)  
versus Output Current, VIN = [0.7 V; 1.2 V; 2.4 V; 3 V] (TPS61221)  
versus Output Current, VIN = [0.7 V; 1.2 V; 2.4V; 3.6 V; 4.2 V] (TPS61222)  
Efficiency  
versus Input Voltage, VOUT = 1.8 V, IOUT = [100 µA; 1 mA; 10 mA; 50 mA]  
(TPS61220)  
Figure 5  
versus Input Voltage, IOUT = [100 µA; 1 mA; 10 mA; 50 mA] (TPS61221)  
versus Input Voltage, IOUT = [100 µA; 1 mA; 10 mA; 50 mA] (TPS61222)  
at No Output Load, Device Enabled (TPS61220, TPS61221, TPS61222)  
versus Output Current, VOUT = 1.8 V, VIN = [0.7 V; 1.2 V] (TPS61220 )  
versus Output Current, VIN = [0.7 V; 1.2 V; 2.4 V] (TPS61221)  
Figure 6  
Figure 7  
Input Current  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Output Voltage  
versus Output Current, VIN = [0.7 V; 1.2 V; 2.4 V; 3.6 V] (TPS61222)  
versus Input Voltage, Device Disabled, RLOAD = [1 k; 10 k] (TPS6122x)  
Output Voltage Ripple, VIN = 0.8 V, VOUT = 1.8 V, IOUT = 20 mA (TPS61220)  
Output Voltage Ripple VIN = 1.8 V, IOUT = 50 mA (TPS61221)  
Load Transient Response, VIN = 1.2 V, IOUT = 6 mA to 50 mA (TPS61221)  
Load Transient Response, VIN = 2.4 V, IOUT = 14 mA to 126 mA (TPS61222)  
Line Transient Response, VIN = 1.8 V to 2.4 V, RLOAD = 100 (TPS61221)  
Line Transient Response, VIN = 2.8 V to 3.6 V, RLOAD = 100 (TPS61222)  
Startup after Enable, VIN = 0.7 V, VOUT = 1.8 V, RLOAD = 150 (TPS61220)  
Startup after Enable, VIN = 0.7 V, RLOAD = 150 , (TPS61222)  
Waveforms  
Continuous Current Operation, VIN = 1.2 V, VOUT = 1.8 V, IOUT = 50mA  
(TPS61220 )  
Figure 21  
Figure 22  
Discontinuous Current Operation, VIN = 1.2 V, VOUT = 1.8 V, IOUT = 10mA  
(TPS61220)  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
100  
90  
80  
70  
60  
50  
40  
30  
20  
300  
250  
200  
150  
TPS61221 V = 3.3 V  
O
V
= 1.5 V  
I
V
= 1.2 V  
I
V
= 0.7 V  
I
TPS61222 V = 5 V  
O
100  
50  
0
TPS61220 V = 1.8 V  
O
10  
0
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
4.7  
0.01  
0.1  
1
10  
100  
I
- Output Current - mA  
V
- Input Voltage - V  
O
I
VO = 1.8 V  
Figure 2. Efficiency versus Output Current and Input  
Voltage (TPS61220)  
Figure 1. Maximum Output Current versus Input Voltage  
(TPS61220, TPS61221, TPS61222)  
100  
90  
80  
70  
60  
100  
90  
80  
70  
V
= 3 V  
I
60  
50  
40  
30  
20  
V = 2.4 V  
I
V
= 4.2 V  
I
V
= 1.2 V  
I
V
= 3.6 V  
I
V
= 0.7 V  
V
= 2.4 V  
I
I
50  
40  
30  
20  
V
= 1.2 V  
I
V
= 0.7 V  
I
10  
0
10  
0
0.01  
0.1  
1
- Output Current - mA  
10  
100  
0.01  
0.1  
1
10  
100  
I
I
- Output Current - mA  
O
O
VO = 3.3 V  
VO = 5 V  
Figure 3. Efficiency versus Output Current and Input  
Figure 4. Efficiency versus Output Current and Input  
Voltage (TPS61221)  
Voltage (TPS61222)  
100  
100  
I
= 10 mA  
O
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
I
= 10 mA  
O
I
= 100 mA  
O
I
= 1 mA  
I
= 1 mA  
O
O
I
= 100 mA  
O
I
= 50 mA  
O
I
= 50 mA  
O
10  
0
10  
0
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
V
- Input Voltage - V  
I
V
- Input Voltage - V  
I
VO = 3.3 V  
VO = 1.8 V  
Figure 6. Efficiency versus Input Voltage and Output  
Current (TPS61221)  
Figure 5. Efficiency versus Input Voltage and Output  
Current (TPS61220)  
6
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
 
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
80  
70  
60  
50  
100  
80  
I
= 50 mA  
O
I
= 10 mA  
O
TPS61222, V  
= 5 V  
O
I
= 1 mA  
O
60  
I
= 100 mA  
O
TPS61221, V = 3.3 V  
O
40  
30  
20  
40  
TPS61220, V = 1.8 V  
O
20  
0
10  
0
1.7  
2.7  
- Input Voltage - V  
0.7  
4.7  
3.7  
0.7  
1.7  
2.7  
V - Input Voltage - V  
I
3.7  
4.7  
V
I
VO = 5 V  
Device enabled  
Figure 7. Efficiency versus Input Voltage and Output  
Current (TPS61222)  
Figure 8. No Load Input Current versus Input Voltage,  
Device Enabled (TPS61220, TPS61221, TPS61222)  
3.5  
1.9  
3.4  
1.85  
V
= 2.4 V  
I
V
= 1.2 V  
I
3.3  
3.2  
3.1  
1.8  
V
= 0.7 V  
I
V
= 0.7 V  
I
V
= 1.2 V  
1.75  
I
1.7  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
I
- Output Current - mA  
I - Output Current - mA  
O
O
VO = 1.8 V  
VO = 3.3 V  
Figure 9. Output Voltage versus Output Current and Input  
Figure 10. Output Voltage versus Output Current and Input  
Voltage (TPS61220)  
Voltage (TPS61221)  
4.5  
5.2  
4
3.5  
3
5.1  
V
= 3.6 V  
I
2.5  
2
R
= 10 kW  
LOAD  
5
4.9  
4.8  
V
= 2.4 V  
I
V
= 1.2 V  
I
1.5  
1
R
= 1 kW  
V
= 0.7 V  
LOAD  
I
0.5  
0
0.01  
0.1  
1
10  
100  
0.7  
1.2  
1.7  
2.2  
2.7  
V - Input Voltage - V  
I
3.2  
3.7  
4.2  
4.7  
5.2  
I
- Output Current - mA  
O
VO = 5 V  
VEN = 0 V  
Figure 11. Output Voltage versus Output Current and Input  
Voltage (TPS61222)  
Figure 12. Output Voltage versus Input Voltage, Device  
Disabled (TPS61220)  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
I
coil  
I
coil  
50 mA/div  
50 mA/div  
Offset: 0 V  
Offset: 0 A  
V
O
V
O
10 mA/div  
10 mV/div  
Offset: 3.31 V  
Offset: 1.8 V  
1 ms/div  
1 ms/div  
VI = 0.8 V  
VO = 1.8 V  
IO = 20 mA  
VI = 1.8 V  
VO = 3.3 V  
IO = 50 mA  
Figure 13. Output Voltage Ripple (TPS61220)  
Figure 14. Output Voltage Ripple (TPS61221)  
Offset: 0 A  
I
I
L
L
Offset: 0 A  
200 mA/div  
200 mA/div  
I
O
Offset: 0 A  
50 mA/div  
I
Offset: 0 A  
O
20 mA/div  
V
O
Offset: 3.31 V  
50 mV/div  
V
O
Offset: 5 V  
50 mV/div  
200 ms/div  
200 ms/div  
VI = 2.4 V  
IO = 14 mA to 126 mA  
VI = 1.2 V  
IO = 6 mA to 50 mA  
Figure 16. Load Transient Response (TPS61222)  
Figure 15. Load Transient Response (TPS61221)  
V
I
V
I
200 mV/div  
200 mV/div  
Offset: 2.8 V  
Offset: 1.8 V  
V
O
V
O
20 mV/div  
20 mV/div  
Offset: 3.3 V  
Offset: 5 V  
V 1.8 to 2.4 V, R  
LOAD  
= 100 W, t  
= t = 20 ms  
fall  
I
rise  
200 ms/div  
200 ms/div  
VI = 2.8 V to 3.6 V  
RLOAD = 100 Ω  
trise = tfall = 20 ms  
VI = 2.4 V to 2.4 V  
RLOAD = 100 Ω  
trise = tfall = 20 ms  
Figure 18. Line Transient Response (TPS61222)  
Figure 17. Line Transient Response (TPS61221)  
8
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
Offset: 0 V  
Offset: 0 A  
V
V
EN  
EN  
Offset: 0 V  
Offset: 0 A  
500 mV/div  
500 mV/div  
I
I
coil  
coil  
100 mA/div  
100 mA/div  
Offset: 0 V  
Offset: 0 V  
V
L
V
L
1 V/div  
2 V/div  
Offset: 0 V  
Offset: 0 V  
V
O
V
O
2 V/div  
1 V/div  
500 ms/div  
500 ms/div  
VI = 0.7 V  
VO = 3.3 V  
RLOAD = 50 Ω  
VI = 0.7 V  
VO = 1.8 V  
RLOAD = 150 Ω  
Figure 20. Startup After Enable (TPS61221)  
Figure 19. Startup After Enable (TPS61120)  
I
coil  
I
coil  
100 mA/div  
100 mA/div  
Offset: 0 A  
Offset: 0 A  
V
L
V
L
2 V/div  
2 V/div  
Offset: 0 V  
Offset: 0 V  
V
O
V
O
10 mV/div  
10 mV/div  
Offset: 1.8 V  
Offset: 1.8 V  
1 ms/div  
1 ms/div  
VI = 1.2 V  
VO = 1.8 V  
IO = 50 mA  
VI = 1.2 V  
VO = 1.8 V  
IO = 10 mA  
Figure 21. Continuous Current Operation (TPS61220)  
Figure 22. Discontinuous Current Operation (TPS61220)  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
9 Parameter Measurement Information  
L1  
L
VOUT  
FB  
V
OUT  
R1  
R2  
V
VIN  
EN  
C2  
IN  
C1  
GND  
TPS6122x  
Table 1. List Of Components:  
COMPONENT  
REFERENCE  
PART NUMBER  
MANUFACTURER  
VALUE  
C1  
C2  
L1  
GRM188R60J106ME84D  
GRM188R60J106ME84D  
EPL3015-472MLB  
Murata  
Murata  
Coilcraft  
10 μF, 6.3V. X5R Ceramic  
10 μF, 6.3V. X5R Ceramic  
4.7 μH  
adjustable version: Values depending on the  
programmed output voltage  
R1, R2  
fixed version: R1= 0 , R2 not used  
10  
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
10 Detailed Description  
10.1 Overview  
The TPS6122x is a high performance, high efficient family of switching boost converters. To achieve high  
efficiency, the power stage is realized as a synchronous-boost topology. For the power switching, two actively-  
controlled low-RDSon power MOSFETs are implemented.  
10.2 Functional Block Diagrams  
L
VOUT  
L
VOUT  
VOUT  
VIN  
VOUT  
VIN  
Gate  
Driver  
Gate  
Driver  
Start Up  
Start Up  
VIN  
VIN  
Current  
Sensor  
Current  
Sensor  
FB  
Device  
Control  
Device  
Control  
FB  
EN  
EN  
VREF  
VREF  
GND  
GND  
Figure 23. Functional Block Diagram (Adjustable  
Version)  
Figure 24. Functional Block Diagram (Fixed Output  
Voltage Version)  
10.3 Feature Description  
10.3.1 Controller Circuit  
The device is controlled by a hysteretic current mode controller. This controller regulates the output voltage by  
keeping the inductor ripple current constant in the range of 200 mA and adjusting the offset of this inductor  
current depending on the output load. If the required average input current is lower than the average inductor  
current defined by this constant ripple current, the inductor current becomes discontinuous to keep the efficiency  
high under low-load conditions.  
IL  
Continuous Current Operation  
Discontinuous Current Operation  
200 mA  
(typ.)  
200 mA  
(typ.)  
t
Figure 25. Hysteretic Current Operation  
The output voltage VOUT is monitored via the feedback network which is connected to the voltage error amplifier.  
To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage  
reference and adjusts the required offset of the inductor current accordingly. In fixed output voltage devices, an  
internal feedback network is used to program the output voltage. In adjustable versions an external resistor  
divider is required.  
The self-oscillating hysteretic current mode architecture is inherently stable and allows fast response to load  
variations. This architecture also allows using a wide range of inductor and capacitor values.  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
Feature Description (continued)  
10.3.2 Device Enable And Shutdown Mode  
The device is enabled when EN is driven high, and shut down when EN is low. During shutdown, the converter  
stops switching and all internal control circuitry is turned off. During shutdown, the input voltage is connected to  
the output through the back-gate diode of the rectifying MOSFET. This means that voltage is always present at  
the output, which can be as high as the input voltage or lower depending on the load.  
10.3.3 Startup  
After the EN pin is tied high, the device begins to operate. If the input voltage is not high enough to supply the  
control circuit properly, a startup oscillator operates the switches. During this phase, the switching frequency is  
controlled by the oscillator, and the maximum switch current is limited. When the device has built up the output  
voltage to approximately 1.8V, high enough to supply the control circuit, the device switches to its normal  
hysteretic current mode operation. The startup time depends on input voltage and load current.  
10.3.4 Operation At Output Overload  
If, in normal boost operation, the inductor current reaches the internal switch current limit threshold, the main  
switch is turned off to stop further increase of the input current. In this case the output voltage will decrease  
because the device cannot provide sufficient power to maintain the set output voltage.  
If the output voltage drops below the input voltage, the backgate diode of the rectifying switch becomes forward  
biased, and current starts to flow through it. This diode cannot be turned off, so the current finally is only limited  
by the remaining DC resistances. As soon as the overload condition is removed, the converter resumes providing  
the set output voltage.  
10.3.5 Undervoltage Lockout  
An undervoltage lockout function stops the operation of the converter if the input voltage drops below the typical  
undervoltage lockout threshold. This function is implemented in order to prevent converter malfunction.  
10.3.6 Overvoltage Protection  
If, for any reason, the output voltage is not fed back properly to the input of the voltage amplifier, control of the  
output voltage is lost. Therefore an overvoltage protection is implemented to avoid the output voltage exceeding  
critical values for the device and possibly for the system it is supplying. For this protection, the TPS6122x output  
voltage is also monitored internally. If it reaches the internally programmed threshold of 6.5 V, typically the  
voltage amplifier regulates (limits) the output voltage to this value.  
If the TPS6122x is used to drive LEDs, this feature protects the circuit if the LED fails.  
10.3.7 Overtemperature Protection  
The device has a built-in temperature sensor which monitors the internal IC junction temperature. If the  
temperature exceeds the programmed threshold (see electrical characteristics table), the device stops operating.  
As soon as the IC temperature has decreased below the programmed threshold, it starts operating again. To  
prevent unstable operation close to the region of overtemperature threshold, a built-in hysteresis is implemented.  
10.4 Device Functional Modes  
Enabled or disabled  
Continuous or discontinuous current operation  
Protective mechanisms  
Output Overload  
Undervoltage  
Overvoltage  
Overtemperature  
12  
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
 
 
 
 
 
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
11 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The TPS6122x family devices provide a power-supply solution for products powered by either a single-cell, two-  
cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery. Use the following design  
procedure to select component values for the TPS61220 device and the TPS61222 device. Alternatively, use the  
SwitcherPro™ tool. This section presents a simplified discussion of the design process.  
11.2 Typical Applications  
11.2.1 Specific Application, Fixed Output Voltage Supply  
L1  
L
VOUT  
FB  
V
OUT  
V
VIN  
EN  
C2  
IN  
C1  
GND  
TPS6122x  
fixed output voltage  
Figure 26. Typical Application Circuit For Fixed Output Voltage Option  
11.2.1.1 Design Requirements  
Single 5 V output at up to 60 mA  
Power source, two AA alkaline cells  
Greater than 90% conversion efficiency  
11.2.1.2 Detailed Design Procedure  
11.2.1.2.1 Device Choice  
The TPS61222 DC/DC converter is intended for systems powered by anything from a single cell through up to  
three Alkaline, NiCd or NiMH cells with a total typical pin voltage between 0.7 V and 5.5 V. They can also be  
used in systems powered by one-cell Li-Ion or Li-Polymer batteries with a typical voltage between 2.5 V and 4.2  
V. Additionally, any other voltage source with a typical output voltage between 0.7 V and 5.5 V can be used with  
the TPS61222.  
11.2.1.2.2 Programming The Output Voltage  
In the fixed-voltage version used for this example, the output voltage is set by an internal resistor divider. The FB  
pin is used to sense the output voltage. To configure the device properly, connect the FB pin directly to VOUT as  
shown in Figure 26.  
11.2.1.2.3 Inductor Selection  
To make sure that the device can operate, a suitable inductor must be connected between pin VIN and pin L.  
Inductor values of 4.7 μH show good performance over the whole input and output voltage range.  
Choosing other inductance values affects the switching frequency f proportional to 1/L as shown in Equation 1.  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
 
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
Typical Applications (continued)  
V ´(VOUT - V )  
´
1
IN  
IN  
L =  
f ´ 200 mA  
VOUT  
(1)  
Choosing inductor values higher than 4.7 μH can improve efficiency due to reduced switching frequency and  
therefore with reduced switching losses. Using inductor values below 2.2 μH is not recommended.  
Having selected an inductance value, the peak current for the inductor in steady-state operation can be  
calculated. Equation 2 gives the peak-current estimate.  
V
´ IOUT  
ì
ï
í
OUT  
+ 100 mA; continous current operation  
discontinuous current operation  
0.8´ V  
IL,MAX  
=
IN  
ï
200 mA;  
î
(2)  
Equation 2 provides a suitable inductor current rating. However, remember that load transients and error  
conditions may cause higher inductor currents.  
Equation 3 provides an easy way to estimate whether the device will work in continuous or discontinuous  
operation depending on the operating points. As long as the Equation 3 is true, continuous operation is typically  
established. If Equation 3 becomes false, discontinous operation is typically established.  
VOUT ´IOUT  
> 0.8´100 mA  
V
IN  
(3)  
The following inductor series from different suppliers have been used with TPS6122x converters:  
Table 2. List Of Inductors  
VENDOR  
INDUCTOR SERIES  
EPL3015  
Coilcraft  
EPL2010  
Murata  
LQH3NP  
Tajo Yuden  
Wurth Elektronik  
NR3015  
WE-TPC Typ S  
11.2.1.2.4 Capacitor Selection  
11.2.1.2.4.1 Input Capacitor  
An input capacitor value of at least 10 μF is recommended to improve transient behavior of the regulator and  
EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and  
GND pins of the IC is recommended.  
11.2.1.2.4.2 Output Capacitor  
For the output capacitor C2, small ceramic capacitors are recommended, placed as close as possible to the  
VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which  
cannot be placed close to the IC, the use of a small ceramic capacitor with a capacitance value of around 2.2μF  
in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the  
VOUT and GND pins of the IC.  
A minimum capacitance value of 4.7 μF should be used, 10 μF is recommended. If the inductor value exceeds  
4.7 μH, the value of the output capacitance value needs to be half the inductance value or higher for stability  
reasons, see Equation 4.  
(4)  
14  
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
 
 
 
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
The TPS6122x is not sensitive to the ESR in terms of stability. However, low ESR capacitors, such as ceramic  
capacitors, are recommended anyway to minimize output voltage ripple. If heavy load changes are expected,  
increase the output capacitor value to avoid output voltage drops during fast load transients.  
11.2.1.3 Application Curves  
Figure 27 shows the excellent efficiency of the converter, which remains above 80% even with heavily  
discharged cells.  
100  
80  
I
= 50 mA  
O
I
= 10 mA  
O
I
= 1 mA  
O
60  
40  
I
= 100 mA  
O
20  
0
1.7  
2.7  
V - Input Voltage - V  
0.7  
4.7  
3.7  
I
Figure 27. TPS61222 Performance  
11.2.2 Specific Application, Variable Output Voltage Supply  
L1  
L
VOUT  
FB  
V
OUT  
R1  
R2  
V
VIN  
EN  
C2  
IN  
C1  
GND  
TPS6122x  
Figure 28. Application Circuit For Adjustable Output Voltage Option  
11.2.2.1 Design Requirements  
Single 4.2 V output at up to 50 mA  
Power source, two AA alkaline cells  
Greater than 80% conversion efficiency  
11.2.2.2 Detailed Design Procedure  
The design procedure for this application is identical to that for the fixed-output supply except for programming  
the output voltage.  
11.2.2.2.1 Device Selection  
This application example uses the TPS61220 so that the output voltage can be set at 4.2 V.  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
 
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
11.2.2.2.2 Programming The Output Voltage  
In the adjustable output versions, an external resistor divider is used to adjust the output voltage. The resistor  
divider must be connected between VOUT, FB and GND as shown in Figure 28. When the output voltage is  
regulated properly, the typical voltage value at the FB pin is 500 mV for the adjustable devices. The maximum  
recommended value for the output voltage is 6.0 V. The current through the resistor divider should be about 100  
times greater than the current into the FB pin. The typical current into the FB pin is 0.01 μA, and the voltage  
across the resistor between FB and GND, R2, is typically 500 mV. Based on those two values, the recommended  
value for R2 should be lower than 500 k, in order to set the divider current to 1 μA or higher. The value of the  
resistor connected between VOUT and FB, R1, depending on the needed output voltage (VOUT), can be  
calculated using Equation 5:  
æ
ç
è
ö
÷
ø
V
OUT  
R
= R  
x
2
- 1  
1
V
FB  
(5)  
For this example, if an output voltage of 4.2 V is needed, a 1.2-Mresistor is calculated for R1 when 160 kis  
selected for R2. This would yield an output voltage of 4.25 V, neglecting resistor tolerances.  
11.2.2.2.3 Inductor Selection  
See Inductor Selection for a discussion on inductor choice.  
11.2.2.2.4 Capacitor Selection  
The procedure for selecting capacitors is the same as for the fixed output voltage circuit. See Capacitor  
Selection.  
11.2.2.3 Application Curves  
Figure 29 shows the excellent efficiency of the converter, which remains above 80% with heavily discharged  
cells.  
100  
80  
I
= 50 mA  
O
I
= 10 mA  
O
I
= 1 mA  
O
60  
40  
I
= 100 mA  
O
20  
0
1.7  
2.7  
V - Input Voltage - V  
0.7  
4.7  
3.7  
I
Figure 29. TPS61220 Performance  
16  
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
 
 
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
12 Power Supply Recommendations  
12.1 Typical Power Sources  
The high conversion efficiency of this device encourages the use of a wide range of battery types. Photovoltaic  
cells and large capacitors ('supercapacitors') may also serve as power sources within the limits specified in  
Recommended Operating Conditions.  
12.2 Input Voltage Effects On Output Current and Efficiency  
The TPS6122x devices have a wide input-voltage range, and deliver enough current to be applicable to many  
portable applications. However, at lower extremes of input voltage, less output current is available, and efficiency  
is somewhat less. Figure 1 - Figure 11 show the tradeoffs between input voltage, output current capacity and  
conversion efficiency, and allow the designer to plan how far to discharge a battery array before system  
shutdown occurs.  
12.3 Behavior While Disabled  
When the device is disabled, the output voltage follows the power-source voltage as shown in Figure 12.  
12.4 Startup  
See the description of the Startup sequence for more information.  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
13 Layout  
13.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.  
The feedback divider in an application using the TPS61220 should be placed as close as possible to the control  
ground pin of the IC. To route the ground path from the resistor divider, use short traces as well, separated from  
the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power  
ground current and control ground current. Assure that the ground traces are connected close to the device GND  
pin.  
13.2 Layout Example  
L1  
VOUT  
C2  
VIN  
C1  
GND  
GND  
R2  
R1  
Figure 30. PCB Layout Suggestion For Adjustable Output Voltage Options  
13.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below.  
Improving the power-dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow in the system  
For more details on how to use the thermal parameters in the dissipation ratings table please check the Thermal  
Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).  
18  
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
www.ti.com  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
14 Device and Documentation Support  
14.1 Device Support  
14.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
14.1.2 Development Support  
TPS61220EVM-319 Evaluation Module  
SwitcherPro Switching Power Supply Design Tool (Circuit Design & Simulation)  
14.2 Documentation Support  
14.2.1 Related Documentation  
Gas Sensor Platform Reference Design  
Wireless Heart Monitor with Bluetooth Low Energy  
14.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TPS61220  
TPS61221  
TPS61222  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
14.4 Trademarks  
SwitcherPro is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2009–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS61220 TPS61221 TPS61222  
TPS61220, TPS61221, TPS61222  
SLVS776B JANUARY 2009REVISED NOVEMBER 2014  
www.ti.com  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
20  
Submit Documentation Feedback  
Copyright © 2009–2014, Texas Instruments Incorporated  
Product Folder Links: TPS61220 TPS61221 TPS61222  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2014  
PACKAGING INFORMATION  
Orderable Device  
TPS61220DCKR  
TPS61220DCKT  
TPS61221DCKR  
TPS61221DCKT  
TPS61222DCKR  
TPS61222DCKT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
6
6
6
6
6
6
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
CKR  
CKR  
CKS  
CKS  
CKT  
CKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DCK  
DCK  
DCK  
DCK  
DCK  
250  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2014  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS61222 :  
Enhanced Product: TPS61222-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Nov-2014  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61220DCKR  
TPS61220DCKR  
TPS61220DCKT  
TPS61220DCKT  
TPS61221DCKR  
TPS61221DCKR  
TPS61221DCKT  
TPS61221DCKT  
TPS61222DCKR  
TPS61222DCKR  
TPS61222DCKT  
TPS61222DCKT  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
250  
179.0  
178.0  
179.0  
178.0  
179.0  
178.0  
179.0  
178.0  
178.0  
179.0  
179.0  
178.0  
8.4  
9.0  
8.4  
9.0  
8.4  
9.0  
8.4  
9.0  
9.0  
8.4  
8.4  
9.0  
2.2  
2.4  
2.2  
2.4  
2.2  
2.4  
2.2  
2.4  
2.4  
2.2  
2.2  
2.4  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Nov-2014  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61220DCKR  
TPS61220DCKR  
TPS61220DCKT  
TPS61220DCKT  
TPS61221DCKR  
TPS61221DCKR  
TPS61221DCKT  
TPS61221DCKT  
TPS61222DCKR  
TPS61222DCKR  
TPS61222DCKT  
TPS61222DCKT  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
250  
203.0  
180.0  
203.0  
180.0  
203.0  
180.0  
203.0  
180.0  
180.0  
203.0  
203.0  
180.0  
203.0  
180.0  
203.0  
180.0  
203.0  
180.0  
203.0  
180.0  
180.0  
203.0  
203.0  
180.0  
35.0  
18.0  
35.0  
18.0  
35.0  
18.0  
35.0  
18.0  
18.0  
35.0  
35.0  
18.0  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

TPS61221DCKT

具有 5.5μA 静态电流的 0.7V 输入电压、3.3V 固定输出电压升压转换器 | DCK | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222

TPS6122x Low Input Voltage, 0.7V Boost Converter With 5.5μA Quiescent Current

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222-EP

具有 5.5μA 静态电流的 0.7V 输入电压、5V 固定输出电压升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222DCK

LOW INPUT VOLTAGE STEP-UP CONVERTER IN 6 PIN SC-70 PACKAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222DCKR

5V output voltage, tiny low input voltage boost converter 6-SC70 -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222DCKT

5V output voltage, tiny low input voltage boost converter 6-SC70 -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222MDCKTEP

具有 5.5μA 静态电流的 0.7V 输入电压、5V 固定输出电压升压转换器 | DCK | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230

5A 可调节输出电压高效同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230A

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230ARNSR

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器 | RNS | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230ARNST

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器 | RNS | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230DRCR

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI