TPS61256AYFFR [TI]

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5V、1A 负载升压转换器 | YFF | 9 | -40 to 85;
TPS61256AYFFR
型号: TPS61256AYFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5V、1A 负载升压转换器 | YFF | 9 | -40 to 85

升压转换器
文件: 总30页 (文件大小:4139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
采用芯片级封装并具有 2.3A 电流限制的 TPS61256A 3.5MHz 高效升压转  
换器  
1 特性  
借助 2.5V-5.5V 的宽输入电压范围,该器件支持由各  
种电压的锂离子电池进行供电的 应用 并提供 5.0V 的  
固定输出电压。  
1
运行频率为 3.5MHz 时,效率 93%  
36µA 静态电流  
2.5V 5.5V 的宽输入电压范围  
VOUT = 5.0V, VIN 3.3V 时,IOUT 1000mA  
DC 电压输出总精度为 ±2%  
轻负载频率脉冲调制 (PFM) 模式  
关断期间的真正负载断开  
TPS61256A 3.5MHz 的调节开关频率下运行,在轻  
负载电流情况下会进入省电模式,以便在整个负载电流  
范围内保持高效率。PFM 模式可在轻负载工作时将静  
态电流降至 36μA(典型值),从而可延长电池使用寿  
命。关断模式下的输入电流低于 5µA,从而最大程度  
地延长电池寿命。  
热关断和过载保护  
只需三个表面贴装外部组件  
总解决方案尺寸 < 35mm2  
9 引脚 NanoFreeTM(CSP) 封装  
TPS61256A 能够最大限度地减少外部组件的数量,因  
此具有很小的解决方案尺寸。为了实现小解决方案尺  
寸,允许使用小型电感器和输入电容器。在关断期间,  
负载从电池上完全断开。  
2 应用范围  
手机、智能电话  
这些器件具有有限的内置 ESD 保护功能。存储或装卸  
时,应将导线短接在一起或将器件放置于导电泡棉中,  
以防止 MOS 门极遭受静电损伤。  
平板电脑  
单声道和立体声 APA “应用列表的  
器件信息(1)  
3 说明  
器件型号  
TPS61256A  
封装  
封装尺寸(标称值)  
TPS61256A 器件为电池供电的便携式 应用提供了一个  
电源解决方案。旨在面向低功耗 应用的 TPS61256A  
支持来自一节电池(放电电压低至 2.7V)的高达  
800mA 的负载电流,并且允许使用低成本芯片电感器  
和电容器。  
1.206mm x  
1.306mm  
YFF  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
效率与负载电流间的关系  
最小解决方案尺寸应用  
VOUT  
5.0V @ 800mA  
VO = 5.0 V  
TPS61256A  
100  
L
L
VOUT  
90  
80  
70  
VIN  
2.7 V .. 4.8 V  
1 μH  
VIN  
EN  
CO  
22 uF  
CI  
10 μF  
GND  
60  
50  
40  
30  
20  
10  
0
Copyright © 2018, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSB07  
 
 
 
 
 
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
目录  
8.7 Feature Description................................................. 10  
8.8 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Application ................................................. 13  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Softstart..................................................................... 9  
8.3 Undervoltage Lockout ............................................... 9  
8.4 Thermal Regulation................................................... 9  
8.5 Thermal Shutdown.................................................... 9  
8.6 Functional Block Diagram ....................................... 10  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
11.3 Thermal Information.............................................. 19  
12 Package Summary .............................................. 20  
12.1 Package Dimensions ............................................ 20  
13 器件和文档支持 ..................................................... 21  
13.1 器件支持 ............................................................... 21  
13.2 接收文档更新通知 ................................................. 21  
13.3 社区资源................................................................ 21  
13.4 ....................................................................... 21  
13.5 静电放电警告......................................................... 21  
13.6 Glossary................................................................ 21  
14 机械、封装和可订购信息....................................... 22  
7
8
4 修订历史记录  
Changes from Original (July 2011) to Revision A  
Page  
首次公开发布数据表。  
...................................................................................................................................................................................... 1  
如需了解新数据表格式和添加的部分,请参阅目录。  
...................................................................................................................................................................................... 2  
2
Copyright © 2011–2018, Texas Instruments Incorporated  
 
 
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
5 Pin Configuration and Functions  
YFF Package  
9-Bump DSBGA  
Top View  
A1 A2 A3  
A3 A2 A1  
B1 B2 B3  
C1 C2 C3  
B3 B2 B1  
C3 C2 C1  
Pin Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
This is the enable pin of the device. Connecting this pin to ground forces the device into shutdown  
mode. Pulling this pin high enables the device. This pin must not be left floating and must be  
terminated.  
EN  
B3  
I
GND  
SW  
C1, C2, C3  
B1, B2  
A3  
Ground pin.  
I/O  
I
This is the switch pin of the converter and is connected to the drain of the internal Power MOSFETs.  
VIN  
Power supply input.  
VOUT  
A1, A2  
O
Boost converter output.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
V
Input voltage  
Voltage at VIN(2), VOUT(2), SW(2), EN(2)  
Steady state DC current into SW  
–0.3 to 7  
2.3  
Input current  
A
Power dissipation  
Internally limited  
(3)  
Operationg temperature range, TA  
–40 to 85  
–40 to 150  
–65 to 150  
°C  
°C  
°C  
Temperature range  
Operating virtual junction, TJ  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), the  
maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(max)= TJ(max)–(θJA X PD(max)). To achieve optimum performance, it is  
recommended to operate the device with a maximum junction temperature of 105°C.  
Copyright © 2011–2018, Texas Instruments Incorporated  
3
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
±2000  
V
Electrostatic  
discharge  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(3)  
(1)  
V(ESD)  
±1000  
±200  
V
V
Machine Model - (MM)  
(1) The human body model is a 100-pF capacitor discharged through a 1.5-kresistor into each pin. The machine model is a 200-pF  
capacitor discharged directly into each pin.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
MIN  
2.5  
55  
NOM  
MAX UNIT  
VI  
Input voltage range  
4.85  
V
Ω
RL  
L
Minimum resistive load for start-up  
Inductance  
0.7  
10  
1.0  
20  
2.9  
50  
µH  
µF  
°C  
°C  
CO  
TA  
TJ  
Output capacitance  
Ambient temperature  
Operating junction temperature  
–40  
–40  
85  
125  
6.4 Thermal Information  
TPS61256A  
YFF  
THERMAL METRIC  
UNIT  
9 PINS  
108.3  
1.0  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.2  
ψJB  
17.9  
6.5 Electrical Characteristics  
Minimum and maximum values are at VIN = 2.5V to 5.5V, VOUT = 5.0V (or VIN, whichever is higher), EN = 1.8V, TA = –40°C to  
85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at VIN = 3.6V, VOUT  
= 5.0V, EN = 1.8V, TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY CURRENT  
Operating quiescent current  
into VIN  
33  
7
45  
15  
µA  
µA  
IOUT = 0mA, VOUT = 5.0V, VIN = 3.6V  
EN = VIN  
Device not switching  
IQ  
Operating quiescent current  
into VOUT  
ISD  
Shutdown current  
EN = GND  
Falling  
0.85  
2.0  
5.0  
2.1  
μA  
V
VUVLO  
Under-voltage lockout threshold  
Hysteresis  
0.1  
V
ENABLE  
VIL  
Low-level input voltage  
High-level input voltage  
Input leakage current  
0.4  
0.5  
V
V
VIH  
1.0  
Ilkg  
Input connected to GND or VIN  
µA  
4
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
Electrical Characteristics (接下页)  
Minimum and maximum values are at VIN = 2.5V to 5.5V, VOUT = 5.0V (or VIN, whichever is higher), EN = 1.8V, TA = –40°C to  
85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at VIN = 3.6V, VOUT  
= 5.0V, EN = 1.8V, TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
OUTPUT  
2.5V VIN 4.85V, IOUT = 0mA  
PWM operation. Open Loop  
4.92  
4.9  
5.0 5.08  
V
V
VOUT  
DC output voltage accuracy  
2.5V VIN 4.85V, 0mA IOUT 650mA  
3.3V VIN 4.85V, 0mA IOUT 1000mA  
PFM/PWM operation  
5.0  
5.2  
Power-save mode output ripple voltage  
PWM mode output ripple voltage  
PFM operation, IOUT = 1mA  
30  
15  
mVpk  
mVpk  
ΔVOUT  
PWM operation, IOUT = 200mA  
POWER SWITCH  
High-side MOSFET on resistance  
170  
100  
mΩ  
mΩ  
µA  
rDS(on)  
Low-side MOSFET on resistance  
Reverse leakage current into VOUT  
Pre-charge current limit  
Ilkg  
EN = GND  
3.5  
165  
215  
265  
mA  
mA  
°C  
ILIM  
Switch valley current limit  
EN = VIN. Open Loop  
1900  
2400 2900  
Overtemperature protection  
Overtemperature hysteresis  
140  
20  
°C  
OSCILLATOR  
fOSC  
Oscillator frequency  
VIN = 3.6V  
3.5  
MHz  
µs  
TIMING  
IOUT = 0mA  
Time from active EN to VOUT  
Start-up time  
700  
版权 © 2011–2018, Texas Instruments Incorporated  
5
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
100  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
V = 3.3 V  
I
V = 3.6 V  
I
95  
90  
85  
80  
75  
70  
65  
60  
V = 4.5 V  
I
= 100 mA  
I
O
I
= 300 mA  
O
V = 3 V  
I
V = 2.7 V  
I
V = 2.5 V  
I
I
= 10 mA  
O
I
= 800 mA  
O
55  
50  
72  
70  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V - Input Voltage - V  
I
0.1  
1
10  
100  
1000  
I
- Output Current - mA  
O
2. Efficiency vs Input Voltage  
1. Efficiency vs Output Current  
5.1  
5.05  
5
5.05  
V = 4.5 V  
I
5
4.95  
4.9  
V = 4.2 V  
I
V = 4.5 V  
I
V = 5 V  
I
V = 2.5 V  
I
V = 2.7 V  
I
V = 3.6 V  
I
V = 3 V  
I
V = 2.5 V  
I
V = 3.3 V  
I
V = 3.6 V  
I
4.95  
4.9  
4.85  
4.8  
500  
700  
900 1100 1300 1500 1700 1900  
0.1  
1
10  
100  
1000  
I
- Output Current - mA  
I
- Output Current - mA  
O
O
4. DC Output Voltage vs Output Current  
3. DC Output Voltage vs Output Current  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
5.55  
V
= 5 V  
5.5  
5.45  
5.4  
O
PWM Operation  
T
= -40°C  
A
5.35  
5.3  
I
= 800 mA  
O
T
= 25°C  
A
I
= 500 mA  
O
5.25  
5.2  
I
= 100 mA  
O
T
A
= 85°C  
5.15  
5.1  
I
= 10 mA  
O
5.05  
700  
500  
5
4.95  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V - Input Voltage - V  
I
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
V - Input Voltage - V  
I
5. DC Output Voltage vs Input Voltage  
6. Maximum Output Currentvs Input Voltage  
版权 © 2011–2018, Texas Instruments Incorporated  
6
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
Typical Characteristics (接下页)  
60  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
V
= 5 V  
V
I
= 5 V  
O
PFM/PWM Operation  
O
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
= 0 mA  
O
V = 2.7 V  
I
T
= 85°C  
A
V = 3.3 V  
I
T
= 25°C  
A
V = 3.6 V  
I
V = 4.5 V  
I
T
= -40°C  
A
5
0
20  
15  
0
100 200 300 400 500 600 700 800 900 1000  
- Output Current - mA  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9  
V - Input Voltage - V  
I
I
O
7. Peak-To-Peak Output Ripple Voltage vs Output Current  
8. Supply Currentvs Input Voltage  
250  
245  
240  
235  
230  
250  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
V = 2.7 V,  
V = 3.6 V,  
I
I
V = 3.6 V,  
T
= 25°C  
T
= 25°C  
I
A
V = 4.5 V,  
A
I
T
= 85°C  
A
T
= 25°C  
A
V = 3.6 V,  
I
V = 3.6 V,  
I
T
= 25°C  
A
T
= -40°C  
A
155  
150  
155  
150  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5  
Differential Input - Output Voltage - V  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Differential Input - Output Voltage - V  
3
3.3 3.6  
10. DC Pre-Charge Currentvs Differential Input-Output  
9. DC Pre-Charge Currentvs Differential Input-Output  
Voltage  
Voltage  
30  
200  
V = 3.6 V  
I
Sample Size = 200  
V
= 5 V  
O
180  
160  
140  
120  
100  
80  
T
= 130°C  
J
25  
20  
15  
10  
T
J
= 25°C  
Rectifier MOSFET  
T
= -20°C  
J
Switch MOSFET  
60  
40  
5
0
20  
0
-30  
-10  
10  
30  
50  
70  
90  
110 130  
T
- Junction Temperature - °C  
J
I
- Valley Current Limit - mA  
LIM  
12. MOSFET Rds(On) vs Temperature  
11. Valley Current Limit  
版权 © 2011–2018, Texas Instruments Incorporated  
7
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
TPS61256A  
L
L
VOUT  
VOUT  
1 μH  
VIN  
EN  
VIN  
CO  
22 uF  
CI  
10 μF  
GND  
Copyright © 2018, Texas Instruments Incorporated  
1. List of Components  
REFERENCE  
DESCRIPTION  
PART NUMBER, MANUFACTURER  
DFE322512C-1R0N, TOKO  
L
1.0μH, 2.5A, 50mΩ, 3.2 x 2.5 x 1.2mm max. height  
10μF, 6.3V, 0603, X5R ceramic  
CI  
CO  
GRM188R60J106ME84, muRata  
GRM32ER71A226K, muRata  
22μF, 10V, 1210, X5R ceramic  
8
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
8 Detailed Description  
8.1 Overview  
The TPS61256A synchronous step-up converter typically operates at a quasi-constant 3.5-MHz frequency pulse  
width modulation (PWM) at moderate to heavy load currents. At light load currents, the TPS61256A converter  
operates in power-save mode with pulse frequency modulation (PFM).  
During PWM operation, the converter uses a novel quasi-constant on-time valley current mode control scheme to  
achieve excellent line/load regulation and allows the use of a small ceramic inductor and capacitors. Based on  
the VIN/VOUT ratio, a simple circuit predicts the required on-time.  
At the beginning of the switching cycle, the low-side N-MOS switch is turned-on and the inductor current ramps  
up to a peak current that is defined by the on-time and the inductance. In the second phase, once the on-timer  
has expired, the rectifier is turned-on and the inductor current decays to a preset valley current threshold. Finally,  
the switching cycle repeats by setting the on timer again and activating the low-side N-MOS switch.  
In general, a dc/dc step-up converter can only operate in "true" boost mode, i.e. the output “boosted” by a certain  
amount above the input voltage. The TPS61256A device operates differently as it can smoothly transition in and  
out of zero duty cycle operation. Therefore the output can be kept as close as possible to its regulation limits  
even though the converter is subject to an input voltage that tends to be excessive. Refer to the typical  
characteristics section (DC Output Voltage vs. Input Voltage) for further details.  
The current mode architecture with adaptive slope compensation provides excellent transient load response,  
requiring minimal output filtering. Internal soft-start and loop compensation simplifies the design process while  
minimizing the number of external components.  
8.2 Softstart  
The TPS61256A device has an internal softstart circuit that limits the inrush current during start-up. The first step  
in the start-up cycle is the pre-charge phase. During pre-charge, the rectifying switch is turned on until the output  
capacitor is charged to a value close to the input voltage. The rectifying switch is current limited (approx. 200mA)  
during this phase. This mechanism is used to limit the output current under short-circuit condition.  
Once the output capacitor has been biased to the input voltage, the converter starts switching. The soft-start  
system progressively increases the on-time as a function of the input-to-output voltage ratio. As soon as the  
output voltage is reached, the regulation loop takes control and full current operation is permitted.  
8.3 Undervoltage Lockout  
The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and the battery  
from excessive discharge. It disables the output stage of the converter once the falling VIN trips the under-voltage  
lockout threshold VUVLO which is typically 2.0V. The device starts operation once the rising VIN trips VUVLO  
threshold plus its hysteresis of 100 mV at typ. 2.1V.  
8.4 Thermal Regulation  
The TPS61256A device contains a thermal regulation loop that monitors the die temperature during the pre-  
charge phase. If the die temperature rises to high values of about 110 °C, the device automatically reduces the  
current to prevent the die temperature from increasing further. Once the die temperature drops about 10 °C  
below the threshold, the device will automatically increase the current to the target value. This function also  
reduces the current during a short-circuit condition.  
8.5 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 140°C (typ.) the device goes into thermal shutdown. In this  
mode, the high-side and low-side MOSFETs are turned-off. When the junction temperature falls below the  
thermal shutdown minus its hysteresis, the device continuous the operation.  
版权 © 2011–2018, Texas Instruments Incorporated  
9
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
8.6 Functional Block Diagram  
SW  
VOUT  
PMOS  
NMOS  
VIN  
Valley  
Current  
Sense  
Modulator  
Softstart  
Control  
VREF  
Thermal  
Shutdown  
EN  
Logic  
Undervoltage  
Lockout  
GND  
Copyright © 2018, Texas Instruments Incorporated  
8.7 Feature Description  
8.7.1 Power-Save Mode  
The TPS61256A integrates a power-save mode to improve efficiency at light load. In power save mode the  
converter only operates when the output voltage trips below a set threshold voltage.  
It ramps up the output voltage with several pulses and goes into power save mode once the output voltage  
exceeds the set threshold voltage.  
The PFM mode is left and PWM mode entered in case the output current can not longer be supported in PFM  
mode.  
10  
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
Feature Description (接下页)  
8.7.2 Current Limit Operation  
The TPS61256A device employs a valley current limit sensing scheme. Current limit detection occurs during the  
off-time by sensing of the voltage drop across the synchronous rectifier.  
The output voltage is reduced as the power stage of the device operates in a constant current mode. The  
maximum continuous output current (IOUT(CL)), before entering current limit (CL) operation, can be defined by 公  
1.  
1
IOUT(CL) = (1- D) g (IVALLEY  
+
DIL )  
2
(1)  
The duty cycle (D) can be estimated by 公式 2  
g h  
D = 1-  
V
IN  
VOUT  
(2)  
(3)  
and the peak-to-peak current ripple (ΔIL) is calculated by 公式 3  
V
D
f
IN  
DIL =  
g
L
The output current, IOUT(DC), is the average of the rectifier ripple current waveform. When the load current is  
increased such that the lower peak is above the current limit threshold, the off-time is increased to allow the  
current to decrease to this threshold before the next on-time begins (so called frequency fold-back mechanism).  
When the current limit is reached the output voltage decreases during further load increase.  
illustrates the inductor and rectifier current waveforms during current limit operation.  
I
PEAK  
I
L
Current Limit  
Threshold  
I
= I  
LIM  
VALLEY  
Rectifier  
Current  
I
DI  
OUT(CL)  
L
I
OUT(DC)  
Increased  
Load Current  
I
IN(DC)  
f
Inductorr  
Current  
I
IN(DC)  
DI  
L
V
D
f
IN  
ΔI  
=
×
L
L
13. Inductor/Rectifier Currents In Current Limit Operation  
8.7.3 Enable  
The TPS61256A device starts operation when EN is set high and starts up with the soft-start sequence. For  
proper operation, the EN pin must be terminated and must not be left floating.  
Pulling the EN pin low forces the device in shutdown, with a shutdown current of typically 1µA. In this mode, true  
load disconnect between the battery and load prevents current flow from VIN to VOUT, as well as reverse flow  
from VOUT to VIN.  
版权 © 2011–2018, Texas Instruments Incorporated  
11  
 
 
 
 
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.7.4 Load Disconnect And Reverse Current Protection  
Regular boost converters do not disconnect the load from the input supply and therefore a connected battery will  
be discharge during shutdown. The advantage of TPS61256A is that this converter is disconnecting the output  
from the input of the power supply when it is disabled (so called true shutdown mode). In case of a connected  
battery it prevents it from being discharge during shutdown of the converter.  
8.8 Device Functional Modes  
8.8.1 Load Disconnect And Reverse Current Protection  
Regular boost converters do not disconnect the load from the input supply and therefore a connected battery will  
be discharge during shutdown. The advantage of TPS61256A is that this converter is disconnecting the output  
from the input of the power supply when it is disabled (so called true shutdown mode). In case of a connected  
battery it prevents it from being discharge during shutdown of the converter.  
8.8.2 Softstart  
The TPS61256A device has an internal softstart circuit that limits the inrush current during start-up. The first step  
in the start-up cycle is the pre-charge phase. During pre-charge, the rectifying switch is turned on until the output  
capacitor is charged to a value close to the input voltage. The rectifying switch is current limited (approx. 200mA)  
during this phase. This mechanism is used to limit the output current under short-circuit condition.  
Once the output capacitor has been biased to the input voltage, the converter starts switching. The soft-start  
system progressively increases the on-time as a function of the input-to-output voltage ratio. As soon as the  
output voltage is reached, the regulation loop takes control and full current operation is permitted.  
8.8.3 Undervoltage Lockout  
The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and the battery  
from excessive discharge. It disables the output stage of the converter once the falling VIN trips the under-voltage  
lockout threshold VUVLO which is typically 2.0V. The device starts operation once the rising VIN trips VUVLO  
threshold plus its hysteresis of 100 mV at typ. 2.1V.  
8.8.4 Thermal Regulation  
The TPS61256A device contains a thermal regulation loop that monitors the die temperature during the pre-  
charge phase. If the die temperature rises to high values of about 110 °C, the device automatically reduces the  
current to prevent the die temperature from increasing further. Once the die temperature drops about 10 °C  
below the threshold, the device will automatically increase the current to the target value. This function also  
reduces the current during a short-circuit condition.  
8.8.5 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 140°C (typ.) the device goes into thermal shutdown. In this  
mode, the high-side and low-side MOSFETs are turned-off. When the junction temperature falls below the  
thermal shutdown minus its hysteresis, the device continuous the operation.  
12  
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
With a wide input voltage range of 2.5 V to 5.5 V, the TPS61256A supports applications powered by Li-Ion  
batteries with extended voltage range. Intended for low-power applications, it supports up to 800-mA load current  
from a battery discharged as low as 2.7 V and allows the use of low cost chip inductor and capacitors. Different  
fixed voltage output versions are available from 3.15 V to 5.0 V. The TPS61256A offers a very small solution size  
due to minimum amount of external components. It allows the use of small inductors and input capacitors to  
achieve a small solution size. During shutdown, the load is completely disconnected from the battery.  
9.2 Typical Application  
VOUT  
5.0V @ 800mA  
TPS61256A  
L
L
VOUT  
VIN  
2.7 V .. 4.8 V  
1 μH  
VIN  
EN  
CO  
22 uF  
CI  
10 μF  
GND  
Copyright © 2018, Texas Instruments Incorporated  
14. Typical Application  
9.2.1 Design Requirements  
DESIGN PARAMETERS  
Input Voltage Range  
Output Voltage  
EXAMPLE VALUES  
2.5 V to 4.5 V  
5 V  
Output Voltage Ripple  
Transient Response  
Input Voltage Ripple  
Output Current  
±3% VOUT  
±15% VOUT  
±200 mV  
800 mA  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
A boost converter normally requires two main passive components for storing energy during the conversion, an  
inductor and an output capacitor are required. It is advisable to select an inductor with a saturation current rating  
higher than the possible peak current flowing through the power switches.  
The inductor peak current varies as a function of the load, the input and output voltages and can be estimated  
using 公式 4.  
版权 © 2011–2018, Texas Instruments Incorporated  
13  
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
V gD  
IOUT  
V g h  
IN  
IN  
IL(PEAK)  
=
+
with D = 1-  
2 g f g L  
(1- D) g h  
VOUT  
(4)  
Selecting an inductor with insufficient saturation performance can lead to excessive peak current in the  
converter. This could eventually harm the device and reduce it's reliability.  
When selecting the inductor, as well as the inductance, parameters of importance are: maximum current rating,  
series resistance, and operating temperature. The inductor DC current rating should be greater (by some margin)  
than the maximum input average current, refer to 公式 5 and Current Limit Operation section for more details.  
VOUT  
1
IL(DC)  
=
g
g IOUT  
V
h
IN  
(5)  
The TPS61256A series of step-up converters have been optimized to operate with a effective inductance in the  
range of 0.7µH to 2.9µH and with output capacitors in the range of 22µF to 47µF. The internal compensation is  
optimized for an output filter of L = 1µH and CO = 22µF. Larger or smaller inductor values can be used to  
optimize the performance of the device for specific operating conditions. For more details, see the Checking  
Loop Stability section.  
9.2.2.1.1 High-frequency Converter Applications  
In high-frequency converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e.  
quality factor) and to a smaller extent by the inductor DCR value. To achieve high efficiency operation, care  
should be taken in selecting inductors featuring a quality factor above 25 at the switching frequency. Increasing  
the inductor value produces lower RMS currents, but degrades transient response. For a given physical inductor  
size, increased inductance usually results in an inductor with lower saturation current.  
The total losses of the coil consist of both the losses in the DC resistance, R(DC) , and the following frequency-  
dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
The following inductor series from different suppliers have been used with the TPS61256A converters.  
2. List Of Inductors  
MANUFACTURER(1)  
MURATA  
SERIES  
DIMENSIONS (in mm)  
4.0 x 4.0 x 1.8 max. height  
3.2 x 2.5 x 1.2 max. height  
3.2 x 2.5 x 1.2 max. height  
LQH44PN1R0NP0  
KSLI-322512BL1-1R0  
DFE322512C-1R0N  
HITACHI METALS  
TOKO  
(1) See Third-party Products Disclaimer  
14  
版权 © 2011–2018, Texas Instruments Incorporated  
 
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
9.2.2.2 Output Capacitor  
For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to the  
VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can  
not be placed close to the IC, using a smaller ceramic capacitor in parallel to the large one is highly  
recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC.  
To get an estimate of the recommended minimum output capacitance, 公式 6 can be used.  
IOUT  
g
V
- V  
(
f g DV g VOUT  
)
OUT IN  
CMIN  
=
(6)  
Where f is the switching frequency which is 3.5MHz (typ.) and ΔV is the maximum allowed output ripple.  
With a chosen ripple voltage of 20mV, a minimum effective capacitance of 9μF is needed. The total ripple is  
larger due to the ESR of the output capacitor. This additional component of the ripple can be calculated using 公  
7  
VESR = IOUT g RESR  
(7)  
An MLCC capacitor with twice the value of the calculated minimum should be used due to DC bias effects. This  
is required to maintain control loop stability. The output capacitor requires either an X7R or X5R dielectric. Y5V  
and Z5U dielectric capacitors, aside from their wide variation in capacitance over temperature, become resistive  
at high frequencies. There are no additional requirements regarding minimum ESR. Larger capacitors cause  
lower output voltage ripple as well as lower output voltage drop during load transients but the total output  
capacitance value should not exceed ca. 50µF.  
DC bias effect: high cap. ceramic capacitors exhibit DC bias effects, which have a strong influence on the  
device's effective capacitance. Therefore the right capacitor value has to be chosen very carefully. Package size  
and voltage rating in combination with material are responsible for differences between the rated capacitor value  
and it's effective capacitance. For instance, a 22µF X5R 6.3V 0805 MLCC capacitor would typically show an  
effective capacitance of less than 8µF (under 5V bias condition).  
9.2.2.3 Input Capacitor  
Multilayer ceramic capacitors are an excellent choice for input decoupling of the step-up converter as they have  
extremely low ESR and are available in small footprints. Input capacitors should be located as close as possible  
to the device. While a 10μF input capacitor is sufficient for most applications, larger values may be used to  
reduce input current ripple without limitations.  
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce  
ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even  
damage the part. Additional "bulk" capacitance (electrolytic or tantalum) should in this circumstance be placed  
between CI and the power source lead to reduce ringing than can occur between the inductance of the power  
source leads and CI.  
版权 © 2011–2018, Texas Instruments Incorporated  
15  
 
 
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
9.2.2.4 Checking Loop Stability  
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:  
Switching node, SW  
Inductor current, IL  
Output ripple voltage, VOUT(AC)  
These are the basic signals that need to be measured when evaluating a switching converter. When the  
switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the  
regulation loop may be unstable. This is often a result of board layout and/or L-C combination.  
As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between  
the application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply  
all of the current required by the load. VOUT immediately shifts by an amount equal to ΔI(LOAD) x ESR, where ESR  
is the effective series resistance of COUT. ΔI(LOAD) begins to charge or discharge COUT generating a feedback  
error signal used by the regulator to return VOUT to its steady-state value. The results are most easily interpreted  
when the device operates in PWM mode.  
During this recovery time, VOUT can be monitored for settling time, overshoot or ringing that helps judge the  
converter’s stability. Without any ringing, the loop has usually more than 45° of phase margin. Because the  
damping factor of the circuitry is directly related to several resistive parameters (e.g., MOSFET rDS(on)) that are  
temperature dependant, the loop stability analysis has to be done over the input voltage range, load current  
range, and temperature range.  
16  
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
9.2.3 Application Curves  
V = 3.6 V,  
I
V
I
= 5.0 V,  
O
V = 3.6 V, V = 5.0 V, I = 50 mA  
= 150 mA  
I
O
O
O
16. PWM Operation  
15. Power-Save Mode Operation  
V
O
= 5.0 V  
V = 3.6 V,  
I
V
= 5.0 V  
50 to 500 mA Load Step  
O
50mA to 500mA  
Load Step  
3.3V to 3.9V Line Step  
17. Combined Line/Load Transient Response  
18.  
Load Transient Response InPFM/PWM  
Operation  
0 to 400mA Load Sweep  
V = 3.6 V,  
I
V
= 5.0 V  
O
V = 3.6 V,  
I
V
I
= 5.0 V,  
O
= 0 mA  
O
19. AC Load Transient Response  
20. Start-Up  
版权 © 2011–2018, Texas Instruments Incorporated  
17  
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
V = 2.7 V  
I
V = 4.5 V  
I
V = 3.6 V  
I
V = 5.0 V,  
O
I
= 0 mA  
O
21. Start-Up  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 4.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor  
with a value of 47 μF is a typical choice.  
18  
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
11 Layout  
11.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to the ground pins of the IC.  
11.2 Layout Example  
GND  
GND  
U1  
EN  
VIN  
VOUT  
L1  
22. Suggested Layout (Top)  
11.3 Thermal Information  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow in the system  
Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where  
high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.  
The maximum junction temperature (TJ) of the TPS61256A is 125°C.  
版权 © 2011–2018, Texas Instruments Incorporated  
19  
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
12 Package Summary  
CHIP SCALE PACKAGE  
(BOTTOM VIEW)  
CHIP SCALE PACKAGE  
(TOP VIEW)  
A3  
B3  
C3  
A2  
A1  
B1  
C1  
YMS  
CC  
D
B2  
LLLL  
C2  
E
A1  
Code:  
YM - 2 digit date code  
S - assembly site code  
CC - chip code (see ordering table)  
LLLL - lot trace code  
12.1 Package Dimensions  
The dimensions for the YFF-9 package are shown in 3. See the package drawing at the end of this data  
sheet.  
3. YFF-9 Package Dimensions  
Packaged Devices  
D
E
TPS61256AYFF  
1.206 ±0.03 mm  
1.306 ±0.03 mm  
20  
版权 © 2011–2018, Texas Instruments Incorporated  
 
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2011–2018, Texas Instruments Incorporated  
21  
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
PACKAGE OUTLINE  
YFF0009  
DSBGA - 0.625 mm max height  
SCALE 10.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.625 MAX  
C
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
0.8 TYP  
C
B
SYMM  
0.8  
TYP  
0.4 TYP  
A
0.3  
0.2  
3
1
2
9X  
SYMM  
0.015  
C A B  
0.4 TYP  
4219552/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2011–2018, Texas Instruments Incorporated  
23  
TPS61256A  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
YFF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
9X ( 0.23)  
1
2
A
(0.4) TYP  
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219552/A 05/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
24  
版权 © 2011–2018, Texas Instruments Incorporated  
TPS61256A  
www.ti.com.cn  
ZHCSHT5A JULY 2011REVISED MARCH 2018  
EXAMPLE STENCIL DESIGN  
YFF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
9X ( 0.25)  
1
3
2
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219552/A 05/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
版权 © 2011–2018, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61256AYFFR  
TPS61256AYFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
9
9
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
QXA  
QXA  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-May-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61256AYFFR  
TPS61256AYFFT  
DSBGA  
DSBGA  
YFF  
YFF  
9
9
3000  
250  
180.0  
180.0  
8.4  
8.4  
1.41  
1.41  
1.31  
1.31  
0.69  
0.69  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-May-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61256AYFFR  
TPS61256AYFFT  
DSBGA  
DSBGA  
YFF  
YFF  
9
9
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS61256AYFFT

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5V、1A 负载升压转换器 | YFF | 9 | -40 to 85
TI

TPS61256C

采用 1.2mm x 1.3mm WCSP 封装且具有直通模式的 3.5MHz、5V、900mA 负载升压转换器
TI

TPS61256CYFFR

采用 1.2mm x 1.3mm WCSP 封装且具有直通模式的 3.5MHz、5V、900mA 负载升压转换器 | YFF | 9 | -40 to 85
TI

TPS61256CYFFT

采用 1.2mm x 1.3mm WCSP 封装且具有直通模式的 3.5MHz、5V、900mA 负载升压转换器 | YFF | 9 | -40 to 85
TI

TPS61256YFF

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61256YFFR

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61256YFFT

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61257

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61257YFF

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61258

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61258A

TPS61253A 3.8-MHz, 5-V / 4-A Boost Converter in 1.2-mm x 1.3-mm WCSP
TI

TPS61258YFF

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI