TPS61291DRVT [TI]

具有 15nA 旁路操作的低 Iq 升压转换器 | DRV | 6 | -40 to 85;
TPS61291DRVT
型号: TPS61291DRVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 15nA 旁路操作的低 Iq 升压转换器 | DRV | 6 | -40 to 85

升压转换器 开关 光电二极管 输出元件
文件: 总26页 (文件大小:2638K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
TPS61291 支持旁路操作的低 Iq 升压转换器  
1 特性  
在旁路模式下,用于升压模式操作的集成分压器网络将  
1
从输出端断开,并且静态电流消耗会降至仅为  
输入电压范围 0.9V 5V  
15nA(典型值)。  
启动电压 1.5V20mA 负载时)  
引脚可选输出电压:3.3V3V2.5V  
旁路模式静态电流典型值 15nA  
升压模式静态电流典型值 5.7μA  
旁路开关从 VIN VOUT  
在升压模式下,该器件可提供的最小输出电流为  
200mAVOUT = 3.3VVIN = 1.8V)。 升压模式用于  
需要稳定的电源电压并且无法通过输入源直接操作的系  
统组件。 升压转换器基于使用同步整流的电流模式控  
制器,可实现最大效率,所消耗的输出电流典型值为  
5.7uA。 升压转换器启动期间,将读取 VSEL 引脚并  
且集成反馈网络会将输出电压设为 2.5V3V 或  
3.3V。  
VOUT = 3.3VVIN = 1.8V IOUT > 200mA  
内部反馈分压器断开连接(旁路模式)  
受控旁路转换功能可防止反向电流流入电池  
轻负载状态下的省电模式  
过热保护  
旁路模式或升压模式操作都由系统通过 EN/BYP 引脚  
进行控制。  
冗余过压保护  
小型 2mm x 2mm 小外形尺寸无引线 (SON) 6 引脚  
封装  
该器件集成有增强型旁路模式控制功能,可防止升压模  
式操作期间存储在输出电容中的电荷倒流至输入端并给  
电池充电。  
2 应用  
测量(燃气表、水表、智能仪表)  
此器件采用小型 6 引脚 2.0mm × 2.0mm x 0.75mm  
SON 封装 (DRV)。  
遥控  
住宅安保/家庭自动化  
由单节 3V 锂锰电池或 2 1.5V 碱性电池供电的  
应用  
器件信息(1)  
部件号  
TPS61291  
封装  
SON (6)  
封装尺寸(标称值)  
2.00mm x 2.00mm  
3 说明  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
TPS61291 是引脚输出电压可选且支持集成旁路模式  
的升压转换器。 进行旁路操作时,该器件可提供从输  
入到系统的直接路径,并允许低功耗微控制器  
(MCU)(如 MSP430)直接由单节 3V 锂锰电池或两节  
碱性电池供电运行。  
简化电路原理图和效率曲线  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TPS61291  
L = 3.3mH  
Subsystem  
VCC = 3.3V  
VOUT =  
VBAT / 3.3V  
Step up  
converter  
SW  
VIN  
VOUT  
2 x 1.5V Alkaline /  
1 x 3V Li-MnO2  
VBAT  
COUT  
MCU  
(VCC = VBAT or 3.3V)  
Bypass  
+
-
22mF  
CIN  
10mF  
VIN = 1.2V  
VIN= 1.8V  
VIN = 2.5V  
VIN = 3.0V  
VSEL  
GND  
+
-
+
-
EN/BYP  
0.01  
0.1  
1
10  
100  
Output Current IOUT [mA]  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSBX9  
 
 
 
 
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
7.4 Device Functional Modes.......................................... 8  
Applications and Implementation ...................... 10  
8.1 Application Information............................................ 10  
8.2 Typical Application .................................................. 10  
Power Supply Recommendations...................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
8
9
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 16  
11 器件和文档支持 ..................................................... 17  
11.1 器件支持 ............................................................... 17  
11.2 文档支持................................................................ 17  
11.3 ....................................................................... 17  
11.4 静电放电警告......................................................... 17  
11.5 术语表 ................................................................... 17  
12 机械封装和可订购信息 .......................................... 17  
7
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (September 2014) to Revision A  
Page  
Changed "Bypass Mode Operation" description ................................................................................................................... 9  
Added sub-section "Controlled Transition into Bypass Mode" .............................................................................................. 9  
Added NOTE to the "Application and Implementation" section. .......................................................................................... 10  
Changed "List of Inductors" table ........................................................................................................................................ 11  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
5 Pin Configuration and Functions  
DRV Package  
6 Pin  
Top View  
1
2
3
6
5
4
SW  
VOUT  
VIN  
GND  
VSEL  
EN/BYP  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SW  
NO.  
Switch node of the converter. Connect the inductor between this pin and the input capacitor  
CIN  
1
I
.
Boost converter output. Connect the output capacitor COUT between this pin and GND close  
to the device.  
VOUT  
VIN  
2
3
O
Input voltage supply pin for the boost converter. Connect the input capacitor CIN between  
this pin and GND as close as possible to the device.  
PWR  
Control pin of the device. A high level enables the boost mode operation. A low level  
disables the boost converter and enables bypass mode operation. EN/BYP must be actively  
terminated high or low. Usually, this pin is controlled by the MCU in the system.  
EN/BYP  
4
I
Output voltage selection pin. The logic level of this pin is read out during startup and  
internally latched. Connect this pin only to GND, VOUT, or leave it floating.  
VSEL  
GND  
5
6
I
PWR  
Ground pin of the device.  
EXPOSED  
THERMAL  
PAD  
Not electrically connected to the IC, but must be soldered to achieve specified thermal  
performance. Connect this pad to the GND pin and use it as a central GND plane.  
NC  
Output Voltage Setting  
EN/BYP Pin  
VSEL Pin at Startup  
VOUT  
Mode  
high  
high  
high  
low  
GND  
3.3V  
Boost Mode Operation  
VOUT  
3.0V  
2.5V  
floating  
GND / VOUT / floating  
VOUT = VIN (Bypass Mode)  
Bypass Mode Operation  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
MAX  
5.5  
7
UNIT  
(2)  
Pin Voltage Range  
VIN  
SW  
V
EN/BYP, VOUT  
VSEL  
5.5  
VOUT +  
0.3V  
Output Current  
TJ  
In Bypass Operation (EN/BYP = GND)  
Maximum Junction Temperature  
250  
150  
mA  
°C  
-40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
6.2 Handling Ratings  
MIN  
MAX  
UNIT  
°C  
Tstg  
Storage temperature range  
Electrostatic discharge  
–65  
150  
Human body model (HBM) per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
-2  
2
V(ESD)  
kV  
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
-0.5  
0.5  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.5  
0.9  
0.9  
-40  
–40  
NOM  
MAX  
UNIT  
VIN  
Supply voltage for startup  
Supply voltage range (once device has started)  
Supply voltage range for step up conversion (once device has started)  
Operating ambient temperature  
5
VOUT  
85  
V
TA  
TJ  
°C  
Operating junction temperature  
125  
6.4 Thermal Information  
TPS61291  
THERMAL METRIC(1)  
DRV (2x2 SON)  
UNIT  
6 PINS  
71.2  
93.5  
46.7  
2.5  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
41.1  
11.1  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
6.5 Electrical Characteristics  
TA = –40°C to 85°C. Typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
SUPPLY  
VIN  
Startup voltage  
VOUT = 3.3V, IOUT = 20mA  
1.5  
5
Input voltage range  
Operating voltage range  
0.9  
IQ  
Quiescent current in boost mode  
VIN  
IOUT = 0 mA, VEN/BYP = VIN = 1.8 V, VOUT  
3.3V, device not switching  
=
0.4  
5.7  
1.5  
9
VOUT  
μA  
Quiescent current in bypass mode VIN  
Leakage current into SW  
VEN/BYP = low, VIN = 3 V, IOUT = 0 mA  
VEN/BYP = low, VIN = 1.2 V, VSW = 1.2 V  
VIN decreasing  
0.015  
0.01  
0.65  
140  
0.5  
0.5  
0.9  
ILkSW  
μA  
V
VUVLO  
Undervoltage lockout threshold  
Overtemperature protection  
TJ rising  
°C  
°C  
Overtemperature hysteresis  
20  
INPUTS  
IIN  
EN/BYP, input current  
EN/BYP = low or EN/BYP = VIN  
0.01  
0.1  
μA  
VIN 1.5 V  
0.2 ×  
VIN  
V
VIL  
EN/BYP, input low voltage  
5 V > VIN > 1.5 V  
0.3  
VIN 1.5 V  
0.8 ×  
VIN  
V
VIH  
EN/BYP, input high voltage  
5 V > VIN > 1.5 V  
VEN/BYP = high  
VEN/BYP = high  
1.2  
VIL  
VIH  
IIN  
VSEL, input low voltage  
VSEL, input high voltage  
VSEL, input current  
0.3  
0.1  
V
V
VOUT  
-
0.3  
VEN/BYP = high, VSEL = VOUT = 3V  
0.01  
μA  
POWER SWITCHES  
Rectifying switch on resistance  
VOUT = 3.3 V  
0.6  
0.4  
RDS(ON) Main switch on resistance  
Bypass switch on resistance  
VOUT = 3.3 V  
VIN = 1.8V, IOUT = 50 mA, EN/BYP = low  
VOUT = 3.3V  
1.2  
ISW  
Switch current limit  
700  
-2  
1000  
1300  
+4  
mA  
OUTPUT  
VIN = 1.8V, IOUT = 10 mA, VOUT 3.3V, 3.0V,  
2.5V, EN/BYP = high  
Output voltage accuracy  
Line regulation  
+1  
%
VOUT = 3.3V, VIN = 2V to 3.0V, IOUT = 50  
mA, EN/BYP = high  
VOUT  
+0.15  
%/V  
VIN = 2V, VOUT = 3.3V, IOUT = 1 mA to 200  
mA, EN/BYP = high  
Load regulation  
-0.007  
5.4  
%/mA  
V
VOVP  
Output overvoltage protection  
VOUT rising, EN/BYP = high  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
6.6 Typical Characteristics  
0.14  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 1.8V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 2.5V  
0.12  
VIN = 3.3V  
0.1  
0.08  
0.06  
0.04  
0.02  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature TA [°C]  
Temperature TA [°C]  
C001  
C001  
EN/BYP = low  
VSEL = low  
IOUT = 0mA  
EN/BYP = high  
Boost mode operation  
Device not switching  
Figure 1. Quiescent Current IQ into VIN Pin in Bypass Mode  
Figure 2. Quiescent Current IQ into VIN Pin in Boost Mode  
1.6  
VIN 1.8V  
8
VOUT = 2.6V  
VOUT = 3.1V  
7
1.4  
1.2  
1
VOUT = 3.4V  
6
5
4
3
2
1
0
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature TA [°C]  
Temperature TA [°C]  
C001  
EN/BYP = high  
IOUT = 0mA  
Boost mode operation  
Device not switching  
Figure 3. Quiescent Current IQ into VOUT Pin in Boost Mode  
Figure 4. RDSON Bypass Switch  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature TA [°C]  
Temperature TA [°C]  
C001  
VOUT = 3.3V  
VOUT = 3.3V  
Figure 5. RDSON Main Switch  
Figure 6. RDSON Rectifier Switch  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
7 Detailed Description  
7.1 Overview  
The TPS61291 provides two operating modes: high efficiency boost mode to generate an output voltage higher  
than the input voltage and bypass mode, which connects the output of the device directly to the input.  
7.2 Functional Block Diagram  
Bypass  
Switch  
P
N
VIN  
SW  
VOUT  
Rectifying  
Switch  
VOUT  
VIN  
Driver  
N
Bypass Switch  
Control  
Control Logic  
Main  
Switch  
EN/BYP  
VIN  
Current  
Sense  
Startup Circuit  
Undervoltage  
Lockout  
Overvoltage  
Protection  
Thermal Shutdown  
Reference Vref  
BYP/EN  
Vref  
GND  
VSEL  
Voltage Error  
Amplifier  
integrated FB divider  
network with disconnect  
7.3 Feature Description  
7.3.1 Bypass / Boost Mode Operation EN/BYP  
The EN/BYP pin selects the operating mode of the device. With the EN/BYP pin pulled low, the device operates  
in bypass mode. With a high level on the EN/BYP pin, the device operates as a boost converter. The EN/BYP  
pin is usually controlled by an I/O pin of a MCU, powered from the output of the TPS61291 and should not be left  
floating. See Figure 8. See also sections Boost Mode Operation and Bypass Mode Operation for more detailed  
descriptions.  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Output Voltage Selection VSEL  
In boost mode operation, the device supports three internally set output voltages: 2.5V, 3V and 3.3V. Leaving the  
VSEL pin open sets the output voltage to 2.5V, VSEL = VOUT to 3.0V and VSEL= GND to 3.3V. The VSEL pin  
condition is detected during the startup of the boost converter and internally latched. For proper operation, it must  
be connected to either GND, VOUT or left floating. Depending on the VSEL condition, an integrated feedback  
divider network is selected. Changing the VSEL pin condition during operation does not change the output  
voltage.  
7.3.3 Feedback Divider Disconnect  
In boost mode operation, the integrated feedback divider network, which is required for regulation, is connected  
to the VOUT pin. To achieve the low quiescent current in bypass mode, the integrated feedback divider network  
is disconnected from the output pin VOUT.  
7.3.4 Undervoltage Lockout  
An undervoltage lockout function stops the operation of the boost converter if the input voltage drops below the  
undervoltage lockout threshold. This function is implemented in order to prevent malfunction of the boost  
converter. The undervoltage lockout function has no control of the bypass switch.  
7.3.5 Overtemperature Protection  
The device has a built-in temperature sensor which monitors the internal junction temperature in boost mode  
operation. If the junction temperature exceeds the threshold (140 °C typical), the device stops operating. As soon  
as the junction temperature has decreased below the programmed threshold, it starts operating again. There is a  
built-in hysteresis to avoid unstable operation at IC temperatures at the overtemperature threshold. The  
overtemperature protection is not active in bypass mode operation.  
7.3.6 Overvoltage Protection  
In boost mode operation (EB/BYP = high), the device features a redundant over voltage protection circuit (OVP),  
which is independent from the reference, the regulation loop and feedback divider network. The redundant over  
voltage protection circuit limits the output voltage to typically 5.4V. The over voltage protection can only limit the  
output voltage in boost mode operation, when the input voltage VIN is smaller than the output voltage VOUT  
.
7.4 Device Functional Modes  
7.4.1 Boost Mode Operation  
The device is enabled and operates in boost mode operation when the EN/BYP pin is set high. The bypass  
switch is turned off once the boost converter has started switching.  
In boost mode operation, the device is controlled by a hysteretic current mode controller. This controller regulates  
the output voltage by keeping the inductor ripple current constant in the range of 300 mA and adjusting the offset  
of this inductor current depending on the output load. If the required average input current is lower than the  
average inductor current defined by this constant ripple, the inductor current goes discontinuous to keep the  
efficiency high at low load conditions. To achieve high efficiency, the power stage is realized as a synchronous  
boost topology.  
IL  
Continuous Current Operation  
IIN  
Discontinuous Current Operation  
Ilpp =  
300 mA (typ.)  
Ilpp =  
300 mA (typ.)  
t
Figure 7. Hysteretic Current Operation  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
Device Functional Modes (continued)  
The output voltage VOUT is monitored via the integrated feedback network which is connected to the voltage error  
amplifier. To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the  
internal voltage reference and adjusts the required offset of the inductor current accordingly.  
The hysteretic current mode architecture allows fast response to load variations.  
7.4.2 Bypass Mode Operation  
The TPS61291 includes a P-channel MOSFET (Bypass Switch) between the VIN and VOUT pins. When the IC  
is disabled (EN/BYP = low), bypass mode is activated to provide a direct, low impedance connection from the  
input voltage (at the VIN pin) to the load (VOUT). The bypass switch is not impacted by undervoltage lockout, or  
thermal shutdown. The bypass switch is not current-limit controlled. In bypass operation, the OVP circuit is  
disabled.  
7.4.3 Controlled Transition into Bypass Mode  
When changing from boost mode into bypass mode, the output capacitor is usually charged up to a higher  
voltage than the battery voltage VBAT. In order to prevent current flowing from the output capacitor COUT via the  
bypass switch into the battery (reverse battery current), the internal bypass control circuit delays the bypass  
switch activation until the output voltage VOUT has decreased to the input voltage level.  
7.4.4 Operation at Output Overload  
If the peak inductor current reaches the internal switch current limit threshold in boost mode operation, the main  
switch is turned off to stop a further increase of the input current. In this case the output voltage will decrease  
since the device cannot provide sufficient power to maintain the set output voltage. If the output voltage drops  
below the input voltage, the backgate diode of the rectifying switch gets forward biased and current starts to flow  
through it. Because this diode cannot be turned off, the load current is only limited by the remaining DC  
resistance. As soon as the overload condition is removed, the converter automatically resumes normal operation  
and enters the appropriate soft start mode depending on the operating conditions.  
7.4.5 Startup  
After the EN/BYP pin is tied high, the device starts to operate. If the input voltage is not high enough to supply  
the control circuit properly, a startup oscillator starts to operate the switches. During this phase, the switching  
frequency is controlled by the oscillator and the switch current is limited. As soon as the device has built up the  
output voltage to about 1.8 V, high enough for supplying the control circuit, the device switches to its normal  
hysteretic current mode operation.  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS61291 is a boost converter with pin selectable output voltages and an integrated bypass mode. In  
bypass operation, the device provides a direct path from the input to the system and allows a low power micro  
controller (MCU) to operate directly from a single 3V Li-MnO2 battery or dual alkaline battery cells. In bypass  
mode, the quiescent current consumption is typically only 15nA and supports low power modes of MCUs such as  
the MSP430. In boost mode operation, the device provides a regulated output voltage (e.g. 3.3V) to supply  
circuits which require a higher voltage than provided by the battery. See Figure 8.  
The device also extends battery life in applications which can run partially directly from the battery, but need a  
boost conversion to maintain sufficient system voltage when the battery voltage drops due to discharge. In this  
case, the system runs off the battery in bypass mode operation until the battery voltage trips the minimum  
system operating voltage. Then the system turns on the boost converter, providing a sufficient output voltage  
down to the cut off voltage of the battery. See Figure 9 and Figure 26.  
8.2 Typical Application  
TPS61291  
L = 3.3mH  
Subsystem  
VCC = 3.3V  
VOUT =  
VBAT / 3.3V  
Step up  
converter  
SW  
VIN  
VOUT  
2 x 1.5V Alkaline /  
1 x 3V Li-MnO2  
COUT  
MCU  
(VCC = VBAT or 3.3V)  
Bypass  
+
22mF  
CIN  
-
VSEL  
GND  
+
-
10mF  
+
-
EN/BYP  
Figure 8. Typical Application Circuit with Regulated 3.3V VOUT / VBAT  
System  
TPS61291  
L = 3.3mH  
VOUT =  
VBAT / 2.5V  
Step up  
converter  
SW  
VIN  
MCU + ADC  
Subsystem  
VOUT  
2 x 1.5V Alkaline /  
1 x 3V Li-MnO2  
VBAT  
COUT  
Bypass  
+
-
CIN  
NC  
Minimum VCC for System: 2.2V  
Bypass Mode:  
VOUT = VBAT (for VBAT > 2.2V)  
Boost Mode:  
VOUT = 2.5V (for VBAT < 2.2V)  
VSEL  
GND  
+
-
EN/BYP set high  
@ VBAT = 2.2V  
+
-
EN/BYP  
Figure 9. Bypass Mode / Boost Mode Operation to Maintain Sufficient System Voltage  
8.2.1 Design Requirements  
The TPS61291 is a highly integrated boost converter. The output voltage is set internally via a VSEL pin without  
any additional components. For operation, only an input capacitor, output capacitor, and an inductor are required.  
Table 1 shows the components used for the application characteristic curves.  
10  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
Typical Application (continued)  
Table 1. Components for Application Characteristic Curves(1)  
Reference  
Description  
Value  
Manufacturer  
Low Iq Boost Converter with  
Bypass Operation  
TPS61291  
Texas Instruments  
CIN  
COUT  
L
Input capacitor  
Output capacitor  
Inductor  
10µF  
22µF  
3.3µH  
Murata  
Murata  
Coilcraft  
GRM219R61A106KE44D  
GRM21BR60J226ME39L  
LPS3314 3R3  
(1) See the Third-Party Products Disclaimer in the Device Support section.  
8.2.2 Detailed Design Procedure  
The external components have to fulfill the needs of the application but also the stability criteria of the device's  
control loop. The TPS61291 is optimized to work within a range of L and C combinations. The LC output filter  
inductance and capacitance must be considered together. The output capacitor sets the corner frequency of the  
converter while the inductor creates a Right-Half-Plane-Zero degrading the stability of the converter.  
Consequently with a larger inductor a bigger capacitor has to be used to guarantee a stable loop. Table 2 shows  
the output filter component selection.  
Table 2. Recommended LC Output Filter Combinations  
Output capacitor value [µF](2)  
Output voltage  
Inductor value [µH](1)  
[V]  
22  
22 + 10  
2 x 22  
(3)  
3.3  
4.7  
2.2  
3.3  
3.3 / 3.0  
2.5  
(3)  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
8.2.2.1 Inductor Selection  
The device is optimized to operate with a 3.3µH inductor value. Other inductor values can be used, per Table 2.  
The maximum inductor current can be approximated by the ILMAX, from Equation 1. For proper operation, the  
inductor needs to be rated for a saturation current which is higher than the switch current limit of typically 1A.  
Table 3 lists inductors that have been tested with the TPS61291.  
V
OUT ´IOUT  
ILmax : =  
+150 mA continuous current operation  
discontinuous current operation  
Table 3. List of Inductors(1)  
0.8´ V  
IN  
ILmax : = 300 mA  
(1)  
INDUCTANCE  
DIMENSIONS [mm3]  
3.3 x 3.3 x 1.3  
2.95 x 2.95 x 1.4  
3 x 2.5 x 1.5  
TYPE  
LPS3314  
SUPPLIER  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
Coilcraft  
LPS3015  
VLF302515  
MDMK2020T3R3M  
DFE252012  
74438335033  
TDK  
Taiyo Yuden  
Toko  
2 x 2 x 1.2  
2.5 x 2.0 x 1.2  
3.0 x 3.0 x 1.5  
Würth  
(1) See the Third-Party Products Disclaimer in the Device Support section.  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
 
 
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.2.2.2 Input and Output Capacitor Selection  
For best output and input voltage filtering, low ESR X5R or X7R ceramic capacitors are recommended. The input  
capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for  
the device. At least a 10μF or larger input capacitor is recommended for operation. In applications in which the  
power source (e.g. certain battery chemistries) shows an internal resistance characteristic, a larger input  
capacitor might be used to buffer the supply voltage for the TPS61291. The recommended typical output  
capacitor value is 22 μF and can vary as outlined in the output filter selection Table 2.  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
8.2.3 Application Curves  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 1.2V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 2.7V  
VIN = 1.2V  
VIN= 1.8V  
VIN = 2.5V  
VIN = 3.0V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
C002  
C002  
EN/BYP = high  
L = 3.3µH  
VSEL = VOUT  
EN/BYP = high  
L = 3.3µH  
VSEL = GND  
Figure 11. Efficiency vs IOUT, VOUT = 3.0V  
Figure 10. Efficiency vs IOUT, VOUT = 3.3V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
3.399  
3.366  
3.333  
3.300  
3.267  
VIN = 1.2V  
VIN = 1.8V  
VIN = 2.2V  
VIN = 1.2V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.0V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current IOUT [mA]  
Output Current IOUT[mA]  
C001  
C006  
EN/BYP = high  
L = 3.3µH  
VSEL = open  
EN/BYP = high  
L = 3.3µH  
VSEL = GND  
Figure 12. Efficiency vs IOUT, VOUT = 2.5V  
Figure 13. Output Voltage vs Output Current VOUT = 3.3V  
3.090  
3.060  
3.030  
3.000  
2.970  
2.575  
2.550  
2.525  
VIN = 1.2V  
VIN = 1.2V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 1.8V  
2.500  
VIN = 2.2V  
2.475  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
C005  
C004  
EN/BYP = high  
L = 3.3µH  
VSEL = VOUT  
EN/BYP = high  
L = 3.3µH  
VSEL = open  
Figure 14. Output Voltage vs Output Current VOUT = 3.0V  
Figure 15. Output Voltage vs Output Current VOUT = 2.5V  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
35  
30  
25  
20  
15  
10  
5
0.600  
0.500  
0.400  
TA = 25°C  
TA = -40°C  
TA = 85°C  
0.300  
VOUT = 2.5V  
VOUT = 3.0V  
VOUT = 3.3V  
0.200  
0.100  
0.000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.9  
1.4  
1.9  
2.4  
2.9  
Input Voltage VIN [V]  
Input Voltage VIN [V]  
C001  
EN/BYP = high  
L = 3.3µH  
ISW = 1000mA (typical)  
Boost mode operation  
VOUT = 3.3 V  
IOUT = 0 mA  
L = 3.3 µH  
COUT = 22 µF  
Device switching  
Figure 16. Maximum Output Current  
Figure 17. Supply Current vs. VIN, VOUT = 3.3V, IOUT = 0mA  
35  
30  
25  
20  
15  
10  
5
30  
TA = 25°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
25  
TA = 85°C  
20  
15  
10  
5
0
0
0.9  
1.4  
1.9  
2.4  
2.9  
0.9  
1.4  
1.9  
2.4  
Input Voltage VIN [V]  
Input Voltage VIN [V]  
VOUT = 3.0 V  
IOUT = 0 mA  
L = 3.3 µH  
COUT = 22 µF  
VOUT = 2.5 V  
IOUT = 0 mA  
L = 3.3 µH  
COUT = 22 µF  
Device switching  
Device switching  
Figure 18. Supply Current vs. VIN, VOUT = 3.0V, IOUT = 0mA  
Figure 19. Supply Current vs. VIN, VOUT = 2.5V, IOUT = 0mA  
VIN = 2.0 V  
L = 3.3 µH  
COUT = 22 µF  
VSEL = GND  
EN/BYP = high  
VIN = 1.8 V  
VOUT = 3.3 V  
VSEL = GND  
L = 3.3 µH  
COUT = 22 µF  
IOUT = 150 mA  
EN/BYP = high  
VOUT = 3.3 V  
IOUT = 15mA  
Figure 20. Discontinuous Conduction Mode Operation,  
VOUT = 3.3V  
Figure 21. Continuous Conduction Mode Operation,  
VOUT = 3.3V  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
VIN = 1.8V  
VOUT = 3.3V  
L = 3.3µH  
COUT = 22 µF  
VSEL = GND  
VIN = 1.8V  
L = 3.3µH  
COUT = 22 µF  
VSEL = GND  
VOUT = 3.3V  
ILOAD 20mA /150mA  
ILOAD 1mA/200mA  
Figure 22. Load Transient Response  
Figure 23. AC Load Sweep  
Boost operation  
Bypass switch activation  
when VOUT is discharged to VIN level  
Bypass mode  
VIN = 2.5V/3V  
VOUT = 3.3V  
L = 3.3µH  
COUT = 22 µF  
Load =100Ω  
VIN = 2.0V  
L = 3.3µH  
COUT = 22 µF  
RLOAD = 1kΩ  
VSEL = GND  
VOUT = 3.3V  
VSEL = GND  
Figure 24. Line Transient Response  
Figure 25. Boost Mode / Bypass Mode Transition  
VIN  
VOUT = 2.5V  
VOUT  
tracks VIN  
VIN < 2.2V  
EN/BYP control  
IL  
VIN = 0.9V to 3V  
VOUT = 2.5V  
VSEL = Open  
ILOAD = 5mA  
VIN = 2.0V  
L = 3.3µH  
COUT = 22 µF  
EN/BYP externally controlled  
Bypass / Boost mode operation  
VOUT = 3.3V  
VSEL = GND  
RLOAD = 100Ω  
Figure 26. Bypass / Boost Mode Operation  
Figure 27. Startup in Boost Mode  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS61291  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
9 Power Supply Recommendations  
The input power supply needs to have a current rating according to the supply voltage, output voltage and output  
current of the TPS61291.  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Care must be taken in board  
layout to get the specified performance. If the layout is not carefully done, the regulator could show poor line  
and/or load regulation, stability issues as well as EMI problems. It is critical to provide a low inductance, low  
impedance ground path. Therefore, use wide and short traces for the main current paths. In a boost converter,  
the ripple current on the output is larger than the ripple current on the input. The output capacitor needs to be  
placed as close as possible between the VOUT and the GND pins. The input capacitor should be placed as  
close as possible to the VIN and GND pins. Place the inductor close by the IC and connect it with short and thick  
traces to the IC. Avoid current loops to minimize radiated noise and stray fields. The exposed thermal pad of the  
package and the GND pin must be connected. See Figure 28 for the recommended PCB layout.  
10.2 Layout Example  
Area: ~ 51 mm2  
VIN  
VOUT  
GND  
GND  
U1  
L
COUT  
CIN  
Figure 28. Recommended PCB Layout  
16  
版权 © 2014, Texas Instruments Incorporated  
 
TPS61291  
www.ti.com.cn  
ZHCSCS7A SEPTEMBER 2014REVISED SEPTEMBER 2014  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
TPS61291EVM-569 用户指南》SLVUA29  
11.3 商标  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61291DRVR  
TPS61291DRVT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRV  
DRV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
Call TI | NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
PC4I  
PC4I  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jun-2016  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61291DRVR  
TPS61291DRVT  
WSON  
WSON  
DRV  
DRV  
6
6
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jun-2016  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61291DRVR  
TPS61291DRVT  
WSON  
WSON  
DRV  
DRV  
6
6
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61299

具有输入电流限制和快速瞬态性能的 95nA 低 IQ 5.5V 升压转换器
TI

TPS613

SILICON NPN EPITAXIAL PLANAR FOR PHOTO SENSOR
TOSHIBA

TPS613-A

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS613-BC

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS613-C

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS613-CD

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS61300

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61300YFFR

具有 I2C™ 兼容接口、支持驱动多个 LED 摄像机闪光灯的 1.5A/4.1A 驱动器 | YFF | 20 | -40 to 85
TI

TPS61300YFFT

具有 I2C™ 兼容接口、支持驱动多个 LED 摄像机闪光灯的 1.5A/4.1A 驱动器 | YFF | 20 | -40 to 85
TI

TPS61301

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61301YFF

LED DISPLAY DRIVER, BGA20, LEAD FREE, CSP-20
TI

TPS61301YFFR

1.5A/4.1A multiple LED Camera flash driver with I2CTM compatible interface and Hardware Reset Input 20-DSBGA -40 to 85
TI