TPS613223ADBVT [TI]

6µA 静态电流 1.8A 开关电流升压转换器 | DBV | 5 | -40 to 85;
TPS613223ADBVT
型号: TPS613223ADBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

6µA 静态电流 1.8A 开关电流升压转换器 | DBV | 5 | -40 to 85

升压转换器 开关 光电二极管
文件: 总35页 (文件大小:1975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
TPS61322 6.5µA 静态电流、1.8A 开关电流升压转换器  
1 特性  
3 说明  
1
工作输入电压范围:0.9V 5.5V  
TPS61322 是一款具有仅 6.5µA 静态电流的同步升压  
转换器。TPS61322 可以为由碱性电池、镍氢可再充  
电电池或单节锂离子电池供电的产品提供电源解决方  
案。该升压转换器建立在采用同步整流的迟滞控制拓扑  
基础之上,能够以最小静态电流实现最高的效率。  
TPS61322 也支持使用小型外部电感器和电容器。  
10mA 负载条件下进行 1.5V 输入至 2.2V 输出转换时  
效率高于 90%。  
输出电压范围:1.8V 5.5V  
VOUT 引脚静态电流为 6.5µA  
温度范围内输出电压精度为 ±3%  
最小开关峰值电流限制:  
TPS613223A 0.42A  
TPS61322 0.5A  
TPS613221A TPS613226A 0.75A  
TPS61322 1.10A  
TPS61322 还可以通过外部 肖特基二极管支持 高输出  
电流应用。利用与内部整流器 FET 并联的外部肖特基  
二极管,TPS613222A 可以在进行 3V 输入电压至 5V  
输出电压转换时提供高于 500mA 的输出电流能力。  
10mA 负载条件下进行 1.5V 2.2V 转换时效率高  
90%  
热关断保护  
2.9mm × 1.3mm 3 引脚 SOT 封装和 2.9mm ×  
1.6mm 5 引脚 SOT 封装  
使用 TPS61322 并借助 WEBENCH® 电源设计器  
创建定制设计  
可以在内部将输出电压设置为 1.8V 5.5V 范围内的  
某个固定输出(单位增量为 0.1V)。因此,仅需两个  
外部组件即可实现所需的输出电压。TPS61322 还具  
有热关断保护功能。  
2 应用  
TPS61322 采用 2.9mm × 1.3mm 3 引脚 SOT 封装或  
2.9mm × 1.6mm 5 引脚 SOT 封装。  
1 3 节碱性电池或镍氢电池供电型 应用  
游戏控制  
器件信息(1)  
平板电脑  
便携式电子产品  
医疗设备  
器件号  
TPS61322  
封装  
SOT-23 (3)  
SOT-23 (5)  
封装尺寸(标称值)  
2.90mm x 1.30mm  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用电路  
VOUT  
SW  
VOUT  
L1  
C1  
Battery  
TPS61322xx  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDY5  
 
 
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
9
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical Application ................................................. 11  
9.3 System Examples ................................................... 19  
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Examples................................................... 22  
12 器件和文档支持 ..................................................... 23  
12.1 器件支持 ............................................................... 23  
12.2 文档支持 ............................................................... 23  
12.3 接收文档更新通知 ................................................. 23  
12.4 社区资源................................................................ 23  
12.5 ....................................................................... 23  
12.6 静电放电警告......................................................... 23  
12.7 术语表 ................................................................... 24  
13 机械、封装和可订购信息....................................... 24  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (May 2018) to Revision D  
Page  
已删除 从 TPS61322 标题中删除了GPN”并将“TPS61322xx”更改成了“TPS61322”......................................................... 1  
已添加 添加了 WEBENCH 链接 ............................................................................................................................................. 1  
Changed the NFET symbol in Functional Block Diagram ...................................................................................................... 9  
Added Device Functional Modes.......................................................................................................................................... 10  
Changes from Revision B (April 2018) to Revision C  
Page  
Deleted Cross Reference to Device Comparison Table and the Electrical Characteristics table footnotes regarding  
device TPS61223A, that was Product Preview device in the SLVSDY5B revision. .............................................................. 3  
Added graphs pertaining to TPS613223A device to the Typical Characteristics matrix. ...................................................... 6  
Changes from Revision A (January 2018) to Revision B  
Page  
Deleted Cross Reference to Device Comparison Table and the Electrical Characteristics table footnotes regarding  
devices TPS61221A, TPS61222A, and TPS61226A that were Product Preview devices in the SLVSDY5A revision. ........ 3  
Added Figure 3, Figure 4 and Figure 5 .................................................................................................................................. 6  
Added Figure 7, Figure 8, and Figure 11 ............................................................................................................................... 8  
Changes from Original (September 2017) to Revision A  
Page  
2018 1 月生产数据发布。 .................................................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
5 Device Comparison Table  
PART NUMBER  
TPS61322  
OUTPUT VOLTAGE  
TYPICAL CURRENT LIMIT  
2.2 V  
3.3 V  
5 V  
0.75A  
1.2 A  
1.8 A  
0.75 A  
0.75 A  
1.2 A  
1.2 A  
TPS613221A  
TPS613222A  
TPS613223A  
2 V  
TPS613224A(1)  
TPS613225A(1)  
TPS613226A  
2.5 V  
3 V  
3.6 V  
(1) Product Preview. Contact TI factory for more information.  
6 Pin Configuration and Functions  
DBZ Package  
3-Pin SOT  
Top View  
VOUT  
GND  
TPS61322xA  
TPS61322  
GND  
SW  
VOUT  
SW  
DBV Package  
5-Pin SOT  
Top View  
NC  
VOUT  
TPS61322xA  
GND  
SW  
NC  
Pin Functions  
PIN  
TPS61322xA  
TPS61322  
TYPE  
DESCRIPTION  
NAME  
DBZ  
DBZ  
DBV  
1
2
3
-
3
2
1
-
2
1
4
3
5
GND  
SW  
PWR  
PWR  
PWR  
-
Ground of the IC.  
The switch pin of the converter. It is connected to the inductor.  
Boost converter output.  
VOUT  
NC  
No connection inside the device.  
-
-
NC  
-
No connection inside the device.  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
 
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–40  
–65  
MAX  
6.0  
UNIT  
V
Voltage range at terminals(2)  
Operating Junction Temperature,TJ  
Storage Temperature, Tstg  
SW, VOUT  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.9  
1.8  
0.7  
4.7  
-40  
NOM  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
L
Input voltage range  
Output voltage range  
5.5  
V
Inductor (effective)  
2.2  
16  
13  
µH  
µF  
°C  
COUT  
TJ  
Output capacitor (effective)  
Operating junction temperature  
100  
125  
7.4 Thermal Information  
TPS61322  
THERMAL METRIC(1)  
DBZ (SOT-23)  
3-PIN  
322.2  
107.0  
65.8  
DBV (SOT-23)  
5-PIN  
189.7  
109.4  
56.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.5  
33.3  
ψJB  
64.5  
56.5  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
7.5 Electrical Characteristics  
TJ = –40°C to +125°C and VIN = 0.9 V to 5.5 V. Typical values are at VIN = 1.2 V, TJ = 25°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
0.9  
5.5  
V
V
Minimum voltage for  
startup at VOUT pin  
VVOUT_START  
R
Load 250,TJ =-40°C to 85°C  
0.83  
6.5  
0.87  
Quiescent current into  
VOUT pin  
IQ  
VOUT = 1.2×Target  
10  
uA  
OUTPUT  
TPS61322  
VIN < VOUT, TJ =-40°C to 125°C  
VIN < VOUT, TJ =-40°C to 125°C  
VIN < VOUT, TJ =-40°C to 125°C  
VIN < VOUT, TJ =-40°C to 125°C  
VIN < VOUT, TJ =-40°C to 125°C  
2.134  
3.2  
2.2  
3.3  
5.0  
2.0  
3.6  
2.266  
3.4  
V
V
V
V
V
TPS613221A  
TPS613222A  
TPS613223A  
TPS613226A  
VOUT  
4.85  
1.94  
3.49  
5.15  
2.06  
3.71  
Leakage current into  
SW pin  
ISW_LKG  
VSW = VOUT = 1.2×Target  
3.5  
nA  
POWER SWITCH  
TPS61322  
300  
200  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
A
TPS613221A  
TPS613222A  
TPS613223A  
TPS613226A  
TPS61322  
Low side switch on  
resistance  
RDS(on)_LS  
RDS(on)_HS  
ILIM  
150  
400  
190  
1300  
1000  
750  
TPS613221A  
TPS613222A  
TPS613223A  
TPS613226A  
TPS61322  
High side switch on  
resistance  
1680  
950  
0.50  
0.75  
1.10  
0.42  
0.75  
0.75  
1.20  
1.80  
0.75  
1.20  
1.20  
1.60  
2.50  
1.2  
TPS613221A  
TPS613222A  
TPS613223A  
TPS613226A  
A
Peak switch current  
limit  
A
A
1.60  
A
Protection  
TSD  
Over-temperature  
protection  
TJ rising  
150  
20  
°C  
°C  
Over-temperature  
protection hysteresis  
TSD_HYS  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
7.6 Typical Characteristics  
TJ = 25°C unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
2.25  
2.24  
2.23  
2.22  
2.21  
2.2  
2.19  
2.18  
2.17  
2.16  
2.15  
30  
VIN = 0.9 V  
VIN = 1.2 V  
VIN = 1.5 V  
VIN = 0.9 V  
VIN = 1.2 V  
VIN = 1.5 V  
VIN = 1.8 V  
20  
10  
VIN = 1.8 V  
0
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D005  
D006  
TPS61322  
L = 4.7 µH  
TPS61322  
L = 4.7 µH  
Figure 1. Load Efficiency with Different Inputs  
Figure 2. Load Regulation  
100  
3.45  
3.4  
95  
90  
85  
80  
75  
70  
65  
60  
55  
3.35  
3.3  
Vin=0.9V  
Vin=0.9V  
Vin=1.5V  
Vin=2.5V  
Vin=3.0V  
Vin=3.3V  
Vin=1.5V  
Vin=2.5V  
Vin=3.0V  
Vin=3.3V  
3.25  
50  
3.2  
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
D003  
D008  
TPS613221A  
L = 2.2 µH  
TPS613221A  
L = 2.2 µH  
Figure 3. Load Efficiency with Different Inputs  
Figure 4. Load Regulation  
5.15  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5.1  
5.05  
5
Vin=0.9V  
Vin=1.5V  
Vin=3.0V  
Vin=3.6V  
Vin=4.2V  
Vin=0.9V  
Vin=1.5V  
Vin=3.0V  
Vin=3.6V  
Vin=4.2V  
4.95  
4.9  
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
D004  
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
TPS613222A  
L = 2.2 µH  
D007  
TPS613222A  
L = 2.2 µH  
Figure 5. Load Efficiency with Different Inputs  
Figure 6. Load Regulation  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
Typical Characteristics (continued)  
TJ = 25°C unless otherwise noted.  
3.75  
3.7  
100  
95  
90  
85  
80  
75  
3.65  
3.6  
70  
Vin=0.9V  
Vin=0.9V  
Vin=1.5V  
Vin=2.5V  
Vin=3.0V  
Vin=3.3V  
65  
60  
55  
Vin=1.5V  
Vin=2.5V  
Vin=3.0V  
Vin=3.3V  
3.55  
3.5  
0.0001  
50  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
D006  
D005  
TPS613226A  
L = 2.2 µH  
TPS613226A  
L = 2.2 µH  
Figure 8. Load Regulation  
Figure 7. Load Efficiency with Different Inputs  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2.15  
2.1  
Vin=0.9V  
Vin=1.2V  
Vin=1.5V  
Vin=1.8V  
2.05  
2
Vin=0.9V  
Vin=1.2V  
Vin=1.5V  
Vin=1.8V  
1.95  
0.0001  
0.001  
0.005  
Iout (A)  
0.02 0.05 0.1 0.2  
D008  
0.0001  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout (A)  
D020  
TPS613223A  
L = 4.7 µH  
TPS613223A  
L = 4.7 µH  
Figure 10. Load Regulation  
Figure 9. Load Efficiency with Different Inputs  
1500  
1400  
1300  
1200  
1100  
1000  
2000  
1900  
1800  
1700  
1600  
1500  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
D009  
D001  
TPS613221A  
L = 2.2 µH  
TPS613222A  
L = 2.2 µH  
Figure 11. Current Limit with Different Temperature  
Figure 12. Current Limit with Different Temperature  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
TJ = 25°C unless otherwise noted.  
1500  
1
0.9  
0.8  
0.7  
0.6  
0.5  
1400  
1300  
1200  
1100  
1000  
-60  
-30  
0
30  
60  
90  
120  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
D022  
Temperature (°C)  
D001  
TPS613223A  
L = 4.7 µH  
TPS613226A  
L = 2.2 µH  
Figure 14. Current Limit with Different Temperature  
Figure 13. Current Limit with Different Temperature  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
8 Detailed Description  
8.1 Overview  
The TPS61322xx is a low quiescent current, high efficiency synchronous boost converter. The TPS61322xx uses  
hysteretic current control scheme. The TPS61322xx is designed for systems powered by alkaline battery, NiMH  
rechargeable battery, Li-ion battery or Li-polymer battery. The input voltage range is from 0.9 V to 5.5 V. After  
start-up is completed, the TPS61322xx can work with the input voltage down to 0.4 V. The TPS61322xx  
consumes only 6.5-µA quiescent current and achieves high efficiency under light load conditions. The  
TPS61322xx is designed as an always-on power. Higher than 90% efficiency is achieved under 10-mA load from  
1.5-V input voltage to 2.2-V output voltage conversion to extend battery lifetime. The TPS613222A can support  
as high as 500-mA output current from 3-V input voltage to 5-V output voltage conversion with an external  
schottky diode in parallel with internal high-side MOSFET.  
8.2 Functional Block Diagram  
2
3
SW  
VOUT  
VOUT  
VOUT  
UVLO  
Gate Driver  
Gate Driver  
Current  
Sense  
Logic  
PWM Control  
Soft Start &  
Current Limit  
Control  
Thermal  
Shutdown  
EA  
1
GND  
VREF  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Soft Start  
When the input voltage is applied, the high side MOSFET is turned on. The input voltage charges the output  
capacitors through the inductor and the high side MOSFET. When the output capacitors are charged to 0.83-V  
typical value, the TPS61322xx starts switching at 1.6-MHz fixed frequency and the high-side MOSFET is turned  
off. When the output voltage goes up to typical 1.6 V, an internal soft-start control circuit ramps the reference  
voltage to 0.8 V within 2 ms. In this way, the soft-start function reduces the input inrush current. After the output  
voltage reaches the target value, soft start ends, and the inductor peak current is determined by the output of an  
internal error amplifier. After start-up, the TPS61322xx can work with the input voltage down to 0.4 V.  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Boost Controller Circuit  
The TPS61322xx boost converter is controlled by a hysteretic current mode scheme. The TPS61322xx regulates  
the output voltage by keeping the inductor ripple constant of 200-mA typical value and adjusting the offset of this  
inductor current depending on the output load. If the required average input current is lower than average  
inductor current defined by this constant ripple current, the inductor current becomes discontinuous to keep the  
efficiency high under light load conditions. Figure 15 illustrates the hysteretic current operation.  
The output voltage VOUT is monitored via the internal feedback network connected to a voltage error amplifier. To  
regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage  
reference and adjusts the required offset of the inductor current accordingly.  
IL  
Continuous Current Operation  
Discontinuous Current Operation  
200mA  
200mA  
t
Figure 15. Hysteretic Current Operation  
The TPS61322xx boost converter can increase the output load capacity by connecting an external schottky diode  
from SW pin to VOUT pin. Higher than 500 mA output current is supported for 5-V output voltage applications  
such as USB OTG and HDMI power supply. For such applications, an adaptive constant off time circuit will  
generate the signal to turn off high-side FET. The inductor current ripple is greater than 200 mA if with this  
external diode. A higher inductance can help reduce the inductor current ripple.  
8.3.3 Undervoltage Lockout  
An undervoltage lockout function stops operation of the converter if the input voltage drops below the typical  
undervoltage lockout threshold of 0.4 V while the output voltage is still higher than 1.8 V. A hysteresis of 100 mV  
is added so that the device does not switch again until the input voltage goes up to 0.5 V.  
8.3.4 Current Limit Operation  
The TPS61322xx employs cycle-by-cycle peak current limit operation. If the inductor peak current hits the peak  
current limit ILIM, the low-side MOSFET is turned off and stops the further increase of the inductor current. In this  
case the output voltage drops until power balance between the input side and output side is achieved. If the  
output voltage drops below the input voltage, the inductor current will be clamped by the DCR of the inductor and  
the on-resistance (Rds,on) of the high-side MOSFET.  
8.3.5 Overtemperature Protection  
The TPS61322xx has a built-in temperature sensor which monitors the internal junction temperature in boost  
mode operation. If the junction temperature exceeds the threshold 150°C, the device stops operating. As soon as  
the junction temperature drops below the shutdown temperature minus the hysteresis, typically 130°C, the device  
starts operating again.  
8.3.6 Device Functional Modes  
Boost Controller Circuit - Continuous and discontinuous current operation  
Protective mechanisms  
Current Limit Operation  
Undervoltage Lockout  
Overtemperature Protection  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS61322xx is designed to operates at a wide input voltage range from 0.9-V to 5.5-V. The minimum peak  
switch current limit is 0.5 A for TPS61322, with 0.75 A for TPS613221A and 1.1 A for TPS613222A. The  
TPS61322xx supports output voltage from 1.8 V to 5.5 V with increment of 0.1 V, refer to Device Comparison  
Table for device details to select the right device for the target applications. Use the following design procedure  
to select component values for the TPS61322xx.  
9.2 Typical Application  
9.2.1 Boost without Schottky Diode  
A typical application example is the wireless mouse, which normally requires 2.2-V voltage as its supply voltage  
and consumes less than 50-mA current from one-cell alkaline battery. The following design procedure can be  
used to select external component values for TPS61322xx.  
4.7uH  
VOUT  
SW  
VOUT  
L1  
C1  
Battery  
22uF  
TPS61322xx  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. Typical Application Circuit without Schottky Diode  
9.2.1.1 Design Requirements  
Table 1. Design Requirements  
PARAMETERS  
Input voltage  
VALUES  
0.9 V to 1.6 V  
2.2 V  
Output voltage  
Output current  
50 mA  
Output voltage ripple  
±10 mV  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61322 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.1.2.2 Maximum Output Current  
For boost converters, the maximum output current capability is determined by the input to output ratio, the  
efficiency, the inductor current ripple and the current limit. The maximum output current can be estimated by  
Equation 1  
I LH  
VIN ì ( I LIM  
-
) ìh  
2
IOUT (max)  
=
VOUT  
where  
ILIM is the peak inductor current limit  
ILH is the inductor current ripple  
η is the boost converter power convert efficiency  
(1)  
Minimum input voltage, maximum boost output voltage and minimum current limit should be used as the worst  
case condition for the estimation.  
In this example, assume the power efficiency is 70% at the minimum input voltage of 0.9 V. The calculated  
maximum output current is 114 mA, which satisfies the application requirements.  
9.2.1.2.3 Inductor Selection  
Because the inductor affects steady state operation, transient behavior, and loop stability, the inductor is the  
most important component in power regulator design. There are three important inductor specifications, inductor  
value, saturation current, and dc resistance (DCR).  
The TPS61322xx is optimized to work with inductor values between 0.7 µH and 13 µH. The inductor values  
affect the switching frequency. The estimated switching frequency in continuous conduction mode(CCM) can be  
calculated by Equation 2. The switching frequency ƒSW is not a constant value, which is determined by the  
inductance, the inductor current ripple, the input voltage and the output voltage. The current ripple ILH is fixed to  
200 mA typically, but it can be affected by the inductor value indirectly. Normally when a smaller inductor value is  
applied, the inductor current ramps up and down more quickly. The current ripple becomes bigger because the  
internal current comparator has delay to respond. If a smaller inductor peak current is required in applications, a  
higher inductor value can be used. However, The inductor and output capacitor must be considered together for  
the loop stability. The output capacitor and the inductance will influence the bandwidth and phase margin of the  
converter. Consequently, with a larger inductor, a bigger capacitor normally must be used to ensure the same  
L/C ratio for a stable loop. For best stability consideration, a 4.7-µH inductor is recommended for 2.2-V output  
voltage application.  
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
VIN ì(VOUT -VIN ì  
h)  
fSW  
=
LìILH ìVOUT  
where  
fSW is the switching frequency of the converter  
ILH is the inductor current ripple  
η is the boost converter power convert efficiency  
(2)  
Having selected the inductance value, follow Equation 3 to Equation 5 to calculate the inductor's peak current for  
the application. Depending on different load conditions, the TPS61322xx works in continuous current mode or  
discontinuous conduction mode(DCM). In different modes, the peak currents of the inductor are also different.  
Equation 3 provides an easy way to estimate whether the device works in CCM or DCM. Equation 4 shows the  
peak current when the device works in CCM and Equation 5 shows the peak current when the device works in  
DCM.  
VOUT ìIOUT ILH  
>
VIN ìh  
2
where  
ILH is the inductor current ripple  
η is the boost converter power convert efficiency  
(3)  
V
OUTìIOUT ILH  
IL,peak  
=
+
V ì  
h
2
IN  
where  
IL,peak is the peak current of the inductor  
ILH is the inductor current ripple  
η is the boost converter power convert efficiency  
(4)  
(5)  
IL, peak = ILH  
where  
IL,peak is the peak inductor.  
ILH is the inductor current ripple  
The saturation current of the inductor must be higher than the calculated peak inductor current, otherwise the  
excessive peak current in the inductor harms the device and reduces the system reliability.  
In this example, the maximum load for the boost converter is 50 mA, the minimum input voltage is 0.9 V, and the  
efficiency under this condition can be estimated at 80%, so the boost converter works in continuous operation  
mode by the calculation. The inductor peak current is calculated as 258 mA. To have some margin, a 4.7-µH  
inductor with at least 300 mA saturation current is recommended for this application. A 10-µH inductor can be  
used as well by increasing the output capacitance to higher than 22 µF to make the loop stable. Table 2 lists the  
recommended inductors for TPS61322xx device.  
Table 2. List of Inductors  
DC  
RESISTAN  
CE [m]  
INDUCTAN SATURATION CURRENT  
SIZE (L×W×H)(mm)  
PART NUMBER  
MANUFACTURER(1)  
CE [µH]  
[A]  
4.7  
4.7  
4.7  
1.7  
1.5  
1.5  
165  
141  
209  
2.5 × 2 × 1.2  
3 × 3 × 1.5  
DFE252012P-4R7M=P2 MURATA  
74438335047  
Wurth  
2.5 × 2 × 1.2  
SDEM25201B-4R7MS  
CYNTEC  
(1) See Third-party Products Disclaimer  
Copyright © 2018–2019, Texas Instruments Incorporated  
13  
 
 
 
 
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
9.2.1.2.4 Capacitor Selection  
For better output voltage filtering, TI recommends low ESR X5R or X7R ceramic capacitors.  
For the output capacitor at the VOUT pin, TI recommends small ceramic capacitors. Place the capacitors as  
close as possible to the VOUT and GND pins of the device. If, for any reason, the application requires the use of  
large capacitors that cannot be placed close to the device, the use of a small ceramic capacitor with a  
capacitance value of 1 μF in parallel to the large one is recommended. Place this small capacitor as close as  
possible to the VOUT and GND pins of the device.  
Considering loop stability, for inductance of 4.7 µH, the minimal output capacitor value is 10 μF (effective value).  
Refer to Table 3 for inductor and capacitor combination. Increasing the output capacitor makes the output ripple  
smaller.  
When selecting capacitors, ceramic capacitor’s derating effect under DC bias voltage must be considered.  
Choose the right nominal capacitance by checking capacitor's DC bias characteristics. In this example,  
GRM188R60J106ME84D, which is a 10-µF ceramic capacitor with high effective capacitance value at DC biased  
condition, is selected for VOUT rail. Two 10-μF capacitors in parallel are recommended to get the desired effective  
capacitance.  
Table 3. List of Inductor and Capacitor  
INDUCTAN  
CE [µH]  
CAPACITANCE [µF]  
LOAD [mA]  
PACKAGE  
PART NUMBER  
MANUFACTURER(1)  
1.0  
2 × 10  
2 × 10  
22  
50  
50  
50  
0603  
0603  
0805  
GRM188R60J106ME84D MURATA  
GRM188R60J106ME84D MURATA  
GRM21BZ71A226ME15 MURATA  
2.2  
4.7  
(1) See Third-party Products Disclaimer  
9.2.1.3 Application Curves  
SW  
1V/Div  
SW  
1V/Div  
VOUT(2.2V Offset)  
10mV/Div  
VOUT(2.2V Offset)  
10mV/Div  
Inductor Current  
50mA/Div  
Inductor Current  
200mA/Div  
VIN = 1.2V  
TPS61322  
IOUT = 0.1 mA  
VIN = 1.2 V  
TPS61322  
IOUT = 50 mA  
Figure 17. Switching Waveform at Light Load  
Figure 18. Switching Waveform at Heavy Load  
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
VIN  
VIN  
500mV/Div  
1V/Div  
SW  
2V/Div  
SW  
1V/Div  
VOUT(2.2V Offset)  
10mV/Div  
VOUT  
1V/Div  
Inductor Current  
200mA/Div  
Inductor Current  
100mA/Div  
VIN = 1.2 V  
TPS61322  
Rload = 250 Ω  
VIN = 1.2 V to 1.5 V  
TPS61322  
IOUT = 50 mA  
Figure 19. Start-up by VIN  
Figure 20. Line Transient  
IOUT  
IOUT  
50mA/Div  
50mA/Div  
SW  
SW  
2V/Div  
2V/Div  
VOUT(2.2V Offset)  
20mV/Div  
VOUT(2.2V Offset)  
50mV/Div  
Inductor Current  
200mA/Div  
Inductor Current  
200mA/Div  
VIN = 1.2 V  
TPS61322  
IOUT = 10 mA to 50 mA  
VIN = 1.2 V  
TPS61322  
IOUT = 10 mA to 100 mA  
Figure 21. Load Transient  
Figure 22. Load Transient  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
L = 2.2 mH  
L = 4.7 mH  
L = 10 mH  
0.0001  
0.001  
0.01  
0.1  
Output Current (A)  
D007  
Wurth Electronics, 74438335XXX family  
2.2 µH, 4.7 µH, 10 µH  
VIN = 1.2 V  
TPS61322  
Figure 23. Efficiency with Different Inductance  
Copyright © 2018–2019, Texas Instruments Incorporated  
15  
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
9.2.2 Boost with Schottky Diode  
Another typical application example is the USB OTG which normally requires 5-V output as its supply voltage  
and consumes as high as 500-mA current. The following design procedure can be used to select external  
component values for this application.  
R1  
C2  
D1  
5.0V, 500mA  
2.2uH  
VOUT  
SW  
VOUT  
L1  
C1  
Battery  
22uF  
TPS613222A  
GND  
Figure 24. Typical Application Circuit with Schottky Diode  
9.2.2.1 Design Requirements  
Table 4. Design Requirements  
PARAMETERS  
Input voltage  
VALUES  
3 V to 4.35 V  
5 V  
Output voltage  
Output vurrent  
500 mA  
± 25 mV  
Output voltage ripple  
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Inductor Selection  
The peak current is calculated according to Equation 4 and Equation 5.The saturation current of the inductor  
must be higher than the calculated peak inductor current.  
In this example, the maximum load for the boost converter is 500 mA, and the minimum input voltage is 3 V.  
Assuming the efficiency under this condition is 90%, and a typical 2.2-µH inductor is adopted in this application,  
so the boost converter works in continuous operation mode by the calculation. The current ripple is 500mA and  
the inductor peak current is calculated as 1.18 A. To leave some margin, a 2.2-µH inductor with at least 1.4-A  
saturation current is recommended for this application.Table 5 lists the recommended inductors for TPS613222A  
device.  
Table 5. List of Inductors  
DC  
RESISTAN  
CE [m]  
INDUCTAN SATURATION CURRENT  
SIZE (L×W×H) (mm)  
PART NUMBER  
MANUFACTURER(1)  
CE [µH]  
[A]  
2.2  
2.2  
2.2  
2.3  
2.4  
2.5  
82  
89  
75  
2.5 × 2 × 1.2  
2.5 × 2 × 1  
DFE252012F-2R2M  
MURATA  
HMLQ25201T-2R2MSR CYNTEC  
HMME32251B--2R2MS CYNTEC  
3.2 × 2.5 × 1.2  
(1) See Third-party Products Disclaimer  
16  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
9.2.2.2.2 Schottky Diode Selection  
The high switching frequency of TPS61322xx demands a high-speed rectifying switch for optimum efficiency.  
Ensure that the average and peak current rating of the diode exceeds the average output current and peak  
inductor current. In addition, the reverse breakdown voltage of the diode must exceed the maximum output  
voltage of the converter. A snubber circuit consisting of a resistor R1 and a capacitor C2 is needed if the  
Schottky diode D1 is soldered. The capacitance of C2 must be larger than triple times of the diode capacitance.  
The typical value of the resistor R1 is 5 Ω, and the typical value of the capacitor C2 is 120 pF.  
9.2.2.2.3 Capacitor Selection  
Refer to Capacitor Selection for the detailed design steps.Table 6 lists the recommended inductor and capacitor  
combination. Three 10-μF capacitors in parallel are recommended to get the desired effective capacitance.  
Table 6. List of Inductor and Capacitor  
INDUCTAN  
CE [µH]  
CAPACITANCE [µF]  
LOAD [mA]  
PACKAGE  
PART NUMBER  
MANUFACTURER(1)  
1
3 × 10  
3 × 10  
2 × 22  
500  
500  
500  
0603  
0603  
0805  
GRM188R60J106ME84D  
GRM188R60J106ME84D  
GRM21BZ71A226ME15  
MURATA  
MURATA  
MURATA  
2.2  
4.7  
(1) See Third-party Products Disclaimer  
9.2.2.3 Application Curves  
VIN = 3.6 V  
TPS613222A  
IOUT = 100 mA  
VIN = 3.6 V  
TPS613222A  
IOUT = 0.1 mA  
Figure 26. Switching Waveform at Heavy Load  
Figure 25. Switching Waveform at Light Load  
VIN = 3.6 V  
TPS613222A  
Rload = 250 Ω  
VIN = 3.6 V  
TPS613222A  
IOUT = 500 mA  
Figure 28. Start-up by VIN  
Figure 27. Switching Waveform at Heavy Load  
Copyright © 2018–2019, Texas Instruments Incorporated  
17  
 
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
VIN = 2.7 V to 4.3 V  
TPS613222  
A
IOUT = 500 mA  
VIN = 2.7 V to 4. V  
TPS613222A  
IOUT = 500 mA  
Figure 30. Line Regulation  
Figure 29. Line Transient  
VIN = 3.6 V  
TPS613222A  
IOUT = 10 mA to 500 mA  
VIN = 3.6 V  
TPS613222A  
IOUT = 0 mA to 500 mA  
Figure 31. Load Transient  
Figure 32. Load Regulation  
5.15  
5.1  
5.05  
5
100  
90  
80  
70  
60  
VIN=1.5V  
VIN=1.5V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
4.95  
4.9  
50  
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Iout (A)  
1
D011  
D012  
TPS613222A  
L = 2.2 µH  
D1:ZLLS410TA  
TPS613222A  
L = 2.2 µH  
D1:ZLLS410TA  
Figure 33. Efficiency with Different Input Voltage  
Figure 34. Load Regulation  
18  
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
9.3 System Examples  
TPS61322xx can be easily shut down with an external switch Q1 as shown in Figure 35. The switch can be  
mechanical switch, a P-channel MOSFET, or a PNP transistor. For a mechanical switch, there is no control logic  
circuit needed to turn on or turn off the switch.  
D1  
(optional for large current)  
L1  
2.2 µH  
Q1  
SW  
VOUT  
VOUT  
C2  
Battery  
22 µF  
2.2 µF  
TPS6132xx  
C1  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 35. True Shutdown for TPS61322xx  
9.3.1 Detail Design Schematics  
The Figure 36 shows the application circuit when the power supply of the micro controller unit (MCU) is not less  
than the battery voltage. The Figure 37 shows the application circuit when the power supply of the micro  
controller unit (MCU) is less than the battery voltage  
D1  
D1  
(optional for large current)  
(optional for large current)  
Q1  
L1 2.2 µH  
L1 2.2 µH  
Q1  
SW  
VOUT  
VOUT  
SW  
VOUT  
VOUT  
C2  
C2  
Battery  
22 µF  
Battery  
22 µF  
2.2 µF  
2.2 µF  
TPS6132xx  
C1  
TPS6132xx  
C1  
R1  
R1  
V_MCU  
V_MCU  
GND  
GND  
GPIO  
Q2  
GPIO  
MCU  
MCU  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
Figure 36. True Shutdown, V_MCU Voltage No Less than  
Battery Voltage  
Figure 37. True Shutdown, V_MCU Voltage Less than  
Battery Voltage  
Copyright © 2018–2019, Texas Instruments Incorporated  
19  
 
 
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The TPS61322xx is designed to operate from an input voltage supply range between 0.9 V to 5.5 V. The power  
supply can be alkaline battery, NiMH rechargeable battery, Li-Mn battery or rechargeable Li-ion battery. The  
input supply must be well regulated with the rating of the TPS61322xx.  
20  
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. Place the output capacitor, as well as the inductor, as close as possible to the device.  
Copyright © 2018–2019, Texas Instruments Incorporated  
21  
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
11.2 Layout Examples  
A large ground plane on the top and bottom is good for thermal performance.  
GND  
VOUT  
SW  
VOUT  
GND  
VOUT  
SW  
TPS61322xA  
VIN  
VIN  
VOUT  
GND  
GND  
Figure 39. TPS61322xA DBZ Package Layout  
Figure 38. TPS61322 Layout  
GND  
VIN  
NC  
VOUT  
TPS61322xA  
VOUT  
SW  
GND  
NC  
Figure 40. TPS61322xA DBV Package Layout  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS61322  
www.ti.com.cn  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.1.2 开发支持  
12.1.2.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS61322 器件并借助 WEBENCH® 电源设计器创建定制设计。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
TPS61322-BMC001 评估模块用户指南》  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TPS61322  
ZHCSI34D JANUARY 2018REVISED FEBRUARY 2019  
www.ti.com.cn  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS613221ADBVR  
TPS613221ADBVT  
TPS613222ADBVR  
TPS613222ADBVT  
TPS613223ADBVR  
TPS613223ADBVT  
TPS613226ADBVR  
TPS613226ADBVT  
TPS61322DBZR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
OBSOLETE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBZ  
DBZ  
DBZ  
5
5
5
5
5
5
5
5
3
3
3
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
1N4L  
1N4L  
1N5L  
1N5L  
1NRL  
1NRL  
1N6L  
1N6L  
1EME  
1EME  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
SN  
TPS61322DBZT  
250  
RoHS & Green  
TBD  
SN  
XTPS61322DBZT  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2023  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS613221ADBVR  
TPS613221ADBVT  
TPS613222ADBVR  
TPS613222ADBVR  
TPS613222ADBVT  
TPS613222ADBVT  
TPS613223ADBVR  
TPS613223ADBVR  
TPS613223ADBVT  
TPS613223ADBVT  
TPS613226ADBVR  
TPS613226ADBVT  
TPS61322DBZR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBZ  
DBZ  
5
5
5
5
5
5
5
5
5
5
5
5
3
3
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
9.0  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.15  
3.15  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
2.77  
2.77  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
3000  
250  
3000  
250  
TPS61322DBZT  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS613221ADBVR  
TPS613221ADBVT  
TPS613222ADBVR  
TPS613222ADBVR  
TPS613222ADBVT  
TPS613222ADBVT  
TPS613223ADBVR  
TPS613223ADBVR  
TPS613223ADBVT  
TPS613223ADBVT  
TPS613226ADBVR  
TPS613226ADBVT  
TPS61322DBZR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBZ  
DBZ  
5
5
5
5
5
5
5
5
5
5
5
5
3
3
3000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
180.0  
180.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
18.0  
18.0  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
3000  
250  
3000  
250  
TPS61322DBZT  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS613226ADBVR

6µA 静态电流 1.8A 开关电流升压转换器 | DBV | 5 | -40 to 85
TI

TPS613226ADBVT

6µA 静态电流 1.8A 开关电流升压转换器 | DBV | 5 | -40 to 85
TI

TPS61322DBZR

6µA 静态电流 1.8A 开关电流升压转换器 | DBZ | 3 | -40 to 85
TI

TPS61322DBZT

6µA 静态电流 1.8A 开关电流升压转换器 | DBZ | 3 | -40 to 85
TI

TPS61325

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61325YFF

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61325YFFR

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61325YFFT

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61372

具有负载断开功能的 16V/3.6A 同步升压
TI

TPS61372YKBR

具有负载断开功能的 16V/3.6A 同步升压 | YKB | 16 | -40 to 125
TI

TPS61372YKBT

具有负载断开功能的 16V/3.6A 同步升压 | YKB | 16 | -40 to 125
TI

TPS61376

具有 2.5% 精度输入平均电流限制和真正负载断开功能的 25V、4.5A 升压转换器
TI