TPS61372YKBT [TI]

具有负载断开功能的 16V/3.6A 同步升压 | YKB | 16 | -40 to 125;
TPS61372YKBT
型号: TPS61372YKBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有负载断开功能的 16V/3.6A 同步升压 | YKB | 16 | -40 to 125

文件: 总31页 (文件大小:2058K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61372  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
具有负载断开功能TPS61372 16V3.8A 同步升压转换器  
1 特性  
3 说明  
• 输入电压范围2.5V 5.5V  
• 输出电压范围16V  
• 导通电阻:  
TPS61372 是内置了负载断开功能的完全集成型同步升  
压转换器。该器件可支持高达 16V 的输出电压电流  
限制为 3.8A。输入电压的范围为 2.5V 5.5V可  
支持通过单节锂离子电池5V 总线供电的应用。  
– 低FET - 33mΩ  
– 高FET - 104mΩ  
TPS61372 以自适应关断时间控制拓扑为基础采用了峰  
值电流模式。在中等到重负载条件下器件会在  
1.5MHz PWM 模式下工作。在轻负载条件下该器件  
可通MODE 引脚连接配置为自动 PFM 或强PWM  
模式。自动 PFM 模式的优势是可在轻负载条件下实现  
高效率而强PWM 模式则可以在整个负载范围内保  
持恒定开关频率。TPS61372 具有软启动功能可最大  
限度地减小启动期间的浪涌电流。TPS61372 可在关断  
时断开负载并提供断续模式输出短路保护。此外该  
器件还实施了输出过压和热关断保护。TPS61372 可通  
16 引脚 WCSP 1.57mm × 1.52mm × 0.5mm 封装  
实现紧凑的解决方案尺寸。  
• 开关峰值电流限制3.8A  
• 来VIN 的静态电流74μA  
• 来VOUT 的静态电流10μA  
• 来VIN 的关断电流1μA  
• 开关频率1.5MHz  
• 软启动时间0.9ms  
• 断续输出短路保护  
• 可选自PFM 和强PWM  
• 关断期间负载断开  
• 外部环路补偿  
• 输出过压保护  
1.57mm × 1.52mm × 0.5mm 16 WCSP  
• 使TPS61372 并借WEBENCH® Power  
Designer 创建定制设计方案  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS61372  
DSBGA (16)  
1.57mm × 1.52mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
RF PA 驱动器  
NAND 闪存  
备用电源  
电机驱动器  
光学传感器驱动器  
L
CBST  
CIN  
SW  
VOUT  
BST  
VIN  
COUT  
Forced  
PWM  
Auto  
PFM  
VOUT  
MODE  
RUP  
ON  
FB  
OFF  
EN  
RDOWN  
COMP  
GND  
Cc  
RC  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEE7  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
Table of Contents  
8 Application and Implementation..................................12  
8.1 Application Information............................................. 12  
8.2 Typical Application.................................................... 12  
9 Power Supply Recommendations................................21  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Example...................................................... 23  
11 Device and Documentation Support..........................25  
11.1 Device Support........................................................25  
11.2 接收文档更新通知................................................... 25  
11.3 支持资源..................................................................25  
11.4 Trademarks............................................................. 25  
11.5 静电放电警告...........................................................25  
11.6 术语表..................................................................... 25  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................11  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2018) to Revision B (January 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
Changed 2 to S in 方程11 ............................................................................................................................17  
Updated 8.2.2.7 ...........................................................................................................................................19  
Changes from Revision * (June 2018) to Revision A (October 2018)  
Page  
• 首次发布量产数据数据表.................................................................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61372  
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
5 Pin Configuration and Functions  
FB  
GND  
SW  
COMP  
GND  
SW  
NC  
GND  
SW  
MODE  
EN  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
D3  
A4  
B4  
C4  
D4  
BST  
VIN  
VOUT  
VOUT  
VOUT  
5-1. YKB Package 16-Pin DSBGA (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
A1  
A2  
FB  
I
Output voltage feedback. A resistor divider connecting to this pin sets the output voltage.  
COMP  
O
Output of the internal error amplifier. The loop compensation network must be connected  
between this pin and GND.  
A3  
A4  
NC  
I
I
No connection. Tie directly to VIN pin. Do not connect with GND or leave it floating.  
MODE  
Operation mode selection pin. MODE = low, the device works in auto PFM mode with good  
light load efficiency. MODE = high, the device is in forced PWM mode and keeps the switching  
frequency constant across the whole load range.  
B1, B2, B3  
B4  
GND  
EN  
-
I
Ground  
Enable logic input. Logic high level enables the device. Logic low level disables the device and  
turns it into shutdown mode.  
C1, C2, C3  
C4  
SW  
PWR The switching node pin of the converter. It is connected to the drain of the internal low-side  
FET and the source of the internal high-side FET.  
BST  
O
Power supply for the high-side FET gate driver. A capacitor must be connected between this  
pin and the SW pin.  
D1, D2, D3  
D4  
VOUT  
VIN  
PWR Boost converter output  
IC power supply input  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61372  
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
-0.3  
MAX  
SW+6  
19  
UNIT  
V
Voltage range at terminals(2)  
Voltage range at terminals(2)  
Voltage range at terminals(2)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
BST  
SW, VOUT  
V
VIN, EN, COMP, FB, MODE, NC  
6
V
0.3  
40  
65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
±1500  
(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(3)  
±500  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
in to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary  
precautions.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary  
precautions.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range unless otherwise noted.  
MIN  
2.5  
NOM  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
TJ  
Input voltage  
Output voltage  
5
16  
V
Operating junction temperature  
125  
°C  
40  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61372  
 
 
 
 
 
 
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
6.4 Thermal Information  
TPS61372  
THERMAL METRIC(1)  
YKB  
16 PINS  
87.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.7  
24.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
24.3  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
VIN = 2.5 V to 5.5 V and VOUT = 5 V to 16 V, TJ = - 40°C to 125°C , Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
Input voltage under voltage lockout  
(UVLO) threshold, rising  
2.32  
2.1  
V
V
VIN_UVLO  
VOUT = 12 V, TJ = - 40°C to 125°C  
Input voltage under voltage lockout  
(UVLO) threshold, falling  
IC enabled, no switching  
TJ = 40°C to 85°C  
IQ  
Quiescent current into VIN pin  
Quiescent current into VOUT pin  
74  
10  
110  
µA  
IC enabled, no switching, VIN = 2.5 V,  
VOUT = 5 V to 16 V,  
TJ = 40°C to 85°C  
IQ  
26  
1
µA  
µA  
VIN = 2.5 V to 5.5 V, VOUT = SW = 0 V,  
Shutdown current from VIN to GND EN = 0,  
ISD  
0.03  
TJ = - 40°C to 85°C  
OUTPUT VOLTAGE  
Reference voltage on FB pin  
0.585  
0.594  
1.016  
0.603  
30  
V
VREF  
AUTO PFM mode  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
VREF  
nA  
IFB_LKG  
Leakage current into FB pin  
POWER SWITCHES  
Low-side FET on resistance  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
33  
mΩ  
mΩ  
RDS(on)  
High-side + Dis connect FET on  
resistance  
104  
CURRENT LIMIT  
Current Limit (Auto PFM)  
Current Limit (Forced PWM)  
EN, MODE LOGICS  
VIN = 3 V to 4.5 V, VOUT = 5 V to 16 V,  
TJ = - 40°C to 125°C  
3.4  
3.8  
3.6  
4.3  
4.0  
A
A
ILIM  
VIN = 3 V to 4.5 V, VOUT = 5 V to 16 V,  
TJ = - 40°C to 125°C  
3.28  
EN, MODE pin high level input  
voltage  
VIH  
1.2  
V
EN, MODE pin low level input  
voltage  
VIL  
0.4  
V
VHYS  
TDEGLITCH  
RPD  
EN, MODE pin Hysteresis  
100  
13  
mV  
µS  
kΩ  
EN, MODE deglitch time  
rising / falling  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
EN, MODE pull down resistor  
800  
SWITCHING CHARACTER  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61372  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
VIN = 2.5 V to 5.5 V and VOUT = 5 V to 16 V, TJ = - 40°C to 125°C , Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
MHz  
kHz  
VIN  
VIN = 3 V to 4.5 V, VOUT = 5 V to 12 V,  
TJ = - 40°C to 125°C  
fSW  
Switch frequency  
1.2  
1.7  
fSW_FOLD  
VFSW_LOW  
Switch frequency foldback  
VIN = 4 V, TJ = - 40°C to 125°C  
VIN = 4 V, TJ = - 40°C to 125°C  
470  
15%  
535  
600  
25%  
Threshold for fsw foldback (1.5 MHz  
normal)  
20%  
VFSW_LOW_  
Hysteresis for fsw foldback  
VIN = 4 V, TJ = 25°C  
150  
mV  
HSY  
TIMING  
tON_MIN  
tSS  
Minimum on time  
VIN = 4 V, TJ =- 40°C to 125°C  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
75  
0.9  
74  
95  
ns  
ms  
ms  
ms  
Soft-start time  
tHIC_ON  
tHIC_OFF  
Off time of hiccup cycle  
On time of hiccup cycle  
1.9  
ERROR AMPLIFIER  
COMP output high voltage Auto  
PFM  
VIN = 4 V, VOUT = 12 V, TJ = 25°C, VFB  
= VREF - 200mV  
1.4  
1.5  
0.8  
V
V
V
VCOMPH  
COMP output high voltage Forced VIN = 4 V, VOUT = 12 V, TJ = 25°C, VFB  
PWM  
= VREF - 200mV  
VIN = 4 V, V°OUT = 12 V, TJ = 25°C,  
VFB = VREF + 200mV  
COMP output low voltage Auto PFM  
VCOMPL  
COMP output low voltage Forced  
PWM  
VIN = 4 V, VOUT = 12 V, TJ = 25°C, VFB  
= VREF + 200mV  
0.6  
175  
20  
V
Gm  
Error amplifier trans conductance  
Sink current of COMP  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
µS  
µA  
VIN = 4 V, TJ = 25°C, VFB = VREF  
200mV  
+
ISINK_EA  
VIN = 4 V, TJ = 25°C, VFB = VREF  
200mV  
-
ISOURCE_EA Source current of COMP  
20  
µA  
PROTECTION  
Output over-voltage protection  
threshold  
VIN = 2.5 V to 5.5 V, TJ =- 40°C to  
125°C  
VOVP  
16.5  
17.3  
500  
18  
V
Output over-voltage protection  
VOVP_HYS  
hysteresis  
VIN = 4 V, VOUT = 12 V, TJ = 25°C  
mV  
THERMAL  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
VIN = 4 V, VOUT = 12 V  
VIN = 4 V, VOUT = 12 V  
140  
20  
°C  
°C  
TSD_HYS  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61372  
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
6.6 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
VIN = 3 V  
VIN = 4 V  
VIN = 5 V  
VIN = 3 V  
VIN = 4 V  
VIN = 5 V  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
0.5  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
0.5  
D001  
D002  
VOUT = 12 V  
L = 2.2 µH  
Auto PFM  
VOUT = 12 V  
L = 2.2 µH  
Forced PWM  
6-1. Efficiency vs Load  
6-2. Efficiency vs Load  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
0.61  
0.608  
0.606  
0.604  
0.602  
0.6  
11.9  
11.8  
11.7  
11.6  
0.598  
0.596  
0.594  
0.592  
VIN = 3 V  
VIN = 4 V  
VIN = 5 V  
11.5  
0.0001  
0.59  
-40  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D003  
D004  
VOUT = 12 V  
L = 2.2 µH  
Auto PFM  
VIN = 4 V  
6-3. Load Regulation  
6-4. Reference Voltage vs Temperature  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
60  
55  
50  
45  
40  
35  
30  
25  
20  
TJ = -40èC  
TJ = 25èC  
TJ = 125èC  
50  
2.5  
3
3.5  
4
4.5  
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
VIN (V)  
Temperature (èC)  
D005  
D006  
VIN = 2.5 V to 5.5 V  
VOUT = 12 V  
No Switching  
VIN = 4 V  
VOUT = 12 V  
6-5. Iq vs VIN  
6-6. Low-Side RDSON vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61372  
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
150  
140  
130  
120  
110  
100  
90  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
Rising  
Falling  
80  
1.9  
1.8  
70  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
VIN = 4 V  
VOUT = 12 V  
6-7. High-side RDSON vs Temperature  
6-8. UVLO Threshold vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61372  
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
7 Detailed Description  
7.1 Overview  
The TPS61372 is a highly-integrated synchronous boost converter to support 16-V output with load disconnect  
and short protection built-in. The TPS61372 supports input voltage ranging from 2.5 V to 5.5 V. The TPS61372  
uses the peak current mode with adaptive off-time control topology to regulate the output voltage. The  
TPS61372 operates at a quasi-constant frequency pulse-width modulation (PWM) at moderate to heavy load  
current. At the beginning of each cycle, the low-side FET turns on and the inductor current ramps up to reach a  
peak current determined by the output of the error amplifier (EA). When the peak current pre-set value  
determined by the output trips of the EA, the low-side FET turns off. As long as the low-side FET turns off, the  
high-side FET turns on after a short delay time to avoid the shoot through. The duration of low-side FET off state  
is determined by the VIN / VOUT ratio.  
High efficiency is achieved at light load as the TPS61372 operates in PFM operation. The device can be also  
configured at forced PWM mode to keep the frequency constant across the whole load range and to have more  
immunity against noise sensitive applications.  
7.2 Functional Block Diagram  
L
VIN  
CBST  
CIN  
BST  
VIN  
SW  
VOUT  
VOUT  
VOUT  
BOOT  
REG  
VCC  
COUT  
UVLO,  
OVP,  
Thermal  
HS Driver  
Fault  
Proteciton  
LS Driver  
Forced  
PWM  
VOUT  
MODE  
Auto  
PFM  
RUP  
FB  
ON  
VOUT  
VIN  
VREF  
EN  
Hiccup  
Control  
REF  
+
OFF  
Gm  
RDOWN  
+
Soft  
start  
Current limit  
trigger  
Q
Q
R
S
COMP  
VOUT  
VIN  
PWM  
Comparator  
TOFF  
+
Cc  
RC  
GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61372  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The undervoltage lockout (UVLO) circuit prevents the device from malfunctioning at the low input voltage of the  
battery from the excessive discharge. The device starts operation once the rising VIN trips the UVLO threshold  
and it disables the output stage of the converter once VIN is below the UVLO falling threshold.  
7.3.2 Enable and Disable  
When the input voltage is above the UVLO threshold and the EN pin is pulled above the high threshold (1.2 V  
minimum), the TPS61372 is enabled. When the EN pin is pulled below the low threshold (0.4 V maximum), the  
TPS61372 goes into shutdown mode.  
7.3.3 Error Amplifier  
The TPS61372 has a transconductance amplifier and compares the feedback voltage with the internal voltage  
reference (or the internal soft-start voltage during start-up phase). The transconductance of the error amplifier is  
175 µA / V typically. The loop compensation components are placed between the COMP terminal and ground to  
optimize the loop stability and response speed.  
7.3.4 Bootstrap Voltage (BST)  
The TPS61372 has an integrated bootstrap regulator and requires a small ceramic capacitor between the BST  
and SW pin to provide the gate drive voltage for the high-side FET. The recommended value for this ceramic  
capacitor is between 20 nF to 200 nF.  
7.3.5 Load Disconnect  
The TPS61372 device provides a load disconnect function, which completely disconnects the output from the  
input during shutdown or fault conditions.  
7.3.6 Overvoltage Protection  
If the output voltage is detected above the overvoltage protection threshold (typically 17.3 V), the TPS61372  
stops switching immediately until the voltage at the VOUT pin drops below the output overvoltage protection  
recovery threshold (with 500-mV hysteresis). This function prevents the devices against the overvoltage and  
secures the circuits connected with the output of excessive overvoltage.  
7.3.7 Thermal Shutdown  
A thermal shutdown is implemented to prevent the damage due to the excessive heat and power dissipation.  
Typically, the thermal shutdown occurs at the junction temperature exceeding 140°C (typical). When the thermal  
shutdown is triggered, the device stops switching and recovers when the junction temperature falls below 120°C  
(typical).  
7.3.8 Start-Up  
The TPS61372 implements the soft start function to reduce the inrush current during start-up. The TPS61372  
begins soft start when the EN pin is pulled high. There are two phases for the start-up procedure:  
When VOUT is below 120% VIN, the output votlage ramps up with the switching frequency of 535 kHz (typical).  
When VOUT exceeds 120% VIN, the switching frequency changes to 1.5 MHz typically and ramps up the  
output voltage to the setpoint.  
7.3.9 Short Protection  
The TPS61372 provides a hiccup protection mode when output short protection occurs. In hiccup mode, the  
TPS61372 shuts down after the 1.9-ms duration of current limit is triggered and the VOUT is pulled below 105%  
VIN. In hiccup steady state, the device shuts down itself and restarts after a 74-ms (typical) waiting time, which  
helps to reduce the overall thermal dissipation at continuous short condition. After the short condition releases,  
the device can recover automatically and restart the start-up phase.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61372  
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
7.4 Device Functional Modes  
7.4.1 Operation  
In light load condition, the TPS61372 can be configured at Auto PFM or Forced PWM. At Auto PFM operation,  
the switching frequency is lowered at light load and features higher efficiency, while for Forced PWM operation,  
the frequency keeps constant across the whole load range.  
7.4.2 Auto PFM Mode  
The TPS61372 integrates a power-save mode with pulse frequency modulation (PFM) at light load (set the mode  
pin low logic or floating). The device skips the switching cycles and regulates the output voltage at a higher  
threshold (typically 101.6% × VOUT_NORM). 7-1 shows the working principle of the PFM operation. The auto  
PFM mode reduces the switching losses and improves efficiency at light load condition by reducing the average  
switching frequency.  
VOUT_PFM  
VOUT_NORM  
VOUT  
Load  
ICLAMP_LOW  
IL  
TOFF longer with  
lower current  
TON = (L * I CLAMP_LOW) / VIN  
PFM  
PWM  
7-1. Auto PFM Operation Behavior  
7.4.3 Forced PWM Mode  
In forced PWM mode, the TPS61372 keeps the switching frequency constant across the whole load range.  
When the load current decreases, the output of the internal error amplifier decreases as well to lower the  
inductor peak current and delivers less power. The high-side FET is not turned off even if the current through the  
FET goes negative to keep the switching frequency be the same as that of the heavy load.  
7.4.4 Mode Selectable  
There is a mode pin to configure the TPS61372 into two different operation modes. The device works in auto  
PFM mode when pulling the mode pin to low or floating and in forced PWM mode when mode pin is high.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61372  
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS61372 is a synchronous boost converter. The following design procedure can be used to select  
component values for the TPS61372. This section presents a simplified discussion of the design process.  
Alternately, the WEBENCH® software may be used to generate a complete design. The WEBENCH® software  
uses an interactive design procedure and accesses a comprehensive database of components when generating  
a design. This section presents a simplified discussion of the design process.  
8.2 Typical Application  
L
2.2uH  
CBST  
CIN  
0.1uF  
10 uF  
BST  
SW  
VOUT  
VIN  
RMODE  
100k  
COUT1  
10uF  
COUT2  
10uF  
COUT3  
10uF  
Forced  
PWM  
Auto  
PFM  
MODE  
RUP1  
909k  
GND  
ON  
REN  
100k  
RUP2  
1000k  
OFF  
EN  
FB  
RDOWN  
100k  
COMP  
GND  
Cc  
680pF  
RC  
61.9k  
8-1. TPS61372 12-V Output With Load Disconnect Schematic  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61372  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
8.2.1 Design Requirements  
For this design example, use 8-1 as the design parameters.  
8-1. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
3 V to 5 V  
12 V  
Output ripple voltage  
Output current  
± 3%  
0.4 A  
Operating frequency  
1.5 MHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61372 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Input voltage range  
Output voltage  
Output ripple voltage  
Output current rating  
Operating frequency  
8.2.2.2 Setting the Output Voltage  
The output voltage of the TPS61372 is externally adjustable using a resistor divider network. The relationship  
between the output voltage and the resistor divider is given by 方程1.  
RUP  
VOUT = VFB ´ (1+  
)
RDOWN  
(1)  
where  
VOUT is the output voltage  
RUP is the top divider resistor  
RDOWN is the bottom divider resistor  
Choose RDOWN to be approximately 100 kΩ. Slightly increasing or decreasing RDOWN can result in closer output  
voltage matching when using standard value resistors. In this design, RDOWN = 100 kΩ and RUP = 1.909 MΩ (1  
MΩ+ 909 kΩ) , resulting in an output voltage of 12 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61372  
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
For the best accuracy, TI recommends RDOWN to be around 100 kΩ to ensure that the current following through  
RDOWN is at least 100 times larger than FB pin leakage current. Changing RDOWN towards the lower value  
increases the robustness against noise injection. Changing RDOWN towards the higher values reduces the  
quiescent current for achieving higher efficiency at the light load currents.  
8.2.2.3 Selecting the Inductor  
A boost converter normally requires two main passive components for storing the energy during power  
conversion: an inductor and an output capacitor. The inductor affects the steady state efficiency (including the  
ripple and efficiency) as well as the transient behavior and loop stability, which makes the inductor to be the most  
critical component in application.  
When selecting the inductor, as well as the inductance, the other parameters of importance are:  
The maximum current rating (RMS and peak current should be considered)  
The series resistance  
Operating temperature  
Choosing the inductor ripple current with the low ripple percentage of the average inductor current results in a  
larger inductance value, maximizes the potential output current of the converter, and minimizes EMI. The larger  
ripple results in a smaller inductance value and a physically smaller inductor, which improves transient response,  
but results in potentially higher EMI.  
The rule of thumb in choosing the inductor is to make sure the inductor ripple current (ΔIL) is a certain  
percentage of the average current. The inductance can be calculated by 方程2, 方程3, and 方程4:  
V
IN ´ D  
DIL =  
L ´ fSW  
(2)  
(3)  
(4)  
VOUT ´ IOUT  
DIL _R = Ripple% ´  
h ´ V  
IN  
h ´ V  
´
Ripple % VOUT ´ IOUT  
V ´ D  
IN  
1
IN  
L =  
´
ƒSW  
where  
• ΔIL is the peak-peak inductor current ripple  
VIN is the input voltage  
D is the duty cycle  
L is the inductor  
• ƒSW is the switching frequency  
Ripple% is the ripple ration versus the DC current  
VOUT is the output voltage  
IOUT is the output current  
ηis the efficiency  
The current flowing through the inductor is the inductor ripple current plus the average input current. During  
power up, load faults, or transient load conditions, the inductor current can increase above the peak inductor  
current calculated.  
Inductor values can have ±20% or even ±30% tolerance with no current bias. When the inductor current  
approaches the saturation level, its inductance can decrease 20% to 35% from the value at 0-A bias current  
depending on how the inductor vendor defines saturation. When selecting an inductor, make sure its rated  
current, especially the saturation current, is larger than its peak current during the operation.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61372  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
The inductor peak current varies as a function of the load, the switching frequency, and the input and output  
voltages and it can be calculated by 方程5 and 方程6.  
1
IPEAK = I  
+
´ DIL  
IN  
2
(5)  
where  
IPEAK is the peak current of the inductor  
IIN is the input average current  
• ΔIL is the ripple current of the inductor  
The input DC current is determined by the output voltage, the output current, and efficiency can be calculated by:  
VOUT ´ IOUT  
I
=
IN  
VIN ´ h  
(6)  
where  
IIN is the input current of the inductor  
VOUT is the output voltage  
VIN is the input voltage  
ηis the efficiency  
While the inductor ripple current depends on the inductance, the frequency, the input voltage, and duty cycle  
calculated by 方程2, replace 方程2, 方程6 into 方程5 to calculate the inductor peak current:  
IOUT  
VIN ´ D  
1
2
IPEAK  
=
+
´
(1- D) ´ h  
L ´ fSW  
(7)  
where  
IPEAK is the peak current of the inductor  
IOUT is the output current  
D is the duty cycle  
ηis the efficiency  
VIN is the input voltage  
L is the inductor  
• ƒSW is the switching frequency  
The heat rating current (RMS) is calculated by 方程8:  
1
(DIL )2  
2
IL _RMS = I  
+
IN  
12  
(8)  
where  
IL_RMS is the RMS current of the inductor  
IIN is the input current of the inductor  
• ΔIL is the ripple current of the inductor  
It is important that the peak current does not exceed the inductor saturation current and the RMS current is not  
over the temperature related rating current of the inductors.  
For a given physical inductor size, increasing inductance usually results in an inductor with lower saturation  
current. The total losses of the coil consists of the DC resistance ( DCR ) loss and the following frequency  
dependent loss:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61372  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
For a certain inductor, the larger current ripple (smaller inductor) generates the higher DC and frequency-  
dependent loss. An inductor with lower DCR is basically recommended for higher efficiency. However, it is  
usually a tradeoff between the loss and footprint.  
The following inductor series in 8-2 from the different suppliers are recommended.  
8-2. Recommended Inductors for TPS61372  
SATURATION  
CURRENT /  
TYP.  
DCR Typ (mΩ)  
PART NUMBER  
SIZE (L × W × H mm)  
VENDOR(1)  
L (μH)  
TYP.  
XAL4020-222ME  
DFE322512F-2R2M=P2  
DFE322520FD-4R7M#  
2.2  
2.2  
4.7  
35  
66  
98  
5.6  
2.6  
3.4  
4 x 4 x 2  
Coilcraft  
Murata  
Murata  
3.2 x 2.5 x 1.2  
3.2 x 2.5 x 2.0  
(1) See the Third-party Products Disclaimer.  
8.2.2.4 Selecting the Output Capacitors  
The output capacitor is mainly selected to meet the requirements at load transient or steady state. Then the loop  
is compensated for the output capacitor selected. The output ripple voltage is related to the equivalent series  
resistance (ESR) of the capacitor and its capacitance. Assuming a capacitor with zero ESR, the minimum  
capacitance needed for a given ripple can be calculated by 方程9:  
IOUT ´ (VOUT - V )  
IN  
COUT  
=
fSW ´ DV ´ VOUT  
(9)  
where  
COUT is the output capacitor  
IOUT is the output current  
VOUT is the output voltage  
VIN is the input voltage  
• ΔV is the output voltage ripple required  
• ƒSW is the switching frequency  
The additional output ripple component caused by ESR is calculated by 方程10:  
DVESR = IOUT ´ RESR  
(10)  
where  
• ΔVESR is the output voltage ripple caused by ESR  
RESR is the resistor in series with the output capacitor  
For the ceramic capacitor, the ESR ripple can be neglected. However, for the tantalum or electrolytic capacitors,  
it must be considered if used.  
Care must be taken when evaluating the rating of a ceramic capacitor under the DC bias. Ceramic capacitors  
can derate by as much as 70% of its capacitance at its rated voltage. Therefore, enough margins on the voltage  
rating should be considered to ensure adequate capacitance at the required output voltage.  
8-3. Recommended Output Capacitor for TPS61372  
PART NUMBER  
PIECES  
DESCRIPTION  
SIZE  
VENDOR(1)  
C (μF)  
GRM188R61E106MA73D  
10  
3
X5R, 0603, 5 V, ±20% tolerance  
0603  
Murata  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61372  
 
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
8.2.2.5 Selecting the Input Capacitors  
Multilayer ceramic capacitors are an excellent choice for the input decoupling of the step-up converter as they  
have extremely low ESR and are available in small footprints. Input capacitors should be located as close as  
possible to the device.  
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce  
ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or can even  
damage the part. Place additional "bulk" capacitance (electrolytic or tantalum) in this circumstance, between CIN  
and the power source lead, to reduce ringing that can occur between the inductance of the power source leads  
and CIN.  
8.2.2.6 Loop Stability and Compensation  
8.2.2.6.1 Small Signal Model  
The TPS61372 uses the peak current with adaptive off-time control topology. With the inductor current  
information sensed, the small-signal model of the power stage reduces from a two-pole system, created by L  
and COUT, to a single-pole system, created by ROUT and COUT. An external loop compensation network  
connecting to the COMP pin of TPS61372 is added to optimize the loop stability and the response time, a  
resistor RC, capacitor CC, and CP shown in 8-2 comprises the loop compensation network.  
L
VIN  
VOUT  
CIN  
Q
RESR  
COUT  
ROUT  
RSENSE  
RUP  
Q
Q
TOFF  
FB  
+
R
GEA  
RDOWN  
VREF  
+
Cc  
RC  
Cp  
REA  
8-2. TPS61372 Control Equivalent Circuitry Model  
The small signal of power stage including the slope compensation is:  
«
’≈  
÷∆  
◊«  
÷
S
S
1 +  
1 -  
2p ì fESR  
2p ì fRHP  
ROUT ì (1-D)  
2 ì RSENSE  
GPS(S) =  
ì
S
1 +  
2p ì fP  
(11)  
where  
D is the duty cycle  
ROUT is the output load resistor  
RSENSE is the equivalent internal current sense resistor, which is typically 0.2 Ωof TPS61372  
The single pole of the power stage is:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61372  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
2
fP =  
2p ´ ROUT ´ COUT  
(12)  
where  
COUT is the output capacitance, for a boost converter having multiple, identical output capacitors in parallel,  
simply combine the capacitors with the equivalent capacitance  
The zero created by the ESR of the output capacitor is:  
1
fESR  
=
2p ´ RESR ´ COUT  
(13)  
where  
RESR is the equivalent resistance in series of the output capacitor  
The right-hand plane zero is:  
ROUT ´ (1- D)2  
=
2p ´ L  
fRHP  
(14)  
where  
D is the duty cycle  
ROUT is the output load resistor  
L is the inductance  
The TPS61372 COMP pin is the output of the internal trans-conductance amplifier.  
方程15 shows the equation for feedback resistor network and the error amplifier.  
S
1+  
RDOWN  
2´ p ´ fZ  
HEA(S) = GEA ´REA  
´
´
R
UP + RDOWN  
S
S
(1+  
)´(1+  
)
2´ p ´ fP1  
2´ p ´ fP2  
(15)  
where  
REA is the output impedance of the error amplifier REA = 500 M. GEA is the transconuctance of the error  
amplifier, GEA = 175 μS.  
• ƒP1, ƒP2 is the pole's frequency of the compensation  
fZ is the zeros frequency of the compensation network  
1
fP1  
=
2p ´ REA ´ Cc  
(16)  
where  
CC is the zero capacitor compensation  
1
fP2  
=
2p ´ RC ´ CP  
(17)  
where  
CP is the pole capacitor compensation  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61372  
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
RC is the resistor of the compensation network  
1
fZ =  
2p ´RC ´CC  
(18)  
8.2.2.7 Loop Compensation Design Steps  
With the small signal models coming out, the next step is to calculate the compensation network parameters with  
the given inductor and output capacitance.  
1. Set the Crossover Frequency, ƒC.  
The first step is to set the loop crossover frequency, ƒC. The higher crossover frequency, the faster the  
loop response is. It is generally accepted that the loop gain cross over no higher than the lower of either  
1/10 of the switching frequency, ƒSW, or 1/5 of the RHPZ frequency, ƒRHPZ. Then calculate the loop  
compensation network values of Rc, Cc, and Cp in following sections.  
2. Set the Compensation Resistor, RC.  
By placing ƒZ below ƒC, for frequencies above ƒC, RC | | REA approximately = RC, so RC × GEA sets the  
compensation gain. Setting the compensation gain, KCOMP-dB, at ƒZ, results in the total loop gain, T(s)  
GPS(s) × HEA(s) × He(s) being zero at ƒC.  
=
Therefore, to approximate a single-pole rolloff up to fP2, rearrange 方程19 to solve for RC so that the  
compensation gain, KEA, at fC is the negative of the gain, KPS, read at frequency fC for the power stage  
bode plot or more simply:  
RDOWN  
KEA(fC ) = 20 ´ log(GEA ´ RC ´  
) = - KPS(fC)  
RUP + RDOWN  
(19)  
where  
KEA is gain of the error amplifier network  
KPS is the gain of the power stage  
GEA is the transconductance of the amplifier, the typical value of GEA = 175 µA / V  
3. Set the compensation zero capacitor, CC.  
Place the compensation zero at the power stage pole position of ROUT, COUT to get:  
1
fZ =  
2p ´ RC ´ CC  
(20)  
(21)  
Set ƒZ = ƒP, and get:  
R
OUT ´COUT  
CC  
=
2RC  
4. Set the compensation pole capacitor, CP.  
Place the compensation pole at the zero produced by the RESR and the COUT. It is useful for canceling  
unhelpful effects of the ESR zero.  
1
fP2  
=
2p ´ RC ´ CP  
(22)  
(23)  
1
fESR  
=
2p ´ RESR ´ COUT  
Set ƒP2 = ƒESR, and get:  
RESR ´ COUT  
CP =  
RC  
(24)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61372  
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
If the calculated value of CP is less than 10 pF, it can be neglected.  
Designing the loop for greater than 45° of phase margin and greater than 6-dB gain margin eliminates output  
voltage ringing during the line and load transient. The RC = 61.9 kΩ, CC = 680 pF for this design example.  
8.2.2.8 Selecting the Bootstrap Capacitor  
The bootstrap capacitor between the BST and SW pin supplies the gate current to charge the high-side FET  
device gate during the turnon of each cycle and also supplies charge for the bootstrap capacitor. The  
recommended value of the bootstrap capacitor is 20 nF to 200 nF. CBST should be a good quality, low-ESR  
ceramic capacitor located at the pins of the device to minimize potentially damaging voltage transients caused  
by trace inductance. A value of 100 nF is selected for this design example.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61372  
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
8.2.3 Application Curves  
Typical condition VIN = 3 V to 5 V, VOUT = 12 V, temperature = 25°C, unless otherwise noted  
VIN = 4 V  
VOUT = 12 V  
Mode = Auto PFM  
VIN = 4 V  
VOUT = 12 V  
Mode = Auto PFM  
L = 2.2 µH  
COUT = 3 × 10 µF  
L = 2.2 µH  
COUT = 3 × 10 µF  
8-3. Steady-State at 200-mA Load  
8-4. Steady-State at 10-mA Load  
VIN = 4 V  
VOUT = 12 V  
Mode = Auto PFM  
VIN = 4 V  
VOUT = 12 V  
Mode = Auto PFM  
L = 2.2 µH  
COUT = 3 × 10 µF  
L = 2.2 µH  
COUT = 3 × 10 µF  
8-5. Start-Up by EN, Load = 12.5 Ω  
8-6. Shutdown by EN, Load = 12.5 Ω  
VIN = 4 V  
VOUT = 12 V  
Mode = Auto PFM  
VIN = 4 V  
VOUT = 12 V  
Mode = Auto PFM  
L = 2.2 µH  
COUT = 3 × 10 µF  
L = 2.2 µH  
COUT = 3 × 10 µF  
8-7. Load Transient, 200 mA to 400 mA, 100 mA /  
8-8. Shorted Output  
µs  
9 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply ranging from 2.5 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the TPS61372, the bulk  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61372  
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
capacitance can be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value  
of 47 µF is a typical choice.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61372  
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
10 Layout  
10.1 Layout Guidelines  
The basic PCB board layout requires a separation of sensitive signal and power paths. If the layout is not  
carefully done, the regulator can suffer from the instability or noise problems.  
The following checklist is suggested that be followed to get good performance for a well-designed board:  
1. Minimize the high current path from output of chip, the output capacitor to the GND of chip. This loop  
contains high di / dt switching currents (nano seconds per ampere) and easy to transduce the high frequency  
noise.  
2. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under  
the switching regulator to minimize inter plane coupling.  
3. Use a combination of bulk capacitors and smaller ceramic capacitors with low series resistance for the input  
and output capacitors. Place the smaller capacitors closer to the IC to provide a low impedance path for  
decoupling the noise.  
4. The ground area near the IC must provide adequate heat dissipating area. Connect the wide power bus (for  
example, VOUT, SW, GND ) to the large area of copper, or to the bottom or internal layer ground plane, using  
vias for enhanced thermal dissipation.  
5. Place the input capacitor being close to the VIN pin and the PGND pin in order to reduce the input supply  
ripple.  
6. Place the noise sensitive network like the feedback and compensation being far away from the SW trace.  
7. Use a separate ground trace to connect the feedback and the loop compensation circuitry. Connect this  
ground trace to the main power ground at a single point to minimize circulating currents.  
10.2 Layout Example  
SW  
VIN  
L
VOUT  
VIN  
BST  
VOUT  
SW  
VOUT  
SW  
VOUT  
SW  
C
C
C
C
C
C
C
EN  
GND  
NC  
GND  
COMP  
GND  
FB  
GND  
MODE  
GND  
R
R
R
EN  
Mode  
Top Layer  
C
Bottom Layer  
GND  
10-1. Recommended Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61372  
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
10.2.1 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
As power demand in portable designs is more and more important, designers must figure the best trade-off  
between efficiency, power dissipation and solution size. Due to integration and miniaturization, junction  
temperature can increase significantly which could lead to bad application behaviors (that is, premature thermal  
shutdown or worst case reduce device reliability). Junction-to-ambient thermal resistance is highly application  
and board-layout dependent. In applications where high maximum power dissipation exists, special care must be  
paid to thermal dissipation issues in board design. Keep the device operating junction temperature (TJ) below  
125°C.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61372  
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61372 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61372  
 
 
 
 
 
 
 
TPS61372  
www.ti.com.cn  
ZHCSID4B JUNE 2018 REVISED JANUARY 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS61372  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61372YKBR  
TPS61372YKBT  
ACTIVE  
DSBGA  
DSBGA  
YKB  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TPS  
61372  
ACTIVE  
YKB  
SNAGCU  
TPS  
61372  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61372YKBR  
TPS61372YKBT  
DSBGA  
DSBGA  
YKB  
YKB  
16  
16  
3000  
250  
180.0  
180.0  
8.4  
8.4  
1.68  
1.68  
1.72  
1.72  
0.62  
0.62  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61372YKBR  
TPS61372YKBT  
DSBGA  
DSBGA  
YKB  
YKB  
16  
16  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS61376

具有 2.5% 精度输入平均电流限制和真正负载断开功能的 25V、4.5A 升压转换器
TI

TPS61376RYHR

具有 2.5% 精度输入平均电流限制和真正负载断开功能的 25V、4.5A 升压转换器 | RYH | 13 | -40 to 125
TI

TPS61378-Q1

具有负载断开功能的 18.5V 输出、4.8A 同步升压转换器
TI

TPS61378-Q1-V01

TPS61378-Q1 25-μA Quiescent Current Synchronous Boost Converter with Load Disconnect
TI

TPS613783QWRTERQ1

TPS61378-Q1 25-μA Quiescent Current Synchronous Boost Converter with Load Disconnect
TI

TPS613784-Q1

TPS61378-Q1 25-μA Quiescent Current Synchronous Boost Converter with Load Disconnect
TI

TPS613785-Q1

TPS61378-Q1 25-μA Quiescent Current Synchronous Boost Converter with Load Disconnect
TI

TPS613785QWRTERQ1

TPS61378-Q1 25-μA Quiescent Current Synchronous Boost Converter with Load Disconnect
TI

TPS61378QWRTERQ1

具有负载断开功能的 18.5V 输出、4.8A 同步升压转换器 | RTE | 16 | -40 to 125
TI

TPS61379-Q1

25µA 静态电流同步升压转换器
TI

TPS61379QWRTERQ1

25µA 静态电流同步升压转换器 | RTE | 16 | -40 to 125
TI

TPS61390

具有电流镜和采样保持功能且输出电压为 85V 的升压转换器
TI