TPS62067-Q1 [TI]

采用 2x2 SON 封装的 3MHz、2A 汽车级降压转换器;
TPS62067-Q1
型号: TPS62067-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2x2 SON 封装的 3MHz、2A 汽车级降压转换器

转换器
文件: 总28页 (文件大小:2027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
TPS6206x-Q1 采用 2 × 2 SON 封装的 3MHz 2A 降压转换器  
1 特性  
3 说明  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
TPS62065-Q1 TPS62067-Q1 器件是一款高效同步  
降压 DC-DC 转换器。 该器件可提供高达 2A 的输出电  
流。  
器件温度 1 级:–40°C 125°C 工作结温范围  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
该器件的输入电压范围为 2.9V 6V,非常适合对 5V  
2
器件充电器件模型 (CDM) ESD 分类等级 C4B  
3.3V 系统电源轨进行电源转换。 TPS62065-Q1 和  
TPS62067-Q1 工作在 3MHz 固定频率下,并且在轻负  
载电流条件下会进入节能模式,从而在整个负载电流范  
围内保持高效率。 该节能模式针对低输出电压纹波进  
行了优化。 对于低噪声应用,可通过将 MODE 引脚拉  
为高电平来强制 TPS62065-Q1 器件进入固定频率  
PWM 模式。 TPS62067-Q1 提供了开漏电源正常输  
出。 在关断模式下,电流消耗降至 5µA,同时内部电  
路将使输出电容放电。 TPS62065-Q1 TPS62067-  
Q1 器件经过了优化,可与微型 1μH 电感以及小型  
10μF 输出电容搭配工作,从而实现了最小解决方案尺  
寸以及高稳压性能。  
3MHz 开关频率  
VIN 范围:2.9V 6V  
效率高达 97%  
节能模式和 3MHz 固定脉宽调制 (PWM) 模式  
电源正常输出  
PWM 模式下的输出电压精度为 ±1.5%  
输出放电功能  
典型值为 18µA 的静态电流  
针对最低压降的 100% 占空比  
电压定位  
时钟抖动  
支持最高 1mm 的解决方案  
TPS62065-Q1 TPS62067-Q1 器件采用小型 2 × 2  
× 0.75mm 8 引脚 WSON 封装。  
采用 2 × 2 × 0.75mm 晶圆级小外形无引线  
(WSON) 封装  
器件信息(1)  
2 应用  
器件型号  
TPS62065-Q1  
TPS62067-Q1  
封装  
封装尺寸  
负载点稳压器  
汽车负载点 (POL)  
WSON (8)  
2.00mm x 2.00mm  
汽车摄像机模块  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
汽车信息娱乐和导航系统  
高级驾驶员辅助系统 (ADAS) 应用  
4 典型应用电路  
L
1 µH  
VOUT  
VIN = 2.9 V to 6 V  
PVIN  
1.8 V 2 A  
SW  
效率与负载电流间的关系  
AVIN  
R1  
100  
95  
RPG  
100 kΩ  
360 kΩ  
CIN  
Cff  
COUT  
EN  
FB  
10 µF  
22 pF 10 µF  
R2  
AGND  
PGND  
180 kΩ  
PG  
90  
85  
80  
75  
70  
65  
60  
V
V
V
= 3.7 V  
= 4.2 V  
= 5 V  
L = 1.2 µH (NRG4026T 1R2),  
COUT = 22 µF (0603 size),  
IN  
IN  
IN  
55  
50  
VOUT = 3.3 V,  
Mode: Auto PFM/PWM  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
Load Current (A)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCM3  
 
 
 
 
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
目录  
10.2 Functional Block Diagram ....................................... 8  
10.3 Feature Description................................................. 9  
10.4 Device Functional Modes...................................... 10  
11 Application and Implementation........................ 13  
11.1 Application Information.......................................... 13  
11.2 Typical Application ................................................ 13  
12 Power Supply Recommendations ..................... 19  
13 Layout................................................................... 20  
13.1 Layout Guidelines ................................................. 20  
13.2 Layout Example .................................................... 20  
14 器件和文档支持 ..................................................... 21  
14.1 器件支持................................................................ 21  
14.2 相关链接................................................................ 21  
14.3 ....................................................................... 21  
14.4 静电放电警告......................................................... 21  
14.5 术语表 ................................................................... 21  
15 机械封装和可订购信息 .......................................... 21  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
典型应用电路 ........................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ...................................... 4  
8.2 ESD Ratings.............................................................. 4  
8.3 Recommended Operating Conditions....................... 4  
8.4 Thermal Information.................................................. 4  
8.5 Electrical Characteristics........................................... 5  
8.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 7  
9
10 Detailed Description ............................................. 8  
10.1 Overview ................................................................. 8  
5 修订历史记录  
日期  
修订版本  
注释  
2015 1 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
6 Device Comparison Table  
PART NUMBER  
MODE/PG FUNCTION  
TPS62065Q1  
TPS62067Q1  
MODE = selectable; Power Good = no  
Automatic PWM/PFM transition; Power Good = yes  
7 Pin Configuration and Functions  
DSG Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
PGND  
SW  
1
2
3
4
8
7
6
5
PVIN  
AVIN  
AGND  
FB  
MODE/PG  
EN  
Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
PGND  
OUT  
GND supply pin for the output stage.  
This is the switch pin and is connected to the internal MOSFET switches. Connect the  
external inductor between this terminal and the output capacitor.  
2
3
4
SW  
AGND  
FB  
Analog GND supply pin for the control circuit.  
Feedback pin for the internal regulation loop. Connect the external resistor divider to this pin.  
In case of fixed output voltage option, connect this pin directly to the output capacitor  
IN  
This is the enable pin of the device. Pulling this pin to low forces the device into shutdown  
mode. Pulling this pin to high enables the device. This pin must be terminated  
5
EN  
IN  
IN  
MODE: MODE pin = high forces the device to operate in fixed frequency PWM mode. MODE  
pin = low enables the power save mode with automatic transition from PFM mode to fixed  
frequency PWM mode. This pin must be terminated. (TPS62065-Q1)  
6
MODE/PG  
PG: Power Good open-drain output. Connect an external pullup resistor to a rail which is  
below or equal AVIN. (TPS62067-Q1)  
Open Drain  
Analog VIN power supply for the control circuit must be connected to PVIN and input  
capacitor.  
7
AVIN  
PVIN  
IN  
PWR  
8
VIN power supply pin for the output stage.  
For good thermal performance, this pad must be soldered to the land pattern on the PCB.  
This pad should be used as device GND.  
Thermal Pad  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
AVIN, PVIN  
7
(2)  
Voltage  
EN, MODE/PG, FB  
SW  
VIN + 0.3 < 7  
V
7
1
Current (sink)  
into PG  
mA  
A
Current (source)  
Peak output  
Internally limited  
Junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
8.2 ESD Ratings  
VALUE  
±2500  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Corner pins (1, 4, 5, and 8)  
Other pins  
V
Charged device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
AVIN  
PVIN  
,
Supply voltage  
2.9  
6
V
Output current capability  
2000  
VIN  
1.6  
mA  
V
Output voltage range for adjustable voltage  
Effective Inductance Range  
0.8  
0.7  
L
1
µH  
µF  
°C  
COUT  
TJ  
Effective Output Capacitance Range  
Operating junction temperature  
4.5  
10  
22  
–40  
125  
8.4 Thermal Information  
DSG (WSON)  
8 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
64.78  
80.60  
34.63  
1.65  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
35.02  
6.61  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
8.5 Electrical Characteristics  
Over operating junction temperature range (TJ = –40°C to 125°C), typical values are at TJ = 25°C. Unless otherwise noted,  
specifications apply for condition VIN = EN = 3.6 V. External components CIN = 10 μF 0603, COUT = 10 μF 0603, L = 1 μH.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VIN  
Input voltage range  
2.9  
6
V
IOUT = 0 mA, device operating in PFM mode  
and not device not switching  
IQ  
Operating quiescent current  
Shutdown current  
18  
μA  
μA  
ISD  
EN = GND, current into AVIN and PVIN combined  
0.1  
1.78  
1.95  
5
1.83  
1.99  
Falling  
Rising  
1.73  
1.9  
VUVLO  
Undervoltage lockout threshold  
V
ENABLE, MODE  
VIH  
VIL  
IIN  
High level input voltage  
2.9 V VIN 6 V  
1
0
6
0.4  
1
V
V
Low level input voltage  
Input bias current  
2.9 V VIN 6 V  
EN, Mode tied to GND or AVIN  
0.01  
μA  
POWER GOOD OPEN DRAIN OUTPUT  
Rising feedback voltage  
93%  
87%  
95%  
90%  
98%  
92%  
0.3  
VTHPG  
VOL  
Power good threshold voltage  
Output low voltage  
Falling feedback voltage  
IOUT = –1 mA; must be limited by external pullup  
V
(1)  
resistor  
ILKG  
Leakage current into PG pin  
Internal power good delay time  
V(PG) = 3.6 V  
100  
nA  
µs  
tPGDL  
5
POWER SWITCH  
(1)  
VIN = 3.6 V  
120  
95  
180  
150  
130  
100  
RDS(on)  
High-side MOSFET on-resistance  
mΩ  
VIN = 5 V(1)  
VIN = 3.6 V(1)  
VIN = 5 V(1)  
90  
RDS(on)  
ILIMF  
Low-side MOSFET on-resistance  
mΩ  
mA  
°C  
75  
Forward current limit MOSFET  
high-side and low-side  
2.9 V VIN 6 V  
2300  
2750  
3300  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
10  
TSD  
Thermal shutdown hysteresis  
OSCILLATOR  
fSW  
Oscillator frequency  
2.9 V VIN 6 V  
2.6  
3
3.4  
MHz  
mV  
OUTPUT  
Vref  
Reference voltage  
600  
PWM operation, MODE = VIN  
2.9 V VIN 6 V, 0-mA load  
device in PFM mode, voltage positioning active(2)  
,
VFB(PWM)  
VFB(PFM)  
Feedback voltage PWM Mode  
–1.5%  
0% 1.5%  
1%  
Feedback voltage PFM mode,  
Voltage Positioning  
Load regulation  
Line regulation  
–0.5  
%/A  
%/V  
VFB  
0
200  
500  
Activated with EN = GND, 2.9 V VIN 6 V, 0.8 ≤  
R(Discharge)  
tSTART  
Internal discharge resistor  
Start-up time  
75  
1450  
Ω
VOUT 3.6 V  
Time from active EN to reach 95% of VOUT  
μs  
(1) Maximum value applies for TJ = 85°C  
(2) In PFM mode, the internal reference voltage is set to typ. 1.01 × Vref. See the parameter measurement information.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
8.6 Typical Characteristics  
Table 1. Table of Graphs  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Shutdown Current  
Quiescent Current  
Oscillator Frequency  
Input Voltage and Ambient Temperature  
Input Voltage  
Input Voltage  
Input Voltage, Low-Side Switch  
Input Voltage, High-Side Switch  
Input Voltage vs. VOUT  
Static Drain-Source On-State  
Resistance  
RDISCHARGE  
25  
20  
15  
10  
1
T
T
= –40°C  
= 25°C  
= 85°C  
J
J
J
T
0.75  
0.50  
0.25  
5
0
T
T
= –40°C  
J
= 25°C  
= 85°C  
J
J
T
0
2.5  
3
3.5  
4 4.5  
Input Voltage (V)  
5
5.5  
6
2.5  
3
3.5  
4 4.5  
Input Voltage (V)  
5
5.5  
6
Figure 1. Shutdown Current vs Input Voltage and Ambient  
Temperature  
Figure 2. Quiescent Current vs Input Voltage  
0.12  
3.1  
3.05  
3
0.1  
0.08  
0.06  
0.04  
2.95  
2.9  
2.85  
2.8  
T
T
= 40°C  
= 25°C  
= 85°C  
T
T
= –40°C  
= 25°C  
= 85°C  
0.02  
0
J
J
J
J
J
J
T
T
2.5  
3
3.5  
4 4.5  
Input Voltage (V)  
5
5.5  
6
2.5  
3
3.5  
4 4.5  
Input Voltage (V)  
5
5.5  
6
Low-Side Switch  
Figure 3. Oscillator Frequency vs Input Voltage  
Figure 4. Static Drain-Source On-State Resistance vs Input  
Voltage  
6
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
0.2  
ZHCSD80 JANUARY 2015  
600  
500  
400  
300  
200  
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
O
0.18  
0.16  
0.14  
0.12  
0.1  
O
O
V
0.08  
0.06  
0.04  
100  
0
T
T
= 40°C  
= 25°C  
= 85°C  
J
0.02  
0
J
J
T
2.5  
3
3.5  
4 4.5  
Input Voltage (V)  
5
5.5  
6
2.5  
3
3.5  
4 4.5  
Input Voltage (V)  
5
5.5  
6
High-Side Switch  
Figure 5. Static Drain-Source On-State Resistance vs Input  
Voltage  
Figure 6. RDISCHARGE vs Input Voltage  
9 Parameter Measurement Information  
VOUT  
up to 2.0 A  
L
VIN = 2.9 V to 6 V  
PVIN  
1 µH / 1.2 µH  
SW  
AVIN  
R1  
Cff  
COUT  
EN  
10 µF  
FB  
CIN  
10 µF  
MODE/PG  
R2  
AGND  
PGND  
L: LQH44PN1R0NP0, L = 1 µH,Murata, NRG4026T1R2, L = 1.2 µH, Taiyo Yuden  
CIN/COUT: GRM188R60J106U, Murata 0603 size  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
The TPS62065-Q1 and TPS62067-Q1 step-down converter operates with 3-MHz (typical) fixed-frequency pulse-  
width modulation (PWM) at moderate to heavy load currents. At light load currents the converter can  
automatically enter power save mode and then operate in pulse-frequency mode (PFM).  
During PWM operation the converter uses an unique fast-response voltage-mode controller scheme with input-  
voltage feed-forward to achieve good line and load regulation which allows the use of small ceramic input and  
output capacitors. At the beginning of each clock cycle initiated by the clock signal, the high-side MOSFET switch  
is turned on. The current flows from the input capacitor through the high-side MOSFET switch through the  
inductor to the output capacitor and load. During this phase, the current ramps up until the PWM comparator trips  
and the control logic turns off the switch. The current-limit comparator also turns off the switch in case the  
current-limit of the high-side MOSFET switch is exceeded. After a dead time preventing shoot-through current,  
the low-side MOSFET rectifier is turned on and the inductor current ramps down. The current flows now from the  
inductor to the output capacitor and to the load. The current returns back to the inductor through the low-side  
MOSFET rectifier.  
The next cycle is initiated by the clock signal again turning off the low-side MOSFET rectifier and turning on the  
high-side MOSFET switch.  
10.2 Functional Block Diagram  
AVIN  
PVIN  
Current  
Limit Comparator  
Undervoltage  
Lockout 1.8V  
Thermal  
Shutdown  
Limit  
High Side  
PFM Comparator  
Reference  
0.6V VREF  
FB  
VREF  
Softstart  
VOUT RAMP  
CONTROL  
Gate Driver  
Anti  
Shoot-Through  
Control  
Stage  
Error Amp.  
VREF  
SW  
Integrator  
FB  
PWM  
Comp.  
Zero-Pole  
Amp.  
Internal  
FB  
Network(1)  
Limit  
Low Side  
MODE(1)  
PG  
Sawtooth  
Generator  
3MHz  
Clock  
Current  
Limit Comparator  
MODE/  
PG  
FB  
VREF  
RDischarge  
PG Comparator(1)  
EN  
PGND  
AGND  
(1) Function depends on device option.  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
10.3 Feature Description  
10.3.1 Mode Selection (TPS62065-Q1)  
The MODE pin allows mode selection between forced PWM mode and power save mode.  
Connecting this pin to GND enables the power save mode with automatic transition between PWM and PFM  
mode. Pulling the MODE pin high forces the converter to operate in fixed frequency PWM mode even at light  
load currents which allows simple filtering of the switching frequency for noise-sensitive applications. In this  
mode, the efficiency is lower compared to when the device is in power save mode during light loads.  
The condition of the MODE pin can be changed during operation and allows efficient power management by  
adjusting the operation mode of the converter to the specific system requirements.  
For the TPS62067-Q1 where the MODE pin is replaced with power good output, the power save mode is  
enabled per default.  
10.3.2 Power-Good (PG) Output (TPS62067-Q1)  
This function is available in the TPS62067-Q1 device only. The PG output is an open-drain output and requires  
an external pullup resistor. The circuit is active once the device is enabled and AVIN is above the UVLO  
threshold VUVLO. The PG output provides a high level once the feedback voltage exceeds 95% (typical) of the  
nominal value. The PG output is driven to a low level when the feedback voltage falls below 90% (typical) of the  
nominal value. The PG output is activated with an internal delay of 5 µs.  
The PG open-drain output transistor turns on immediately with the EN pin meets the low level and pulls the  
output low. The external pullup resistor can be connected to any voltage rail lower or equal the voltage applied to  
AVIN pin of the device. The value of the pullup resistor must be carefully selected in order to limit the current into  
the PG pin to 1 mA maximum. The external pullup resistor can be connected to VOUT or another voltage rail  
which does not exceed the VIN level. The current flowing through the pullup resistor impacts the current  
consumption of the application circuit in shutdown mode.  
The shut down current of the device does not include the current through the external pullup and internal open-  
drain stage. The PG signal can be used for sequencing various converters or to reset a microcontroller.  
EN  
Overload  
Startup  
95%  
90%  
VOUT  
PG  
Output  
discharge  
t
Ramp  
t
Start  
With EN = low  
PG --> low  
Figure 7. Power Good Output PG  
10.3.3 Enable  
Setting the EN pin high enables the device. At first, the internal reference is activated and the internal analog  
circuits are settled. Afterwards, the soft start is activated and the output voltage is ramped up. The output voltage  
reaches 95% of the nominal value within tSTART which is 500 µs (typical) after the device has been enabled. The  
EN input can be used to control power sequencing in a system with various DC-DC converters. The EN pin can  
connect to the output of another converter in order to drive the EN pin high and get a sequencing of supply rails.  
When EN is pulled low the device enters shutdown mode. In this mode, all circuits are disabled and the SW pin  
is connected to PGND through an internal resistor to discharge the output.  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
10.3.4 Soft Start  
The TPS62065-Q1 and TPS62067-Q1 device has an internal soft-start circuit that controls the ramp up of the  
output voltage. When the converter is enabled and the input voltage is above the UVLO threshold, VUVLO, the  
output voltage ramps up from 5% to 95% of the nominal value with tRamp of 250 µs (typical). The ramp time limits  
the inrush current in the converter during start up and prevents possible input voltage drops when a battery or  
high impedance power source is used.  
During soft start, the switch current-limit is reduced to 1/3 of the nominal value, ILIMF, until the output voltage  
reaches 1/3 of the nominal value. When the output voltage trips this threshold, the device operates with the  
nominal current limit, ILIMF  
.
10.3.5 Internal Current-Limit and Foldback Current-Limit For Short-Circuit Protection  
During normal operation the high-side and low-side MOSFET switches are protected by the current-limit ILIMF  
.
When the high-side MOSFET switch reaches the current-limit, it turns off and the low-side MOSFET switch turns  
on. The high-side MOSFET switch can only turn on again when the current in the low-side MOSFET switch  
decreases below ILIMF. The device is capable to provide peak-inductor currents up to the internal current limit,  
.
ILIMF.  
As soon as the switch current-limits are met and the output voltage falls below 1/3 of the nominal output voltage  
because of overload or short circuit condition, the foldback current-limit is enabled. In this case the switch  
current-limit is reduced to 1/3 of the nominal value ILIMF  
.
Because the short-circuit protection is enabled during start-up, the device does not deliver more than 1/3 of the  
nominal current-limit, ILIMF, until the output voltage exceeds 1/3 of the nominal output voltage. This protection  
must be considered when a load is connected to the output of the converter, which acts as a current sink.  
10.3.6 Clock Dithering  
In order to reduce the noise level of switch-frequency harmonics in the higher RF bands, the TPS62065-Q1 and  
TPS62067-Q1 device has a built-in clock-dithering circuit. The oscillator frequency is slightly modulated with a  
sub clock causing a clock dither of 6 ns (typical).  
10.3.7 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 150°C (typical) the device enters thermal shutdown. In this  
mode, the high-side and low-side MOSFETs are turned off. The device continues operation with a soft start once  
the junction temperature falls below the thermal shutdown hysteresis.  
10.4 Device Functional Modes  
10.4.1 Power Save Mode  
At TPS62065-Q1 pulling the MODE pin low enables power save mode. In TPS62067-Q1 power-save mode is  
enabled per default. If the load current decreases, the converter enters power save mode operation  
automatically. During power save mode the converter skips switching and operates with reduced frequency in  
PFM mode with a minimum quiescent current to maintain high efficiency. The converter positions the output  
voltage 1% (typical) above the nominal output voltage. This voltage positioning feature minimizes voltage drops  
caused by a sudden load step.  
The transition from PWM mode to PFM mode occurs when the inductor current in the low-side MOSFET switch  
becomes zero, which indicates discontinuous conduction mode.  
During the power save mode the output voltage is monitored with a PFM comparator. As the output voltage falls  
below the PFM comparator threshold of VOUTnominal +1%, the device starts a PFM current pulse. For this the high-  
side MOSFET switch turns on and the inductor current ramps up. After the on-time expires, the switch is turned  
off and the low-side MOSFET switch is turned on until the inductor current becomes zero.  
The converter effectively delivers a current to the output capacitor and the load. If the load is below the delivered  
current the output voltage rises. If the output voltage is equal or higher than the PFM comparator threshold, the  
device stops switching and enters a sleep mode with a typical 18-µA current consumption.  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
Device Functional Modes (continued)  
In case the output voltage is still below the PFM comparator threshold, further PFM current pulses are generated  
until the PFM comparator reaches its threshold. The converter starts switching again once the output voltage  
drops below the PFM comparator threshold due to the load current.  
In case the output current can no longer be supported in PFM mode, the device exits PFM mode and enters  
PWM mode.  
10.4.1.1 Dynamic Voltage Positioning  
This feature reduces the voltage under or overshoots at load steps from light to heavy load and vice versa. It is  
active in power save mode and regulates the output voltage 1% higher than the nominal value. This provides  
more headroom for both the voltage drop at a load step, and the voltage increase at a load throw-off.  
Output voltage  
VOUT +1%  
Voltage Positioning  
PFM Comparator  
threshold  
Light load  
PFM Mode  
VOUT (PWM)  
Moderate to heavy load  
PWM Mode  
Figure 8. Power Save Mode Operation with automatic Mode transition  
10.4.1.2 100% Duty-Cycle Low-Dropout Operation  
The device starts to enter 100% duty cycle mode as the input voltage comes close to the nominal output voltage.  
In order to maintain the output voltage, the high-side MOSFET switch is turned on 100% for one or more cycles.  
With further decreasing VIN the high-side MOSFET switch is turned on completely. In this case the converter  
offers a low input-to-output voltage difference. This is particularly useful in battery-powered applications to  
achieve longest operation time by taking full advantage of the whole battery voltage range.  
The minimum input voltage to maintain regulation depends on the load current and output voltage, and can be  
calculated as:  
VINmin = VOmax + IOmax × (RDS(on)max + RL)  
where  
IOmax = maximum output current  
RDS(on)max = maximum P-channel switch RDS(on)  
RL = DC resistance of the inductor  
VOmax = nominal output voltage plus maximum output voltage tolerance  
(1)  
10.4.1.3 Undervoltage Lockout (UVLO)  
The UVLO circuit prevents the device from malfunctioning at low input voltages and from excessive discharge of  
the battery. It disables the output stage of the converter once the falling VIN trips the UVLO threshold VUVLO. The  
UVLO threshold VUVLO for falling VIN is typically 1.78 V. The device starts operation once the rising VIN trips  
UVLO threshold VUVLO again at typically 1.95 V.  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
10.4.1.4 Output Capacitor Discharge  
With EN pulled low, the device enters shutdown mode and all internal circuits are disabled. The SW pin is  
connected to PGND through an internal resistor to discharge the output capacitor. This feature ensures a startup  
in a discharged output capacitor once the converter is enabled again and prevents a floating charge on the  
output capacitor. The output voltage ramps up monotonic starting from 0 V.  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
11 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The TPS62065-Q1 and TPS62067-Q1 is a highly efficient synchronous 2-A step down DC-DC converter.  
11.2 Typical Application  
L
1 µH  
VOUT = 1.8 V  
up to 2 A  
VIN = 2.9 V to 6 V  
PVIN  
AVIN  
SW  
FB  
R1  
COUT  
Cff  
360 kΩ  
22 pF  
10 µF  
EN  
CIN  
MODE  
R2  
10 µF  
AGND  
PGND  
180 kΩ  
Figure 9. TPS62065-Q1 Adjustable 1.8-V Output-Voltage Configuration  
L
1 µH  
VOUT  
VIN = 2.9 V to 6 V  
1.8 V 2 A  
PVIN  
SW  
R1  
AVIN  
EN  
RPG  
360 kΩ  
Cff  
COUT  
CIN  
100 kΩ  
FB  
22 pF  
10 µF  
10 µF  
R2  
AGND  
PGND  
180 kΩ  
PG  
Figure 10. TPS62067-Q1 Adjustable 1.8-V Output-Voltage Configuration  
11.2.1 Design Requirements  
The device operates over an input voltage range from 2.9 V to 6 V. The output voltage is adjustable using an  
external feedback divider.  
11.2.2 Detailed Design Procedure  
11.2.2.1 Output Voltage Setting  
The output voltage can be calculated to:  
æ
ö
÷
ø
æ
ç
è
ö
R1  
R2  
VOUT  
VREF  
VOUT = VREF ´ 1+  
R1 =  
-1 ´ R2  
ç
÷
è
ø
(2)  
13  
with an internal reference voltage VREF typically 0.6 V.  
Copyright © 2015, Texas Instruments Incorporated  
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
Typical Application (continued)  
To minimize the current through the feedback divider network, R2 should be within the range of 120 kto 360  
k. The sum of R1 and R2 should not exceed ~1 M, to keep the network robust against noise. An external feed-  
forward capacitor Cff is required for optimum regulation performance. Lower resistor values can be used. R1 and  
Cff places a zero in the loop. The right value for Cff can be calculated as:  
1
fz =  
= 25 kHz  
2 ´ p ´ R1 ´ Cff  
(3)  
(4)  
1
Cff  
=
2 ´ p ´ R1 ´ 25 kHz  
11.2.2.2 Output Filter Design (inductor And Output Capacitor)  
The internal compensation network of TPS62065-Q1 and TPS62067-Q1 is optimized for a LC output filter with a  
corner frequency of:  
1
f
=
= 50 kHz  
C
2 ´ p ´ 1 µH ´ 10 µF  
(
)
(5)  
The part operates with nominal inductors of 1 µH to 1.2 µH and with 10-µF to 22-µF small X5R and X7R ceramic  
capacitors. Please refer to the lists of inductors and capacitors. The part is optimized for a 1-µH inductor and 10-  
µF output capacitor.  
11.2.2.2.1 Inductor Selection  
The inductor value has a direct effect on the ripple current. The selected inductor has to be rated for its DC  
resistance and saturation current. The inductor ripple current (ΔIL) decreases with higher inductance and  
increases with higher VI or VO.  
Equation 6 calculates the maximum inductor current in PWM mode under static load conditions. The saturation  
current of the inductor should be rated higher than the maximum inductor current as calculated with Equation 7.  
This is recommended because during heavy load transient the inductor current rises above the calculated value.  
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ f  
where  
ΔIL = Peak-to-peak inductor ripple current  
L = Inductor value  
f = Switching frequency (3-MHz typical)  
(6)  
(7)  
DIL  
ILmax = IOUTmax  
+
2
where  
ILmax = Maximum inductor current  
A more conservative approach is to select the inductor current rating just for the switch current limit ILIMF of the  
converter.  
The total losses of the coil have a strong impact on the efficiency of the DC/DC conversion and consist of both  
the losses in the DC resistance R(DC) and the following frequency-dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
Table 2. List of Inductors  
DIMENSIONS [mm3]  
3,2 × 2,5 × 1 max  
3,7 × 4 × 1,8 max  
4 × 4 × 2,6 max  
INDUCTANCE μH  
INDUCTOR TYPE  
SUPPLIER  
Murata  
1
LQM32PN (MLCC)  
LQH44 (wire wound)  
NRG4026T (wire wound)  
DE3518 (wire wound)  
1
Murata  
1.2  
1.2  
Taiyo Yuden  
TOKO  
3,5 × 3,7 × 1,8 max  
11.2.2.2.2 Output Capacitor Selection  
The advanced fast-response voltage mode control scheme of the TPS62065-Q1 and TPS62067-Q1 allows the  
use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple  
and are recommended. The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric  
capacitors, aside from their wide variation in capacitance over temperature, become resistive at high frequencies  
and may not be used. For most applications a nominal 10-µF or 22-µF capacitor is suitable. At small ceramic  
capacitors, the DC-bias effect decreases the effective capacitance. Therefore a 22-µF capacitor can be used for  
output voltages higher than 2 V, see list of capacitors.  
In case additional ceramic capacitors in the supplied system are connected to the output of the DC/DC converter,  
the output capacitor COUT must be decreased in order not to exceed the recommended effective capacitance  
range. In this case a loop stability analysis must be performed as described later.  
At nominal load current, the device operates in PWM mode and the RMS ripple current is calculated as:  
VOUT  
1-  
V
1
IN  
IRMSCout = VOUT  
´
´
L ´ f  
2 ´  
3
(8)  
11.2.2.2.3 Input Capacitor Selection  
Because the buck converter has a pulsating input current, a low ESR input capacitor is required for best input  
voltage filtering and minimizing the interference with other circuits caused by high input voltage spikes. For most  
applications a 10-µF ceramic capacitor is recommended. The input capacitor can be increased without any limit  
for better input voltage filtering.  
Take care when using only small ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output or VIN step on  
the input can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop  
instability or could even damage the part by exceeding the maximum ratings.  
Table 3. List of Capacitors  
CAPACITANCE  
10 μF  
TYPE  
SIZE [ mm3]  
SUPPLIER  
Murata  
GRM188R60J106M  
GRM188R60G226M  
CL10A226MQ8NRNC  
CL10A106MQ8NRNC  
0603: 1,6 × 0,8 × 0,8  
0603: 1,6 × 0,8 × 0,8  
0603: 1,6 × 0,8 × 0,8  
0603: 1,6 × 0,8 × 0,8  
22 μF  
Murata  
22 µF  
Samsung  
Samsung  
10 µF  
11.2.2.3 Checking Loop Stability  
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signal  
Switching node, SW  
Inductor current, IL  
Output ripple voltage, VOUT(AC)  
These are the basic signals that need to be measured when evaluating a switching converter. When the  
switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the  
regulation loop may be unstable. This is often a result of board layout and/or wrong L-C output filter  
combinations. As a next step in the evaluation of the regulation loop, test the load transient response. The results  
are most easily interpreted when the device operates in PWM mode at medium to high load currents.  
During this recovery time, VOUT can be monitored for settling time, overshoot, or ringing; that helps evaluate  
stability of the converter. Without any ringing, the loop has usually more than 45° of phase margin.  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
11.2.3 Application Curves  
Table 4. Table of Graphs  
FIGURE  
Figure 11  
Figure 12  
Figure 13  
Load Current, VOUT = 1.2 V, Auto PFM and PWM Mode, Linear Scale  
Load Current, VOUT = 1.8 V, Auto PFM and PWM Mode, Linear Scale  
Load Current, VOUT = 3.3 V, PFM and PWM Mode, Linear Scale  
η
Efficiency  
Load Current, VOUT = 1.8 V, Auto PFM and PWM Mode vs. Forced PWM  
Mode, Logarithmic Scale  
Figure 14  
Load Current, VOUT = 1.8 V, Auto PFM and PWM Mode  
Load Current, VOUT = 1.8 V, Forced PWM Mode  
Figure 15  
Figure 16  
Output Voltage Accuracy  
Typical Operation  
PWM Mode, VIN = 3.6 V, VOUT = 1.8 V, 500 mA, L = 1.2 μH, COUT = 10  
μF  
Figure 17  
PFM Mode, VIN = 3.6 V, VOUT = 1.8 V, 20 mA, L = 1.2 μH, COUT = 10 μF  
PWM Mode, VIN = 3.6 V, VOUT = 1.2 V, 0.2 mA to 1 A  
PFM Mode, VIN = 3.6 V, VOUT = 1.2 V, 20 mA to 250 mA  
VIN = 3.6 V, VOUT = 1.8 V, 200 mA to 1500 mA  
PWM Mode, VIN = 3.6 V to 4.2 V, VOUT = 1.8 V, 500 mA  
PFM Mode, VIN = 3.6 V to 4.2 V, VOUT = 1.8 V, 500 mA  
VIN = 3.6 V, VOUT = 1.8 V, Load = 2.2 Ω  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Load Transient  
Line Transient  
Startup into Load  
Startup TPS62067-Q1  
Output Discharge  
Into 2.2-Ω Load with Power Good  
VIN = 3.6 V, VOUT = 1.8 V, No Load  
Shutdown TPS62067-Q1  
VIN = 4.2 V, VOUT = 3.3 V, No Load, PG Pullup Resistor 10 kΩ  
100  
95  
100  
95  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
60  
V
V
V
V
V
= 3 V  
V
V
V
V
V
= 3 V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.3 V  
= 3.6 V  
= 4.2 V  
= 5 V  
= 3.3 V  
= 3.6 V  
= 4.2 V  
= 5 V  
60  
55  
50  
55  
50  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
Load Current (A)  
Load Current (A)  
VOUT = 1.2 V  
L = 1.2 µH (NRG4026T 1R2)  
Linear Scale  
VOUT = 1.8 V  
L = 1.2 µH (NRG4026T 1R2)  
Linear Scale  
COUT = 10 µF (0603 size)  
COUT = 10 µF (0603 size)  
Figure 11. Efficiency vs Load Current  
Auto PFM and PWM MODE  
Figure 12. Efficiency vs Load Current  
PFM and PWM MODE  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
100  
ZHCSD80 JANUARY 2015  
100  
90  
95  
90  
85  
80  
75  
70  
65  
60  
80  
70  
60  
50  
40  
30  
20  
10  
0
Auto PFM/  
Forced  
PWM Mode PWM Mode  
V
V
V
V
= 3.3 V  
= 3.6 V  
= 4.2 V  
= 5 V  
IN  
IN  
IN  
IN  
V
V
V
= 3.7 V  
= 4.2 V  
= 5 V  
IN  
IN  
IN  
55  
50  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
0.001  
0.01  
0.1  
Load Current (A)  
1
10  
Load Current (A)  
VOUT = 3.3 V  
L = 1.2 µH (NRG4026T 1R2)  
Linear Scale  
VOUT = 1.8 V  
COUT = 10 µF (0603 size)  
Logarithmic Scale  
L = 1.2 µH (NRG4026T 1R2)  
COUT = 22 µF (0603 size)  
Figure 13. Efficiency vs Load Current  
Figure 14. Efficiency vs Load Current  
Auto PFM and PWM MODE  
Auto PFM and PWM Mode vs. Forced PWM Mode  
1.890  
1.872  
1.890  
1.872  
Voltage Positioning PFM Mode  
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
PWM Mode  
V
V
V
V
= 3.3 V  
= 3.6 V  
= 4.2 V  
= 5 V  
V
V
V
V
= 3.3 V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1.746  
= 3.6 V  
= 4.2 V  
= 5 V  
1.728  
1.710  
1.728  
1.710  
0.001  
0.01  
0.1  
Load Current (A)  
1
10  
0.001  
0.01  
0.1  
Load Current (A)  
1
10  
L = 1 µH  
VOUT = 1.8 V  
COUT = 10 µF  
L = 1 µH  
VOUT = 1.8 V  
COUT = 10 µF  
Figure 16. Output Voltage Accuracy vs Load Current  
Forced PWM MODE  
Figure 15. Output Voltage Accuracy vs Load Current  
Auto PFM and PWM MODE  
V
50 mV/Div  
OUT  
V
50 mV/Div  
OUT  
SW 2 V/Div  
SW 2 V/Div  
I
500 mA/Div  
COIL  
I
200 mA/Div  
COIL  
Time Base - 4 µs/Div  
VOUT = 1.8 V  
L = 1.2 µH  
Time Base - 100 ns/Div  
VIN = 3.6 V  
MODE = GND  
IOUT = 20 mA  
VIN = 3.6 V  
VOUT = 1.8 V  
MODE = GND  
IOUT = 500 mA  
COUT = 10 µF  
COUT = 10 µF  
L = 1.2 µH  
Figure 18. Typical Operation (PFM Mode)  
Figure 17. Typical Operation (PWM Mode)  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
V 100 mV/Div  
OUT  
V
100 mV/Div  
OUT  
SW 2 V/Div  
SW 2 V/Div  
I
1 A/Div  
COIL  
I
1 A/Div  
COIL  
I
500 mA/Div  
LOAD  
I
500 mA/Div  
LOAD  
Time Base - 10 µs/Div  
Time Base - 10 µs/Div  
VIN = 3.6 V  
VOUT = 1.2 V  
IOUT = 0.2 to 1 A  
VIN = 3.6 V  
VOUT = 1.8 V  
IOUT = 20 to 2500 mA  
Figure 19. Load Transient Response, MODE = VIN  
PWM Mode 0.2 A to 1 A  
Figure 20. Load Transient  
PFM Mode 20 mA to 250 mA  
VOUT  
200 mV/Div  
VIN  
500 mV/Div  
ILOAD  
2 A/Div  
VOUT  
50 mV/Div  
IINDUCTOR  
1 A/Div  
Time Base - 100 µs/Div  
VOUT = 1.8 V  
L = 1.2 µH  
Time Base - 100 µs/Div  
VIN = 3.6 to 4.2 V  
COUT = 10 µF  
IOUT = 500 mA  
VIN = 3.6 V  
VOUT = 1.8 V  
L = 1.2 µH  
COUT = 10 µF  
Figure 22. Line Transient Response PWM Mode  
Figure 21. Load Transient Response  
200 mA To 1500 mA  
EN  
2 V/Div  
VIN  
500 mV/Div  
VOUT  
1 V/Div  
2 A/Div  
ICOIL  
500 mA/Div  
VOUT  
50 mV/Div  
ILOAD  
500 mA/Div  
Time Base - 100 µs/Div  
VOUT = 1.8 V  
L = 1.2 µH  
Time Base - 100 µs/Div  
VIN = 3.6 to 4.2 V  
COUT = 10 µF  
IOUT = 50 mA  
VIN = 3.6 V  
VOUT = 1.8 V  
L = 1.2 µH  
Load = 2R2  
COUT = 10 µF  
Figure 23. Line Transient PFM Mode  
Figure 24. Startup Into Load  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
EN  
1 V/Div  
EN  
2 V/Div  
SW  
2 V/Div  
VOUT  
2 V/Div  
V
OUT  
1 V/Div  
ICOIL  
1 A/Div  
PG  
2 V/Div  
Time Base - 2 ms/Div  
Time Base - 100 µs/Div  
VIN = 3.6 V  
VOUT = 1.8 V  
No load  
VIN = 4.2 V  
VOUT = 3.3 V  
Load = 2R2  
COUT = 1.8 µF  
PG Pullup resistor 10 kΩ  
Figure 26. Output Discharge  
Figure 25. Startup TPS62067-Q1 into 2.2-Ω Load With  
Power Good  
EN  
2 V/Div  
V
OUT  
2 V/Div  
PG  
5 V/Div  
Time Base - 1 ms/Div  
VIN = 4.2 V  
VOUT = 3.3 V  
No load  
PG pullup resistor, 10 kΩ  
Figure 27. Shutdown TPS62067-Q1  
12 Power Supply Recommendations  
The power supply to the TPS62065-Q1 and TPS62067-Q1 must have a current rating according to the supply  
voltage, output voltage, and output current of the TPS62065-Q1 and TPS62067-Q1.  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPS62065-Q1, TPS62067-Q1  
ZHCSD80 JANUARY 2015  
www.ti.com.cn  
13 Layout  
13.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. The input capacitor needs to be  
placed as close as possible to the IC pins.  
It is critical to provide a low inductance, impedance ground and supply path. Therefore, use wide and short  
traces for the main current paths. Connect the AGND and PGND pins of the device to the thermal pad land of  
the PCB and use this pad as a star point. Use a common power PGND node and a different node for the signal  
AGND to minimize the effects of ground noise. The FB divider network should be connected right to the output  
capacitor and the FB line must be routed away from noisy components and traces (for example, SW line).  
Due to the small package of this converter and the overall small solution size the thermal performance of the  
PCB layout is important. To get a good thermal performance a four or more layer PCB design is recommended.  
The PowerPAD of the IC must be soldered on the thermal pad area on the PCB to get a proper thermal  
connection. For good thermal performance the exposed pad on the PCB must be connected to an inner GND  
plane with sufficient via connections. Please refer to the documentation of the evaluation kit.  
13.2 Layout Example  
VIN  
GND  
CIN  
COUT  
VOUT  
L
R2  
R1  
CFF  
Figure 28. PCB Layout  
20  
版权 © 2015, Texas Instruments Incorporated  
TPS62065-Q1, TPS62067-Q1  
www.ti.com.cn  
ZHCSD80 JANUARY 2015  
14 器件和文档支持  
14.1 器件支持  
14.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
14.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS62065-Q1  
TPS62067-Q1  
14.3 商标  
14.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
15 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62065QDSGRQ1  
TPS62067QDSGRQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
SJF  
SIP  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS62067DSG

3-MHz 2A Step Down Converter in 2x2 SON Package
TI

TPS62067DSGR

3-MHz 2A Step Down Converter in 2x2 SON Package
TI

TPS62067DSGT

3-MHz 2A Step Down Converter in 2x2 SON Package
TI

TPS62067QDSGRQ1

采用 2x2 SON 封装的 3MHz、2A 汽车级降压转换器 | DSG | 8 | -40 to 125
TI

TPS62080

1.2A High Efficient Step Down Converter in 2x2mm SON Package
TI

TPS62080A

1.2A High Efficient Step Down Converter with Snooze Mode
TI

TPS62080ADGNR

1.2A High Efficient Step Down Converter in 2x2mm SON Package
TI

TPS62080ADGNT

1.2A High Efficient Step Down Converter in 2x2mm SON Package
TI

TPS62080ADSGR

1.2A High Efficient Step Down Converter with Snooze Mode
TI

TPS62080ADSGT

1.2A High Efficient Step Down Converter with Snooze Mode
TI

TPS62080DSGR

1.2A High Efficient Step Down Converter with Snooze Mode
TI

TPS62080DSGT

1.2A High Efficient Step Down Converter with Snooze Mode
TI