TPS62087 [TI]

采用 2x2 QFN 封装、应用 DCS-Control 技术、具有间断模式短路保护功能的 3A 降压转换器;
TPS62087
型号: TPS62087
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2x2 QFN 封装、应用 DCS-Control 技术、具有间断模式短路保护功能的 3A 降压转换器

DCS 分布式控制系统 转换器
文件: 总26页 (文件大小:1351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
2mm × 2mm VSON 封装且具有断续短路保护功能TPS6208x 3A 降压转换  
1 特性  
3 说明  
DCS-Control拓扑  
• 效率高95%  
• 断续短路保护  
• 可实现轻负载效率的省电模式  
100% 占空比可实现超低压降  
• 输入电压范围2.5V 6.0V  
• 工作静态电流17μA  
• 可调输出电压0.8V VIN  
1.8V 3.3V 固定输出电压  
• 输出放电  
TPS62085TPS62086 TPS62087 器件是高频同步  
降压转换器经优化具有小解决方案尺寸和高效率两大  
优点。该器件的输入电压范围为 2.5V 6.0V支持常  
用电池技术。  
此器件主要用于宽输出电流范围内的高效降压转换。该  
转换器在中等程度的负载到高负载时运行于脉宽调制  
(PWM) 模式并在轻负载时自动进入省电模式运行,  
从而在整个负载电流范围内保持高效率。  
为了满足系统电源轨的需求内部补偿电路支持 10µF  
150uF 的宽范围外部输出电容值选项。凭借 DCS-  
Control 架构该器件可实现出色的负载瞬态性能和输  
出稳压精度。器件可提2mm × 2mm VSON 封装。  
• 电源正常状态输出  
• 热关断保护  
• 采2mm × 2mm VSON 封装  
• 借助以下工具创建定制设计方案:  
器件信息  
封装(1)  
TPS62085 WEBENCH® Power Designer  
TPS62086 WEBENCH® Power Designer  
TPS62087 WEBENCH® Power Designer  
封装尺寸标称值)  
器件型号  
TPS62085  
TPS62086  
TPS62087  
VSON (7)  
2.00mm × 2.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
电池供电的应用  
• 负载点  
处理器电源  
硬盘驱动器  
100  
90  
L1  
0.47µH  
TPS62087  
VIN  
2.5V to 6V  
VOUT  
VIN  
EN  
SW  
VOS  
FB  
1.8V/3A  
C1  
10µF  
C2  
22µF  
R3  
1M  
80  
GND  
PG  
70  
POWER GOOD  
Vin = 2.5V  
Vin = 3.3V  
典型应用原理图  
60  
Vin = 4.2V  
Vout = 1.8 V  
Vin = 5.0V  
50  
0.001  
0.010  
0.100  
Iout (A)  
1.000  
C004  
典型应用效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSB70  
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes............................................9  
9 Application and Implementation..................................10  
9.1 Application Information............................................. 10  
9.2 Typical Application.................................................... 10  
10 Power Supply Recommendations..............................16  
11 Layout...........................................................................16  
11.1 Layout Guidelines................................................... 16  
11.2 Layout Example...................................................... 16  
11.3 Thermal Considerations..........................................16  
12 Device and Documentation Support..........................17  
12.1 Device Support....................................................... 17  
12.2 Documentation Support.......................................... 17  
12.3 接收文档更新通知................................................... 17  
12.4 支持资源..................................................................17  
12.5 Trademarks.............................................................17  
12.6 静电放电警告.......................................................... 17  
12.7 术语表..................................................................... 18  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................7  
8.3 Feature Description.....................................................7  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (July 2018) to Revision C (January 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
Changed maximum IPG,LKG specification up to 125°C TJ from 0.16 µA to 0.25 µA in Electrical Characteristics  
table....................................................................................................................................................................5  
Changes from Revision A (June 2015) to Revision B (July 2018)  
Page  
• 将列表中的封装名称QFN 更改VSON................................................................................................1  
• 向数据表添加Webench 链接.......................................................................................................................... 1  
Added SW node AC value in Absolute Maximum Ratings table ........................................................................4  
Changed fPFM To: fPSM in 方程1 .................................................................................................................... 7  
Added 8-1 to Power Save Mode section........................................................................................................7  
Added 8-1 to Power Good section ................................................................................................................ 9  
Changed Murata inductor part number in 9-4 ..............................................................................................11  
Changes from Revision * (October 2013) to Revision A (June 2015)  
Page  
• 添加ESD 表、特性说部分、器件功能模式应用和实部分、电源相关建部分、部分、器  
件和文档支部分以及机械、封装和可订购信部分.......................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
5 Device Options  
PART NUMBER(1)  
OUTPUT VOLTAGE  
Adjustable  
3.3 V  
TPS62085RLT  
TPS62086RLT  
TPS62087RLT  
1.8 V  
(1) For detailed ordering information, please check the Mechanical, Packaging, and Orderable Information section at the end of this  
datasheet.  
6 Pin Configuration and Functions  
1
EN  
7
VIN  
2
PG  
6
SW  
3
FB  
5
GND  
4
VOS  
6-1. RLT Package 7-Pin VSON Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
EN  
1
IN  
Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low disables the device.  
This pin has a pulldown resistor of typically 400 kΩwhen the device is disabled.  
FB  
3
5
2
IN  
Feedback pin. For the fixed output voltage versions this pin must be connected to the output voltage.  
Ground pin.  
GND  
PG  
OUT Power good open drain output pin. The pullup resistor can not be connected to any voltage higher than 6 V. If  
unused, leave it floating.  
SW  
6
7
4
PWR Switch pin of the power stage.  
PWR Input voltage pin.  
VIN  
VOS  
IN  
Output voltage sense pin. This pin must be directly connected to the output capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
3  
MAX  
7
UNIT  
VIN, FB, VOS, EN, PG  
Voltage at Pins(2)  
Temperature  
V
SW (DC)  
VIN + 0.3  
SW (AC, less than 100ns)(3)  
Operating Junction, TJ  
Storage, Tstg  
11  
150  
150  
°C  
°C  
40  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolutemaximumrated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN(1)  
NOM MAX(1) UNIT  
VIN  
Input voltage range  
2.5  
6
1
V
mA  
V
ISINK_PG Sink current at PG pin  
VPG  
TJ  
Pullup resistor voltage  
6
Operating junction temperature  
125  
°C  
40  
(1) Refer to 9 for further information.  
7.4 Thermal Information  
TPS6208x  
THERMAL METRIC  
RLT [VSON]  
7 PINS  
107.8  
66.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ψJT  
17.1  
ψJB  
RθJC(bot)  
N/A  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
 
 
 
 
 
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
TJ = 40 °C to 125 °C, and VIN = 3.6 V. Typical values are at TJ = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
VIN  
Input voltage range  
2.5  
6
V
No load, device not switching  
TJ = 40 °C to 85 °C, VIN = 2.5 V to 5.5 V  
IQ  
Quiescent current into VIN  
Shutdown current into VIN  
17  
25  
µA  
EN = Low,  
ISD  
0.7  
5
µA  
TJ = 40 °C to 85 °C, VIN = 2.5 V to 5.5 V  
Undervoltage lockout threshold  
Undervoltage lockout hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
VIN falling  
VIN rising  
TJ rising  
TJ falling  
2.1  
1.0  
2.2  
200  
150  
20  
2.3  
V
VUVLO  
mV  
°C  
°C  
TJSD  
LOGIC INTERFACE EN  
VIH  
High-level input voltage  
VIN = 2.5 V to 6.0 V  
VIN = 2.5 V to 6.0 V  
EN = High  
V
V
VIL  
Low-level input voltage  
0.4  
IEN,LKG  
RPD  
Input leakage current into EN pin  
Pulldown resistance at EN pin  
0.01  
400  
0.16  
µA  
kΩ  
EN = Low  
SOFT START, POWER GOOD  
tSS  
Soft-start time  
Time from EN high to 95% of VOUT nominal  
VOUT rising, referenced to VOUT nominal  
VOUT falling, referenced to VOUT nominal  
Isink = 1 mA  
0.8  
95%  
90%  
ms  
93%  
88%  
98%  
93%  
0.4  
VPG  
Power good threshold  
VPG,OL  
IPG,LKG  
IPG,LKG  
Low-level output voltage  
V
Input leakage current into PG pin  
Input leakage current into PG pin  
0.01  
0.01  
0.16  
0.25  
µA  
µA  
VPG = 5.0 V, TJ = 40 °C to 85 °C  
VPG = 5.0 V  
OUTPUT  
Output voltage range, TPS62085  
0.8  
VIN  
V
1.0%  
1.0%  
IOUT = 1 A, VIN VOUT + 1 V, PWM mode  
IOUT = 0 A, VIN VOUT + 1 V, PSM mode  
VOUT  
Output voltage accuracy,  
TPS62086, TPS62087(1)  
1.0%  
2.1%  
792  
792  
800  
800  
808  
817  
0.1  
IOUT = 1A , VIN VOUT + 1 V, PWM mode  
IOUT = 0 A, VIN VOUT + 1 V, PSM mode  
VFB = 1 V  
VFB  
Feedback regulation voltage(1) (2)  
mV  
µA  
IFB,LKG  
RDIS  
Feedback input leakage current  
Output discharge resistor  
Line regulation  
0.01  
260  
EN = LOW, VOUT = 1.8 V  
IOUT = 1 A, VIN = 2.5 V to 6.0 V  
IOUT = 0.5 A to 3 A  
0.02  
0.16  
%/V  
Load regulation  
%/A  
POWER SWITCH  
High-side FET ON-resistance  
ISW = 500 mA  
ISW = 500 mA  
31  
23  
56  
45  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET ON-resistance  
High-side FET switch current limit  
PWM switching frequency  
ILIM  
fSW  
3.7  
4.6  
2.4  
5.5  
IOUT = 1 A  
MHz  
(1) For more information, see 8.3.1.  
(2) Conditions: L = 0.47 μH, COUT = 22 μF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
7.6 Typical Characteristics  
10M  
1M  
100k  
10k  
Vin = 2.5 V  
Vin = 3.6 V  
Vin = 6.0 V  
Vout = 1.2 V  
1000  
0.001  
0.010  
0.100  
Iout (A)  
1.000  
C007  
7-1. Switching Frequency  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS62085, TPS62086, and TPS62087 synchronous step-down converters are based on the DCS-Control  
(Direct Control with Seamless transition into Power Save Mode) topology. This is an advanced regulation  
topology that combines the advantages of hysteretic, voltage, and current mode control schemes.  
The DCS-Control topology operates in PWM (pulse width modulation) mode for medium to heavy load conditions  
and in Power Save Mode at light load currents. In PWM mode, the converter operates with its nominal switching  
frequency of 2.4 MHz, having a controlled frequency variation over the input voltage range. As the load current  
decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the IC  
quiescent current to achieve high efficiency over the entire load current range. Because DCS-Control supports  
both operation modes (PWM and PSM) within a single building block, the transition from PWM mode to Power  
Save Mode is seamless and without effects on the output voltage. Fixed output voltage version provides smallest  
solution size combined with lowest no load current. The devices offer both excellent DC voltage and superior  
load transient regulation, combined with very low output voltage ripple, minimizing interference with RF circuits.  
8.2 Functional Block Diagram  
PG  
Hiccup  
Counter  
VFB  
VIN  
VREF  
High Side  
Current Sense  
Bandgap  
Undervoltage Lockout  
Thermal Shutdown  
EN  
400 k(2)  
SW  
MOSFET Driver  
Control Logic  
GND  
VOS  
Ramp  
Direct Control  
and  
Compensation  
Comparator  
R1(1)  
R2(1)  
Timer  
ton  
FB  
VREF  
Error Amplifier  
260 Ω  
DCS - Control TM  
Output Discharge  
Logic  
EN  
Note:  
(1) R1, R2 are implemented in the fixed output voltage versions only.  
(2) When the device is enabled, the 400 kΩ resistor is disconnected.  
8.3 Feature Description  
8.3.1 Power Save Mode  
As the load current decreases, the TPS62085, TPS62086, and TPS62087 enter Power Save Mode (PSM)  
operation. During Power Save Mode, the converter operates with reduced switching frequency and with a  
minimum quiescent current maintaining high efficiency. The power save mode occurs when the inductor current  
becomes discontinuous. Power Save Mode is based on a fixed on-time architecture, as related in 方程式 1. The  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
switching frequency over the whole load current range is also shown in Switching Frequency for a typical  
application.  
VOUT  
t ON = 420 ns´  
VIN  
2´IOUT  
fPSM  
=
VIN  
V
IN - VOUT  
2
t ON  
´
´
VOUT  
L
(1)  
In Power Save Mode, the output voltage rises slightly above the nominal output voltage, as shown in Load  
Regulation. This effect is minimized by increasing the output capacitor or inductor value. The output voltage  
accuracy in PSM operation is reflected in the electrical specification table and given for a 22-μF output  
capacitor.  
During PAUSE period in PSM (shown in 8-1 ), the device does not change the PG pin state nor does it detect  
an UVLO event, in order to achieve a minimum quiescent current and maintain high efficiency at light loads.  
VOUT  
tPAUSE  
IINDUCTOR  
tON  
8-1. Power Save Mode Waveform Diagram  
8.3.2 100% Duty Cycle Low Dropout Operation  
The devices offer low input-to-output voltage difference by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. This is particularly  
useful in battery powered applications to achieve the longest operation time by taking full advantage of the whole  
battery voltage range. The minimum input voltage to maintain output regulation, depending on the load current  
and output voltage can be calculated as:  
V
= VOUT + IOUT,MAX ´(RDS(on) + RL )  
IN,MIN  
(2)  
with  
VIN,MIN = Minimum input voltage to maintain an output voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET ON-resistance  
RL = Inductor ohmic resistance (DCR)  
8.3.3 Soft Start  
The TPS62085, TPS62086, and TPS62087 have an internal soft-start circuitry which monotonically ramps up the  
output voltage and reaches the nominal output voltage during a soft-start time of typically 0.8 ms. This avoids  
excessive inrush current and creates a smooth output voltage slope. It also prevents excessive voltage drops of  
primary cells and rechargeable batteries with high internal impedance. The device is able to start into a  
prebiased output capacitor. The device starts with the applied bias voltage and ramps the output voltage to its  
nominal value.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
8.3.4 Switch Current Limit and Hiccup Short-Circuit Protection  
The switch current limit prevents the devices from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted or saturated inductor or a heavy  
load or shorted output circuit condition. If the inductor current reaches the threshold ILIM, the high-side MOSFET  
is turned off and the low-side MOSFET is turned on to ramp down the inductor current. When this switch current  
limits is triggered 32 times, the devices stop switching and enable the output discharge. The devices then  
automatically start a new start-up after a typical delay time of 66 µs has passed. This is named HICCUP short-  
circuit protection. The devices repeat this mode until the high load condition disappears.  
8.3.5 Undervoltage Lockout  
To avoid misoperation of the device at low input voltages, an undervoltage lockout (UVLO) is implemented,  
which shuts down the devices at voltages lower than VUVLO with a hysteresis of 200 mV.  
8.3.6 Thermal Shutdown  
The device goes into thermal shutdown and stops switching when the junction temperature exceeds TJSD. When  
the device temperature falls below the threshold by 20°C, the device returns to normal operation automatically.  
8.4 Device Functional Modes  
8.4.1 Enable and Disable  
The devices are enabled by setting the EN pin to a logic HIGH. Accordingly, shutdown mode is forced if the EN  
pin is pulled LOW with a shutdown current of typically 0.7 μA.  
In shutdown mode, the internal power switches as well as the entire control circuitry are turned off. An internal  
resistor of 260 Ωdischarges the output through the VOS pin smoothly. The output discharge function also works  
when thermal shutdown, UVLO, or short-circuit protection are triggered.  
An internal pulldown resistor of 400 kΩ is connected to the EN pin when the EN pin is LOW. The pulldown  
resistor is disconnected when the EN pin is HIGH.  
8.4.2 Power Good  
The TPS62085, TPS62086, and TPS62087 have a power good output. The power good goes high impedance  
once the output is above 95% of the nominal voltage, and is driven low once the output voltage falls below  
typically 90% of the nominal voltage. The PG pin is an open-drain output and is specified to sink up to 1 mA. The  
power good output requires a pullup resistor connecting to any voltage rail less than 6 V. The PG signal can be  
used for sequencing of multiple rails by connecting it to the EN pin of other converters. Leave the PG pin  
unconnected when not used. 8-1 shows the PG pin logic.  
8-1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB VPG  
EN = High, VFB < VPG  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
0.5 V < VIN < VUVLO  
Power Supply  
Removal  
VIN 0.5 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS62085 is a synchronous step-down converter in which output voltage is adjusted by component  
selection. The following section discusses the design of the external components to complete the power supply  
design for several input and output voltage options by using typical applications as a reference. The TPS62086  
and TPS62087 devices provide a fixed output voltage which does not need an external resistor divider.  
9.2 Typical Application  
L1  
0.47µH  
TPS62085  
VIN  
VOUT  
VIN  
EN  
SW  
VOS  
FB  
2.5V to 6V  
1.2V/3A  
C1  
10µF  
C2  
22µF  
R1  
R3  
80.6k 1M  
R2  
162k  
GND  
PG  
POWER GOOD  
9-1. 1.2-V Output Voltage Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1 as the input parameters.  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.5 V to 6 V  
1.2 V  
Output voltage  
Output ripple voltage  
Maximum output current  
<20 mV  
3 A  
9-2 lists the components used for the example.  
9-2. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
C1  
C2  
L1  
10 µF, Ceramic capacitor, 6.3 V, X7R, size 0805, GRM21BR71A106ME51L  
22 µF, Ceramic capacitor, 6.3 V, X5R, size 0805, GRM21BR60J226ME39L  
0.47 µH, Power Inductor, size 4 mm × 4 mm × 1.5 mm, XFL4015-471ME  
Murata  
Murata  
Coilcraft  
Std  
R1  
R2  
R3  
Depending on the output voltage, 1%, size 0603; 0 Ωfor TPS62086, TPS62087  
162 kΩ, Chip resistor, 1/16 W, 1%, size 0603; open for TPS62086, TPS62087  
1 MΩ, Chip resistor, 1/16 W, 1%, size 0603  
Std  
Std  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62085 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62086 device with the WEBENCH® Power Designer.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
Click here to create a custom design using the TPS62087 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Setting The Output Voltage  
The output voltage is set by an external resistor divider according to 方程3:  
R1  
R2  
R1  
R2  
æ
ö
æ
ö
VOUT = VFB ´ 1+  
= 0.8 V ´ 1+  
ç
÷
ç
÷
è
ø
è
ø
(3)  
R2 must not be higher than 180 kΩ to achieve high efficiency at light load while providing acceptable noise  
sensitivity. Lowest operating quiescent current and best output voltage accuracy are achieved with the fixed  
output voltage versions. For the fixed output voltage versions, the FB pin must be connected to the output.  
9.2.2.3 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify the selection process, 9-3  
outlines possible inductor and capacitor value combinations for most applications.  
9-3. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
10  
22  
47  
+
100  
+
150  
+
(1)  
0.47  
1
+
+
+
+
+
+
2.2  
(1) Typical application configuration. Other '+' mark indicates recommended filter combinations.  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20%  
and  
30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary  
by 20% and 50%.  
9.2.2.4 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, 方程4 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
(4)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
 
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
where  
IOUT,MAX = Maximum output current  
• ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
TI recommends choosing the saturation current for the inductor 20% to 30% higher than the IL,MAX, out of 方程式  
4. A higher inductor value is also useful to lower ripple current but increases the transient response time as well.  
The following inductors are recommended to be used in designs.  
9-4. List of Recommended Inductors  
DC RESISTANCE  
[mΩtypical]  
INDUCTANCE  
[µH]  
CURRENT RATING  
[A]  
DIMENSIONS  
PART NUMBER  
L × W × H [mm3]  
0.47  
0.47  
1
6.6  
6.7  
5.1  
4 × 4 × 1.5  
3.2 × 2.5 × 1.2  
4 × 4 × 2  
7.6  
23  
Coilcraft XFL4015-471  
Murata DFE322512F-R47N  
Coilcraft XFL4020-102  
10.8  
9.2.2.5 Capacitor Selection  
The input capacitor is the low-impedance energy source for the converters which helps to provide stable  
operation. A low ESR multilayer ceramic capacitor is recommended for best filtering and must be placed  
between VIN and GND as close as possible to those pins. For most applications, 10 μF is sufficient, though a  
larger value reduces input current ripple.  
The architecture of the TPS62085, TPS62086, and TPS62087 allows the use of tiny ceramic output capacitors  
with low equivalent series resistance (ESR). These capacitors provide low output voltage ripple and are  
recommended. To keep its low resistance up to high frequencies and to get narrow capacitance variation with  
temperature, TI recommends using X7R or X5R dielectrics. The recommended typical output capacitor value is  
22 μF; this capacitance can vary over a wide range as outline in the output filter selection table. Output  
capacitors above 150 µF may be used with a reduced load current during startup to avoid triggering the short  
circuit protection.  
A feed-forward capacitor is not required for device proper operation.  
9.2.3 Application Curves  
VIN = 3.6 V, VOUT = 1.2 V, TA = 25°C, unless otherwise noted  
9-5. Table of Graphs  
FIGURE  
TPS62085, VOUT = 0.95 V  
TPS62085, VOUT = 1.2 V  
TPS62086, VOUT = 3.3 V  
TPS62087, VOUT = 1.8 V  
TPS62085  
Efficiency  
Efficiency  
Efficiency  
Efficiency  
Efficiency  
Line Regulation  
Load Regulation  
Line Regulation  
Load Regulation  
Switching Frequency  
TPS62085  
Switching Frequency TPS62085  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
9-5. Table of Graphs (continued)  
FIGURE  
PWM Operation,  
Load = 3 A  
TPS62085, PWM Operation (Load = 3 A)  
TPS62085, PSM Operation (Load = 100 mA)  
TPS62085, Load Sweep (Load = Open to 3 A)  
TPS62085, Start-Up (Load = 0.47 Ω)  
TPS62085, Start-Up (Load = Open)  
PSM Operation, Load  
= 100 mA  
Load Sweep, Load =  
Open to 3 A  
Start-Up, Load = 0.47  
Ω
Start-Up, Load =  
Open  
Shutdown, Load =  
TPS62085, Shutdown (Load = 0.47 Ω)  
0.47 Ω  
Shutdown, Load =  
Open  
TPS62085, Shutdown (Load = Open)  
Waveforms  
Load Transient, Load  
= 0.5 A to 3 A  
TPS62085, Load Transient (Load = 0.5 A to 3 A)  
TPS62085, Load Transient (Load = 50 mA to 3 A)  
Load Transient, Load  
= 50 mA to 3 A  
Output Short-Circuit  
Protection, Load =  
0.47 Ω, Entry  
TPS62085, Output Short-Circuit Protection (Load = 0.47 Ω, Entry)  
TPS62085, Output Short-Circuit Protection (Load = 0.47 Ω, Recovery)  
Output Short-Circuit  
Protection, Load =  
0.47 Ω, Recovery  
Output Short-Circuit  
Protection, Load =  
0.47 Ω, HICCUP  
Zoom In  
TPS62085, Output Short-Circuit Protection (Load = 0.47 Ω, HICCUP Zoom In)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
Vin = 2.5 V  
Vin = 2.5 V  
Vin = 3.3 V  
Vin = 4.2 V  
Vin = 5.0 V  
Vin = 3.3 V  
Vin = 4.2 V  
Vin = 5.0 V  
60  
50  
Vout = 0.95 V  
0.001  
Vout = 1.2 V  
0.010  
0.100  
Iout (A)  
1.000  
0.001  
0.010  
0.100  
Iout (A)  
1.000  
C001  
C002  
9-2. Efficiency  
9-3. Efficiency  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
Vin = 2.5V  
Vin = 3.3V  
Vin = 4.2V  
Vin = 5.0V  
Vin = 3.6 V  
Vin = 4.2 V  
Vin = 5.0 V  
Vout = 3.3 V  
0.001  
Vout = 1.8 V  
0.010  
0.100  
Iout (A)  
1.000  
0.001  
0.010  
0.100  
Iout (A)  
1.000  
C003  
C004  
9-4. Efficiency  
9-5. Efficiency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
1.212  
1.206  
1.200  
1.194  
1.212  
1.206  
1.200  
1.194  
1.188  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
Vout = 1.2 V, Iout = 1 A  
1.188  
Vout = 1.2 V, Vin = 3.6 V  
0.010  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0.001  
0.100  
Iout (A)  
1.000  
C005  
C006  
Vin (V)  
9-6. Line Regulation  
9-7. Load Regulation  
t -- 500ns/div  
t -- 300ns/div  
Vout (AC, 20mV/div)  
Icoil (DC, 1A/div)  
Vout (AC, 20mV/div)  
Icoil (DC, 1A/div)  
SW (DC, 5V/div)  
SW (DC, 5V/div)  
9-8. PWM Operation, Load = 3 A  
9-9. PSM Operation, Load = 100 mA  
t -- 200μs/div  
t -- 200μs/div  
Load (DC, 2A/div)  
EN (DC, 5V/div)  
Vout (AC, 50mV/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 2A/div)  
9-10. Load Sweep, Load = Open to 3 A  
9-11. Start-Up, Load = 0.47 Ω  
t -- 200μs/div  
t -- 5μs/div  
EN (DC, 5V/div)  
EN (DC, 5V/div)  
Vout (DC, 0.5V/div)  
PG (DC, 5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 0.5A/div)  
9-12. Start-Up, Load = Open  
9-13. Shutdown, Load = 0.47 Ω  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
t -- 5ms/div  
t -- 2μs/div  
EN (DC, 5V/div)  
Load (DC, 2A/div)  
Vout (DC, 0.5V/div)  
PG (DC, 5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.1V/div)  
Icoil (DC, 0.5A/div)  
Icoil (DC, 2A/div)  
9-14. Shutdown, Load = Open  
9-15. Load Transient, Load = 0.5 A to 3 A  
t -- 3μs/div  
t -- 200μs/div  
Load (DC, 2A/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.1V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 2A/div)  
9-16. Load Transient, Load = 50 mA to 3 A  
9-17. Output Short-Circuit Protection, Load =  
0.47 Ω, Entry  
t -- 200μs/div  
t -- 5μs/div  
PG (DC, 5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
Vout (DC, 0.5V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 2A/div)  
9-18. Output Short-Circuit Protection, Load =  
0.47 Ω, Recovery  
9-19. Output Short-Circuit Protection, Load =  
0.47 Ω, HICCUP Zoom In  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.5 V to 6 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
11 Layout  
11.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the TPS62085,  
TPS62086, and TPS62087 devices.  
The input and output capacitors and the inductor must be placed as close as possible to the IC. This keeps the  
traces short. Routing these traces direct and wide results in low trace resistance and low parasitic inductance.  
The low side of the input and output capacitors must be connected directly to the GND pin to avoid a ground  
potential shift. The sense traces connected to FB and VOS pins are signal traces. Special care must be taken to  
avoid noise being induced. By a direct routing, parasitic inductance can be kept small. GND layers might be  
used for shielding. Keep these traces away from SW nodes. See 11-1 for the recommended PCB layout.  
11.2 Layout Example  
L1  
VOUT  
VIN  
C1  
C2  
Solution Size  
62 mm2  
GND  
R2  
R1  
11-1. PCB Layout Recommendation  
11.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
The Thermal Data section in the TPS62085EVM-169 Evaluation Module User's Guide (SLVU809) provides the  
thermal metric of the device on the EVM after considering the PCB design of real applications. The big copper  
planes connecting to the pads of the IC on the PCB improve the thermal performance of the device. For more  
details on how to use the thermal parameters, see the Thermal Characteristics Application Notes, SZZA017 and  
SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
12.1.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62085 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62086 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62087 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
TPS62085EVM-169 Evaluation Module User's Guide, SLVU809  
Thermal Characteristics Application Note, SZZA017  
Thermal Characteristics Application Note, SPRA953  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
DCS-Controlis a trademark of TI.  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
 
 
 
 
 
TPS62085, TPS62086, TPS62087  
ZHCSBQ9C OCTOBER 2013 REVISED JANUARY 2021  
www.ti.com.cn  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62085 TPS62086 TPS62087  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62085RLTR  
TPS62085RLTT  
TPS62086RLTR  
TPS62086RLTT  
TPS62087RLTR  
TPS62087RLTT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
RLT  
RLT  
RLT  
RLT  
RLT  
RLT  
7
7
7
7
7
7
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
PD5Q  
PD5Q  
PD4Q  
PD4Q  
PD3Q  
PD3Q  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Call TI | SN  
MATTE SN  
MATTE SN  
3000 RoHS & Green Call TI | MATTE SN  
250 RoHS & Green Call TI | MATTE SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62085RLTR  
TPS62085RLTR  
TPS62085RLTT  
TPS62085RLTT  
TPS62086RLTR  
TPS62086RLTT  
TPS62087RLTR  
TPS62087RLTT  
VSON-  
HR  
RLT  
RLT  
RLT  
RLT  
RLT  
RLT  
RLT  
RLT  
7
7
7
7
7
7
7
7
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
VSON-  
HR  
VSON-  
HR  
VSON-  
HR  
250  
VSON-  
HR  
3000  
250  
VSON-  
HR  
VSON-  
HR  
3000  
250  
VSON-  
HR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62085RLTR  
TPS62085RLTR  
TPS62085RLTT  
TPS62085RLTT  
TPS62086RLTR  
TPS62086RLTT  
TPS62087RLTR  
TPS62087RLTT  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
RLT  
RLT  
RLT  
RLT  
RLT  
RLT  
RLT  
RLT  
7
7
7
7
7
7
7
7
3000  
3000  
250  
210.0  
182.0  
182.0  
210.0  
182.0  
182.0  
182.0  
182.0  
185.0  
182.0  
182.0  
185.0  
182.0  
182.0  
182.0  
182.0  
35.0  
20.0  
20.0  
35.0  
20.0  
20.0  
20.0  
20.0  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RLT0007A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
1
PIN 1  
INDEX AREA  
2.1  
1.9  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
0.5  
0.3  
3X  
(0.2) TYP  
(0.2) TYP  
3X 0.5  
2X 0.6  
1.2  
4
5
7
1.5  
1
0.3  
0.2  
0.35  
0.25  
4X  
3X  
1.4  
1.2  
3X  
0.1  
C A  
B
0.1  
C A  
B
0.05  
C
PIN 1 ID  
0.05  
C
0.5  
0.3  
4220429/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RLT0007A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.6)  
1
(0.25)  
7
2X (0.6)  
PKG  
3X (0.5)  
3X (0.25)  
5
3X (0.3)  
4
3X (1.5)  
3X (0.6)  
(0.9)  
(0.45)  
LAND PATTERN EXAMPLE  
SCALE: 30X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS 1 - 4  
PADS 5 - 7  
SOLDER MASK DETAILS  
4220429/A 09/2014  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
5. Vias should not be placed on soldering pads unless they are plugged or plated shut.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RLT0007A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
6X (0.65)  
(0.6)  
(0.21)  
1
7
EXPOSED METAL  
TYP  
2X (0.6)  
PKG  
3X (0.5)  
METAL UNDER  
SOLDER MASK  
TYP  
3X (0.21)  
6X (0.3)  
5
4
3X (0.025)  
3X  
EXPOSED METAL  
3X (0.6)  
SOLDER MASK EDGE  
TYP  
(0.9)  
(0.875)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR ALL EXPOSED PADS  
85% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 40X  
4220429/A 09/2014  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62087RLTR

采用 2x2 QFN 封装、应用 DCS-Control 技术、具有间断模式短路保护功能的 3A 降压转换器 | RLT | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62087RLTT

采用 2x2 QFN 封装、应用 DCS-Control 技术、具有间断模式短路保护功能的 3A 降压转换器 | RLT | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62088

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6208812YFPR

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6208812YFPT

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6208818YFPR

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6208818YFPT

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6208833YFPR

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6208833YFPT

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62088A

TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62088AYFP

TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62088AYFPJ

采用 1.2mm x 0.8mm WCS 封装且具有强制 PWM 的 2.4V 至 5.5V 输入、3A 降压转换器 | YFP | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI