TPS62095 [TI]

具有 DCS Control 的 4A 同步降压转换器;
TPS62095
型号: TPS62095
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 DCS Control 的 4A 同步降压转换器

DCS 分布式控制系统 转换器
文件: 总29页 (文件大小:1098K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
TPS62095 4A,高效降压转换器,具有 DCS-Control™ 功能和低截面解决  
方案  
1 特性  
3 说明  
1
DCS-Control™ 拓扑技术  
TPS62095 器件是一款高频同步降压转换器,此转换  
器针对小解决方案尺寸、高效率进行了优化并适合于电  
池供电类应用。 为了最大限度地提升效率,此转换器  
1.4MHz 的标称开关频率运行在脉宽调制 (PWM) 模  
式下并在轻负载电流时自动进入省电运行模式。 当被  
用于分布式电源和负载点稳压时,此器件允许到其它电  
压轨的电压跟踪并可耐受高达 150µF 甚至更高的输出  
电容器。 通过使用 DCS-Control™ 技术,此器件可实  
现出色的负载静态性能以及精确的输出电压调节。  
TPS62090 引脚到引脚兼容  
支持高度为 1.2mm 的总体解决方案  
转换器效率 95%  
20µA 运行静态电流  
2.5V 5.5V 输入电压范围  
省电模式  
两级短路保护  
100% 占空比,以实现最低压降  
输出放电功能  
输出电压启动斜坡由软启动引脚控制,从而允许作为独  
立电源或者在跟踪配置下的运行。 通过配置 EN 和  
PG 引脚还可实现电源排序。 在省电模式下,此器件  
运行时的静态电流典型值为 20µA。 在整个负载电流范  
围内,自动进入省电模式并且无缝保持高效率。  
可调软启动  
输出电压跟踪  
0.8V VIN 的可调输出电压  
3mm x 3mm 16 引脚超薄四方扁平无引线 (VQFN)  
封装  
器件信息(1)  
2 应用范围  
产品型号  
封装  
封装尺寸(标称值)  
TPS62095  
VQFN (16)  
3.00mm x 3.00mm  
笔记本、计算机  
固态硬盘  
机械硬盘  
处理器电源  
电池供电类应用  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
1.8V 输出应用  
1.8V 输出应用效率  
L1  
TPS62095  
1mH  
Vin  
Vout  
1.8V/4A  
12  
11  
1
100  
2.5V to 5.5V  
PVIN  
SW  
SW  
R1  
2
C1  
22mF  
C2  
2x22mF  
PVIN  
200k  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
FB  
90  
80  
R2  
R3  
500k  
160k  
13  
4
C3  
10nF  
PG  
SS  
Power Good  
7
8
9
CP  
CN  
C4  
10nF  
6
AGND  
PGND PGND  
14 15  
70  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
0.001  
0.01  
0.1  
1
5
Load (A)  
D001  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSBD8  
 
 
 
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
目录  
7.4 Device Functional Modes.......................................... 8  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Applications ................................................ 11  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommend Operating Conditions........................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 8  
8
9
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 17  
10.3 Thermal Consideration.......................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持................................................................ 19  
11.2 Trademarks........................................................... 19  
11.3 Electrostatic Discharge Caution............................ 19  
11.4 Glossary................................................................ 19  
12 机械封装和可订购信息 .......................................... 19  
7
4 修订历史记录  
Changes from Original (April 2014) to Revision A  
Page  
已更改 状态从产品预览更改为生产数据 - 已删除产品预览大字标题....................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
5 Pin Configuration and Functions  
16-Pin VQFN with Thermal PAD  
RGT  
(Top View)  
16 15 14 13  
SW  
SW  
PVIN  
PVIN  
AVIN  
SS  
12  
1
2
11  
Exposed  
Thermal Pad*  
DEF  
PG  
10  
9
3
4
5
6
7
8
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
SW  
1, 2  
Switch pin of the power stage.  
This pin is used for internal logic and needs to be pulled high. This pin must be connected to the AVIN  
pin.  
DEF  
PG  
3
4
Power good open drain output. A pull up resistor can not be connected to any voltage higher than the  
input voltage.  
FB  
5
6
7
8
Feedback pin, for regulating the output voltage.  
AGND  
CP  
Analog ground.  
Internal charge pump's flying capacitor. Connect a 10nF capacitor between CP and CN.  
Internal charge pump's flying capacitor. Connect a 10nF capacitor between CP and CN.  
CN  
Soft-start control pin. A capacitor is connected to this pin and sets the soft startup time. Leaving this pin  
floating sets the minimum start-up time.  
SS  
9
AVIN  
10  
11,12  
13  
Analog supply input voltage pin.  
PVIN  
Power supply input voltage pin.  
EN  
Enable pin. This pin has an active pull down resistor of typically 400kΩ.  
Power ground.  
PGND  
VOS  
14,15  
16  
Output voltage sense pin. This pin must be directly connected to the output voltage.  
The exposed thermal pad must be connected to AGND.  
Thermal Pad  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
-0.3  
-0.3  
MAX  
7.0  
UNIT  
Voltage at pins(2)  
PVIN, AVIN, FB, SS, EN, DEF, VOS  
V
SW, PG  
PG  
VIN+0.3  
1.0  
Sink current  
mA  
°C  
Operating junction  
temperature  
-40  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
6.2 Handling Ratings  
MIN  
–65  
0
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
0
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommend Operating Conditions  
Over operating free-air temperature range, unless otherwise noted.  
MIN  
MAX  
5.5  
UNIT  
VIN  
Input voltage range  
2.5  
V
V
VPG  
VOUT  
IOUT  
TJ  
Power good pull-up resistor voltage  
Output voltage range  
VIN  
VIN  
4.0  
125  
0.8  
0
V
Output current range  
A
Operating junction temperature  
-40  
°C  
6.4 Thermal Information  
THERMAL METRIC(1)  
RGT (16 PINS)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
47  
60  
RθJC(top)  
RθJB  
20  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
20  
ψJB  
RθJC(bot)  
5.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
6.5 Electrical Characteristics  
VIN = 3.6V, TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
VIN  
Input voltage range  
Quiescent current  
Shutdown current  
2.5  
5.5  
V
µA  
µA  
V
IQIN  
Not switching, No Load, Into PVIN and AVIN  
Into PVIN and AVIN  
20  
0.6  
2.2  
200  
150  
20  
Isd  
5
Undervoltage lockout threshold VIN falling  
Undervoltage lockout hysteresis  
2.1  
2.3  
UVLO  
mV  
ºC  
ºC  
Thermal shutdown  
Temperature rising  
Thermal shutdown hysteresis  
CONTROL SIGNAL EN  
VH  
VL  
High level input voltage  
VIN = 2.5 V to 5.5 V  
VIN = 2.5 V to 5.5 V  
EN = VIN  
1
V
V
Low level input voltage  
Input leakage current  
Pull down resistance  
0.4  
Ilkg  
RPD  
10  
100  
nA  
kΩ  
EN = Low  
400  
SOFT STARTUP  
ISS  
Softstart current  
6.3  
7.5  
8.7  
µA  
POWER GOOD  
Output voltage rising  
Output voltage falling  
I(sink) = 1 mA  
93%  
88%  
95%  
90%  
97%  
92%  
0.4  
Vth  
Power good threshold  
VL  
Low level voltage  
Leakage current  
V
Ilkg  
VPG = 3.6 V  
10  
100  
nA  
POWER SWITCH  
High side FET on-resistance  
ISW = 500 mA  
ISW = 500 mA  
50  
40  
mΩ  
mΩ  
RDS(on)  
Low side FET on-resistance  
High side FET switch current  
limit  
ILIM  
4.7  
0.8  
5.5  
1.4  
6.7  
VIN  
A
fSW  
Switching frequency  
IOUT = 3 A  
MHz  
OUTPUT  
VOUT  
RDIS  
Output voltage range  
V
V
Output discharge resistor  
Feedback regulation voltage  
EN = GND, VOUT = 1.8 V  
200  
0.8  
IOUT = 1 A, PWM mode  
-1.4%  
-1.4%  
-1.4%  
+1.4%  
+2.0%  
+2.5%  
100  
VFB  
(1)  
Feedback voltage accuracy  
IOUT = 1 mA, PFM mode, VOUT 1.8 V  
IOUT = 1 mA, PFM mode, VOUT < 1.8 V  
VFB = 0.8 V  
IFB  
Feedback input bias current  
Line regulation  
10  
0.016  
0.04  
nA  
VOUT = 1.8 V, PWM operation  
VOUT = 1.8 V, PWM operation  
%/V  
%/A  
Load regulation  
(1) Conditions: L = 1 µH, COUT = 2 x 22 µF.  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
6.6 Typical Characteristics  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
Tj = -40°C  
Tj = 25°C  
Tj = 85°C  
Tj = 125°C  
Tj = -40°C  
Tj = 25°C  
Tj = 85°C  
Tj = 125°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
D003  
D004  
Figure 1. High Side FET On Resistance  
Figure 2. Low Side FET On Resistance  
1
0.8  
0.6  
0.4  
0.2  
0
30  
20  
10  
0
Tj = -40°C  
Tj = -40°C  
Tj = 0°C  
Tj = 25°C  
Tj = 85°C  
Tj = 0°C  
Tj = 25°C  
Tj = 85°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
D006  
D005  
Figure 4. Shutdown Current  
Figure 3. Quiescent Current  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
7 Detailed Description  
7.1 Overview  
The TPS62095 synchronous step down converter is based on DCS-Control™ (Direct Control with Seamless  
transition into Power Save Mode). This is an advanced regulation topology that combines the advantages of  
hysteretic and voltage mode control.  
The DCS-Control™ topology operates in PWM (Pulse Width Modulation) mode for medium to heavy load  
conditions and in Power Save Mode at light load currents. In PWM, the converter operates with its nominal  
switching frequency of 1.4 MHz having a controlled frequency variation over the input voltage range. As the load  
current decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the  
IC's quiescent current to achieve high efficiency over the entire load current range. DCS-Control™ supports both  
operation modes using a single building block and therefore has a seamless transition from PWM to Power Save  
Mode without effects on the output voltage. The TPS62095 offers excellent DC voltage regulation and load  
transient regulation, combined with low output voltage ripple, minimizing interference with RF circuits.  
7.2 Functional Block Diagram  
PVIN PVIN  
PG  
CP  
CN  
Charge Pump  
for  
Gate driver  
Hiccup  
current limit  
#32 counter  
VFB  
VREF  
High Side  
Current  
Sense  
Bandgap  
Undervoltage  
Lockout  
AVIN  
EN  
Thermal shutdown  
M1  
SW  
SW  
400kΩ  
MOSFET Driver  
AGND  
DEF  
Anti Shoot Through  
Converter Control  
Logic  
M2  
PGND  
PGND  
VOS  
ramp  
Direct Control  
and  
Compensation  
Comparator  
Timer  
ton  
Error Amplifier  
FB  
Vref  
0.8V  
Vin  
DCS - Control™  
200Ω  
Iss  
Voltage clamp  
Vref  
÷1.56  
SS  
Output voltage  
M3  
EN  
discharge  
logic  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM Operation  
In PWM mode, the device operates with a fixed ON-time switching pulse at medium to heavy load currents. A  
quasi fixed switching frequency of typical 1.4MHz over the input and output voltage range is achieved by using  
an input feed forward. The ON-time is calculated as shown in Equation 2. As the load current decreases, the  
converter enters Power Save Mode operation reducing its switching frequency. The device enters Power Save  
Mode at the boundary to discontinuous conduction mode (DCM).  
7.3.2 Low Dropout Operation (100% Duty Cycle)  
The device offers low input to output voltage difference by entering 100% duty cycle mode. In this mode the high  
side MOSFET switch is constantly turned on. This is particularly useful in battery powered applications to achieve  
longest operation time by taking full advantage of the whole battery voltage range. The minimum input voltage  
where the output voltage falls below set point is given by:  
VIN(min) = VOUT(min) + IOUT x ( RDS(on) + RL )  
(1)  
Where  
RDS(on) = High side FET on-resistance  
RL = DC resistance of the inductor  
VOUT(min) = Minimum output voltage the load can accept  
7.3.3 Power Save Mode Operation  
As the load current decreases, the converter enters Power Save Mode operation. During Power Save Mode, the  
converter operates with reduced switching frequency and with a minimum quiescent current to maintain high  
efficiency. The Power Save Mode is based on a fixed on-time architecture following Equation 2.  
V
OUT  
ton =  
× 360ns × 2  
V
IN  
2 × I  
OUT  
f =  
æ
ö
÷
V
IN  
- V  
OUT  
V
IN  
- V  
ton2 1 +  
x
OUT  
ç
ç
÷
V
OUT  
L
è
ø
(2)  
In Power Save Mode, the output voltage rises slightly above the nominal output voltage in PWM mode. This  
effect is reduced by increasing the output capacitance or the inductor value. This effect is also reduced by  
programming the output voltage of the TPS62095 lower than the target value. As an example, if the target output  
voltage is 3.3V, then the TPS62095 can be programmed to 3.3V - 0.3%. As a result, the output voltage accuracy  
is now -1.7% to +1.7% instead of -1.4% to 2%. The output voltage accuracy in PFM operation is reflected in the  
electrical specification table and given for a 2 x 22µF output capacitance.  
7.4 Device Functional Modes  
7.4.1 Soft Startup  
To minimize inrush current during startup, the device has an adjustable startup time depending on the capacitor  
value connected to the SS pin. The device charges the SS capacitor with a constant current of typically 7.5µA.  
The feedback voltage follows this voltage divided by 1.56, until the internal reference voltage of 0.8V is reached.  
The soft startup operation is completed once the voltage at the SS capacitor has reached typically 1.25V. The  
soft startup time is calculated using Equation 3. The larger the SS capacitor, the longer the soft startup time. The  
relation between the SS pin voltage and the FB pin voltage is estimated using Equation 4. Leaving the SS pin  
floating sets the minimum startup time.  
1.25V  
tSS = CSS  
x
7.5μA  
(3)  
(4)  
VSS  
VFB  
=
1.56  
8
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
Device Functional Modes (continued)  
During startup the switch current limit is reduced to 1/3 of its typical current limit of 5.5A when the output voltage  
is less than 0.6V. Once the output voltage exceeds typically 0.6V, the switch current limit is released to its  
nominal value. Thus, the device provides a reduced load current of 1.8A when the output voltage is below 0.6V.  
A small or no soft startup time may trigger this reduced switch current limit during startup, especially for larger  
output capacitor applications. This is avoided by using a larger soft start up capacitance which extends the soft  
startup time. See Short Circuit Protection (Hiccup-Mode) for details of the reduced current limit during startup.  
7.4.2 Voltage Tracking  
The SS pin can also be used to implement output voltage tracking with other supply rails, as shown in Figure 5.  
L1  
1µH  
TPS62095  
VIN  
2.5V to 5.5V  
V2  
1.8V/4A  
12  
11  
1
PVIN  
PVIN  
SW  
SW  
R1  
200k  
2
C1  
22µF  
C2  
2 x 22µF  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
R2  
160k  
FB  
13  
4
C3  
10nF  
PG  
SS  
7
8
9
CP  
CN  
6
AGND  
PGND PGND  
14 15  
V1  
Output of external  
DC DC converter  
R3  
R4  
Figure 5. Output Voltage Tracking  
In voltage tracking applications, the resistance R4 should be set properly to achieve accurate voltage tracking by  
taking 7.5μA soft startup current into account. 4.3kΩ is a sufficient value for R4. The relationship between V1 and  
V2 is shown in Equation 5. To achieve V1 startup leading V2, as shown in Figure 6, Equation 5 should be less  
than 1. To achieve simultaneous tracking, Equation 5 should equal to 1.  
V2  
1
R4  
R1+ R2  
= ´  
V1 1.56 R3 + R4  
´
R2  
(5)  
Voltage  
Voltage  
V1 = 3.3V  
V1 = 3.3V  
V2 = 1.8V  
V2 = 1.8V  
R1  
R2  
R3  
R4  
R1  
R2  
R3  
R4  
æ
ç
è
ö
æ
ç
è
ö
æ
ç
è
ö
æ
ç
è
ö
+1 < 1.56´  
+1  
+1 = 1.56´  
+1  
÷
÷
÷
÷
ø
ø
ø
ø
t
t
a) V1 startup leading V2  
b) Simultaneous tracking  
Figure 6. Voltage Tracking Applications  
Copyright © 2014, Texas Instruments Incorporated  
9
 
 
 
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.3 Short Circuit Protection (Hiccup-Mode)  
The device is protected against hard short circuits to GND and over-current events. This is implemented by a two  
level short circuit protection. During start-up and when the output is shorted to GND, the switch current limit is  
reduced to 1/3 of its typical current limit of 5.5A. Once the output voltage exceeds typically 0.6V the current limit  
is released to its nominal value. The full current limit is implemented as a hiccup current limit. Once the internal  
current limit is triggered 32 times, the device stops switching and starts a new start-up sequence after a typical  
delay time of 66µS passed by. The device repeats these cycles until the high current condition is released.  
7.4.4 Output Discharge Function  
To make sure the device starts up under defined conditions, the output gets discharged via the VOS pin with a  
typical discharge resistor of 200whenever the device shuts down. This happens when the device is disabled or  
if thermal shutdown, undervoltage lockout or short circuit hiccup-mode is triggered.  
7.4.5 Power Good Output  
The power good output is low when the output voltage is below its nominal value. The power good becomes high  
impedance once the output is within 5% of regulation. The PG pin is an open drain output and is specified to sink  
up to 1mA. This output requires a pull-up resistor to be monitored properly. The pull-up resistor cannot be  
connected to any voltage higher than the input voltage of the device.  
7.4.6 Undervoltage Lockout  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts  
down the device at input voltages lower than typically 2.2V with a 200mV hysteresis.  
7.4.7 Thermal Shutdown  
The device goes into thermal shutdown once the junction temperature exceeds typically 150°C with a 20°C  
hysteresis.  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
8 Application and Implementation  
8.1 Application Information  
The TPS62095 is a synchronous step down converter based on DCS-Control™ topology whose output voltage  
can be adjusted by component selection. The following section discusses the design of the external components  
to complete the power supply design for several input and output voltage options by using typical applications as  
a reference.  
8.2 Typical Applications  
8.2.1 2.5V to 5.5V Input, 1.8V Output Converter  
L1  
TPS62095  
1mH  
Vin  
2.5V to 5.5V  
Vout  
1.8V/4A  
12  
11  
1
PVIN  
PVIN  
SW  
SW  
R1  
2
C1  
22mF  
C2  
2x22mF  
200k  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
FB  
R2  
R3  
500k  
160k  
13  
4
C3  
10nF  
PG  
SS  
Power Good  
7
8
9
CP  
CN  
C4  
10nF  
6
AGND  
PGND PGND  
14 15  
Figure 7. 1.8-V Output Application  
8.2.1.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2.5V to 5.5V  
1.8V  
Output voltage  
Output ripple voltage  
Output current rating  
<20mV  
4A  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Output Filter  
The first step is the selection of the output filter components. To simplify this process, Table 2 outlines possible  
inductor and capacitor value combinations.  
Table 2. Output Filter Selection  
OUTPUT CAPACITOR VALUE [µF](2)  
INDUCTOR VALUE [µH](1)  
10  
22  
2 x 22  
100  
150  
0.47  
1.0  
(3)  
2.2  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and  
–30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by  
+20% and –50%.  
(3) Typical application configuration. Other check mark indicates alternative filter combinations  
8.2.1.2.2 Inductor Selection  
The inductor selection is affected by several parameters like inductor ripple current, output voltage ripple,  
transition point into Power Save Mode, and efficiency. See Table 3 for typical inductors.  
Table 3. Inductor Selection(1)  
INDUCTOR VALUE  
1 µH  
COMPONENT SUPPLIER  
Coilcraft XAL4020-102  
TOKO DFE322512C  
SIZE (LxWxH mm)  
4.0 x 4.0 x 2.1  
Isat / DCR  
8.75A / 13.2 mΩ  
5.9A / 21 mΩ  
0.47 µH  
3.2 x 2.5 x 1.2  
(1) See Third-Party Products Disclaimer.  
In addition, the inductor has to be rated for the appropriate saturation current and DC resistance (DCR). The  
inductor needs to be rated for a saturation current as high as the typical switch current limit of 5.5A or according  
to Equation 6 and Equation 7. Equation 6 and Equation 7 calculate the maximum inductor current under static  
load conditions. The formula takes the converter efficiency into account. The converter efficiency can be taken  
from the data sheet graphs or 80% can be used as a conservative approach. The calculation must be done for  
the maximum input voltage where the peak switch current is highest.  
ΔI  
L
I
L
= I  
OUT  
+
2
(6)  
æ
ç
ç
è
ö
÷
÷
ø
V
V
OUT  
η
OUT  
x η  
x
1 -  
V
IN  
I
= I  
OUT  
+
L
2 x f x L  
(7)  
where  
ƒ = Converter switching frequency (typically 1.4MHz)  
L = Inductor value  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.80 as a conservative  
assumption)  
Note: The calculation must be done for the maximum input voltage of the application  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current. A margin of 20% should be added to cover for load transients during operation.  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
 
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
8.2.1.2.3 Input and Output Capacitor Selection  
For best output and input voltage filtering, low ESR ceramic capacitors are recommended. The input capacitor  
minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for the device.  
A 22µF or larger input capacitor is required. The output capacitor value can range from 2x22µF up to 150µF. The  
recommended typical output capacitor value is 2x22µF and can vary over a wide range as outline in the output  
filter selection table.  
8.2.1.2.4 Setting the Output Voltage  
The output voltage is set by an external resistor divider according to the following equations:  
R1  
R1  
æ
ö
æ
ö
VOUT = VFB  
´
1 +  
= 0.8 V ´ 1 +  
ç
÷
ç
÷
R2  
R2  
è
ø
è
ø
(8)  
(9)  
VFB  
0.8 V  
5 μA  
R2 =  
=
» 160 kΩ  
IFB  
æ
ç
è
ö
VOUT  
VFB  
V
OUT  
æ
ö
R1 = R2 ´  
-1 = R2 ´  
- 1  
÷
÷
ç
0.8V  
è
ø
ø
(10)  
When sizing R2, in order to achieve low quiescent current and acceptable noise sensitivity, use a minimum of  
5µA for the feedback current IFB. Larger currents through R2 improve noise sensitivity and output voltage  
accuracy.  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
8.2.1.3 Application Performance Curves  
TA = 25°C, VIN = 3.6V, VOUT = 1.8V, L1 = 1µH (XAL4020-102), C2 = 2x22µF, unless otherwise noted.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
80  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
70  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
TA = 40qC  
TA = 25qC  
TA = 85qC  
60  
0.001  
0.001  
0.01  
0.1  
1
5
0.01  
0.1  
1
5
Load (A)  
Load (A)  
D002  
D001  
Figure 9. Load Regulation, VOUT = 1.8V, VIN = 3.3V  
Figure 8. Efficiency, VOUT = 1.8V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5000  
1000  
100  
10  
1
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
VIN = 2.5 V  
VIN = 3.6 V  
VIN = 5.5 V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
D007  
0.001  
0.01  
0.1  
1
5
Load (A)  
D008  
Figure 10. Line Regulation, VOUT = 1.8V, IOUT = 1.0A  
Figure 11. Switching Frequency, VOUT = 1.8V  
SW = 5V/div  
SW = 5V/div  
VOUT = 20 mV/div, AC  
ICOIL = 0.5 A/div  
Time = 1 µs/div  
VOUT = 20mV/div, AC  
ICOIL = 1A/div  
Time = 0.5 µs/div  
Figure 12. Output Ripple, VOUT = 1.8V, IOUT = 100mA  
Figure 13. Output Ripple, VOUT = 1.8V, IOUT = 3.5A  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
EN = 5V/div  
VIN = 2V/div  
VIN = 2V/div  
VOUT = 1V/div  
VOUT = 1V/div  
ICOIL = 0.5A/div  
ICOIL = 0.5A/div  
Time = 500 µs/div  
Time = 500 µs/div  
Figure 14. Startup, Relative to VIN, RLOAD = 1.5Ω  
Figure 15. Startup, Relative to EN, RLOAD = 1.5Ω  
LOAD = 2A/div  
LOAD = 2A/div  
0.1A to 2A load step  
1A to 3.5A load step  
VOUT = 0.1V/div, AC  
ICOIL = 2A/div  
VOUT = 0.1V/div, AC  
ICOIL = 2A/div  
Time = 10 µs/div  
Time = 10 µs/div  
Figure 16. Load Transient, VOUT = 1.8V  
Figure 17. Load Transient, VOUT = 1.8V  
VOUT = 1V/div  
VOUT = 1V/div  
ICOIL = 2A/div  
ICOIL = 2A/div  
Time = 250 µs/div  
Time = 250 µs/div  
Figure 18. Short Circuit, HICCUP Protection Entry  
Figure 19. Short Circuit, HICCUP Protection Exit  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
8.2.2 2.5V to 5.5V Input, 1.2V Output Converter  
L1  
TPS62095  
100  
90  
1mH  
Vin  
Vout  
1.2V/4A  
12  
11  
1
2.5V to 5.5V  
PVIN  
PVIN  
SW  
SW  
R1  
2
C1  
22mF  
C2  
2x22mF  
80k  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
FB  
R2  
R3  
500k  
160k  
13  
4
C3  
10nF  
PG  
SS  
80  
Power Good  
7
8
9
CP  
CN  
C4  
10nF  
6
AGND  
PGND PGND  
14 15  
70  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
0.001  
0.01  
0.1  
1
5
Load (A)  
D017  
Figure 20. 1.2V Output Application  
Figure 21. 1.2V Output Application Efficiency  
8.2.3 3.0V to 5.5V Input, 2.6V Output Converter  
L1  
TPS62095  
100  
90  
1mH  
Vin  
Vout  
2.6V/4A  
12  
11  
1
3.0V to 5.5V  
PVIN  
PVIN  
SW  
SW  
R1  
2
C1  
22mF  
C2  
2x22mF  
360k  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
FB  
R2  
R3  
500k  
160k  
13  
4
C3  
10nF  
PG  
SS  
80  
Power Good  
7
8
9
CP  
CN  
C4  
10nF  
6
AGND  
PGND PGND  
14 15  
70  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
0.001  
0.01  
0.1  
1
5
Load (A)  
D018  
Figure 22. 2.6V Output Application  
Figure 23. 2.6V Output Application Efficiency  
8.2.4 5V Input, 3.3V Output Converter  
L1  
TPS62095  
100  
90  
1mH  
Vin  
Vout  
3.3V/4A  
12  
11  
1
5.0V  
PVIN  
PVIN  
SW  
SW  
R1  
2
C1  
22mF  
C2  
500k  
2x22mF  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
FB  
R2  
R3  
160k  
500k  
13  
4
C3  
10nF  
PG  
SS  
80  
Power Good  
7
8
9
CP  
CN  
C4  
10nF  
6
AGND  
70  
PGND PGND  
14 15  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
0.001  
0.01  
0.1  
1
5
Load (A)  
D019  
Figure 24. 3.3V Output Application  
Figure 25. 3.3V Output Application Efficiency  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
9 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 2.5V and 5.5V. If the input  
supply is located more than a few inches from the device, an additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 47µF is a typical choice.  
The average input current of the TPS62095 is calculated as:  
VOUT ´IOUT  
1
IIN  
=
´
h
V
IN  
(11)  
10 Layout  
10.1 Layout Guidelines  
It is recommended to place all components as close as possible to the IC. Specially, the input capacitor  
placement is closest to the PVIN and PGND pins of the device.  
Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance, like  
the SW node.  
The VOS pin is noise sensitive and needs to be routed as short and directly to the output pin of the inductor  
and the output capacitor. This minimizes switch node jitter.  
The exposed thermal pad of the package, the AGND and the PGND should have a single joint connection at  
the exposed thermal pad of the package. To enhance heat dissipation of the device, the exposed thermal pad  
should be connected to bottom or internal layer ground planes using vias.  
The charge pump capacitor connected to CP and CN should be placed close to the IC to minimize coupling of  
switching waveforms into other traces and circuits.  
The capacitor on the SS pin and the FB resistors divider network should be placed close to the IC and  
connected directly to those pins and the AGND pin.  
Refer to Figure 26 for an example of component placement, routing and thermal design.  
10.2 Layout Example  
VOUT  
PGND  
SW  
SW  
DEF  
PG  
PVIN  
PVIN  
AVIN  
SS  
VIN  
Figure 26. TPS62095 PCB Layout  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
TPS62095  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
10.3 Thermal Consideration  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component. The Thermal Information table provides the thermal metric of the device  
and its package based on JEDEC standard. For more details on how to use the thermal parameters in real  
applications, see the application notes: SZZA017 and SPRA953.  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS62095  
www.ti.com.cn  
ZHCSBQ2A APRIL 2014REVISED MAY 2014  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 Trademarks  
DCS-Control is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62095RGTR  
TPS62095RGTT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
SMC  
SMC  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Aug-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62095RGTR  
TPS62095RGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62095RGTR  
TPS62095RGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
552.0  
552.0  
346.0  
185.0  
36.0  
36.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS62095RGTR  
TPS62095RGTT  
RGT  
RGT  
VQFN  
VQFN  
16  
16  
3000  
250  
381  
381  
4.83  
4.83  
2286  
2286  
0
0
Pack Materials-Page 3  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/D 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/D 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/D 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62095RGTR

具有 DCS Control 的 4A 同步降压转换器 | RGT | 16 | -40 to 85
TI

TPS62095RGTT

具有 DCS Control 的 4A 同步降压转换器 | RGT | 16 | -40 to 85
TI

TPS62097

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器
TI

TPS62097-Q1

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器
TI

TPS6209718RWKR

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS6209718RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS6209733QWRGTRQ1

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器 | RGT | 16 | -40 to 125
TI

TPS6209733RWKR

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS6209733RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS62097QWRGTRQ1

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器 | RGT | 16 | -40 to 125
TI

TPS62097RWKR

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS62097RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI