TPS62133AQRGTTQ1 [TI]

采用 3x3 QFN 封装的 3V 至 17V、3A 汽车类降压转换器 | RGT | 16 | -40 to 125;
TPS62133AQRGTTQ1
型号: TPS62133AQRGTTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 3x3 QFN 封装的 3V 至 17V、3A 汽车类降压转换器 | RGT | 16 | -40 to 125

转换器
文件: 总43页 (文件大小:1852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
采用 DCS-Control™ 技术的 TPS6213xA-Q1 3V 17V 3A 降压转换器  
1 特性  
3 说明  
1
DCS-Control™拓扑  
TPS6213XA-Q1 器件是一款易于使用的同步降压直流/  
直流转换器,针对 应用 进行了优化。通常为 2.5MHz  
的高开关频率允许使用小型电感器,并且通过使用  
DCS-Control™ 拓扑技术提供快速瞬态响应以及高输出  
电压精度。  
Qualified for Automotive 标准  
具有符合 AEC-Q100 标准的下列结果:  
器件温度等级:-40°C 125°C 的运行结温范  
Device HBM ESD Classification Level 2  
Device CDM ESD Classification Level C4B  
借助 3V 17V 的宽运行输入电压范围,该器件非常  
适合由中间总线电源轨供电的系统。该器件在输出电压  
介于 0.9V 6V 之间时支持高达 3A 的持续输出电流  
(使用 100% 占空比模式时)。输出电压启动斜率由  
软启动引脚控制,从而实现作为独立电源或者在跟踪配  
置下的运行。通过配置使能和开漏电源正常引脚也有可  
能实现电源排序。  
输入电压范围:3V 17V  
0.9V 6V 的可调节输出电压范围  
引脚可选输出电压(标称值,+5%)  
可编程软启动和跟踪  
无缝省电模式转换  
17µA 的静态电流(典型值)  
可选运行频率  
在节能模式下,该器件可根据 VIN 生成约 17μA 的静态  
电流。如果负载较小,则自动且无缝进入省电模式,并  
在整个负载范围内保持高效率。在关断模式下,该器件  
处于关断状态,期间的电流消耗低于 2μA。该器件采  
3 × 3mm (RGT) 16 引脚 VQFN 封装。  
电源正常输出  
100% 占空比模式  
短路保护  
过热保护  
器件信息(1)  
TPS62150A-Q1 引脚对引脚兼容  
采用 3mm × 3mm VQFN-16 封装  
借助 WEBENCH® 电源设计器并使用 TPS62130A-  
Q1 创建定制设计方案  
器件型号  
TPS62130A-Q1  
TPS62133A-Q1  
TPS6213013A-Q1  
PACKAGE  
BODY SIZE (NOM)  
VQFN (16)  
3.00mm x 3.00mm  
2 应用  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
汽车负载点 (POL) 电源  
空白  
空白  
信息娱乐系统、CANUSB 电源  
嵌入式系统、  
低压降稳压器 (LDO) 替代产品  
典型应用电路原理图  
效率与输出电流  
空白  
空白  
空白  
空白  
100  
90  
12V  
3.3V / 1A  
2.2µH  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
VIN=5V  
VIN=12V  
VIN=17V  
80  
70  
60  
50  
40  
100k  
10uF  
1.21M  
383k  
22uF  
0.1uF  
3.3nF  
TPS62130A-Q1  
VOUT  
FSW  
FB  
SS/TR  
DEF  
AGND  
PGND  
VOUT=3.3V  
fsw=1.25MHz  
Copyright © 2017, Texas Instruments Incorporated  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
G001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCC2  
 
 
 
 
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 13  
10 Application and Implementation........................ 15  
10.1 Application Information.......................................... 15  
10.2 Typical Application ............................................... 15  
10.3 System Examples ................................................. 27  
11 Power Supply Recommendations ..................... 31  
12 Layout................................................................... 32  
12.1 Layout Guidelines ................................................. 32  
12.2 Layout Example .................................................... 32  
13 器件和文档支持 ..................................................... 33  
13.1 器件支持................................................................ 33  
13.2 相关链接................................................................ 33  
13.3 Receiving Notification of Documentation Updates 33  
13.4 Community Resources.......................................... 33  
13.5 ....................................................................... 33  
13.6 静电放电警告......................................................... 33  
13.7 Glossary................................................................ 33  
14 机械、封装和可订购信息....................................... 34  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 8  
Detailed Description .............................................. 9  
9.1 Overview ................................................................... 9  
9.2 Functional Block Diagram ......................................... 9  
9.3 Feature Description................................................. 10  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (July 2017) to Revision D  
Page  
Changed pin 7 from "LOG" to "FSW" in the Pin Functions table for clarification .................................................................. 4  
Deleted extra text string "..or 1.25 MHz, selectable with the FSW" after 1st paragraph of Pulse Width Modulation  
(PWM) Operation section. .................................................................................................................................................... 10  
Deleted extra text "..with FSW=Low" preceding Equation 1. ............................................................................................... 11  
Changes from Revision B (October 2016) to Revision C  
Page  
已添加 整篇文档的 WEBENCH® 链接.................................................................................................................................... 1  
Changed "LOG" pin to "FSW" pin on the Pin Configuration drawing, and added FSW description throughout the  
document. .............................................................................................................................................................................. 4  
Added SW (AC) spec to the Absolute Maximum Ratings(1) table. ........................................................................................ 5  
Added Power Good Pin Logic Table table and Frequency Selection (FSW) section regarding pin control. ....................... 13  
Changes from Revision A (October 2016) to Revision B  
Page  
已删除 TPS6213013A-Q1 器件的产品预览状态................................................................................................................... 1  
Added text to Frequency Selection (FSW) section regarding pin control............................................................................. 13  
已添加 Receiving Notification of Documentation Updates Community Resources ................................................. 33  
2
版权 © 2014–2018, Texas Instruments Incorporated  
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
Changes from Original (May 2014) to Revision A  
Page  
已添加 TPS6213013A-Q1 器件 ............................................................................................................................................. 1  
Added TPS6213013A-Q1 to Device Comparison Table ....................................................................................................... 4  
Moved Storage temperature spec., Tstg to Absolute Maximum Ratings table, and re-named Handling Ratings table  
to ESD Ratings ...................................................................................................................................................................... 5  
Corrected Thermal Information table ..................................................................................................................................... 5  
Added Figure 27, Figure 28, Figure 31, and Figure 32 ....................................................................................................... 23  
Added Figure 33, Figure 34 ................................................................................................................................................. 24  
Added Figure 52 .................................................................................................................................................................. 30  
Changed Figure 55 .............................................................................................................................................................. 32  
版权 © 2014–2018, Texas Instruments Incorporated  
3
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
5 Device Comparison Table  
PART NUMBER  
TPS62130A-Q1  
TPS62133A-Q1  
TPS6213013A-Q1  
OUTPUT VOLTAGE  
PACKAGE MARKING  
adjustable  
5 V  
PA6IQ  
PA6JQ  
13013Q  
1.3 V  
6 Pin Configuration and Functions  
RGT Package  
16-Pin VQFN  
Top View  
16  
15  
14  
13  
1
2
3
4
12  
11  
10  
9
SW  
SW  
SW  
PG  
PVIN  
PVIN  
AVIN  
SS/TR  
Exposed  
Thermal Pad  
5
6
7
8
Pin Functions  
PIN(1)  
NAME  
I/O  
DESCRIPTION  
NO.  
1,2,3 SW  
O
Switch node, which is connected to the internal MOSFET switches. Connect inductor between SW and  
output capacitor.  
4
5
PG  
FB  
O
I
Output power good (High = VOUT ready, Low = VOUT below nominal regulation) ; open drain (requires pull-  
up resistor)  
Voltage feedback of adjustable version. Connect resistive voltage divider to this pin. It is recommended to  
connect FB to AGND on fixed output voltage versions for improved thermal performance.  
6
7
8
AGND  
FSW  
DEF  
Analog Ground. Must be connected directly to the Exposed Thermal Pad and common ground plane.  
Switching Frequency Select (Low=2.5MHz, High=1.25MHz for typical operation)(2)  
Output Voltage Scaling (Low = nominal, High = nominal + 5%)(2)  
I
I
Soft-Start / Tracking Pin. An external capacitor connected to this pin sets the internal voltage reference rise  
time. It can be used for tracking and sequencing.  
9
SS/TR  
AVIN  
I
10  
I
I
I
I
Supply voltage for control circuitry. Connect to same source as PVIN.  
Supply voltage for power stage. Connect to same source as AVIN.  
Enable input (High = enabled, Low = disabled)(2)  
11,12 PVIN  
13  
14  
EN  
VOS  
Output voltage sense pin and connection for the control loop circuitry.  
Power Ground. Must be connected directly to the Exposed Thermal Pad and common ground plane.  
15,16 PGND  
Exposed Thermal Pad  
Must be connected to AGND (pin 6), PGND (pin 15,16) and common ground plane(3). Must be soldered to  
achieve appropriate power dissipation and mechanical reliability.  
(1) For more information about connecting pins, see Detailed Description and Application and Implementation sections.  
(2) An internal pull-down resistor keeps logic level low, if pin is floating.  
(3) See Figure 55.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–2  
MAX  
20  
UNIT  
AVIN, PVIN  
EN, SS/TR, SW (DC)  
SW (AC), less than 10ns(3)  
VIN+0.3  
24.5  
7
V
(2)  
Pin voltage  
DEF, FSW, FB, PG, VOS  
–0.3  
V
Power Good sink current PG  
10  
mA  
°C  
°C  
Temperature  
Operating junction temperature, TJ  
Tstg  
–40  
–65  
150  
150  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(2)  
Charged device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
(1)  
V(ESD)  
V
(1) Electrostatic discharge (ESD) measures device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
3
TYP MAX UNIT  
VIN  
VOUT  
TJ  
Supply Voltage  
at AVIN and PVIN  
TPS62130A-Q1  
17  
6
V
V
Output Voltage Range  
Operating junction temperature  
0.9  
–40  
125  
°C  
7.4 Thermal Information  
TPS6213xA-Q1  
THERMAL METRIC(1)  
RGT  
16 PINS  
45  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.6  
17.4  
1.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
17.4  
4.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
7.5 Electrical Characteristics  
over junction temperature range (TJ = –40°C to +125°C), typical values at VIN = 12V and TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY  
VIN  
Input voltage range  
3
17  
V
µA  
µA  
V
IQ  
Operating quiescent current  
Shutdown current(1)  
EN=High, IOUT=0mA, device not switching  
EN=Low  
17  
1.5  
2.7  
200  
160  
20  
30  
25  
ISD  
VUVLO  
Falling Input Voltage (PWM mode operation)  
Hysteresis  
2.6  
0.9  
2.8  
Undervoltage lockout threshold  
mV  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
°C  
CONTROL (EN, DEF, FSW, SS/TR, PG)  
High level input threshold voltage (EN,  
DEF, FSW)  
VH  
VL  
V
Low level input threshold voltage (EN,  
DEF, FSW)  
0.3  
1
V
ILKG  
Input leakage current (EN, DEF, FSW)  
EN=VIN or GND; DEF, FSW=GND  
0.01  
µA  
Rising (%VOUT  
)
92%  
87%  
95% 98%  
90% 94%  
VTH_PG  
Power good threshold voltage  
Falling (%VOUT  
)
VOL_PG  
ILKG_PG  
ISS/TR  
Power good output low  
Input leakage current (PG)  
SS/TR pin source current  
IPG=–2mA  
0.07  
1
0.3  
400  
2.7  
V
VPG=1.8V  
nA  
µA  
2.3  
2.5  
POWER SWITCH  
V
IN6V  
VIN=3V  
IN6V  
VIN=3V  
90 170  
120  
40  
High-side MOSFET ON-resistance  
mΩ  
RDS(ON)  
V
70  
Low-side MOSFET ON-resistance  
mΩ  
50  
ILIMF  
High-side MOSFET forward current limit  
VIN =12V, TA= 25°C  
3.6  
0.9  
4.2  
4.9  
A
OUTPUT  
VREF  
Internal reference voltage  
0.8  
1
V
nA  
V
ILKG_FB  
Input leakage current (FB)  
VFB=0.8V  
100  
6.0  
Output voltage range (TPS62130A-Q1)  
DEF (Output voltage programming)  
VIN VOUT  
DEF=0 (GND)  
VOUT  
DEF=1 (VOUT  
)
VOUT+5%  
PWM mode operation, VIN VOUT +1V  
Power Save Mode operation, COUT=22µF  
VIN=12V, VOUT=3.3V, PWM mode operation  
–1.8%  
–2.3%  
1.8%  
2.8%  
Output voltage accuracy(2)  
VOUT  
Load regulation  
Line regulation  
0.05  
0.02  
%/A  
%/V  
3V VIN 17V, VOUT=3.3V, IOUT= 1A, PWM  
mode operation  
(1) Current into AVIN+PVIN pin.  
(2) This is the regulation accuracy of the voltage at the FB pin (adjustable version) and of the output voltage (fixed version).  
6
Copyright © 2014–2018, Texas Instruments Incorporated  
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
7.6 Typical Characteristics  
Figure 1. Quiescent Current  
Figure 2. Shutdown Current  
Figure 3. High-side Switch Resistance  
Figure 4. Low-Side Switch Resistance  
Figure 5. Maximum Output Current  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
8 Parameter Measurement Information  
Table 1. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
IC  
17V, 3A Step-Down Converter, QFN  
2.2µH, 0.165 x 0.165 in  
TPS62130AQRGT, Texas Instruments  
L1  
XFL4020-222MEB, Coilcraft  
Standard  
C1  
C3  
C5  
C7  
R1  
R2  
R3  
10µF, 25V, Ceramic, 1210  
22µF, 6.3V, Ceramic, 0805  
3300pF, 25V, Ceramic, 0603  
0.1µF, 25V, Ceramic, 0603  
depending on VOUT  
Standard  
Standard  
Standard  
depending on VOUT  
100kΩ, Chip, 0603, 1/16W, 1%  
Standard  
space  
VIN  
L1  
VOUT  
PVIN  
AVIN  
SW  
VOS  
R3  
C1  
C7  
EN  
PG  
R1  
R2  
C3  
TPS62130A-Q1  
SS/TR  
DEF  
FB  
C5  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6. Measurement Setup (High Switching Frequency)  
spacing  
VIN  
L1  
VOUT  
PVIN  
AVIN  
EN  
SW  
VOS  
R3  
C1  
C7  
PG  
R1  
R2  
C3  
TPS62130A-Q1  
SS/TR  
DEF  
FB  
C5  
AGND  
PGND  
VOUT  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7. Measurement Setup (Low Switching Frequency)  
spacing  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
9 Detailed Description  
9.1 Overview  
The TPS6213xA-Q1 synchronous switched mode power converters are based on DCS-Control™ (Direct Control  
with Seamless Transition into Power Save Mode), an advanced regulation topology, that combines the  
advantages of hysteretic, voltage mode and current mode control including an AC loop directly associated to the  
output voltage. This control loop takes information about output voltage changes and feeds it directly to a fast  
comparator stage. It sets the switching frequency, which is constant for steady state operating conditions, and  
provides immediate response to dynamic load changes. To get accurate DC load regulation, a voltage feedback  
loop is used. The internally compensated regulation network achieves fast and stable operation with small  
external components and low ESR capacitors.  
The DCS-Control™ topology supports PWM (Pulse Width Modulation) mode for medium and heavy load  
conditions and a Power Save Mode at light loads. During PWM, it operates at its nominal switching frequency in  
continuous conduction mode. This frequency is typically about 2.5 MHz or 1.25MHz with a controlled frequency  
variation depending on the input voltage. If the load current decreases, the converter enters Power Save Mode to  
sustain high efficiency down to very light loads. In Power Save Mode the switching frequency decreases linearly  
with the load current. Since DCS-Control™ supports both operation modes within one single building block, the  
transition from PWM to Power Save Mode is seamless without effects on the output voltage.  
9.2 Functional Block Diagram  
PG  
AVIN  
PVIN PVIN  
Soft  
start  
Thermal  
Shtdwn  
UVLO  
PG control  
HS lim  
comp  
EN*  
SW  
SW  
SW  
SS/TR  
power  
control  
gate  
drive  
control logic  
DEF*  
FSW  
comp  
LS lim  
direct control  
&
compensation  
VOS  
FB  
ramp  
_
comparator  
timer tON  
error  
amplifier  
+
DCS - ControlTM  
* This pin is connected to a pull down resistor internally  
(see Feature Description section).  
AGND  
PGNDPGND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8. TPS62130A-Q1 (Adjustable Output Voltage)  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
Functional Block Diagram (continued)  
PG  
AVIN  
PVIN PVIN  
Soft  
start  
Thermal  
Shtdwn  
UVLO  
PG control  
HS lim  
comp  
EN*  
SW  
SW  
SW  
SS/TR  
power  
control  
gate  
drive  
control logic  
DEF*  
FSW  
comp  
LS lim  
direct control  
&
compensation  
VOS  
FB*  
ramp  
_
comparator  
timer tON  
error  
amplifier  
+
DCS - ControlTM  
* This pin is connected to a pull down resistor internally  
(see Feature Description section).  
AGND  
PGNDPGND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9. TPS6213013A-Q1 and TPS62133A-Q1 (Fixed output Voltage)  
9.3 Feature Description  
9.3.1 Pulse Width Modulation (PWM) Operation  
The TPS6213xA-Q1 operate with pulse width modulation in continuous conduction mode (CCM) with a nominal  
switching frequency of 2.5 MHz or 1.25 MHz, selectable with the FSW pin. The frequency variation in PWM is  
controlled and depends on VIN, VOUT and the inductance. The device operates in PWM mode as long the output  
current is higher than half the inductor's ripple current. To maintain high efficiency at light loads, the device  
enters Power Save Mode at the boundary to discontinuous conduction mode (DCM). PSM operation occurs if the  
output current becomes smaller than half the inductor's ripple current.  
9.3.2 Power Save Mode Operation  
The built in Power Save Mode of the TPS6213xA-Q1 is entered seamlessly, if the load current decreases. This  
secures a high efficiency in light load operation. The device remains in Power Save Mode as long as the inductor  
current is discontinuous.  
In Power Save Mode, the switching frequency decreases linearly with the load current maintaining high  
efficiency. The transition into and out of Power Save Mode happens within the entire regulation scheme and is  
seamless in both directions.  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
Feature Description (continued)  
TPS6213xA-Q1 includes a fixed on-time circuitry. This on-time, in steady-state operation with FSW=Low, can be  
estimated as:  
space  
VOUT  
tON  
=
× 400ns  
VIN  
(1)  
space  
For very small output voltages, an absolute minimum on-time of about 80ns is kept to limit switching losses. The  
operating frequency is thereby reduced from its nominal value, keeping efficiency high. Also the off-time can  
reach its minimum value at high duty cycles. The output voltage remains regulated in such case. Using tON, the  
typical peak inductor current in Power Save Mode can be approximated by:  
space  
(VIN -VOUT  
)
ILPSM ( peak )  
=
×tON  
L
(2)  
space  
When VIN decreases to typically 15% above VOUT, the TPS6213xA-Q1 does not enter Power Save Mode,  
regardless of the load current. The device maintains output regulation in PWM mode.  
9.3.3 100% Duty-Cycle Operation  
The duty cycle of the buck converter is given by D=VOUT/VIN and increases as the input voltage comes close to  
the output voltage. In this case, the device starts 100% duty cycle operation turning on the high-side switch  
100% of the time. The high-side switch stays turned on as long as the output voltage is below the internal set  
point. This allows the conversion of small input to output voltage differences, e.g. for longest operation time of  
battery-powered applications. In 100% duty cycle mode, the low-side FET is switched off.  
The minimum input voltage to maintain output voltage regulation, depending on the load current and the output  
voltage level, can be calculated as:  
spacing  
(
VIN(min) =VOUT(min) + IOUT RDS( on ) + RL  
)
where:  
IOUT is the output current,  
RDS(on) is the RDS(on) of the high-side FET and  
RL is the DC resistance of the inductor used.  
(3)  
space  
9.3.4 Enable / Shutdown (EN)  
When Enable (EN) is set High, the device starts operation. Shutdown is forced if EN is pulled Low with a  
shutdown current of typically 1.5µA. During shutdown, the internal power MOSFETs as well as the entire control  
circuitry are turned off. The internal resistive divider pulls down the output voltage smoothly. The EN signal must  
be set externally to High or Low. The typical threshold values are 0.65V (rising) and 0.45V (falling). An internal  
pull-down resistor of about 400kΩ is connected and keeps EN logic low, if Low is set initially and then the pin  
gets floating. It is disconnected if the pin is set High.  
Connecting the EN pin to an appropriate output signal of another power rail provides sequencing of multiple  
power rails.  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
9.3.5 Soft Start / Tracking (SS/TR)  
The internal soft start circuitry controls the output voltage slope during startup, avoiding excessive inrush current  
and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high-impedance  
power sources or batteries. When EN is set to start device operation, the device starts switching after a delay of  
about 50µs and VOUT rises with a slope controlled by an external capacitor connected to the SS/TR pin. See  
Figure 41 and Figure 42 for typical startup operation.  
Using a very small capacitor (or leaving SS/TR pin un-connected) provides fastest startup behavior. The  
TPS6213xA-Q1 can start into a pre-biased output. During monotonic pre-biased startup, both of the power  
MOSFETs are not allowed to turn on until the device's internal ramp sets an output voltage above the pre-bias  
voltage. As long as the output is below about 0.5V, a reduced current limit of typically 1.6A is set internally. If the  
device is set to shutdown (EN=GND), undervoltage lockout or thermal shutdown, an internal resistor pulls the  
SS/TR pin down to ensure a proper low level. Returning from those states causes a new startup sequence as set  
by the SS/TR connection.  
A voltage supplied to SS/TR can be used for tracking a master voltage. The output voltage will follow this voltage  
in both directions up and down (see Application and Implementation).  
9.3.6 Current Limit And Short Circuit Protection  
The TPS6213xA-Q1 is protected against heavy load and short circuit events. If a short circuit is detected (VOUT  
drops below 0.5V), the current limit is reduced to 1.6A typically. If the output voltage rises above 0.5V, the device  
runs in normal operation again. At heavy loads, the current limit determines the maximum output current. If the  
current limit is reached, the high-side FET turns off. Avoiding shoot through current, the low-side FET switches  
on to allow the inductor current to decrease. The low-side current limit is typically 3.5A. The high-side FET turns  
on again, only if the current in the low-side FET has decreased below the low-side current limit threshold.  
The output current of the device is limited by the current limit (see Electrical Characteristics). Due to internal  
propagation delay, the actual current can exceed the static current limit during that time. The dynamic current  
limit can be calculated as follows:  
VL  
I peak(typ) = ILIMF  
+
× tPD  
L
where  
ILIMF is the static current limit, specified in the Electrical Characteristics,  
L is the inductor value,  
VL is the voltage across the inductor (VIN - VOUT) and  
tPD is the internal propagation delay.  
(4)  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high side switch peak current can be calculated as follows:  
spacing  
+ (VIN -VOUT )×30ns  
I peak(typ) = ILIMF  
L
(5)  
9.3.7 Power Good (PG)  
The TPS6213xA-Q1 has a built in power good (PG) function to indicate whether the output voltage has reached  
its appropriate level or not. The PG signal can be used for startup sequencing of multiple rails. The PG pin is an  
open-drain output that requires a pull-up resistor (to any voltage below 7V). It can sink 2mA of current and  
maintain its specified logic low level. TPS6213xA-Q1 features PG=Low when the device is turned off due to EN,  
UVLO or thermal shutdown and can be used to actively discharge VOUT (see Figure 46). VIN must remain present  
for the PG pin to stay Low. If unused, the PG pin may be left floating.  
space  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
Feature Description (continued)  
Table 2. Power Good Pin Logic Table  
PG Logic Status  
Device State  
High Impedance  
Low  
V
FB VTH_PG  
Enable (EN=High)  
VFB VTH_PG  
Shutdown (EN=Low)  
UVLO  
0.7 V < VIN < VUVLO  
TJ > TSD  
Thermal Shutdown  
Power Supply Removal  
VIN < 0.7 V  
space  
9.3.8 Pin-Selectable Output Voltage (DEF)  
The output voltage of the TPS6213xA-Q1 can be increased by 5% above the nominal voltage by setting the DEF  
pin to High (1). When DEF is Low, the device regulates to the nominal output voltage. Increasing the nominal  
voltage allows adapting the power supply voltage to the variations of the application hardware. More detailed  
information on voltage margining using TPS6213xA-Q1 can be found in SLVA489. A pull down resistor of about  
400kOhm is internally connected to the pin, to ensure a proper logic level if the pin is high impedance or floating  
after initially set to Low. The resistor is disconnected if the pin is set High.  
9.3.9 Frequency Selection (FSW)  
To get high power density with very small solution size, a high switching frequency allows the use of small  
external components for the output filter. However switching losses increase with the switching frequency. If  
efficiency is the key parameter, more than solution size, the switching frequency can be set to half (1.25 MHz  
typ.) by pulling FSW to High. Running with lower frequency a higher efficiency, but also a higher output voltage  
ripple, is achieved. Pull FSW to Low for high frequency operation (2.5 MHz typ.). To get low ripple and full output  
current at the lower switching frequency, it's recommended to use an inductor of at least 2.2uH. The switching  
frequency can be changed during operation, if needed. A pull down resistor of about 400kOhm is internally  
connected to the pin, acting the same way as at the DEF Pin (see above).  
9.3.10 Under Voltage Lockout (UVLO)  
If the input voltage drops, the under voltage lockout prevents misoperation of the device by switching off both the  
power FETs. The under voltage lockout threshold is set typically to 2.7V. The device is fully operational for  
voltages above the UVLO threshold and turns off if the input voltage trips the threshold. The converter starts  
operation again once the input voltage exceeds the threshold by a hysteresis of typically 200mV.  
9.3.11 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 160°C  
(typ), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and PG  
goes Low. When TJ decreases below the hysteresis amount, the converter resumes normal operation, beginning  
with Soft Start. To avoid unstable conditions, a hysteresis of typically 20°C is implemented on the thermal  
shutdown temperature.  
9.4 Device Functional Modes  
9.4.1 Operation Above TJ=125°C  
The operating junction temperature of the device is specified up to 125°C. In power supplying circuits, the self  
heating effect causes, that the junction temperature, TJ, is even higher than the ambient temperature TA (see  
Figure 43). Depending on TA and the load current, the maximum operating TJ can be exceeded. However, the  
electrical characteristics are specified up to a TJ of 125°C only. The device operates as long as thermal  
shutdown threshold is not triggered.  
(1) Maximum allowed voltage is 7V. Therefore it's recommended to connect it to VOUT, not VIN  
.
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
9.4.2 Operation with VIN < 3V  
The device is functional for supply voltages below 3V and above the UVLO threshold. Parameters may differ  
from specified values. The minimum VIN value of 3V is not violated by UVLO threshold and hysteresis variations.  
9.4.3 Operation with Separate EN Control  
The EN pin can be connected to VIN or be controlled separately. While the EN control voltage level can be lower  
than the actual VIN value, it must not exceed VIN to avoid damage of the device. This might happen at low VIN,  
during startup or power sequencing.  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
10 Application and Implementation  
10.1 Application Information  
TPS62130xA-Q1 are synchronous switch mode step-down converters, able to convert a 3V to 17V input voltage  
into a lower, 0.9V to 6V, output voltage, providing up to 3A load current. The following section gives guidance on  
choosing external components to complete the power supply design. Application Curves are included for the  
typical application shown here.  
10.2 Typical Application  
space  
10.2.1 TPS62130A-Q1 Point-Of-Load Step Down Converter  
space  
L1  
2.2 µH  
12V  
3.3V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
R3  
100k  
C1  
10uF  
C7  
0.1uF  
R1  
1.21M  
C3  
22uF  
TPS62130A-Q1  
SS/TR  
DEF  
FB  
C5  
3.3nF  
R2  
383k  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 10. Typical Schematic for 3.3 V Step-Down Converter  
space  
10.2.1.1 Design Requirements  
The step-down converter design can be adapted to different output voltage and load current needs by choosing  
external components appropriate. The following design procedure is adequate for whole VIN, VOUT and load  
current range of TPS62130A-Q1. Using Table 3, the design procedure needs minimum effort.  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62130A-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (continued)  
10.2.1.2.2 Programming The Output Voltage  
The TPS6213xA-Q1 can be programmed for output voltages from 0.9V to 6V by using a resistive divider from  
VOUT to AGND. The voltage at the FB pin is regulated to 800mV. The value of the output voltage is set by the  
selection of the resistive divider from Equation 6 (see Figure 10). It is recommended to choose resistor values  
which allow a current of at least 2uA, meaning the value of R2 shouldn't exceed 400kΩ. Lower resistor values  
are recommended for highest accuracy and most robust design. For applications requiring lowest current  
consumption, the use of fixed output voltage versions is recommended.  
space  
V
æ
ç
è
ö
OUT  
R1 = R2  
-1  
÷
0.8V  
ø
(6)  
space  
In case the FB pin gets opened, the device clamps the output voltage at the VOS pin internally to about 7.4V.  
10.2.1.2.3 External Component Selection  
The external components have to fulfill the needs of the application, but also the stability criteria of the device's  
control loop. The TPS6213xA-Q1 is optimized to work within a range of external components. The LC output  
filter's inductance and capacitance must be considered together, creating a double pole, responsible for the  
corner frequency of the converter (see Output Filter And Loop Stability). Table 3 can be used to simplify the  
output filter component selection.  
Table 3. Recommended LC Output Filter Combinations(1)  
4.7µF  
10µF  
22µF  
47µF  
100µF  
200µF  
400µF  
0.47µH  
1µH  
(2)  
2.2µH  
3.3µH  
4.7µH  
(1) The values in the table are nominal values.  
(2) This LC combination is the standard value and recommended for most applications.  
space  
The TPS6213xA-Q1 can be run with an inductor as low as 1µH. FSW should be set Low in this case. However,  
for applications running with the low frequency setting (FSW=High) or with low input voltages, 2.2µH is  
recommended.  
More detailed information on further LC combinations can be found in SLVA463.  
10.2.1.2.4 Inductor Selection  
The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-  
PSM transition point and efficiency. In addition, the inductor selected has to be rated for appropriate saturation  
current and DC resistance (DCR). Equation 7 and Equation 8 calculate the maximum inductor current under  
static load conditions.  
spacing  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(7)  
spacing  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
VOUT  
æ
ç
ç
ç
ç
ç
è
ö
÷
÷
÷
÷
÷
ø
1-  
VIN(max)  
DIL(max) = VOUT  
×
L(min) × fSW  
where:  
IL(max) is the maximum inductor current,  
ΔIL is the Peak to Peak Inductor Ripple Current,  
L(min) is the minimum effective inductor value and  
fSW is the actual PWM Switching Frequency.  
(8)  
space  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and solution size as well. The  
following inductors have been used with the TPS6213xA-Q1 and are recommended for use:  
Table 4. List of Inductors(1)  
Type  
Inductance [µH]  
Current [A](2)  
Dimensions [LxBxH]  
mm  
MANUFACTURER  
XFL4020-102ME_  
XFL4020-152ME_  
XFL4020-222ME_  
IHLP1212BZ-11  
IHLP1212BZ-11  
SRP4020-3R3M  
VLC5045T-3R3N  
1.0 µH, ±20%  
1.5 µH, ±20%  
2.2 µH, ±20%  
1.0 µH, ±20%  
2.2 µH, ±20%  
3.3µH, ±20%  
3.3µH, ±30%  
4.7  
4.2  
3.8  
4.5  
3.0  
3.3  
4.0  
4 x 4 x 2.1  
4 x 4 x 2.1  
4 x 4 x 2.1  
3 x 3.6 x 2  
3 x 3.6 x 2  
4.8 x 4 x 2  
5 x 5 x 4.5  
Coilcraft  
Coilcraft  
Coilcraft  
Vishay  
Vishay  
Bourns  
TDK  
(1) See Third-Party Products Disclaimer.  
(2) Lower of IRMS at 40°C rise or ISAT at 30% drop.  
spacing  
The inductor value also determines the load current at which Power Save Mode is entered:  
1
Iload(PSM )  
=
DIL  
2
(9)  
Using Equation 8, this current level can be adjusted by changing the inductor value.  
10.2.1.2.5 Output Capacitor  
The recommended value for the output capacitor is 22uF. The architecture of the TPS6213xA-Q1 allows the use  
of tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide low  
output voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get narrow  
capacitance variation with temperature, it's recommended to use an X7R or X5R dielectric. Using a higher value  
can have some advantages like smaller voltage ripple and a tighter DC output accuracy in Power Save Mode  
(see SLVA463).  
Note: In power save mode, the output voltage ripple depends on the output capacitance, its ESR and the peak  
inductor current. Using ceramic capacitors provides small ESR and low ripple.  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
10.2.1.2.6 Input Capacitor  
For most applications, 10µF is sufficient and is recommended, though a larger value reduces input current ripple  
further. The input capacitor buffers the input voltage during transient events and also decouples the converter  
from the supply. A low ESR multilayer ceramic capacitor is recommended for best filtering and should be placed  
between PVIN and PGND as close as possible to those pins. Even though AVIN and PVIN must be supplied  
from the same input source, it's required to place a capacitance of 0.1uF from AVIN to AGND, to avoid potential  
noise coupling. An RC, low-pass filter from PVIN to AVIN may be used but is not required.  
10.2.1.2.7 Soft Start Capacitor  
A capacitance connected between SS/TR pin and AGND allows a user programmable start-up slope of the  
output voltage. A constant current source supports 2.5µA to charge the external capacitance. The capacitor  
required for a given soft-start ramp time for the output voltage is given by:  
space  
2.5mA  
CSS = tSS ×  
[F]  
1.25V  
where:  
CSS is the capacitance (F) required at the SS/TR pin and  
tSS is the desired soft-start ramp time (s).  
(10)  
spacing  
space  
NOTE  
DC Bias effect: High capacitance ceramic capacitors have a DC Bias effect, which will  
have a strong influence on the final effective capacitance. Therefore the right capacitor  
value has to be chosen carefully. Package size and voltage rating in combination with  
dielectric material are responsible for differences between the rated capacitor value and  
the effective capacitance.  
spacing  
10.2.1.2.8 Tracking Function  
If a tracking function is desired, the SS/TR pin can be used for this purpose by connecting it to an external  
tracking voltage. The output voltage tracks that voltage. If the tracking voltage is between 50mV and 1.2V, the  
FB pin tracks the SS/TR pin voltage as described in Equation 11 and shown in Figure 11.  
spacing  
VFB » 0.64×VSS /TR  
(11)  
VSS/  
TR [V]  
1.2  
0.8  
0.4  
VFB [V]  
0.2  
0.4  
0.6  
0.8  
Figure 11. Voltage Tracking Relationship  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
Once the SS/TR pin voltage reaches about 1.2V, the internal voltage is clamped to the internal feedback voltage  
and device goes to normal regulation. This works for rising and falling tracking voltages with the same behavior,  
as long as the input voltage is inside the recommended operating conditions. For decreasing SS/TR pin voltage,  
the device doesn't sink current from the output. So, the resulting decrease of the output voltage may be slower  
than the SS/TR pin voltage if the load is light. When driving the SS/TR pin with an external voltage, do not  
exceed the voltage rating of the SS/TR pin which is VIN+0.3V.  
If the input voltage drops into undervoltage lockout or even down to zero, the output voltage will go to zero,  
independent of the tracking voltage. Figure 12 shows how to connect devices to get ratiometric and simultaneous  
sequencing by using the tracking function.  
spacing  
VOUT1  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
TPS62130A-Q1  
SS/TR  
DEF  
FB  
AGND  
PGND  
FSW  
VOUT2  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
R1  
R2  
TPS62130A-Q1  
SS/TR  
DEF  
FB  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 12. Sequence for Ratiometric and Simultaneous Startup  
spacing  
The resistive divider of R1 and R2 can be used to change the ramp rate of VOUT2 faster, slower or the same as  
VOUT1.  
A sequential startup is achieved by connecting the PG pin of VOUT1 to the EN pin of VOUT2. Ratiometric start  
up sequence happens if both supplies are sharing the same soft start capacitor. Equation 10 calculates the soft  
start time, though the SS/TR current has to be doubled. Details about these and other tracking and sequencing  
circuits are found in SLVA470.  
Note: If the voltage at the FB pin is below its typical value of 0.8V, the output voltage accuracy may have a wider  
tolerance than specified.  
10.2.1.2.9 Output Filter And Loop Stability  
The devices of the TPS6213xA-Q1 family are internally compensated to be stable with L-C filter combinations  
corresponding to a corner frequency to be calculated with Equation 12:  
space  
1
fLC  
=
2p L × C  
(12)  
19  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
space  
Proven nominal values for inductance and ceramic capacitance are given in Table 3 and are recommended for  
use. Different values may work, but care has to be taken on the loop stability which is affected. More information  
including a detailed LC stability matrix can be found in SLVA463.  
The TPS6213xA-Q1 includes an internal 25pF feedforward capacitor, connected between the VOS and FB pins.  
This capacitor impacts the frequency behavior and sets a pole and zero in the control loop with the resistors of  
the feedback divider, per equation Equation 13 and Equation 14:  
spacing  
1
fzero  
=
2p × R × 25pF  
1
(13)  
spacing  
æ
ö
1
1
1
ç
ç
÷
÷
f pole  
=
×
+
2p × 25pF  
R
R
è
1
2
ø
(14)  
spacing  
Though the TPS6213xA-Q1 is stable without the pole and zero being in a particular location, adjusting their  
location to the specific needs of the application can provide better performance in Power Save mode and/or  
improved transient response. An external feedforward capacitor can also be added. A more detailed discussion  
on the optimization for stability vs. transient response can be found in SLVA289 and SLVA466.  
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
10.2.1.3 Application Curves  
At VIN=12V, VOUT=3.3V and TA=25°C, FSW=Low, (unless otherwise noted)  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=17V  
IOUT=10mA  
IOUT=1A  
VIN=12V  
IOUT=1mA  
IOUT=100mA  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
FSW = Low  
FSW = Low  
Figure 13. Efficiency vs. Output Current  
Figure 14. Efficiency vs. Input Voltage  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=17V  
VIN=12V  
IOUT=10mA  
IOUT=1A  
IOUT=1mA  
IOUT=100mA  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
FSW = High  
FSW = High  
Figure 15. Efficiency vs. Output Current  
Figure 16. Efficiency vs. Input Voltage  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=12V  
VIN=17V  
IOUT=100mA  
IOUT=1mA  
VIN=5V  
IOUT=10mA  
IOUT=1A  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
FSW = Low  
FSW = Low  
Figure 17. Efficiency vs. Output Current  
Figure 18. Efficiency vs. Input Voltage  
Copyright © 2014–2018, Texas Instruments Incorporated  
21  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
100.0  
90.0  
80.0  
70.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=12V  
VIN=17V  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=5V  
IOUT=1A IOUT=100mA IOUT=10mA  
IOUT=1mA  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
FSW = High  
FSW = High  
Figure 19. Efficiency vs. Output Current  
Figure 20. Efficiency vs. Input Voltage  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=12V  
VIN=17V  
IOUT=1A  
IOUT=100mA  
IOUT=10mA  
VIN=5V  
IOUT=1mA  
VOUT=1.8V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=1.8V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
FSW = High  
FSW = High  
Figure 21. Efficiency vs. Output Current  
Figure 22. Efficiency vs. Input Voltage  
FSW = High  
FSW = High  
Figure 23. Efficiency vs. Output Current  
Figure 24. Efficiency vs. Input Voltage  
22  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
3.40  
3.40  
VIN=17V  
VIN=12V  
IOUT=10mA  
IOUT=1mA  
3.35  
3.35  
3.30  
3.25  
3.20  
3.30  
VIN=5V  
IOUT=1A  
IOUT=100mA  
3.25  
3.20  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
4
7
10  
13  
16  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
L = 2.2 µH  
(XFL4020)  
COUT = 22 µH  
L = 2.2 µH  
(XFL4020)  
COUT = 22 µH  
Figure 25. Output Voltage Accuracy (Load Regulation)  
Figure 26. Output Voltage Accuracy (Line Regulation)  
4
4
3.5  
3
3.5  
IOUT=2A  
IOUT=3A  
IOUT=1A  
3
2.5  
2
2.5  
2
IOUT=0.5A  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
6
8
10  
12  
14  
16  
18  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
Output Current (A)  
G000  
G000  
VOUT = 5 V  
L = 2.2 µH  
(XFL4020)  
COUT = 22 µH  
VOUT = 5 V  
L = 2.2 µH (XFL4020)  
Figure 28. Switching Frequency vs. Output Current  
Figure 27. Switching Frequency vs. Input Voltage  
4
4
3.5  
3
3.5  
IOUT=2A  
IOUT=3A  
IOUT=1A  
3
2.5  
2
2.5  
2
IOUT=0.5A  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
4
6
8
10  
12  
14  
16  
18  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
Output Current (A)  
G000  
G000  
VOUT = 3.3 V  
L = 2.2 µH  
(XFL4020)  
COUT = 22 µH  
VOUT = 3.3 V  
L = 2.2 µH (XFL4020)  
Figure 30. Switching Frequency vs. Output Current  
Figure 29. Switching Frequency vs. Input Voltage  
Copyright © 2014–2018, Texas Instruments Incorporated  
23  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
4
4
3.5  
3
3.5  
IOUT=2A  
IOUT=3A  
IOUT=1A  
3
2.5  
2
2.5  
2
IOUT=0.5A  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
3
5
7
9
11  
13  
15  
17  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
Output Current (A)  
G000  
G000  
VOUT = 1.8 V  
L = 2.2 µH  
(XFL4020)  
COUT = 22 µH  
VOUT = 1.8 V  
L = 2.2 µH (XFL4020)  
Figure 32. Switching Frequency vs. Output Current  
Figure 31. Switching Frequency vs. Input Voltage  
3
3
2.5  
2
2.5  
IOUT=2A  
IOUT=3A  
2
1.5  
1
1.5  
1
IOUT=1A  
IOUT=0.5A  
0.5  
0
0.5  
0
3
5
7
9
11  
13  
15  
17  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
Output Current (A)  
G000  
G000  
VOUT = 1 V  
L = 2.2 µH  
(XFL4020)  
COUT = 22 µH  
VOUT = 1 V  
L = 2.2 µH (XFL4020)  
Figure 34. Switching Frequency vs. Output Current  
Figure 33. Switching Frequency vs. Input Voltage  
Figure 35. Typical Operation in PWM Mode (IOUT= 1 A)  
Figure 36. Typical Operation in Power Save Mode (IOUT=10  
mA)  
24  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
Figure 37. PWM-PSM-Transition  
Figure 38. Load Transient Response (0.5 to 3 to 0.5 A)  
Figure 39. Load Transient Response of Figure 38,  
Rising Edge  
Figure 40. Load Transient Response of Figure 38,  
Falling Edge  
Figure 41. Start Up into 100 mA  
Figure 42. Start Up into 3 A  
Copyright © 2014–2018, Texas Instruments Incorporated  
25  
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
125  
115  
105  
95  
85  
75  
65  
55  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Output Current (A)  
G000  
TPS62130EVM  
L = 2.2 µH (XFL4020)  
Figure 43. Maximum Ambient Temperature  
26  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
10.3 System Examples  
10.3.1 Regulated Power LED Supply  
The TPS62130A-Q1 can be used as a power supply for power LEDs. The FB pin can be easily set down to lower  
values than nominal by using the SS/TR pin. With that, the voltage drop on the sense resistor is low, avoiding  
excessive power loss. Since this pin provides 2.5µA, the feedback pin voltage can be adjusted by an external  
resistor per Equation 15. This drop, proportional to the LED current, is used to regulate the output voltage (anode  
voltage) to a proper level to drive the LED. Both analog and PWM dimming are supported with the TPS62130A-  
Q1. Figure 44 shows an application circuit, tested with analog dimming:  
space  
(4 .. 17) V  
1 µH  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
10uF  
0.1uF  
22uF  
ADIM  
TPS62130A-Q1  
SS/TR  
FB  
187k  
0.1R  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 44. Single Power LED Supply  
The resistor at SS/TR sets the FB voltage to a level of about 300mV and is calculated from Equation 15.  
space  
VFB = 0.64 × 2.5mA × RSS / TR  
(15)  
space  
The device now supplies a constant current, set by the resistor at the FB pin, by regulating the output voltage  
accordingly. The minimum input voltage has to be rated according the forward voltage needed by the LED used.  
More information is available in the Application Note SLVA451.  
10.3.2 Inverting Power Supply  
The TPS62130A-Q1 can be used as inverting power supply by rearranging external circuitry as shown in  
Figure 45.  
spacing  
10uF  
2.2µH  
(3 .. 13.7)V  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
10uF  
0.1uF  
1.21M  
383k  
TPS62130A-Q1  
22uF  
SS/TR  
DEF  
FB  
3.3nF  
AGND  
PGND  
-3.3V  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 45. –3.3 V Inverting Power Supply  
Copyright © 2014–2018, Texas Instruments Incorporated  
27  
 
 
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
System Examples (continued)  
As the former GND node now represents a voltage level below system ground, the voltage difference between  
VIN and VOUT has to be limited for operation to the maximum supply voltage of 17V (see Equation 16).  
spacing  
V + VOUT £ V  
IN  
INmax  
(16)  
spacing  
The transfer function of the inverting power supply configuration differs from the buck mode transfer function,  
incorporating a Right Half Plane Zero additionally. The loop stability has to be adapted and an output  
capacitance of at least 22µF is recommended. A detailed design example is given in SLVA469.  
10.3.3 Active Output Discharge  
The TPS6213xA-Q1 pulls the PG pin Low, when the device is shut down by EN, UVLO or thermal shutdown.  
Connecting PG to VOUT through a resistor can be used to discharge VOUT in those cases (see Figure 46).  
spacing  
(3 .. 17)V  
1 / 2.2 µH  
Vout / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
TPS62130A-Q1  
R3  
10uF  
0.1uF  
R1  
R2  
22uF  
SS/TR  
DEF  
FB  
3.3nF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 46. Output Discharge using PG Pin  
spacing  
The discharge rate can be adjusted by R3, which is also used to pull up the PG pin in normal operation. For  
reliability, keep the maximum current into the PG pin less than 10mA.  
10.3.4 Various Output Voltages  
spacing  
(5 .. 17)V  
5V / 3A  
1 / 2.2 µH  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
0.1uF  
22uF  
TPS62133A-Q1  
SS/TR  
FB  
3.3nF  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 47. 5 V Power Supply using TPS62133A-Q1 fixed VOUT version  
spacing  
28  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
System Examples (continued)  
1 / 2.2 µH  
(3.3 .. 17)V  
3.3V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
0.1uF  
470k  
150k  
22uF  
TPS62130A-Q1  
SS/TR  
FB  
3.3nF  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 48. 3.3 V/3 A Power Supply  
spacing  
1 / 2.2 µH  
(3 .. 17)V  
2.5V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
0.1uF  
510k  
240k  
22uF  
TPS62130A-Q1  
SS/TR  
FB  
3.3nF  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 49. 2.5 V/3 A Power Supply  
spacing  
1 / 2.2 µH  
(3 .. 17)V  
1.8V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
0.1uF  
360k  
160k  
22uF  
TPS62130A-Q1  
SS/TR  
FB  
3.3nF  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 50. 1.8 V/3 A Power Supply  
spacing  
Copyright © 2014–2018, Texas Instruments Incorporated  
29  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
System Examples (continued)  
1 / 2.2 µH  
(3 .. 17)V  
1.5V / 3A  
PVIN  
SW  
VOS  
PG  
AVIN  
100k  
10uF  
0.1uF  
EN  
130k  
150k  
22uF  
TPS62130A-Q1  
SS/TR  
FB  
3.3nF  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 51. 1.5 V/3 A Power Supply  
spacing  
(3 .. 17)V  
1.3V / 3A  
1 / 2.2 µH  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
0.1uF  
22uF  
TPS6213013A-Q1  
SS/TR  
FB  
3.3nF  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 52. 1.3 V/3 A Power Supply using TPS6213013A-Q1 fixed VOUT version  
spacing  
1 / 2.2 µH  
(3 .. 17)V  
1.2V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
0.1uF  
75k  
22uF  
TPS62130A-Q1  
SS/TR  
FB  
3.3nF  
150k  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 53. 1.2 V/3 A Power Supply  
spacing  
30  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
System Examples (continued)  
1 / 2.2 µH  
(3 .. 17)V  
1V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
0.1uF  
51k  
22uF  
TPS62130A-Q1  
SS/TR  
FB  
3.3nF  
200k  
DEF  
AGND  
PGND  
FSW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 54. 1 V/3 A Power Supply  
11 Power Supply Recommendations  
The TPS6213xA-Q1 devices are designed to operate from a 3 to 17V input voltage supply. To avoid insufficient  
supply current due to line drop, ringing due to trace inductance at the VIN terminal or supply peak current  
limitations, additional bulk capacitance may be required. In the case ringing that is caused by the interaction with  
the ceramic input capacitors, an electrolytic or tantalum type capacitor may be needed for damping.  
Copyright © 2014–2018, Texas Instruments Incorporated  
31  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore the PCB layout of the TPS6213xA-Q1 demands careful attention to ensure operation and  
to get the performance specified. A poor layout can lead to issues like poor regulation (both line and load),  
stability and accuracy weaknesses, increased EMI radiation and noise sensitivity. The layout also influences the  
thermal performance of the solution by its power dissipation capabilities.  
See Figure 55 for the recommended layout of the TPS62130A-Q1, which is designed for common external  
ground connections. Therefore both AGND and PGND pins are directly connected to the Exposed Thermal Pad.  
On the PCB, the direct common ground connection of AGND and PGND to the Exposed Thermal Pad and the  
system ground (ground plane) is mandatory. Also connect the VOS pin in the shortest way to the VOUT potential  
at the output capacitor.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore paths conducting the switched load  
current should be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore the input and output capacitance should be placed as close as possible to the IC  
pins and parallel wiring over long distances as well as narrow traces should be avoided. Loops which conduct an  
alternating current should outline an area as small as possible, as this area is proportional to the energy radiated.  
Sensitive nodes like FB and VOS need to be connected with short wires and not nearby high dv/dt signals (e.g.  
SW). As they carry information about the output voltage, they should be connected as close as possible to the  
actual output voltage (at the output capacitor). The capacitor on the SS/TR pin and on AVIN as well as the FB  
resistors, R1 and R2, should be kept close to the IC and connect directly to those pins and the AGND pin.  
The Exposed Thermal Pad must be soldered to the circuit board for mechanical reliability and to achieve  
appropriate power dissipation.  
The recommended layout is implemented on the EVM and shown in its Users Guide, SLVU437. Additionally, the  
EVM Gerber data are available for download here, SLVC394.  
12.2 Layout Example  
space  
AGND  
C5  
C7  
R2  
SS/TR  
AVIN  
PVIN  
PVIN  
PG  
SW  
SW  
SW  
VIN  
C3  
C1  
VOUT  
GND  
Figure 55. Layout Example with TPS62130A-Q1  
32  
版权 © 2014–2018, Texas Instruments Incorporated  
 
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
13 器件和文档支持  
13.1 器件支持  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
TPS62130A-Q1  
TPS62133A-Q1  
TPS6213013A-Q1  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.4 Community Resources  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
DCS-Control, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2014–2018, Texas Instruments Incorporated  
33  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
34  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
16  
13  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/B 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2014–2018, Texas Instruments Incorporated  
35  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
4
9
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222419/B 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
36  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS62130A-Q1, TPS62133A-Q1, TPS6213013A-Q1  
www.ti.com.cn  
ZHCSCI6D MAY 2014REVISED JANUARY 2018  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/B 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2014–2018, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6213013AQRGTRQ1  
TPS6213013AQRGTTQ1  
TPS62130AQRGTRQ1  
TPS62130AQRGTTQ1  
TPS62133AQRGTRQ1  
TPS62133AQRGTTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
16  
16  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
13013Q  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
13013Q  
PA6IQ  
PA6IQ  
PA6JQ  
PA6JQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6213013AQRGTRQ1 VQFN  
TPS6213013AQRGTTQ1 VQFN  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
16  
16  
16  
16  
16  
16  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
TPS62130AQRGTRQ1  
TPS62130AQRGTTQ1  
TPS62133AQRGTRQ1  
TPS62133AQRGTTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6213013AQRGTRQ1  
TPS6213013AQRGTTQ1  
TPS62130AQRGTRQ1  
TPS62130AQRGTTQ1  
TPS62133AQRGTRQ1  
TPS62133AQRGTTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
16  
16  
16  
16  
16  
16  
3000  
250  
552.0  
552.0  
552.0  
552.0  
552.0  
552.0  
346.0  
185.0  
346.0  
185.0  
346.0  
185.0  
36.0  
36.0  
36.0  
36.0  
36.0  
36.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS6213013AQRGTRQ1  
TPS6213013AQRGTTQ1  
TPS62130AQRGTRQ1  
TPS62130AQRGTTQ1  
TPS62133AQRGTRQ1  
TPS62133AQRGTTQ1  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
16  
16  
16  
16  
16  
16  
3000  
250  
381  
381  
381  
381  
381  
381  
4.83  
4.83  
4.83  
4.83  
4.83  
4.83  
2286  
2286  
2286  
2286  
2286  
2286  
0
0
0
0
0
0
3000  
250  
3000  
250  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62133RGT

3-17V 3A Step-Down Converter in 3x3 QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62133RGTR

3-17V 3A Step-Down Converter in 3x3 QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62133RGTT

3-17V 3A Step-Down Converter in 3x3 QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62134A

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62134ARGTR

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器 | RGT | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62134ARGTT

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器 | RGT | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62134D

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62134DRGTR

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器 | RGT | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62134DRGTT

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器 | RGT | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS62135

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI