TPS62134DRGTR [TI]

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器 | RGT | 16 | -40 to 85;
TPS62134DRGTR
型号: TPS62134DRGTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器 | RGT | 16 | -40 to 85

开关 输出元件 转换器
文件: 总28页 (文件大小:1126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
TPS62134x 适用于 Intel Skylake 平台且具有低功耗模式输入的 17V 输入  
降压转换器  
1 特性  
3 说明  
1
DCS-Control™ 架构  
TPS62134x 系列器件是一款易于使用的同步降压 DC-  
DC 转换器,可兼容 Intel Skylake 平台应用,诸如 超  
级本和笔记本电脑。 高性能 DCS-Control™ 架构可  
提供快速瞬态响应以及高精度输出电压。  
支持系统待机模式的低功耗模式  
用于在轻载时实现高效率的省电模式  
固定输出电压可选择(0.7V 1.05V)  
低功耗模式逻辑输入  
静态电流为 20µA  
借助其 3 17V 宽运行输入电压范围,此器件非常适  
用于由锂离子电池或者其它电池以及由 12V 中间电源  
轨供电的系统。 器件具有低功耗模式,在该模式下器  
件可通过 LPM 引脚降低输出电压。 此外,器件还可通  
VIDx 引脚支持输出电压的动态变化。 LPM VIDx  
引脚可帮助系统在不同工作模式下最大限度地降低功  
耗。  
输入电压范围:3V 17V  
输出电流:高达 3.2A  
可编程软启动  
电源正常输出  
短路保护  
单端遥感  
输出电压启动斜坡由 SS 引脚控制。 电源排序可通过  
使能 (EN) 引脚和电源正常 (PG) 引脚配置。 省电模式  
下,器件所示静态电流约为 20μA,该电流可在整个负  
载范围内保持高效率。 短路保护和热关断功能可保护  
集成电路 (IC) 和外部元件,使其不受输出接地短路时  
产生的强大电流的影响。 该器件采用 3mm × 3mm 16  
引脚超薄四方扁平无引线封装 (VQFN) 封装,且带有  
散热焊盘。  
热关断保护  
采用 3mm x 3mm 超薄型四方扁平无引线 (VQFN)-  
16 封装  
2 应用  
Intel Skylake™ 平台超级本、笔记本电脑和 PC  
标准 12V 导轨式电源  
负载点 (POL) 1 4 节锂离子电池供电  
固态硬盘驱动器  
器件信息(1)  
嵌入式系统  
器件型号  
TPS62134A  
封装  
封装尺寸(标称值)  
TPS62134B  
TPS62134C  
TPS62134D  
VQFN  
3.00mm x 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 典型应用电路  
L1  
1 µH  
TPS62134A  
VO  
0.95 V, 3 A  
TPS62134A 效率  
VI  
3 to 17 V  
PVIN  
AVIN  
EN  
SW  
VOS  
FBS  
C1  
22 µF  
C2  
47 µF  
100  
VDD  
90  
80  
70  
VID0  
VID1  
LPM  
R3  
499 kΩ  
Host  
V(PG)  
PG  
SS  
AGND  
PGND  
C3  
470 pF  
VI = 5 V  
VI = 6 V  
60  
VI = 7.2 V  
VI = 8.4 V  
VI = 10.8 V  
VI = 12 V  
50  
VO = 0.95 V  
40  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
1
2 3 45  
D002  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSC20  
 
 
 
 
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
目录  
9.3 Feature Description................................................... 8  
9.4 Device Functional Modes........................................ 10  
10 Application and Implementation........................ 11  
10.1 Application Information.......................................... 11  
10.2 Typical Application ................................................ 11  
11 Power Supply Recommendations ..................... 15  
12 Layout................................................................... 16  
12.1 Layout Guidelines ................................................. 16  
12.2 Layout Example .................................................... 16  
12.3 Thermal Considerations........................................ 17  
13 器件和文档支持 ..................................................... 18  
13.1 器件支持................................................................ 18  
13.2 文档支持................................................................ 18  
13.3 相关链接................................................................ 18  
13.4 ....................................................................... 18  
13.5 静电放电警告......................................................... 18  
13.6 术语表 ................................................................... 18  
14 机械封装和可订购信息 .......................................... 18  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
典型应用电路 ........................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ..................................... 4  
8.2 ESD Ratings.............................................................. 4  
8.3 Recommend Operating Conditions........................... 4  
8.4 Thermal Information.................................................. 4  
8.5 Electrical Characteristic............................................. 5  
8.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
9.1 Overview ................................................................... 7  
9.2 Functional Block Diagram ......................................... 7  
9
5 修订历史记录  
Changes from Revision B (August 2014) to Revision C  
Page  
更改了器件信息................................................................................................................................................................... 1  
Added the Device Comparison Table .................................................................................................................................... 3  
Moved the Storage temperature From the Handling Ratings table to the Absolute Maximum Ratings(1) table..................... 4  
Changed the Handling Ratings table to the ESD Ratings table............................................................................................. 4  
Changed the Output voltage accuracy, PSM mode MAX value From: 2% To: 3%, Add test condition: LPM = High. .......... 5  
Changes from Revision A (August 2014) to Revision B  
Page  
Add new device to Device Comparison Table ....................................................................................................................... 3  
Updated the Functional Block Diagram image....................................................................................................................... 7  
Add new device to 1 .......................................................................................................................................................... 9  
Updated the 15 in the Application Curves section........................................................................................................... 14  
Updated 公式 7 .................................................................................................................................................................... 15  
Changes from Original (August 2014) to Revision A  
Page  
Switched the pin names of pin 8 and 9 in the Pin Functions table ........................................................................................ 3  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
6 Device Comparison Table  
PART NUMBER  
PACKAGE MARKING  
OUTPUT VOLTAGE  
TPS62134A  
TPS62134B  
TPS62134C  
TPS62134D  
134A  
134B  
134C  
134D  
See 1  
7 Pin Configuration and Functions  
RGT Package  
16-Pin VQFN With Thermal Pad  
Top View  
4
3
2
1
FBS  
5
6
16 PGND  
15 PGND  
AGND  
Exposed  
Thermal PAD  
SS  
7
8
14  
LPM  
VID1  
13 EN  
9
10 11 12  
Pin Functions  
PIN  
NAME  
TYPE  
I
DESCRIPTION  
NO.  
Output voltage sense pin and connection for the control loop circuitry. The VOS pin must be connected  
directly at the output capacitor.  
1
VOS  
SW  
2
3
This pin is a switch node and is connected to the internal MOSFET switches. Connect an inductor  
between the SW pin and output capacitor.  
PWR  
Output power-good pin. The PG pin is an open drain and requires a pullup resistor. If this pin is not in use,  
leave it floating.  
4
5
6
PG  
FBS  
O
I
Output-voltage feedback pin. This pin is used for a positive remote sense of the load voltage. The FBS pin  
must be connected close to the load-supply node on the output bus.  
Analog ground pin. The AGND pin must be connected directly to the exposed thermal pad and common  
ground plane.  
AGND  
O
7
8
9
SS  
Soft-start pin. An external capacitor connected to this pin sets the soft-start time.  
VID1  
VID0  
I
I
Output-voltage selection pins (VIDx).  
Supply-voltage pin for the internal control circuitry. Connect the AVIN pin to the same source as the PVIN  
pin.  
10  
AVIN  
PVIN  
11  
12  
13  
14  
15  
16  
PWR  
Supply-voltage pins for the internal power stage.  
EN  
I
I
Enable and disable input pin. An internal pulldown resistor maintains logic-level low if the pin is floating.  
Low-power-mode input pin.  
LPM  
Power ground. The PGND pin must be connected directly to the exposed thermal pad and common  
ground plane.  
PGND  
Exposed  
Thermal  
Pad  
The exposed thermal pad must be connected to the AGND (6) pin, PGND (15 and 16) pins, and common  
ground plane. The thermal pad must be soldered to achieve appropriate power dissipation and  
mechanical reliability.  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings(1)  
over operating junction temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
0
MAX  
UNIT  
AVIN, PVIN  
20  
EN, SW  
Voltage at pins(2)  
VI + 0.3  
V
SS, PG, VOS, VID0, VID1, LPM  
7
3
FBS  
Sink current  
PG  
2
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
8.2 ESD Ratings  
VALUE  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS–001  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommend Operating Conditions  
over operating junction temperature range, unless otherwise noted.  
MIN  
MAX  
17  
UNIT  
V
VI  
Input voltage (AVIN, PVIN)  
PG pin pullup resistor voltage  
3
0
V(PG)  
6
V
3 V VI < 5 V  
5 V VI 17 V  
0
3
IO  
Output current  
A
0
3.2  
125  
TJ  
Operating junction temperature  
–40  
°C  
8.4 Thermal Information  
TPS62134x  
RGT Package  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.2  
51.0  
16.6  
0.9  
RθJC(top)  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
16.6  
3.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
8.5 Electrical Characteristic  
TJ = –40 °C to 125 °C and VI = 3 V to 17 V. Typical values at VI = 12 V and TJ = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
VI  
Input voltage range  
3
17  
35  
58  
9
V
EN = High, no load, device not switching  
TJ = –40 °C to 85 °C  
20  
2
IQ  
Operating quiescent current  
µA  
TJ = 125 °C  
EN = Low  
TJ = –40 °C to +85 °C  
ISD  
Shutdown current into AVIN and PVIN  
Undervoltage lockout threshold  
µA  
TJ = 125 °C  
VI falling  
VI rising  
18  
2.8  
3
2.6  
2.8  
2.7  
2.9  
160  
20  
V(UVLO)  
V
TSD(th)  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
TJ falling  
°C  
TSD(hys)  
CONTROL (EN, SS, PG, VIDx, LPM)  
High-level input threshold voltage (EN,  
VIDx, LPM)  
VIH  
VIL  
0.8  
0.54  
0.47  
V
V
Low-level input threshold voltage (EN,  
VIDx, LPM)  
0.3  
1
R(PD)  
R(DIS)  
Ilkg  
Pull down resistor at EN, VIDx, LPM  
Output discharge resistor  
EN, VIDx, LPM = low  
EN = Low, VO = 1 V  
EN, VIDx, LPM = 3.3 V  
VO rising  
400  
20  
kΩ  
kΩ  
µA  
Input leakage current at EN, VIDx, LPM  
0.01  
736  
696  
760 784  
720 752  
VTH(PG)  
Power good threshold DC voltage  
mV  
VO falling  
VOL(PG)  
Ilkg(PG)  
Power good output low voltage  
Input leakage current at PG  
I(PG) = –2 mA  
V(PG) = 1.8 V  
PG rising  
0.07  
1
0.3  
V
400  
nA  
140  
20  
td(PG)  
I(SS)  
Power good delay time  
SS pin source current  
µs  
PG falling  
2.3  
3.6  
2.5  
2.7  
µA  
POWER SWITCH  
rDS(on_H)  
rDS(on_L)  
IL  
High-side MOSFET on-resistance  
VI 6 V  
90 170  
mΩ  
Low-side MOSFET on-resistance  
High-side MOSFET DC current-limit  
VI 6 V  
40  
70  
VI 5 V, TJ = 25 °C  
4.4  
5.4  
A
High-side MOSFET DC current-limit at low  
output voltage  
VO 0.3 V  
IL(LOW)  
1.6  
OUTPUT  
Ilkg(FBS)  
Input leakage current at FBS  
Output voltage accuracy  
V(FBS)= 1.1 V  
1
100  
1%  
3%  
nA  
PWM mode  
–1%  
–1%  
VO(A)  
PSM mode, LPM = High(1)  
VI = 7.2 V, IO = 0.5 A to 3.2 A  
3 V VI 17 V, IO = 1 A  
ΔVO(ΔIO)  
ΔVO(ΔVI)  
Load regulation(2)  
Line regulation(2)  
0.01  
%/A  
%/V  
0.003  
(1) This is the accuracy provided by the device itself (line and load regulation effects are not included). External components effective value:  
L = 1 µH and C(OUT) = 47 µF.  
(2) Line and load regulation depend on external component selection and layout.  
版权 © 2015, Texas Instruments Incorporated  
5
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
8.6 Typical Characteristics  
40  
10  
8
TJ = 40qC  
TJ = 0qC  
TJ = 25qC  
TJ = 85qC  
TJ = 125qC  
30  
6
20  
4
TJ = 40qC  
10  
TJ = 0qC  
2
TJ = 25qC  
TJ = 85qC  
TJ = 125qC  
0
0
3
5
7
9
11  
13  
15  
17  
3
5
7
9
11  
13  
15  
17  
Input Voltage (V)  
Input Voltage (V)  
D005  
D006  
1. Quiescent Current into PVIN and AVIN  
2. Shutdown Current into PVIN and AVIN  
6
版权 © 2015, Texas Instruments Incorporated  
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
9 Detailed Description  
9.1 Overview  
The TPS62134x synchronous switched-mode power converters are based on DCS-Control™ (direct control with  
seamless transition into power-save mode), an advanced regulation topology that combines the advantages of  
hysteretic, voltage-mode, and current-mode control including an AC loop that is directly associated to the output  
voltage. This control loop uses information about output voltage changes and feeds the information directly to a  
fast comparator stage. The control loop provides immediate response to dynamic load changes. For accurate DC  
load regulation, a voltage feedback loop is used. The internally compensated regulation network achieves fast  
and stable operation with small external components and low ESR capacitors.  
The DCS-Control™ topology supports PWM (pulse width modulation) mode for medium and heavy load  
conditions and a power-save mode (PSM) at light loads. During PWM mode, the devices operate at the nominal  
switching frequency in continuous conduction mode (CCM). This frequency is approximately 1 MHz (typical) with  
a controlled frequency variation depending on the input voltage. If the load current decreases, the converter  
enters PSM to sustain high efficiency down to very light loads. In PSM, the switching frequency decreases  
linearly with the load current. Because DCS-Control™ supports both operation modes within one single building  
block, the transition from PWM to PSM is seamless without effects on the output voltage.  
9.2 Functional Block Diagram  
AVIN  
PVIN  
PVIN  
PG  
Thermal  
FBS  
PG Control  
UVLO  
shutdown  
High-side  
limit  
Comparator  
EN  
Control logic  
SW  
LPM  
VID0  
Power control  
Gate drive  
Reference voltage  
control logic  
V
ref  
VID1  
SS  
SW  
Soft  
start  
Comparator  
Low-side  
limit  
Direct control  
and  
compensation  
VOS  
FBS  
Ramp  
R
(DIS)  
t
on  
Comparator  
Error  
amplifier  
+
V
ref  
Output  
discharge  
DCS-ControlŒ  
EN  
AGND  
PGND PGND  
版权 © 2015, Texas Instruments Incorporated  
7
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Enable and Shutdown (EN)  
When the EN pin is set high, the device begins operation. The EN pin allows sequencing from a host or power-  
good output of another device.  
The devices enter shutdown mode if the EN pin is pulled low with a shutdown current of 2 µA (typical). During  
shutdown, the internal power MOSFETs as well as the entire control circuitry are turned off. The output capacitor  
is smoothly discharged by a 20-kΩ internal resistor through the VOS pin. An internal pulldown resistor of  
approximately 400 kΩ is connected and maintains EN logic low, if the pin is floating. The pulldown resistor is  
disconnected if the EN pin is high.  
9.3.2 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents misoperation of the device by switching off both  
power MOSFETs. The UVLO threshold is set to 2.7 V (typical). The device is fully operational for voltages above  
the UVLO threshold and turns off if the input voltage trips the threshold. The converter begins operation again  
when the input voltage exceeds the threshold by a hysteresis of 200 mV (typical).  
9.3.3 Soft-Start (SS) Circuitry  
The internal soft-start circuitry controls the output-voltage slope during startup. This control avoids excessive  
inrush current and ensures a controlled output-voltage rise time. The control also prevents unwanted voltage  
drops from high-impedance power sources or batteries. When the EN pin is set high to begin device operation,  
the device begins switching after a delay of approximately 50 µs and VO rises up to the nominal value set by the  
VIDx pins with a slope controlled by an external capacitor connected to the SS pin. Leave the SS pin floating for  
the fastest startup.  
The device can startup into a pre-biased output. During monotonic pre-biased startup, both power MOSFETs are  
not allowed to turn on until the internal ramp of the device sets an output voltage above the pre-bias voltage.  
If the device is in shutdown mode, undervoltage lockout, or thermal shutdown, an internal resistor pulls the SS  
pin down to ensure a proper low level. Returning from those states causes a new startup sequence.  
9.3.4 Switch Current-Limit and Short Circuit Protection  
The TPS62134x family of devices is protected against heavy load and short circuit events. If an output short  
circuit is detected (VO drops below 0.3 V), the switch current limit is reduced to 1.6 A (typical). If the output  
voltage rises above 0.4 V, the device operates in normal operation again.  
At heavy loads, the current-limit determines the maximum output current. The current-limit supports output  
currents of 3 A with input voltages below 5 V and 3.2 A with higher input voltages. If the peak current-limit (IL) is  
reached, the high-side MOSFET is turned off. Avoiding shoot-through current, the low-side MOSFET is switched  
on to sink the inductor current. The high-side MOSFET turns on again, only if the current in the low-side  
MOSFET has decreased below the low-side current-limit threshold of 3.2 A (typical).  
Because of the internal propagation delay, the actual peak current of the high-side switch typically occurs above  
the DC value listed in the Electrical Characteristic table, especially in low duty-cycle applications. Use 公式 1 to  
calculate the dynamic current-limit.  
V - VO  
I
IL(dynamic) = IL +  
´ 30 ns  
L
(1)  
9.3.5 Output Voltage and LPM Logic Selection (VIDx and LPM)  
The output voltage of the TPS62134x family of devices is selected by two VIDx pins and one LPM pin as listed in  
1. A pulldown resistor of 400 kΩ is internally connected to the VIDx pins and LPM pin to ensure a proper logic  
level if the pin is high impedance or floating. The pulldown resistors are disconnected if the pins are pulled High.  
The device has a low power mode (LPM) where the output voltage is reduced or disabled by using the LPM pin.  
While the LPM pin is asserted, the PG output remains high impedance. The device also achieves a dynamic  
output-voltage change by using the VIDx pins. This feature helps the system to minimize power consumption in  
standby or idle mode. The TPS62134B/D devices provide the full current even if the output voltage is set at 0.7 V  
in LPM mode.  
8
版权 © 2015, Texas Instruments Incorporated  
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
Feature Description (接下页)  
1. Output Voltage Selection  
PART NUMBER  
(INTEL SKYLAKE VRs)  
LPM LOGIC  
VID1 LOGIC  
VID0 LOGIC  
OUTPUT VOLTAGE (V)  
0
1
1
1
1
0
1
1
1
1
0
1
1
1
1
0
1
1
1
1
x
0
0
1
1
x
0
0
1
1
x
0
0
1
1
x
0
0
1
1
x
0
1
0
1
x
0
1
0
1
x
0
1
0
1
x
0
1
0
1
0 (LPM)  
0.850  
0.875  
0.950  
0.975  
0.7 (LPM)  
0.80  
TPS62134A  
(VCC(IO) Rail)  
TPS62134B  
(VCC(PRIM_CORE) Rail)  
0.85  
0.90  
0.95  
0 (LPM)  
0.80  
TPS62134C  
(VCC(EDRAM) / VCC(EOPIO) Rail)  
0.95  
1.00  
1.05  
0.7 (LPM)  
0.85  
TPS62134D  
(VCC(PRIM_CORE) Rail)  
0.90  
0.95  
1.00  
9.3.6 Power-Good Output (PG)  
The TPS62134x family of devices has a built-in power-good indicator. The PG signal can be used for startup  
sequencing of multiple rails. The PG pin is an open-drain output that requires a pullup resistor to any voltage  
below 6 V. The device has a fixed power-good threshold of 760 mV (rising edge) and 720 mV (falling edge). The  
PG rising edge has a delay time of 140 µs (typical) and a falling edge has a delay time of 20 µs (typical). The PG  
pin can sink 2-mA of current and maintain the specified logic low level. 2 lists the PG logic status in different  
operation conditions. The PG pin can be left floating if not used.  
In LPM, the PG signal is latched as high impedance. When the device exits LPM, the PG has a 500-µs blanking  
time to ensure that the output voltage returns to the nominal value.  
2. Power Good Logic  
PG LOGIC STATUS  
CONDITIONS  
HIGH  
IMPEDANCE  
LOW  
EN = high, LPM = high, VO > 760 mV  
EN = high, LPM = high, VO < 720 mV  
EN = high, LPM = low  
Enable  
LPM  
LPM, TPS62134B/D  
Shutdown  
EN = high, LPM = Low, VO < 0.3 V  
EN = Low  
Thermal shutdown  
UVLO  
0.5 V < V(AVIN) < V(UVLO)  
V(AVIN) < 0.5 V  
Power supply removal  
版权 © 2015, Texas Instruments Incorporated  
9
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
9.3.7 Single-Ended Remote Sense (FBS)  
The devices allow a single-ended remote sense by connecting the FBS pin at the load. This function overcomes  
the parasitic resistance of the PCB traces and achieves an improved output-voltage regulation at the load. Avoid  
any noise coupled into the FBS trace. Use a solid ground plane to connect the ground return of the load with the  
AGND and PGND pins of the device. Connect the AGND and PGND pins directly to exposed thermal pad of the  
device. 3 shows an example.  
L1  
1 µH  
TPS62134x  
SW  
C2  
47 µF  
VOS  
Load  
FBS  
C(LOAD)  
Ground Plane Connection  
AGND  
PGND  
3. Remote Sense Connection  
9.3.8 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 160°C  
(typical), the device goes into thermal shutdown. Both the high-side and low-side power MOSFETs are turned  
off. When TJ decreases below the hysteresis of 20°C, the converter resumes normal operation, beginning with a  
soft start.  
9.4 Device Functional Modes  
9.4.1 PWM Operation and Power Save Mode  
The device operates with pulse width modulation (PWM) in medium and heavy load with a fixed on-time circuitry  
(ton). Use 公式 2 to calculate the on-time in steady-state operation.  
VO  
ton = 1ms´  
V
I
(2)  
The typical PWM switching frequency is 1 MHz. The frequency variation in PWM is controlled and depends on  
VI, VO, and the inductance. The switching frequency decreases with the input voltage to improve the efficiency in  
small duty-cycle applications.  
To maintain high efficiency at light loads, the device enters PSM at the boundary to discontinuous conduction  
mode (DCM). In PSM, the switching frequency decreases linearly with the load current maintaining high  
efficiency. Use 公式 3 to calculate the switching frequency in PSM mode.  
2 ´ IO  
ƒS(PSM)  
=
V
V - VO  
2
I
I
ton  
´
´
VO  
L
(3)  
See 11 for the switching frequency variation over load and input voltage.  
10  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPS62134x family of devices are synchronous step-down converters based on the DCS-Control™ topology.  
The following section discusses the design of the external components to complete the power-supply design for  
power rails in the Intel Skylake platform.  
10.2 Typical Application  
L1  
1 µH  
TPS62134A  
VO  
0.95 V, 3 A  
VI  
3 to 17 V  
PVIN  
AVIN  
EN  
SW  
VOS  
FBS  
C1  
22 µF  
C2  
47 µF  
VDD  
VID0  
VID1  
LPM  
R3  
499 kΩ  
Host  
V(PG)  
PG  
SS  
AGND  
PGND  
C3  
470 pF  
4. TPS62134A Typical Application  
10.2.1 Design Requirements  
The design guideline provides component selection to operate the device within the values listed in the  
Recommend Operating Conditions section. Meanwhile, the design meets the time and slew rate requirements of  
the Intel Skylake platform for VCC(IO), VCC(PRIM_CORE), VCC(EDRAM), and VCC(EOPIO) rails. 3 lists the components  
used for the curves in the Application Curves section.  
3. List of Components  
REFERENCE  
DESCRIPTION  
High efficiency step down converter  
MANUFACTURER  
TPS62134x  
TI  
L1  
C1  
C2  
C3  
R3  
Inductor, 1 µH, XFL4020-102ME  
Coilcraft  
Murata  
Murata  
Murata  
Standard  
Ceramic capacitor, 22 µF, GRM21BR61E226ME44L  
Ceramic capacitor, 47 µF, GRM21BR60J476ME15L  
Ceramic capactor, 470 pF, GRM188R71H471KA01D  
Resistor, 499 kΩ  
10.2.2 Detailed Design Procedure  
10.2.2.1 Output Filter Selection  
The first step of the design procedure is the selection of the output-filter components. The combinations listed in  
4 are used to simplify the output filter component selection.  
版权 © 2015, Texas Instruments Incorporated  
11  
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
4. Recommended LC Output Filter Combinations(1)  
OUTPUT CAPACITOR  
100 µF  
INDUCTOR  
22 µF  
47 µF  
200 µF  
400 µF  
0.47 µH  
1 µH  
(2)  
2.2 µH  
(1) The values in the table are nominal values, including device tolerances.  
(2) This LC combination is the standard value and recommended for most applications.  
10.2.2.2 Inductor Selection  
The inductor selection is affected by several effects such as inductor-ripple current, output-ripple voltage, PWM-  
to-PSM transition point, and efficiency. In addition, the selected inductor must be rated for appropriate saturation  
current and DC resistance (DCR). Use 公式 4 to calculate the maximum inductor current under static load  
conditions.  
ΔI(L)max  
I(L)max = IOmax +  
2
æ
ö
VO  
VO  
V
DI(L)max =  
´ 1-  
ç
÷
Lmin ´ ƒS  
è
I ø  
where  
I(L)max is the maximum inductor current  
ΔI(L)max is the maximum peak-to-peak inductor ripple current  
Lmin is the minimum effective inductor value  
ƒS is the actual PWM switching frequency  
(4)  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current. A margin of approximately 20% is recommended to be added. The inductor value also determines the  
load current at which power save mode is entered:  
DI(L)  
IO(PSM)  
=
2
(5)  
5 lists inductors that are recommended to use with the TPS62134x device.  
5. List of Inductors  
TYPE  
INDUCTANCE (µH)  
CURRENT (A)  
DIMENSIONS (L × B × MANUFACTURER  
H, mm)  
XFL4020-102ME  
DFE252012F  
DFE201612E  
PISB25201T  
PIME031B  
1 µH  
1 µH  
1 µH  
1 µH  
1 µH  
4.7  
5.0  
4.1  
3.9  
5.4  
4 × 4 × 2  
Coilcraft  
Toko  
2.5 × 2 × 1.2  
2 × 1.6 × 1.2  
2.5 × 2 × 1  
3.1 × 3.4 × 1.2  
Toko  
Cyntec  
Cyntec  
10.2.2.3 Output Capacitor  
The recommended value for the output capacitor is 47 µF. The architecture of the TPS62134x family of devices  
allows the use of tiny ceramic output capacitors which have low equivalent series resistance (ESR). These  
capacitors provide low output-voltage ripple and are recommended. Using an X7R or X5R dielectric is  
recommended to maintain low resistance up to high frequencies and to achieve narrow capacitance variation  
with temperature. Using a higher value can have some advantages such as smaller voltage ripple and a tighter  
DC output accuracy in PWM. See Optimizing the TPS62130/40/50/60/70 Output Filter, SLVA463 for additional  
information.  
Note that in power save mode, the output voltage ripple depends on the output capacitance, ESR, and peak  
inductor current. Using ceramic capacitors provides small ESR and low ripple.  
12  
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
10.2.2.4 Input Capacitor  
For most applications, using a capacitor with a value of 22 µF is a recommended. Larger values further reduce  
input-current ripple. The input capacitor buffers the input voltage for transient events and also decouples the  
converter from the supply. A ceramic capacitor which has low ESR is recommended for best filtering and should  
be placed between the PVIN and PGND pins and as close as possible to those pins.  
10.2.2.5 Soft-Start Capacitor  
A capacitor connected between the SS pin and the AGND pin allows a user programmable startup slope of the  
output voltage. A constant current source supports 2.5 µA to charge the external capacitance. Use 公式 6 to  
calculate the capacitor value required for a given soft-start time.  
2.5 mA  
C(SS) = t(SS)  
´
VO  
where  
C(SS) is the capacitance (F) required at the SS pin  
t(SS) is the desired soft-start time (s)  
(6)  
Leave the SS pin floating for fastest startup.  
10.2.3 Application Curves  
TA = 25°C and VI = 7.2 V, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
VI = 5 V  
VI = 6 V  
VI = 7.2 V  
VI = 8.4 V  
VI = 10.8 V  
VI = 12 V  
VI = 5 V  
VI = 6 V  
VI = 7.2 V  
VI = 8.4 V  
VI = 10.8 V  
VI = 12 V  
60  
50  
40  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
1
2
3 45  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
1
2 3 45  
D001  
D016  
VO = 0.975 V  
VO = 0.95 V  
5. TPS62134A Efficiency  
6. TPS62134B Efficiency  
100  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
VI = 5 V  
VI = 6 V  
VI = 7.2 V  
VI = 8.4 V  
VI = 10.8 V  
VI = 12 V  
VI = 5 V  
VI = 6 V  
VI = 7.2 V  
VI = 8.4 V  
VI = 10.8 V  
VI = 12 V  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
1
2
3 45  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
1
2 3 45  
D003  
D004  
VO = 1 V  
VO = 0.8 V  
7. TPS62134C Efficiency  
8. TPS62134C Efficiency  
版权 © 2015, Texas Instruments Incorporated  
13  
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
TA = 25°C and VI = 7.2 V, unless otherwise noted.  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.2  
-0.4  
-0.6  
-0.8  
-0.4  
TA = 40qC  
TA = 25qC  
TA = 85qC  
TA = 40qC  
TA = 25qC  
TA = 85qC  
-0.6  
-0.8  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
1
2
3 45  
3
5
7
9
11  
13  
15  
17  
Input Voltage (V)  
D008  
D009  
VO = 0.95 V  
VI = 7.2 V  
VO = 0.95 V  
IO = 1 A  
9. TPS62134A Load Regulation  
10. TPS62134A Line Regulation  
5x106  
2x106  
1x106  
5x105  
V(SW) = 10 V/div  
2x105  
1x105  
5x104  
VO = 20 mV/div, AC  
2x104  
1x104  
5x103  
I(COIL) = 1 A/div  
VI = 3 V  
VI = 8 V  
VI = 12 V  
VI = 17 V  
2x103  
1x103  
Time = 5 µs/div  
0.001  
0.01 0.02 0.05 0.1 0.2  
Load (A)  
0.5  
1
2 3 45  
VO = 0.95 V  
IO = 50 mA  
D007  
VO = 0.975 V  
11. TPS62134A Switching Frequency  
12. TPS62134A Output Ripple  
V(EN) = 2 V/div  
V(PG) = 2 V/div  
V(SW) = 10 V/div  
VO = 20 mV/div, AC  
I(COIL) = 2 A/div  
VO = 0.5 V/div  
I(COIL) = 2 A/div  
Time = 1 µs/div  
Time = 100 µs/div  
VO = 0.95 V  
IO = 2 A  
VO = 0.95 V  
R(LOAD) = 0.47 Ω  
13. TPS62134A Output Ripple  
14. TPS62134A Startup and Shutdown  
14  
版权 © 2015, Texas Instruments Incorporated  
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
TA = 25°C and VI = 7.2 V, unless otherwise noted.  
V(LPM)  
=
2 V/div  
Load = 0.75 A to 3 A  
V(PG) = 2 V/div  
VO = 50 mV/div, AC  
VO = 0.5 V/div  
I(COIL) = 2 A/div  
I(LOAD) = 2 A/div  
Time = 10 µs/div  
Time = 50 µs/div  
VO = 0.95 V  
R(LOAD) = 0.47 Ω  
15. TPS62134A Load Transient  
16. TPS62134C LPM Entry and Exit  
V(VID1) = 2 V/div  
V(PG) = 2 V/div  
VO = 0.8 to 1 V  
I(COIL) = 2 A/div  
Time = 10 µs/div  
R(LOAD) = 0.47 Ω  
17. TPS62134C Minimum Speed Mode (MSM) Entry and Exit  
11 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 3 V and 17 V. Use 公式 7 to  
calculate the average input current of the TPS62134x device.  
VO ´ IO  
1
I =  
´
I
h
V
I
(7)  
Ensure that the input power supply has a sufficient current rating for the application.  
版权 © 2015, Texas Instruments Incorporated  
15  
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
TI recommends to place all components as close as possible to the device. Ensure that the input capacitor  
placement is as close as possible to the PVIN and PGND pins of the device.  
The VOS pin is noise sensitive and must be routed short and directly to the output of the output capacitor.  
This routing minimizes switch node jitter and ensures reliability.  
The direct common-ground connection of the AGND and PGND pins to the exposed thermal pad and the  
system ground (ground plane) is mandatory. To enhance heat dissipation of the device, the exposed thermal  
pad should be connected to bottom or internal layer ground planes using vias.  
Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance.  
The capacitor on the SS pin should be placed close to the device and connected directly to those pins and  
the AGND pin.  
The inductor should be placed close to the SW pins, keeping this area small.  
Finally, the ground of the output capacitor should be located close to the PGND pins of the device.  
See 18 for an example of component placement, routing, and thermal design.  
12.2 Layout Example  
AGND  
VIN  
C3  
L1  
VID0  
AVIN  
PVIN  
PVIN  
PG  
SW  
SW  
VOS  
C1  
C2  
VOUT  
GND  
18. TPS62134x Layout Example  
16  
版权 © 2015, Texas Instruments Incorporated  
 
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
www.ti.com.cn  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
12.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
The following lists three basic approaches for enhancing thermal performance:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB by soldering the exposed thermal pad  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes, Thermal Characteristics of  
Linear and Logic Packages Using JEDEC PCB Designs (SZZA017), and Semiconductor and IC Package  
Thermal Metrics (SPRA953).  
版权 © 2015, Texas Instruments Incorporated  
17  
TPS62134A, TPS62134B, TPS62134C, TPS62134D  
ZHCSD94C JANUARY 2015REVISED JANUARY 2015  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 文档支持  
13.2.1 相关文档ꢀ  
《优化 TPS62130/40/50/60/70 输出滤波器》SLVA463  
《半导体和 IC 封装热指标》SPRA953  
《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》SZZA017  
13.3 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
6. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
TPS62134A  
TPS62134B  
TPS62134C  
TPS62134D  
13.4 商标  
DCS-Control, the DCS-Control are trademarks of Texas Instruments.  
Skylake, 超级本 are trademarks of Intel.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62134ARGTR  
TPS62134ARGTT  
TPS62134BRGTR  
TPS62134BRGTT  
TPS62134CRGTR  
TPS62134CRGTT  
TPS62134DRGTR  
TPS62134DRGTT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
16  
16  
16  
16  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
134A  
134A  
134B  
134B  
134C  
134C  
134D  
134D  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62134ARGTR  
TPS62134ARGTR  
TPS62134ARGTT  
TPS62134BRGTR  
TPS62134BRGTR  
TPS62134BRGTT  
TPS62134BRGTT  
TPS62134CRGTR  
TPS62134CRGTT  
TPS62134DRGTR  
TPS62134DRGTR  
TPS62134DRGTT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
3000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.5  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
3000  
250  
250  
3000  
250  
3000  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62134ARGTR  
TPS62134ARGTR  
TPS62134ARGTT  
TPS62134BRGTR  
TPS62134BRGTR  
TPS62134BRGTT  
TPS62134BRGTT  
TPS62134CRGTR  
TPS62134CRGTT  
TPS62134DRGTR  
TPS62134DRGTR  
TPS62134DRGTT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
3000  
250  
338.0  
552.0  
338.0  
338.0  
552.0  
205.0  
552.0  
338.0  
338.0  
552.0  
338.0  
338.0  
355.0  
346.0  
355.0  
355.0  
346.0  
200.0  
185.0  
355.0  
355.0  
346.0  
355.0  
355.0  
50.0  
36.0  
50.0  
50.0  
36.0  
33.0  
36.0  
50.0  
50.0  
36.0  
50.0  
50.0  
3000  
3000  
250  
250  
3000  
250  
3000  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS62134ARGTR  
TPS62134ARGTT  
TPS62134BRGTR  
TPS62134BRGTT  
TPS62134CRGTR  
TPS62134CRGTT  
TPS62134DRGTR  
TPS62134DRGTT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
RGT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
250  
381  
381  
381  
381  
381  
381  
381  
381  
4.83  
4.83  
4.83  
4.83  
4.83  
4.83  
4.83  
4.83  
2286  
2286  
2286  
2286  
2286  
2286  
2286  
2286  
0
0
0
0
0
0
0
0
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 3  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/D 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/D 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/D 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62134DRGTT

适用于 Intel SkyLake 平台且具有低功耗模式输入的 17V 输入降压转换器 | RGT | 16 | -40 to 85
TI

TPS62135

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器
TI

TPS621351RGXR

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS621351RGXT

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62135RGXR

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62135RGXT

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62136

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器
TI

TPS621361RGXR

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS621361RGXT

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62136RGXR

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62136RGXT

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 4.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62140

3-V to 17-V 2-A Step-Down Converter in 3-mm × 3-mm QFN Package
TI