TPS62441-Q1 [TI]

具有可调频率的汽车类 2.75V 至 6V 双路 1A 输出降压转换器;
TPS62441-Q1
型号: TPS62441-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调频率的汽车类 2.75V 至 6V 双路 1A 输出降压转换器

转换器
文件: 总36页 (文件大小:3085K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
TPS6244x-Q1 具有可调频率并采用 QFN 封装的 2.75V 6V 双路降压转换器  
1 特性  
3 说明  
符合面向汽车应用的 AEC-Q100 标准  
器件温度等级 1:  
TPS6244x-Q1 系列是引脚对引脚双路 1A、双路 2A  
3A 1A 高效且易于使用的同步直流/直流降压转  
换器。它们基于峰值电流模式控制拓扑,这些器件专为  
信息娱乐系统和高级驾驶辅助系统等汽车应用而设计。  
低阻开关可在高环境温度下支持高达 3A 的持续输出电  
流和高达 4A 的最大总输出电流。用户可通过外部方式  
1.8MHz 4MHz 范围内调节开关频率,亦可在该  
频率范围内将其同步至频率为 2MHz 4MHz 的外部  
时钟。在 PWM PFM 模式下,TPS6244x-Q1 会在  
轻负载时自动进入省电模式,从而在整个负载范围内保  
持高效率。TPS6244x-Q1 可在 PWM 模式下提供 1%  
的输出电压精度,这有助于实现具有高输出电压精度的  
电源设计。  
–40°C +125°C TA  
提供功能安全型  
可帮助进行功能安全系统设计的文档  
输入电压范围:2.75V 6V  
双通道输出,输出电压范围为 0.6V 5.5V  
输出电压精度为 ±1%PWM 操作)  
强制 PWM PWM PFM 操作  
可调开关频率为  
1.8MHz 4MHz  
两个精密使能输入可实现:  
用户定义的欠压锁定  
准确排序  
TPS6244x-Q1 提供了可调节电压版本,采用 VQFN 封  
装。  
具有窗口比较器的两个电源正常输出  
180° 相移运行  
器件信息  
100% 占空比模式  
器件型号  
封装(1)  
封装尺寸(标称值)  
有源输出放电  
TPS62441-Q1  
TPS62442-Q1  
可选展频时钟  
VQFN-HR  
2.30 mm × 2.70 mm  
可选折返过流保护  
TJ = -40°C +150°C  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
具有可湿性侧面的 2.3mm × 2.7mm QFN 封装  
录。  
2 应用  
ADAS 摄像头ADAS 传感器融合  
环视 ECU  
混合可重新配置仪表组  
信息娱乐系统音响主机数字驾驶舱  
远程信息处理控制单元  
L1  
VIN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
TPS6244x-Q1  
VOUT1  
0.47µH  
2.75V - 6V  
VIN1  
VIN2  
EN1  
SW1  
FB1  
CFF1  
COUT1  
2 x 10µF  
CIN1, CIN2  
R1  
R2  
2 x 4.7 µF  
EN2  
L2  
MODE/SYNC  
0.47µH  
VOUT2  
SW2  
CFF2  
V+  
R3  
COUT2  
FB2  
PG1  
2 x 10µF  
R4  
COMP/FSET  
R5  
RCF  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
50  
V+  
45  
R6  
40  
100m  
1m  
10m  
Load (A)  
100m  
1
PG2  
D000  
GND  
GND  
效率与输出电流间的关系;VOUT = 3.3VPWM 和  
PFMfSW = 2.25MHz  
Copyright © 2019, Texas Instruments Incorporated  
原理图  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDN9  
 
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Timing Requirements..................................................7  
7.7 Typical Characteristics................................................7  
8 Parameter Measurement Information............................8  
8.1 Schematic................................................................... 8  
9 Detailed Description........................................................9  
9.1 Overview.....................................................................9  
9.2 Functional Block Diagram...........................................9  
9.3 Feature Description...................................................10  
9.4 Device Functional Modes..........................................12  
10 Application and Implementation................................14  
10.1 Application Information........................................... 14  
10.2 Typical Application.................................................. 16  
11 Power Supply Recommendations..............................25  
12 Layout...........................................................................25  
12.1 Layout Guidelines................................................... 25  
12.2 Layout Example...................................................... 26  
13 Device and Documentation Support..........................27  
13.1 Device Support....................................................... 27  
13.2 Documentation Support.......................................... 27  
13.3 接收文档更新通知................................................... 27  
13.4 支持资源..................................................................27  
13.5 Trademarks.............................................................27  
13.6 Electrostatic Discharge Caution..............................27  
13.7 术语表..................................................................... 27  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 27  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2022) to Revision B (July 2022)  
Page  
Removed preview note.......................................................................................................................................3  
Changes from Revision * (November 2021) to Revision A (June 2022)  
Page  
将文档状态从预告信息更改为量产数据”..........................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
5 Device Comparison Table  
Device Number  
Features  
Foldback Current Limit  
Output Voltage  
2 × 1-A output current  
VOUT discharge  
TPS62441QWRQRRQ1  
OFF  
OFF  
Adjustable  
2 × 2-A or 3-A and 1-A output  
current  
TPS62442QWRQRRQ1  
Adjustable  
VOUT discharge  
6 Pin Configuration and Functions  
Top view  
GND  
9
EN2  
10  
EN1  
8
VIN1  
7
6
5
4
VIN2 11  
SW2  
12  
SW1  
MODE  
/SYNC  
PG2 13  
COMP  
/FSET  
14  
PG1  
1
3
2
FB2  
GND  
FB1  
6-1. 14-Pin VQFN-HR RQR Package  
6-1. Pin Functions  
Pin  
Type(1)  
Description  
Name  
NO.  
This pin is the enable pin of converter 1. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN1  
8
I
I
This pin is the enable pin of converter 2. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN2  
10  
FB1  
FB2  
3
1
I
Voltage feedback input for converter 1. Connect the resistive output voltage divider to this pin.  
Voltage feedback input for converter 2. Connect the resistive output voltage divider to this pin.  
Open-drain power-good output of converter 1  
I
PG1  
PG2  
SW1  
SW2  
4
O
O
13  
6
Open-drain power-good output of converter 2  
This pin is the switch pin of converter 1 and is connected to the internal power MOSFETs.  
This pin is the switch pin of converter 2 and is connected to the internal power MOSFETs.  
12  
The device runs in PFM and PWM mode when this pin is pulled low. When the pin is pulled high,  
the device runs in forced PWM mode. Do not leave this pin unconnected. The mode pin can also  
be used to synchronize the device to an external frequency. See the electrical characteristics for the  
detailed specification for the digital signal applied to this pin for external synchronization.  
MODE/SYNC  
5
I
Device compensation and frequency set input. A resistor from this pin to GND defines the  
compensation of the control loop as well as the switching frequency if not externally synchronized.  
Do not leave this pin floating.  
COMP/FSET  
VIN1  
14  
7
I
Power supply input. Make sure the input capacitor is connected as close as possible between pin  
VIN1 and GND. Connect VIN1 to VIN2.  
Power supply input. Make sure the input capacitor is connected as close as possible between pin  
VIN2 and GND. Connect VIN2 to VIN1.  
VIN2  
GND  
11  
2, 9  
Ground pins. The GND pins are internally connected.  
(1) I = input; O = output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–3  
MAX  
6.5  
UNIT  
VIN1, VIN2  
SW1, SW2 (DC)  
VIN + 0.3  
10  
SW1, SW2 (AC, less than 10 ns)(3)  
Pin voltage(2)  
FB1, FB2  
V
–0.3  
–0.3  
– .3  
–65  
4
PG1, PG2, COMP/FSET  
EN1, EN2, MODE/SYNC  
VIN + 0.3  
6.5  
Tstg  
Storage temperature  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground pin.  
(3) While switching  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD classification level C6  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN1, VIN2 Input voltage range  
2.75  
6
V
VOUT1  
VOUT2  
,
Output voltage range  
0.6  
0.32  
8
5.5  
0.9  
V
L1, L2  
Effective inductance  
0.47  
10  
μH  
μF  
COUT1  
COUT2  
,
Effective output capacitance(1)  
200  
CIN1, CIN2 Effective input capacitance on each pin(1)  
RCF  
10  
μF  
kΩ  
mA  
°C  
4.5  
0
100  
2
ISINK_PG  
TJ  
Sink current at PG pin  
Junction temperature  
–40  
150  
(1) The values given for all the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias  
effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer's DC bias curves for the effective capacitance versus DC voltage applied. Further restrictions can apply. Please see the  
feature description for COMP/FSET for the output capacitance versus compensation setting and output voltage.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
 
 
 
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
7.4 Thermal Information  
(JEDEC)  
14 PINS  
68.7  
(EVM)  
UNIT  
THERMAL METRIC(1)  
14 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.9  
n/a  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
50.8  
15.1  
n/a  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.5  
1.9  
ΨJB  
14.9  
20.1  
n/a  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Over operating junction temperature range (TJ = –40°C to +150°C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN1 or EN2 = VIN, no load, device is not  
switching, TJ = 25°C, MODE = GND, one  
converter enabled  
IQ  
Quiescent current  
27  
66  
38  
80  
µA  
µA  
µA  
µA  
EN1 or EN2 = VIN, no load, device is not  
switching, MODE = GND, one converter  
enabled  
IQ  
IQ  
IQ  
Quiescent current  
Quiescent current  
Quiescent current  
22  
EN1 = EN2 = VIN, no load, device is not  
switching, TJ = 25°C, MODE = GND, both  
converters enabled  
EN1 = EN2 = VIN, no load, device is not  
switching, MODE = GND, both converters  
enabled  
33  
ISD  
ISD  
Shutdown current  
Shutdown current  
EN1 = EN2 = low, at TJ = 25°C  
2
µA  
µA  
EN1 = EN2 = GND, nominal value at TJ =  
25°C, maximum value at TJ = 150°C  
1.5  
26  
VIN rising  
VIN falling  
TJ rising  
TJ falling  
2.5  
2.3  
2.6  
2.5  
170  
15  
2.75  
2.6  
V
V
VUVLO  
Undervoltage lockout threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
°C  
°C  
TJSD  
CONTROL AND INTERFACE  
Input-threshold voltage at EN1, EN2,  
rising edge  
VEN,IH  
1.06  
0.96  
1.1  
1.0  
1.15  
V
Input-threshold voltage at EN1, EN2,  
falling edge  
VEN,IL  
IEN,LKG  
VIH  
1.05  
450  
V
nA  
V
Input leakage current into EN1, EN2  
VIH = VIN or VIL = GND  
High-level input-threshold voltage at  
MODE/SYNC  
1.1  
Low-level input-threshold voltage at  
MODE/SYNC  
VIL  
0.3  
700  
300  
V
ILKG  
tDelay  
Input leakage current into MODE/SYNC  
Enable delay time  
nA  
µs  
Time from ENx high to device starts  
switching, VIN applied already  
110  
200  
100  
Enable delay time if one converter  
already enabled  
Time from ENx high to device starts  
switching, VIN applied already  
tDelay  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Over operating junction temperature range (TJ = –40°C to +150°C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time from device starts switching to  
power good; the device is not in current  
limit  
tRamp  
Output voltage ramp time  
0.7  
1.1  
1.5  
ms  
Frequency range on MODE/SYNC pin for  
synchronization  
fSYNC  
2
0
4
MHz  
kΩ  
V
Resistance from COMP/FSET to GND for Internal frequency setting with  
logic low  
2.5  
f = 2.25 MHz  
Internal frequency setting with  
f = 2.25 MHz  
Voltage on COMP/FSET for logic high  
VIN  
96.5%  
94.5%  
107%  
UVP power-good threshold voltage;  
DC level  
VTH_PG  
VTH_PG  
Rising (%VFB  
)
94%  
92%  
99%  
97%  
UVP power-good threshold voltage;  
DC level  
Falling (%VFB  
)
)
OVP power-good threshold voltage;  
DC level  
Rising (%VFB  
)
104%  
110%  
107%  
VTH_PG  
OVP power-good threshold voltage;  
DC level  
Falling (%VFB  
102% 104.5%  
0.07  
VPG,OL  
IPG,LKG  
Low-level output voltage at PG  
Input leakage current into PG  
ISINK_PG = 2 mA  
VPG = 5 V  
0.3  
V
100  
nA  
For a high-level to low-level transition on  
the power-good output  
tPG  
PG deglitch time  
40  
µs  
OUTPUT  
VFB1  
VFB2  
,
Feedback voltage  
0.6  
V
IFB1,LKG,  
IFB2,LKG  
Input leakage current into FB  
Feedback voltage accuracy  
Feedback voltage accuracy  
Feedback voltage accuracy  
VFB = 0.6 V  
1
80  
1%  
nA  
VFB1  
,
,
,
PWM, VIN ≥ VOUT + 1 V  
–1%  
VFB2  
VFB1  
VFB2  
PFM, VIN ≥ VOUT + 1 V, VOUT ≥ 1.5 V,  
Co,eff ≥ 22 µF, L = 0.47 µH  
–1%  
2.5%  
2.5%  
VFB1  
VFB2  
PFM, VIN ≥ VOUT + 1 V, 1 V ≤ VOUT < 1.5  
V, Co,eff ≥ 47 µF, L = 0.47 µH  
–1%  
Load regulation  
PWM  
0.05  
0.02  
50  
%/A  
%/V  
Ω
Line regulation  
PWM, IOUT = 1 A, VIN ≥ VOUT + 1 V  
RDIS  
fSW  
fSW  
fSW  
Output discharge resistance  
150  
4
See the FSET pin functionality about  
setting the switching frequency.  
PWM switching frequency range  
PWM switching frequency  
1.8  
2.025  
–16%  
2.25  
2.25  
MHz  
MHz  
With COMP/FSET tied to GND or VIN  
2.475  
17%  
75  
Using a resistor from COMP/FSET to  
GND  
PWM switching frequency tolerance  
ton,min  
ton,min  
Minimum on time of high-side FET  
Minimum on time of low-side FET  
High-side FET on-resistance  
VIN ≥ 3.3 V  
50  
30  
55  
25  
1
ns  
ns  
VIN ≥ 5 V  
100  
50  
mΩ  
mΩ  
µA  
µA  
RDS(ON)  
Low-side FET on-resistance  
VIN ≥ 5 V  
High-side MOSFET leakage current  
Low-side MOSFET leakage current  
VIN = 6 V; V(SW) = 0 V  
V(SW) = 6 V  
86  
1
205  
DC value, for the TPS62442;  
VIN = 3 V to 6 V  
ILIMH  
High-side FET switch current limit  
3.8  
4.7  
5.5  
A
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Over operating junction temperature range (TJ = –40°C to +150°C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC value, for the TPS62441;  
VIN = 3 V to 6 V  
ILIMH  
High-side FET switch current limit  
Low-side FET negative current limit  
2.1  
2.6  
3.1  
A
ILIMNEG  
DC value  
–1.8  
A
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Synchronization clock frequency range  
(MODE/SYNC)  
Nominal fSW determined through COMP/  
FSET  
fSW  
10%  
+
fSW +  
40%  
f(SYNC)  
MHz  
Synchronization clock duty cycle range  
(MODE/SYNC)  
D(SYNC)  
45%  
55%  
7.7 Typical Characteristics  
105  
40  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
-40.0  
-10.0  
20.0  
Junction Temperature (°C)  
50.0  
80.0  
110.0  
140.0  
-40.0  
-10.0  
20.0  
Junction Temperature (°C)  
50.0  
80.0  
110.0  
140.0  
D020  
D021  
7-1. Rds(on) of High-Side Switch  
7-2. Rds(on) of Low-Side Switch  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Schematic  
L1  
VIN  
TPS6244x-Q1  
VOUT1  
0.47µH  
2.75V - 6V  
VIN1  
VIN2  
EN1  
SW1  
FB1  
CFF1  
COUT1  
2 x 10µF  
CIN1, CIN2  
2 x 4.7 µF  
R1  
R2  
EN2  
L2  
MODE/SYNC  
0.47µH  
VOUT2  
SW2  
CFF2  
V+  
R3  
COUT2  
FB2  
PG1  
2 x 10µF  
R4  
COMP/FSET  
R5  
RCF  
V+  
R6  
PG2  
GND  
GND  
Copyright © 2019, Texas Instruments Incorporated  
8-1. Measurement Setup  
8-1. List of Components  
Reference  
IC  
Description  
Manufacturer(1)  
TPS62442QWRQRRQ1  
Texas Instruments  
L1, L2  
CIN1, CIN2  
COUT1, COUT2  
RCF  
2 × 0.47-µH inductor DFE252012PD-R47M-P2  
2 × 4.7 µF / 6.3 V  
2 × 10 µF / 6.3 V  
8.06 kΩ  
Murata  
Murata  
Murata  
Any  
CFF1, CFF2  
R1  
10 pF  
Any  
Depending on VOUT  
Depending on VOUT  
Depending on VOUT  
Depending on VOUT  
100 kΩ  
Any  
R2  
Any  
R3  
Any  
R4  
Any  
R5, R6  
Any  
(1) See the Third-Party Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS6244x-Q1 synchronous dual switch mode power converters are based on a peak current mode control  
topology. The control loop is internally compensated. To optimize the bandwidth of the control loop to the  
wide range of output capacitance that can be used with TPS6244x-Q1, the internal compensation has two  
settings. See 9.3.2. One out of the two compensation settings is chosen either by a resistor from COMP/  
FSET to GND, or by the logic state of this pin. The regulation network achieves fast and stable operation  
with small external components and low-ESR ceramic output capacitors. The devices can be operated without  
a feedforward capacitor on the output voltage divider, however, using a typically 10-pF feedforward capacitor  
improves transient response.  
The devices support forced fixed-frequency PWM operation with the MODE pin tied to a logic high level. The  
frequency is defined as either 2.25 MHz internally fixed when COMP/FSET is tied to GND or VIN or in a  
range of 1.8 MHz to 4 MHz defined by a resistor from COMP/FSET to GND. Alternatively, the devices can be  
synchronized to an external clock signal in a range from 2 MHz to 4 MHz, applied to the MODE pin with no  
need for additional passive components. External synchronization can only be used when there is a resistor  
from COMP/FSET to GND. When COMP/FSET is directly tied to GND or VIN, the TPS6244x-Q1 cannot be  
synchronized externally. The TPS6244x-Q1 allows for a change from internal clock to external clock during  
operation. When the MODE pin is set to a logic low level, the device operates in power save mode (PFM) at  
low output current and automatically transfers to fixed frequency PWM mode at higher output current. In PFM  
mode, the switching frequency decreases linearly based on the load to sustain high efficiency down to very low  
output current. When a converter switches from PFM to PWM operation, there can be a maximum delay of one  
clock cycle because in this case, the converter has to synchronize to the other converter to achieve 180 degrees  
phase shift.  
9.2 Functional Block Diagram  
VIN  
SW1  
Bias  
Regulator  
Gate Drive and Control  
Oscillator  
Ipeak  
Izero  
EN1  
EN2  
gm  
GND  
FB1  
Device  
Control  
+
-
Bandgap  
Vo control  
SW2  
MODE  
COMP/FSET  
PG1  
Gate Drive and Control  
Ipeak  
Izero  
PG2  
gm  
+
-
Bandgap  
FB2  
Vo control  
Thermal  
Shutdown  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Precise Enable (EN)  
The voltage applied at EN1 and EN2 is compared to a 1.1-V fixed threshold for a rising voltage, which allows the  
user to drive the pin by a slowly changing voltage and enables the use of an external RC network to achieve a  
power-up delay.  
The precise enable input provides a user-programmable undervoltage lockout by adding a resistor divider to the  
input of EN1 and EN2.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
TPS6244x-Q1 starts operation when the rising threshold is exceeded. For proper operation, the enable (EN) pin  
must be terminated and must not be left floating. Pulling the enable pin low forces the device into shutdown, with  
a shutdown current of typically 1.5 μA. In this mode, the internal high-side and low-side MOSFETs are turned off  
and the entire internal control circuitry is switched off.  
The enable delay time is defined from EN1 or EN2 going high to when the converter starts switching. The  
converter is enabled first, the internal bandgap is started, and bias currents and configuration bits are read, so its  
start-up delay time is longer than the converter being enabled when this is already done.  
9.3.2 COMP/FSET  
This pin allows to set three different parameters:  
Internal compensation settings for the control loop (two settings available)  
The switching frequency in PWM mode from 1.8 MHz to 4 MHz  
Enable and disable spread spectrum clocking (SSC)  
A resistor from COMP/FSET to GND changes the compensation as well as the switching frequency. The change  
in compensation allows the user to adopt the device to different values of output capacitance. Place the resistor  
close to the pin to keep the parasitic capacitance on the pin to a minimum. The compensation setting is sampled  
at start-up of the converter, so a change in the resistor during operation only has an effect on the switching  
frequency, but not on the compensation.  
To save external components, the pin can also be directly tied to VIN or GND to set a pre-defined setting. Do not  
leave the pin floating.  
The switching frequency has to be selected based on the input voltage and the output voltage to meet the  
specifications for the minimum on time and minimum off time.  
Example: VIN = 5 V, VOUT = 1 V --> duty cycle = 1 V / 5 V = 0.2  
--> ton,min = 1 / fs × 0.2  
--> fsw,max = 1 / ton,min × 0.2 = 1 / 0.075 µs × 0.2 = 2.67 MHz  
The compensation range has to be chosen based on the minimum capacitance used. The capacitance can be  
increased from the minimum value as given in 9-1, up to the maximum of 200-µF effective capacitance in  
both compensation ranges. If the capacitance of an output changes during operation, for example, when load  
switches are used to connect or disconnect parts of the circuitry, the compensation has to be chosen for the  
minimum capacitance on the output. With large output capacitance, the compensation must be done based on  
that large capacitance to get the best load transient response. Compensating for large output capacitance but  
placing less capacitance on the output can lead to instability.  
The switching frequency for the different compensation setting is determined by the following equations.  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) disabled:  
Space  
18 MHz ì kW  
RCF kW =  
- 0.18 k  
(
)
fs MHz  
(
)
(1)  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) enabled:  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
Space  
60 MHz ì kW  
RCF kW =  
- 0.6 k  
(
)
fs MHz  
(
)
(2)  
Space  
For compensation (comp) setting 2 with spread spectrum clocking (SSC) disabled:  
Space  
180 MHz ì kW  
RCF kW =  
- 1.8 k  
(
)
fs MHz  
(
)
(3)  
9-1. Switching Frequency, Compensation, and Spread Spectrum Clocking  
Minimum Output  
Capacitance  
Minimum Output  
Capacitance  
Minimum Output  
Capacitance  
RCF  
Compensation  
Switching Frequency  
For VOUT < 1 V  
For VOUT < 3.3 V  
For VOUT ≥ 3.3 V  
for smallest output capacitance  
(comp setting 1)  
1.8 MHz (10 kΩ) .. 4 MHz (4.5 kΩ)  
10 kΩ .. 4.5 kΩ  
33 kΩ .. 18 kΩ  
11 µF  
11 µF  
7 µF  
7 µF  
5 µF  
5 µF  
according to 方程式 1  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
1.8 MHz (33 kΩ) .. 4 MHz (18 kΩ)  
according to 方程式 2  
SSC enabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
1.8MHz (100 kΩ) ..4 MHz (45 kΩ)  
100 kΩ .. 45 kΩ  
tied to GND  
tied to VIN  
30 µF  
11 µF  
30 µF  
18 µF  
7 µF  
15 µF  
5 µF  
according to 方程式 3  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
internally fixed 2.25 MHz  
internally fixed 2.25 MHz  
SSC disabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
18 µF  
15 µF  
SSC enabled  
Refer to 10.1.2.2.2 for further details on the output capacitance required depending on the output voltage.  
A too-high resistor value for RCF is decoded as "tied to VIN," a value below the lowest range as "tied to GND."  
The minimum output capacitance in 9-1 is for capacitors close to the output of the device. If the capacitance is  
distributed, a lower compensation setting can be required.  
9.3.3 MODE/SYNC  
When MODE/SYNC is set low, the device operates in PWM or PFM mode, depending on the output current. The  
MODE/SYNC pin allows the user to force PWM mode when set high. The pin also allows the user to apply an  
external clock in a frequency range from 2 MHz to 4 MHz for external synchronization. Similar to COMP/FSET,  
the specifications for the minimum on time and minimum off time have to be observed when setting the external  
frequency. The external synchronization frequency applied on the MODE/SYNC pin must be 10% to 40% higher  
than the nominal internal switching frequency set by RCF (calculated with 方程式 1 to 方程式 3). Ensuring  
this makes sure that, if the external clock fails, the converter can continue normal operation with the internal  
switching frequency in a range where the compensation settings are still valid. When there is no resistor from  
COMP/FSET to GND but the pin is pulled high or low, external synchronization is not possible. If the device  
is externally synchronized, both converters are forced to run on that clock frequency preserving 180° phase  
relation. The internally generated spread spectrum clocking is turned off while running on an external clock.  
9.3.4 Spread Spectrum Clocking (SSC)  
The device offers spread spectrum clocking as an option. When SSC is enabled, the switching frequency is  
modulated in a triangular manner when in PWM mode using the internal clock. The frequency variation is  
typically between the nominal switching frequency and up to 20% above the nominal switching frequency set  
by RCF. When the device is externally synchronized by applying a clock signal to the MODE/SYNC pin, the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
TPS6244x-Q1 follows the external clock and the internal spread spectrum block is turned off. SSC is also  
disabled during soft start and PFM mode.  
9.3.5 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both  
the power FETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the  
input voltage trips below the threshold for a falling supply voltage.  
9.3.6 Power-Good Output (PG)  
Power good is an open-drain output driven by a window comparator. PG is held low when the device is:  
Disabled  
In undervoltage lockout  
In thermal shutdown  
In soft start  
When the output voltage is in regulation hence, within the window defined in the electrical characteristics, the  
output is high impedance.  
9-2. PG Status  
EN  
X
Device Status  
PG State  
undefined  
low  
VIN < 2 V  
low  
VIN ≥ 2 V  
2 V ≤ VIN ≤ UVLO OR in thermal shutdown OR VOUT is not in  
regulation OR device in soft start  
high  
high  
low  
VOUT in regulation  
high impedance  
9.3.7 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds  
170°C (typical), the device goes into thermal shutdown. Both the high-side and low-side power FETs of both  
converters are turned off and PG goes low. When TJ decreases below the hysteresis amount of typically 20°C,  
the converters resume normal operation, beginning with soft start. When both converters are in a PFM pause,  
the thermal shutdown is not active. After the PFM pause, the device needs up to 9 µs to detect a too high  
junction temperature. If the PFM burst is shorter than this delay, the device does not detect a too high junction  
temperature. As long as one converter is in PWM, thermal shutdown is always active.  
9.4 Device Functional Modes  
9.4.1 Pulse Width Modulation (PWM) Operation  
The TPS6244x-Q1 has two operating modes. Forced PWM mode is discussed in this section and PWM and  
PFM as discussed in 9.4.2.  
With the MODE/SYNC pin set to high, the TPS6244x-Q1 operates with pulse width modulation in continuous  
conduction mode (CCM). The switching frequency is either defined by a resistor from the COMP pin to GND or  
by an external clock signal applied to the MODE/SYNC pin. With an external clock applied to MODE/SYNC, the  
TPS6244x-Q1 follows the frequency applied to the pin. The frequency needs to be in a range the device can  
operate at, taking the minimum on time into account.  
9.4.2 Power Save Mode Operation (PWM and PFM)  
When the MODE/SYNC pin is low, power save mode is allowed. The device operates in PWM mode as long as  
the peak inductor current is above the PFM threshold of approximately 0.8 A. When the peak inductor current  
drops below the PFM threshold, the device starts to skip switching pulses. In power save mode, the switching  
frequency decreases with the load current maintaining high efficiency.  
9.4.3 100% Duty-Cycle Operation  
The duty cycle of a buck converter operated in PWM mode is given as D = VOUT / VIN. The duty cycle increases  
as the input voltage comes close to the output voltage and the off time gets smaller. When the minimum off time  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
of 30 ns (typical) is reached, the TPS6244x-Q1 skips switching cycles while it approaches 100% mode. In 100%  
mode, the device keeps the high-side switch on continuously. The high-side switch stays turned on as long as  
the output voltage is below the target. In 100% mode, the low-side switch is turned off. The maximum dropout  
voltage in 100% mode is the product of the on-resistance of the high-side switch plus the series resistance of the  
inductor and the load current.  
9.4.4 Current Limit and Short Circuit Protection  
The TPS6244x-Q1 is protected against overload and short circuit events. The converter is not switching with the  
fixed frequency when in current limit. The converter resumes the fixed-frequency operation when the converter  
leaves current limit condition. If the inductor current exceeds the current limit, ILIMH, the high-side switch is turned  
off and the low-side switch is turned on to ramp down the inductor current. The high-side switch turns on again  
only if the current in the low-side switch has decreased below the low-side current limit, which can cause bursts  
or single pulses between the high-side and low-side current limit. Due to internal propagation delay, the actual  
current can exceed the static current limit. The dynamic current limit is given as:  
V
L
Ipeak(typ) = ILIMH  
+
×tPD  
L
(4)  
where  
ILIMH is the static current limit as specified in the electrical characteristics.  
L is the effective inductance at the peak current.  
VL is the voltage across the inductor (VIN – VOUT).  
tPD is the internal propagation delay of typically 50 ns.  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
V
IN -VOUT  
Ipeak(typ) = ILIMH  
+
×50ns  
L
(5)  
9.4.5 Foldback Current Limit and Short Circuit Protection  
Foldback current limit and short circuit protection are valid for devices where foldback current limit is enabled.  
When the TPS6244x-Q1 detects current limit for more than 1024 subsequent switching cycles, the device  
reduces the current limit from its nominal value to typically 1.3 A (TPS62441-Q1) and 1.45 A (TPS62442-Q1).  
Foldback current limit is left when the current limit indication goes away. If device operation continues in current  
limit, it would, after 3072 switching cycles, try again for full current limit for 1024 switching cycles.  
9.4.6 Output Discharge  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the  
device is being disabled but also to keep the output voltage close to 0 V when the device is off. The output  
discharge feature is only active once the TPS6244x-Q1 has been enabled at least once since the supply voltage  
was applied. The discharge function is enabled as soon as the device is disabled, in thermal shutdown, or  
in undervoltage lockout. The minimum supply voltage required for the discharge function to remain active is  
typically 2 V. Output discharge is not activated during a current limit or foldback current limit event.  
9.4.7 Soft Start  
The internal soft-start circuitry controls the output voltage slope during start-up, which avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high  
impedance power sources or batteries. When EN1 and EN2 are set high, the device starts switching after tDelay  
.
The output voltage is ramped with a slope defined by tRamp  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Programming the Output Voltage  
The output voltage of the TPS6244x-Q1 is adjustable. The device can be programmed for output voltages from  
0.6 V to 5.5 V using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600 mV. The  
value of the output voltage is set by the selection of the resistor divider from 方程式 6. Choose resistor values  
that allow a current of at least 6 µA, meaning the value of R2 must not exceed 100 kΩ. Lower resistor values are  
recommended for the highest accuracy and most robust design.  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(6)  
10.1.2 External Component Selection  
10.1.2.1 Inductor Selection  
The TPS6244x-Q1 is designed for a nominal 0.47-µH inductor with a switching frequency of typically 2.25 MHz.  
Larger values can be used to achieve a lower inductor current ripple but they can have a negative impact on  
efficiency and transient response. Smaller values than 0.47 µH cause a larger inductor current ripple, which  
causes larger negative inductor current in forced PWM mode at low or no output current. For a higher or lower  
nominal switching frequency, the inductance must be changed accordingly.  
The inductor selection is affected by several effects like the following:  
Inductor ripple current  
Output ripple voltage  
PWM-to-PFM transition point  
Efficiency  
In addition, the inductor selected has to be rated for appropriate saturation current and DC resistance (DCR). 方  
程式 7 calculates the maximum inductor current.  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(7)  
(8)  
V
OUT  
æ
ö
V
1-  
OUT × ç  
÷
IN  
1
V
è
Lmin  
ø
DIL(max)  
=
×
f
SW  
where  
IL(max) is the maximum inductor current.  
ΔIL(max) is the peak-to-peak inductor ripple current.  
Lmin is the minimum inductance at the operating point.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
 
TPS62441-Q1, TPS62442-Q1  
www.ti.com.cn  
Type  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
10-1. Typical Inductors  
Nominal Switching  
Dimensions  
[L × B × H] mm  
Inductance [µH]  
Current [A](1)  
For Device  
Manufacturer(2)  
Frequency  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
XEL3520-801ME  
XEL3520-561ME  
XEL3515-561ME  
XFL3012-681ME  
XPL2010-681ML  
0.80 µH, ±20%  
0.56 µH, ±20%  
0.56 µH, ±20%  
0.68 µH, ±20%  
0.68 µH, ±20%  
2.0  
2.4  
4.5  
2.1  
1.5  
TPS62441-Q1  
TPS62441-Q1  
TPS62442-Q1  
TPS62441-Q1  
TPS62441-Q1  
3.5 × 3.2 × 2.0  
3.5 × 3.2 × 2.0  
3.5 × 3.2 × 1.5  
3.0 × 3.0 × 1.2  
2 × 1.9 × 1  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
DFE252012PD-  
R68M  
0.68 µH, ±20%  
0.47 µH, ±20%  
0.68 µH, ±20%  
0.47 µH, ±20%  
see data sheet  
see data sheet  
see data sheet  
see data sheet  
TPS62442-Q1  
TPS62442-Q1  
TPS62441-Q1  
TPS62442-Q1  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.5 × 2 × 1.2  
2.5 × 2 × 1.2  
2 × 1.6 × 1.2  
2 × 1.6 × 1.2  
Murata  
Murata  
Murata  
Murata  
DFE252012PD-  
R47M  
DFE201612PD-  
R68M  
DFE201612PD-  
R47M  
(1) Lower of IRMS at 20°C rise or ISAT at 20% drop.  
(2) See the Third-Party Products Disclaimer.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. TI recommends adding a margin of approximately 20%. A larger inductor value is  
also useful to get lower ripple current, but increases the transient response time and size as well.  
10.1.2.2 Capacitor Selection  
10.1.2.2.1 Input Capacitor  
For most applications, 10-µF nominal is sufficient and is recommended. The input capacitor buffers the input  
voltage for transient events and also decouples the converter from the supply. A low-ESR multilayer ceramic  
capacitor (MLCC) is recommended for best filtering and must be placed between VIN and GND as close as  
possible to those pins.  
10.1.2.2.2 Output Capacitor  
The architecture of the TPS6244x-Q1 allows the use of tiny ceramic output capacitors with low-equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, use X7R or X5R  
dielectric. Using a higher value has advantages like smaller voltage ripple and a tighter DC output accuracy in  
power save mode. By changing the device compensation with a resistor from COMP/FSET to GND, the device  
can be compensated in three steps based on the minimum capacitance used on the output. The maximum  
capacitance is 200 µF in any of the compensation settings.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2 Typical Application  
L1  
VIN  
TPS6244x-Q1  
VOUT1  
0.47µH  
2.75V - 6V  
VIN1  
VIN2  
EN1  
SW1  
FB1  
CFF1  
COUT1  
2 x 10µF  
CIN1, CIN2  
R1  
R2  
2 x 4.7 µF  
EN2  
L2  
MODE/SYNC  
0.47µH  
VOUT2  
SW2  
CFF2  
V+  
R3  
COUT2  
FB2  
PG1  
2 x 10µF  
R4  
COMP/FSET  
R5  
RCF  
V+  
R6  
PG2  
GND  
GND  
Copyright © 2019, Texas Instruments Incorporated  
10-1. Typical Application Schematic  
10.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
10.2.2 Detailed Design Procedure  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(9)  
With VFB = 0.6 V:  
10-2. Setting the Output Voltage  
Nominal Output Voltage VOUT  
R1, R3  
R2, R4  
51 kΩ  
30 kΩ  
47 kΩ  
68 kΩ  
51 kΩ  
40.2 kΩ  
15 kΩ  
19.6 kΩ  
CFF1, CFF2  
Exact Output Voltage  
0.8 V  
1.0 V  
1.1 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
16.9 kΩ  
20 kΩ  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
0.7988 V  
1.0 V  
39.2 kΩ  
68 kΩ  
1.101 V  
1.2 V  
76.8 kΩ  
80.6 kΩ  
47.5 kΩ  
88.7 kΩ  
1.5 V  
1.803 V  
2.5 V  
3.315 V  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves  
All plots have been taken with a nominal switching frequency of 2.25 MHz when set to PWM mode, unless otherwise noted.  
The BOM is according to 8-1.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D000  
D002  
D004  
D001  
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-2. Efficiency vs Output Current  
10-3. Efficiency vs Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
VIN = 2.75 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D003  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-4. Efficiency vs Output Current  
10-5. Efficiency vs Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.75 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D005  
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
PWM  
TA = 25°C  
10-6. Efficiency vs Output Current  
10-7. Efficiency vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D006  
D007  
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
10-8. Efficiency vs Output Current  
10-9. Efficiency vs Output Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D008  
D009  
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
10-10. Efficiency vs Output Current  
10-11. Efficiency vs Output Current  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.29  
3.28  
3.27  
3.29  
3.28  
3.27  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Ouput Current (A)  
1
100m  
1m  
10m 100m  
Ouput Current (A)  
1
D010  
D011  
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-12. Output Voltage vs Output Current  
10-13. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
1.84  
1.836  
1.832  
1.828  
1.824  
1.82  
1.84  
1.836  
1.832  
1.828  
1.824  
1.82  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.816  
1.812  
1.816  
1.812  
1.808  
1.804  
1.8  
1.808  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.804  
1.8  
1.796  
1.792  
1.796  
1.792  
100m  
1m  
10m 100m  
Ouput Current (A)  
1
100m  
1m  
10m 100m  
Ouput Current (A)  
1
D012  
D014  
D016  
D013  
D015  
D017  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-14. Output Voltage vs Output Current  
10-15. Output Voltage vs Output Current  
1.2275  
1.225  
1.2225  
1.22  
1.21  
1.2075  
1.205  
1.2025  
1.2  
1.2175  
1.215  
1.2125  
1.21  
1.1975  
1.195  
1.1925  
1.19  
1.2075  
1.205  
1.2025  
1.2  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.1875  
1.185  
1.1825  
1.1975  
1.195  
1.1925  
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
PWM  
TA = 25°C  
10-16. Output Voltage vs Output Current  
10-17. Output Voltage vs Output Current  
1.03  
1.0275  
1.025  
1.0225  
1.02  
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
1.0175  
1.015  
1.0125  
1.01  
0.9875  
0.985  
0.9825  
0.98  
0.9775  
0.975  
0.9725  
0.97  
1.0075  
1.005  
1.0025  
1
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
0.9975  
0.995  
0.9925  
0.9675  
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
10-18. Output Voltage vs Output Current  
10-19. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
0.634  
0.63  
0.606  
0.605  
0.604  
0.603  
0.602  
0.601  
0.6  
0.626  
0.622  
0.618  
0.614  
0.61  
0.599  
0.598  
0.597  
0.596  
0.595  
0.594  
0.606  
0.602  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
0.598  
VIN = 4.0 V  
0.594  
100m  
1m  
10m 100m  
Ouput Current (A)  
1
100m  
1m  
10m 100m  
Ouput Current (A)  
1
D018  
D019  
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
10-20. Output Voltage vs Output Current  
10-21. Output Voltage vs Output Current  
VOUT = 3.3 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-23. Load Transient Response  
10-22. Load Transient Response  
VOUT = 1.8 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-24. Load Transient Response  
10-25. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.2 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-26. Load Transient Response  
10-27. Load Transient Response  
VOUT = 1.0 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-28. Load Transient Response  
10-29. Load Transient Response  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-31. Load Transient Response  
10-30. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 3.3 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-33. Line Transient Response  
10-32. Line Transient Response  
VOUT = 1.8 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-35. Line Transient Response  
10-34. Line Transient Response  
VOUT = 1.2 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 1.2 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-37. Line Transient Response  
10-36. Line Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.0 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 1.0 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-39. Line Transient Response  
10-38. Line Transient Response  
VOUT = 0.6 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 0.6 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-41. Line Transient Response  
10-40. Line Transient Response  
VOUT = 3.3 V  
IOUT = 3 A  
10-43. Output Voltage Ripple  
PWM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 0.3 A  
10-42. Output Voltage Ripple  
PFM  
TA = 25°C  
VIN = 5.0 V  
BW = 20 MHz  
VIN = 5.0 V  
BW = 20 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.8 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
BW = 20 MHz  
VOUT = 1.2 V  
IOUT = 0.4 A  
TA = 25°C  
VIN = 3.3 V  
10-44. Output Voltage Ripple  
10-45. Switching Waveform in PFM Mode  
VOUT = 3.3 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT1/2 = 1.8 V  
IOUT1 = 2 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
VIN = 5.0 V  
10-46. Start-Up Timing  
IOUT2 = 2 A  
10-47. Start-Up Timing  
VOUT1/2 = 1.2 V  
IOUT1 = 1 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
VOUT = 1.0 V  
IOUT1 = 3 A  
10-49. Start-Up Timing  
PWM  
TA = 25°C  
IOUT2 = 3 A  
VIN = 5.0 V  
10-48. Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 0.6V  
PWM  
TA = 25°C  
VIN = 5.0 V  
IOUT1 = 3 A  
10-50. Start-Up Timing  
11 Power Supply Recommendations  
The TPS6244x-Q1 device family has no special requirements for its input power supply. The output current of  
the input power supply needs to be rated according to the supply voltage, output voltage, and output current of  
the TPS6244x-Q1.  
12 Layout  
12.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPS6244x-Q1 demands careful attention to ensure operation and  
to get the performance specified. A poor layout can lead to issues like the following:  
Poor regulation (both line and load)  
Stability and accuracy weaknesses  
Increased EMI radiation  
Noise sensitivity  
See 12-1 for the recommended layout of the TPS6244x-Q1, which is designed for common external ground  
connections. The input capacitor should be placed as close as possible between the VIN and GND pin.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore, paths conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes)  
for wires with high dv/dt. Therefore, the input and output capacitance should be placed as close as possible  
to the IC pins and parallel wiring over long distances as well as narrow traces should be avoided. Loops that  
conduct an alternating current must outline an area as small as possible, as this area is proportional to the  
energy radiated.  
Sensitive nodes like FB need to be connected with short wires and not nearby high dv/dt signals (for example,  
SW). As they carry information about the output voltage, nodes must be connected as close as possible to the  
actual output voltage (at the output capacitor). The FB resistors, R1 and R2, as well as R3 and R4 must be kept  
close to the IC and connect directly to those pins and the system ground plane.  
The package uses the pins for power dissipation. Thermal vias on the VIN, GND, and SW pins help to spread  
the heat into the PCB.  
The recommended layout is implemented on the EVM and shown in the TPS62442EVM-122 User's Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
12.2 Layout Example  
12-1. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
TPS62441-Q1, TPS62442-Q1  
ZHCSPB1B – NOVEMBER 2021 – REVISED JULY 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此  
类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS62442EVM-122 User's Guide  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62441-Q1 TPS62442-Q1  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62441QWRQRRQ1  
TPS62442QWRQRRQ1  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RQR  
RQR  
14  
14  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
441QW  
442QW  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
OTHER QUALIFIED VERSIONS OF TPS62442-Q1 :  
Catalog : TPS62442  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62441QWRQRRQ1 VQFN-  
HR  
RQR  
RQR  
14  
14  
3000  
3000  
180.0  
8.4  
2.6  
3.0  
1.2  
4.0  
8.0  
Q1  
TPS62442QWRQRRQ1 VQFN-  
HR  
180.0  
8.4  
2.6  
3.0  
1.2  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62441QWRQRRQ1  
TPS62442QWRQRRQ1  
VQFN-HR  
VQFN-HR  
RQR  
RQR  
14  
14  
3000  
3000  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RQR 14  
2.3 x 2.7, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229224/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQR0014A  
2.4  
2.2  
A
B
PIN 1 INDEX AREA  
2.8  
2.6  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.5  
0.525  
0.325  
5X  
(0.8 MIN)  
0.875  
2X  
(0.2) TYP  
0.675  
4
7
4X (0.2 MIN)  
10X 0.5  
3
1
8
(0.16)  
PKG  
1
10  
0.575  
0.375  
6X  
0.3  
0.2  
14X  
0.1  
0.05  
C A B  
C
11  
14  
0.125  
45°  
1.125  
0.925  
4225624/B 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQR0014A  
(2.075)  
(1.225)  
(0.7375)  
14  
11  
(R0.05) TYP  
2X (0.975)  
1
3
10  
PKG  
(2.425) (2.125)  
8
14X (0.25)  
7
4
6X (0.675)  
5X (0.625)  
10X (0.5)  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225624/B 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271)  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
.
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQR0014A  
(2.075)  
(1.225)  
(0.7375)  
14  
11  
(R0.05) TYP  
2X (0.975)  
1
3
10  
PKG  
(2.425) (2.125)  
8
14X (0.25)  
7
4
6X (0.675)  
5X (0.625)  
10X (0.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 18X  
4225624/B 02/2020  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62441QWRQRRQ1

具有可调频率的汽车类 2.75V 至 6V 双路 1A 输出降压转换器 | RQR | 14 | -40 to 125
TI

TPS62442

采用 QFN 封装的 2.75V 至 6V 双路 2A 或 3A/1A 降压转换器
TI

TPS62442-Q1

具有可调频率的汽车类 2.75V 至 6V 双路 2A 或 3A/1A 输出降压转换器
TI

TPS62442QWRQRRQ1

具有可调频率的汽车类 2.75V 至 6V 双路 2A 或 3A/1A 输出降压转换器 | RQR | 14 | -40 to 125
TI

TPS62480

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选
TI

TPS62480RNCR

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选 | RNC | 16 | -40 to 125
TI

TPS62480RNCT

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选 | RNC | 16 | -40 to 125
TI

TPS624G1

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS624G10

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS624G11

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS624G12

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS624G14

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC