TPS62736 [TI]

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current; 可编程输出电压超低功耗降压转换器,具有高达50mA / 200 mA输出电流
TPS62736
型号: TPS62736
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current
可编程输出电压超低功耗降压转换器,具有高达50mA / 200 mA输出电流

转换器
文件: 总35页 (文件大小:1835K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA  
Output Current  
Check for Samples: TPS62736, TPS62737  
1
FEATURES  
APPLICATIONS  
Industry's highest efficiency at low output  
currents: > 90% with IOUT = 15 µA  
Ultra Low Power Applications  
2-Cell and 3-Cell Alkaline-Powered  
Applications  
Ultra-Low Power Buck Converter  
TPS62736 Optimized for 50 mA Output  
Current  
Energy Harvesting  
Solar Charger  
TPS62737 Optimized for 200mA Output  
Current  
Thermal Electric Generator (TEG) Harvesting  
Wireless Sensor Networks (WSN)  
Low Power Wireless Monitoring  
Environmental Monitoring  
1.3 V – 5 V Resistor Programmable Output  
Voltage Range  
2 V – 5.5 V Input Operating Range  
Bridge and Structural Health Monitoring (SHM)  
Smart Building Controls  
380 nA / 375 nA Quiescent Current During  
Active Operation for TPS62736 / TPS62737  
Portable and Wearable Health Devices  
Entertainment System Remote Controls  
10 nA Quiescent Current During Ship Mode  
Operation  
2% Voltage Regulation Accuracy  
100  
TPS62736  
95  
100% Duty Cycle (Pass Mode)  
EN1 and EN2 Control  
90  
85  
80  
75  
70  
Two Power off states:  
1) Shipmode (full power off state)  
2) Standby mode includes VIN_OK  
Indication  
Input Power Good Indication (VIN_OK)  
65  
Test Conditions:  
V
T
= 2.5V, V = 3V,  
IN  
O
Push-pull Driver  
60  
55  
= 25oC, L = 10mH (Toko DFE252012C)  
A
Resistor Programmable Threshold Level  
0.001  
0.01  
0.1  
Iout (mA)  
1
10  
100  
G000  
> 90% at  
IOUT = 15 PA  
L
10 PH  
VIN  
SW  
OUT  
IN  
VOUT  
4.7F  
22PF  
TPS62736  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
UNLESS OTHERWISE NOTED this document contains  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION  
The TPS6273X family provides a highly integrated ultra low power buck converter solution that is well suited for  
meeting the special needs of ultra low power applications such as energy harvesting. The TPS6273X provides  
the system with an externally programmable regulated supply in order to preserve the overall efficiency of the  
power management stage compared to a linear step down converter. This regulator is intended to step down the  
voltage from an energy storage element such as a battery or super capacitor in order to supply the rail to low  
voltage electronics. The regulated output has been optimized to provide high efficiency across low output  
currents (<10 µA) to high currents (200 mA).  
The TPS6273X integrates an optimized hysteretic controller for low power applications. The internal circuitry  
utilizes a time based sampling system in order to reduce the average quiescent current.  
To further assist users in the strict management of their energy budgets, the TPS6273X toggles the input power  
good indicator to signal an attached microprocessor when the voltage on the input supply has dropped below a  
pre-set critical level. This signal is intended to trigger the reduction of load currents to prevent the system from  
entering an under-voltage condition. There are also independent enable signals to allow the system to control  
whether the converter is regulating the output, only monitoring the input voltage, or shut down in an ultra-low  
quiescent sleep state.  
The input power good threshold and output regulator levels are programmed independently via external resistors.  
All the capabilities of TPS6273X are packed into a small foot-print 14-lead 3.5mm x 3.5 mm QFN package  
(RGY).  
ORDERING INFORMATION  
ORDERING  
NUMBER (TAPE  
AND REEL)  
OUTPUT  
VOLTAGE  
MAX OUTPUT  
CURRENT  
INPUT  
UVLO  
PACKAGE  
MARKING  
TA  
PART NO.  
QUANTITY  
TPS62736RGYR  
TPS62736RGYT  
TPS62737RGYR  
TPS62737RGYT  
3000  
250  
Resistor  
Programmable  
–40°C to 85°C  
–20°C to 85°C  
TPS62736(1)  
TPS62737(1)  
50 mA  
2 V  
2V  
TPS62736  
TPS62737  
3000  
250  
Resistor  
Programmable  
200 mA  
(1) The RGY package is available in tape on reel. Add R suffix to order quantities of 3000 parts per reel, T suffix for 250 parts per reel.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE(2)  
UNIT  
MIN  
MAX  
Input voltage range on IN, EN1, EN2, VRDIV, VIN_OK_SET,  
VOUT_SET, VIN_OK, OUT, SW,NC  
Pin voltage  
–0.3  
5.5  
V
TPS62736  
TPS62737  
TJ  
Peak currents  
IN, OUT  
100  
370  
125  
150  
1
mA  
mA  
°C  
°C  
kV  
V
Peak currents  
IN, OUT  
Temperature range  
Operating junction temperature range  
Storage temperature range  
–40  
–65  
TSTG  
Human Body Model - (HBM)  
Machine Model (MM)  
ESD(3)  
150  
500  
Charge Device Model - (CDM)  
V
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS/ground terminal  
(3) ESD testing is performed according to the respective JESD22 JEDEC standard.  
2
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
THERMAL INFORMATION  
RGY  
UNITS  
14-Pins  
THERMAL METRIC(1)  
θJA  
Junction-to-ambient thermal resistance  
33.7  
37.6  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
10.1  
°C/W  
0.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
10.3  
2.9  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2
NOM  
MAX  
UNIT  
IN  
IN voltage range  
5.5  
V
TPS62736 Input Capacitance  
TPS62737 Input Capacitance  
Output Capacitance  
4.7  
22  
10  
CIN  
COUT  
μF  
μF  
22  
13  
10  
R1  
R2  
R3  
+
+
Total Resistance for setting reference voltage  
MΩ  
μH  
TPS62736 Inductance  
4.7  
10  
LBUCK  
TPS62737 Inductance  
TPS62736 Operating free air ambient temperature  
TPS62737 Operating free air ambient temperature  
Operating junction temperature  
–40  
–20  
–40  
85  
85  
TA  
TJ  
°C  
°C  
105  
ELECTRICAL CHARACTERISTICS  
Over recommended ambient temperature range, typical values are at TA = 25°C. Unless otherwise noted, specifications apply  
for conditions of VIN = 4.2 V, VOUT = 1.8 V External components, CIN = 4.7 µF for TPS62736 and 22 µF for TPS62737 , LBUCK  
= 10 µH, COUT = 22 µF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENTS  
TPS62736 Buck enabled state  
(EN1 = 0, EN2 = 1)  
380  
550  
TPS62736 Buck disabled VIN_OK active state  
(EN1 = 0, EN2 = 0)  
nA  
340  
10  
520  
65  
TPS62736 Ship mode state (EN1 = 1, EN2 = x)  
IQ  
VIN = 2 V, No load on VOUT  
TPS62737 Buck enabled state  
(EN1 = 0, EN2 = 1)  
375  
600  
TPS62737 Buck disabled VIN_OK active state  
(EN1 = 0, EN2 = 0)  
nA  
345  
11  
560  
45  
TPS62737 Ship mode state (EN1 = 1, EN2 = x)  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
Over recommended ambient temperature range, typical values are at TA = 25°C. Unless otherwise noted, specifications apply  
for conditions of VIN = 4.2 V, VOUT = 1.8 V External components, CIN = 4.7 µF for TPS62736 and 22 µF for TPS62737 , LBUCK  
= 10 µH, COUT = 22 µF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VBIAS  
Output regulation reference  
1.205  
–2%  
1.21  
0%  
1.217  
2%  
V
IOUT = 10 mA;  
1.3 V < VOUT < 3.3 V  
TPS62736 Output regulation (Spec does not include  
the resistor accuracy error)  
IOUT = 100 mA;  
1.3 V < VOUT < 3.3 V;  
TPS62737 Output regulation (Spec does not include  
the resistor accuracy error)  
–2%  
0%  
0.01  
0.31  
0.01  
0.01  
20  
2%  
IOUT = 100 µA;  
VIN = 2.4 V to 5.5 V  
TPS62736 Output line regulation  
TPS62737 Output line regulation  
TPS62736 Output load regulation  
TPS62737 Output load regulation  
TPS62736 Output ripple  
%/V  
IOUT = 10 mA;  
VIN = 2.3 V to 5.5 V  
IOUT = 100 µA to 50 mA,  
VIN = 2.2 V  
VOUT  
%/mA  
%/mA  
mVpp  
mVpp  
V
IOUT = 100 µA to 200 mA,  
VIN = 2.2 V; -20 °C < TA < 85°C  
VIN = 4.2V, IOUT = 1 mA,  
COUT = 22 μF  
VIN = 4.2V, IOUT = 1 mA,  
COUT = 22 μF  
TPS62737 Output ripple  
40  
Programmable voltage range for output voltage  
threshold  
IOUT = 10 mA  
1.3  
VIN - 0.2  
30  
VIN = 2.1 V, VOUT(SET) = 2.5 V,  
IOUT = 10 mA, 100% duty cycle  
TPS62736 Drop-out-voltage when VIN is less than  
VOUT(SET)  
24  
mV  
VDO  
VIN = 2.1 V, VOUT(SET) = 2.5 V,  
IOUT = 100 mA, 100% duty cycle  
TPS62737 Drop-out-voltage when VIN is less than  
VOUT(SET)  
180  
220  
mV  
TPS62736, COUT = 22 µF  
TPS62737, COUT = 22 µF  
COUT = 22 µF  
400  
300  
100  
μs  
μs  
Startup time with EN1 low and EN2 transition to high  
(Standby Mode)  
tSTART-STBY  
tSTART-SHIP  
Startup time with EN2 high and EN1 transition from  
high to low (Ship Mode)  
ms  
POWER SWITCH  
TPS62736 High side switch ON resistance  
VIN = 3 V  
2.4  
1.1  
1.8  
0.9  
3
1.5  
2.2  
1.3  
Ω
Ω
Ω
Ω
TPS62736 Low side switch ON resistance  
TPS62737 High side switch ON resistance  
TPS62737 Low side switch ON resistance  
VIN = 3 V  
RDS(on)  
VIN = 2.1 V  
VIN = 2.1 V  
2.4 V < VIN < 5.25 V;  
1.3 V < VOUT < 3.3 V  
TPS62736 Cycle-by-cycle current limit  
68  
86  
100  
370  
mA  
ILIM  
2.4 V < VIN < 5.25 V;  
1.3 V < VOUT < 3.3 V;  
-20 °C < TA < 85°C  
TPS62737 Cycle-by-cycle current limit  
Max switching frequency  
295  
340  
2
mA  
fSW  
MHz  
INPUT  
VIN-UVLO  
VIN-OK  
Input under voltage protection  
VIN falling  
1.91  
2
1.95  
2
5.5  
2
V
V
Input power good programmable voltage range  
TPS62736 Accuracy of VIN-OK setting  
TPS62737 Accuracy of VIN-OK setting  
Fixed hysteresis on VIN_OK threshold, OK_HYST  
VIN-OK output high threshold voltage  
VIN-OK output low threshold voltage  
VIN increasing  
-2  
%
VIN-OK-ACC  
-3  
3
VIN-OK-HYS  
VIN_OK-OH  
VIN_OK-OL  
EN1 and EN2  
VIH  
VIN increasing  
Load = 10 µA  
40  
mV  
V
VIN - 0.2  
VIN - 0.2  
0.1  
0.2  
V
Voltage for EN High setting. Relative to VIN  
Voltage for EN Low setting.  
V
V
VIN = 4.2V  
VIL  
4
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
PIN ASSIGNMENTS  
TPS62736 RGY PACKAGE  
(TOP VIEW)  
1
14  
2
3
4
5
6
13  
12  
SW  
NC  
NC  
VSS  
11 OUT  
NC  
10  
EN1  
VIN_OK  
VOUT_SET  
9
EN2  
7
8
PIN DESCRIPTION  
PIN  
NO. NAME  
I/O Type  
Input  
Description  
1
2
3
4
5
IN  
Input supply to the buck regulator  
Connect to VSS  
NC  
NC  
NC  
EN1  
Input  
Input  
Connect to VSS  
Input  
Connect to VSS  
Input  
Digital input for chip enable, standby, and ship-mode. EN1 = 1 sets ship mode independent of  
EN2. EN1=0, EN2 = 0 disables the buck converter and sets standby mode. EN1=0, EN2=1  
enables the buck converter. Do not leave either pin floating.  
6
EN2  
Input  
7
VRDIV  
Output  
Input  
Resistor divider biasing voltage  
8
VIN_OK_SET  
VOUT_SET  
VIN_OK  
OUT  
Resistor divider input for VIN_OK threshold. Pull to VIN to disable. Do not leave pin floating.  
Resistor divider input for VOUT regulation level  
Push-pull digital output for power good indicator for the input voltage. Pulled up to VIN pin.  
Step down (buck) regulator output  
9
Input  
10  
11  
12  
13  
14  
15  
Output  
Output  
Input  
VSS  
Ground connection for the device  
SW  
Input  
Inductor connection to switching node  
NC  
Input  
Connect to VSS  
Thermal Pad  
Input  
Connect to VSS  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TPS62737 RGY PACKAGE  
(TOP VIEW)  
1
14  
2
3
4
5
6
13  
12  
SW  
SW  
VSS  
NC  
VSS  
11 OUT  
10  
EN1  
VIN_OK  
VOUT_SET  
9
EN2  
7
8
PIN DESCRIPTION  
PIN  
NO. NAME  
IN  
I/O Type  
Input  
Description  
1
Input supply to the buck regulator  
Inductor connection to switching node  
Ground connection for the device  
Connect to VSS  
2, 13 SW  
3, 12 VSS  
4, 14 NC  
Input  
Input  
Input  
5
6
EN1  
EN2  
Input  
Digital input for chip enable, standby, and ship-mode. EN1 = 1 sets ship mode independent of  
EN2. EN1=0, EN2 = 0 disables the buck converter and sets standby mode. EN1=0, EN2=1  
enables the buck converter. Do not leave either pin floating.  
Input  
7
8
VRDIV  
Output  
Input  
Resistor divider biasing voltage  
VIN_OK_SET  
VOUT_SET  
VIN_OK  
Resistor divider input for VIN_OK threshold. Pull to VIN to disable. Do not leave pin floating.  
Resistor divider input for VOUT regulation level  
Push-pull digital output for power good indicator for the input voltage. Pulled up to VIN pin.  
Step down (buck) regulator output  
9
Input  
10  
11  
15  
Output  
Output  
Input  
OUT  
Thermal Pad  
Connect to VSS  
6
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
 
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
FUNCTIONAL BLOCK DIAGRAM  
IN  
VSS  
SW  
OUT  
Buck  
Controller  
EN2  
VIN > UV?  
TPS6273x Functional Block  
Diagram  
VOUT_SET  
VIN_OK  
VIN_OK_SET  
+
Input Threshold Control  
OK  
Vref  
Nano-Power Management  
and Reference Generation  
Vref  
VIN_UV  
EN1  
VRDIV  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL APPLICATION SCHEMATIC  
TPS62736  
L
10 PH  
IN  
SW  
VIN  
System Load  
C
IN1  
C
IN2  
OUT  
4.7PF 0.1PF  
COUT  
22PF  
Buck  
Controller  
GPIO1  
VIN_OK  
EN1  
VSS  
Host  
GPIO2  
GPIO2  
EN2  
VRDIV  
R3  
VOUT_SET  
Nano-Power  
Management  
R2  
R1  
VIN_OK_SET  
Figure 1. Typical Application Circuit for a 3-resistor String  
TPS62737  
L
10 PH  
IN  
SW  
VIN  
System Load  
C
IN1  
C
IN2  
OUT  
22PF 0.1PF  
COUT  
22PF  
Buck  
Controller  
GPIO1  
VIN_OK  
EN1  
VSS  
Host  
GPIO2  
GPIO2  
EN2  
VRDIV  
R3  
VOUT_SET  
Nano-Power  
Management  
R2  
R1  
VIN_OK_SET  
Figure 2. Typical Application Circuit  
8
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
 
 
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
TPS62736  
L
10 PH  
IN  
SW  
VIN  
System Load  
C
IN1  
C
IN2  
OUT  
4.7PF 0.1PF  
COUT  
22PF  
Buck  
Controller  
GPIO1  
VIN_OK  
EN1  
VSS  
Host  
GPIO2  
GPIO2  
EN2  
VRDIV  
R3  
VOUT_SET  
Nano-Power  
Management  
R2  
R1  
VIN_OK_SET  
R4  
Figure 3. Typical Application Circuit for a 4-resistor String  
TPS62736  
L
10 PH  
IN  
SW  
VIN  
System Load  
C
IN1  
C
IN2  
OUT  
4.7PF 0.1PF  
COUT  
22PF  
Buck  
Controller  
GPIO1  
VIN_OK  
EN1  
VSS  
Host  
GPIO2  
GPIO2  
EN2  
VRDIV  
R3  
R4  
VOUT_SET  
Nano-Power  
Management  
VIN_OK_SET  
VIN  
Figure 4. Typical Application Circuit for Disabling VIN_OK  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS62736 TPS62737  
 
 
 
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS  
Table of Graphs for TPS62736  
Unless otherwise noted, graphs were taken using Figure 1 with L = Toko 10 µH DFE252012C  
FIGURE  
vs. Output Current  
VO = 2.5 V Efficiency  
Figure 5  
Figure 6  
vs. Input Voltage  
vs. Output Current  
VO = 1.8 V Efficiency  
Figure 7  
η
vs. Input Voltage  
Figure 8  
vs. Output Current  
VO = 1.3 V Efficiency  
Figure 9  
vs. Input Voltage  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
vs. Output Current  
VO = 2.5 V  
VO = 1.8 V  
VO = 1.3 V  
vs. Input Voltage  
vs. Temperature  
vs. Output Current  
vs. Input Voltage  
vs. Temperature  
vs. Output Current  
vs. Input Voltage  
vs. Temperature  
VOUT (DC)  
VO = 2.5 V  
IOUT MAX (DC)  
Input IQ  
VO = 1.8 V  
vs. Input Voltage  
vs. Input Voltage  
VO = 1.3 V  
EN1 = 1, EN2 = 0 (Ship Mode)  
EN1 = 0, EN2 = 0 (Standby Mode)  
EN1 = 0, EN2 = 1 (Active Mode)  
vs. Output Current  
vs. Input Voltage  
vs.Output Current  
vs. Input Voltage  
RO = 50 Ω  
Switching Frequency  
Output Ripple  
VO = 2.5 V  
VO = 2.5 V  
VIN = 3 V, VO = 2.5 V  
Steady State Operation  
RO = 100 kΩ  
VIN = 3 V, VO = 1.8 V, L = 4.7 µH  
VRDIV Behavior  
RO = 50 Ω  
Power Management Response  
VO = 2.5 V  
Line Transient, VIN = 3.0V -> 5.0V,  
ROUT = 50 Ω  
Figure 35  
Figure 36  
Load Transient, VIN = 4.0V, ROUT  
=
Transient Response  
Startup Behavior  
VO = 2.5 V  
none -> 50 Ω  
IR Pulse Transient, VIN = 4.0V, 200mA  
transient every 1us  
Figure 37  
Figure 38  
Figure 39  
EN1 1 to 0, EN2=1 - Ship mode startup  
VIN = 4.0 V, VO = 1.8 V  
EN1 = 0, EN2 0 to 1 - Standy mode  
startup  
10  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
98  
96  
94  
92  
90  
88  
IO = 0.1 mA  
IO =1mA
IO = 10 mA  
IO = 45 mA  
V=4.2V  
IN  
Test Conditions:  
VO = 2.5 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
Test Conditions:  
VO = 2.5 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C  
V
V
V
= 3.6 V  
IN  
= 3 V  
= 2.7 V  
IN  
IN  
0.001  
0.01  
0.1  
IOUT (mA)  
1
10  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C001  
C002  
VIN (V)  
Figure 5. Efficiency Vs Output Current, VOUT = 2.5 V  
Figure 6. Efficiency vs Input Voltage, VOUT = 2.5 V  
100  
100  
98  
96  
94  
92  
90  
88  
86  
84  
IO =0.1mA  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
Test Conditions:  
VO = 1.8 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
I
= 1 mA  
O
I
= 10 mA  
O
I
= 45 mA  
O
VIN =4.2V  
VIN =3.6V  
VIN =3V
Test Conditions:  
VO = 1.8 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
VIN =2.1V  
0.001  
0.01  
0.1  
IOUT (mA)  
1
10  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C003  
C004  
VIN (V)  
Figure 7. Efficiency Vs Output Current, VOUT = 1.8 V  
Figure 8. Efficiency vs Input Voltage, VOUT = 1.8 V  
100  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
IO =0.1mA  
IO = 1 mA  
IO = 10 mA  
IO = 45 mA  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
Test Conditions:  
VO = 1.3 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
VIN=4.2V  
Test Conditions:  
VO = 1.3 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
V
V
V
= 3.6 V  
IN  
= 3 V  
IN  
= 2.1 V  
IN  
0.001  
0.01  
0.1  
IOUT (mA)  
1
10  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C00  
C006  
VIN (V)  
Figure 9. Efficiency Vs Output Current, VOUT = 1.3 V  
Figure 10. Efficiency vs Input Voltage, VOUT = 1.3 V  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
2.520  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
2.515  
2.510  
2.505  
IO = 0.1 mA  
IO =1mA
IO =10mA  
IO =45mA  
VIN = 4.2 V  
Test Conditions:  
VO = 2.5 V, TA = 25ƒC  
Test Conditions:  
VO = 2.5 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
2.500  
2.495  
VIN=3.6V  
V
V
= 3 V  
L = 10 µH (Toko DFE252012C)  
IN  
= 2.7 V  
IN  
0.001  
0.01  
0.1  
IOUT (mA)  
1
10  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C007  
C008  
VIN (V)  
Figure 11. Output Voltage vs Output Current. VOUT = 2.5 V  
Figure 12. Output Voltage vs Input Voltage, VOUT = 2.5 V  
2.525  
1.805  
Test Conditions:  
VO = 2.5 V, VIN = 3 V  
2.520  
1.800  
1.795  
1.790  
1.785  
1.780  
L = 10 µH (Toko DFE252012C)  
2.515  
2.510  
2.505  
2.500  
I
= 1 mA  
O
VIN =4.2V  
2.495  
2.490  
2.485  
Test Conditions:  
VO = 1.8 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
V
V
V
= 3.6 V  
IN
= 3 V  
IN
= 2.7 V  
IN
I
= 10 mA  
O
I
= 50 mA  
O
±40  
±20  
0
20  
40  
60  
80  
0.001  
0.01  
0.1  
IOUT (mA)  
1
10  
100  
C009  
C010  
Temperature (ƒC)  
Figure 13. Output Voltage vs Temperature, VOUT = 2.5 V  
Figure 14. Output Voltage vs Output Current,  
VOUT = 1.8 V  
1.815  
1.805  
1.8  
IO =0.1mA  
= 1 mA  
Test Conditions:  
VO = 1.8 V, VIN = 3 V  
L = 10 µH (Toko DFE252012C)  
I
O
1.81  
1.805  
1.8  
I
= 10 mA  
O
= 45 mA  
I
O
1.795  
1.79  
1.785  
1.78  
1.795  
1.79  
Test Conditions:  
VO = 1.8 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
I
= 1 mA  
O
1.785  
1.78  
I
= 10 mA  
O
I
= 50 mA  
O
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
±40  
±20  
0
20  
40  
60  
80  
C011  
C012  
VIN (V)  
Temperature (ƒC)  
Figure 15. Output Voltage vs Input Voltage, VOUT = 1.8 V  
Figure 16. Output Voltage vs Temperature, VOUT = 1.8 V  
12  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
www.ti.com  
1.303  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
1.305  
1.3  
1.301  
1.299  
1.295  
1.29  
1.285  
1.28  
1.297  
1.295  
1.293  
V
V
V
V
= 4.2 V  
IN  
IO =1mA
IO = 10 mA  
IO = 0.1 mA  
Test Condition:  
VO = 1.3 V, TA = 25ƒC  
L = 10 µH (Toko DFE252012C)  
Test Conditions:  
VO = 1.3 V, TA = 25ƒƒC  
L = 10 uH (Toko DFE252012C)  
= 3 V  
IN  
1.291  
= 3.6 V  
IN  
IO = 45 mA  
= 2.1 V  
IN  
1.289  
0.001  
0.01  
0.1  
IOUT (mA)  
1
10  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C013  
C014  
VIN (V)  
Figure 17. Output Voltage vs Output Current, VOUT = 1.3 V  
Figure 18. Output Voltage vs Input Voltage, VOUT = 1.3 V  
1.305  
100  
Test Conditions:  
VO = 2.5 V ± 100 mV  
L = 10 µH (Toko DFE252012C)  
Test Conditions:  
VO =1.3 V, VIN = 3 V  
L = 10 µH (Toko DFE252012C)  
80  
60  
40  
20  
0
1.300  
1.295  
1.290  
TA = ±40ƒC  
I
= 1 mA  
TA = 0ƒC  
O
T
T
= 25ƒC  
IO = 10 mA  
A
I
= 50 mA  
= 85ƒC  
O
A
1.285  
-40  
-20  
0
20  
40  
60 80  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C015  
C016  
Temperature (ƒC)  
VIN (V)  
Figure 19. Output Voltage vs Temperature, VOUT = 1.3 V  
Figure 20. Maximum Output Current vs. Input Voltage  
VOUT = 2.5 V  
100  
100  
Test Conditions:  
VO = 1.3 V ± 100 mV  
L = 10 µH (Toko DFE252012C)  
90  
90  
80  
70  
60  
50  
40  
Test Conditions:  
VO =1.8 V ± 100 mV  
L = 10 µH (Toko DFE252012C)  
80  
70  
60  
50  
40  
TA=±40ƒC  
T=±40ƒC  
A
T
T
T
= 0ƒC  
T
T
T
= 0ƒC  
A
A
= 25ƒC  
= 25ƒC  
A
A
= 85ƒC  
= 85ƒC  
A
A
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C018  
VIN (V)  
C017  
VIN (V)  
Figure 21. Maximum Output Current vs. Input Voltage,  
VOUT = 1.8 V  
Figure 22. Maximum Output Current vs. Input Voltage,  
VOUT = 1.3 V  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
450  
1200  
1000  
800  
600  
400  
200  
0
TA = 85°C  
TA = 85°C  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 55°C  
T
= 55°C  
A
A
T=25°C  
TA = 25°C  
A
T
= 0°C  
T= 0°C  
A
A
T
= ±40°C  
T
= ±40°C  
A
A
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C019  
C020  
Input Voltage (V)  
Input Voltage (V)  
Figure 23. Input Quiescent Current vs. Input Voltage  
Ship Mode  
Figure 24. Input Quiescent Current vs. Input Voltage  
Standby Mode  
1200  
1000  
800  
600  
400  
200  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
TA = 85°C  
TA=55°C  
T
R
= 1 M  
sum  
R=13Mꢀ  
sum  
= 25°C  
A
T
T
= 0°C  
A
= ±40°C  
A
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C021  
C026  
Input Voltage (V)  
Input Voltage (V)  
Figure 25. Input Quiescent Current vs. Input Voltage Active  
Mode  
Figure 26. Input Quiescent Current vs. Input Voltage Active  
Mode where RSUM = R1+R2+R3  
120  
130  
IOUT = 100 A  
VO = 1.3 V  
L = 10 PH  
VO = 1.3 V  
L = 10ꢀP+ꢀ  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 1 mA  
100  
IOUT = 10 mA  
IOUT=50mA  
80  
60  
40  
20  
0
V= 2 V  
IN  
V= 3 V  
IN  
V= 4 V  
IN  
VIN = 5 V  
0
10  
20  
30  
40  
50  
60  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C022  
C023  
Output Current (mA)  
Input Voltage (V)  
Figure 27. Major Switching Frequency vs Output Current  
Figure 28. Major Switching Frequency vs Input Voltage  
14  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
 
 
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
30  
25  
20  
15  
10  
5
25  
IOUT = 100 A  
IOUT = 1 mA  
20  
15  
10  
5
IOUT = 10 mA  
IOUT=50mA  
V= 2 V  
IN  
V= 3 V  
IN  
VO = 1.3 V  
C = 22 PF  
V= 4 V  
VO = 1.3 V  
C = 22 PF  
IN  
VIN = 5 V  
0
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
10  
20  
30  
40  
50  
60  
C024  
C025  
Input Voltage (V)  
Output Current (mA)  
Figure 29. Output Voltage Ripple vs Output Current  
Figure 30. Output Voltage Ripple vs Input Voltage  
IL  
IL  
VOUT-AC  
SW  
VOUT-AC  
SW  
10 Ps/div  
2 Ps/div  
Figure 31. Steady State Operation with RO = 50 Ω, L = 10 µH  
Figure 32. Steady State Operation with RO = 100 kΩ, L = 10  
µH  
IL  
VIN  
VOUT-AC  
VOUT  
VRDIV  
SW  
2 ms/div  
4 Ps/div  
Figure 33. Steady State Operation with RO = 50 Ω and  
Figure 34. Sampling Waveform  
L = 4.7 µH  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS62736 TPS62737  
 
 
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
VIN  
IL  
IOUT  
VOUT-AC  
SW  
VOUT-AC  
40 ms/div  
Figure 35. Line Transient Response  
10 Ps/div  
Figure 36. Load Transient Response  
IOUT  
EN1  
VOUT  
VIN_OK  
VOUT  
SW  
SW  
20 ms/div  
4 Ps/div  
Figure 37. IR Pulse Transient Response  
Figure 38. Ship-Mode Startup Behavior  
EN2  
VIN_OK  
VOUT  
SW  
400 Ps/div  
Figure 39. Standby-Mode Startup Behavior  
16  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
 
 
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
Table of Graphs for TPS62737  
Unless otherwise noted, graphs were taken using Figure 2 with L = Toko 10 µH DFE252012C  
FIGURE  
Figure 40  
Figure 41  
Figure 42  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 46  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
Figure 58  
Figure 59  
Figure 60  
Figure 61  
Figure 62  
Figure 64  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
vs. Output Current  
VO = 2.5 V Efficiency  
vs. Input Voltage  
vs. Output Current  
VO = 1.8 V Efficiency  
η
vs. Input Voltage  
vs. Output Current  
VO = 1.3 V Efficiency  
vs. Input Voltage  
vs. Output Current  
VO = 2.5 V  
VO = 1.8 V  
VO = 1.3 V  
vs. Input Voltage  
vs. Temperature  
vs. Output Current  
vs. Input Voltage  
vs. Temperature  
vs. Output Current  
vs. Input Voltage  
vs. Temperature  
VOUT (DC)  
VO = 2.5 V  
IOUT MAX (DC)  
Input IQ  
VO = 1.8 V  
vs. Input Voltage  
vs. Input Voltage  
VO = 1.3 V  
EN1 = 1, EN2 = 0 (Ship Mode)  
EN1 = 0, EN2 = 0 (Standby Mode)  
EN1 = 0, EN2 = 1 (Active Mode)  
vs. Output Current  
vs. Input Voltage  
vs.Output Current  
vs. Input Voltage  
RO = 100 kΩ  
Switching Frequency  
Output Ripple  
VO = 1.8 V  
VO = 1.8 V  
Steady State Operation  
VIN = 3.6 V, VO = 1.8 V  
VRDIV Behavior  
RO = 9 Ω  
Power Management Response  
VO = 2.5 V  
Load Transient, VIN = 3.6V, ROUT  
none -> 9 Ω  
=
Figure 68  
Figure 69  
VO = 1.8 V  
Line Transient, VIN = 3.6V -> 4.6V,  
ROUT = 9 Ω  
Transient Response  
Startup Behavior  
IR Pulse Transient, VIN = 4.0V, 200mA  
transient every 1us  
VO = 2.5 V  
Figure 70  
Figure 71  
Figure 72  
VIN = 0 V to 5 V to 0 V, VO = 1.8 V  
EN1 = 0, EN2=1  
EN1 = 1 to 0, EN2=1 - Ship mode  
startup  
VIN = 3.6 V, VO = 1.8 V  
EN1 = 0, EN2 0 to 1 - Standy mode  
startup  
Figure 73  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS62736 TPS62737  
 
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
100  
90  
80  
70  
60  
50  
40  
IO = 0.1 mA  
IO = 1 mA  
IO = 10 mA  
IO=100mA
I
= 200 mA  
O
I5
VIN = 3.0 V  
V=4.2V
IN  
V
= 5.5 V  
IN  
0.001  
0.01  
0.1  
1
10  
100  
1000  
2.5  
3
3.5  
4
4.5  
5
5.5  
C048  
C045  
IOUT (mA)  
VIN (V)  
Figure 40. Efficiency Vs Output Current, VOUT = 2.5 V  
Figure 41. Efficiency vs Input Voltage, VOUT = 2.5 V  
100  
95  
90  
85  
80  
75  
70  
100  
IO = 0.01 mA  
IO = 0.1 mA  
IO=1mA
IO=10mA
90  
80  
70  
60  
50  
40  
IO=100mA
IIO=200mA
VIN = 2.5 V  
VIN = 3.0 V  
VIN = 3.6 V  
VIN=4.2V
VIN=5.5V
0.001  
0.01  
0.1  
1
10  
100  
1000  
2
3
4
5
6
C047  
C044  
IOUT (mA)  
VIN (V)  
Figure 42. Efficiency Vs Output Current, VOUT = 1.8 V  
Figure 43. Efficiency vs Input Voltage, VOUT = 1.8 V  
100  
90  
85  
80  
75  
70  
65  
IO=0.1mA
IO=1mA
95  
90  
85  
80  
75  
70  
65  
IO=10mA
I
= 100 mA  
O
I
= 200 mA  
O
60  
55  
50  
45  
40  
VIN = 2.5 V  
VIN = 3.0 V  
VIN = 3.6 V  
VIN=4.2V
VIN=5.5V
0.001  
0.01  
0.1  
1
10  
100  
1000  
2
3
4
5
6
C046  
C043  
IOUT (mA)  
VIN (V)  
Figure 44. Efficiency Vs Output Current, VOUT = 1.3 V  
Figure 45. Efficiency vs Input Voltage, VOUT = 1.3 V  
18  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
www.ti.com  
2.53  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
2.54  
2.52  
2.5  
2.52  
2.51  
2.48  
2.46  
2.44  
2.42  
2.4  
2.5  
2.49  
VIN = 3.0 V  
2.48  
IO = 0.001 mA  
IO = 0.01 mA  
VIN = 3.6 V  
IO = 0.1 mA  
IO=10mA
IO = 1 mA  
IO = 100 mA  
2.47  
VIN = 4.2 V  
2.38  
2.36  
V=5.5V
I
= 170 mA  
I
= 200 mA  
IN  
O
O
2.46  
0.001  
0.01  
0.1  
1
10  
100  
1000  
2.5  
3
3.5  
4
4.5  
5
5.5  
C061  
C058  
IOUT (mA)  
VIN (V)  
Figure 46. Output Voltage vs Output Current. VOUT = 2.5 V  
Figure 47. Output Voltage vs Input Voltage, VOUT = 2.5 V  
2.52  
1.8  
IO = 1 mA  
1.795  
2.51  
1.79  
1.785  
1.78  
2.50  
IO = 10 mA  
2.49  
1.775  
1.77  
2.48  
VIN = 2.5 V  
IO = 100 mA  
2.47  
VIN = 3.0 V  
1.765  
1.76  
IO = 180 mA  
VIN = 3.6 V  
2.46  
2.45  
VIN = 4.2 V  
1.755  
VIN = 5.5 V  
1.75  
0.001  
0.01 0.1  
1
10  
100  
1000  
±20  
±5  
10  
25  
40  
55  
70  
85  
C020  
Temperature (oC)  
C060  
IOUT (mA)  
Figure 48. Output Voltage vs Temperature, VOUT = 2.5 V  
Figure 49. Output Voltage vs Output Current,  
VOUT = 1.8 V  
1.81  
1.8  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
IO = 1 mA  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
IO = 10 mA  
IO = 0.001 mA  
IO = 0.1 mA  
IO = 10 mA  
IO = 0.01 mA  
IO = 1 mA  
IO = 100 mA  
1.73  
1.72  
1.71  
IO = 100 mA  
IO = 180 mA  
70  
I
= 170 mA  
I
= 200 mA  
O
O
2
3
4
5
±20  
±5  
10  
25  
40  
55  
85  
C020  
Temperature (oC)  
C057  
VIN (V)  
Figure 50. Output Voltage vs Input Voltage, VOUT = 1.8 V  
Figure 51. Output Voltage vs Temperature, VOUT = 1.8 V  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
1.335  
1.33  
1.33  
1.325  
1.32  
1.325  
1.32  
1.315  
1.31  
1.305  
1.3  
1.315  
1.295  
1.29  
VIN = 2.5 V  
1.31  
1.305  
1.3  
VIN = 3.0 V  
IO = 0.001 mA  
IO = 0.01 mA  
1.285  
1.28  
VIN = 3.6 V  
IO = 0.1 mA  
IO = 1 mA  
VIN = 4.2 V  
I
= 10 mA  
I
= 100 mA  
O
O
1.275  
1.27  
I
= 170 mA  
I = 200 mA  
O
VIN = 5.5 V  
O
1.295  
0.001  
0.01 0.1  
1
10  
100  
1000  
2
3
4
5
C059  
C056  
IOUT (mA)  
VIN (V)  
Figure 52. Output Voltage vs Output Current, VOUT = 1.3 V  
Figure 53. Output Voltage vs Input Voltage, VOUT = 1.3 V  
1.325  
300  
280  
260  
240  
220  
200  
180  
IO = 1 mA  
1.320  
1.315  
1.310  
IO = 10 mA  
1.305  
1.300  
1.295  
TA = 85°C  
TA = 55°C  
1.290  
160  
140  
120  
100  
IO = 100 mA  
1.285  
TA =25°C
TA =0°C
1.280  
IO = 180 mA  
55 70  
T
= ±20°C  
A
1.275  
±20  
±5  
10  
25  
40  
85  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C020  
C020  
Temperature (oC)  
Input Voltage (V)  
Figure 54. Output Voltage vs Temperature, VOUT = 1.3 V  
Figure 55. Maximum Output Current vs. Input Voltage  
VOUT = 2.5 V  
330  
280  
230  
180  
330  
280  
230  
180  
130  
80  
TA = 85°C  
TA = 55°C  
TA = 85°C  
TA = 55°C  
130  
80  
TA =25°C
TA =0°C
TA =25°C
TA =0°C
T
= ±20°C  
A
T
= ±20°C  
A
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C020  
C020  
Input Voltage (V)  
Input Voltage (V)  
Figure 56. Maximum Output Current vs. Input Voltage,  
VOUT = 1.8 V  
Figure 57. Maximum Output Current vs. Input Voltage,  
VOUT = 1.3 V  
20  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1,200  
1,000  
800  
600  
400  
200  
0
o
TA = 85 C  
T
= 25oC  
A
T
= 0oC  
A
TA = -40oC  
TA = 85oC  
TA = 0oC  
TA = 25oC  
TA = -40oC  
4.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
5
5.5  
C054  
C055  
Input Voltage (V)  
Input Voltage (V)  
Figure 58. Input Quiescent Current vs. Input Voltage  
Ship Mode  
Figure 59. Input Quiescent Current vs. Input Voltage  
Standby Mode  
1,000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = 85oC  
800  
600  
400  
200  
0
TA = 0oC  
TA = 25oC  
VIN = 2.45 V  
VIN = 3.0 V  
TA = -40oC  
VIN = 4.2 V  
VIN = 5.5 V  
0
20  
40  
60  
80 100 120 140 160 180 200  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
C053  
C049  
Output Current (mA)  
Input Voltage (V)  
Figure 60. Input Quiescent Current vs. Input Voltage Active  
Mode  
Figure 61. Major Switching Frequency vs Output Current  
120  
70  
60  
50  
40  
30  
110  
IO = 100 mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IO = 5 mA  
IO = 10 mA  
VIN = 2.45 V  
IO = 50 mA  
20  
10  
0
IO = 500 PA  
VIN = 3.0 V  
VIN = 4.2 V  
VIN = 5.5 V  
0
20  
40  
60  
80 100 120 140 160 180 200  
2.1  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
C051  
C050  
Output Current (mA)  
Input Voltage (V)  
Figure 62. Major Switching Frequency vs Input Voltage  
Figure 63. Output Voltage Ripple vs Output Current  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS62736 TPS62737  
 
 
 
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
80  
70  
60  
IL  
VOUT  
VIN  
IO = 100 mA  
IO = 10 mA  
IO = 5 mA  
SW  
50  
40  
30  
20  
10  
0
IL  
VOUT  
VIN  
IO = 50 mA  
SW  
IO = 500 PA  
2.1  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
1 ms/div  
C052  
Input Voltage (V)  
Figure 64. Output Voltage Ripple vs Input Voltage  
Figure 65. Steady State Operation with RO = 100 kΩ  
IL  
VIN  
VOUT  
VRDIV  
VIN-OK  
SW  
VOUT  
10 μs/div  
100 ms/div  
Figure 66. Steady State Operation with RO = 9 Ω  
Figure 67. Power Management Response  
IL  
IL  
IOUT  
VOUT  
VOUT  
VSW  
VSW  
20 μs/div  
50 μs/div  
Figure 68. Load Transient Response  
Figure 69. Line Transient Response  
22  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
 
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
IOUT  
VOUT  
VOUT  
VIN  
SW  
VIN-OK  
5 μs/div  
10 s/div  
Figure 70. IR Pulse Transient Response  
Figure 71. Startup Behavior with Slow Ramping VIN, EN1=0,  
EN2=1  
EN1  
EN2  
VIN-OK  
VIN-OK  
VOUT  
VSW  
VOUT  
VSW  
200 μs/div  
20 ms/div  
Figure 72. Ship-Mode Startup Behavior  
Figure 73. Standby-Mode Startup Behavior  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS62736 TPS62737  
 
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
DETAILED PRINCIPLE OF OPERATION  
Step Down (Buck) Converter Operation  
The buck regulator in the TPS6273X takes input power from VIN, steps it down and provides a regulated voltage  
at the OUT pin. It employs pulse frequency modulation (PFM) control to regulate the voltage close to the desired  
reference voltage. The reference voltage is set by the user programmed resistor divider. The current through the  
inductor is controlled through internal current sense circuitry. The peak current in the inductor is controlled to  
maintain high efficiency of the converter across a wide input current range. The TPS62736 converter delivers an  
average output current of 50mA with a peak inductor current of 100 mA. The TPS62737 converter delivers an  
average output current of 200 mA with a peak inductor current of 370 mA.The buck regulator is disabled when  
the voltage on VIN reaches the UVLO condition. The UVLO level is continuously monitored. The buck regulator  
continues to operate in pass (100% duty cycle) mode, passing the input voltage to the output, as long as VIN is  
greater than UVLO and less than VIN minus IOUT times RDS(on) of the high-side FET (i.e., VIN - IOUT x RDS(on)-HS).  
In order to save power from being dissipated through other IC’s on this supply rail while allowing for a faster  
wake up time, the buck regulator can be enabled and disabled via the EN2 pin for systems that desire to  
completely turn off the regulated output.  
Nano-Power Management and Efficiency  
The high efficiency of the TPS6273X is achieved via the proprietary Nano-Power management circuitry and  
algorithm. This feature essentially samples and holds all references in order to reduce the average quiescent  
current. That is, the internal circuitry is only active for a short period of time and then off for the remaining period  
of time at the lowest feasible duty cycle. A portion of this feature can be observed in Figure 34 where the VRDIV  
node is monitored. Here the VRDIV node provides a connection to the input (larger voltage level) and generates  
the output reference (lower voltage level) for a short period of time. The divided down value of input voltage is  
compared to VBIAS and the output voltage reference is sampled and held to get the VOUT_SET point. Since  
this biases a resistor string, the current through these resistors is only active when the Nano-Power management  
circuitry makes the connection—hence reducing the overall quiescent current due to the resistors. This process  
repeats every 64 ms. Similarly,the VIN_OK level is monitored every 64ms, as shown in Figure 67.  
The efficiency versus output current and versus input voltage are plotted for three different output voltages for  
both the TPS62736 and TPS62737 in the Typical Characteristics section.  
All data points were captured by  
averaging the overall input current. This must be done due to the periodic biasing scheme implemented via the  
Nano-Power management circuitry. The input current efficiency data was gathered using a source meter set to  
average over at least 25 samples and at the highest accuracy sampling rate. Each data point takes a long  
period of time to gather in order to properly measure the resulting input current when calculating the efficiency.  
Programming OUT Regulation Voltage and VIN_OK  
To set the proper output regulation voltage and input voltage power good comparator, the external resistors must  
be carefully selected. Figure 1 illustrates an application diagram which uses the minimal resistor count for setting  
both VOUT and VIN_OK. Note that VBIAS is nominally 1.21V per the electrical specification table. Referring to  
Figure 1, the OUT dc set point is given by:  
æ
ç
è
ö
÷
ø
R1 + R2 + R3  
R1 + R2  
VOUT = VBIAS  
(1)  
The VIN_OK setting is given by:  
æ
ç
è
ö
÷
ø
R1 + R2 + R3  
VIN_OK = VBIAS  
R1  
(2)  
The sum of the resistors is recommended to be no greater than 13 M, that is, RSUM = R1 + R2 + R3 = 13  
M. Due to the sampling operation of the output resistors, lowering RSUM only increases quiescent current  
slightly as can be seen in Figure 26. Higher resistors may result in poor output voltage regulation and/or input  
voltage power good threshold accuracies due to noise pickup via the high impedance pins or reduction of  
effective resistance due to parasitic resistances created from board assembly residue. See Layout  
Considerations section for more details.  
If it is preferred to separate the VOUT and VIN_OK resistor strings, two separate strings of resistors could be  
used as shown in Figure 3. The OUT dc set point is then given by Equation 3:  
24  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
æ
ç
è
ö
÷
ø
R3 + R4  
VOUT = VBIAS  
R4  
(3)  
The VIN_OK setting is then given by Equation 4:  
æ
ç
è
ö
÷
ø
R1 + R2  
VIN_OK = VBIAS  
R1  
(4)  
If it is preferred to disable the VIN_OK setting, the VIN_OK_SET pin can be tied to VIN as shown in Figure 4. To  
set VOUT in this configuration, use Equation 3. To tighten the dc set point accuracy, use external resistors with  
better than 1% resistor tolerance. Since output voltage ripple has a large effect on input line regulation and the  
output load regulation, using a larger output capacitor will improve both line and load regulation.  
Enable Controls  
There are two enable pins implemented in the TPS6273X in order to maximize the flexibility of control for the  
system. The EN1 pin is considered to be the chip enable. If EN1 is set to a 1 then the entire chip is placed into  
ship mode. If EN1 is 0 then the chip is enabled. EN2 enables and disables the switching of the buck converter.  
When EN2 is low, the internal circuitry remains ON and the VIN_OK indicator still functions. This can be used to  
disable down-stream electronics in case of a low input supply condition. When EN2 is 1, the buck converter  
operates normally.  
Table 1. Enable Functionality Table  
EN1 PIN  
EN2 PIN  
FUNCTIONAL STATE  
Partial standby mode. Buck switching converter is off, but VIN_OK indication is on  
Buck mode and VIN_OK enabled  
0
0
1
0
1
x
Full standby mode. Switching converter and VIN_OK indication is off (ship mode)  
Startup Behavior  
The TPS6273X has two startup responses: 1) from the ship-mode state (EN1 transitions from high to low), and  
2) from the standby state (EN2 transitions from low to high). The first startup response out of the ship-mode  
state has the longest time duration due to the internal circuitry being disabled. This response is shown in  
Figure 38 for the TPS62736 and Figure 72 for the TPS62737. The startup time takes approximately 100ms due  
to the internal Nano-Power management circuitry needing to complete the 64 ms sample and hold cycle.  
Startup from the standby state is shown in Figure 39 for the TPS62736 and Figure 73 for the TPS62737. This  
response is much faster due to the internal circuitry being pre-enabled. The startup time from this state is  
entirely dependent on the size of the output capacitor. The larger the capacitor, the longer it will take to charge  
during startup. The TPS6273X can startup into a pre-biased output voltage.  
Steady State Operation and Cycle by Cycle Behavior  
The steady state operation at full load is shown in Figure 31 for the TPS62736 and Figure 66 for TPS62737.  
This plot highlights the inductor current waveform, the output voltage ripple, and the switching node. The output  
voltage is maintained by charging and discharging the output capacitor at a primary duty cycle (major frequency)  
which in turn dictates the output voltage ripple frequency. When VOUT is increasing in value, the output  
capacitor is charged by the hysteretic buck controller. This is achieved by controlling the peak cycle-by-cycle  
inductor current to ILIM. The cycle-by-cycle current is maintained by turning on and off the high side FET at a  
secondary duty cycle (minor frequency). When VOUT reaches a peak value, all hysteretic control is disabled until  
a minimum value is reached. The rate at which the converter stays off is dictated by the load and the size of the  
output capacitor. At heavier output loads (larger output current), the time the converter is off is smaller when  
compared to light load conditions. The light load condition is shown in Figure 32 for the TPS62736 and  
Figure 65 for the TPS62737. Note that the converter is inactive for a longer period of time when compared to the  
active time.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPS62736 TPS62737  
 
 
TPS62736  
TPS62737  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
www.ti.com  
The minor switching frequency is of concern when choosing the inductor. This maximum switching frequency is  
1 MHz. The major switching frequency dictates the voltage ripple frequency. Figure 27 and Figure 28 show the  
major switching frequency versus load current and input voltage for the TPS62736, respectively. Figure 61 and  
Figure 62 show the major switching frequency versus load current and input voltage for the TPS62737,  
respectively.  
Inductor Selection  
The internal control circuitry is designed to control the switching behavior with a nominal inductance of 10 µH ±  
20%. The inductor's saturation current should be at least 25% higher than the maximum cycle-by-cycle current  
limit per the electrical specs table (ILIM) in order to account for load transients. Since this device is a hysteretic  
controller, it is a naturally stable system (single order transfer function). However, the smaller the inductor value  
is, the faster the switching currents are. The speed of the peak current detect circuit sets the TPS62736  
inductor's lower bound to 4.7 µH. When using a 4.7 µH, the peak inductor current will increase when compared  
to that of a 10 µH inductor. The steady-state operation with a 4.7 µH inductor with a 50 mA load for the  
TPS62736 is shown in Figure 33.  
A list of inductors recommended for this device is shown in Table 2.  
Table 2.  
Inductance (µH)  
Dimensions (mm)  
2.0 x 2.5 x 1.2  
4.0x4.0x1.7  
Part Number  
DFE252012C-H-100M  
LPS4018-103M  
Manufacturer  
Toko  
10  
10  
Coilcraft  
Toko  
4.7 (TPS62736 only)  
2.0 x 2.5 x 1.2  
DFE252012R-H-4R7M  
Output Capacitor Selection  
The output capacitor is chosen based on transient response behavior and ripple magnitude. The lower the  
capacitor value, the larger the ripple will become and the larger the droop will be in the case of a transient  
response. It is recommended to use at least a 22 µF output capacitor for most applications.  
Input Capacitor Selection  
The bulk input capacitance is recommended to be a minimum of 4.7 µF ± 20% for the TPS62736 and 22 µF ±  
20% for the TPS62737. This bulk capacitance is used to suppress the lower frequency transients produced by  
the switching converter. There is no upper bound to the input bulk capacitance. In addition, a high frequency  
bypass capacitor of 0.1 µF is recommended in parallel with the bulk capacitor. The high frequency bypass is  
used to suppress the high frequency transients produced by the switching converter.  
Layout and PCB Assembly Considerations  
To minimize switching noise generation, the step-down converter (buck) power stage external components must  
be carefully placed. The most critical external component for a buck power stage is its input capacitor. The bulk  
input capacitor (CIN1) and high frequency decoupling capacitor (CIN2) must be placed as close as possible  
between the power stage input (IN pin 1) and ground (VSS pin 12). Next, the inductor (L1) must be placed as  
close as possible beween the switching node (SW pin 13) and the output voltage (OUT pin 11). Finally, the  
output capacitor (COUT) should be placed as close as possible between the output voltage (OUT pin 11) and  
GND (VSS pin 12). In the diagram below, the input and output capacitor grounds are connected to VSS pin 12  
through vias to the PCB's bottom layer ground plane.  
To minimize noise pickup by the high impedance voltage setting nodes (VIN_OK_SET pin 8 and VOUT_SET pin  
9), the external resistors (R1, R2 and R3) should be placed so that the traces connecting the midpoints of the  
string are as short as possible. In the diagram below, the connection to VOUT_SET is by a bottom layer trace.  
The remaining pins are either NC pins, that should be connected to the PowerPAD™ as shown below, or digital  
signals with minimal layout restrictions.  
26  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: TPS62736 TPS62737  
 
TPS62736  
TPS62737  
www.ti.com  
SLVSBO4B OCTOBER 2012REVISED JULY 2013  
In order to maximize efficiency at light load, the use of voltage level setting resistors > 1MΩ is recommended.  
However, during board assembly, contaminants such as solder flux and even some board cleaning agents can  
leave residue that may form parasitic resistors across the physical resistors and/or from one end of a resistor to  
ground, especially in humid, fast airflow environments. This can result in the voltage regulation and threshold  
levels changing significantly from those expected per the installed resistor values. Therefore, it is highly  
recommended that no ground planes be poured near the voltage setting resistors. In addition, the boards must  
be carefully cleaned, possibly rotated at least once during cleaning, and then rinsed with de-ionized water until  
the ionic contamination of that water is well above 50 MOhm. If this is not feasible, then it is recommended that  
the sum of the voltage setting resistors be reduced to at least 5X below the measured ionic contamination.  
VIAS to  
GND PLANE  
VIAS to  
GND PLANE  
CIN1  
CIN1  
VIAS to  
GND PLANE  
CIN2  
CIN2  
VIN  
VIN  
1
1
COUT  
COUT  
L1  
L1  
VOUT  
VOUT  
VIA to  
GND PLANE  
VIA to  
GND PLANE  
R3  
R1  
R3  
R1  
R2  
R2  
Figure 74. Recommended Layout, TPS62736  
Figure 75. Recommended Layout, TPS62737  
REVISION HISTORY  
Changes from Original (October 2012) to Revision A  
Page  
Changed the device From: Preview To: Active .................................................................................................................... 1  
Changes from Revision A (March 2013) to Revision B  
Page  
Added the TPS62737 Pinout information ............................................................................................................................. 6  
Added the TPS62737 Application Circuit, Figure 2 .............................................................................................................. 9  
Added graphs for TPS62737 to the Typical Characteristics ............................................................................................... 17  
Changed Figure 74 ............................................................................................................................................................. 27  
Added Figure 75 ................................................................................................................................................................. 27  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TPS62736 TPS62737  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2013  
PACKAGING INFORMATION  
Orderable Device  
TPS62736RGYR  
TPS62736RGYT  
TPS62737RGYR  
TPS62737RGYT  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGY  
14  
14  
14  
14  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
62736  
62736  
62737  
62737  
ACTIVE  
ACTIVE  
ACTIVE  
RGY  
RGY  
RGY  
250  
3000  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
Green (RoHS  
& no Sb/Br)  
-20 to 85  
Green (RoHS  
& no Sb/Br)  
-20 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2013  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62736RGYR  
TPS62736RGYT  
TPS62737RGYR  
TPS62737RGYT  
VQFN  
VQFN  
VQFN  
VQFN  
RGY  
RGY  
RGY  
RGY  
14  
14  
14  
14  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62736RGYR  
TPS62736RGYT  
TPS62737RGYR  
TPS62737RGYT  
VQFN  
VQFN  
VQFN  
VQFN  
RGY  
RGY  
RGY  
RGY  
14  
14  
14  
14  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TPS62736RGYR

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current
TI

TPS62736RGYT

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current
TI

TPS62736_14

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current
TI

TPS62737

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current
TI

TPS62737RGYR

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current
TI

TPS62737RGYT

Programmable Output Voltage Ultra-Low Power Buck Converter with up to 50mA / 200 mA Output Current
TI

TPS62740

具有 360nA Iq 的 2.2V 至 5.5V 输入、超低功耗 300mA 降压直流/直流转换器
TI

TPS62740DSSR

具有 360nA Iq 的 2.2V 至 5.5V 输入、超低功耗 300mA 降压直流/直流转换器 | DSS | 12 | -40 to 85
TI

TPS62740DSST

具有 360nA Iq 的 2.2V 至 5.5V 输入、超低功耗 300mA 降压直流/直流转换器 | DSS | 12 | -40 to 85
TI

TPS62742

具有 400mA 和集成负载开关的 3V 至 5.5V 输入、360nA Iq 降压转换器
TI

TPS62742DSSR

具有 400mA 和集成负载开关的 3V 至 5.5V 输入、360nA Iq 降压转换器 | DSS | 12 | -40 to 85
TI

TPS62742DSST

具有 400mA 和集成负载开关的 3V 至 5.5V 输入、360nA Iq 降压转换器 | DSS | 12 | -40 to 85
TI