TPS62740 [TI]

具有 360nA Iq 的 2.2V 至 5.5V 输入、超低功耗 300mA 降压直流/直流转换器;
TPS62740
型号: TPS62740
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 360nA Iq 的 2.2V 至 5.5V 输入、超低功耗 300mA 降压直流/直流转换器

转换器
文件: 总33页 (文件大小:3023K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
TPS6274x 针对低功耗应用的 360nA IQ 降压转换器  
1 特性  
3 说明  
1
输入电压 (VIN) 范围:2.2V 5.5V  
TPS6274x 是业界第一款降压转换器,此转换器特有典  
型值为 360nA 的静态电流,并且搭配微型 2.2µH 电感  
10µF 输出电容一起工作。 这款基于 DCS-  
典型值360nA 静态电流  
10µA 输出电流时的效率高达 90%  
Control™ 的全新器件将轻负载效率范围扩展至 10µA  
负载电流以下。 TPS62740 支持高达 300mA 的输出  
电流,TPS62742 支持高达 400mA 的输出电流。 此  
器件由可再充电锂离子电池,锂化学电池(例如锂亚硫  
酰氯 (Li-SOC12),锂锰电池 (Li-MnO2) 和两节或三节  
碱性电池)供电运行。 输入电压范围高达 5.5V,也实  
现由 1 USB 端口和薄膜太阳能模块供电运行。 用  
户可使用 4 VSEL 引脚在 1.8V 3.3V 范围内选择  
输出电压(步长 100mV)。 TPS6274x 搭配使用小型  
输出电容,特有低输出纹波电压和低噪声。 一旦电池  
电压接近输出电压(接近 100% 占空比),此器件进  
入无纹波 100% 模式运行,以防止输出纹波电压的增  
加。 然后,此器件停止开关,并且输出被连接至输入  
电压。 集成转换率受控负载开关特有典型值为 0.6Ω  
的导通电阻,并且将选择的输出电压分配至临时使用的  
子系统。 TPS6274 采用小型 12 引脚 2mm x 3mm2  
WSON 封装,并且支持 31mm2 的总体解决方案尺  
寸。  
高达 300mA/400mA 的输出电流  
(TPS62740/TPS62742)  
射频 (RF) 友好型 DCS-ControlTM  
高达 2MHz 的开关频率  
低输出纹波电压  
1.8V 3.3V 之间 16 个可选输出电压(步长  
100mV)  
自动转换至无纹波 100% 模式  
转换率受控的负载开关  
VOUT / LOAD 上的放电功能  
电源正常输出  
针对与微型 2.2µH 电感器和 10µF COUT 的共同运  
行进行了优化  
总体解决方案尺寸 < 31mm2  
小型 2mm x 3mm2 晶圆级小外形无引线 (WSON)  
封装  
2 应用范围  
Bluetooth® 低功耗 (Low Energy),消费类电子产品  
用射频 (RF4CE),短距离低功耗通信技术 (Zigbee)  
器件信息(1)  
工业用仪表计量  
能量采集  
器件型号  
TPS62740  
TPS62742  
封装  
封装尺寸(标称值)  
WSON  
3.00mm x 2.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 典型应用  
VIN  
2.2V - 5.5V  
100  
2.1V  
Main rail  
TPS62740  
SW  
L 2.2mH  
New  
TPS62740  
VCC  
VIN  
95  
90  
85  
80  
75  
70  
65  
60  
COUT  
CIN  
EN  
VOUT  
10mF  
10mF  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
GND  
Rpull up  
TPS62740 extends  
light load efficiency range  
down to 10mA output current  
PG  
CTRL  
LOAD  
Switched  
supply rail  
Current  
DCS-ControlTM topology  
Subsystem  
(Sensors)  
VIN = 3.6V  
VOUT = 3.3V  
0.001  
0.01  
0.1  
1
10  
Output Current (mA)  
100  
1000  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSB02  
 
 
 
 
 
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
目录  
9.3 Feature Description................................................... 8  
9.4 Device Functional Modes........................................ 10  
10 Application and Implementation........................ 12  
10.1 Application Information.......................................... 12  
10.2 Typical Application ............................................... 12  
10.3 System Example ................................................... 22  
11 Power Supply Recommendations ..................... 23  
12 Layout................................................................... 23  
12.1 Layout Guidelines ................................................. 23  
12.2 Layout Example .................................................... 23  
13 器件和文档支持 ..................................................... 24  
13.1 器件支持 ............................................................... 24  
13.2 文档支持 ............................................................... 24  
13.3 相关链接................................................................ 24  
13.4 ....................................................................... 24  
13.5 静电放电警告......................................................... 24  
13.6 术语表 ................................................................... 24  
14 机械封装和可订购信息 .......................................... 24  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
典型应用................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ...................................... 4  
8.2 Handling Ratings ...................................................... 4  
8.3 Recommended Operating Conditions....................... 5  
8.4 Thermal Information ................................................. 5  
8.5 Electrical Characteristics........................................... 5  
8.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
9.1 Overview ................................................................... 8  
9.2 Functional Block Diagram ......................................... 8  
9
5 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (November 2013) to Revision B  
Page  
已添加 TPS62742 器件........................................................................................................................................................... 1  
Added efficiency graph, Figure 11........................................................................................................................................ 15  
2
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
6 Device Comparison Table  
PACKAGE  
MARKING  
OUTPUT CURRENT  
[mA]  
TA  
PART NUMBER  
TPS62740  
TPS62741(1)  
OUTPUT VOLTAGE SETTING VSEL 1 - 4  
1.8V to 3.3V in 100mV steps  
1.3V to 2.8V in 100mV steps  
1.8V to 3.3V in 100mV steps  
300mA  
300mA  
400mA  
62740  
-/-  
–40°C to 85°C  
TPS62742  
62742  
(1) Device option, contact TI for more details  
7 Pin Configuration and Functions  
WSON PACKAGE  
12-Pin  
DSS PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
12  
11  
10  
9
VIN  
EN  
SW  
GND  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
PG  
CTRL  
VOUT  
LOAD  
8
7
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO  
VIN  
1
PWR VIN power supply pin. Connect this pin close to the VIN terminal of the input capacitor. A ceramic capacitor  
of 4.7µF is required.  
SW  
2
OUT  
This is the switch pin and is connected to the internal MOSFET switches. Connect the inductor to this  
terminal.  
GND  
3
4
PWR GND supply pin. Connect this pin close to the GND terminal of the input and output capacitor.  
CTRL  
IN  
This pin controls the output LOAD pin. With CTRL = low, the output LOAD is disabled. This pin must be  
terminated.  
VOUT  
LOAD  
5
6
IN  
Feedback pin for the internal feedback divider network and regulation loop. An internal load switch is  
connected between this pin and the LOAD pin. Connect this pin directly to the output capacitor with a short  
trace.  
OUT  
OUT  
This output is controlled by the CTRL Pin. With CTRL high, an internal load switch connects the LOAD pin  
to the VOUT pin. The LOAD pin allows to connect / disconnect other system components to the output of  
the DC/DC converter. This pin is pulled to GND with CTRL pin = low. The LOAD pin features a soft  
switching. If not used, leave the pin open.  
PG  
7
Power good open drain output. This pin is high impedance to indicate "Power Good". Connect a external  
pull up resistor to generate a "high" level. If not used, this pin can be left open.  
VSEL4  
VSEL3  
VSEL2  
VSEL1  
EN  
8
IN  
IN  
IN  
IN  
IN  
Output voltage selection pins. See Table 1 for VOUT selection. These pins must be terminated and can be  
changed during operation.  
9
10  
11  
12  
High level enables the devices, low level turns the device into shutdown mode. This pin must be  
terminated.  
EXPOSED  
THERMAL PAD  
NC  
Not electrically connected to the IC, but must be soldered. Connect this pad to GND and use it as a central  
GND plane.  
Copyright © 2013–2014, Texas Instruments Incorporated  
3
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
Table 1. Output Voltage Setting  
Device  
VOUT  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
VSEL 4  
VSEL 3  
VSEL 2  
VSEL 1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
TPS62740 / 42  
8 Specifications  
8.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
V
VIN  
(3)  
SW  
VIN +0.3V  
VIN +0.3V  
VIN +0.3V  
3.7  
V
Pin voltage(2)  
PG pin  
EN, CTRL, VSEL1-4  
PG  
V
V
VOUT, LOAD  
V
IPG  
sink current  
10  
mA  
°C  
Maximum operating junction temperature, TJ  
–40  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
(3) The MAX value VIN +0.3V applies for applicative operation (device switching), DC voltage applied to this pin may not exceed 4V  
8.2 Handling Ratings  
MIN  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
–65  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body  
model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
8.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
(1)  
VIN  
Supply voltage VIN  
2.2  
1.5  
5.5  
300  
400  
100  
100  
V
VOUTnom + 0.7V VIN 5.5V  
3V VIN, VOUTnom + 0.7V VIN 5.5V TPS62742  
OUTnom VIN VOUTnom +0.7V  
TPS62740  
IOUT  
I LOAD  
+
Device output current (sum of IOUT and I LOAD  
)
mA  
V
ILOAD Load current (current from LOAD pin)  
Inductance  
L
2.2  
3.3 µH  
COUT Output capacitance connected to VOUT pin (not including LOAD pin)  
CLOAD Capacitance connected to LOAD pin  
22  
µF  
10  
TJ  
Operating junction temperature range  
Ambient temperature range  
-40  
-40  
125  
°C  
TA  
85  
(1) The minimum required supply voltage for startup is 2.15V (undervoltage lockout threshold VTH_UVLO+) . The device is functional down to  
2V supply voltage (falling undervoltage lockout threshold VTH_UVLO-).  
8.4 Thermal Information  
THERMAL METRIC  
DSS / 12 PINS  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
61.8  
70.9  
25.7  
1.9  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
25.7  
7.2  
RθJCbot  
8.5 Electrical Characteristics  
VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY  
VIN  
Input voltage  
2.2  
5.5  
V
range  
EN = VIN, CTRL = GND, IOUT = 0µA, VOUT = 1.8V, device not switching,  
EN = VIN, IOUT = 0mA, CTRL = GND, VOUT = 1.8V , device switching  
EN = VIN, IOUT = 0mA., CTRL = VIN, VOUT = 1.8V, device not switching  
EN = GND, shutdown current into VIN  
360 1800  
460  
nA  
µA  
nA  
Operating  
quiescent current  
IQ  
12.5  
ISD  
Shutdown current  
70 1000  
EN = GND, shutdown current into VIN, TA = 60°C  
Rising VIN  
150  
2.075  
1.925  
450  
2.15  
2
VTH_UVLO+  
VTH_UVLO-  
Undervoltage  
lockout threshold  
V
Falling VIN  
INPUTS EN, CTRL, VSEL 1-4  
VIH TH  
VIL TH  
IIN  
High level input  
threshold  
2.2V VIN 5.5V  
2.2V VIN 5.5V  
1.1  
V
V
Low level input  
threshold  
0.4  
Input bias Current TA = 25°C  
TA = –40°C to 85°C  
10  
25  
nA  
POWER SWITCHES  
High side  
MOSFET on-  
resistance  
0.6  
0.85  
0.5  
RDS(ON)  
VIN = 3.6V, IOUT = 50mA  
Low Side  
MOSFET on-  
resistance  
0.36  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
High side  
MOSFET switch  
current limit  
2.2V VIN 5.5V, TPS62740  
480  
600  
650  
720  
740  
mA  
3.0V VIN 5.5V, TPS62742  
590  
ILIMF  
TPS62740  
TPS62742  
600  
650  
Low side MOSFET  
switch current limit  
mA  
OUTPUT DISCHARGE SWITCH (VOUT)  
MOSFET on-  
30  
40  
65  
RDSCH_VOUT  
resistance  
VIN = 3.6V, EN = GND, IOUT = -10mA into VOUT pin  
Bias current into  
VOUT pin  
TA = 25°C  
TA = –40°C to 85°C  
100  
VIN = 3.6V, EN = VIN, VOUT = 2V, CTRL =  
GND  
IIN_VOUT  
nA  
1010  
LOAD OUTPUT (LOAD)  
High side  
0.6  
1.25  
RLOAD  
MOSFET on-  
resistance  
ILOAD = 50mA, CTRL = VIN, VOUT = 2.0V, 2.2 V VIN 5.5V  
CTRL = GND, 2.2V VIN 5.5V, ILOAD = - 10mA  
Low side MOSFET  
on-resistance  
30  
65  
RDSCH_LOAD  
tRise_LOAD  
VLOAD rise time  
Starting with CTRL low to high transition, time to ramp VLOAD from 0V  
to 95% VOUT = 1.8V, 2.2V VIN 5.5V, ILOAD = 1mA  
315  
800  
µs  
AUTO 100% MODE TRANSITION  
Auto 100% Mode  
170  
110  
250  
200  
340  
280  
mV  
Rising VIN,100% Mode is left with VIN = VOUT + VTH_100+ , max value at  
TJ = 85°C  
VTH_100+  
leave detection  
threshold  
(1)  
Auto 100% Mode  
enter detection  
threshold  
Falling VIN, 100% Mode is entered with VIN = VOUT + VTH_100-, max  
value at TJ = 85°C  
VTH_100-  
(1)  
POWER GOOD OUTPUT (PG, OPEN DRAIN)  
VTH_PG+  
VPG_Hys  
Power good  
threshold voltage  
Rising output voltage on VOUT pin, referred to VVOUT  
Hysteresis  
97.5%  
-3%  
Low level output  
voltage  
2.2V VIN 5.5V, EN = GND, current into PG pin IPG = 4mA  
0.3  
VOL  
V
IIN_PG  
Bias current into  
PG pin  
PG pin is high impedance, VOUT = 2V, EN =  
VIN, CTRL = GND, IOUT = 0mA  
TA = 25°C  
0
10  
25  
nA  
TA = –40°C to 85°C  
OUTPUT  
tONmin  
Minimum ON time VIN = 3.6V, VOUT = 2.0V, IOUT = 0 mA  
Minimum OFF time VIN = 2.3V  
225  
50  
ns  
ns  
tOFFmin  
tStartup_delay  
Regulator start up VIN = 3.6V, from transition EN = low to high until device starts switching  
delay time  
10  
25  
ms  
tSoftstart  
Softstart time with 2.2V VIN 5.5V, EN = VIN  
700 1200  
µs  
reduced switch  
current limit  
ILIM_softstart  
High side  
MOSFET switch  
current limit  
Reduced switch current limit during softstart  
TPS62740  
TPS62742  
80  
150  
150  
200  
mA  
Low side MOSFET  
switch current limit  
150  
Output voltage  
range  
Output voltages are selected with pins VSEL 1 - 4  
1.8  
3.3  
V
VIN = 3.6V, IOUT = 10mA, VOUT = 1.8V  
VIN = 3.6V, IOUT = 100mA, VOUT = 1.8V  
-2.5  
–2  
0%  
0%  
2.5  
2
Output voltage  
accuracy  
VVOUT  
DC output voltage VOUT = 1.8V, VIN = 3.6V, CTRL = VIN  
load regulation  
0.001  
%/mA  
%/V  
DC output voltage VOUT = 1.8V, CTRL = VIN, IOUT = 10 mA, 2.5V VIN 5.5V  
0
line regulation  
(1) VIN is compared to the programmed output voltage (VOUT). When VIN–VOUT falls below VTH_100- the device enters 100% Mode by turning  
the high side MOSFET on. The 100% Mode is exited when VIN–VOUT exceeds VTH_100+ and the device starts switching. The hysteresis  
for the 100% Mode detection threshold VTH_100+ - VTH_100- will always be positive and will be approximately 50 mV(typ.)  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
8.6 Typical Characteristics  
1000  
500  
400  
300  
200  
100  
0
900  
TA = −40°C  
TA = −40°C  
TA  
TA  
TA  
=
=
=
25°C  
60°C  
85°C  
TA  
TA  
TA  
=
=
=
25°C  
60°C  
85°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.0  
2.5  
3.0  
3.5 4.0  
Input Voltage VIN (V)  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5 4.0  
Input Voltage VIN (V)  
4.5  
5.0  
5.5  
EN = VIN, VOUT = 1.8V, CTRL = GND  
Device Not Switching  
EN = GND  
Figure 2. Shutdown Current ISD  
Figure 1. Quiescent Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = −40°C  
TA  
TA  
TA  
=
=
=
25°C  
60°C  
85°C  
TA = -40°C  
TA  
TA  
TA  
=
=
=
25°C  
60°C  
85°C  
2.0  
2.5  
3.0  
3.5 4.0  
Input Voltage VIN (V)  
4.5  
5.0  
5.5  
Figure 4. RDSON Low Side Mosfet  
Figure 3. RDSON High Side Mosfet  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
TA = −40°C  
TA  
TA  
TA  
=
=
=
25°C  
60°C  
85°C  
0.0  
1.8  
2.2  
2.6  
Output Voltage VOUT (V)  
3.0  
3.4  
Figure 5. Load Switch Resistance RLOAD  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS6274x is the first step down converter with an ultra low quiescent current consumption (360nA typ.) and  
featuring TI's DCS-Control™ topology while maintaining a regulated output voltage. The device extends high  
efficiency operation to output currents down to a few micro amperes.  
9.2 Functional Block Diagram  
PG  
CTRL  
VOUT  
PG Comp  
VFB  
UVLO  
EN  
Ultra Low Power  
Reference VREF = 1.2V  
Softstart  
EN  
VOUT  
Discharge  
VTH_PG  
VOUT  
Load Switch  
VSEL 1  
VSEL 2  
Slew Rate  
Control  
Internal  
VFB feedback  
divider  
CTRL  
Auto 100% Mode  
Comp  
UVLO  
Comp  
LOAD  
EN  
100%  
Mode  
VSEL 3  
VSEL 4  
network*  
VIN  
VIN  
Discharge  
UVLO  
UVLO  
VTH_100  
VTH_UVLO  
Power Stage  
PMOS  
Current  
Limit Comparator  
VIN  
Timer  
Min. On  
UVLO  
DCS  
Control  
VIN  
Limit  
High Side  
VOUT  
Min. OFF  
VOUT  
Control  
Logic  
Direct Control  
& Compensation  
Gate Driver  
Anti  
EN  
SW  
Shoot-Through  
VFB  
VREF  
NMOS  
Limit  
Low Side  
Error  
amplifier  
Main  
Comparator  
GND  
Current  
Limit Comparator  
* typical 50MW  
9.3 Feature Description  
9.3.1 DCS-Control™  
TI's DCS-Control™ (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation  
topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCS-  
Control™ are excellent AC load regulation and transient response, low output ripple voltage and a seamless  
transition between PFM and PWM mode operation. DCS-Control™ includes an AC loop which senses the output  
voltage (VOUT pin) and directly feeds the information to a fast comparator stage. This comparator sets the  
switching frequency, which is constant for steady state operating conditions, and provides immediate response to  
dynamic load changes. In order to achieve accurate DC load regulation, a voltage feedback loop is used. The  
internally compensated regulation network achieves fast and stable operation with small external components  
and low ESR capacitors.  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
Feature Description (continued)  
The DCS-Control™ topology supports PWM (Pulse Width Modulation) mode for medium and high load  
conditions and a Power Save Mode at light loads. During PWM mode, it operates in continuous conduction. The  
switching frequency is up to 2MHz with a controlled frequency variation depending on the input voltage. If the  
load current decreases, the converter seamlessly enters Power Save Mode to maintain high efficiency down to  
very light loads. In Power Save Mode the switching frequency varies nearly linearly with the load current. Since  
DCS-Control™ supports both operation modes within one single building block, the transition from PWM to  
Power Save Mode is seamless without effects on the output voltage. The TPS6274x offers both excellent DC  
voltage and superior load transient regulation, combined with very low output voltage ripple, minimizing  
interference with RF circuits. At high load currents, the converter operates in quasi fixed frequency PWM mode  
operation and at light loads, in PFM (Pulse Frequency Modulation) mode to maintain highest efficiency over the  
full load current range. In PFM Mode, the device generates a single switching pulse to ramp up the inductor  
current and recharge the output capacitor, followed by a sleep period where most of the internal circuits are  
shutdown to achieve a lowest quiescent current. During this time, the load current is supported by the output  
capacitor. The duration of the sleep period depends on the load current and the inductor peak current.  
During the sleep periods, the current consumption of TPS6274x is reduced to 360nA. This low quiescent current  
consumption is achieved by an ultra low power voltage reference, an integrated high impedance (typ. 50M)  
feedback divider network and an optimized DCS-Control™ block.  
9.3.2 CTRL / Output Load  
With the CTRL pin set to high, the LOAD pin is connected to the VOUT pin via an load switch and can power up  
an additional, temporarily used sub-system. The load switch is slew rate controlled to support soft switching and  
not to impact the regulated output VOUT. If CTRL pin is pulled to GND, the LOAD pin is disconnected from the  
VOUT pin and internally connected to GND by an internal discharge switch. When CTRL pin is set to high, the  
Quiescent current of the DCS control block is increased to typ. 12.5µA. This ensures excellent transient response  
on both outputs VOUT and LOAD in case of a sudden load step at the LOAD output. The CTRL pin can be  
controlled by a micro controller.  
9.3.3 Enable / Shutdown  
The DC/DC converter is activated when the EN pin is set to high. For proper operation, the pin must be  
terminated and must not be left floating. With the EN pin set to low, the device enters shutdown mode with less  
than typ. 70nA current consumption.  
9.3.4 Power Good Output (PG)  
The Power Good comparator features an open drain output. The PG comparator is active with EN pin set to high  
and VIN is above the threshold VTH_UVLO+. It is driven to high impedance once VOUT trips the threshold VTH_PG+ for  
rising VOUT. The output is pulled to low level once VOUT falls below the PG hysteresis, VPG_hys. The output is also  
pulled to low level in case the input voltage VIN falls below the undervoltage lockout threshold VTH_UVLO- or the  
device is disabled with EN = low. The power good output (PG) can be used as an indicator for the system to  
signal that the converter has started up and the output voltage is in regulation.  
9.3.5 Output Voltage Selection (VSEL1 – 4)  
The TPS6274x doesn't require an external resistor divider network to program the output voltage. The device  
integrates a high impedance (typ. 50M) feedback resistor divider network which is programmed by the pins  
VSEL 1-4. TPS6274x supports an output voltage range of 1.8V to 3.3V in 100mV steps. The output voltage can  
be changed during operation and supports a simple dynamic output voltage scaling, shown in Figure 47. The  
output voltage is programmed according to table Table 1.  
9.3.6 Softstart  
When the device is enabled, the internal reference is powered up and after the startup delay time tStartup_delay has  
expired, the device enters softstart, starts switching and ramps up the output voltage. During softstart the device  
operates with a reduced current limit, ILIM_softstart, of typ. 1/4 of the nominal current limit. This reduced current limit  
is active during the softstart time tSoftstart. The current limit is increased to its nominal value, ILIMF, once the  
softstart time has expired.  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
Feature Description (continued)  
9.3.7 Undervoltage Lockout UVLO  
The device includes an under-voltage lockout (UVLO) comparator which prevents the device from misoperation  
at too low input voltages. The UVLO comparator becomes active once the device is enabled with EN set to high.  
Once the input voltage trips the UVLO threshold VTH_UVLO+ (typically 2.075V) for rising VIN, the UVLO comparator  
releases the device for start up and operation. With a falling input voltage, the device operates down to the  
UVLO threshold level VTH_UVLO- (typically 1.925V). Once this threshold is tripped, the device stops switching, the  
load switch at pin LOAD is disabled and both rails, VOUT and LOAD are discharged. The converter starts  
operation again once the input voltage trips the rising UVLO threshold level VTH_UVLO+  
.
9.4 Device Functional Modes  
9.4.1 VOUT And LOAD Output Discharge  
Both the VOUT pin and the LOAD pin feature a discharge circuit to connect each rail to GND, once they are  
disabled. This feature prevents residual charge voltages on capacitors connected to these pins, which may  
impact proper power up of the main- and sub-system. With CTRL pin pulled to low, the discharge circuit at the  
LOAD pin becomes active. With the EN pin pulled to low, the discharge circuits at both pins VOUT and Load are  
active. The discharge circuits of both rails VOUT and LOAD are associated with the UVLO comparator as well.  
Both discharge circuits become active once the UVLO comparator triggers and the input voltage VIN has dropped  
below the UVLO comparator threshold VTH_UVLO- (typ. 1.925V).  
9.4.2 Automatic Transition Into 100% Mode  
Once the input voltage comes close to the output voltage, the DC/DC converter stops switching and enters 100%  
duty cycle operation. It connects the output VOUT via the inductor and the internal high side MOSFET switch to  
the input VIN, once the input voltage VIN falls below the 100% mode enter threshold, VTH_100-. The DC/DC  
regulator is turned off, not switching and therefore it generates no output ripple voltage. Because the output is  
connected to the input, the output voltage tracks the input voltage minus the voltage drop across the internal high  
side switch and the inductor caused by the output current. Once the input voltage increases and trips the 100%  
mode leave threshold, VTH_100+ , the DC/DC regulator turns on and starts switching again. See Figure 6,  
Figure 49, Figure 50, Figure 51.  
VIN  
VIN,  
VOUT  
100%  
Mode  
100%  
Mode  
VTH_100+  
VTH_100-  
Step Down Operation  
VOUT  
tracks VIN  
VOUT  
tracks VIN  
VTH_PG+  
VUVLO+  
VPG_Hys  
VUVLO-  
VOUT  
discharge  
tsoftstart  
PG  
High  
Low  
Low  
Figure 6. Automatic 100% Mode Transition  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
Device Functional Modes (continued)  
9.4.3 Internal Current Limit  
The TPS6274x integrates a current limit on the high side, as well the low side MOSFETs to protect the device  
against overload or short circuit conditions. The peak current in the switches is monitored cycle by cycle. If the  
high side MOSFET current limit is reached, the high side MOSFET is turned off and the low side MOSFET is  
turned on until the current decreases below the low side MOSFET current limit.  
9.4.4 Dynamic Voltage Scaling with VSEL Interface  
During operation, the output voltage of the device can be changed, see Figure 47. The device will not actively  
ramp down the output voltage from a higher to a lower level.  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
10 Application and Implementation  
10.1 Application Information  
The TPS6274x devices are a step down converter family featuring typ. 360nA quiescent current and operating  
with a tiny 2.2µH inductor and 10µF output capacitor. This new DCS-ControlTM based devices extend the light  
load efficiency range below 10µA load currents. TPS62740 supports output currents up to 300mA, TPS62742 up  
to 400mA. The devices operate from rechargeable Li-Ion batteries, Li-primary battery chemistries such as Li-  
SOCl2, Li-MnO2 and two or three cell alkaline batteries.  
10.2 Typical Application  
VIN  
2.2V - 5.5V  
2.1V  
Main rail  
TPS62740  
SW  
L 2.2mH  
VCC  
VIN  
COUT  
CIN  
EN  
VOUT  
10mF  
10mF  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
GND  
Rpull up  
PG  
CTRL  
LOAD  
Switched  
supply rail  
Subsystem  
(Sensors)  
Figure 7. TPS62740 Typical Application Circuit  
VIN  
4V - 5.5V  
3.3V  
400mA  
TPS62742  
SW  
L 2.2mH  
VCC  
VIN  
COUT  
10mF  
CIN  
EN  
VOUT  
10mF  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
GND  
Rpull up  
PG  
CTRL  
LOAD  
Switched  
supply rail  
Subsystem  
Figure 8. TPS62742 Typical Application Circuit  
10.2.1 Design Requirements  
The TPS6274x is a highly integrated DC/DC converter. The output voltage is set via a VSEL pin interface without  
any additional external components. For proper operation only a input- and output capacitor and an inductor is  
required. The integrated load switch doesn't require a capacitor on its LOAD pin. Table 2 shows the components  
used for the application characteristic curves.  
Table 2. Components for Application Characteristic Curves  
Reference  
TPS62740/42  
CIN, COUT, CLOAD  
L
Description  
Value  
Manufacturer  
Texas Instruments  
Murata  
360nA Iq step down converter  
Ceramic capacitor GRM188R60J106M  
Inductor LPS3314  
10µF  
2.2µH  
Coilcraft  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
10.2.2 Detailed Design Procedure  
Table 3 shows the recommended output filter components. The TPS6274x is optimized for operation with a  
2.2µH inductor and with 10µF output capacitor.  
Table 3. Recommended LC Output Filter Combinations  
Output Capacitor Value [µF](2)  
Inductor Value [µH](1)  
4.7µF  
10µF  
22µF  
(3)  
2.2  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -  
30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by  
20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
10.2.2.1 Inductor Selection  
The inductor value affects its peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage  
ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The  
inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be  
estimated according to Equation 1.  
Equation 2 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current, as calculated with Equation 2. This is  
recommended because during a heavy load transient the inductor current rises above the calculated value. A  
more conservative way is to select the inductor saturation current above the high-side MOSFET switch current  
limit, ILIMF  
.
Vout  
Vin  
1-  
DIL = Vout ´  
L ´ ¦  
(1)  
(2)  
DI  
L
I
= I  
+
Lmax  
outmax  
2
With:  
f = Switching Frequency  
L = Inductor Value  
ΔIL= Peak to Peak inductor ripple current  
ILmax = Maximum Inductor current  
In DC/DC converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e. quality  
factor) and by the inductor DCR value. Increasing the inductor value produces lower RMS currents, but degrades  
transient response. For a given physical inductor size, increased inductance usually results in an inductor with  
lower saturation current.  
The total losses of the coil consist of both the losses in the DC resistance (RDC) and the following frequency-  
dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
 
 
 
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
The following inductor series from different suppliers have been used:  
Table 4. List Of Inductors(1)  
INDUCTANCE [µH]  
DIMENSIONS [mm3]  
3.3 x 3.3 x 1.4  
2.5 x 3.0 x 1.5  
2.0 × 1.2 × 1.0  
2.5 x 2.0 x 1.2  
2.0 x 1.2 x 1.0  
INDUCTOR TYPE  
LPS3314  
SUPPLIER  
Coilcraft  
TDK  
2.2  
2.2  
2.2  
2.2  
2.2  
VLF302515MT  
MIPSZ2012 2R2  
MIPSA2520 2R2  
MDT2012CH2R2  
FDK  
FDK  
TOKO  
(1) See Third-party Products Disclaimer  
10.2.2.2 DC/DC Output Capacitor Selection  
The DCS-Control™ scheme of the TPS6274x allows the use of tiny ceramic capacitors. Ceramic capacitors with  
low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires  
either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their wide variation in capacitance  
over temperature, become resistive at high frequencies. At light load currents, the converter operates in Power  
Save Mode and the output voltage ripple is dependent on the output capacitor value and the PFM peak inductor  
current. A larger output capacitors can be used, but it should be considered that larger output capacitors lead to  
an increased leakage current in the capacitor and may reduce overall conversion efficiency. Furthermore, larger  
output capacitors impact the start up behavior of the DC/DC converter.  
10.2.2.3 Input Capacitor Selection  
Because the buck converter has a pulsating input current, a low ESR input capacitor is required for best input  
voltage filtering to ensure proper function of the device and to minimize input voltage spikes. For most  
applications a 10µF is sufficient. The input capacitor can be increased without any limit for better input voltage  
filtering.  
Table 5 shows a list of tested input/output capacitors.  
Table 5. List Of Capacitors(1)  
CAPACITANCE [μF]  
SIZE  
CAPACITOR TYPE  
SUPPLIER  
10  
0603  
GRM188R60J106ME84  
Murata  
(1) See Third-party Products Disclaimer  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
10.2.3 Application Curves  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
COUT = 10 µF (0603)  
CTRL = GND  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH (LPS3314 2R2)  
L = 2.2 μH (LPS3314 2R2)  
Figure 9. Efficiency VOUT = 1.8V  
Figure 10. Efficiency VOUT = 2.1V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Output Current IOUT (mA)  
Output Current (mA)  
C001  
COUT = 10 µF (0603)  
CTRL = GND  
COUT = 10 µF,  
CTRL = GND.  
L = 2.2 µH (VLF302515)  
L = 2.2 µH (LPS3314 2R2)  
Figure 12. Efficiency VOUT = 2.5V  
Figure 11. Efficiency VOUT = 3.3V TPS62742  
100  
90  
80  
70  
60  
50  
40  
30  
100  
95  
90  
85  
80  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
75  
70  
65  
60  
55  
50  
45  
40  
IOUT = 1mA  
IOUT = 2mA  
IOUT = 5mA  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 50mA  
IOUT = 200mA  
2
2.5  
3
3.5 4  
Input Voltage VIN (V)  
4.5  
5
5.5  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Output Current (mA)  
COUT = 10 µF (0603)  
CTRL = GND  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH (LPS3314 2R2)  
L = 2.2 µH (LPS3314 2R2)  
Figure 14. Efficiency VOUT = 1.8V  
Figure 13. Efficiency VOUT = 3.3V  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
50  
IOUT = 1mA  
IOUT = 2mA  
IOUT = 5mA  
IOUT = 1mA  
40  
IOUT = 2mA  
IOUT = 5mA  
30  
20  
10  
0
IOUT = 10mA  
IOUT = 100mA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 50mA  
IOUT = 200mA  
IOUT = 10mA  
IOUT = 50mA  
IOUT = 200mA  
2
2.5  
3
3.5  
Input Voltage VIN (V)  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage VIN (V)  
4.5  
5
5.5  
COUT = 10 µF (0603)  
CTRL = GND  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH (LPS3314 2R2)  
L = 2.2 µH (LPS3314 2R2)  
Figure 15. Efficiency VOUT = 2.1V  
Figure 16. Efficiency VOUT = 2.5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1.854  
1.836  
1.818  
1.8  
IOUT = 1mA  
IOUT = 2mA  
IOUT = 5mA  
1.782  
1.764  
1.746  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 50mA  
IOUT = 200mA  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
3.5  
4
4.5  
Input Voltage VIN (V)  
5
5.5  
0.001  
0.01  
0.1  
1
Output Current IOUT (mA)  
10  
100  
1000  
COUT = 10 µF (0603)  
CTRL = GND  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH (LPS3314 2R2)  
L = 2.2 µH (LPS3314 2R2)  
Figure 17. Efficiency VOUT = 3.3V  
Figure 18. Output Voltage VOUT = 1.8V  
2.163  
2.142  
2.121  
2.1  
2.575  
2.55  
2.525  
2.5  
2.079  
2.058  
2.037  
2.475  
2.45  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
2.425  
0.001  
0.001  
0.01  
0.1  
1
Output Current IOUT (mA)  
10  
100  
1000  
0.01  
0.1  
Output Current IOUT (mA)  
1
10  
100  
1000  
COUT = 10 µF (0603)  
CTRL = GND  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH (LPS3314 2R2)  
L = 2.2 µH (LPS3314 2R2)  
Figure 19. Output Voltage VOUT = 2.1V  
Figure 20. Output Voltage VOUT = 2.5V  
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
3.399  
2000  
1500  
1000  
500  
0
3.366  
3.333  
3.3  
3.267  
3.234  
3.201  
VIN = 2.5V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.001  
0.01  
0.1  
Output Current IOUT (mA)  
1
10  
100  
1000  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH (LPS3314 2R2)  
COUT = 10 µF  
L = 2.2 µH  
Figure 21. Output Voltage VOUT = 3.3V  
Figure 22. Typical Switching Frequency VOUT = 1.8V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2000  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
1500  
1000  
500  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH  
COUT = 10 µF  
L = 2.2 µH  
Figure 23. Typical Output Ripple Voltage VOUT = 1.8V  
Figure 24. Typical Switching Frequency VOUT = 2.1V  
50  
2500  
VIN = 2.7V  
VIN = 3.0V  
45  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
40  
2000  
1500  
1000  
35  
30  
25  
20  
15  
10  
5
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
500  
0
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH  
COUT = 10 µF  
L = 2.2 µH  
Figure 25. Typical Output Ripple Voltage VOUT = 2.1V  
Figure 26. Typical Switching Frequency VOUT = 3.0V  
Copyright © 2013–2014, Texas Instruments Incorporated  
17  
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
50  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
IOUT = 10mA, rising VIN  
IOUT = 10mA, falling VIN  
IOUT = 50mA, rising VIN  
IOUT = 50mA, falling VIN  
IOUT = 100mA, rising VIN  
IOUT = 100mA, falling VIN  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
50  
100  
150  
200  
250  
300  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
Output Current (mA)  
Input Voltage VIN (V)  
COUT = 10 µF (0603)  
CTRL = GND  
L = 2.2 µH  
L = 2.2 µH (LPS3314)  
Figure 27. Typical Output Ripple Voltage VOUT = 3.0V  
Figure 28. 100% Mode Transition VOUT 2.1V  
2.90  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
IOUT = 10mA, rising VIN  
IOUT = 10mA, falling VIN  
IOUT = 50mA, rising VIN  
IOUT = 50mA, falling VIN  
IOUT = 100mA, rising VIN  
IOUT = 100mA, falling VIN  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
IOUT = 10mA, rising VIN  
IOUT = 10mA, falling VIN  
IOUT = 50mA, rising VIN  
IOUT = 50mA, falling VIN  
IOUT = 100mA, rising VIN  
IOUT = 100mA, falling VIN  
2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
3.20  
3.30  
3.40  
3.50  
3.60  
3.70  
Input Voltage VIN (V)  
Input Voltage VIN (V)  
L = 2.2 µH (LPS3314)  
Figure 29. 100% Mode Transition VOUT 2.5V  
L = 2.2 µH (LPS3314)  
Figure 30. 100% Mode Transition VOUT 3.3V  
VIN = 3.6 V  
IOUT = 10 µA  
COUT = 10 µF  
L = 2.2 µH  
VIN = 3.6 V  
IOUT = 1 mA  
L = 2.2 µH  
CTRL = GND  
COUT = 10 µF  
CTRL = GND  
Figure 31. Typical Operation ILoad = 10µA VOUT = 1.8V  
Figure 32. Typical Operation ILoad = 1ma, VOUT = 1.8V  
18  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
VIN = 3.6 V  
COUT = 10 µF  
IOUT = 25 mA  
L = 2.2 µH  
VIN = 3.6 V  
IOUT = 150 mA  
COUT = 10 µF  
L = 2.2 µH  
CTRL = GND  
CTRL = GND  
Figure 33. Typical Operation ILoad = 25mA, VOUT = 1.8V  
Figure 34. Typical Operation ILoad = 150ma, VOUT = 1.8V  
VIN = 3.6 V IOUT = 50 µA to 10 mA  
COUT = 10 µF  
L = 2.2 µH  
VIN = 3.6 V  
IOUT = 0.5 mA to 150 mA  
COUT = 10 µF  
L = 2.2 µH  
CTRL = GND  
CTRL = VIN  
Figure 35. Load Transient Response VOUT = 1.8V  
Figure 36. Load Transient Response VOUT = 2.1V  
VIN = 3.6 V, VOUT = 2.1 V  
L = 2.2 µH  
COUT = 10 µF  
VIN = 3.6 V, VOUT = 2.1 V  
L = 2.2 µH,  
COUT = 10 µF  
Loadstep at VOUT 0 mA to 100 mA,  
1 µs rise/ fall time, 70 µs / 7 ms  
Loadstep at VOUT 0 mA to 100 mA,  
1 µs rise/fall time; 70 µs / 7 ms  
Figure 37. Load Transient Response CTRL = GND  
Figure 38. Load Transient Response CTRL = VIN  
Copyright © 2013–2014, Texas Instruments Incorporated  
19  
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
VIN = 3.6 V / 4.2 V  
VOUT = 2.1 V  
COUT = 10 µF  
L = 2.2 µH  
VIN = 3.6 V / 4.2 V  
VOUT = 2.1 V  
COUT = 10 µF  
L = 2.2 µH  
CTRL = GND  
CTRL = GND  
Figure 39. Line Transient Response IOUT=10mA  
Figure 40. Line Transient Response IOUT = 100mA  
VIN = 3.6 V  
IOUT = 50 µA to 300 mA  
COUT = 10 µF  
L = 2.2 µH  
CTRL = GND  
VIN = 3.6 V,  
VOUT = VLOAD= 2.1 V  
CLOAD = 10 µF  
CTRL = VIN  
L = 2.2 µH  
IOUT = 0 mA  
COUT = 10 µF  
ILOAD = 0 to 50 mA to 0 mA  
Figure 41. AC Load Sweep VOUT = 2.1V  
Figure 42. Load Step At Load Output  
VLOAD slew rate  
controlled  
VLOAD Discharge  
VIN = 3.6 V  
IOUT = 0 mA  
VOUT = 2.1 V  
ILOAD = 0 mA  
VIN = 3.6 V  
ROUT = 100 Ω  
VOUT = 2.1 V  
COUT = 10 µF  
CTRL = GND  
L = 2.2 µH  
COUT = 10 µF CLOAD = 10 µF  
L = 2.2 µH  
Figure 43. Load Output On / Off  
Figure 44. Device Enable And Start Up  
20  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
VIN = 3.6 V  
ROUT = 100 Ω  
VOUT = 2.1 V  
COUT = 10 µF  
CTRL = GND  
L = 2.2 µH  
VIN = 3.6 V  
VOUT = VLOAD = 2.1 V CTRL = VIN  
COUT = CLOAD = 10 µF L = 2.2 µH  
ROUT = 100 Ω,  
ILOAD = 0 mA  
Figure 45. VOUT Ramp Up After Enable  
Figure 46. VOUT Ramp Up With Activated Load Switch  
VIN = 3.6 V  
Ramp up / Down  
COUT = 10 µF  
L = 2.2 µH  
CTRL = GND  
COUT = 10 µF  
IOUT = 5 mA  
CTRL = GND  
L = 2.2 µH  
VSEL 3+4 toggled  
VSEL 1+2 = GND  
VIN = ramp up/down 0 V to 5 V, 150 ms,  
Output resistance 50 Ω  
Figure 47. Dynamic Output Voltage Scaling  
VOUT = 1.8V/3.0V  
Figure 48. Input Voltage Ramp Up/Down  
VOUT = 1.8V  
100% mode operation,  
high side MOSFET turned on  
100% mode operation,  
high side MOSFET turned on  
COUT = 10 µF  
L = 2.2 µH  
CTRL = GND  
COUT = 10 µF  
L = 2.2 µH  
CTRL = GND  
VIN = ramp up/down 0 V to 5 V, 150 ms,  
Output resistance 50 Ω  
VIN = ramp up/down 0 V to 5 V, 150 ms,  
Output resistance 50 Ω  
Figure 49. Input Voltage Ramp Up/Down VOUT = 2.6V  
Figure 50. Input Voltage Ramp Up/Down VOUT = 3.3V  
Copyright © 2013–2014, Texas Instruments Incorporated  
21  
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
High side mosfet turned on  
100% Mode  
Leave / Enter  
VOUT = 3.0 V  
COUT = 10 µF  
L = 2.2 µH, CTRL = GND  
VIN = ramp up /down 2.8 V to 3.7 V,  
Output resistance 50 Ω  
Figure 51. Enter/Leave 100% Mode Operation  
10.3 System Example  
TPS62740  
VBAT  
VSEL1  
VSEL2  
VSEL3  
VIN  
EN  
Voltage  
Selection  
VOUT Main  
RPull Up  
CIN  
VSEL4  
PG  
Power Good  
Control Sub-System  
Master  
MCU  
CTRL  
L
VOUT Main  
Main  
Supply  
SW  
GND  
VOUT  
LOAD  
Switched Supply  
Radio  
Sub-  
System  
Sensor  
Figure 52. Example Of Implementation In A Master MCU Based System  
22  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS62740, TPS62742  
www.ti.com.cn  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
11 Power Supply Recommendations  
The power supply to the TPS6274x needs to have a current rating according to the supply voltage, output  
voltage and output current of the TPS6274x.  
12 Layout  
12.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Care must be taken in board  
layout to get the specified performance. If the layout is not carefully done, the regulator could show poor line  
and/or load regulation, stability issues as well as EMI problems and interference with RF circuits. It is critical to  
provide a low inductance, impedance ground path. Therefore, use wide and short traces for the main current  
paths. The input capacitor should be placed as close as possible to the IC pins VIN and GND. The output  
capacitor should be placed close between VOUT and GND pins. The VOUT line should be connected to the  
output capacitor and routed away from noisy components and traces (e.g. SW line) or other noise sources. The  
exposed thermal pad of the package and the GND pin should be connected. See Figure 53 for the  
recommended PCB layout.  
12.2 Layout Example  
VSEL  
EN 1-4 PG  
TPS62740  
GND  
GND  
LOAD  
VIN  
VOUT  
CIN  
(0603)  
COUT  
(0603)  
L(0805)  
4.3 mm  
Solution size: 31mm2  
Height: 1mm max.  
Figure 53. Recommended PCB Layout  
版权 © 2013–2014, Texas Instruments Incorporated  
23  
 
TPS62740, TPS62742  
ZHCS342B NOVEMBER 2013REVISED JULY 2014  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 文档支持  
13.2.1 相关文档ꢀ  
另请参见TPS62740EVM-186 评估模块用户指南》SLVU949;和应用笔记《精确测量超低 IQ 器件的效  
率》SLYT558,以便在 PFM 模式操作下精确测量效率。  
13.3 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
6. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS62740  
TPS62742  
13.4 商标  
DCS-Control is a trademark of Texas Instruments.  
is a registered trademark of ~Bluetooth SIG, Inc.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2013–2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62740DSSR  
TPS62740DSST  
TPS62742DSSR  
TPS62742DSST  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DSS  
DSS  
DSS  
DSS  
12  
12  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
62740  
62740  
62742  
62742  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62740DSSR  
TPS62740DSST  
TPS62742DSSR  
TPS62742DSST  
WSON  
WSON  
WSON  
WSON  
DSS  
DSS  
DSS  
DSS  
12  
12  
12  
12  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
3.25  
1.05  
1.05  
1.05  
1.05  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62740DSSR  
TPS62740DSST  
TPS62742DSSR  
TPS62742DSST  
WSON  
WSON  
WSON  
WSON  
DSS  
DSS  
DSS  
DSS  
12  
12  
12  
12  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSS0012A  
WSON - 0.8 mm max height  
SCALE 5.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
0.35  
0.25  
PIN 1 INDEX AREA  
3.1  
2.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.9±0.1  
4X (0.2)  
(0.7)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
0.05  
0.00  
6
7
SEE TERMINAL  
DETAIL  
2X  
13  
2.5  
2±0.1  
12  
1
10X 0.5  
0.35  
0.25  
0.3  
0.2  
12X  
12X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
C
B
0.05  
4222684/A 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSS0012A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
12X (0.5)  
12  
1
12X (0.25)  
13  
SYMM  
10X (0.5)  
(2)  
(0.75)  
(R0.05) TYP  
(
0.2) VIA TYP  
NOTE 5  
6
7
SYMM  
(1.9)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222684/A 02/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
It is recommended that vias located under solder paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSS0012A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
12X (0.5)  
1
12  
12X (0.25)  
METAL  
TYP  
SYMM  
10X (0.5)  
13  
(0.9)  
(R0.05) TYP  
6
7
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 13:  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222684/A 02/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS62740DSSR

具有 360nA Iq 的 2.2V 至 5.5V 输入、超低功耗 300mA 降压直流/直流转换器 | DSS | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62740DSST

具有 360nA Iq 的 2.2V 至 5.5V 输入、超低功耗 300mA 降压直流/直流转换器 | DSS | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62742

具有 400mA 和集成负载开关的 3V 至 5.5V 输入、360nA Iq 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62742DSSR

具有 400mA 和集成负载开关的 3V 至 5.5V 输入、360nA Iq 降压转换器 | DSS | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62742DSST

具有 400mA 和集成负载开关的 3V 至 5.5V 输入、360nA Iq 降压转换器 | DSS | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62743

具有 360nA Iq 的 2V 至 5.5V 输入、超低功耗 300mA 至 400mA 降压直流/直流转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS627431YFPR

具有 360nA Iq 的 2V 至 5.5V 输入、超低功耗 300mA 至 400mA 降压直流/直流转换器 | YFP | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS627431YFPT

具有 360nA Iq 的 2V 至 5.5V 输入、超低功耗 300mA 至 400mA 降压直流/直流转换器 | YFP | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62743YFPR

具有 360nA Iq 的 2V 至 5.5V 输入、超低功耗 300mA 至 400mA 降压直流/直流转换器 | YFP | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62743YFPT

具有 360nA Iq 的 2V 至 5.5V 输入、超低功耗 300mA 至 400mA 降压直流/直流转换器 | YFP | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62745

具有 VSEL 和输入电压开关的 3.3V 至 10V 输入、300mA 超低 Iq 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS627451

10Vin 超低 Iq 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI