TPS62841YBGR [TI]

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | YBG | 6 | -40 to 125;
TPS62841YBGR
型号: TPS62841YBGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | YBG | 6 | -40 to 125

转换器
文件: 总45页 (文件大小:3378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
TPS62840 1.8V 6.5V750mA60nA IQ 降压转换器  
1 特性  
3 说明  
1
60nA 工作静态电流  
100% 占空比模式下,IQ 120nA  
TPS62840 是一款高效降压转换器,具有典型值为  
60nA 的超低工作静态电流。此器件具有特殊电路,可  
100% 模式下实现仅 120nA IQ,因此可在放电末  
期进一步延长电池寿命。  
输入电压范围 VIN1.8V 6.5V  
高达 750mA 的输出电流  
射频友好型 DCS-Control™  
此器件采用 DCS-Control 技术,可以为无线电提供干  
净的电源,工作时具有 1.8MHz 的典型开关频率。在  
省电模式下,此器件可将轻负载效率向下扩展至 1μA  
负载电流及以下。  
1µA IOUT3.6VIN 1.8VOUT)时的效率为 80%  
通过 VSET 引脚提供 16 种可选输出电压  
自动转换 PFM/PWM 或强制 PWM 模式  
可选的强制 PWM STOP 模式  
输出放电功能  
可以将一个电阻器连接到 VSET 引脚以选择 16 种预定  
义的输出电压,因此这款器件可以灵活地用于各种 应  
用 并最大限度地减少了外部组件的数量。  
25nA 关断电流  
SON-8WCSP-6 和热增强型 HVSSOP-8  
该器件的 STOP 引脚可立即消除所有的开关噪声,从  
而在测试和测量系统中执行无噪声测量。  
2 应用  
智能仪表、智能恒温器  
TPS62840 提供了高达 750mA 的输出电流。此器件的  
输入电压为 1.8V 6.5V,支持多种电源,例如 2 节  
4 节碱性电池或 1 节至 2 节锂二氧化锰 (Li-MnO2)  
1 节锂离子/锂亚硫酰氯 (Li-SOCl2) 电池。  
资产跟踪设备  
可穿戴电子产品  
医疗传感器贴片和患者监护仪  
工业物联网(智能传感器)/窄带物联网  
测试和测量  
器件信息(1)  
ATEX/本质安全  
器件型号  
封装  
封装尺寸(标称值)  
8 引脚 DLC (SON) 1.5mm x 2mm  
6 引脚 YBG  
0.97mm x 1.47mm  
(WCSP)  
TPS6284x  
8 引脚 DGR  
3mm x 5mm  
(HVSSOP)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
效率与负载电流间的关系 (VOUT = 1.8V)  
TPS62841DLC  
100  
95  
90  
85  
80  
75  
70  
L
2.2 µH  
VIN  
VIN  
SW  
VOUT  
CO  
10µF  
CI  
4.7 µF  
VOS  
GND  
MODE  
STOP  
MODE  
65  
60  
55  
50  
45  
40  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 6.5V  
RUN/STOP  
VSET  
EN  
ENABLE  
RSET  
100n  
1m  
10m  
100m 1m  
Output Current (A)  
10m  
100m  
1
D002  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEC6  
 
 
 
 
 
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
9.3 System Example ..................................................... 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 12  
9
10 Power Supply Recommendations ..................... 28  
11 Layout................................................................... 28  
11.1 Layout Guidelines ................................................. 28  
11.2 Layout Example .................................................... 28  
12 器件和文档支持 ..................................................... 30  
12.1 器件支持................................................................ 30  
12.2 保障资源................................................................ 30  
12.3 ....................................................................... 30  
12.4 静电放电警告......................................................... 30  
12.5 Glossary................................................................ 30  
13 机械、封装和可订购信息....................................... 30  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (November 2019) to Revision D  
Page  
Updated the Device Comparison Table ................................................................................................................................ 3  
Added efficiency graphs to the Application Curves.............................................................................................................. 20  
Changes from Revision B (August 2019) to Revision C  
Page  
SON-8WCSP-6 和热增强型 HVSSOP-8 添加至特性 ..................................................................................................... 1  
“ATEX/本质安全添加到应用 .............................................................................................................................................. 1  
更新了典型应用图像以显示 TPS62842DGR 器件 .................................................................................................................. 1  
Added orderable part number TPS62841DGR to Device Comparison Table ....................................................................... 3  
Added orderable part number TPS62842DGR to Device Comparison Table ....................................................................... 3  
Updated Thermal Information values to support TPS62842DGR .......................................................................................... 6  
Added low-side MOSFET switch current limit to Electrical Characteristics ........................................................................... 8  
Added TPS62841DGR to Output Voltage Selection ........................................................................................................... 13  
Updated Efficiency Power Save graphs in Application Curves ............................................................................................ 20  
Updated Load Transient waveform in Application Curves ................................................................................................... 24  
Added PCB layout for DGR package ................................................................................................................................... 29  
Changes from Revision A (July 2019) to Revision B  
Page  
将销售状态从预告信息更改为生产数据.............................................................................................................................. 1  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
5 Device Comparison Table  
PACKAGE  
MODE PIN STOP PIN PACKAGE  
MARKING  
ORDERABLE  
OUTPUT  
CURRENT  
OUTPUT  
DISCHARGE  
OUTPUT VOLTAGE  
PART NUMBER  
SON-8  
(DLC)  
TPS62840DLC  
1.8 V to 3.3 V  
yes  
no  
yes  
no  
E5  
750 mA  
750 mA  
750 mA  
yes  
yes  
yes  
in 100-mV steps  
WCSP-6  
(YBG)  
TPS62840YBG  
62840  
E9  
SON-8  
(DLC)  
TPS62841DLC  
yes  
no  
yes  
no  
0.8 V to 1.55 V  
TPS62841YBG  
WCSP-6  
(YBG)  
62841  
62841  
62842  
FF  
in 50-mV steps  
HVSSOP-8  
(DGR)  
TPS62841DGR  
yes  
no  
1.8 V, 2.0 V, 2.2 V,  
TPS62842DGR  
HVSSOP-8  
(DGR)  
no  
2.4 V to 3.6 V in 100-mV steps  
yes  
SON-8  
(DLC)  
TPS62849DLC  
3.4-V fixed output voltage  
yes  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
DLC  
SON-8  
Bottom view  
Top view  
1
2
3
4
8
7
6
5
1
2
3
4
8
GND  
VIN  
VOS  
SW  
VOS  
SW  
GND  
VIN  
7
6
5
MODE  
EN  
STOP  
VSET  
STOP  
VSET  
MODE  
EN  
DGR  
HVSSOP-8  
Bottom view  
Top view  
8
7
6
5
1
1
8
VOS  
SW  
GND  
GND  
NC  
VOS  
SW  
2
3
4
2
3
4
7
6
5
NC  
VIN  
EN  
EP  
EP  
MODE  
VSET  
VIN  
EN  
MODE  
VSET  
YBG  
WCSP-6  
Top view  
Bottom view  
1
2
2
1
VOS  
GND  
GND  
VOS  
A
B
C
A
B
C
VIN  
EN  
SW  
VIN  
EN  
SW  
VSET  
VSET  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DLC  
DGR  
YBG  
(SON-8)  
(HVSSOP-8) (WCSP-6)  
VIN  
2
6
B1  
PWR  
VIN power supply pin. Connect the input capacitor close to this pin for best  
noise and voltage spike suppression. A 4.7-µF ceramic capacitor is  
required.  
SW  
7
1
5
8
2
8
4
1
B2  
A1  
C2  
A2  
PWR  
PWR  
IN  
The switch pin is connected to the internal MOSFET switches. Connect the  
inductor to this terminal.  
GND  
VSET  
VOS  
GND supply pin. Connect this pin close to the GND terminal of the input  
and output capacitors.  
Connecting a resistor to GND sets the output voltage when the converter is  
enabled. For the TPS62849, connect this pin to GND.  
IN  
Output voltage sense pin for the internal feedback divider network and  
regulation loop. When the converter is disabled, this pin discharges VOUT by  
an internal MOSFET. Connect this pin directly to the output capacitor with a  
short trace.  
EN  
4
6
5
C1  
n/a  
IN  
IN  
Enable pin. A high level enables the device and a low level turns the device  
off. The pin features an internal pulldown resistor, which is disabled once  
the device has started up and the output voltage is regulated. The pulldown  
resistor is activated again, once a low level has been detected.  
STOP  
n/a  
STOP Switching pin. When this pin is logic high, the converter stops  
switching in order to provide a quiet supply rail. The output is powered from  
the charge available in the output capacitor. When this pin is logic low, the  
device immediately resumes operation. The pin features an internal  
pulldown resistor, which is disabled once a high level is detected at the  
input. The pulldown resistor is activated again, once a low level has been  
detected.  
MODE  
3
3
n/a  
IN  
MODE pin. A low level enables Power-Save Mode operation with an  
automatic transition between PFM and PWM modes. A high level forces the  
converter to operated in PWM mode. This pin can be toggled during  
operation. It must be terminated.  
NC  
EP  
n/a  
n/a  
7
9
n/a  
n/a  
This pin is not connected internally. Do not connect this pin.  
Exposed thermal pad(1). The PowerPAD must be connected to GND.  
PWR  
(1) For more information about the PowerPAD, see the PowerPAD™ Thermally Enhanced Package application report.  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–2.0  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
VIN  
7
SW (DC)  
VIN + 0.3  
V
SW (AC), less than 10ns(3)  
8.5  
V
Pin voltage(2)  
EN, MODE, STOP  
6.5  
V
VSET  
VOS  
VIN + 0.3 < 3.6  
V
3.7  
150  
150  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body  
model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
VIN  
Supply voltage VIN  
1.8  
1.51  
3
6.5  
2.9  
40  
V
L
Effective inductance  
2.2  
10  
µH  
µF  
µF  
pF  
k  
COUT  
CIN  
Effective output capacitance  
Effective input capacitance  
1
4.7  
CVSET  
External parasitic capacitance at VSET pin  
Nominal resistance range for external voltage selection resistor (E96 resistor series)  
External voltage selection resistor tolerance  
External voltage selection resistor temperature coefficient  
Operating junction temperature range  
100  
267  
1%  
0.909  
-40  
RSET  
±200 ppm/°C  
TJ  
125  
°C  
7.4 Thermal Information  
8 Pins DLC  
Package  
6 Pins YBG  
Package  
8 Pins DGR  
Package  
DGR EVM  
THERMAL METRIC(1)  
UNIT  
JEDEC PCB 51-7  
JEDEC PCB 51-5 TPS62841-2EVM123  
RθJA  
Junction-to-ambient thermal resistance  
105.6  
75.7  
31.9  
2.3  
133.4  
0.4  
54.4  
58.1  
25.9  
1.2  
46.9  
N/A  
N/A  
0.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
39.4  
0.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
31.5  
n/a  
39.4  
n/a  
25.9  
11.7  
17.4  
N/A  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
7.5 Electrical Characteristics  
VIN = 3.6 V, TJ = –40°C to 125°C, STOP = GND, MODE = GND, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
No load  
operating input current  
EN = VIN, IOUT = 0µA, VOUT = 1.8V  
device switching  
IQ_NO_LOAD  
60  
80  
nA  
nA  
No load  
operating input current  
EN = VIN, IOUT = 0µA, VOUT = 1.2V  
device switching  
IQ_NO_LOAD  
No load  
operating input current  
(PWM Mode)  
EN = VIN, IOUT = 0µA, VOUT = 1.8V, MODE = VIN  
device switching  
IQ_NO_LOAD  
3
mA  
nA  
EN = VIN, IOUT = 0µA, VOUT = 1.55V or VOUT  
1.8V  
device not switching, TJ = 25°C  
(DLC package option)  
=
IQ_VIN  
Operating quiescent current into pin VIN  
36  
100  
120  
EN = VIN, IOUT = 0µA, VOUT = 1.55V or VOUT  
1.8V  
device not switching, TJ = 25°C  
(DLC package option)  
=
IQ_VOS  
Operating quiescent current into pin VOS  
56  
nA  
EN = VIN, IOUT = 0µA, VOUT = 1.55V or VOUT  
1.8V  
device not switching, TJ = -40°C to 85°C  
=
=
IQ_VIN  
Operating quiescent current into pin VIN  
Operating quiescent current into pin VOS  
36  
56  
360  
170  
nA  
nA  
EN = VIN, IOUT = 0µA, VOUT = 1.55V or VOUT  
1.8V  
IQ_VOS  
device not switching, TJ = -40°C to 85°C  
EN = VIN, VOUT = 3.3V  
device not switching  
70  
5
nA  
nA  
nA  
EN = VIN, VOUT < 1.5 V  
device not switching  
IQ_VOS  
Operating quiescent current into VOS pin  
EN, STOP = VIN, 3V < VOUT < 3.3V  
TJ = -40°C to 85°C  
5
100  
IQ_100%_MODE  
IQ_VIN_STOP  
Operating quiescent current 100% Mode  
Operating quiescent current into pin VIN  
VIN = VOUT = 3.3V, TJ = -40°C to 85°C  
120  
70  
nA  
µA  
STOP = High, VOUT = 1.8V, TJ = -40°C to 85°C  
175  
300  
EN = GND, shutdown current into VIN  
VSET = GND, TJ = -40°C to 85°C  
ISD  
Shutdown current  
25  
nA  
VTH_UVLO+  
VTH_UVLO–  
Rising VIN  
Falling VIN  
1.72  
1.45  
1.8  
V
V
Undervoltage lockout threshold  
1.75  
EN, MODE, STOP INPUTS  
VIH_TH  
VIL_TH  
IIN  
High level input voltage  
1.1  
V
V
Low level input voltage  
Input bias current  
0.4  
25  
MODE input, TJ = -40°C to 85°C  
EN, STOP inputs  
1
nA  
kΩ  
RPD  
Internal pull-down resistance  
200  
450  
Copyright © 2019–2020, Texas Instruments Incorporated  
7
 
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = 3.6 V, TJ = –40°C to 125°C, STOP = GND, MODE = GND, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SWITCHES  
High-side MOSFET  
on-resistance  
(DLC, YBG package)  
VIN = 3.6V, I = 200mA, TJ = -40°C to 85°C  
VIN = 5V, I = 200mA, TJ = -40°C to 85°C  
VIN = 3.6V, I = 200mA, TJ = -40°C to 85°C  
VIN = 5V, I = 200mA, TJ = -40°C to 85°C  
VIN = 3.6V, I = 200mA, TJ = -40°C to 85°C  
VIN = 5V, I = 200mA, TJ = -40°C to 85°C  
VIN = 3.6V, I = 200mA, TJ = -40°C to 85°C  
VIN = 5V, I = 200mA, TJ = -40°C to 85°C  
430  
340  
170  
135  
460  
370  
200  
165  
600  
465  
240  
180  
630  
495  
270  
210  
mΩ  
mΩ  
mΩ  
Low-side MOSFET  
on-resistance  
(DLC, YBG package)  
RDS(ON)  
High-side MOSFET  
on-resistance  
(DGR package)  
Low-side MOSFET  
on-resistance  
(DGR package)  
mΩ  
Soft-start  
ILIMF_SS  
0.15  
1.0  
0.225  
0.3  
1.4  
A
switch current limit(1)  
High-side MOSFET switch current limit(1)  
Low-side MOSFET switch current limit  
Negative current limit  
1.2  
1.0  
533  
50  
A
A
ILIMF  
ILIMN  
mA  
ns  
tI_LIM_DELAY  
Current limit propagation delay  
Leakage current  
into SW pin  
ILKG_SW  
VSW = 1.8V, TJ = -40°C to 85°C  
10  
nA  
OUTPUT VOLTAGE DISCHARGE  
IDISCHARGE_VOS Output discharge current  
THERMAL PROTECTION  
EN = GND, sink current into VOS pin, over VIN  
range  
VOUT = 1.8V, TJ = -40°C to 85°C  
16  
35  
44  
mA  
Thermal shutdown temperature  
Rising junction temperature, PWM Mode  
160  
5
°C  
°C  
TSD  
Thermal shutdown hysteresis  
OUTPUT  
PWM Mode, IOUT = 0 mA, VOUT >= 1.8 V  
PWM Mode, IOUT = 0 mA, VOUT <= 1.55 V  
-1.5  
-2  
0
0
1.5  
2
%
%
VOUT  
Output voltage accuracy  
DC output voltage  
load regulation  
PWM Mode  
0
0
%/mA  
%/V  
MHz  
µs  
VOUT  
DC output voltage  
line regulation  
PWM Mode  
VOUT = 1.8V, IOUT = 200 mA, over VIN range  
VIN = 3.6V, VOUT = 1.8V, MODE = VIN  
IOUT = 0mA  
fSW  
Switching frequency  
1.8  
VIN = 3.6V, from EN = low to high until device  
starts switching  
tSTARTUP_DELAY Regulator start up delay time  
tSTARTUP_DELAY Regulator start up delay time  
200  
EN ramps with VIN, VIN 0 to 3.6V (< 100us), until  
device starts switching  
10  
ms  
tSS  
Soft-start time  
IOUT = 0mA  
120  
700  
µs  
µs  
tSS_ILIMF  
Reduced current limit soft-start timeout  
1200  
(1) This is the static current limit. It can be temporarily higher in applications due to internal propagation delay (see Switch Current Limit /  
Short Circuit Protection section).  
8
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
7.6 Typical Characteristics  
160  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
1000  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.6V  
VIN = 4.5V  
VIN = 5.5V  
VIN = 6.5V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.6V  
VIN = 4.5V  
VIN = 5.5V  
VIN = 6.5V  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
40  
30  
20  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
-40  
25  
Junction Temperature (°C)  
85  
125  
EN = VIN  
VOUT = 1.55 V  
Device Not  
Switching  
EN = VIN  
VOUT = 1.55 V  
Device Not  
Switching  
2. Quiescent Current into VOS  
(IQ_VOS  
1. Quiescent Current into VIN  
(IQ_VIN  
)
)
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
200  
180  
160  
140  
120  
100  
80  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.6V  
VIN = 4.5V  
VIN = 5.5V  
VIN = 6.5V  
60  
40  
20  
0
-40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
25  
Junction Temperature (°C)  
85  
125  
EN = VIN  
VIN = VOUT = 3.3 V  
Device Not  
Switching  
EN = VIN  
VOUT = 1.8 V  
Device Not  
Switching  
3. 100% Mode Quiescent Current  
(IQ_100%_MODE  
4. STOP Mode Quiescent Current into VIN  
)
(IQ_VIN_STOP  
)
1000  
1400  
1200  
1000  
800  
TJ=-40°C  
TJ=-20°C  
TJ=0°C  
TJ=25°C  
TJ=65°C  
TJ=85°C  
VIN = 1.8V  
VIN = 2.0V  
VIN = 2.5V  
VIN = 3.6V  
VIN = 4.5V  
VIN = 5.5V  
VIN = 6.5V  
100  
600  
400  
10  
1.5  
200  
-40  
2
2.5  
3
3.5  
Input Voltage [V]  
4
4.5  
5
5.5  
6
6.5  
25  
Junction Temperature (°C)  
85  
125  
EN = GND  
5. Shutdown Current  
(ISD  
6. High-Side RDSON versus Temperature  
)
(DLC, YBG packages)  
版权 © 2019–2020, Texas Instruments Incorporated  
9
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
600  
1
0.95  
0.9  
VIN = 1.8V  
VIN = 2.0V  
VIN = 2.5V  
VIN = 3.6V  
VIN = 4.5V  
VIN = 5.5V  
VIN = 6.5V  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VIH Threshold  
0.85  
0.8  
0.75  
0.7  
Undefined Region  
0.65  
0.6  
VIL Threshold  
0.55  
0.5  
0.45  
0.4  
VIN = 1.8V  
VIN = 3.6V  
VIN = 6.5V  
85 125  
0
-40  
25  
Junction Temperature (°C)  
85  
125  
-40  
25  
Junction Temperature (°C)  
7. Low-Side RDSON versus Temperature  
8. EN Input Thresholds versus Temperature  
(DLC, YBG packages)  
1
0.95  
0.9  
1
0.95  
0.9  
VIH Threshold  
VIH Threshold  
0.85  
0.8  
0.85  
0.8  
0.75  
0.7  
0.75  
0.7  
Undefined Region  
Undefined Region  
0.65  
0.6  
0.65  
0.6  
VIL Threshold  
VIL Threshold  
0.55  
0.5  
0.55  
0.5  
0.45  
0.4  
0.45  
0.4  
VIN = 1.8V  
25  
Junction Temperature (°C)  
VIN = 3.6V  
VIN = 6.5V  
125  
VIN = 1.8V  
25  
Junction Temperature (°C)  
VIN = 3.6V  
VIN = 6.5V  
85 125  
-40  
85  
-40  
9. MODE Input Thresholds versus Temperature  
10. STOP Input Thresholds versus Temperature  
47  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.6V  
VIN = 4.5V  
VIN = 5.5V  
VIN = 6.5V  
39  
31  
23  
15  
-40  
25  
Junction Temperature (°C)  
85  
125  
EN = GND  
VOUT = 1.8 V  
11. Output Discharge Current versus Temperature  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
8 Detailed Description  
8.1 Overview  
The TPS6284x is a synchronous step-down converter with ultra-low quiescent current consumption. Using TI's  
DCS-Control topology, the device extends the high efficiency operation area down to micro amperes of load  
current during Power-Save Mode Operation. Depending on the output voltage, the device consumes quiescent  
current from both the input and output to reduce the overall input current consumption to 60 nA typical.  
DCS-Control™ (Direct Control with Seamless Transition into Power-Save Mode) is an advanced regulation  
topology that combines the advantages of hysteretic and voltage mode controls. Characteristics of DCS-Control  
are excellent AC load regulation and transient response, low output ripple voltage, and a seamless transition  
between PFM and PWM modes. It includes a AC loop which senses the output voltage (VOS pin) and directly  
feeds this information into a fast comparator stage.  
The device operates with a nominal switching frequency of 1.8 MHz. An additional voltage feedback loop is used  
to achieve accurate DC load regulation. The internally compensated regulation network achieves fast and stable  
operation with small external components and low ESR capacitors.  
In Power-Save Mode, the switching frequency varies linearly with the load current. Since DCS-Control supports  
both operating modes, the transition from PWM to PFM is seamless with minimum output voltage ripple. The  
TPS6284x offers both, excellent DC voltage and superior load transient regulation, combined with low output  
voltage ripple thereby minimizing interferences with Radio Frequency circuits.  
8.2 Functional Block Diagram  
MODE  
MODE  
STOP  
STOP  
PD  
Control  
R
PD  
Smart PD  
+
VTH_UVLO  
VIN  
UVLO  
EN  
EN  
PD  
Control  
UVLO Comparator  
R
PD  
Ultra Low Power  
Reference  
Smart PD  
VOS  
R2D converter  
Thermal  
Shutdown  
UVLO  
EN  
VOUT  
Discharge  
VREF  
Resistor to Digital  
Converter  
VSET  
Softstart  
Power Stage  
ILIM Comp.  
VIN  
SW  
DCS  
Control  
VIN  
High-Side  
Limit  
TON timer  
PMOS  
VOS  
VSW  
VOS  
UVLO  
Ramp  
Generator  
Gate Driver  
Anti  
Main  
Comparator  
Error  
VOS  
VREF  
Shoot-Through  
amplifier  
EN  
NMOS  
Low-Side  
Limit  
MODE  
STOP  
GND  
ILIM Comp.  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Smart Enable and Shutdown  
To avoid a floating input, an internal 450-kΩ resistor pulls the EN pin to GND. This prevents an uncontrolled  
start-up of the device in case the EN pin cannot be driven low safely. The device is in shutdown mode when the  
EN input is logic low.  
The device turns on with a logic high EN signal. An internal control circuit disconnects the EN pin pulldown  
resistor once the device has finished soft start and the output voltage is in regulation. With the EN pin set low,  
the device enters shutdown mode and the pulldown resistor is activated again.  
8.3.2 Soft Start  
To protect the battery and system from excessive inrush current, the device features a soft start of the output  
voltage.  
Once the device has been enabled, it initializes and powers up its internal circuits. This occurs during the  
regulator start-up delay time (tSTARTUP_DELAY). Once this delay expires, the device enters soft start, starts  
switching, and ramps up the output voltage.  
The device operates with a reduced switch current limit (ILIMF_SS) throughout the entire soft-start phase (tSS). The  
switch current limit is increased to its nominal value (ILIMF) once the output voltage has reached its nominal value  
or the reduced current limit soft-start time (tSS_ILIMF) has expired, whichever occurs first. The soft-start phase (tSS  
)
can last up to approximately 700 µs. 12 shows the start-up procedure.  
EN  
Device starts switching  
VOUT ramps up  
VOUT  
tSTARTUP_DELAY  
tSS  
12. Device Start-up  
8.3.3 Mode Selection: Power-Save Mode (PFM/PWM) or Forced PWM Operation (FPWM)  
Connecting the MODE input to GND enables the automatic PWM and power-save mode operation. The  
converter operates in PWM mode at moderate to heavy loads and in the PFM mode during light loads, which  
maintains high efficiency over a wide load current range.  
Pulling the MODE pin high forces the converter to operate in PWM mode even at light load currents, allowing  
lower ripple compared to PFM mode switching. In this mode, the efficiency is lower compared to the power-save  
mode during light loads. For additional flexibility, it is possible to switch from power-save mode to forced PWM  
mode during operation. This allows efficient power management by adjusting the operation of the converter to  
the specific system requirements. The MODE pin must be terminated.  
This pin is not available in the YBG package, where the device automatically transitions between power-save  
and PWM modes.  
8.3.4 Output Voltage Selection (VSET)  
The output voltage is set with a single external resistor connected between the VSET pin and GND. Once the  
device has been enabled and the control logic as well as the reference system are powered up, an R2D (resistor  
to digital) conversion is started to detect the value of the external RSET resistor. A pre-defined fixed output voltage  
is set based on the RSET value. The output voltage is set once during the start-up delay phase of the device.  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
Feature Description (接下页)  
Once the output voltage is set, the R2D converter is turned off to avoid current flowing through RSET. Care must  
be taken that no parasitic current, capacitance, or both greater than 100 pF is present between the VSET and  
GND pins. This can cause false RSET readings and a faulty output voltage to be set. The R2D converter is  
designed to operate with resistor values out of E96 series. 1 shows the allowed RSET values.  
1. Output Voltage Setting, RSET Resistor  
OUTPUT VOLTAGE SETTING VOUT [V]  
VSET RESISTANCE TO GND - E96 VALUES [Ω]  
TPS62841YBG  
TPS62840YBG  
TPS62840DLC  
TPS62841DLC  
TPS62842DGR  
MIN  
NOM  
MAX  
TPS62841DGR  
0.8  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
1.8  
2.0  
2.2  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.49  
3.6  
0
GND  
0.909 k  
1.74 k  
2.87 k  
4.32 k  
6.04 k  
8.45 k  
11.5 k  
15.8 k  
21.5 k  
28.7 k  
38.3 k  
52.3 k  
71.5 k  
102 k  
0.01 k  
0.95 k  
0.85  
0.9  
0.87 k  
1.67 k  
1.81 k  
0.95  
1.0  
2.76 k  
2.98 k  
4.15 k  
4.49 k  
1.05  
1.1  
5.80 k  
6.28 k  
8.11 k  
8.79 k  
1.15  
1.2  
11.04 k  
15.17 k  
20.64 k  
27.55 k  
36.77 k  
50.21 k  
68.64 k  
97.92 k  
256.32 k  
11.96 k  
16.43 k  
22.36 k  
29.85 k  
39.83 k  
54.39 k  
74.36 k  
106.08 k  
277.68 k  
1.25  
1.3  
1.35  
1.4  
1.45  
1.5  
1.55  
267 k  
The output voltage of the TPS62849 is internally set to 3.4 V. Connect VSET directly to GND for this device.  
8.3.5 Undervoltage Lockout UVLO  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout (UVLO) comparator monitors  
the supply voltage. The UVLO comparator shuts down the device at an input below the threshold VTH_UVLO– with  
falling VIN. The device starts at an input voltage higher than the threshold VTH_UVLO+ with rising VIN.  
When the device resumes operation from an undervoltage lockout condition, it behaves like being enabled. This  
means the internal control logic is powered up, the external RSET resistor is read out and a soft-start sequence is  
initiated.  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
 
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
8.3.6 Switch Current Limit / Short Circuit Protection  
The TPS6284x integrates a current limit on the high-side as well as on the low-side MOSFETs to protect the  
device against overload or short circuit conditions. The current in the switches is monitored cycle-by-cycle. If the  
high-side MOSFET current limit (ILIMF) trips, the high-side MOSFET is turned off and the low-side MOSFET is  
turned on to ramp the inductor current down. Once the inductor current decreases below the low-side current  
limit (ILIMF), the low-side MOSFET turns off and the high-side MOSFET turns on again.  
During soft start, the current limit is reduced to ILIMF_SS. After soft start has finished, the current limit value  
increases to the normal value ILIMF  
.
Due to internal propagation delay, the actual inductor current can exceed the static current limit during that time.  
The dynamic current limit can be calculated as follows:  
VL  
I peak(typ)   ILIMF  
 tI_LIM_DELAY  
L
where  
ILIMF is the static current limit, specified in Electrical Characteristics  
L is the inductance  
VL is the voltage across the inductor (VIN - VOUT  
)
tI_LIM_DELAY is the internal propagation delay  
(1)  
In forced PWM mode, a negative current limit (ILIMN) is enabled to prevent excessive current flowing backwards  
to the input. When the inductor current reaches ILIMN, the low-side MOSFET turns off and the high-side MOSFET  
turns on and kept on until TON time expires.  
8.3.7 Output Voltage Discharge  
The purpose of the output discharge function is to ensure a defined ramp-down of the output voltage when the  
device is disabled.  
The internal discharge resistor is connected to the VOS pin. The discharge function is enabled as soon as the  
device is disabled or if UVLO is entered. It is not active during Thermal Shutdown. The discharge circuit remains  
active as long as the input voltage is above 0.7 V.  
8.3.8 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. The device enters  
thermal shutdown when the junction temperature exceeds the thermal shutdown threshold (TSD) of 160°C (typ.).  
Both the high-side and low-side MOSFETs are turned off. The device resumes its operation when the junction  
temperature falls below typically 155°C again and begins with a soft-start cycle without reading RSET again. In  
Power-Save Mode, the thermal shutdown feature is disabled.  
8.3.9 STOP Mode  
The TPS6284x includes the STOP input pin, allowing the user to temporarily stop the switching of the regulator.  
The STOP pin function does not depend on the setting of the MODE pin. The STOP pin is only present on the  
DLC package.  
When a logic high level is applied to the STOP pin, the regulator is forced to stop switching after the current  
switching cycle. The application is powered by the charge available in the output capacitor. No switching noise is  
generated, which can be beneficial in noise-sensitive sampled applications.  
An MCU controlling this pin needs to take care to turn the device back on before the output voltage reaches a  
system critical level. Should this not happen, the output voltage is clamped to about 0.5 V below the set output  
voltage. In STOP mode, the device consumes typically 70 µA operating quiescent current from the input supply.  
When a logic low level is applied to the STOP pin, the regulator immediately resumes switching operation without  
a start-up delay or soft start. To avoid a floating input, an internal 450-kΩ resistor pulls the STOP pin to GND. A  
control circuit disconnects the pulldown resistor at the STOP pin once a high level has been detected (similar to  
the EN pin).  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
8.4 Device Functional Modes  
8.4.1 Power-Save Mode Operation  
The DCS-Control topology supports Power-Save Mode operation. At light loads, the device operates in PFM  
(Pulse Frequency Modulation) mode that generates a single switching pulse to ramp up the inductor current and  
recharge the output capacitor, followed by a sleep period where most of the internal circuits are shutdown to  
achieve lowest operating quiescent current. During this time, the load current is supported by the output  
capacitor. The duration of the sleep period depends on the load current and the inductor peak current. During the  
sleep periods, the current consumption is reduced to typically 60 nA. This low quiescent current consumption is  
achieved by an ultra-low power reference, an integrated high-impedance feedback divider network, and an  
optimized Power-Save Mode operation. To achieve a stable switching frequency in steady state operation, the  
on-time is calculated as in 公式 2.  
VOUT  
TON  
=
556ns  
V
IN  
(2)  
In PFM Mode, the switching frequency varies linearly with the load current and is calculated in 公式 3. At medium  
and high load conditions, the device enters automatically PWM (Pulse Width Modulation) mode and operates in  
continuous conduction mode with a nominal switching frequency (fsw). The switching frequency in PWM mode is  
controlled and depends on VIN and VOUT. The boundary between PWM and PFM mode is when the inductor  
current becomes discontinuous.  
2IO` UT  
fPFM  
V
V  V  
!
"
TO2N  
IN  
IN  
OUT  
#
$
&
VOUT  
L
%
(3)  
If the load current decreases, the converter seamlessly enters PFM mode to maintain high efficiency down to  
ultra-light loads. Since DCS-Control supports both operation modes within one single building block, the  
transition from PWM to PFM modes is seamless with minimum output voltage ripple.  
8.4.2 Forced PWM Mode Operation  
With a high level on the MODE input, the device enters forced PWM Mode and operates with a high switching  
frequency over the entire load range, even at very light loads. This reduces or eliminates interference with RF  
and noise-sensitive circuits, but reduces efficiency at light loads. The MODE pin can be changed during  
operation and must be terminated.  
8.4.3 100% Mode Operation  
In PWM mode, the duty-cycle of a buck converter is given as D = VOUT/VIN. The duty-cycle increases as the input  
voltage comes closer to the output voltage. Once the input voltage decreases to near 100% duty cycle, the  
output voltage set point is increased by +30 mV. As the input voltage decreases further, the device enters 100%  
duty-cycle mode and keeps the high-side MOSFET on continuously. The output (VOUT) is connected to the input  
(VIN) through the inductor and the internal high-side MOSFET. The minimum input voltage to maintain a given  
output voltage depends on the load current and is calculated as:  
VINmin = VOUT + IOUT × (RDS(on)max + RL)  
where  
IOUT = output current  
RDS(on)max = maximum P-channel switch RDS(on)  
RL = DC resistance of the inductor  
The TPS6284x contains special circuitry to keep an ultra-low IQ of 120 nA during 100% mode operation.  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
 
 
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
L
TPS62840YBG  
VIN  
2.2 µH  
VIN  
SW  
VOS  
VOUT  
CI  
4.7 µF  
CO  
10µF  
GND  
EN  
ENABLE  
VSET  
RSET  
TPS62841DLC  
VIN  
L
VIN  
SW  
2.2 µH  
CI  
4.7 µF  
VOUT  
CO  
10µF  
VOS  
GND  
MODE  
STOP  
EN  
MODE  
VSET  
RUN/STOP  
ENABLE  
RSET  
L
TPS62842DGR  
VIN  
2.2 µH  
VIN  
SW  
VOUT  
CI  
4.7 µF  
CO  
10µF  
VOS  
GND  
EN  
ENABLE  
VSET  
NC  
RSET  
MODE  
13. TPS6284x Application Circuit  
Additional circuits are shown in the System Examples.  
9.2.1 Design Requirements  
2 shows the list of components for the application circuit and the characteristic application curves.  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
Typical Application (接下页)  
2. Components for Application Characteristic Curves  
REFERENC  
DESCRIPTION  
E
MANUFACTURER(1  
VALUE  
SIZE [L x W x T]  
)
TPS6284x  
IC  
TI  
step-down converter  
GRM155R61A475MEAAD  
CI  
4.7 µF / 10 V / X5R  
10 µF / 4 V / X5R  
2.2 µH / 116 mΩ DCR  
See 1  
(0402) [1 mm x 0.5 mm x 0.65 mm max.]  
(0402) [1 mm x 0.5 mm x 0.65 mm max.]  
muRata  
muRata  
muRata  
ceramic capacitor  
GRM155R60G106ME44D  
CO  
ceramic capacitor  
DFE201612E-2R2M=P2  
(2016) [2.0 mm x 1.6 mm x 1.2 mm  
max.]  
L
inductor  
Resistor E96 series  
RSET  
1%, TC ±200ppm  
(1) See the Third-party Products Disclaimer.  
9.2.2 Detailed Design Procedure  
The inductor and output capacitor together provide a low-pass filter. To simplify this process, 3 outlines  
possible inductor and capacitor value combinations.  
3. Recommended LC Output Filter Combinations  
OUTPUT CAPACITOR VALUE [µF](2)  
INDUCTOR VALUE [µH](1)  
10 µF  
22 µF  
(3)  
2.2  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -20%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance varies by +20% and –50%.  
(3) Typical application configuration. Other check marks indicate alternative filter combinations.  
9.2.2.1 Inductor Selection  
The inductor value affects the peak-to-peak ripple current, PWM-to-PFM transition point, output voltage ripple,  
and efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The inductor  
ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be estimated  
according to 公式 4.  
公式 5 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor must be rated higher than the maximum inductor current, as calculated with 公式 5. This is  
recommended because during a heavy load transient the inductor current rises above the calculated value. A  
more conservative way is to select the inductor saturation current according to the high-side MOSFET switch  
current limit, ILIMF  
.
Vout  
Vin  
1-  
DIL = Vout ´  
L ´ ¦  
(4)  
DI  
L
I
= I  
+
Lmax  
outmax  
2
where  
f is the switching frequency  
L is the inductance  
ΔIL is the peak-to-peak inductor ripple current  
ILmax is the maximum inductor current  
(5)  
17  
4 shows a list of possible inductors.  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
 
 
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
4. List of Possible Inductors(1)  
INDUCTANCE [µH]  
INDUCTOR TYPE  
DFE201612E  
DFE201210S  
SIZE [L x W x T]  
SUPPLIER  
2.2  
2.2  
[2.0 mm x 1.6 mm x 1.2 mm max.]  
[2.0 mm x 1.2 mm x 1.0 mm max.]  
muRata  
muRata  
(1) See the Third-party Products Disclaimer.  
9.2.2.2 Output Capacitor Selection  
The DCS-Control scheme of the TPS62840 allows the use of tiny ceramic capacitors. Ceramic capacitors with  
low-ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires  
either an X7R or X5R dielectric.  
At light load currents, the converter operates in Power-Save Mode and the output voltage ripple is dependent on  
the output capacitor value. Larger output capacitors reduce the output voltage ripple. The leakage current of the  
output capacitor adds to the overall quiescent current.  
5. List of Possible Capacitors(1)  
CAPACITOR VALUE  
CAPACITOR TYPE  
SIZE IMPERIAL  
(METRIC)  
SIZE [L x W x T]  
SUPPLIER  
[μF]  
10  
GRM155R60G106ME44D  
0402  
[1mm x 0.5mm x 0.65mm max.]  
muRata  
(1005)  
(1) See the Third-party Products Disclaimer.  
9.2.2.3 Input Capacitor Selection  
Because the buck converter has a pulsating input current, a low-ESR input capacitor is required for best input  
voltage filtering to minimize input voltage spikes. For most applications, a 4.7-µF input capacitor is sufficient.  
When operating from a high impedance source, a larger input buffer capacitor is recommended to avoid voltage  
drops during start-up and load transients.  
The input capacitor can be increased without any limit for better input voltage filtering. The leakage current of the  
input capacitor adds to the overall quiescent current. 6 shows a selection of input and output capacitors.  
6. List of Possible Capacitors(1)  
CAPACITOR VALUE  
CAPACITOR TYPE  
GRM155R61A475MEAAD  
GRM31CR71H475MA12L  
C1608X7S1A475M080AC  
GRM155R60J106ME15D  
SIZE IMPERIAL  
(METRIC)  
SIZE [L x W x T]  
SUPPLIER  
muRata  
muRata  
TDK  
[μF]  
4.7  
4.7  
4.7  
10  
0402  
(1005)  
[1mm x 0.5mm x 0.65mm max.]  
[3.2mm x 1.6mm x 1.8mm max.]  
[1.6mm x 0.8mm x 1.0mm max.]  
[1mm x 0.5mm x 0.65mm max.]  
1206  
(3216)  
0603  
(1608)  
0402  
muRata  
(1005)  
(1) See the Third-party Products Disclaimer.  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
9.2.3 Application Curves  
The conditions for the following application curves are VIN = 3.6 V, VOUT = 1.8 V, MODE = GND, STOP = GND,  
and the used components listed in 2, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VOUT=0.8V  
PFM/PWM Operation  
VOUT=1.2V  
PFM/PWM Operation  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
1
1
1
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
1
1
1
RSET = GND  
RSET = 15.8 kΩ to GND  
14. Efficiency Power Save Mode  
15. Efficiency Power Save Mode  
VOUT = 0.8 V  
VOUT = 1.2 V  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VOUT=1.8V  
95 PFM/PWM Operation  
VOUT=1.8V  
PFM/PWM Operation  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=3.6V, TA=-40oC  
VIN=3.6V, TA=25oC  
VIN=3.6V, TA=85oC  
VIN=6.5V, TA=-40oC  
VIN=6.5V, TA=25oC  
VIN=6.5V, TA=85oC  
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
RSET = GND  
RSET = GND  
16. Efficiency Power Save Mode  
17. Efficiency Power Save Mode  
VOUT = 1.8 V  
VOUT = 1.8 V  
100  
100  
VOUT=2.5V  
95 PFM/PWM Operation  
VOUT=3.3V  
95 PFM/PWM Operation  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
RSET = 11.5 kΩ to GND  
RSET = 267 kΩ to GND  
18. Efficiency Power Save Mode  
19. Efficiency Power Save Mode  
VOUT = 2.5 V  
VOUT = 3.3 V  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
100n  
1m  
10m  
100m 1m  
Load Current [A]  
10m  
100m 0.75  
100n  
1m  
10m  
100m 1m  
Load Current [A]  
10m  
100m 0.75  
RSET = GND  
RSET = GND  
20. Efficiency Power Save Mode  
21. Efficiency Power Save Mode  
VOUT = 0.8 V for the DGR device  
VOUT = 1.2 V for the DGR device  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
VIN=6.5V  
100n  
1m  
10m  
100m 1m  
Load Current [A]  
10m  
100m 0.75  
100n  
1m  
10m  
100m 1m  
Load Current [A]  
10m  
100m 0.75  
RSET = GND  
RSET = 267 kΩ to GND  
22. Efficiency Power Save Mode  
23. Efficiency Power Save Mode  
VOUT = 1.8 V for the DGR device  
VOUT = 3.6 V for the DGR device  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.824  
0.816  
0.808  
0.8  
VIN=3.6V  
PWM Operation  
0.792  
0.784  
0.776  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VOUT=0.8V  
VOUT=1.2V  
VOUT=1.8V  
VOUT=3.3V  
VIN=5.0V  
VIN=6.5V  
VOUT=0.8V  
PFM/PWM Operation  
1m  
10m  
100m  
1
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
1
Load Current [A]  
RSET = GND  
24. Efficiency Forced PWM Mode  
25. Output Voltage versus Load Current  
VOUT = 0.8 V / 1.2 V / 1.8 V / 3.3 V  
VOUT = 0.8 V  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
1.236  
1.854  
1.836  
1.818  
1.8  
VOUT=1.8V  
PFM/PWM Operation  
1.224  
1.212  
1.2  
1.188  
1.176  
1.164  
1.782  
1.764  
1.746  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=1.8V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VOUT=1.2V  
PFM/PWM Operation  
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
1
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
1
RSET = 15.8k Ω to GND  
RSET = GND  
26. Output Voltage versus Load Current  
27. Output Voltage versus Load Current  
VOUT = 1.2 V  
VOUT = 1.8 V  
2.575  
3.4  
3.35  
3.3  
2.55  
2.525  
2.5  
3.25  
3.2  
3.15  
3.1  
2.475  
2.45  
3.05  
3
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
2.95  
2.9  
VOUT=2.5V  
PFM/PWM Operation  
VOUT=3.3V  
PFM/PWM Operation  
2.425  
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
1
100n  
1µ  
10µ  
100µ 1m  
Load Current [A]  
10m  
100m  
1
RSET = 11.5 kΩ to GND  
RSET = 267 kΩ to GND  
28. Output Voltage versus Load Current  
29. Output Voltage versus Load Current  
VOUT = 2.5 V  
VOUT = 3.3 V  
3.55  
3.55  
VOUT=3.4V at 25°C  
VOUT=3.4V at 70°C  
3.5  
3.45  
3.4  
3.5  
3.45  
3.4  
3.35  
3.3  
3.35  
3.3  
3.25  
3.2  
3.25  
3.2  
3.15  
3.1  
3.15  
3.1  
3.05  
3
3.05  
3
VIN=3.4V  
VIN=3.5V  
VIN=3.6V  
VIN=3.7V  
VIN=3.8V  
VIN=3.9V  
VIN=4V  
VIN=3.4V  
VIN=3.5V  
VIN=3.6V  
VIN=3.7V  
VIN=3.8V  
VIN=3.9V  
VIN=4V  
2.95  
2.9  
2.95  
2.9  
2.85  
2.85  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
Load Current [A]  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
Load Current [A]  
RSET = GND  
RSET = GND  
30. Output Voltage versus Load Current  
31. Output Voltage versus Load Current  
VOUT = 3.4 V  
VOUT = 3.4 V  
版权 © 2019–2020, Texas Instruments Incorporated  
21  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
1.2  
1.1  
1
3.55  
VOUT=3.4V at 85°C  
VOUT=1.8V  
3.5  
3.45  
3.4  
3.35  
3.3  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
3.25  
3.2  
3.15  
3.1  
3.05  
3
TA=-40°C  
TA=25°C  
TA=70°C  
TA=85°C  
VIN=3.4V  
VIN=3.5V  
VIN=3.6V  
VIN=3.7V  
VIN=3.8V  
VIN=3.9V  
VIN=4V  
2.95  
2.9  
2.85  
Forced PWM Operation  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
Load Current [A]  
1.8 2.2 2.6  
3
Input Voltage [V]  
3.4 3.8 4.2 4.6  
5
RSET = GND  
RSET = GND  
32. Output Voltage versus Load Current  
33. Maximum Output Current versus Input Voltage  
VOUT = 3.4 V  
VOUT = 1.8 V  
1.2  
VOUT=0.8V  
1
PFM/PWM Operation  
VOUT=3.3V  
1.1  
1
100m  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
10m  
VIN=1.8V  
VIN=2.0V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
1m  
TA=-40°C  
TA=25°C  
TA=70°C  
TA=85°C  
100µ  
10µ  
Forced PWM Operation  
3.2 3.4 3.6 3.8  
4
Input Voltage [V]  
4.2 4.4 4.6 4.8  
5
5.2  
100n 1µ 10µ 100µ 1m 10m 100m  
Load Current [A]  
1
RSET = 267 kΩ to GND  
RSET = GND  
34. Maximum Output Current versus Input Voltage  
VOUT = 3.3 V  
35. Switching Frequency versus Load Current  
VOUT = 0.8 V  
VOUT=1.2V  
1
PFM/PWM Operation  
VOUT=1.8V  
1
PFM/PWM Operation  
0.1  
0.1  
0.01  
0.01  
VIN=1.8V  
VIN=2.0V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
0.001  
0.001  
VIN=2.0V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
0.0001  
0.00001  
0.0001  
0.00001  
VIN=5.0V  
VIN=6.5V  
100n 1µ 10µ 100µ 1m 10m 100m  
Load Current [A]  
1
100n 1µ 10µ 100µ 1m 10m 100m  
Load Current [A]  
1
RSET = 15.8 kΩ to GND  
RSET = GND  
36. Switching Frequency versus Load Current  
37. Switching Frequency versus Load Current  
VOUT = 1.2 V  
VOUT = 1.8 V  
22  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
2.4  
2.2  
2
1
VOUT=3.3V  
PFM/PWM Operation  
VOUT=1.8V  
Forced PWM Operation  
0.1  
0.01  
1.8  
1.6  
1.4  
1.2  
1
0.001  
0.8  
0.6  
0.4  
0.2  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
VIN=2.0V  
VIN=2.5V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
0.0001  
0.00001  
100n 1µ 10µ 100µ 1m 10m 100m  
Load Current [A]  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
Load Current [A]  
RSET = 267 kΩ to GND  
RSET = GND  
38. Switching Frequency versus Load Current  
39. Switching Frequency versus Load Current  
VOUT = 3.3 V  
VOUT = 1.8 V  
1µ  
2.4  
PFM Operation  
No Load  
VOUT=0.8V  
VOUT=1.2V  
VOUT=1.8V  
VOUT=3.3V  
VOUT=3.3V  
Forced PWM Operation  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
100n  
0.8  
0.6  
0.4  
0.2  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=6.5V  
10n  
1.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
Load Current [A]  
2
2.5  
3
3.5  
4
4.5  
Input Voltage [V]  
5
5.5  
6
6.5  
RSET = 267 kΩ to GND  
40. Switching Frequency versus Load Current  
41. No Load Operating Current versus Input Voltage  
VOUT = 3.3 V  
10m  
1.802  
1.8016  
1.8012  
1.8008  
1.8004  
1.8  
VOUT=0.8V  
VOUT=1.8V  
VOUT=3.3V  
1.7996  
1.7992  
1.7988  
1m  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 6.5V  
1.7984  
1.798  
0
0.15  
0.3 0.45  
Load Current [A]  
0.6  
0.75  
Forced PWM Operation  
No Load  
100µ  
1.5  
2
2.5  
3
3.5  
4
4.5  
Input Voltage [V]  
5
5.5  
6
6.5  
EN = VIN  
MODE = HIGH  
43. Output Voltage Accuracy (Load Regulation)  
42. No Load Operating Current versus Input Voltage  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
1.8012  
1.8009  
1.8006  
1.8003  
1.8  
1.7997  
1.7994  
1.7991  
1.7988  
1.7985  
1.7982  
1.7979  
IOUT = 10µA  
IOUT = 100µA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 200mA  
2
2.5  
3
3.5  
4
4.5  
Input Voltage (V)  
5
5.5  
6
6.5  
EN = VIN  
MODE = HIGH  
VOUT = 1.8 V  
IOUT = 10 mA  
44. Output Voltage Accuracy (Line Regulation)  
45. Output Voltage Ripple, PFM Operation  
VOUT = 1.8 V  
MODE = HIGH  
IOUT = 10 mA  
VOUT = 1.8 V  
rise/fall time = 20 µs  
VIN = 2.5 V to 6.5 V  
IOUT = 10 mA  
46. Output Voltage Ripple, PWM Operation  
47. Line Transient PFM Mode  
VOUT = 1.8 V  
rise/fall time = 20 µs  
VIN = 2.5 V to 6.5 V  
IOUT = 500 mA  
VOUT = 1.8 V  
rise/fall time < 1 µs  
VIN = 3.6 V  
IOUT = 125 µA to 50 mA  
48. Line Transient PWM Mode  
49. Load Transient PFM Mode  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
VOUT = 1.8 V  
rise/fall time < 1 µs  
VIN = 3.6 V  
IOUT = 125 mA to 375 mA  
VOUT = 1.8 V  
rise/fall time < 1 µs  
VIN = 3.6 V  
IOUT = 0 A to 100 mA  
50. Load Transient PFM/PWM Mode  
51. Load Transient PWM Mode from No load  
VOUT = 3.3 V  
rise/fall time < 1 µs  
VIN = 3.6 V  
IOUT = 75 µA to 50 mA  
VOUT = 3.3 V  
VIN = 3.1 V to 3.6 V  
IOUT = 50 mA  
52. Load Transient PFM Mode  
53. 100% Mode Entry/Exit Operation  
VOUT = 1.8 V  
Turned on by EN input  
VIN = 3.6 V  
IOUT = 400 mA  
RLOAD = 4.5 Ω  
VOUT = 1.8 V  
Turned on by EN input  
VIN = 3.6 V  
IOUT = 0 mA  
55. Start-up/Shutdown into Load  
54. Start-up/Shutdown into No Load  
版权 © 2019–2020, Texas Instruments Incorporated  
25  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
VOUT = 1.8 V  
VIN rising from 0 V to 3.6 V  
EN = VIN  
IOUT = 0 mA  
VOUT = 3.3 V  
Turned on by EN input  
VIN = 3.6 V  
IOUT = 0 mA  
56. Start-up/Shutdown into No Load  
57. Start-up/Shutdown into No Load  
VOUT = 1.8 V  
PFM Operation  
VIN = 3.6 V  
IOUT = 10 mA  
VOUT = 1.8 V  
PWM Operation  
VIN = 3.6 V  
IOUT = 10 mA  
58. STOP Mode Operation  
59. STOP Mode Operation  
26  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
9.3 System Example  
High Power Loads  
WiFi  
VIN Sources  
WMBus  
2 x Li-MnO2 (6 V)  
LPWAN/NB-IoT  
Motors  
4 x 1.6 V Alkaline (6.4 V)  
1 x Li-SOCL2 (3.6 V)  
1 x LiMnO2 (3 V)  
1 x Li-Ion (4.2 V)  
USB (5 V)  
Main Rail  
LDOs  
OHRM TX  
TPS6284x  
60nA IQ Buck Converter  
Several 100mA  
Load Switches  
Medium Power Loads  
Audio Amplifier  
Up to 6.5 V  
Ultra-Low Power Loads  
Audio Codec  
Bluetooth Radio  
GPS  
MCU  
SOC  
Few µA  
Few 10mA  
60. The Broad Range of Input Voltage Sources and Various Power Loads that TPS6284x Can Support  
版权 © 2019–2020, Texas Instruments Incorporated  
27  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply must provide a current rating according to the supply voltage, output voltage, and output  
current of the TPS62840.  
11 Layout  
11.1 Layout Guidelines  
The TPS62840 pinout has been optimized to enable a single layer PCB routing of the device and its critical  
passive components such as CIN, COUT, and L.  
As for all switching power supplies, the layout is an important step in the design. Care must be taken in board  
layout to get the specified performance.  
It is critical to provide a low inductance, low impedance ground path. Therefore, use wide and short traces for  
the main current paths.  
The input capacitor must be placed as close as possible to the VIN and GND pins of the device. This is the  
most critical component placement.  
The VOS line is a sensitive, high impedance line and must be connected to the output capacitor and routed  
away from noisy components and traces (for example, the SW line) or other noise sources.  
11.2 Layout Example  
VOUT  
GND  
VIN  
COUT  
L
IC  
MODE  
EN  
STOP  
RSET  
GND  
61. Recommended PCB Layout  
DLC Package  
GND  
VOUT  
COUT  
IC  
L
RSET  
VIN  
EN  
GND  
62. Recommended PCB Layout  
YBG Package  
28  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS62840  
www.ti.com.cn  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
Layout Example (接下页)  
GND  
EN  
RSET  
MODE  
VIN  
IC  
L
COUT  
VOUT  
63. Recommended PCB Layout  
GND  
DGR Package  
版权 © 2019–2020, Texas Instruments Incorporated  
29  
TPS62840  
ZHCSJW0D JUNE 2019REVISED MARCH 2020  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 保障资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
DCS-Control, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2019–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62840DLCR  
TPS62840YBGR  
TPS62841DGRR  
TPS62841DLCR  
TPS62841YBGR  
TPS62842DGRR  
TPS62849DLCR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON-HR  
DSBGA  
DLC  
YBG  
DGR  
DLC  
YBG  
DGR  
DLC  
8
6
8
8
6
8
8
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
E5  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
SNAGCU  
NIPDAU  
62840  
HVSSOP  
VSON-HR  
DSBGA  
T841R  
E9  
Call TI | NIPDAU  
SNAGCU  
NIPDAU  
62841  
T842R  
FF  
HVSSOP  
VSON-HR  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62840DLCR  
VSON-  
HR  
DLC  
8
3000  
180.0  
8.4  
1.8  
2.25  
1.15  
4.0  
8.0  
Q1  
TPS62840YBGR  
TPS62841DGRR  
TPS62841DLCR  
DSBGA  
YBG  
6
8
8
3000  
2500  
3000  
180.0  
330.0  
180.0  
8.4  
12.4  
8.4  
1.14  
5.3  
1.64  
3.4  
0.59  
1.4  
4.0  
8.0  
4.0  
8.0  
12.0  
8.0  
Q1  
Q1  
Q1  
HVSSOP DGR  
VSON-  
HR  
DLC  
1.8  
2.25  
1.15  
TPS62841YBGR  
TPS62842DGRR  
TPS62849DLCR  
DSBGA  
YBG  
6
8
8
3000  
2500  
3000  
180.0  
330.0  
180.0  
8.4  
12.4  
8.4  
1.14  
5.3  
1.64  
3.4  
0.59  
1.4  
4.0  
8.0  
4.0  
8.0  
12.0  
8.0  
Q1  
Q1  
Q1  
HVSSOP DGR  
VSON-  
HR  
DLC  
1.8  
2.25  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62840DLCR  
TPS62840YBGR  
TPS62841DGRR  
TPS62841DLCR  
TPS62841YBGR  
TPS62842DGRR  
TPS62849DLCR  
VSON-HR  
DSBGA  
DLC  
YBG  
DGR  
DLC  
YBG  
DGR  
DLC  
8
6
8
8
6
8
8
3000  
3000  
2500  
3000  
3000  
2500  
3000  
182.0  
182.0  
366.0  
182.0  
182.0  
366.0  
182.0  
182.0  
182.0  
364.0  
182.0  
182.0  
364.0  
182.0  
20.0  
20.0  
50.0  
20.0  
20.0  
50.0  
20.0  
HVSSOP  
VSON-HR  
DSBGA  
HVSSOP  
VSON-HR  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DLC 8  
2.0 x 1.5 mm, 0.5 mm pitch  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224379/A  
PACKAGE OUTLINE  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE- NO LEAD  
DLC0008B  
1.6  
1.4  
A
B
2.1  
1.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.1) TYP  
SYMM  
6X 0.5  
4
5
SYMM  
2X  
1.5  
8
1
0.3  
0.2  
8X  
0.1  
0.05  
C A B  
C
0.5  
8X  
0.3  
4224310/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE- NO LEAD  
DLC0008B  
8X (0.6)  
8X (0.25)  
SYMM  
1
8
6X (0.5)  
SYMM  
5
4
(R0.05) TYP  
(1.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224310/A 05/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE- NO LEAD  
DLC0008B  
8X (0.6)  
8X (0.25)  
SYMM  
1
8
6X (0.5)  
SYMM  
5
4
(R0.05) TYP  
(1.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 30X  
4224310/A 05/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DGR0008A  
VSSOP PowerPADTM - 1.1 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC SMALL OUTLINE  
C
5.0  
4.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
5
0.27  
0.18  
8X  
3.1  
2.9  
1.1 MAX  
B
0.13  
C A B  
NOTE 4  
0.20  
0.15  
TYP  
SEE DETAIL A  
4X (0.445)  
2X (0.61)  
EXPOSED  
4X (0.175)  
THERMAL PAD  
5
4
0.25  
GAGE PLANE  
PKG  
(0.85)  
1.75  
1.55  
0.15  
0.05  
0.65  
0.45  
8
1
1 -5  
DETAIL A  
TYPICAL  
PKG  
1.45  
1.25  
4224944/A 04/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.3 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGR0008A  
VSSOP PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(2.2)  
NOTE 8  
(1.35)  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED PAD  
SEE DETAILS  
8X (1.45)  
8
8X (0.3)  
1
(3.1)  
NOTE 8  
(1.65)  
SYMM  
SOLDER MASK  
OPENING  
(1.3)  
6X (0.65)  
TYP  
4
5
(R0.05) TYP  
SYMM  
METAL COVERED  
BY SOLDER MASK  
(
0.2) TYP  
VIA  
(1.1) TYP  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224944/A 04/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
8. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGR0008A  
VSSOP PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(1.35)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.45)  
8
8X (0.3)  
1
(1.65)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
6X (0.65)  
4
5
(R0.05) TYP  
SEE TABLE FOR  
SYMM  
(4.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
METAL COVERED  
BY SOLDER MASK  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
1.51 X 1.84  
1.35 X 1.65 (SHOWN)  
1.23 X 1.51  
0.125  
0.150  
0.175  
1.14 X 1.39  
4224944/A 04/2019  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
YBG0006  
DSBGA - 0.5 mm max height  
SCALE 13.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.5 MAX  
C
SEATING PLANE  
0.05 C  
0.20  
0.14  
BALL TYP  
0.4  
TYP  
C
0.8  
TYP  
SYMM  
D: Max = 1.498 mm, Min =1.438 mm  
E: Max = 0.998 mm, Min =0.938 mm  
B
0.4 TYP  
A
0.27  
0.23  
C A B  
1
2
6X  
0.015  
SYMM  
4224328/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBG0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.23)  
1
2
A
(0.4) TYP  
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224328/A 05/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBG0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
6X ( 0.25)  
2
1
A
(0.4) TYP  
SYMM  
B
C
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 50X  
4224328/A 05/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62842DGRR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DGR | 8 | -40 to 125
TI

TPS62843

1.8-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in WCSP
TI

TPS62849DLCR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DLC | 8 | -40 to 125
TI

TPS628501

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS628501-Q1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS628501-Q1_V01

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A Automotive Step-Down Converter in SOT583 Package
TI

TPS628501-Q1_V02

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS628501-Q1_V03

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS62850108QDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS6285010MQDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS6285010MQDYCRQ1

采用 SOT583 封装的 2.7V 至 6V、1A 汽车类降压转换器 | DYC | 8 | -40 to 125
TI

TPS62850120QDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI