TPS628513DRLR [TI]

采用 SOT-583 封装的 2.7V 至 6V、3A 固定频率降压转换器 | DRL | 8 | -40 to 150;
TPS628513DRLR
型号: TPS628513DRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT-583 封装的 2.7V 至 6V、3A 固定频率降压转换器 | DRL | 8 | -40 to 150

转换器
文件: 总39页 (文件大小:3219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
TPS62851x SOT583 封装2.7V 6V0.5A/1A/2A/3A 降压转换器  
1 特性  
3 说明  
提供功能安全  
TPS62851x 是引脚对引脚 0.5A1A2A持续和  
3A峰值易用型高效同步降压直流/直流转换器系  
列。它们基于峰值电流模式控制拓扑低阻开关可支持  
高达 2A 的持续输出电流和 3A 的峰值电流。开关频率  
由内部固定为 2.25MHz也可在 1.8MHz 4MHz 范  
围内与外部时钟同步。在 PWM/PFM 式下,  
TPS62851x 会在轻负载时自动进入省电模式从而在  
整个负载范围内保持高效率。TPS62851x 可在 PWM  
模式下提1% 的输出电压精度这有助于实现具有高  
输出电压精度的电源设计。通过 SS/TR 引脚用户可  
设置启动时间或跟踪向外部源提供的输出电压从而实  
现不同电源轨的外部定序和限制启动期间的浪涌电流。  
可帮助进行功能安全系统设计的文档  
• 输入电压范围2.7V 6V  
• 输出电压范围0.6V 5.5V  
• 反馈电压精度1%整个温度范围)  
TJ = -40°C +150°C  
0.5A1A2A持续3A峰值系列器件  
PWM 中的开关频率2.25MHz  
• 外部同步1.8MHz 4MHz  
• 强PWM PWM/PFM 操作  
• 静态电流17µA典型值)  
• 可调软启动时间10ms  
• 精密使能输入可实现:  
TPS62851x 采用 8 引脚 1.6mm × 2.1mm SOT583 封  
可提供高功率密度解决方案。  
– 用户定义的欠压锁定  
– 准确排序  
器件信息  
封装(1)  
100% 占空比模式  
• 有源输出放电  
封装尺寸标称值)  
器件型号  
• 具有窗口比较器的电源正常输出  
• 有关具有可选补偿的器件选项请参TPS628501  
TPS628510  
TPS628511  
TPS628512  
TPS628513  
1.60mm × 2.10 mm  
SOT583  
包括引脚)  
2 应用  
电机驱动器  
工厂自动化和控制  
楼宇自动化  
测试和测量  
多功能打印(MFP)  
• 通POL  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100  
95  
90  
85  
80  
75  
70  
65  
L
V
IN  
TPS62851x  
0.47mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
CIN  
2*10 mF  
0603  
R 1  
CFF  
COUT  
EN  
FB  
2*10 mF  
0603  
MODE/SYNC  
R2  
R3  
SS/TR  
60  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
PG  
55  
50  
GND  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
简化版原理图  
效率IOUT 间的关系VOUT = 3.3V  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDO4  
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
9.4 Device Functional Modes..........................................11  
10 Application and Implementation................................14  
10.1 Application Information........................................... 14  
10.2 Typical Application.................................................. 15  
10.3 System Examples................................................... 26  
11 Power Supply Recommendations..............................28  
12 Layout...........................................................................29  
12.1 Layout Guidelines................................................... 29  
12.2 Layout Example...................................................... 29  
13 Device and Documentation Support..........................30  
13.1 Device Support....................................................... 30  
13.2 接收文档更新通知................................................... 30  
13.3 支持资源..................................................................30  
13.4 Trademarks.............................................................30  
13.5 Electrostatic Discharge Caution..............................30  
13.6 术语表..................................................................... 30  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................8  
8 Parameter Measurement Information............................9  
8.1 Schematic................................................................... 9  
9 Detailed Description......................................................10  
9.1 Overview...................................................................10  
9.2 Functional Block Diagram.........................................10  
9.3 Feature Description...................................................10  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (March 2021) to Revision B (June 2022)  
Page  
• 添加TPS628513.............................................................................................................................................1  
Changes from Revision * (August 2020) to Revision A (March 2021)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
5 Device Comparison Table  
TYPICAL  
OUTPUT  
CAPACITOR  
OUTPUT  
DEVICE NUMBER  
VOUT  
DISCHARGE  
FOLDBACK  
CURRENT LIMIT  
SOFT  
START  
OUTPUT  
VOLTAGE  
PACKAGE  
TYPE  
CURRENT  
External capacitor  
on the SS/TR pin  
TPS628510DRLR  
TPS628511DRLR  
TPS628512DRLR  
TPS628513DRLR  
0.5 A  
1 A  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
DRL  
DRL  
DRL  
DRL  
2 × 10 μF  
2 × 10 μF  
2 × 10 μF  
2 × 10 μF  
External capacitor  
on the SS/TR pin  
External capacitor  
on the SS/TR pin  
2 A  
External capacitor  
on the SS/TR pin  
3 A  
TPS6285010MQDYCRQ1(1)  
TPS62850140QDYCRQ1(1)  
TPS62850240QDYCRQ1(1)  
1A  
1A  
2A  
ON  
ON  
ON  
OFF  
ON  
Internal 1 ms  
Internal 1 ms  
Internal 1 ms  
Fixed 1.8 V  
Adjustable  
Adjustable  
DYC  
DYC  
DYC  
2 × 10 μF  
2 × 10 μF  
2 × 10 μF  
ON  
(1) Preview  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
FB  
GND SW  
PG  
1
VIN  
EN  
MODE  
SS/TR  
6-1. 8-Pin SOT583 DRL Package (Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This is the enable pin of the device. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN  
2
I
I
FB  
5
8
Voltage feedback input. Connect the resistive output voltage divider to this pin.  
Ground pin  
GND  
The device runs in PFM/PWM mode when this pin is pulled low. When the pin is pulled high,  
the device runs in forced PWM mode. Do not leave this pin unconnected. The mode pin can  
also be used to synchronize the device to an external frequency. See 7.5 for the detailed  
specification for the digital signal applied to this pin for external synchronization.  
MODE/SYNC  
3
I
PG  
6
4
O
I
Open-drain power-good output  
Soft-Start / Tracking pin. An external capacitor connected from this pin to GND defines the  
rise time for the internal reference voltage. The pin can also be used as an input for tracking  
and sequencing - see 10.3.1 in this data sheet.  
SS/TR  
SW  
VIN  
7
1
This is the switch pin of the converter and is connected to the internal power MOSFETs.  
Power supply input. Make sure the input capacitor is connected as close as possible  
between the VIN pin and GND.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
3  
MAX  
6.5  
UNIT  
V
VIN  
SW (DC)  
VIN + 0.3  
10  
Pin voltage(2)  
SW (AC, less than 10 ns)(3)  
SS/TR, PG  
VIN + 0.3  
6.5  
0.3  
0.3  
65  
EN, MODE/SYNC, FB  
Storage temperature  
Tstg  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground terminal.  
(3) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
2.7  
0.6  
0.32  
8
NOM  
MAX  
6
UNIT  
V
VIN  
Input voltage range  
VOUT  
L
Output voltage range  
5.5  
1.2  
200  
V
Effective inductance  
0.47  
10  
μH  
μF  
μF  
mA  
A
COUT  
CIN  
Effective output capacitance(1)  
Effective input capacitance(1)  
Sink current at the PG pin  
Output current, TPS628513(2)  
Junction temperature  
5
10  
ISINK_PG  
IOUT  
TJ  
0
2
3
0
150  
°C  
40  
(1) The values given for all the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias  
effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer's DC bias curves for the effective capacitance vs DC voltage applied.  
(2) This part is designed for a 2-A continuous output current at a junction temperature of 105°C or 3-A continuous output current at a  
junction temperature of 85°C; exceeding the output current or the junction temperature can significantly reduce lifetime.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
 
 
 
 
 
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
DRL (JEDEC)(2)  
DRL (EVM)  
8 PINS  
60  
THERMAL METRIC(1)  
8 PINS  
110  
41.3  
20  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
n/a  
n/a  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
n/a  
ΨJT  
YJB  
20  
n/a  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) JEDEC standard PCB with four layers, no thermal vias  
7.5 Electrical Characteristics  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = VIN, no load, device not switching,  
MODE = GND, VOUT = 0.6 V  
IQ  
Quiescent current  
17  
36  
48  
μA  
μA  
EN = GND, nominal value at TJ = 25°C,  
maximum value at TJ = 150°C  
ISD  
Shutdown current  
1.5  
VIN rising  
VIN falling  
TJ rising  
TJ falling  
2.45  
2.1  
2.6  
2.5  
170  
15  
2.7  
2.6  
V
V
VUVLO  
Undervoltage lockout threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
°C  
°C  
TJSD  
CONTROL AND INTERFACE  
VEN,IH Input threshold voltage at EN, rising edge  
VEN,IL  
1.05  
0.96  
1.1  
1.0  
1.15  
1.05  
V
V
Input threshold voltage at EN, falling edge  
High-level input-threshold voltage at  
MODE/SYNC  
VIH  
1.1  
V
nA  
V
IEN,LKG  
VIL  
ILKG  
tDelay  
Input leakage current into EN  
VIH = VIN or VIL = GND  
125  
0.3  
Low-level input-threshold voltage at  
MODE/SYNC  
Input leakage current into MODE/SYNC  
Enable delay time  
100  
470  
nA  
µs  
Time from EN high to device starts  
switching; VIN applied already  
85  
150  
1.3  
Time from device starts switching to  
power good; device not in current limit  
tRamp  
Output voltage ramp time  
0.8  
1.8  
ms  
Output voltage ramp time, SS/TR pin  
open  
Time from device starts switching to  
power good; device not in current limit  
tRamp  
ISS/TR  
90  
2
150  
210  
2.8  
µs  
SS/TR source current  
Tracking gain  
2.5  
1
μA  
VFB / VSS/TR  
Tracking offset  
VFB when VSS/TR = 0 V  
±1  
mV  
Frequency range on MODE/SYNC pin for  
synchronization  
fSYNC  
1.8  
4
MHz  
Duty cycle of synchronization signal at  
MODE/SYNC  
20%  
80%  
Time to lock to external frequency  
50  
µs  
UVP power-good threshold voltage;  
DC level  
VTH_PG  
Rising (%VFB  
)
92%  
95%  
98%  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Falling (%VFB  
MIN  
TYP  
MAX  
UNIT  
UVP power-good threshold voltage;  
DC level  
VTH_PG  
)
87%  
90%  
93%  
OVP power-good threshold voltage;  
DC level  
Rising (%VFB  
)
107%  
104%  
110%  
113%  
111%  
VTH_PG  
OVP power-good threshold voltage;  
DC level  
Falling (%VFB  
)
107%  
0.07  
VPG,OL  
IPG,LKG  
Low-level output voltage at PG  
Input leakage current into PG  
ISINK_PG = 2 mA  
VPG = 5 V  
0.3  
V
100  
nA  
For a high level to low level transition on  
the power-good output  
tPG  
PG deglitch time  
40  
µs  
OUTPUT  
VFB  
Feedback voltage, adjustable version  
0.6  
1
V
Input leakage current into FB, adjustable  
version  
IFB,LKG  
VFB  
VFB = 0.6 V  
70  
1%  
2%  
nA  
Feedback voltage accuracy  
PWM, VIN VOUT + 1 V  
1%  
1%  
PFM, VIN VOUT + 1 V, VOUT 1.0 V,  
VFB  
Feedback voltage accuracy  
C
o,eff 10 µF, L = 0.47µH  
PFM, VIN VOUT + 1 V, VOUT < 1.0 V,  
o,eff 15 µF, L = 0.47 µH  
VFB  
VFB  
Feedback voltage accuracy  
3%  
4%  
1%  
4%  
C
Feedback voltage accuracy with voltage  
tracking  
VIN VOUT + 1 V, VSS/TR = 0.3 V  
Load regulation  
PWM  
0.05  
0.02  
%/A  
%/V  
Line regulation  
PWM, IOUT = 1 A, VIN VOUT + 1 V  
RDIS  
fSW  
ton,min  
ton,min  
Output discharge resistance  
PWM switching frequency  
Minimum on time of high-side FET  
Minimum on time of low-side FET  
High-side FET on-resistance  
Low-side FET on-resistance  
High-side MOSFET leakage current  
Low-side MOSFET leakage current  
SW leakage  
100  
2.475  
52  
Ω
2.025  
2.25  
35  
MHz  
ns  
ns  
VIN = 3.3 V, TJ = 40°C to 125°C  
10  
65  
120  
70  
44  
70  
11  
VIN 5 V  
VIN 5 V  
mΩ  
mΩ  
µA  
RDS(ON)  
33  
0.01  
0.01  
µA  
V(SW) = 0.6 V, current into SW  
µA  
0.05  
DC value, for TPS628513;  
VIN = 3 V to 6 V  
ILIMH  
ILIMH  
ILIMH  
High-side FET switch current limit  
High-side FET switch current limit  
High-side FET switch current limit  
3.45  
4.5  
3.4  
2.6  
5.1  
3.9  
3.0  
2.5  
A
A
A
DC value, for TPS628512;  
VIN = 3 V to 6 V  
2.85  
2.1  
DC value, for TPS628511;  
VIN = 3 V to 6 V  
DC value, for TPS628510;  
VIN = 3 V to 6 V  
ILIMH  
High-side FET switch current limit  
Low-side FET negative current limit  
1.6  
2.1  
A
A
ILIMNEG  
DC value  
1.8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
140  
80  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
VIN = 2.7V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 6.0V  
130  
120  
VIN = 6.0V  
110  
100  
90  
80  
70  
60  
50  
40  
-40  
0
25 85  
Junction Temperature (°C)  
125  
150  
-40  
0
25 85  
Junction Temperature (°C)  
125  
150  
D002  
D002  
7-1. RDS(ON) of High-Side Switch  
7-2. RDS(ON) of Low-Side Switch  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
8 Parameter Measurement Information  
8.1 Schematic  
L
V
IN  
TPS62851x  
0.47mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
CIN  
2*10 mF  
0603  
R 1  
CFF  
COUT  
2*10 mF  
0603  
EN  
FB  
MODE/SYNC  
R2  
R3  
SS/TR  
PG  
GND  
8-1. Measurement Setup  
8-1. List of Components  
DESCRIPTION  
REFERENCE  
MANUFACTURER (1)  
IC  
L
TPS628512  
Texas Instruments  
Murata  
Murata  
Murata  
Murata  
Any  
0.47-µH inductor DFE201210U  
CIN  
COUT  
COUT  
CSS  
CFF  
R1  
2 × 10 µF / 6.3 V GRM188D70J106MA73  
2 × 10 µF / 6.3 V GRM188D70J106MA73 for VOUT 1 V  
3 × 10 µF / 6.3 V GRM188D70J106MA73 for VOUT < 1 V  
4.7 nF (equal to 1-ms start-up ramp); GCM188R72A472KA37  
10 pF  
Any  
Depending on VOUT  
Any  
R2  
Depending on VOUT  
Any  
R3  
Any  
100 kΩ  
(1) See the Third-Party Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS62851x synchronous switch mode power converters are based on a peak current mode control  
topology. The control loop is internally compensated.  
The regulation network achieves fast and stable operation with small external components and low-ESR ceramic  
output capacitors. The devices can be operated without a feedforward capacitor on the output voltage divider,  
however, using a typically 10-pF feedforward capacitor improves transient response.  
The devices support forced fixed frequency PWM operation with the MODE pin tied to a logic high level. The  
frequency is defined as 2.25 MHz internally fixed. Alternatively, the devices can be synchronized to an external  
clock signal in a range from 1.8 MHz to 4 MHz, applied to the MODE pin with no need for additional passive  
components. An internal PLL allows you to change from internal clock to external clock during operation. The  
synchronization to the external clock is done on a falling edge of the clock applied at MODE to the rising edge on  
the SW pin. This allows a roughly 180° phase shift when the SW pin is used to generate the synchronization  
signal for a second converter. When the MODE pin is set to a logic low level, the device operates in power save  
mode (PFM) at low output current and automatically transfers to fixed frequency PWM mode at higher output  
current. In PFM mode, the switching frequency decreases linearly based on the load to sustain high efficiency  
down to very low output current.  
9.2 Functional Block Diagram  
VIN  
SW  
Bias  
Regulator  
Gate Drive and Control  
Oscillator  
Ipeak  
Izero  
EN  
MODE  
gm  
GND  
FB  
Device  
Control  
PG  
+
-
Bandgap  
SS/TR  
Thermal  
Shutdown  
9.3 Feature Description  
9.3.1 Precise Enable (EN)  
The voltage applied at the enable pin of the TPS62851x is compared to a fixed threshold of 1.1 V for a rising  
voltage. This allows you to drive the pin by a slowly changing voltage and enables the use of an external RC  
network to achieve a power-up delay.  
The Precise Enable input provides a user-programmable undervoltage lockout by adding a resistor divider to the  
input of the Enable pin.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
TPS62851x starts operation when the rising threshold is exceeded. For proper operation, the enable (EN) pin  
must be terminated and must not be left floating. Pulling the enable pin low forces the device into shutdown, with  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
a shutdown current of typically 1 μA. In this mode, the internal high-side and low-side MOSFETs are turned off  
and the entire internal control circuitry is switched off.  
9.3.2 MODE / SYNC  
When MODE/SYNC is set low, the device operates in PWM or PFM mode, depending on the output current. The  
MODE/SYNC pin allows you to force PWM mode when set high. The pin also allows you to apply an external  
clock in a frequency range from 1.8 MHz to 4 MHz for external synchronization. The specifications for the  
minimum on-time and minimum off-time have to be observed when setting the external frequency. The external  
clock must be set to about 2.25 MHz initially and then increased or decreased to the desired frequency. This  
ensures a low distortion of the output voltage when the external frequency is applied.  
9.3.3 Spread Spectrum Clocking (SSC)  
If interested in this option, please contact Texas Instruments. The device offers spread spectrum clocking as an  
option. When SSC is enabled, the switching frequency is randomly changed in PWM mode when the internal  
clock is used. The frequency variation is typically between the nominal switching frequency and up to 288 kHz  
above the nominal switching frequency. When the device is externally synchronized by applying a clock signal to  
the MODE/SYNC pin, the TPS62851x follows the external clock and the internal spread spectrum block is turned  
off. SSC is also disabled during soft start.  
9.3.4 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents misoperation of the device by switching off both the  
power FETs. When enabled, the device is fully operational for input voltages above the rising UVLO threshold  
and turns off if the input voltage trips below the threshold for a falling supply voltage.  
9.3.5 Power Good Output (PG)  
Power good is an open-drain output that requires a pullup resistor to any voltage up to the recommended input  
voltage level. It is driven by a window comparator. PG is held low when the device is disabled, in undervoltage  
lockout in thermal shutdown, and not in soft start. When the output voltage is in regulation hence, within the  
window defined in the electrical characteristics, the output is high impedance.  
VIN must remain present for the PG pin to stay low. If the power good output is not used, it is recommended to tie  
to GND or leave open. The PG indicator features a de-glitch, as specified in the electrical characteristics, for the  
transition from "high impedance" to "low" of its output.  
9-1. PG Status  
EN  
X
DEVICE STATUS  
PG STATE  
undefined  
low  
VIN < 2 V  
low  
VIN 2 V  
2 V VIN UVLO OR in thermal shutdown OR VOUT not in  
high  
high  
low  
regulation OR device in soft start  
VOUT in regulation  
high impedance  
9.3.6 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 170°C  
(typ), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and PG  
goes low. When TJ decreases below the hysteresis amount of typically 15°C, the converter resumes normal  
operation, beginning with soft start. During a PFM pause, the thermal shutdown is not active. After a PFM pause,  
the device needs up to 9 µs to detect a junction temperature that is too high. If the PFM burst is shorter than this  
delay, the device does not detect a junction temperature that is too high.  
9.4 Device Functional Modes  
9.4.1 Pulse Width Modulation (PWM) Operation  
The TPS62851x has two operating modes: forced PWM mode, which is discussed in this section, and  
PWM/PFM as discussed in 9.4.2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
With the MODE/SYNC pin set to high, the TPS62851x operates with pulse width modulation in continuous  
conduction mode (CCM). The switching frequency is 2.25 MHz or defined by an external clock signal applied to  
the MODE/SYNC pin. With an external clock applied to MODE/SYNC, the TPS62851x follow the frequency  
applied to the pin. In general, the frequency range in forced PWM mode is 1.8 MHz to 4 MHz. However, the  
frequency needs to be in a range the TPS62851x can operate at, taking the minimum on-time into account.  
9.4.2 Power Save Mode Operation (PWM/PFM)  
When the MODE/SYNC pin is low, power save mode is allowed. The device operates in PWM mode as long as  
the peak inductor current is above the PFM threshold of about 0.8 A. When the peak inductor current drops  
below the PFM threshold, the device starts to skip switching pulses. In power save mode, the switching  
frequency decreases with the load current maintaining high efficiency.  
9.4.3 100% Duty-Cycle Operation  
The duty cycle of a buck converter operated in PWM mode is given as D = VOUT / VIN. The duty cycle  
increases as the input voltage comes close to the output voltage and the off-time gets smaller. When the  
minimum off-time of typically 10 ns is reached, the TPS62851x skips switching cycles while it approaches 100%  
mode. In 100% mode, it keeps the high-side switch on continuously. The high-side switch stays turned on as  
long as the output voltage is below the target. In 100% mode, the low-side switch is turned off. The maximum  
dropout voltage in 100% mode is the product of the on-resistance of the high-side switch plus the series  
resistance of the inductor and the load current.  
9.4.4 Current Limit and Short Circuit Protection  
The TPS62851x is protected against overload and short circuit events. If the inductor current exceeds the  
current limit ILIMH, the high-side switch is turned off and the low-side switch is turned on to ramp down the  
inductor current. The high-side switch turns on again only if the current in the low side-switch has decreased  
below the low side current limit. Due to internal propagation delay, the actual current can exceed the static  
current limit. The dynamic current limit is given as:  
V
L
Ipeak(typ) = ILIMH  
+
×tPD  
L
(1)  
where  
ILIMH is the static current limit as specified in the electrical characteristics  
L is the effective inductance at the peak current  
VL is the voltage across the inductor (VIN - VOUT  
)
tPD is the internal propagation delay of typically 50 ns  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
V
IN -VOUT  
Ipeak(typ) = ILIMH  
+
×50ns  
L
(2)  
9.4.5 Foldback Current Limit and Short Circuit Protection  
This is valid for devices where foldback current limit is enabled. If interested in this option, please contact Texas  
Instruments.  
When the device detects current limit for more than 1024 subsequent switching cycles, it reduces the current  
limit from its nominal value to typically 1.3 A. Foldback current limit is left when the current limit indication goes  
away. If device operation continues in current limit, it would, after 3072 switching cycles, try for full current limit  
again for 1024 switching cycles.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
9.4.6 Output Discharge  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled and to keep the output voltage close to 0 V when the device is off. The output discharge feature  
is only active once the TPS62851x have been enabled at least once since the supply voltage was applied. The  
discharge function is enabled as soon as the device is disabled, in thermal shutdown, or in undervoltage lockout.  
The minimum supply voltage required for the discharge function to remain active typically is 2 V. Output  
discharge is not activated during a current limit or foldback current limit event.  
9.4.7 Soft Start / Tracking (SS/TR)  
The internal soft-start circuitry controls the output voltage slope during start-up. This avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high  
impedance power sources or batteries. When EN is set high to start operation, the device starts switching after a  
delay of about 200 μs, then the internal reference and hence VOUT rises with a slope controlled by an external  
capacitor connected to the SS/TR pin.  
Leaving the SS/TR pin un-connected provides the fastest start-up ramp with 160 µs typically. A capacitor  
connected from SS/TR to GND is charged with 2.5 µA by an internal current source during soft start until it  
reaches the reference voltage of 0.6 V. The capacitance required to set a certain ramp-time (tramp) therefore is:  
(3)  
If the device is set to shutdown (EN = GND), undervoltage lockout, or thermal shutdown, an internal resistor  
pulls the SS/TR pin to GND to ensure a proper low level. Returning from those states causes a new start-up  
sequence.  
A voltage applied at SS/TR can be used to track a master voltage. The output voltage follows this voltage in both  
directions up and down in forced PWM mode. In PFM mode, the output voltage decreases based on the load  
current. The SS/TR pin must not be connected to the SS/TR pin of other devices. The maximum value for CSS is  
47 nF to ensure proper discharge before the device starts to ramp the output voltage.  
9.4.8 Input Overvoltage Protection  
When the input voltage exceeds the absolute maximum rating, the device is set to PFM mode so it cannot  
transfer energy from the output to the input.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
10.1.1 Programming the Output Voltage  
The output voltage of the TPS62851x is adjustable. It can be programmed for output voltages from 0.6 V to 5.5  
V using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600 mV. The value of the  
output voltage is set by the selection of the resistor divider from Equation 6. It is recommended to choose  
resistor values that allow a current of at least 2 µA, meaning the value of R2 must not exceed 400 kΩ. Lower  
resistor values are recommended for highest accuracy and most robust design.  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(4)  
10.1.2 Inductor Selection  
The TPS62851x is designed for a nominal 0.47-µH inductor with a switching frequency of typically 2.25 MHz.  
Larger values can be used to achieve a lower inductor current ripple but they can have a negative impact on  
efficiency and transient response. Smaller values than 0.47 µH cause a larger inductor current ripple which  
causes larger negative inductor current in forced PWM mode at low or no output current. For a higher or lower  
nominal switching frequency, the inductance must be changed accordingly. See 7.3 for details.  
The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-  
PFM transition point, and efficiency. In addition, the inductor selected has to be rated for appropriate saturation  
current and DC resistance (DCR). 方程5 calculates the maximum inductor current.  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(5)  
(6)  
V
OUT  
æ
ö
V
1-  
OUT × ç  
÷
IN  
1
V
è
Lmin  
ø
DIL(max)  
=
×
f
SW  
where  
IL(max) is the maximum inductor current  
• ΔIL(max) is the peak-to-peak inductor ripple current  
Lmin is the minimum inductance at the operating point  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
TYPE  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
10-1. Typical Inductors  
NOMINAL  
SWITCHING  
FREQUENCY  
INDUCTANCE  
[µH]  
CURRENT [A]  
DIMENSIONS  
[LxBxH] mm  
FOR DEVICE  
MANUFACTURER(2)  
(1)  
DFE201210U-R47M  
DFE201210U-1R0M  
0.47 µH, ±20%  
1 µH, ±20%  
see data sheet  
see data sheet  
TPS628510/511 / 512  
TPS628510/511 / 512  
2.25 MHz  
2.25 MHz  
2.0 x 1.2 x 1.0  
2.0x 1.2 x 1.0  
Murata  
Murata  
DFE201210U-R68  
XEL3515-561ME  
XFL4015-701ME  
XFL4015-471ME  
0.68 µH, ±20%  
0.56 µH, ±20%  
0.70 µH, ±20%  
0.47 µH, ±20%  
see data sheet  
TPS628510/511 / 512  
TPS628510/511 / 512  
TPS628510/511 / 512  
TPS628510/511 / 512  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.0x 1.2 x 1.0  
3.5 x 3.2 x 1.5  
4.0 x 4.0 x 1.6  
4.0 x 4.0 x 1.6  
Murata  
Coilcraft  
Coilcraft  
Coilcraft  
4.5  
3.3  
3.5  
(1) Lower of IRMS at 20°C rise or ISAT at 20% drop.  
(2) See the Third-Party Products Disclaimer.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well.  
10.1.3 Capacitor Selection  
10.1.3.1 Input Capacitor  
For most applications, 10-µF nominal is sufficient and is recommended. The input capacitor buffers the input  
voltage for transient events and also decouples the converter from the supply. A low-ESR multilayer ceramic  
capacitor (MLCC) is recommended for best filtering and must be placed between VIN and GND as close as  
possible to those pins.  
10.1.3.2 Output Capacitor  
The architecture of the TPS62851x allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, it is recommended  
to use X7R or X5R dielectric. Using a higher value has advantages like smaller voltage ripple and a tighter DC  
output accuracy in power save mode.  
10.2 Typical Application  
L
V
IN  
TPS62851x  
0.47mH  
VOUT  
2.7 V - 6 V  
CIN  
VIN  
SW  
R 1  
CFF  
2*10 mF  
0603  
COUT  
EN  
FB  
2*10 mF  
0603  
MODE/SYNC  
R2  
R3  
SS/TR  
PG  
GND  
10-1. Typical Application for Indy  
10.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(7)  
With VFB = 0.6 V:  
10-2. Setting the Output Voltage  
NOMINAL OUTPUT VOLTAGE VOUT  
R1  
R2  
CFF  
EXACT OUTPUT VOLTAGE  
0.8 V  
1.0 V  
1.1 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
0.7988 V  
1.0 V  
16.9 kΩ  
20 kΩ  
51 kΩ  
30 kΩ  
47 kΩ  
68 kΩ  
51 kΩ  
40.2 kΩ  
15 kΩ  
19.6 kΩ  
1.101 V  
1.2 V  
39.2 kΩ  
68 kΩ  
1.5 V  
76.8 kΩ  
80.6 kΩ  
47.5 kΩ  
88.7 kΩ  
1.803 V  
2.5 V  
3.315 V  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
10.2.3 Application Curves  
All plots have been taken with a nominal switching frequency of 2.25 MHz when set to PWM mode, unless  
otherwise noted. The BOM is according to 8-1.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Output Current (A)  
100m  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3
3
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-2. Efficiency Versus Output Current  
10-3. Efficiency Versus Output Current  
100  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
70  
65  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-4. Efficiency Versus Output Current  
10-5. Efficiency Versus Output Current  
100  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
65  
60  
55  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
VOUT = 1.1 V  
PFM  
TA = 25°C  
VOUT = 1.1 V  
PWM  
TA = 25°C  
10-6. Efficiency Versus Output Current  
10-7. Efficiency Versus Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
90  
85  
80  
75  
70  
65  
60  
55  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
50  
45  
40  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
10-8. Efficiency Versus Output Current  
10-9. Efficiency Versus Output Current  
3.33  
3.324  
3.318  
3.312  
3.306  
3.3  
3.33  
3.324  
3.318  
3.312  
3.306  
3.3  
3.294  
3.288  
3.282  
3.294  
3.288  
3.282  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
3.276  
3.27  
3.276  
3.27  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-10. Output Voltage Versus Output Current  
10-11. Output Voltage Versus Output Current  
1.82  
1.816  
1.812  
1.808  
1.804  
1.8  
1.82  
1.816  
1.812  
1.808  
1.804  
1.8  
1.796  
1.796  
1.792  
1.788  
1.784  
1.78  
1.792  
1.788  
1.784  
1.78  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-12. Output Voltage Versus Output Current  
10-13. Output Voltage Versus Output Current  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
1.11  
1.108  
1.106  
1.104  
1.102  
1.1  
1.11  
1.108  
1.106  
1.104  
1.102  
1.1  
1.098  
1.096  
1.094  
1.092  
1.098  
1.096  
1.094  
1.092  
1.09  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.09  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 1.1 V  
PFM  
TA = 25°C  
VOUT = 1.1 V  
PWM  
TA = 25°C  
10-14. Output Voltage Versus Output Current  
10-15. Output Voltage Versus Output Current  
0.612  
0.606  
0.6045  
0.603  
0.6015  
0.6  
0.61  
0.608  
0.606  
0.604  
0.602  
0.6  
0.5985  
0.597  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 2.7 V  
0.598  
VIN = 3.3 V  
0.5955  
0.594  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
0.596  
0.594  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 0.6 V  
PWM  
TA = 25°C  
VOUT = 0.6 V  
PFM  
TA = 25°C  
10-17. Output Voltage Versus Output Current  
10-16. Output Voltage Versus Output Current  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
VIN=2.7V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
VIN=2.7V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
1.00  
0.75  
0.50  
0.25  
0.00  
1.00  
0.75  
0.50  
0.25  
0.00  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
Ambient temperature (èC)  
Ambient temperature (èC)  
VOUT = 0.6 V  
PWM  
VOUT = 1.1 V  
PWM  
θJA = 60°C/W  
θJA = 60°C/W  
10-18. Output Current Versus Ambient  
10-19. Output Current Versus Ambient  
Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
VIN=2.7V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
1.00  
0.75  
0.50  
0.25  
0.00  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
Ambient temperature (èC)  
Ambient temperature (èC)  
VOUT = 1.8 V  
PWM  
VOUT = 3.3 V  
PWM  
θJA = 60°C/W  
θJA = 60°C/W  
10-20. Output Current Versus Ambient  
10-21. Output Current Versus Ambient  
Temperature  
Temperature  
VOUT = 3.3 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-22. Load Transient Response  
10-23. Load Transient Response  
VOUT = 1.8 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-24. Load Transient Response  
10-25. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
VOUT = 1.2 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-26. Load Transient Response  
10-27. Load Transient Response  
VOUT = 1.0 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-28. Load Transient Response  
10-29. Load Transient Response  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-30. Load Transient Response  
10-31. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 3.3 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-32. Line Transient Response  
10-33. Line Transient Response  
VOUT = 1.8 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-34. Line Transient Response  
10-35. Line Transient Response  
VOUT = 1.2 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.2 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-36. Line Transient Response  
10-37. Line Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
VOUT = 1.0 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.0 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-38. Line Transient Response  
10-39. Line Transient Response  
VOUT = 0.6 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 0.6 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 3.0 V to 3.6 V to 3.0 V  
VIN = 3.0 V to 3.6 V to 3.0 V  
10-40. Line Transient Response  
10-41. Line Transient Response  
VOUT = 3.3 V  
VIN = 5 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
IOUT = 0.2 A  
10-42. Output Voltage Ripple  
10-43. Output Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 1.8 V  
VIN = 5 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
IOUT = 0.2 A  
10-44. Output Voltage Ripple  
10-45. Output Voltage Ripple  
VOUT = 1.2 V  
VIN = 5 V  
PFM  
TA = 25°C  
IOUT = 0.2 A  
VOUT = 1.2 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
10-46. Output Voltage Ripple  
10-47. Output Voltage Ripple  
VOUT = 1.0 V  
VIN = 5 V  
PFM  
TA = 25°C  
IOUT = 0.2 A  
VOUT = 1.0 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
10-48. Output Voltage Ripple  
10-49. Output Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
IOUT = 2 A  
IOUT = 0.2 A  
10-50. Output Voltage Ripple  
10-51. Output Voltage Ripple  
VOUT = 3.3 V  
VIN = 5 V  
PWM or PFM  
CSS = 4.7 nF  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5 V  
PWM or PFM  
CSS = 4.7 nF  
TA = 25°C  
IOUT = 2 A  
IOUT = 2 A  
10-52. Start-Up Timing  
10-53. Start-Up Timing  
VOUT = 1.2 V  
VIN = 5 V  
PWM or PFM  
CSS = 4.7 nF  
TA = 25°C  
IOUT = 2 A  
VOUT = 1.0 V  
VIN = 5 V  
PWM or PFM  
CSS = 4.7 nF  
TA = 25°C  
IOUT = 2 A  
10-54. Start-Up Timing  
10-55. Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM or PFM  
CSS = 4.7 nF  
TA = 25°C  
IOUT = 2 A  
10-56. Start-Up Timing  
10.3 System Examples  
10.3.1 Voltage Tracking  
The TPS62851x follows the voltage applied to the SS/TR pin. A voltage ramp on SS/TR to 0.6 V ramps the  
output voltage according to the 0.6-V feedback voltage.  
Tracking the 3.3 V of device 1, so that both rails reach their target voltage at the same time, requires a resistor  
divider on SS/TR of device 2 equal to the output voltage divider of device 1. The output current of 2.5 µA on the  
SS/TR pin causes an offset voltage on the resistor divider formed by R5 and R6. The equivalent resistance of  
R5 // R6 must be kept below 15 kΩ. The current from SS/TR causes a slightly higher voltage across R6 than 0.6  
V, which is desired because device 2 switches to its internal reference as soon as the voltage at SS/TR is higher  
than 0.6 V.  
In case both devices need to run in forced PWM mode, it is recommended to tie the MODE pin of device 2 to the  
output voltage or the power good signal of device 1, the master device. The TPS6281x does have a duty cycle  
limitation defined by the minimum on-time. For tracking down to low output voltages, device 2 cannot follow once  
the minimum duty cycle is reached. Enabling PFM mode while tracking is in progress allows the user to ramp  
down the output voltage close to 0 V.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
Device 1 (Primary)  
TPS62851x  
V
L
IN  
0.47 μH  
2.7 V - 6 V  
3.3 V  
VIN  
SW  
10 pF  
CIN  
MODE/SYNC  
2*10 μF  
FB  
0603  
COUT  
EN  
EN  
2*10 μF  
0603  
SS/TR  
22 nF  
PG  
GND  
Device 2 (Secondary)  
TPS62851x  
L
0.47 μH  
1.8 V  
VIN  
SW  
2*10 μF  
CIN  
10 pF  
0603  
EN  
FB  
R
5
COUT  
2*10 μF  
0603  
MODE/SYNC  
SS/TR  
PG  
R
6
GND  
10-57. Schematic for Output Voltage Tracking  
10-58. Scope Plot for Output Voltage Tracking  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
10.3.2 Synchronizing to an External Clock  
The TPS62851x can be externally synchronized by applying an external clock on the MODE/SYNC pin. There is  
no need for any additional circuitry as long as the input signal meets the requirements given in the electrical  
specifications. The clock can be applied / removed during operation, allowing you to switch from an externally  
defined fixed frequency to power-save mode or to internal fixed frequency operation.  
L
V
IN  
TPS62851x  
0.47 mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
CIN  
R1  
2*10 mF  
0603  
CFF  
EN  
FB  
COUT  
MODE/SYNC  
R2  
R 3  
2*10 mF  
0603  
SS/TR  
fEXT  
PG  
GND  
10-59. Schematic using External Synchronization  
VIN = 5 V  
VOUT = 1.8 V  
IOUT = 0.1 A  
VIN = 5 V  
IOUT = 0.1 A  
RCF = 8.06 kΩ  
RCF = 8.06 kΩ  
fEXT = 2.5 MHz  
fEXT = 2.5 MHz  
VOUT = 1.8 V  
10-60. Switching from External Syncronization 10-61. Switching from External Synchronizaion  
to Power-Save Mode (PFM)  
to Internal Fixed Frequency  
11 Power Supply Recommendations  
The TPS62851x device family does not have special requirements for its input power supply. The output current  
of the input power supply needs to be rated according to the supply voltage, output voltage, and output current  
of the TPS62851x.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
12 Layout  
12.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPS62851x demands careful attention to ensure operation and to  
get the performance specified. A poor layout can lead to issues like the following:  
Poor regulation (both in 12.2 and load)  
Stability and accuracy weaknesses  
Increased EMI radiation  
Noise sensitivity  
See 12-1 for the recommended layout of the TPS62851x, which is designed for common external ground  
connections. The input capacitor must be placed as close as possible between the VIN and GND pin.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore, paths conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore, the input and output capacitance must be placed as close as possible to the IC  
pins and parallel wiring over long distances and narrow traces must be avoided. Loops which conduct an  
alternating current should outline an area as small as possible, as this area is proportional to the energy  
radiated.  
Sensitive nodes like FB need to be connected with short wires and not nearby high dv/dt signals (for example,  
SW). As they carry information about the output voltage, they must be connected as close as possible to the  
actual output voltage (at the output capacitor). The capacitor on the SS/TR pin as well as the FB resistors, R1  
and R2, must be kept close to the IC and be connected directly to the pin and the system ground plane.  
The package uses the pins for power dissipation. Thermal vias on the VIN and GND pins help to spread the heat  
into the PCB.  
The recommended layout is implemented on the EVM and shown in the TPS62851xEVM-139 Evaluation Module  
User's Guide.  
12.2 Layout Example  
COUT  
V
OUT  
GND  
2
Solution size = 30mm  
L
CIN  
R2  
U1  
Css  
V
IN  
GND  
12-1. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
 
 
 
 
 
 
 
TPS628510, TPS628511, TPS628512, TPS628513  
www.ti.com.cn  
ZHCSLS6B AUGUST 2020 REVISED JUNE 2022  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS628510 TPS628511 TPS628512 TPS628513  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS628510DRLR  
TPS628511DRLR  
TPS628512DRLR  
TPS628513DRLR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
8
8
8
8
4000 RoHS & Green  
4000 RoHS & Green  
4000 RoHS & Green  
4000 RoHS & Green  
Call TI | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
1000  
1100  
1200  
1300  
Samples  
Samples  
Samples  
Samples  
Call TI | SN  
Call TI | SN  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS628510DRLR  
TPS628511DRLR  
TPS628512DRLR  
TPS628513DRLR  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
8
8
8
8
4000  
4000  
4000  
4000  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.75  
2.75  
2.75  
2.75  
1.9  
1.9  
1.9  
1.9  
0.8  
0.8  
0.8  
0.8  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS628510DRLR  
TPS628511DRLR  
TPS628512DRLR  
TPS628513DRLR  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
8
8
8
8
4000  
4000  
4000  
4000  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/E 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4224486/E 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/E 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62851X

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package
TI

TPS62860

1.8-V to 5.5-V Input, 0.6-/1-A Synchronous Step-Down Converter with I2C/VSEL Interface
TI

TPS628600

1.8-V to 5.5-V Input, 0.6-/1-A Synchronous Step-Down Converter with I2C/VSEL Interface
TI

TPS628600YCHR

1.8-V to 5.5-V Input, 0.6-/1-A Synchronous Step-Down Converter with I2C/VSEL Interface
TI

TPS628601YCHR

1.8-V to 5.5-V Input, 0.6-/1-A Synchronous Step-Down Converter with I2C/VSEL Interface
TI

TPS62861

具有 I2C/VSEL 接口的 1.75V 至 5.5V 输入、1A 超低 IQ 降压转换器
TI

TPS628610YCHR

1.75-V to 5.5-V, 1-A ultra-low IQ step-down converter with I2C/VSEL interface | YCH | 8 | -40 to 125
TI

TPS62864

TPS62864/6 2.4-V to 5.5-V Input, 4-A and 6-A Synchronous Step-Down Converter with I2C Interface in WCSP Package
TI

TPS628640AYCG

TPS62864/6 2.4-V to 5.5-V Input, 4-A and 6-A Synchronous Step-Down Converter with I2C Interface in 1.05-mm x 1.78-mm WCSP Package
TI

TPS628640AYCGR

TPS62864/6 2.4-V to 5.5-V Input, 4-A and 6-A Synchronous Step-Down Converter with I2C Interface in WCSP Package
TI

TPS628640BYCG

TPS62864/6 2.4-V to 5.5-V Input, 4-A and 6-A Synchronous Step-Down Converter with I2C Interface in 1.05-mm x 1.78-mm WCSP Package
TI

TPS628640BYCGR

TPS62864/6 2.4-V to 5.5-V Input, 4-A and 6-A Synchronous Step-Down Converter with I2C Interface in WCSP Package
TI