TPS62868X [TI]

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package;
TPS62868X
型号: TPS62868X
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package

文件: 总40页 (文件大小:2576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C  
Interface in QFN Package  
1 Features  
2 Applications  
11-mΩ and 10.5-mΩ internal power MOSFETs  
>90% efficiency (0.9-V output)  
DCS-Control topology for fast transient response  
Available output voltage ranges for dynamic  
voltage scaling (DVS) through I2C  
– Output voltage range from 0.2-V to 0.8375-V  
with 2.5-mV step size  
– Output voltage range from 0.4-V to 1.675-V  
with 5-mV step size  
– Output voltage range from 0.8-V to 3.35-V with  
10-mV step size  
Core supply for FPGAs, CPUs, ASICs, or video  
chipsets  
IP network camera  
Solid-state drives  
Optical modules  
LPDDR5 VDDQ rail supply  
3 Description  
The TPS62868 and TPS62869 devices are high-  
frequency synchronous step-down converters with I2C  
interface which provide an efficient, adaptive, and  
high power-density solution. At medium to heavy  
loads, the converter operates in PWM mode and  
automatically enters Power Save Mode operation at  
light load to maintain high efficiency over the entire  
load current range. The device can also be forced  
in PWM mode operation for smallest output voltage  
ripple. Together with its DCS-Control architecture,  
excellent load transient performance and tight output  
voltage accuracy are achieved. Through the I2C  
interface and a dedicated VID pin, the output voltage  
is quickly adjusted to adapt the power consumption of  
the load to the ever-changing performance needs of  
the application.  
1% output voltage accuracy  
2.4-MHz switching frequency  
Selection by external resistor  
– Start-up output voltage  
– I2C target address  
Selection by I2C interface  
– Power save mode or forced PWM mode  
– Output discharge  
– Hiccup or latching short-circuit protection  
– Output voltage ramp speed  
Thermal pre-warning and thermal shutdown  
Power good indicator pin option with window  
comparator  
I2C-compatible interface up to 3.4 Mbps  
Available in 1.5-mm x 2.5-mm x 1.0-mm 9-pin QFN  
package with 0.5-mm pitch  
Device Information  
PART NUMBER  
TPS62868  
TPS62869  
PACKAGE(1)  
BODY SIZE (NOM)  
QFN (9)  
1.5 x 2.5 x 1.0 mm  
Also available in WCSP package: TPS62866,  
6-A synchronous step-down converter with I2C  
interface in 1.05-mm x 1.78-mm WCSP package  
Create a custom design using with TPS62868/9  
with the WEBENCH® Power Designer  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
95  
90  
85  
80  
75  
70  
VIN  
2.4 V to 5.5 V  
L1  
0.22 µH  
TPS62868/9  
VOUT  
VIN  
EN  
SW  
C1  
VOS  
C2  
65  
VSET/VID  
or PG  
VOUT = 0.6V, PWM  
SCL  
SDA  
I2C  
60  
55  
50  
45  
VOUT = 0.6V, PSM  
VOUT = 1.2V, PSM  
VOUT = 0.9V, PWM  
VOUT = 0.9V, PSM  
VOUT = 1.2V, PWM  
R1  
AGND PGND  
100m  
1m  
10m  
Load (A)  
100m  
1
6
D000  
Typical Application  
Efficiency at VIN = 3.3 V  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................5  
7.5 Electrical Characteristics ............................................7  
7.6 I2C InterfaceTiming Characteristics ........................... 8  
7.7 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................12  
8.3 Feature Description...................................................12  
8.4 Device Functional Modes..........................................14  
8.5 Programming............................................................ 16  
8.6 Register Map.............................................................19  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
9.3 Typical Application – TPS6286x0A and  
TPS6286x0xC Devices............................................... 28  
10 Power Supply Recommendations..............................30  
11 Layout...........................................................................31  
11.1 Layout Guidelines................................................... 31  
11.2 Layout Example...................................................... 31  
12 Device and Documentation Support..........................32  
12.1 Device Support....................................................... 32  
12.2 Documentation Support.......................................... 32  
12.3 Support Resources................................................. 32  
12.4 Receiving Notification of Documentation Updates..32  
12.5 Trademarks.............................................................32  
12.6 Glossary..................................................................32  
12.7 Electrostatic Discharge Caution..............................32  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 32  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (December 2020) to Revision B (July 2021)  
Page  
Globally changed instances of legacy terminology to controller and target where I2C is mentioned..................1  
Corrected start-up output voltage for TPS6286xxxC device variants in Device Options table...........................3  
Changed "VID" to "VSET/VID" in Device Options table......................................................................................3  
Added inductor values to Recommended Operating Conditons table................................................................5  
Corrected number of pins in Thermal Information table..................................................................................... 5  
Added quiescent current specification for TPS6286x0A/C devices in Electrical Characteristics table .............7  
Changed high-level input voltage threshold in Electrical Characteristics table ..................................................7  
Added separate enable delay time parameter for TPS6286x0C device variants............................................... 7  
Added footnote................................................................................................................................................... 7  
Added power-good deglitch block to Functional Block Diagram ......................................................................12  
Added 100% Duty Cycle Mode Operation section............................................................................................13  
Added section describing the start-up output voltage for TPS6286xxC device variants.................................. 14  
Corrected value of C1 in List of Components table.......................................................................................... 22  
Updated data in Thermal Derating plot for VOUT = 1.675 V.............................................................................. 25  
Added typical application example for TPS6286x0A and TPS6286x0xC device variants................................28  
Changed Layout Example image......................................................................................................................31  
Changes from Revision * (September 2020) to Revision A (December 2020)  
Page  
Changed device status from Advance Information to Production Data.............................................................. 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
5 Device Options  
FULL OUTPUT  
VOLTAGE RANGE  
START-UP OUTPUT  
VOLTAGE  
DVS STEP  
OUTPUT  
CURRENT  
PART NUMBER(1)  
VSET/VID OR PG PIN  
SIZE  
TPS628680ARQY  
TPS6286800CRQY  
TPS628681ARQY  
TPS6286810CRQY  
TPS628682ARQY  
TPS6286820CRQY  
TPS628690ARQY  
TPS6286900CRQY  
TPS628691ARQY  
TPS6286910CRQY  
TPS628692ARQY  
TPS6286920CRQY  
0.2 V to 0.575 V, Selectable  
VSET/VID  
PG  
0.2 V to 0.8375 V  
0.4 V to 1.675 V  
0.8 V to 3.35 V  
0.2 V to 0.8375 V  
0.4 V to 1.675 V  
0.8 V to 3.35 V  
2.5 mV  
0.5 V  
0.4 V to 1.15 V, Selectable  
0.9 V  
VSET/VID  
PG  
5 mV  
10 mV  
2.5 mV  
5 mV  
4 A  
0.8 V to 2.3 V, Selectable  
1.2 V  
VSET/VID  
PG  
0.2 V to 0.575 V, Selectable  
0.5 V  
VSET/VID  
PG  
0.4 V to 1.15 V, Selectable  
0.9 V  
VSET/VID  
PG  
6 A  
0.8 V to 2.3 V, Selectable  
1.2 V  
VSET/VID  
PG  
10 mV  
(1) For all available packages, see the orderable addendum at the end of the data sheet.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62868 TPS62869  
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
6 Pin Configuration and Functions  
TOP VIEW  
BOTTOM VIEW  
VSET/VID  
VSET/VID  
or  
or  
PG  
AGND  
1
VOS  
8
VOS  
8
AGND  
1
PG  
9
9
PGND  
2
PGND  
2
SW  
SW  
7
7
VIN  
3
3
VIN  
4
5
6
6
5
4
EN  
SCL  
SCL  
EN  
SDA  
SDA  
Figure 6-1. 9-Pin RQY QFN Package (Top View)  
Table 6-1. Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
AGND  
1
Analog ground pin  
Start-up output voltage and device address selection pin. An external resistor must be  
connected.  
After start-up, the pin can be used to select the VOUT registers for the output voltage (Low =  
VOUT register 1; high = VOUT register 2). See Section 8.4.4. This pin is pulled to GND when  
the device is in shutdown.  
VSET/VID  
9
The function after start-up depends on the device option. See the Device Options.  
Power-good open-drain output pin. The pullup resistor can be connected to voltages up to 5.5  
V. If unused, leave it floating. This pin is pulled to GND when the device is in shutdown.  
The function after start-up depends on the device option. See Section 5.  
PG  
9
VOS  
PGND  
SW  
8
2
7
3
Output voltage sense pin. This pin must be directly connected to the output capacitor.  
Power ground pin  
Switch pin of the power stage  
VIN  
Power supply input voltage pin  
Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low  
disables the device. Do not leave floating.  
EN  
4
SDA  
SCL  
5
6
I2C serial data pin. Do not leave it floating. Connect it to AGND if not used.  
I2C serial clock pin. Do not leave it floating. Connect it to AGND if not used.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
-0.3  
-0.3  
-2.5  
MAX  
UNIT  
VIN, EN, SDA, SCL, VOS, VSET/VID, VSET/PG  
6
Voltage(2)  
SW (DC)  
VIN + 0.3  
V
SW (AC, less than 10ns)(3)  
Source current at VSET/PG  
Sink current at SDA, SCL  
Junction temperature  
Storage temperature  
10  
1
ISOURCE_PG  
ISINK_SDA,SCL  
TJ  
mA  
mA  
°C  
2
-40  
-65  
150  
150  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
5.5  
10  
4
UNIT  
V
VIN  
Input voltage  
2.4  
tF_VIN  
Falling transition time at VIN(1)  
Output current, TPS62868 (2)  
Output current, TPS62869 (3)  
mV/µs  
0
0
IOUT  
A
6
TPS628680x, TPS628690x  
110  
220  
L
Output inductor  
nH  
°C  
TPS628681x, TPS628682x,  
TPS628691x, TPS628692x  
TJ  
Junction temperature  
-40  
125  
(1) The falling slew rate of VIN should be limited if VIN goes below VUVLO  
.
(2) Lifetime is reduced when operating continuously at 4-A output current and the junction temperature is higher than 105 °C.  
(3) Lifetime is reduced when operating continuously at 6-A output current and the junction temperature is higher than 85 °C.  
7.4 Thermal Information  
TPS62868/ TPS62869 RQY  
THERMAL METRIC(1)  
JEDEC 51-7  
9 PINS  
90.9  
TPS62869RQYEVM-118  
UNIT  
9 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
60.3  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
68.2  
n/a(2)  
n/a(2)  
25.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62868 TPS62869  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS62868, TPS62869  
www.ti.com  
UNIT  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
TPS62868/ TPS62869 RQY  
THERMAL METRIC(1)  
JEDEC 51-7  
TPS62869RQYEVM-118  
9 PINS  
1.9  
9 PINS  
3.3  
ΨJT  
ΨJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
24.7  
31.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Not applicable to an EVM.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
7.5 Electrical Characteristics  
TJ = -40 °C to 125 °C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25 °C and VIN = 5 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
TPS6286x1A/C,  
TPS6286x2A/C  
4
9
10  
15  
IQ  
Quiescent current  
EN = High, no load, device not switching  
µA  
µA  
TPS6286x0A/C  
EN = High, no load, device not switching,  
VVOS = 1.8 V  
IQ_VOS  
ISD  
VUVLO  
Operating quiescent current into VOS pin  
Shutdown current  
18  
EN = Low, TJ = –40°C to 85°C  
VIN rising  
0.24  
2.3  
2.2  
130  
20  
1
2.4  
2.3  
µA  
V
2.2  
2.1  
Undervoltage lockout threshold  
VIN falling  
V
Thermal warning threshold  
Thermal warning hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
°C  
°C  
°C  
°C  
TJW  
TJ falling  
TJ rising  
150  
20  
TJSD  
TJ falling  
LOGIC INTERFACE EN, SDA, SCL  
High-level input threshold voltage at EN,  
SCL, SDA, VSET/VID  
VIH  
VIL  
0.84  
V
V
Low-level input threshold voltage at EN,  
SCL, SDA, VSET/VID  
0.4  
ISCL,LKG Input leakage current into SCL pin  
ISDA,LKG Input leakage current into SDA pin  
0.01  
0.01  
0.01  
1
0.8  
0.1  
0.1  
µA  
µA  
µA  
pF  
pF  
IEN,LKG  
CSCL  
Input leakage current into EN pin  
Parasitic capacitance at SCL  
Parasitic capacitance at SDA  
CSDA  
2.4  
STARTUP, POWER GOOD  
Time from EN high to device starts switching, R1  
= 249kΩ  
TPS6286xA  
420  
700 1100  
tDelay  
Enable delay time  
µs  
TPS6286x0C  
Time from EN high to device starts switching  
Time from device starts switching to power good  
VVOS referenced to VOUT nominal  
100  
0.85  
85  
350  
1
900  
1.5  
96  
tRamp  
VPG  
Output voltage ramp time  
Power good lower threshold(1)  
Power good upper threshold  
Power good deglitch delay  
ms  
%
91  
111  
34  
VVOS referenced to VOUT nominal  
103  
120  
%
tPG,DLY  
Rising and falling edges  
µs  
OUTPUT  
FPWM, no Load, TJ = 0to 85℃  
-1  
-2  
1
2
%
%
VOUT  
Output voltage accuracy  
FPWM, no Load  
EN = Low, Output discharge disabled, VVOS = 1.8  
V, TPS6286x1A/C  
IVOS,LKG Input leakage current into VOS pin  
0.2  
2.5  
µA  
RDIS  
Output discharge resistor at VOS pin  
Load regulation  
3.5  
VOUT = 0.9 V, FPWM  
0.04  
%/A  
POWER SWITCH  
High-side FET on-resistance  
11  
10.5  
5.5  
7.7  
4.5  
6.5  
-3  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET on-resistance  
TPS62868  
5
7
6
High-side FET forward current limit  
TPS62869  
8.5  
A
ILIM  
TPS62868  
A
Low-side FET forward current limit  
Low-side FET negative current limit  
TPS62869  
A
TPS62868, TPS62869  
A
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
TJ = -40 °C to 125 °C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25 °C and VIN = 5 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
fSW  
PWM switching frequency  
IOUT = 1 A, VOUT = 0.9 V  
2.4 MHz  
(1) TPS6286x0A and TPS6286x00C device variants do not have a lower PG threshold. In these device variants the PG signal is high if the  
start-up ramp is complete and the output voltage is below the upper PG threshold.  
7.6 I2C InterfaceTiming Characteristics  
PARAMETER (1) (2)  
SCL Clock Frequency  
SCL Clock Frequency  
SCL Clock Frequency  
SCL Clock Frequency  
SCL Clock Frequency  
SCL Clock Frequency  
SCL Clock Frequency  
TEST CONDITIONS  
MIN  
MAX  
100  
400  
1
UNIT  
kHz  
f(SCL)  
f(SCL)  
f(SCL)  
f(SCL)  
f(SCL)  
f(SCL)  
f(SCL)  
Standard mode  
Fast mode  
kHz  
Fast mode plus  
MHz  
MHz  
MHz  
MHz  
MHz  
High-speed mode (write operation), CB – 100 pF max  
High-speed mode (read operation), CB – 100 pF max  
High-speed mode (write operation), CB – 400 pF max  
High-speed mode (read operation), CB – 400 pF max  
3.4  
3.4  
1.7  
1.7  
Bus Free Time Between a STOP and  
START Condition  
tBUF  
Standard mode  
Fast mode  
4.7  
1.3  
0.5  
4
µs  
µs  
µs  
µs  
ns  
ns  
ns  
Bus Free Time Between a STOP and  
START Condition  
tBUF  
Bus Free Time Between a STOP and  
START Condition  
tBUF  
Fast mode plus  
Standard mode  
Fast mode  
Hold Time (Repeated) START  
condition  
tHD, tSTA  
tHD, tSTA  
tHD, tSTA  
tHD, tSTA  
Hold Time (Repeated) START  
condition  
600  
260  
160  
Hold Time (Repeated) START  
condition  
Fast mode plus  
High-speed mode  
Hold Time (Repeated) START  
condition  
tLOW  
tLOW  
tLOW  
tLOW  
tLOW  
tHIGH  
tHIGH  
tHIGH  
tHIGH  
tHIGH  
LOW Period of the SCL Clock  
LOW Period of the SCL Clock  
LOW Period of the SCL Clock  
LOW Period of the SCL Clock  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
HIGH Period of the SCL Clock  
HIGH Period of the SCL Clock  
HIGH Period of the SCL Clock  
HIGH Period of the SCL Clock  
Standard mode  
4.7  
1.3  
0.5  
160  
320  
4
µs  
µs  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
Fast mode  
Fast mode plus  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
Fast mode  
600  
260  
60  
Fast mode plus  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
120  
Setup Time for a Repeated START  
Condition  
tSU, tSTA  
tSU, tSTA  
tSU, tSTA  
tSU, tSTA  
Standard mode  
Fast mode  
4.7  
600  
260  
160  
µs  
ns  
ns  
ns  
Setup Time for a Repeated START  
Condition  
Setup Time for a Repeated START  
Condition  
Fast mode plus  
High-speed mode  
Setup Time for a Repeated START  
Condition  
tSU, tDAT Data Setup Time  
tSU, tDAT Data Setup Time  
tSU, tDAT Data Setup Time  
tSU, tDAT Data Setup Time  
Standard mode  
Fast mode  
250  
100  
50  
ns  
ns  
ns  
ns  
Fast mode plus  
High-speed mode  
10  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
PARAMETER (1) (2)  
TEST CONDITIONS  
MIN  
0
MAX  
3.45  
0.9  
UNIT  
µs  
tHD, tDAT Data Hold Time  
tHD, tDAT Data Hold Time  
tHD, tDAT Data Hold Time  
tHD, tDAT Data Hold Time  
tHD, tDAT Data Hold Time  
Standard mode  
Fast mode  
0
µs  
Fast mode plus  
0
µs  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
0
70  
150  
ns  
0
ns  
tRCL  
tRCL  
Rise Time of SCL Signal  
1000  
ns  
20 +  
0.1 CB  
Rise Time of SCL Signal  
Fast mode  
300  
ns  
tRCL  
tRCL  
tRCL  
Rise Time of SCL Signal  
Rise Time of SCL Signal  
Rise Time of SCL Signal  
Rise Time of SCL Signal After a  
Fast mode plus  
120  
40  
ns  
ns  
ns  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
10  
20  
80  
20 +  
0.1 CB  
tRCL1  
tRCL1  
tRCL1  
tRCL1  
Repeated START Condition and After Standard mode  
an Acknowledge BIT  
1000  
300  
120  
80  
ns  
ns  
ns  
ns  
Rise Time of SCL Signal After a  
Repeated START Condition and After Fast mode  
an Acknowledge BIT  
20 +  
0.1 CB  
Rise Time of SCL Signal After a  
Repeated START Condition and After Fast mode plus  
an Acknowledge BIT  
Rise Time of SCL Signal After a  
Repeated START Condition and After High-speed mode, CB – 100 pF max  
an Acknowledge BIT  
10  
20  
Rise Time of SCL Signal After a  
Repeated START Condition and After High-speed mode, CB – 400 pF max  
an Acknowledge BIT  
tRCL1  
160  
300  
ns  
ns  
20 +  
0.1 CB  
tFCL  
Fall Time of SCL Signal  
Standard mode  
tFCL  
tFCL  
tFCL  
tFCL  
tRDA  
Fall Time of SCL Signal  
Fall Time of SCL Signal  
Fall Time of SCL Signal  
Fall Time of SCL Signal  
Rise Time of SDA Signal  
Fast mode  
300  
120  
40  
ns  
ns  
ns  
ns  
ns  
Fast mode plus  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
10  
20  
80  
1000  
20 +  
0.1 CB  
tRDA  
Rise Time of SDA Signal  
Fast mode  
300  
ns  
tRDA  
tRDA  
tRDA  
tFDA  
Rise Time of SDA Signal  
Rise Time of SDA Signal  
Rise Time of SDA Signal  
Fall Time of SDA Signal  
Fast mode plus  
120  
80  
ns  
ns  
ns  
ns  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
10  
20  
160  
300  
20 +  
0.1 CB  
tFDA  
Fall Time of SDA Signal  
Fast mode  
300  
ns  
tFDA  
tFDA  
tFDA  
Fall Time of SDA Signal  
Fall Time of SDA Signal  
Fall Time of SDA Signal  
Fast mode plus  
120  
80  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
pF  
pF  
pF  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
10  
20  
160  
tSU, tSTO Setup Time of STOP Condition  
tSU, tSTO Setup Time of STOP Condition  
tSU, tSTO Setup Time of STOP Condition  
tSU, tSTO Setup Time of STOP Condition  
4
Fast mode  
600  
260  
160  
Fast mode plus  
High-Speed mode  
Standard mode  
CB  
CB  
CB  
Capacitive Load for SDA and SCL  
Capacitive Load for SDA and SCL  
Capacitive Load for SDA and SCL  
400  
400  
550  
Fast mode  
Fast mode plus  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62868 TPS62869  
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
PARAMETER (1) (2)  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
CB  
Capacitive Load for SDA and SCL  
High-Speed mode  
400  
pF  
(1) All values referred to VIL MAX and VIH MIN levels in ELECTRICAL CHARACTERISTICS table.  
(2) For bus line loads CB between 100 pF and 400 pF, the timing parameters must be linearly interpolated.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
7.7 Typical Characteristics  
30  
30  
20  
10  
0
TJ = -40 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = -40 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
20  
10  
0
2.4  
2.8  
3.2  
3.6  
4.0  
Input Voltage (V)  
4.4  
4.8  
5.2  
5.6  
2.4  
2.8  
3.2  
3.6  
4.0  
Input Voltage (V)  
4.4  
4.8  
5.2  
5.6  
D000  
D001  
Figure 7-1. High-Side FET On-Resistance  
Figure 7-2. Low-Side FET On-Resistance  
7.0  
0.40  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.30  
0.20  
0.10  
TJ = -40 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = -40 èC  
TJ = 25 èC  
TJ = 85 èC  
2.4  
2.8  
3.2  
3.6  
4.0  
Input Voltage (V)  
4.4  
4.8  
5.2  
5.6  
2.4  
2.8  
3.2  
3.6  
4.0  
Input Voltage (V)  
4.4  
4.8  
5.2  
5.6  
D003  
D003  
Figure 7-3. Quiescent Current  
Figure 7-4. Shutdown Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The DCS-Controltopology operates in PWM (pulse width modulation) mode for medium to heavy load  
conditions and in Power Save Mode at light load currents. In PWM mode, the converter operates with its nominal  
switching frequency of 2.4 MHz, having a controlled frequency variation over the input voltage range. Because  
DCS-Control supports both operation modes (PWM and PFM) within a single building block, the transition from  
PWM mode to Power Save Mode is seamless and without effects on the output voltage. The devices offer both  
excellent DC voltage and superior load transient regulation, combined with very low output voltage ripple.  
8.2 Functional Block Diagram  
VIN  
EN  
PG  
Control Logic  
Reference Selection  
UVLO  
Thermal Shutdown  
Startup Ramp  
VSET/VID  
VPG_H  
+
or  
PG  
VFB  
34-µs  
Deglitch  
+
SDA  
SCL  
VPG_L  
I2C Interface  
HS-FET  
Forward Current Limit  
VSW  
VIN  
TON  
HICCUP (1)  
Direct Control  
&
VSW  
Compensation  
SW  
Gate  
Drive  
Modulator  
VREF  
+
EA  
Comparator  
_
VOS  
LS-FET  
(1)  
RDIS  
Forward Current Limit  
Zero Current Detect  
Negative Current Limit  
PGND  
AGND  
(1) enabled via I2C  
PGND  
8.3 Feature Description  
8.3.1 Power Save Mode  
As the load current decreases, the device enters Power Save Mode (PSM) operation. PSM occurs when the  
inductor current becomes discontinuous, which is when it reaches 0 A during a switching cycle. Power Save  
Mode is based on a fixed on-time architecture, as shown in Equation 1.  
V
OUT  
t
416ns  
ON  
V
IN  
(1)  
In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This effect is minimized  
by increasing the output capacitor or inductor value.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
When VIN decreases to typically 15% above the VOUT, the TPS6286x does not enter Power Save Mode,  
regardless of the load current. The device maintains output regulation in PWM mode.  
8.3.2 Forced PWM Mode  
With I2C, set the device in forced PWM (FPWM) mode by the CONTROL register. The device switches at 2.4  
MHz, even with a light load. This reduces the output voltage ripple and allows simple filtering of the switching  
frequency for noise-sensitive applications. Efficiency at light load is lower in FPWM mode.  
8.3.3 100% Duty Cycle Mode Operation  
There is no limitation for small duty cycles since even at very low duty cycles, the switching frequency is reduced  
as needed to always ensure a proper regulation.  
If the output voltage level comes close to the input voltage, the device enters 100% mode. While the high-side  
switch is constantly turned on, the low-side switch is switched off. The difference between VIN and VOUT is  
determined by the voltage drop across the high-side MOSFET and the DC resistance of the inductor. The  
minimum VIN that is needed to maintain a specific VOUT value is estimated as:  
V
IN,MIN  
= VOUT + (RDS (ON) + RL)IOUT ,MAX  
(2)  
where  
VIN,MIN is the minimum input voltage to maintain an output voltage  
IOUT,MAX is the maximum output current  
RDS(on) is the high-side FET ON-resistance  
RL is the inductor ohmic resistance (DCR)  
8.3.4 Start-up  
After enabling the device, there is an enable delay (tDelay) before the device starts switching. During this period,  
the device sets the internal reference voltage, and determines the start-up output voltage through the resistor  
connected to the VSET/VID pin. After tdelay, all registers can be read and written by the I2C interface.  
VIN  
EN  
VOUT  
ttDelay  
t
ttRamp  
ttStartupt  
t
Figure 8-1. Start-up Sequence  
After the enable delay, an internal soft start-up circuitry ramps up the output voltage with a period of 1 ms  
(tRamp). This avoids excessive inrush current and creates a smooth output voltage rising-slope. It also prevents  
excessive voltage drops of primary cells and rechargeable batteries with high internal impedance.  
The device is able to start into a pre-biased output capacitor. It starts with the applied bias voltage and ramps the  
output voltage to its nominal value.  
8.3.5 Switch Current Limit and HICCUP Short-Circuit Protection  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current can occur with a shorted or saturated inductor or a heavy load  
or shorted output circuit condition. If the inductor current reaches the threshold ILIM, cycle by cycle, the high-side  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
MOSFET is turned off and the low-side MOSFET is turned on, while the inductor current ramps down to the  
low-side MOSFET current limit.  
When the high-side MOSFET current limit is triggered 32 times, the device stops switching. The device then  
automatically re-starts, with an internal soft start-up, after a typical delay time of 128 µs has passed. This is  
named HICCUP short-circuit protection. The device repeats this mode until the high load condition disappears.  
The HICCUP is disabled by the CONTROL register bit Enable HICCUP. Disabling HICCUP changes the  
overcurrent protection to latching protection. The device stops switching after the high-side MOSFET current  
limit is triggered 32 times. Toggling the EN pin, removing and reapplying the input voltage, or writing to the  
CONTROL register bit Software Enable Device unlatches the device.  
8.3.6 Undervoltage Lockout (UVLO)  
To avoid mis-operation of the device at low input voltages, undervoltage lockout (UVLO) is implemented when  
the input voltage is lower than VUVLO. The device stops switching and the output voltage discharge is active (if  
enabled through I2C) when the device is in UVLO. When the input voltage recovers, the device automatically  
returns to operation with an internal soft start-up. During UVLO, the internal register values are kept.  
The UVLO bit in the STATUS Register is set when the input voltage is less than the UVLO falling threshold.  
When the input voltage is below 1.8 V (typ.), all registers are reset.  
8.3.7 Thermal Warning and Shutdown  
When the junction temperature goes up to TJW, the device gives a pre-warning indicator in the STATUS register.  
The device keeps running.  
When the junction temperature exceeds TJSD, the device goes into thermal shutdown, stops switching, and  
activates the output voltage discharge. When the device temperature falls below the threshold by 20°C, the  
device returns to normal operation automatically with an internal soft start-up. During thermal shutdown, the  
internal register values are kept.  
8.4 Device Functional Modes  
8.4.1 Enable and Disable (EN)  
The device is enabled by setting the EN pin to a logic High. In shutdown mode (EN = Low), the internal power  
switches as well as the entire control circuitry are turned off, and all the registers are reset, except for the Enable  
Output Discharge bit. Do not leave the EN pin floating.  
In shutdown mode (EN = Low), all registers cannot be read and written by the I2C interface.  
The typical threshold value of the EN pin is 0.61 V for rising input signals, and 0.51 V for falling input signals.  
The device is also enabled or disabled by setting the bit, Software Enable Device in CONTROL register while  
EN = High. After being disabled/enabled by this bit, the device stops switching and has a new start-up beginning  
with tRamp. There is no TDelay time and the registers are not reset.  
8.4.2 Output Discharge  
An internal MOSFET switch smoothly discharges the output through the VOS pin in shutdown mode (EN = Low  
or Software Enable Device bit = 0). The output discharge is also active when the device is in thermal shutdown  
and UVLO.  
When the Enable Output Discharge bit is set to 0, the output discharge function is disabled. The input voltage  
must remain higher than 1 V (typ.) to keep the output discharge function operational and the status of the Enable  
Output Discharge bit retained. The Enable Output Discharge bit is reset on the rising edge of the EN pin.  
8.4.3 Start-Up Output Voltage and I2C Target Address Selection  
During the ramp up period (tRamp), the output voltage ramps to the start-up output voltage first, then ramps up or  
down to the new value when the value of the output register is changed by I2C interface commands.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
8.4.3.1 TPS6286xxA Devices  
During the enable delay (tDelay), the start-up output voltage and device I2C target address are set by an external  
resistor connected to the VSET/VID pin through an internal R2D (resistor to digital) converter. Table 8-1 shows  
the options.  
Table 8-1. Start-up Output Voltage and I2C Target Address Options  
RESISTOR (E96 SERIES, ±1%  
ACCURACY) AT VSET/VID  
START-UP OUTPUT VOLTAGE (TYP)  
I2C TARGET ADDRESS  
249 kΩ  
Voltage Factor * 1.15 V  
Voltage Factor * 1.10 V  
Voltage Factor * 1.05 V  
Voltage Factor * 1.00 V  
Voltage Factor * 0.95 V  
Voltage Factor * 0.90 V  
Voltage Factor * 0.85 V  
Voltage Factor * 0.80 V  
Voltage Factor * 0.75 V  
Voltage Factor * 0.70 V  
Voltage Factor * 0.65 V  
Voltage Factor * 0.60 V  
Voltage Factor * 0.55 V  
Voltage Factor * 0.50 V  
Voltage Factor * 0.45 V  
Voltage Factor * 0.40 V  
0b1000110 (0x46)  
0b1000101 (0x45)  
0b1000100 (0x44)  
0b1000011 (0x43)  
0b1000010 (0x42)  
0b1000001 (0x41)  
0b1001000 (0x48)  
0b1001001 (0x49)  
0b1001010 (0x4A)  
0b1001011 (0x4B)  
0b1001100 (0x4C)  
0b1001101 (0x4D)  
0b1001110 (0x4E)  
0b1001111 (0x4F)  
0b1000000 (0x40)  
0b1000111 (0x47)  
205 kΩ  
162 kΩ  
133 kΩ  
105 kΩ  
86.6 kΩ  
68.1 kΩ  
56.2 kΩ  
44.2 kΩ  
36.5 kΩ  
28.7 kΩ  
23.7 kΩ  
18.7 kΩ  
15.4 kΩ  
12.1 kΩ  
10 kΩ  
Table 8-2. Device Option Voltage Factors  
DEVICE OPTION  
VOLTAGE FACTOR  
TPS6286x0A  
TPS6286x1A  
TPS6286x2A  
0.5  
1
2
The R2D converter has an internal current source which applies current through the external resistor, and an  
internal ADC which reads back the resulting voltage level. Depending on the level, the correct start-up output  
voltage and I2C target address are set. Once this R2D conversion is finished, the current source is turned off to  
avoid current flowing through the external resistor. Ensure that there is no additional current path or capacitance  
greater than 30 pF from this pin to GND during R2D conversion, otherwise a false value is set.  
8.4.3.2 TPS6286xxxC Devices  
The start-up output voltage, voltage factor, and I2C target address of the TPS6286xxxC devices are factory-set  
according to Table 8-3.  
Table 8-3. Device Option Start-Up Voltage, Voltage Factor, and I2C Target Address  
DEVICE OPTION  
TPS6286x0xC  
TPS6286x1xC  
TPS6286x2xC  
VOLTAGE FACTOR  
START-UP OUTPUT VOLTAGE  
I2C TARGET ADDRESS  
0.5  
1
0.5 V  
0.9 V  
1.2 V  
0b1000010 (0x42)  
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62868 TPS62869  
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
8.4.4 Select Output Voltage Registers (VID)  
After the start-up period (tStartup), the output voltage can be selected between two output voltage registers by  
the VID pin. When VID is pulled low, the output voltage is set by Table 8-6. When VID is pulled high, the output  
voltage is set by Table 8-7. This is also called dynamic voltage scaling (DVS).  
During an output voltage change through I2C or the VSET/VID pin, the device can be set in FPWM by the  
Enable FPWM Mode during Output Voltage Change bit in CONTROL register. The output voltage change speed  
is set by the Voltage Ramp Speed bit.  
8.4.5 Power Good ( PG)  
The TPS62868 and TPS62869 families provide device options with the PG pin instead of a VSET/VID pin. Refer  
to Section 5 to see the according device options.  
The PG pin goes high impedance once the output voltage is above 91% and less than 110% of the nominal  
voltage, and is driven low once the voltage is out of the range. The PG pin is an open-drain output and is  
specified to sink up to 1 mA. The power good output requires a pullup resistor connecting to any voltage rail less  
than 5.5 V. The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other  
converters. Leave the PG pin unconnected when not used.  
The PG has a deglitch time, before the signal goes high or low, during normal operation.  
Table 8-4. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH  
LOW  
0.91 × VOUT_NOM ≤ VVOS ≤ 1.11 × VOUT_NOM  
Enable  
VVOS < 0.91 × VOUT_NOM or VVOS > 1.11 × VOUT_NOM  
Shutdown  
EN = Low  
Thermal Shutdown  
UVLO  
TJ > TJSD  
1.8 V < VIN < VUVLO  
Power Supply  
Removal  
VIN < 1.8 V  
undefined  
8.5 Programming  
8.5.1 Serial Interface Description  
I2Cis a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors. The bus  
consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is idle, both SDA  
and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C bus through open drain I/O  
pins, SDA and SCL. A controller device, usually a microcontroller or a digital signal processor, controls the bus.  
The controller is responsible for generating the SCL signal and device addresses. The controller also generates  
specific conditions that indicate the START and STOP of data transfer. A target device receives or transmits data  
on the bus under control of the controller device, or both.  
The device works as a target and supports the following data transfer modes, as defined in the I2C-Bus  
Specification: standard mode (100 kbps) and fast mode (400 kbps), fast mode plus (1 Mbps), and high-speed  
mode (3.4 Mbps). The interface adds flexibility to the power supply solution, enabling most functions to be  
programmed to new values depending on the instantaneous application requirements. Register contents remain  
intact as long as the input voltage remains above 1.8 V.  
The data transfer protocol for standard and fast modes is exactly the same, therefore, they are referred to as  
F/S-mode in this document. The protocol for high-speed mode is different from F/S-mode, and it is referred to as  
HS-mode.  
It is recommended that the I2C controller initiates a STOP condition on the I2C bus after the initial power up of  
SDA and SCL pullup voltages to ensure reset of the I2C engine.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
8.5.2 Standard-, Fast-, and Fast-Mode Plus Protocol  
The controller initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in Figure 8-2. All I2C-compatible devices  
recognize a start condition.  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
Figure 8-2. START and STOP Conditions  
The controller then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
R/W on the SDA line. During all transmissions, the controller ensures that data is valid. A valid data condition  
requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 8-3). All devices  
recognize the address sent by the controller and compare it to their internal fixed addresses. Only the target  
device with a matching address generates an acknowledge (see Figure 8-4) by pulling the SDA line low during  
the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the controller knows that  
communication link with a target has been established.  
DATA  
CLK  
Data line  
stable;  
data valid  
Change  
of data  
allowed  
Figure 8-3. Bit Transfer on the Serial Interface  
The controller generates further SCL cycles to either transmit data to the target (R/W bit 0) or receive data from  
the target (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So  
an acknowledge signal can either be generated by the controller or by the target, depending on which one is  
the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary.  
To signal the end of the data transfer, the controller generates a stop condition by pulling the SDA line from low  
to high while the SCL line is high (see Figure 8-2). This releases the bus and stops the communication link with  
the addressed target. All I2C compatible devices must recognize the stop condition. Upon the receipt of a stop  
condition, all devices know that the bus is released, and they wait for a start condition followed by a matching  
address.  
Attempting to read data from register addresses not listed in this section results in 0x00 being read out.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62868 TPS62869  
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
Data Output by  
Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
8
SCL from  
Controller  
1
2
9
S
START  
Clock pulse for  
Condition  
acknowledgment  
Figure 8-4. Acknowledge on the I2C Bus  
Figure 8-5. Bus Protocol  
8.5.3 HS-Mode Protocol  
The controller generates a start condition followed by a valid serial byte containing HS controller code  
00001XXX. This transmission is made in F/S-mode at no more than 400 kbps. No device is allowed to  
acknowledge the HS controller code, but all devices must recognize it and switch their internal setting to support  
3.4 Mbps operation.  
The controller then generates a repeated start condition (a repeated start condition has the same timing as  
the start condition). After this repeated start condition, the protocol is the same as F/S-mode, except that  
transmission speeds up to 3.4 Mbps are allowed. A stop condition ends the HS-mode and switches all the  
internal settings of the target devices to support the F/S-mode. Instead of using a stop condition, repeated start  
conditions must be used to secure the bus in HS-mode.  
Attempting to read data from register addresses not listed in this section results in 0x00 being read out.  
8.5.4 I2C Update Sequence  
The sequence requires a start condition, a valid I2C target address, a register address byte, and a data byte for  
a single update. After the receipt of each byte, the device acknowledges by pulling the SDA line low during the  
high period of a single clock pulse. A valid I2C address selects the device. The device performs an update on the  
falling edge of the acknowledge signal that follows the LSB byte.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
1
7
1
1
8
1
8
1
1
S
Target Address  
R/W  
A
Register Address  
A
Data  
A/A  
P
“0” Write  
From Controller to Target  
From Target to Controller  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
Figure 8-6. “Write” Data Transfer Format in Standard-, Fast, and Fast-Plus Modes  
1
7
1
1
8
1
1
8
1
1
8
1
1
S
Target Address  
R/W  
A
Register Address  
A
Sr  
Target Address  
R/W  
A
Data  
A/A  
P
"0" Write  
"1" Read  
From Controller to Target  
From Target to Controller  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
Figure 8-7. “Read” Data Transfer Format in Standard-, Fast, and Fast-Plus Modes  
tF/S Modet  
tHS Modet  
8
F/S Mode  
1
8
1
1
7
1
1
1
8
1
1
S
HS-Controller Code  
A
Sr  
Target Address  
R/W  
A
Register Address  
A
Data  
A/A  
P
tn × bytes + Acknowledget  
HS Mode continues  
Target Address  
Sr  
From Controller to Target  
From Target to Controller  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
Figure 8-8. Data Transfer Format in HS-Mode  
8.5.5 I2C Register Reset  
The I2C registers can be reset by:  
Pulling the input voltage below 1.8 V (typ.)  
A high to low transition on EN  
Setting the Reset bit in the CONTROL register. When Reset is set to 1, all registers are reset to the default  
values and a new start-up is begun immediately. After tDelay, the I2C registers can be programmed again.  
8.6 Register Map  
Table 8-5. Register Map  
REGISTER ADDRESS  
(HEX)  
FACTORY DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
Sets the target output voltage  
0x01  
0x02  
0x03  
0x05  
VOUT Register 1  
VOUT Register 2  
0x64  
0x64  
0x6F  
0x00  
Sets the target output voltage  
Sets miscellaneous configuration bits  
Returns status flags  
CONTROL Register  
STATUS Register  
8.6.1 Target Address Byte  
7
6
5
4
3
2
1
0
1
x
x
x
x
x
x
R/W  
The target address byte is the first byte received following the START condition from the controller device. The  
target addresses can be assigned by an external resistor, see Table 8-1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
8.6.2 Register Address Byte  
7
6
5
4
3
2
1
0
0
0
0
0
0
D2  
D1  
D0  
Following the successful acknowledgment of the target address, the bus controller sends a byte to the device,  
which contains the address of the register to be accessed.  
8.6.3 VOUT Register 1  
Table 8-6. VOUT Register 1 Description  
REGISTER ADDRESS 0X01 READ/WRITE  
BIT  
FIELD  
VALUE (HEX)  
OUTPUT VOLTAGE (TYP)  
Voltage Factor * 400 mV  
7:0  
VO1_SET  
0x00  
0x01  
...  
Voltage Factor * 405 mV  
0x64  
...  
Voltage Factor * 900 mV  
0xFE  
0xFF  
Voltage Factor * 1670 mV  
Voltage Factor * 1675 mV  
8.6.4 VOUT Register 2  
Table 8-7. VOUT Register 2 Description  
REGISTER ADDRESS 0X02 READ/WRITE  
BIT  
FIELD  
VALUE (HEX)  
OUTPUT VOLTAGE (TYP)  
Voltage Factor * 400 mV  
7:0  
VO2_SET  
0x00  
0x01  
...  
Voltage Factor * 405 mV  
0x64  
...  
Voltage Factor * 900 mV (default value)  
0xFE  
0xFF  
Voltage Factor * 1670 mV  
Voltage Factor * 1675 mV  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
8.6.5 CONTROL Register  
Table 8-8. CONTROL Register Description  
REGISTER ADDRESS 0X03 WRITE ONLY  
BIT  
7
FIELD  
TYPE  
R/W  
DEFAULT DESCRIPTION  
Reset  
0
1
1 - Reset all registers to default.  
6
Enable FPWM Mode during Output  
Voltage Change  
R/W  
0 - Keep the current mode status during output voltage change  
1 - Force the device in FPWM during output voltage change.  
5
Software Enable Device  
R/W  
1
0 - Disable the device. All registers values are still kept.  
1 - Re-enable the device with a new start-up without the tDelay  
period.  
4
3
Enable FPWM Mode  
Enable Output Discharge  
Enable HICCUP  
R/W  
R/W  
R/W  
R/W  
0
1
0 - Set the device in power save mode at light loads.  
1 - Set the device in forced PWM mode at light loads.  
0 - Disable output discharge.  
1 - Enable output discharge.  
2
1
0 - Disable HICCUP. Enable latching protection.  
1 - Enable HICCUP, Disable latching protection.  
0:1  
Voltage Ramp Speed  
11  
00 - 20mV/µs (0.25 µs/step)  
01 - 10 mV/µs (0.5 µs/step)  
10 - 5 mV/µs (1 µs/step)  
11 - 1 mV/µs (5 µs/step, default)  
8.6.6 STATUS Register  
Table 8-9. STATUS Register Description  
REGISTER ADDRESS 0X05 READ ONLY(1)  
BIT  
7:5  
4
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Reserved  
Thermal Warning  
HICCUP  
R
R
0
0
1: Junction temperature is higher than 130°C.  
3
1: Device has HICCUP status once.  
2
Reserved  
Reserved  
UVLO  
1
0
R
0
1: The input voltage is less than UVLO threshold (falling edge).  
(1) All bit values are latched until the device is reset, or the STATUS register is read. Then, the STATUS register is reset to its default  
values.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
VIN  
2.4 V to 5.5 V  
L1  
0.22 µH  
TPS62868/9  
VOUT  
VIN  
SW  
C1  
VOS  
C2  
EN  
VSET/VID  
or PG  
SCL  
SDA  
I2C  
R1  
AGND PGND  
Figure 9-1. Typical Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 9-1 as the input parameters.  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.4 V to 5.5 V  
0.9 V  
Output voltage  
Maximum output current  
6 A  
Table 9-2 lists the components used for the example.  
Table 9-2. List of Components of Table 9-1  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
Samsung Electro-  
Mechanics  
C1  
2 × 10 µF, Ceramic capacitor, 6.3 V, X7R, size 0603, CL10B106MQ8NRNC  
C2  
L1  
R1  
2 × 22 µF, Ceramic capacitor, 6.3 V, X7R, size 0805, GRM21BZ70J226ME44L  
0.22 µH, Power inductor, XAL4020-221ME (12 A, 5.81 mΩ)  
Depending on the start-up output voltage, size 0603  
Murata  
Coilcraft  
Std  
(1) See Third-party Products disclaimer.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
 
 
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
9.2.2 Detailed Design Procedure  
9.2.2.1 Setting The Output Voltage  
The initial output voltage is set by an external resistor connected to the VSET/VID pin, according to Table 8-1.  
After the soft start-up, the output voltage can be changed in the VOUT Registers. Refer to Table 8-6 and Table  
8-7.  
9.2.2.2 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify this process, Table 9-3  
outlines possible inductor and capacitor value combinations for most applications. Checked cells represent  
combinations that are proven for stability by simulation and lab test. Further combinations should be checked for  
each individual application.  
Table 9-3. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
22  
2 x 22 or 47  
3 x 22  
150  
(1)  
0.24  
+
+
+
(1) This LC combination is the standard value and recommended for most applications.  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and –30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and –30%.  
9.2.2.3 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, Equation 3 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
(3)  
where  
IOUT,MAX = maximum output current  
ΔIL = inductor current ripple  
fSW = switching frequency  
L = inductor value  
It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher  
than IL,MAX. In addition, DC resistance and size must also be taken into account when selecting an appropriate  
inductor. Table 9-4 lists recommended inductors.  
Table 9-4. List of Recommended Inductors  
INDUCTANCE CURRENT RATING,  
DIMENSIONS  
[L x W x H mm]  
DC RESISTANCE  
[mΩ]  
PART NUMBER  
[µH]  
0.22  
0.24  
ISAT [A]  
18.7  
4 x 4 x 2  
5.81  
13  
Coilcraft, XAL4020-221ME  
Murata, DFE201612E-R24M  
6.6  
2 x 1.6 x 1.2  
9.2.2.4 Capacitor Selection  
The input capacitor is the low-impedance energy source for the converter which helps to provide stable  
operation. A low-ESR multilayer ceramic capacitor is recommended for best filtering and must be placed  
between VIN and PGND as close as possible to those pins. For most applications, 8 μF is a sufficient value  
for the effective input capacitance, though a larger value reduces input current ripple.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62868 TPS62869  
 
 
 
 
 
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends  
using X7R or X5R dielectrics. The recommended minimum output effective capacitance is 30 μF; this  
capacitance can vary over a wide range as outline in the output filter selection table.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
9.2.3 Application Curves  
VIN = 5.0 V, VOUT = 0.9 V, TA = 25°C, BOM = Table 9-2, unless otherwise noted.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.612  
0.606  
0.6  
0.594  
0.588  
0.582  
VIN = 3.3V, PSM  
VIN = 3.3V, PWM  
VIN = 4.2V, PSM  
VIN = 4.2V, PWM  
VIN = 5.0V, PSM  
VIN = 5.0V, PWM  
VIN = 3.3 V, PSM  
VIN = 3.3 V, PWM  
VIN = 4.2 V, PSM  
VIN = 4.2 V, PWM  
VIN = 5.0 V, PSM  
VIN = 5.0 V, PWM  
100m  
1m  
10m  
Load (A)  
100m  
1
1
1
6
100m  
1m  
10m  
Load (A)  
100m  
1
1
1
6
D001  
D002  
VOUT = 0.6 V  
VOUT = 0.6 V  
Figure 9-2. Efficiency  
Figure 9-3. Load Regulation  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.918  
0.909  
0.9  
0.891  
0.882  
0.873  
VIN = 3.3V, PSM  
VIN = 3.3 V, PSM  
VIN = 3.3 V, PWM  
VIN = 4.2 V, PSM  
VIN = 4.2 V, PWM  
VIN = 5.0 V, PSM  
VIN = 5.0 V, PWM  
VIN = 3.3V, PWM  
VIN = 4.2V, PSM  
VIN = 4.2V, PWM  
VIN = 5.0V, PSM  
VIN = 5.0V, PWM  
100m  
1m  
10m  
Load (A)  
100m  
6
100m  
1m  
10m  
Load (A)  
100m  
6
D003  
D004  
VOUT = 0.9 V  
VOUT = 0.9 V  
Figure 9-4. Efficiency  
Figure 9-5. Load Regulation  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1.212  
1.2  
1.188  
1.176  
1.164  
VIN = 3.3V, PSM  
VIN = 3.3 V, PSM  
VIN = 3.3 V, PWM  
VIN = 4.2 V, PSM  
VIN = 4.2 V, PWM  
VIN = 5.0 V, PSM  
VIN = 5.0 V, PWM  
VIN = 3.3V, PWM  
VIN = 4.2V, PSM  
VIN = 4.2V, PWM  
VIN = 5.0V, PSM  
VIN = 5.0V, PWM  
100m  
1m  
10m  
Load (A)  
100m  
6
100m  
1m  
10m  
Load (A)  
100m  
6
D005  
D006  
VOUT = 1.2 V  
VOUT = 1.2 V  
Figure 9-6. Efficiency  
Figure 9-7. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
3
3
2
1
2
VOUT = 0.6 V, FPWM  
1
VOUT = 0.6 V, PSM  
VOUT = 0.9 V, FPWM  
VOUT = 0.9 V, PSM  
VOUT = 1.2 V, FPWM  
VOUT = 1.2 V, PSM  
VOUT = 0.6 V  
VOUT = 0.9 V  
VOUT = 1.2 V  
0.5  
1
1.5  
2
2.5  
3
Load (A)  
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5 4  
Input Voltage (V)  
4.5  
5
5.5  
D007  
D006  
VIN = 5.0 V  
IOUT = 1.0 A  
Figure 9-8. Switching Frequency  
Figure 9-9. Switching Frequency  
7
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
45  
55  
65  
75  
85  
95  
105  
115  
125  
45  
55  
65  
75  
85  
95  
105  
115  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
VOUT = 0.9 V  
θJA = 60.3°C/W  
VOUT = 1.675 V  
θJA = 60.3°C/W  
Figure 9-10. Thermal Derating  
Figure 9-11. Thermal Derating  
IOUT = 6.0 A  
IOUT = 0.1 A  
Figure 9-12. PWM Operation  
Figure 9-13. PSM Operation  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
IOUT = 0.1 A  
No Load  
Figure 9-14. Forced PWM Operation  
Figure 9-15. Startup and Shutdown by EN Pin  
No Load  
IOUT = 0.06 A to 5.4 A  
PSM  
Figure 9-16. Start-up by Software Enable Device  
Bit  
Figure 9-17. Load Transient  
IOUT = 0.06 A to 5.4 A  
Forced PWM  
IOUT = 2.5 A  
Figure 9-18. Load Transient  
Figure 9-19. HICCUP Protection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62868 TPS62869  
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
9.3 Typical Application – TPS6286x0A and TPS6286x0xC Devices  
L1  
0.1 µH  
TPS6286900C  
VIN  
2.4 V to 5.5 V  
SW  
VOUT  
VIN  
EN  
C2  
VOS  
C1  
VIO  
R1  
SCL  
SDA  
I2C  
PG  
PG  
PGND AGND  
Figure 9-20. Typical Application  
9.3.1 Design Requirements  
For this design example, use the parameters listed in Table 9-5 as the input parameters.  
Table 9-5. Design Parameters  
DESIGN PARAMETER  
Input Voltage Range  
Output Voltage  
EXAMPLE VALUE  
2.4 V to 5.5 V  
0.5 V  
Maximum Output Current  
6 A  
Table 9-6 lists the components used in this example.  
Table 9-6. List of Components of Table 9-5  
REFERENCE  
DESCRIPTION  
MANUFACTURER1  
C1  
2 × 10 μF Ceramic capacitor, 6.3 V, X7R, size 0603, CL10B106MQ8NRNC  
Samsung Electro-  
Mechanics  
C2  
L1  
R1  
3 × 22 μF Ceramic capacitor, 6.3 V, X7R, size 0805, GRM21BZ70J226ME44L  
0.1 μH Power inductor, XEL4020-101ME  
Murata  
Coilcraft  
Standard  
10 kΩ, size 0603  
1. See the Third-Party Products Disclaimer.  
9.3.2 Detailed Design Procedure  
9.3.2.1 Setting the Output Voltage  
The start-up output voltage of the TPS6286900C device is factory-programmed to 0.5 V and therefore no  
additional external components are needed. After start-up, the output voltage can be changed by using the I2C  
interface to program the VOUT Register 1.  
9.3.2.2 Output Filter Design  
The inductor and output capacitor form a low-pass filter. To simplify the design process, Table 9-7 outlines  
possible inductor and capacitor combinations for most applications. Checked cells represent combinations that  
have been proven for stability by simulation and lab testing. Further combinations, not listed in , should be  
checked for the specific application.  
Table 9-7. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
22  
2 × 22 or 47  
3 × 22  
150  
(1)  
0.1  
+
+
+
(1) This LC combination is the standard value and recommended for most applications.  
28 Submit Document Feedback  
Copyright © 2021 Texas Instruments Incorporated  
Product Folder Links: TPS62868 TPS62869  
 
 
 
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and –30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and –30%.  
9.3.2.3 Inductor Selection  
Inductor selection for the TPS6286x0A and TPS6286x0xC (0.2-V to 0.8375-V) device variants follows the same  
procedure as for the other device variants (see Section 9.2.2.3). Table 9-8 lists recommended inductors for the  
low-voltage device variants.  
Table 9-8. List of Recommended Inductors  
INDUCTANCE CURRENT RATING,  
DIMENSIONS [L × W  
× H mm]  
DC RESISTANCE  
[mΩ]  
PART NUMBER  
[μH]  
ISAT [A]  
0.1  
28.5  
4 × 4 × 2  
2
Coilcraft, XEL4020-101ME  
9.3.2.4 Capacitor Selection  
Capacitor selection for the TPS6286x0A and TPS6286x0xC (0.2-V to 0.8375-V) device variants follows the  
same procedure as for the other device variants (see Section 9.2.2.4).  
9.3.3 Application Curves  
VIN = 5.0 V, VOUT = 0.5 V, TA = 25°C, BOM = Table 9-6, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.31  
0.30  
0.29  
0.28  
+1%  
–1%  
VIN = 2.5 V – FPWM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 2.5 V – FPWM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 0.3 V  
VOUT = 0.3 V  
Figure 9-21. Efficiency  
Figure 9-22. Load Regulation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.51  
0.50  
0.49  
0.48  
+1%  
–1%  
VIN = 2.5 V – FPWM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 2.5 V – FPWM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 0.5 V  
VOUT = 0.5 V  
Figure 9-23. Efficiency  
Figure 9-24. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62868 TPS62869  
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT = 0.6 V, FPWM  
VOUT = 0.6 V, PSM  
VOUT = 0.4 V  
VOUT = 0.6 V  
0.0  
0
1
2
3
4
5
6
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Output Current (A)  
Input Voltage (V)  
VIN = 5 V  
IOUT = 1 A  
Figure 9-25. Switching Frequency  
Figure 9-26. Switching Frequency  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. Ensure that the input  
power supply has a sufficient current rating for the application. The power supply must avoid a fast ramp down.  
The falling ramp speed must be slower than 10 mV/µs, if the input voltage drops below VUVLO  
.
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the device.  
The input/output capacitors and the inductor must be placed as close as possible to the IC. This keeps  
the power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the PGND to avoid a GND  
potential shift.  
The sense traces connected to the VOS pin is a signal trace. Special care must be taken to avoid noise being  
induced. Keep the trace away from SW.  
Refer to Figure 11-1 for an example of component placement, routing, and thermal design.  
11.2 Layout Example  
Solution  
Size  
GND  
2
56  
mm  
R1  
D
VOUT  
V O S  
A G N D  
V S E T / V I  
PGND  
SW  
VIN  
VIN  
U1  
GND  
L1  
Figure 11-1. Layout Example  
11.2.1 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are improving the power dissipation capability of the  
PCB design and introducing airflow in the system. For more details on how to use the thermal parameters, see  
the Semiconductor and IC Package Thermal Metrics Application Report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62868 TPS62869  
 
 
 
 
TPS62868, TPS62869  
SLVSFS3B – SEPTEMBER 2020 – REVISED JULY 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.5 Trademarks  
DCS-Controlis a trademark of TI.  
I2Cis a trademark of NXP Semiconductors.  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS62868 TPS62869  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6286800CRQYR  
TPS628680ARQYR  
TPS6286810CRQYR  
TPS628681ARQYR  
TPS6286820CRQYR  
TPS628682ARQYR  
TPS6286900CRQYR  
TPS628690ARQYR  
TPS6286910CRQYR  
TPS628691ARQYR  
TPS6286920CRQYR  
TPS628692ARQYR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
9
9
9
9
9
9
9
9
9
9
9
9
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2JOH  
2I8H  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
2JPH  
2ECH  
2JQH  
2IAH  
2JRH  
2I7H  
2JSH  
2EBH  
2JTH  
2I9H  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Oct-2021  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6286800CRQYR  
TPS628680ARQYR  
TPS6286810CRQYR  
TPS628681ARQYR  
TPS6286820CRQYR  
TPS628682ARQYR  
TPS6286900CRQYR  
TPS628690ARQYR  
TPS6286910CRQYR  
TPS628691ARQYR  
TPS6286920CRQYR  
VQFN-  
HR  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
9
9
9
9
9
9
9
9
9
9
9
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
1.12  
1.12  
1.12  
1.12  
1.12  
1.12  
1.12  
1.12  
1.12  
1.12  
1.12  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Oct-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HR  
TPS628692ARQYR  
VQFN-  
HR  
RQY  
9
3000  
180.0  
8.4  
1.8  
2.8  
1.12  
4.0  
8.0  
Q1  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6286800CRQYR  
TPS628680ARQYR  
TPS6286810CRQYR  
TPS628681ARQYR  
TPS6286820CRQYR  
TPS628682ARQYR  
TPS6286900CRQYR  
TPS628690ARQYR  
TPS6286910CRQYR  
TPS628691ARQYR  
TPS6286920CRQYR  
TPS628692ARQYR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
RQY  
9
9
9
9
9
9
9
9
9
9
9
9
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQY0009A  
1.6  
1.4  
B
A
2.6  
2.4  
PIN 1 INDEX AREA  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.85  
0.65  
3X  
(0.1) TYP  
6
4
0.25  
0.15  
3X  
0.1  
C
C
A B  
3
2
0.05  
PKG  
7
2X 0.4  
0.4  
0.3  
6X  
PIN 1 ID  
(45° X 0.1)  
8
1
0.3  
0.2  
6X  
4X 0.5  
PKG  
4225639/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQY0009A  
PKG  
(0.95)  
3X (0.95)  
1
8
3X (0.2)  
2
PKG  
7
(2.35)  
2X (0.4)  
3
(R0.05) TYP  
6
4
6X (0.55)  
6X (0.25)  
4X (0.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
EXPOSED  
METAL UNDER  
SOLDER MASK  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225639/A 03/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQY0009A  
PKG  
(0.95)  
3X (0.95)  
1
8
3X (0.2)  
2
PKG  
7
(2.35)  
2X (0.4)  
3
(R0.05) TYP  
6
4
6X (0.55)  
6X (0.25)  
4X (0.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
SCALE: 25X  
4225639/A 03/2020  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS62868_V01

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS62868_V02

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS62868_V03

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS62869

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286900CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286900CRQYR

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628690ARQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628690ARQYR

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628690CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286910CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286910CRQYR

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628691ARQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI