TPS62873QWRXSRQ1 [TI]

汽车级 2.7V 至 6V 输入、15A 可堆叠同步降压转换器 | RXS | 16 | -40 to 125;
TPS62873QWRXSRQ1
型号: TPS62873QWRXSRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级 2.7V 至 6V 输入、15A 可堆叠同步降压转换器 | RXS | 16 | -40 to 125

转换器
文件: 总61页 (文件大小:2516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
TPS6287x-Q1 具有快速瞬态响应功能2.7V 6V 输入,6A9A12A15A 可  
堆叠同步降压转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPS6287x-Q1 是具有远程差分检测功能的引脚对引脚  
6A9A12A 15A 同步直流/直流降压转换器系  
列。对于每个电流额定值都有适用的具I2C 接口且  
功能全面的器件型号以及不具I2C 接口且功能有限  
的器件型号。所有器件都具有高效率且易于使用。低阻  
电源开关可在高温环境下支持高达 15A 的持续输出电  
流。  
– 温度等140°C +125°CTA  
功能安全型  
可提供用于功能安全系统设计的文档  
可提供用于功能安全系统设计的文档  
可提供用于功能安全系统设计的文档  
• 输入电压范围2.7V 6V  
• 引脚对引脚兼容器件系列6A9A12A 15A  
• 四个输出电压范围:  
这些器件可在堆叠模式下运行以提供更高的输出电流  
或将功耗分散到多个器件上。  
0.4V 0.71875V阶跃1.25mV)  
0.4V 1.0375V阶跃2.5mV)  
0.4V 1.675V阶跃5mV)  
0.8V 3.35V阶跃10mV)  
• 输出电压精度±1%  
TPS6287x-Q1 系列实现了增强型 DCS 控制方案该  
方案支持具有固定频率操作的快速瞬变。器件可以在省  
电模式下运行以充分提高效率也可以在强PWM 模  
式下运行以实现出色瞬态性能和超低输出电压纹波。  
可选的远程检测功能可充分提升负载点的电压调节并  
且该器件在所有运行条件下均可实现优于 ±1% 的直流  
电压精度。  
7mΩ4.5mΩ部功MOSFET  
• 可调节外部补偿  
• 电阻可选启动输出电压  
• 电阻可选开关频率  
• 节电或强PWM 操作  
器件信息  
电流额定值  
器件型号  
封装  
I2C 兼容的接口频率高1MHz  
• 远程差分检测  
TPS62870-Q1  
TPS62871-Q1  
TPS62872-Q1  
TPS62873-Q1  
6A  
9 A  
RXSVQFN-  
FCRLF16)  
• 旨在提高输出电流能力的可选堆叠操作  
• 热警告和热关断  
• 精密使能输入  
12A  
15A  
• 有源输出放电  
• 可选展频时钟  
L
VIN  
2.7 V to 6 V  
VIN  
VIN  
SW  
• 具有窗口比较器的电源正常输出  
• 采用具有可湿性侧面2.55mm × 3.55mm × 1mm  
VQFN 封装  
COUT  
Load  
CIN  
VIO  
REN  
MODE/SYNC  
EN  
VOSNS  
GOSNS  
SDA  
SCL  
I2C  
• 结温范围40°C 150°CTJ  
RZ  
VSEL  
FSEL  
VIO  
CC2  
2 应用  
CC  
RVSEL RFSEL  
信息娱乐系统与仪表组  
ADAS  
RPG  
COMP  
PG  
1k  
PG  
FPGAASIC 和数字内核电源  
DDR 存储器电源  
SYNC_OUT GND  
GND  
10pF  
TPS6287x-Q1 简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFJ3  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
Table of Contents  
9.4 Device Functional Modes..........................................30  
9.5 Programming............................................................ 31  
9.6 Register Map.............................................................35  
10 Application and Implementation................................41  
10.1 Application Information........................................... 41  
10.2 Typical Application.................................................. 41  
10.3 Best Design Practices.............................................49  
10.4 Power Supply Recommendations...........................50  
10.5 Layout..................................................................... 50  
11 Device and Documentation Support..........................52  
11.1 Device Support........................................................52  
11.2 Documentation Support ......................................... 52  
11.3 接收文档更新通知................................................... 52  
11.4 支持资源..................................................................52  
11.5 Trademarks............................................................. 52  
11.6 静电放电警告...........................................................52  
11.7 术语表..................................................................... 52  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Options ............................................................... 3  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings........................................ 7  
8.2 ESD Ratings............................................................... 7  
8.3 Recommended Operating Conditions.........................7  
8.4 Thermal Information....................................................8  
8.5 Electrical Characteristics.............................................8  
8.6 I2C Interface Timing Characteristics......................... 10  
8.7 Timing Requirements................................................ 11  
8.8 Typical Characteristics..............................................12  
9 Detailed Description......................................................13  
9.1 Overview...................................................................13  
9.2 Functional Block Diagram.........................................14  
9.3 Feature Description...................................................15  
Information.................................................................... 52  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (July 2022) to Revision B (January 2023)  
Page  
Updated the Device Options Table..................................................................................................................... 3  
Modified MODE/SYNC pin Description in Pin Functions ...................................................................................5  
Changed the title of 8-5 ...............................................................................................................................12  
Added approximate minimum on time value.....................................................................................................15  
Added behavior of device when EN is toggled and input voltage is applied.....................................................17  
Modified 9-5 to reflect new available Orderable Part Number..................................................................... 21  
Added a comment on how to connect secondary devices SYNC_OUT pin..................................................... 27  
Added a footnote to 9-10 .............................................................................................................................31  
Added I2C Register Reset ................................................................................................................................34  
Added Number of phases Nɸ and adapted passive component selection equations in Typical Application ...41  
Changes from Revision * (May 2022) to Revision A (July 2022)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
5 说明)  
通过 FSEL 引脚实现电阻可选开关频率。开关频率可设置为 1.5MHz2.25MHz2.5MHz 3.0MHz也可与频  
率范围相同的外部时钟同步。  
I2C 兼容接口提供多种控制、监控和警告功能例如电压监控和温度相关警告。通I2C 兼容接口可快速调整输出  
电压使负载功耗适应应用性能需求。通VSEL 引脚默认启动电压可实现电阻可选。  
6 Device Options  
6-1. Devices With I2C Interface  
Start-Up Voltage, I2C  
Address(1) (2)  
Spread Spectrum  
Clocking  
Device Number  
Output Current  
VSEL Settings  
Soft-Start Time  
TPS62870QWRXSRQ1  
TPS62871QWRXSRQ1  
TPS62872QWRXSRQ1  
TPS62873QWRXSRQ1  
TPS62870Y1QWRXSRQ1  
TPS62871Y1QWRXSRQ1  
TPS62872Y1QWRXSRQ1  
TPS62873Y1QWRXSRQ1  
6 A  
9 A  
0.850 V, 0x40  
0.750 V, 0x41  
0.875 V, 0x42  
1.000 V, 0x43  
0.800 V, 0x40  
0.750 V, 0x41  
0.875 V, 0x42  
0.800 V, 0x43  
0.500 V, 0x40  
0.750 V, 0x41  
0.875 V, 0x42  
1.050 V, 0x43  
1.800 V, 0x30  
1.500 V, 0x31  
1.750 V, 0x32  
3.300 V, 0x33  
0.810 V, 0x40  
0.750 V, 0x41  
0.875 V, 0x42  
1.000 V, 0x43  
6.2 kΩto GND  
Short to GND  
Short to VIN  
Default setting =  
off  
Default setting = 1  
ms  
12 A  
15 A  
6 A  
47 kΩto VIN  
6.2 kΩto GND  
Short to GND  
Short to VIN  
9 A  
Default setting =  
off  
Default setting = 1  
ms  
12 A  
15 A  
47 kΩto VIN  
6.2 kΩto GND  
Short to GND  
Short to VIN  
Default setting =  
off  
Default setting = 1  
ms  
TPS62870Y0QWRXSRQ1  
TPS62870Y2QWRXSRQ1  
TPS62870Y3QWRXSRQ1  
6 A  
6 A  
6 A  
47 kΩto VIN  
6.2kΩto GND  
Short to GND  
Short to VIN  
Default setting =  
off  
Default setting = 1  
ms  
47 kΩto VIN  
6.2 kΩto GND  
Short to GND  
Short to VIN  
Default setting =  
off  
Default setting = 1  
ms  
47 kΩto VIN  
(1) The I2C address is linked to the selected start-up voltage. The user cannot select the start-up voltage and I2C address independently.  
(2) The user can use the VSEL pin to select which of the four start-up voltages the device uses. For more information, see 9-5 and 表  
9-10.  
6-2. Devices Without I2C Interface  
Spread Spectrum  
Device Number  
Output Current  
Start-Up Voltage(2)  
VSEL Settings  
Soft-Start Time  
Clocking  
TPS62870N0QWRXSRQ1  
TPS62871N0QWRXSRQ1  
TPS62872N0QWRXSRQ1  
TPS62873N0QWRXSRQ1  
6 A  
9 A  
0.500 V  
0.750 V  
0.875 V  
1.050 V  
6.2 kΩto GND  
Short to GND  
Short to VIN  
On  
0.5 ms  
12 A  
15 A  
47 kΩto VIN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
Soft-Start Time  
6-2. Devices Without I2C Interface (continued)  
Spread Spectrum  
Clocking  
Device Number  
Output Current  
Start-Up Voltage(2)  
VSEL Settings  
TPS62870N1QWRXSRQ1  
TPS62871N1QWRXSRQ1  
TPS62872N1QWRXSRQ1  
TPS62873N1QWRXSRQ1  
6 A  
9 A  
0.800 V  
0.750 V  
0.875 V  
0.840 V  
1.800 V  
1.500 V  
1.750 V  
3.300 V  
6.2kΩto GND  
Short to GND  
Short to VIN  
47 kΩto VIN  
6.2 kΩto GND  
Short to GND  
Short to VIN  
47kΩto VIN  
On  
Off  
12 A  
15 A  
1 ms  
TPS62872N2QWRXSRQ1  
12 A  
Unless otherwise noted, device variants without I2C operate with the same default settings as device variants  
with I2C.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
7 Pin Configuration and Functions  
1
13  
COMP  
GOSNS  
VOSNS  
EN  
SCL  
2
3
4
5
12 SDA  
11 MODE/SYNC  
10 PG  
Thermal  
Pad  
VIN  
9
VIN  
GND  
GND  
6
8
7
SW  
Not to scale  
7-1. 16-Pin RXS VQFN Package (Top View)  
7-1. Pin Functions  
Pin  
Type(1)  
Description  
Name  
No.  
Device compensation input. A resistor and capacitor from this pin to GOSNS define the  
compensation of the control loop.  
In stacked operation, connect the COMP pins of all stacked devices together and connect a  
resistor and capacitor between the common COMP node and GOSNS.  
COMP  
1
GOSNS  
VOSNS  
2
3
I
I
Output ground sense (differential output voltage sensing)  
Output voltage sense (differential output voltage sensing)  
This is the enable pin of the device. The user must connect to this pin using a series resistor of at  
least 15 kΩ. A low logic level on this pin disables the device and a high logic level on this pin  
enables the device. Do not leave this pin unconnected.  
EN  
4
I
For stacked operation, interconnect EN pins of all stacked devices with a resistor to the supply  
voltage or a GPIO of a processor. See 9.3.17 for a detailed description.  
VIN  
GND  
SW  
5, 9  
6, 8  
7
P
GND  
O
Power supply input. Connect the input capacitor as close as possible between VIN and GND.  
Ground pin  
This pin is the switch pin of the converter and is connected to the internal power MOSFETs.  
Open-drain power-good output. Low impedance when not "power good," high impedance when  
"power good." This pin can be left open or be tied to GND when not used in single device  
operation.  
In stacked operation, interconnect the PG pins of all stacked devices. Only the PG pin of the  
primary converter in stacked operation is an open-drain output. For devices that are defined as  
secondary converters in stacked mode, this pin is an input pin. See 9.3.17 for a detailed  
description.  
PG  
10  
I/O  
The device runs in power save mode when this pin is pulled low. If the pin is pulled high, the  
device runs in forced-PWM mode. If unused, this pin can be left floating and an internal pulldown  
resistor will pull it low. The mode pin can also be used to synchronize the device to an external  
clock.  
MODE/SYNC  
11  
I
I2C serial data pin. Do not leave floating. Connect a pullup resistor to a logic high level.  
SDA  
SCL  
12  
13  
I/O  
I/O  
Connect to GND for secondary devices in stacked operation and for device variants without I2C.  
I2C serial clock pin. Do not leave this pin floating. Connect a pullup resistor to a logic high level.  
Connect this pin to GND for secondary devices in stacked operation and for device variants  
without I2C.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
7-1. Pin Functions (continued)  
Pin  
Type(1)  
Description  
Name  
No.  
Internal clock output pin for synchronization in stacked mode. Leave this pin floating for single  
device operation. Connect this pin to the MODE/SYNC pin of the next device in the daisy-chain in  
stacked operation. Do not use this pin to connect to a non-TPS6287x-Q1 device.  
During start-up, this pin is used to identify if a device must operate as a secondary converter in  
stacked operation. Connect a 47-kΩresistor from this pin to GND to define a secondary converter  
in stacked operation. See 9.3.17 for a detailed description.  
SYNC_OUT  
14  
O
Start-up output voltage select pin. A resistor or short circuit to GND or VIN defines the selected  
output voltage. See 9.3.6.2.  
VSEL  
FSEL  
15  
16  
Frequency select pin. A resistor or a short circuit to GND or VIN determines the free-running  
switching frequency. See 9.3.6.2.  
The thermal pad must be soldered to GND to achieve an appropriate thermal resistance and for  
mechanical stability.  
Exposed Thermal Pad  
(1) I = input, O = output, P = power, GND = ground  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
3  
MAX  
6.5  
UNIT  
VIN(4)  
SW (DC)  
VIN + 0.3  
10  
SW (AC, less than 10ns)(3)  
Voltage(2)  
VOSNS  
3.8  
V
0.3  
0.3  
0.3  
0.3  
0.3  
1  
SCL, SDA  
5.5  
FSEL, VSEL, EN, MODE/SYNC  
6.5  
GOSNS  
0.3  
Voltage(2)  
Current  
PG  
6.5  
SYNC_OUT  
COMP  
1
mA  
1
1  
PG  
5
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the GND pin.  
(3) While switching.  
(4) The voltage at the pin can exceed the 6.5 V absolute max condition for a short period of time, but must remain less than 8 V. VIN at 8  
V for a 100ms duration is equivalent to approximately 8 hours of aging for the device at room temperature.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM) per AEC Q100-011  
CDM ESD classification level C4A  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN  
2.7  
6
5
VIN  
Input voltage  
V
SDA, SCL  
3.35 V or  
(VIN - 1.4  
V)(1)  
VOUT  
Output voltage  
0.4  
V
TPS62870-Q1  
TPS62871-Q1  
TPS62872-Q1  
TPS62873-Q1  
6
9
IOUT  
Output current  
Inductance  
A
12  
15  
110  
55  
330  
330  
L
nH  
f
SW 2.25 MHz and VOUT 1.675 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
 
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
8.3 Recommended Operating Conditions (continued)  
Over operating temperature range (unless otherwise noted)  
MIN  
5
NOM  
MAX  
UNIT  
Input capacitance (per  
CIN  
VIN  
10  
pin)(2)  
µF  
Output capacitance(2)  
40  
(3)  
COUT  
VSEL, FSEL  
SYNC_OUT  
VSEL, FSEL  
100  
20  
CPAR  
Parasitic capacitance  
pF  
Resistor tolerance  
±2%  
Operating junction  
temperature  
TJ  
150  
40  
(1) Whichever value is lower.  
(2) Effective capacitance.  
(3) The maximum recommended output capacitance depends on the specific operating conditions of an application. Output capacitance  
values up to a few millifarad are typically possible, however.  
8.4 Thermal Information  
TPS6287x  
THERMAL METRIC(1)  
RXS (JEDEC)  
RXS (EVM)  
16 PINS  
28  
UNIT  
16 PINS  
43.2  
19.2  
7.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
N/A  
N/A  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
1.5  
ΨJT  
7.7  
9.3  
ΨJB  
RθJC(bot)  
6.3  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
over operating junction temperature (TJ = 40 °C to 150 °C) and VIN = 2.7 V to 6 V. Typical values at VIN = 3.3 V and TJ = 25  
°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = high, IOUT = 0 mA, V(SW) = 0 V,  
primary operation, device not switching,  
TJ = 25 °C  
Operating  
Standby  
1.75  
3
mA  
IQ  
Supply current (VIN)  
EN = low, V(SW) = 0 V, TJ = 25 °C  
16.5  
2.6  
40  
µA  
V
Positive-going UVLO threshold voltage  
(VIN)  
VIT+  
2.5  
2.7  
Negative-going UVLO threshold voltage  
(VIN)  
VIT–  
Vhys  
VIT+  
2.4  
90  
2.5  
2.6  
V
mV  
V
UVLO hysteresis voltage (VIN)  
Positive-going OVLO threshold voltage  
(VIN)  
6.1  
6.3  
6.2  
6.5  
6.4  
Negative-going OVLO threshold voltage  
(VIN)  
VIT–  
6.0  
V
Vhys  
OVLO hysteresis voltage (VIN)  
85  
mV  
V
VIT–  
Negative-going power-on reset threshold  
1.4  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
8.5 Electrical Characteristics (continued)  
over operating junction temperature (TJ = 40 °C to 150 °C) and VIN = 2.7 V to 6 V. Typical values at VIN = 3.3 V and TJ = 25  
°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
170  
20  
MAX  
UNIT  
°C  
Thermal shutdown threshold temperature TJ rising  
Thermal shutdown hysteresis  
TSD  
°C  
Thermal warning threshold temperature  
Thermal warning hysteresis  
TJ rising  
150  
20  
°C  
TW  
°C  
CONTROL and INTERFACE  
Positive-going input threshold voltage  
(EN)  
VIT+  
0.97  
1.0  
0.9  
1.03  
0.93  
V
Negative-going input threshold voltage  
(EN)  
VIT–  
Vhys  
IIH  
0.87  
95  
V
Hysteresis voltage (EN)  
mV  
nA  
VIH = VIN, internal pulldown resistor  
disabled  
High-level input current (EN)  
200  
VIL = 0 V, internal pulldown resistor  
disabled  
IIL  
Low-level input current (EN)  
nA  
V
200  
High-level input voltage (SDA, SCL,  
MODE/SYNC, VSEL, FSEL, SYNC_OUT)  
VIH  
VIL  
0.8  
Low-level input voltage (SDA, SCL,  
MODE/SYNC, VSEL, FSEL, SYNC_OUT)  
0.4  
V
IOL = 3 mA  
IOL = 9 mA  
IOL = 5 mA  
VOH = 3.3 V  
VIL = 0 V  
0.4  
0.4  
0.2  
200  
150  
3
V
VOL  
Low-level output voltage (SDA)  
V
V
IOH  
IIL  
High-level output current (SDA, SCL)  
Low-level input current (MODE/SYNC)  
High-level input current (MODE/SYNC)  
Low-level input current (SYNC_OUT)  
High-level input current (SYNC_OUT)  
nA  
nA  
µA  
nA  
nA  
150  
250  
IIH  
IIL  
VIH = VIN  
VIL = 0 V  
IIH  
VIH = 2 V  
150  
500  
Measured from when EN goes high to  
when device starts switching  
SRVIN = 1 V/µs  
td(EN)1  
Enable delay time when EN tied to VIN  
175  
µs  
µs  
Enable delay time when VIN already  
applied  
Measured from when EN goes high to  
when device starts switching  
td(EN)2  
100  
0.35  
0.7  
1.4  
2.8  
0.5  
1
0.65  
1.3  
2.6  
5.2  
ms  
ms  
ms  
ms  
µs  
Measured from when device starts  
switching to rising edge of PG  
td(RAMP) Output voltage ramp time  
2
4
Time to lock external frequency  
50  
Internal pullup resistance (VSEL, FSEL)  
5.5  
1.3  
9
kΩ  
Internal pulldown resistance (VSEL,  
FSEL)  
2.2  
kΩ  
Positive-going power good threshold  
voltage (output undervoltage)  
VT+  
94  
92  
96  
94  
98 %VOUT  
96 %VOUT  
108 %VOUT  
106 %VOUT  
Negative-going power good threshold  
voltage (output undervoltage)  
VT–  
Positive-going power good threshold  
voltage (output overvoltage)  
VT+  
104  
102  
106  
104  
Negative-going power good threshold  
voltage (output overvoltage)  
VT–  
VOL  
Low-level output voltage (PG)  
IOL = 1 mA  
0.3  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
over operating junction temperature (TJ = 40 °C to 150 °C) and VIN = 2.7 V to 6 V. Typical values at VIN = 3.3 V and TJ = 25  
°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VOH = 3.3 V  
MIN  
TYP  
MAX  
UNIT  
IOH  
VIH  
High-level output current (PG)  
200  
nA  
Device configured as a secondary device  
in stacked operation  
High-level input voltage (PG)  
Low-level input voltage (PG)  
High-level input current (PG)  
Low-level input current (PG)  
Deglitch time (PG)  
0.8  
V
V
Device configured as a secondary device  
in stacked operation  
VIL  
IIH  
0.4  
1
Device configured as a secondary device  
in stacked operation  
µA  
µA  
µs  
Device configured as a secondary device  
in stacked operation  
IIL  
1  
High-to-low or low-to-high transition on  
the PG pin  
td(PG)  
34  
40  
46  
1
OUTPUT  
VOUT  
IIB  
Output accuracy  
%
µA  
µA  
mV  
VIN VOUT + 1.4 V  
1  
6  
Input bias current (GOSNS)  
Input bias current (VOSNS)  
Input common-mode range (GOSNS)  
V(GOSNS) = 100 mV to 100 mV  
V(VOSNS) = 3.3 V, VIN = 6 V  
IIB  
6
VICR  
100  
100  
fSW = 1.5 MHz, PWM operation, VIN 3.3 V,  
VOUT = 0.75 V  
1.35  
1.5  
2.25  
2.5  
1.65  
2.475  
2.75  
3.3  
fSW = 2.25 MHz, PWM operation, VIN 3.3  
V, VOUT = 0.75 V  
2.025  
2.25  
2.7  
fSW  
Switching frequency (SW)  
MHz  
kHz  
fSW = 2.5 MHz, PWM operation, VIN 3.3 V,  
VOUT = 0.75 V  
fSW = 3 MHz, PWM operation, VIN 3.3 V,  
VOUT = 0.75 V  
3
fsw/2048  
±10%  
fmod  
Frequency of the spread-spectrum sweep  
Switching frequency variation during  
spread-spectrum operation  
ΔfSW  
Emulated current time constant  
12.5  
7
µs  
τ
rDS(on)  
High-side FET static on-state resistance VIN = 3.3 V  
16  
mΩ  
mΩ  
rDS(on)  
Low-side FET static on-state resistance  
High-side FET off-state current  
Low-side FET off-state current  
TPS62870-Q1  
VIN = 3.3 V  
4.1  
9.4  
VIN = 6 V, V(SW) = 0 V, TJ = 25 °C  
VIN = 6 V, V(SW) = 6 V, TJ = 25 °C  
1  
I(SW)(off)  
µA  
100  
14  
18  
22  
26  
12  
9
12  
15  
18  
7.5  
12  
16  
20  
24  
TPS62871-Q1  
TPS62872-Q1  
TPS62873-Q1  
High-side FET forward  
switch current limit, DC  
ILIM  
A
A
Low-side FET negative current limit, DC  
8.6 I2C Interface Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
Standard mode  
MIN  
TYP  
MAX  
100  
UNIT  
fSCL  
SCL clock frequency  
Fast mode  
400  
kHz  
Fast mode plus  
Standard mode  
Fast mode  
1000  
4
0.6  
tHD; tSTA Hold time (repeated) START condition  
µs  
Fast mode plus  
0.26  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
8.6 I2C Interface Timing Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
4.7  
1.3  
0.5  
4
TYP  
MAX  
UNIT  
Standard mode  
Fast mode  
tLOW  
LOW period of the SCL clock  
µs  
Fast mode plus  
Standard mode  
Fast mode  
tHIGH  
HIGH period of the SCL clock  
0.6  
0.26  
4.7  
0.6  
0.26  
0
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
pF  
Fast mode plus  
Standard mode  
Fast mode  
Setup time for a repeated START  
condition  
tSU; tSTA  
Fast mode plus  
Standard mode  
Fast mode  
3.45  
0.9  
tHD; tDAT Data hold time  
tSU; tDAT Data setup time  
0
Fast mode plus  
Standard mode  
Fast mode  
0
250  
100  
50  
Fast mode plus  
Standard mode  
Fast mode  
1000  
300  
120  
300  
300  
120  
tr  
Rise time of both SDA and SCL signals  
20  
Fast mode plus  
Standard mode  
Fast mode  
tf  
Fall time of both SDA and SCL signals  
20×VDD/5.5V  
Fast mode plus  
Standard mode  
Fast mode  
20×VDD/5.5V  
4
0.6  
tSU; tSTO Setup time for STOP condition  
Fast mode plus  
Standard mode  
Fast mode  
0.26  
4.7  
Bus free time between a STOP and  
START condition  
tBUF  
1.3  
Fast mode plus  
Standard mode  
Fast mode  
0.5  
400  
400  
550  
Cb  
Capacitive load for each bus line  
Fast mode plus  
8.7 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Synchronization clock frequency range  
(MODE/SYNC)  
f(SYNC)  
f(SYNC)  
f(SYNC)  
f(SYNC)  
D(SYNC)  
Nominal fSW = 1.5 MHz  
Nominal fSW = 2.25 MHz  
Nominal fSW = 2.5 MHz  
Nominal fSW = 3.0 MHz  
1.3  
2.0  
MHz  
Synchronization clock frequency range  
(MODE/SYNC)  
1.8  
2.0  
2.7  
3.0  
MHz  
MHz  
MHz  
Synchronization clock frequency range  
(MODE/SYNC)  
Synchronization clock frequency range  
(MODE/SYNC)  
2.5  
3.3  
Synchronization clock duty cycle range  
(MODE/SYNC)  
45%  
55%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
8.8 Typical Characteristics  
4m  
50m  
40m  
30m  
20m  
10m  
0
3m  
2m  
40°C  
25°C  
85°C  
105°C  
125°C  
150°C  
40°C  
25°C  
85°C  
105°C  
125°C  
150°C  
1m  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 0.75 V  
MODE = Low  
VOUT = 0.75 V  
MODE = High  
8-1. Operating Supply Current (Power Save Mode)  
8-2. Operating Supply Current (Forced PWM)  
2.235  
60  
TJ = 40°C  
TJ = 25°C  
TJ = 125°C  
TJ = 150°C  
2.230  
2.225  
2.220  
2.215  
2.210  
2.205  
50  
40  
30  
20  
10  
0
VIN = 3.3 V  
VIN = 5 V  
-40  
0
40  
80  
120  
160  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Junction Temperature (°C)  
Input Voltage (V)  
ENABLE = Low  
8-4. Switching Frequency vs Temperature  
8-3. Quiescent Supply Current  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
VIN = 3.3 V  
VIN = 5.5 V  
1.75  
1.5  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
Output Voltage (V)  
8-5. Maximum Switching Frequency vs VIN and VOUT  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
9 Detailed Description  
9.1 Overview  
The TPS6287x-Q1 devices are synchronous step-down (buck) DC/DC converters. These devices use an  
enhanced DCS control topology to achieve fast transient response while switching with a fixed frequency.  
Together, with their low output voltage ripple, high DC accuracy, and differential remote sensing, these devices  
are ideal for supplying the cores of modern high-performance processors.  
The family of devices includes 6-A, 9-A, 12-A, and 15-A devices. To further increase the output current capability,  
the user can combine multiple devices in a stack. For example, a stack of two TPS62873-Q1 devices have a  
current capability of 30 A. Each device of a stack must have the same current rating to avoid that one device  
enters current limit too early.  
For each current rating, there are full-featured devices with an I2C interface and limited-featured devices without  
an I2C interface (see the Device Options). The user can use a device variant without I2C in exactly the same way  
as a device variant with I2C, except that:  
The user must connect the unused SCL and SDA pins to GND.  
The user must be aware of the (fixed) factory settings for parameters and functions that are programmable in  
the I2C device variants.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9.2 Functional Block Diagram  
VIN  
VIN  
SW  
Bias  
Regulator  
Gate Drive and Control  
IHS  
ILS  
EN  
GND  
GND  
Ramp and Slope  
Compensation  
PG  
Device  
Control  
+
VOSNS  
GOSNS  
gm  
+
FSEL  
VSEL  
Oscillator  
COMP  
SCL1  
SDA1  
Thermal  
Shutdown  
SYNCOUT  
MODE/SYNC  
1. In device variants without I2C the SDA and SCL pins are internally connected, but their functionality is disabled.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
9.3 Feature Description  
9.3.1 Fixed-Frequency DCS Control Topology  
9-1 shows a simplified block diagram of the fixed-frequency enhanced DCS control topology used in the  
TPS6287x-Q1 devices. This topology is comprised of an inner emulated current loop, a middle direct feedback  
loop, and an outer voltage-regulating loop.  
VIN  
+
ON  
EN  
R
S
Q
L
Gate  
Driver  
COUT  
fsw  
Control  
Logic  
Slope  
Compensation  
τaux  
VOSNS  
GOSNS  
COMP  
gm  
RLOAD  
+
RZ  
CC2  
CC  
9-1. Fixed-Frequency DCS Control Topology (Simplified)  
9.3.2 Forced PWM and Power Save Modes  
The device can control the inductor current in three different ways to regulate the output:  
Pulse-width modulation with continuous inductor current (PWM-CCM)  
Pulse-width modulation with discontinuous inductor current (PWM-DCM)  
Pulse-frequency modulation with discontinuous inductor current and pulse skipping (PFM-DCM)  
During PWM-CCM operation, the device switches at a constant frequency and the inductor current is continuous  
(see 9-2). PWM operation achieves the lowest output voltage ripple and the best transient performance.  
t1/fSW  
t
0
Time  
9-2. Continuous Conduction Mode (PWM-CCM) Current Waveform  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
During PWM-DCM operation, the device switches at a constant frequency and the inductor current is  
discontinuous (see 9-3). In this mode, the device controls the peak inductor current to maintain the selected  
switching frequency while still being able to regulate the output.  
t1/fSW  
t
0
Time  
9-3. Discontinuous Conduction Mode (PWM-DCM) Current Waveform  
During PFM-DCM operation, the device keeps the peak inductor current constant (at a level corresponding to the  
minimum on time of the converter) and skips pulses to regulate the output (see 9-4). The switching pulses  
that occur during PFM-DCM operation are synchronized to the internal clock.  
Minimum on-time  
t1/fSW  
t
t1/fSW  
t
t1/fSWt  
0
Time  
Skipped Pulses  
9-4. Discontinuous Conduction Mode (PFM-DCM) Current Waveform  
For very small output voltages, an absolute minimum on time of approximately 50 ns reduces the switching  
frequency from the set value. 8-5 shows the maximum switching frequency with 3.3-V and 5.5-V supplies.  
Use 方程1 to calculate the output current threshold at which the device enters PFM-DCM.  
V
– V  
2L  
V
IN  
IN  
OUT  
2
I
=
t
f
sw  
(1)  
OUT PFM  
ON  
V
OUT  
9-5 shows how this threshold typically varies with VIN and VOUT for a switching frequency of 2.25 MHz.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 3.3 V  
VIN = 5 V  
fsw = 2.25 MHz  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
Output Voltage (V)  
9-5. Output Current PFM-DCM Entry Threshold  
The user can configure the device to use either forced PWM (FPWM) mode or power save mode (PSM):  
In forced PWM mode, the device uses PWM-CCM at all times.  
In power save mode, the device uses PWM-CCM at medium and high loads, PWM-DCM at low loads, and  
PFM-DCM at very low loads. The transition between the different operating modes is seamless.  
9-1 shows the function table of the MODE/SYNC pin and the FPWMEN bit in the CONTROL1 register, which  
control the operating mode of the device.  
9-1. FPWM Mode and Power-Save Mode Selection  
MODE/SYNC Pin  
FPWMEN Bit  
Operating Mode  
Remark  
Do not use in a stacked  
configuration.  
0
PSM  
Low  
1
X
X
FPWM  
FPWM  
FPWM  
High  
Sync Clock  
备注  
If spread-spectrum clocking is enabled, the device automatically operates in FPWM, regardless of the  
state of FPWMEN bit in the CONTROL1 register (see 9.3.9).  
9.3.3 Precise Enable  
The Enable (EN) pin is bidirectional and has two functions:  
As an input, EN enables and disables the DC/DC converter in the device.  
As an output, EN provides a SYSTEM_READY signal to other devices in a stacked configuration.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
+
EN  
ENABLE  
VIT(EN)  
SYSTEM_READY  
CONTROL3:SINGLE  
9-6. Enable Functional Block Diagram  
Because there is an internal open-drain transistor connected to the EN pin, do not drive this pin directly from a  
low-impedance source. Instead, use a resistor to limit the current flowing into the EN pin (see 10).  
When power is first applied to the VIN pin, the device pulls the EN pin low until it has loaded its default register  
settings from nonvolatile memory and read the state of the VSEL, FSEL, and SYNCOUT pins. The device also  
pulls EN low if a fault, such as thermal shutdown or overvoltage lockout, occurs. In stacked configurations, all  
devices share a common enable signal, which means that the DC/DC converters in the stack cannot start to  
switch until all devices in the stack have completed their initialization. Similarly, a fault in one or more devices in  
the stack disables all converters in the stack (see 9.3.17).  
In standalone (nonstacked) applications, the user can disable the active pulldown of the EN pin if the user sets  
SINGLE = 1 in the CONTROL3 register. Fault conditions have no effect on the EN pin when SINGLE = 1 (the EN  
pin is always pulled down during device initialization). In stacked applications, ensure that SINGLE = 0.  
When the internal SYSTEM_READY signal is low (that is, initialization is complete and there are no fault  
conditions), the internal open-drain transistor is high impedance and the EN pin functions like a standard input. A  
high level on the EN pin enables the DC/DC converter in the device. A low level disables the DC/DC converter  
(the I2C interface is enabled as soon as the device has completed its initialization and is not affected by the state  
of the internal ENABLE or SYSTEM_READY signals).  
A low level on the EN pin forces the device into shutdown. During shutdown, the MOSFETs in the power stage  
are off, the internal control circuitry is disabled, and the device consumes only 20 µA (typical).  
The rising threshold voltage of the EN pin is 1.0 V and the falling threshold voltage is 0.9 V. The tolerance of the  
threshold voltages is ±30 mV, which means that the user can use the EN pin to implement precise turn-on and  
turn-off behavior.  
When power is applied to the VIN pin, the toggling of the EN pin does not reset the loaded default register  
settings.  
9.3.4 Start-Up  
When the voltage on the VIN pin exceeds the positive-going UVLO threshold, the device initializes as follows:  
The device pulls the EN pin low.  
The device enables the internal reference voltage.  
The device reads the state of the VSEL, FSEL, and SYNC_OUT pins.  
The device loads the default values into the device registers.  
When initialization is complete, the device enables I2C communication and releases the EN pin. The external  
circuitry controlling the EN pin now determines the behavior of the device:  
If the EN pin is low, the device is disabled. The user can write to and read from the device registers, but the  
DC/DC converter does not operate.  
If the EN pin is high, the device is enabled. The user can write to and read from the device registers and,  
after a short delay, the DC/DC converter starts to ramp up its output.  
9-7 shows the start-up sequence when the EN pin is pulled up to VIN.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
VIN  
EN  
VIT+(UVLO)  
EN pin pulled  
low internally  
Device initialization  
complete  
VOUT  
ttd(EN)1t  
ttd(RAMP)t  
PG  
Undefined  
td(PG)  
9-7. Start-Up Timing When EN is Pulled Up to VIN  
9-8 shows the start-up sequence when an external signal is connected to the EN pin.  
VIN  
VIT+(UVLO)  
EN  
VIT+(EN)  
VOUT  
ttd(EN)2  
t
ttd(RAMP)t  
Device initialization  
complete  
PG Undefined  
td(PG)  
9-8. Start-Up Timing When an External Signal is Connected to the EN Pin  
The SSTIME[1:0] bits in the CONTROL2 register select the duration of the soft-start ramp:  
td(RAMP) = 500 μs  
td(RAMP) = 1 ms (default)  
td(RAMP) = 2 ms  
td(RAMP) = 4 ms  
The device ignores new values until the soft-start sequence is complete if the user programs the following when  
the device soft-start sequence has already started:  
A new output voltage setpoint (VOUT[7:0])  
An output voltage range (VRANGE[1:0])  
Soft-start time (SSTIME[1:0]) settings  
If the user change the value of VSET[7:0] during soft start, the device first ramps to the value that VSET[7:0] had  
when the soft-start sequence began. Then, when soft start is complete, the device ramps up or down to the new  
value.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
The device can start up into a prebiased output. In this case, only a portion of the internal voltage ramp is seen  
externally (see 9-9).  
Final voltage  
VOUT  
Prebias voltage  
ttd(RAMP)  
t
9-9. Start-Up into a Prebiased Output  
Note that the device always operates in DCM during the start-up ramp, regardless of other configuration settings  
or operating conditions.  
9.3.5 Switching Frequency Selection  
During device initialization, a resistor-to-digital converter in the device determines the state of the FSEL pin and  
sets the switching frequency of the DC/DC converter according to 9-2.  
9-2. Switching Frequency Options  
FSEL Pin 1  
Short to GND  
6.2 kΩto GND  
47 kΩto VIN  
Short to VIN  
Switching Frequency  
1.5 MHz  
2.25 MHz  
2.5 MHz  
3 MHz  
1. For a reliable voltage setting, ensure there is no stray current path connected to the FSEL pin and that the  
parasitic capacitance between the FSEL pin and GND is less than 100 pF.  
9-10 shows a simplified block diagram of the R2D converter used to detect the state of the FSEL pin (an  
identical circuit detects the state of the VSEL pin see 9.3.6.2).  
VIN  
S1  
6.5 k  
FSEL  
VIL = < 0.4 V  
VIH = > 0.8 V  
1.6 k  
S2  
9-10. FSEL R2D Converter Functional Block Diagram  
Detection of the state of the FSEL pin works as follows:  
To detect the most significant bit (MSB), the circuit opens S1 and S2, and the input buffer detects if a high or a  
low level is connected to the FSEL pin.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
To detect the least significant bit (LSB):  
If the MSB was 0, the circuit closes S1. If the input buffer detects a high level, LSB = 1. If the circuit detects a  
low level, LSB = 0.  
If the MSB was 1, the circuit closes S2. If the input buffer detects a low level, LSB = 0. If the circuit detects a  
high level, LSB = 1.  
9.3.6 Output Voltage Setting  
9.3.6.1 Output Voltage Range  
The device has four different voltage ranges. The VRANGE[1:0] bits in the CONTROL1 register control which  
range is active (see 9-3). The default output voltage range after device initialization is 0.4 V to 1.675 V in 5-  
mV steps.  
9-3. Voltage Ranges  
VRANGE[1:0]  
0b00  
Voltage Range  
0.4 V to 0.71875 V in 1.25-mV steps  
0.4 V to 1.0375 V in 2.5-mV steps  
0.4 V to 1.675 V in 5-mV steps  
0.8 V to 3.35 V in 10-mV steps  
0b01  
0b10  
0b11  
Note that every change to the VRANGE[1:0] bits must be followed by a write to the VSET register, even if the  
value of the VSET[7:0] bits does not change. This sequence is required for the device to start to use the new  
voltage range.  
Also note that the 0.8-V to 3.35-V range uses a 0.8-V reference and the other ranges use a 0.4-V reference.  
Switching to and from the 0.8-V to 3.35-V range can therefore cause increased output voltage undershoot or  
overshoot while the device switches its internal reference.  
In device variants that do not have I2C, the output voltage range is factory-set to 0.4 V to 1.675 V.  
9.3.6.2 Output Voltage Setpoint  
Together with the selected range, the VSET[7:0] bits in the VSET register control the output voltage setpoint of  
the device (see 9-4).  
9-4. Start-Up Voltage Settings  
VRANGE[1:0]  
0b00  
Output Voltage Setpoint  
0.4 V + VSET[7:0] × 1.25 mV  
0.4 V + VSET[7:0] × 2.5 mV  
0.4 V + VSET[7:0] × 5 mV  
0.8 V + VSET[7:0] × 10 mV  
0b01  
0b10  
0b11  
During initialization, the device reads the state of the VSEL pin and selects the default output voltage according  
to 9-5. Note that the VSEL pin also selects the I2C target address of the device (see 9-10).  
9-5. Default Output Voltage Setpoints  
VSEL Pin(1)  
Device Number  
VSET[7:0]  
Output Voltage Setpoint  
850 mV  
TPS6287x-Q1  
0x5a  
TPS6287xY0-Q1  
TPS6287xY1-Q1  
TPS6287xY2-Q1  
0x50  
800 mV  
0x14  
500 mV  
1800 mV  
0x64  
0x52  
6.2 kΩto GND  
TPS6287xY3-Q1  
810 mV  
TPS6287xN0-Q1  
TPS6287xN1-Q1  
TPS6287xN2-Q1  
0x14  
0x50  
0x64  
500 mV  
800 mV  
1800 mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9-5. Default Output Voltage Setpoints (continued)  
VSEL Pin(1)  
Device Number  
VSET[7:0]  
Output Voltage Setpoint  
Short Circuit to GND  
0x46  
750 mV  
All, Except TPS6287xN2-Q1  
Short Circuit to GND  
0x4  
TPS6287xN2-Q1  
All, Except TPS6287XN2-Q1  
TPS6287XN2-Q1  
1500 mV  
875 mV  
1750 mV  
1.0 V  
Short Circuit to VIN  
Short Circuit to VIN  
0x5f  
0x5f  
TPS6287x-Q1  
0x78  
0x82  
TPS6287xY0-Q1  
1050  
mV  
TPS6287xY1-Q1  
TPS6287xY2-Q1  
0x50  
0xFA  
0x78  
800 mV  
3300 mV  
1000 mV  
47 kto VIN  
TPS6287xY3-Q1  
TPS6287xN0-Q1  
TPS6287xN1-Q1  
TPS6287xN2-Q1  
0x82  
0x58  
0xFA  
1.050 V  
840 mV  
3300 mV  
(1) For a reliable voltage setting, ensure there is no stray current path connected to the VSEL pin and that the parasitic capacitance  
between the VSEL pin and GND is less than 100 pF.  
If the user programs new output voltage setpoint (VOUT[7:0]), output voltage range (VRANGE[1:0]), or soft-start  
time (SSTIME[1:0]) settings when the device has already begun its soft-start sequence, the device ignores the  
new values until the soft-start sequence is complete. If the user changes the value of VSET[7:0] during soft start,  
the device first ramps to the value that VSET[7:0] had when the soft-start sequence began. Then, when soft start  
is complete, ramps up or down to the new value.  
If the user changes VOUT[7:0], VRAMP[1:0], or SSTIME[1:0] while EN is low, the device uses the new values  
the next time the user enables it.  
During start-up, the output voltage ramps up to the target value set by the VSEL pin before ramping up or down  
to any new value programmed to the device over the I2C interface.  
9.3.6.3 Non-Default Output Voltage Setpoint  
If none of the default voltage range or voltage setpoint combinations are suitable for the application, the user can  
change these device settings through I2C before the user enables the device. Then, when the user pulls the EN  
pin high, the device starts up with the desired start-up voltage.  
Note that if the user changes the device settings through I2C while the device is ramping, the device ignores the  
changes until the ramp is complete.  
9.3.6.4 Dynamic Voltage Scaling  
If the user changes the output voltage setpoint while the DC/DC converter is operating, the device ramps up or  
down to the new voltage setting in a controlled way.  
The VRAMP[1:0] bits in the CONTROL1 register sets the slew rate when the device ramps from one voltage to  
another during DVS (see 9-6).  
9-6. Dynamic Voltage Scaling Slew Rate  
VRAMP[1:0]  
0b00  
DVS Slew Rate  
10 mV/μs (0.5 μs/step)  
5 mV/μs (1 μs/step)  
1.25 mV/μs (5 μs/step)  
0.5 mV/μs (10 μs/step)  
0b01  
0b10  
0b11  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
Note that ramping the output to a higher voltage requires additional output current, so that during DVS, the  
converter must generate a total output current given by:  
(2)  
where  
IOUT is the total current the converter must generate while ramping to a higher voltage.  
IOUT(DC) is the DC load current.  
COUT is the total output capacitance.  
dVOUT/dt is the slew rate of the output voltage (programmable in the range 0.5 mV/µs to 10 mV/µs).  
For correct operation, ensure that the total output current during DVS does not exceed the current limit of the  
device.  
9.3.7 Compensation (COMP)  
The COMP pin is the connection point for an external compensation network. A series-connected resistor and  
capacitor to GOSNS is sufficient for typical applications. The series-connected resistor also provides enough  
scope to optimize the loop response for a wide range of operating conditions.  
When using multiple devices in a stacked configuration, all devices share a common compensation network, and  
the COMP pin makes sure there is equal current sharing between them (see 9.3.17).  
9.3.8 Mode Selection and Clock Synchronization (MODE/SYNC)  
A high level on the MODE/SYNC pin selects forced PWM operation. A low level on the MODE/SYNC pin selects  
power save operation, in which, the device automatically transitions between PWM and PFM, according to the  
load conditions.  
If the user applies a valid clock signal to the MODE/SYNC pin, the device synchronizes its switching cycles to  
the external clock and automatically selects forced PWM operation.  
The MODE/SYNC pin is logically ORed with the FPWMEN bit in the CONTROL1 register (see 9-1).  
When multiple devices are used together in a stacked configuration, the MODE/SYNC pin of the secondary  
devices is the input for the clock signal (see 9.3.17).  
9.3.9 Spread Spectrum Clocking (SSC)  
The device has a spread spectrum clocking function that can reduce electromagnetic interference (EMI). When  
the SSC function is active, the device modulates the switching frequency to approximately ±10% the nominal  
value. The frequency modulation has a triangular characteristic (see 9-11).  
Switching  
Frequency  
+10%  
Nominal fSW  
–10%  
t2048/fSW  
t
Time  
9-11. Spread Spectrum Clocking Behavior  
To use the SSC function, make sure that:  
SSCEN = 1 in the CONTROL1 register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
Forced PWM operation is selected (MODE pin is high or FPWMEN = 1 in the CONTROL1 register).  
The device is not synchronized to an external clock.  
To disable the SSC function, ensure that SCCEN = 0 in the CONTROL1 register.  
To use the SSC function with multiple devices in a stacked configuration, ensure that the primary converter runs  
from its internal oscillator and synchronize all secondary converters to the primary clock (see 9-14).  
9.3.10 Output Discharge  
The device has an output discharge function that ensures a defined ramp down of the output voltage when the  
device is disabled and keeps the output voltage close to 0 V while the device is off. The output discharge  
function is enabled when DISCHEN = 1 in the CONTROL1 register. The output discharge function is enabled by  
default.  
If enabled, the device discharges the output under the following conditions:  
A low level is applied to the EN pin.  
SWEN = 0 in the CONTROL1 register.  
A thermal shutdown event occurs.  
A UVLO event occurs.  
An OVLO event occurs.  
The output discharge function is not available until the user has enabled the device at least once after power up.  
During power down, the device continues to discharge the output for as long as the internal supply voltage is  
greater than approximately 1.8 V.  
9.3.11 Undervoltage Lockout (UVLO)  
The device has an undervoltage lockout function that disables the device if the supply voltage is too low for  
correct operation. The negative-going threshold of the UVLO function is 2.5 V (typical). If the supply voltage  
decreases below this value, the device stops switching and, if DISCHEN = 1 in the CONTROL1 register, turns on  
the output discharge.  
9.3.12 Overvoltage Lockout (OVLO)  
The device has an overvoltage lockout function that disables the DC/DC converter if the supply voltage is too  
high for correct operation. The positive-going threshold of the OVLO function is 6.3 V (typical). If the supply  
voltage increases above this value, the device stops switching and, if DISCHEN = 1 in the CONTROL1 register,  
turns on the output discharge.  
The device automatically starts switching again it begins a new soft-start sequence when the supply  
voltage falls below 6.2 V (typical).  
9.3.13 Overcurrent Protection  
9.3.13.1 Cycle-by-Cycle Current Limiting  
If the peak inductor current increases above the high-side current limit threshold, the device turns off the high-  
side switch and turns on the low-side switch to ramp down the inductor current. The device only turns on the  
high-side switch again if the inductor current has decreased below the low-side current limit threshold.  
Note that because of the propagation delay of the current limit comparator, the current limit threshold in practice  
can be greater than the DC value specified in the Electrical Characteristics. The current limit in practice is given  
by:  
(3)  
where:  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
IL is the inductor current.  
ILIMH is the high-side current limit threshold measured at DC.  
VIN is the input voltage.  
VOUT is the output voltage.  
L is the effective inductance at the peak current level.  
tpd is the propagation delay of the current limit comparator (typically 50 ns).  
9.3.13.2 Hiccup Mode  
To enable hiccup operation, ensure that HICCUPEN = 1 in the CONTROL1 register.  
If hiccup operation is enabled and the high-side switch current exceeds the current limit threshold on 32  
consecutive switching cycles, the device:  
Stops switching for 128 clock cycles, after which it automatically starts switching again (it starts a new soft-  
start sequence)  
Sets the HICCUP bit in the STATUS register  
Pulls the PG pin low. The PG pin stays low until the overload condition goes away and the device can start up  
correctly and regulate the output voltage. Note that power-good function has a deglitch circuit, which delays  
the rising edge of the power-good signal by 40 µs (typical).  
Hiccup operation continues in a repeating sequence of 32 cycles in current limit, followed by a pause of 128  
cycles, followed by a soft-start attempt for as long as the output overload condition exists.  
The device clears the HICCUP bit if the user reads the STATUS register when the overload condition has been  
removed.  
9.3.13.3 Current Limit Mode  
To enable current limit mode, ensure that HICCUPEN = 0 in the CONTROL1 register.  
When current limit operation is enabled, the device limits the high-side switch current cycle-by-cycle for as long  
as the overload condition exists. If the device limits the high-side switch current for four or more consecutive  
switching cycles, the device sets ILIM = 1 in the STATUS register.  
The device clears the ILIM bit if the user reads the STATUS register when the overload condition no longer exits.  
9.3.14 Power Good (PG)  
The power good (PG) pin is bidirectional and has two functions:  
In a standalone configuration and in the primary device of a stacked configuration, the PG pin is an open-  
drain output that indicates the status of the converter or stack.  
In a secondary device of a stacked configuration, the PG pin is an input that indicates when the soft-start  
sequence is complete and all converters in the stack can change from DCM switching to CCM switching.  
9.3.14.1 Standalone or Primary Device Behavior  
The primary purpose of the PG pin is to indicate if the output voltage is in regulation, but it also indicates if the  
device is in thermal shutdown or disabled. 9-7 summarizes the behavior of the PG pin in a standalone or  
primary device.  
9-7. Power-Good Function Table  
VIN  
EN  
X
VOUT  
Soft Start  
PGBLNKDVS  
TJ  
X
PG  
Undefined  
Low  
2 V > VIN  
X
X
X
X
X
X
X
X
V
IT(UVLO) VIN 2 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9-7. Power-Good Function Table (continued)  
VIN  
EN  
VOUT  
Soft Start  
PGBLNKDVS  
TJ  
X
PG  
Low  
Low  
low  
L
X
X
X
X
0
X
Active  
X
VOUT > VT(PGOV)  
or  
X
VIN > VIT(UVLO)  
1
H
Inactive  
X
TJ < TSD  
Hi-Z  
< VT(PGUV) > VOUT  
(and DVS is active)  
VT(PGOV) > VOUT > VT(PGUV)  
X
X
X
TJ < TSD  
TJ > TSD  
Hi-Z  
Low  
9-12 shows a functional block diagram of the power-good function in a standalone or primary device. A  
window comparator monitors the output voltage, and the output of the comparator goes high if the output voltage  
is either less than 95% (typical) or greater than 105% (typical) of the nominal output voltage. The output of the  
window comparator is deglitched the typical deglitch time is 40 µs and then used to drive the open-drain  
PG pin.  
CONTROL1:HICCUPEN  
To converter  
control logic  
Hiccup  
Control  
HICCUP  
ILIM  
STATUS  
Register  
4 Consecutive  
Pulses  
Detection  
Current  
I(SW)  
Comparator  
PBOV  
PBUV  
Soft-Start Complete  
PG  
40-µs  
Deglitch  
Window  
Comparator  
VOUT  
Blanking  
Thermal Shutdown  
95% VOUT  
105% VOUT  
VIN < VIT–(UVLO)  
V(EN) < VIT(EN)  
DVS Active  
CONTROL3:PGBLNKDVS  
9-12. Power-Good Functional Block Diagram (Standalone or Primary Device)  
During DVS activity, when the DC/DC converter transitions from one output voltage setting to another, the output  
voltage can temporarily exceed the limits of the window comparator and pull the PG pin low. The device has a  
feature to disable this behavior. If PGBLNKDVS = 1 in the CONTROL3 register, the device ignores the output of  
the power-good window comparator while DVS is active.  
Note that the PG pin is always low, regardless of the output of the window comparator, when:  
The device is in thermal shutdown.  
The device is disabled.  
The device is in undervoltage lockout.  
The device is in soft start.  
9.3.14.2 Secondary Device Behavior  
9-13 shows a functional block diagram of the power-good function in a secondary device. During initialization,  
the device presets FF1 and FF2, which pulls down the PG pin and forces the device to operate in DCM. When  
the device completes its soft start, it resets FF2, which turns off Q1. However, in a stacked configuration, all  
devices share the same PG signal, and therefore the PG pin stays low until all devices in the stack have  
completed their soft start. When that happens, FF1 is reset and the converters operate in CCM.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
FF1  
Input  
Buffer  
FORCE DCM  
Latch  
PG  
VIL = < 0.4 V  
VIH = > 0.8 V  
SECONDARY DEVICE  
DETECTED  
Q1  
SOFT START  
COMPLETE  
Latch  
FF2  
9-13. Power-Good Functional Block Diagram (Secondary Device)  
9.3.15 Remote Sense  
The device has two pins, VOSNS and GOSNS, to remotely sense the output voltage. Remote sensing lets the  
converter sense the output voltage directly at the point-of-load and increases the accuracy of the output voltage  
regulation.  
9.3.16 Thermal Warning and Shutdown  
The device has a two-level overtemperature detection function.  
If the junction temperature rises above the thermal warning threshold of 150°C (typical), the device sets the  
TWARN bit in the STATUS register. The device clears the TWARN bit if the user reads the STATUS register  
when the junction temperature is below the TWARN threshold of 130°C (typical).  
If the junction temperature rises above the thermal shutdown threshold of 170°C (typical), the device:  
Stops switching  
Pulls down the EN pin (if SINGLE = 0 in the CONTROL3 register)  
Enables the output discharge (if DISCHEN = 1 in the CONTROL1 register)  
Sets the TSHUT bit in the STATUS register  
Pulls the PG pin low  
If the junction temperature falls below the thermal shutdown threshold of 150°C (typical), the device:  
Starts switching again, starting with a new soft-start sequence  
Sets the EN pin to high impedance  
Sets the PG pin to high-impedance  
The device clears the TSHUT bit if the user reads the STATUS register when the junction temperature is below  
the TSHUT threshold of 150°C (typical).  
In a stacked configuration, in which all devices share a common enable signal, a thermal shutdown condition in  
one device disables the entire stack. When the hot device cools down, the whole stack automatically starts  
switching again.  
9.3.17 Stacked Operation  
The user can connect multiple devices in parallel in what is known as a "stack"; for example, to increase output  
current capability or reduce device junction temperature. A stack comprises one primary device and one or more  
secondary devices. During initialization, each device monitors its SYNC_OUT pin to determine if must operate  
as a primary device or a secondary device:  
If there is a 47-kΩresistor between the SYNC_OUT pin and ground, the device operates as a secondary  
device.  
If the SYNC_OUT pin is high impedance, the device operates as a primary device.  
9-14 shows the recommended interconnections in a stack of two TPS6287x-Q1 devices.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
Primary Device  
CLOAD  
100 nH  
VIN  
2.7 V to 6 V  
VIN  
VIN  
SW  
COUT  
CIN  
VIO  
REN  
MODE/SYNC  
Load  
EN  
VOSNS  
GOSNS  
SDA  
SCL  
I2C  
RCOMP  
VSEL  
FSEL  
10 pF  
CCOMP  
RVSEL RFSEL  
COMP  
PG  
SYNC_OUT GND  
GND  
Secondary Device  
100 nH  
VIN  
VIN  
SW  
COUT  
CIN  
MODE/SYNC  
EN  
VOSNS  
GOSNS  
SDA  
SCL  
VSEL  
VIO  
10 pF  
FSEL  
RFSEL  
RPG  
COMP  
PG  
1 k  
PG  
SYNC_OUT GND  
GND  
10 pF  
47 k  
9-14. Two TPS6287x-Q1 Devices in a Stacked Configuration  
The key points to note are:  
All the devices in the stack share a common enable signal, which must be pulled up with a resistance of at  
least 15 kΩ.  
All the devices in the stack share a common power-good signal.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
All the devices in the stack share a common compensation signal.  
All secondary devices must connect a 47-kΩresistor between the SYNC_OUT pin and ground.  
The remote sense pins (VOSNS and GOSNS) of each device must be connected (do not leave these pins  
floating).  
Each device must be configured for the same switching frequency.  
The primary device must be configured for forced PWM operation (secondary devices are automatically  
configured for forced PWM operation).  
A stacked configuration can support synchronization to an external clock or spread-spectrum clocking.  
Only the VSEL pin of the primary device is used to set the default output voltage. The VSEL pin of secondary  
devices is not used and must be connected to ground.  
The SDA and SCL pins of secondary devices are not used and must be connected to ground.  
A stacked configuration uses a daisy-chained clocking signal, in which each device switches with a phase  
offset of approximately 140° relative to the adjacent devices in the daisy-chain. To daisy-chain the clocking  
signal, connect the SYNC_OUT pin of the primary device to the MODE/SYNC pin of the first secondary  
device. Connect the SYNC_OUT pin of the first secondary device to the MODE/SYNC pin of the second  
secondary device. Continue this connection scheme for all devices in the stack, to daisy-chain them together.  
Hiccup overcurrent protection must not be used in a stacked configuration.  
In a stacked configuration, the common enable signal also acts as a SYSTEM_READY signal (see 9.3.3).  
Each device in the stack can pull its EN pin low during device start-up or when a fault occurs. Thus, the stack is  
only enabled when all devices have completed their start-up sequence and are fault-free. A fault in any one  
device disables the whole stack for as long as the fault condition exists.  
During start-up, the primary converter pulls the COMP pin low for as long as the enable signal  
(SYSTEM_READY) is low. When the enable signal goes high, the primary device actively controls the COMP pin  
and all converters in the stack follow the COMP voltage. During start-up, each device in the stack pulls its PG pin  
low while it initializes. When initialization is complete, each secondary device in the stack sets its PG pin to a  
high impedance and the primary device alone controls the state of the PG signal. The PG pin goes high when  
the stack has completed its start-up ramp and the output voltage is within specification. The secondary  
converters in the stack detect the rising edge of the power-good signal and switch from DCM operation to CCM  
operation. After the stack has successfully started up, the primary device controls the power-good signal in the  
normal way. In a stacked configuration, there are some faults that only affect individual devices, and other faults  
that affect all devices. For example, if one device enters current limit, only that device is affected. But a thermal  
shutdown or undervoltage lockout event in one device disables all devices through the shared enable  
(SYSTEM_READY) signal.  
Functionality During Stacked Operation  
Some device features are not available during stacked operation, or are only available in the primary converter.  
9-8 summarizes the available functionality during stacked operation.  
9-8. Functionality During Stacked Operation  
Function  
UVLO  
Primary Device  
Secondary Device  
Remark  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Common enable signal  
Common enable signal  
Individual  
OVLO  
OCP Current Limit  
Do not use during stacked  
operation.  
No  
Yes  
No  
Yes  
No  
No  
No  
OCP Hiccup OCP  
Thermal Shutdown  
Common enable signal  
Primary device only  
Primary device only  
Power-Good (Window  
Comparator)  
Yes  
I2C Interface  
Yes  
Voltage loop controlled by primary  
device only  
DVS  
Through I2C  
Daisy-chained from primary device  
to secondary devices  
SSC  
Through I2C  
No  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9-8. Functionality During Stacked Operation (continued)  
Function  
SYNC  
Primary Device  
Secondary Device  
Remark  
Synchronization clock applied to  
primary device  
Yes  
No  
Yes  
No  
Precise Enable  
Output Discharge  
Only binary enable  
Always enabled in secondary  
devices  
Yes  
Yes  
Fault Handling During Stacked Operation  
In a stacked configuration, there are some faults that only affect individual devices and other faults that affect all  
devices. For example, if one device enters current limit, only that device is affected. A thermal shutdown or  
undervoltage lockout event in one device disables all devices through the shared enable (SYSTEM_READY)  
signal. 9-9 summarizes the fault handling of the TPS6287x-Q1 devices during stacked operation.  
9-9. Fault Handling During Stacked Operation  
Fault Condition  
UVLO  
Device Response  
Enable signal pulled low  
Enable signal remains high  
System Response  
New soft start  
OVLO  
Thermal shutdown  
Current limit  
Error amplifier clamped  
9.4 Device Functional Modes  
9.4.1 Power-On Reset  
The device operates in POR mode when the supply voltage is less than the POR threshold, 1.4 V (typical).  
In POR mode, no functions are available and the content of the device registers is not valid.  
The device leaves POR mode and enters UVLO mode when the supply voltage increases above the POR  
threshold.  
9.4.2 Undervoltage Lockout  
The device operates in UVLO mode when the supply voltage is between the POR and UVLO thresholds.  
If the device enters UVLO mode from POR mode, no functions are available. If the device enters UVLO mode  
from standby mode, the output discharge function is available. The content of the device registers is valid in  
UVLO mode.  
The device leaves UVLO mode and enters POR mode when the supply voltage decreases below the POR  
threshold. The device leaves UVLO mode and enters standby mode when the supply voltage increases above  
the UVLO threshold.  
9.4.3 Standby  
The device operates in standby mode when the supply voltage is greater than the UVLO threshold (and the  
device has completed its initialization) and any of the following conditions is true:  
A low level is applied to the EN pin.  
SWEN = 0 in the CONTROL1 register.  
The device junction temperature is greater than the thermal shutdown threshold.  
The supply voltage is greater than the OVLO threshold.  
The device initializes for 400 µs (typical) after the supply voltage increases above the UVLO threshold voltage  
following a device power-on reset. If the supply voltage decreases below the UVLO threshold but not below the  
POR threshold, the device does not reinitialize when the supply voltage increases again. During initialization, the  
device reads the state of the FSEL, VSEL, and SYNC_OUT pins.  
The following functions are available in standby mode:  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
I2C interface  
Output discharge  
Power good  
The device leaves standby mode and enters UVLO mode when the supply voltage decreases below the UVLO  
threshold. The device leaves standby mode and enters on mode when all of the following conditions are true:  
A high-level is applied to the EN pin.  
SWEN = 1 in the CONTROL1 register.  
The device junction temperature is below the thermal shutdown threshold.  
The supply voltage is below the OVLO threshold.  
9.4.4 On  
The device operates in on mode when the supply voltage is greater than the UVLO threshold and all of the  
following conditions are true:  
A high-level is applied to the EN pin.  
SWEN = 1 in the CONTROL1 register.  
The device junction temperature is below the thermal shutdown threshold.  
The supply voltage is below the OVLO threshold.  
All functions are available in on mode.  
The device leaves on mode and enters UVLO mode when the supply voltage decreases below the UVLO  
threshold. The device leaves on mode and enters standby mode when any of the following conditions is true:  
A low level is applied to the EN pin.  
SWEN = 0 in the CONTROL1 register.  
The device junction temperature is greater than the thermal shutdown threshold.  
The supply voltage is greater than the OVLO threshold.  
9.5 Programming  
9.5.1 Serial Interface Description  
I2C is a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors (see I2C-Bus  
Specification and User Manual, Revision 6, 4 April 2014). The bus consists of a data line (SDA) and a clock line  
(SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All I2C-compatible  
devices connect to the I2C bus through open-drain I/O pins, SDA and SCL. A controller, usually a microcontroller  
or a digital signal processor, controls the bus. The controller is responsible for generating the SCL signal and  
device addresses. The controller also generates specific conditions that indicate the START and STOP of data  
transfer. A target receives data, transmits data, or both on the bus under control of the controller.  
The TPS6287x-Q1 device operates as a target and supports the following data transfer modes, as defined in the  
I2C-Bus Specification: standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1 Mbps). The  
interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values  
depending on the instantaneous application requirements. Register contents remain intact as long as the input  
voltage remains above 1.4 V.  
The data transfer protocol for standard and fast modes is exactly the same, therefore, they are referred to as  
F/S-mode in this document. The device supports 7-bit addressing; general call addresses are not supported.  
The state of the VSEL pin during power up defines the I2C target address of the device (see 9-10). Note that  
the VSEL pin also sets the default start-up voltage of the device (see 9-4).  
9-10. I2C Interface Target Address Selection  
VSEL Pin  
I2C Target Address (1)  
0x40 or 0x30  
6.2 kΩto GND  
Short Circuit to GND  
Short Circuit to VIN  
0x41 or 0x31  
0x42 or 0x32  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9-10. I2C Interface Target Address Selection (continued)  
VSEL Pin  
I2C Target Address (1)  
0x43 or 0x33  
47 kΩto VIN  
(1) Available I2C address. Refer to the 6  
TI recommends that the I2C controller initiates a STOP condition on the I2C bus after the initial power up of SDA  
and SCL pullup voltages to ensure reset of the I2C engine.  
9.5.2 Standard, Fast, Fast Mode Plus Protocol  
The controller initiates a data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 9-15. All I2C-compatible devices must  
recognize a start condition.  
DATA  
CLK  
S
P
START  
STOP  
Condition  
Condition  
9-15. START and STOP Conditions  
The controller then generates the SCL pulses, and transmits the 7-bit address and the read and write direction  
bit R/W on the SDA line. During all transmissions, the controller makes sure that data is valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse (see 9-16). All  
devices recognize the address sent by the controller and compare the address to their internal fixed addresses.  
Only the target with a matching address generates an acknowledge (see 9-17) by pulling the SDA line low  
during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the controller knows that  
a communication link with a target has been established.  
DATA  
CLK  
Data line stable;  
data valid  
Change of  
data allowed  
9-16. Bit Transfer on the Serial Interface  
The controller generates further SCL cycles to either transmit data to the target (R/W bit 0) or receive data from  
the target (R/W bit 1). In either case, the target must acknowledge the data sent by the controller. So an  
acknowledge signal can either be generated by the controller or by the target, depending on which one is the  
receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary.  
To signal the end of the data transfer, the controller generates a stop condition by pulling the SDA line from low  
to high while the SCL line is high (see 9-15). This stop condition releases the bus and stops the  
communication link with the addressed target. All I2C-compatible devices must recognize the stop condition.  
Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition  
followed by a matching address.  
Attempting to read data from register addresses not listed in this section will result in 0x00 being read out.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
Data Output by  
Transmitter  
Not Acknowledge  
Acknowledge  
Data Output  
by Receiver  
SCL from  
Controller  
1
2
8
9
S
START  
Clock pulse for  
Condition  
acknowledgment  
9-17. Acknowledge on the I2C Bus  
Recognize START or  
REPEATED START  
condition  
Recognize STOP or  
REPEATED START  
condition  
Generate ACKNOWLEDGE  
signal  
P
SDA  
SCL  
MSB  
acknowledgement  
signal from Target  
acknowledgement  
signal from receiver  
Sr  
1
2
7
8
9
1
2
3 to 8  
9
S or Sr  
Sr or P  
ACK  
ACK  
START or  
repeated START  
condition  
byte complete,  
interrupt within target  
clock line held low while  
interrupts are serviced  
STOP or  
repeated START  
condition  
9-18. Bus Protocol  
9.5.3 I2C Update Sequence  
The following are required for a single update:  
A start condition  
A valid I2C address  
A register address byte  
A data byte  
After the receipt of each byte, the receiving device acknowledges by pulling the SDA line low during the high  
period of a single clock pulse. A valid I2C address selects the target. The target performs an update on the falling  
edge of the acknowledge signal that follows the LSB byte.  
1
7
1
1
8
1
8
1
1
S
Target Address  
R/W  
A
Register Address  
A
Data  
A/A  
P
"0" Write  
From Controller to Target  
From Target to Controller  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
9-19. WriteData Transfer Format in Standard, Fast, Fast Plus Modes  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
1
7
1
1
8
1
1
8
1
1
8
1
1
S
Target Address  
R/W  
A
Register Address  
A
Sr  
Target Address  
R/W  
A
Data  
A/A  
P
"0" Write  
"1" Read  
From Controller to Target  
From Target to Controller  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
9-20. ReadData Transfer Format in Standard, Fast, Fast Plus Modes  
9.5.4 I2C Register Reset  
The I2C registers can be reset by:  
Pulling the input voltage below 1.4 V (typical).  
Setting the RESET bit in the CONTROL register. When RESET = 1, all registers are reset to their default  
values and a new start-up begins immediately. After td(EN), you can program the I2C registers again.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
9.6 Register Map  
9-11 lists the device registers. Consider all register offset addresses not listed in 9-11 as reserved  
locations. Do not modify the register contents.  
9-11. Device Registers  
Address  
Acronym  
VSET  
Register Name  
Output Voltage Setpoint  
Control 1  
Section  
Go  
0h  
1h  
2h  
3h  
4h  
CONTROL1  
CONTROL2  
CONTROL3  
STATUS  
Go  
Control 2  
Go  
Control 3  
Go  
Status  
Go  
Complex bit access types are encoded to fit into small table cells. 9-12 shows the codes that are used for  
access types in this section.  
9-12. Device Access Type Codes  
Access Type  
Code  
R
Description  
Read Type  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
- n  
Value after reset or the default value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9.6.1 VSET Register (Address = 0h) [Reset = X]  
VSET is shown in 9-21 and described in 9-13.  
Return to the Summary Table.  
This register controls the output voltage setpoint.  
9-21. VSET Register  
7
6
5
4
3
2
1
0
VSET  
R/W-X  
9-13. VSET Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
VSET  
R/W  
X
Output voltage setpoint (see the range-setting bits in the CONTROL2  
register.)  
Range 1: Output voltage setpoint = 0.4 V + VSET[7:0] × 1.25 mV  
Range 2: Output voltage setpoint = 0.4 V + VSET[7:0] × 2.5 mV  
Range 3: Output voltage setpoint = 0.4 V + VSET[7:0] × 5 mV  
Range 4: Output voltage setpoint = 0.8 V + VSET[7:0] × 10 mV  
The state of the VSEL pin during power up determines the reset  
value.  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
9.6.2 CONTROL1 Register (Address = 1h) [Reset = 2Ah]  
CONTROL1 is shown in 9-22 and described in 9-14.  
Return to the Summary Table.  
This register controls various device configuration options.  
9-22. CONTROL1 Register  
7
6
5
4
3
2
1
0
RESET  
R/W-0b  
SSCEN  
R/W-0b  
SWEN  
R/W-1b  
FPWMEN  
R/W-0b  
DISCHEN  
R/W-1b  
HICCUPEN  
R/W-0b  
VRAMP  
R/W-10b  
9-14. CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
R/W  
0b  
Reset device  
0b = No effect  
1b = Resets all registers to their default values  
Reading this bit always returns 0.  
6
5
4
SSCEN  
SWEN  
R/W  
R/W  
R/W  
0b  
1b  
0b  
Spread spectrum clocking enable  
0b = SSC operation disabled  
1b = SSC operation enabled  
Software enable  
0b = Switching disabled (register values retained)  
1b = Switching enabled (without the enable delay)  
FPWMEN  
Forced PWM enable  
0b = Power-save operation enabled  
1b = Forced-PWM operation enabled  
This bit is logically ORed with the MODE/SYNC pin. If a high level or  
a synchronization clock is applied to the MODE/SYNC pin, the  
device operates in forced-PWM, regardless of the state of this bit.  
3
2
DISCHEN  
R/W  
R/W  
1b  
0b  
Output discharge enable  
0b = Output discharge disabled  
1b = Output discharge enabled  
HICCUPEN  
Hiccup operation enable  
0b = Hiccup operation disabled  
1b = Hiccup operation enabled. Do not enable hiccup operation  
during stacked operation.  
1-0  
VRAMP  
R/W  
10b  
Output voltage ramp speed when changing from one output voltage  
setting to another  
00b = 10 mV/µs  
01b = 5 mV/µs  
10b = 1.25 mV/µs  
11b = 0.5 mV/µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9.6.3 CONTROL2 Register (Address = 2h) [Reset = 9h]  
CONTROL2 is shown in 9-23 and described in 9-15.  
Return to the Summary Table.  
This register controls various device configuration options.  
9-23. CONTROL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
VRANGE  
R/W-10b  
SSTIME  
R/W-01b  
9-15. CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RESERVED  
R
0000b  
Reserved for future use. For compatibility with future device variants,  
program these bits to 0.  
3-2  
VRANGE  
R/W  
R/W  
10b  
01b  
Output voltage range  
00b = 0.4 V to 0.71875 V in 1.25-mV steps  
01b = 0.4 V to 1.0375 V in 2.5-mV steps  
10b = 0.4 V to 1.675 V in 5-mV steps  
11b = 0.8 V to 3.35 V in 10-mV steps  
1-0  
SSTIME  
Soft-start ramp time  
00b = 0.5 ms  
01b = 1 ms  
10b = 2 ms  
11b = 4 ms  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
9.6.4 CONTROL3 Register (Address = 3h) [Reset = 0h]  
CONTROL3 is shown in 9-24 and described in 9-16.  
Return to the Summary Table.  
This register controls various device configuration options.  
9-24. CONTROL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
SINGLE  
R/W-0b  
PGBLNKDVS  
R/W-0b  
9-16. CONTROL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
RESERVED  
R
000000b  
Reserved for future use. For compatibility with future device variants,  
program these bits to 0.  
1
SINGLE  
R/W  
R/W  
0b  
0b  
Single operation. This bit controls the internal EN pulldown and  
SYNCOUT functions.  
0b = EN pin pulldown and SYNCOUT enabled  
1b = EN pin pulldown and SYNCOUT disabled. Do not use during  
stacked operation.  
0
PGBLNKDVS  
Power-good blanking during DVS  
0b = PG pin reflects the output of the window comparator.  
1b = PG pin is high impedance during DVS.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
9.6.5 STATUS Register (Address = 4h) [Reset = 2h]  
STATUS is shown in 9-25 and described in 9-17.  
Return to the Summary Table.  
This register returns the device status flags.  
9-25. STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
HICCUP  
R-0b  
ILIM  
R-0b  
TWARN  
R-0b  
TSHUT  
R-0b  
PBUV  
R-1b  
PBOV  
R-0b  
9-17. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R
00b  
Reserved for future use. For compatibility with future device variants,  
ignore these bits.  
5
HICCUP  
R
R
R
R
R
0b  
0b  
0b  
0b  
1b  
Hiccup. This bit reports whether a hiccup event occurred since the  
last time the STATUS register was read.  
0b = No hiccup event occurred  
1b = A hiccup event occurred  
4
3
2
1
ILIM  
Current limit. This bit reports whether an current limit event occurred  
since the last time the STATUS register was read.  
0b = No current limit event occurred  
1b = An current limit event occurred  
TWARN  
TSHUT  
PBUV  
Thermal warning. This bit reports whether a thermal warning event  
occurred since the last time the STATUS register was read.  
0b = No thermal warning event occurred  
1b = A thermal warning event occurred  
Thermal shutdown. This bit reports whether a thermal shutdown  
event occurred since the last time the STATUS register was read.  
0b = No thermal shutdown event occurred  
1b = A thermal shutdown event occurred  
Power-bad undervoltage. This bit reports whether a power-bad event  
(output voltage too low) occurred since the last time the STATUS  
register was read.  
0b = No power-bad undervoltage event occurred  
1b = A power-bad undervoltage event occurred  
0
PBOV  
R
0b  
Power-bad overvoltage. This bit reports whether a power-bad event  
(output voltage too high) occurred since the last time the STATUS  
register was read.  
0b = No power-bad overvoltage event occurred  
1b = A power-bad overvoltage event occurred  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The following section discusses selection of the external components to complete the power supply design for  
typical a application.  
10.2 Typical Application  
110 nH ±20%  
0.75 V  
VIN  
3.3 V  
VIN  
VIN  
SW  
COUT  
CIN  
VIO  
20 k  
MODE/SYNC  
Load  
EN  
VOSNS  
GOSNS  
SDA  
SCL  
I2C  
RZ  
VSEL  
FSEL  
3.3 V  
CC2  
6.2 k  
CC  
10 k  
1 k  
COMP  
PG  
PG  
SYNC_OUT GND  
GND  
10 pF  
10-1. Typical Application Schematic  
10.2.1 Design Requirements  
10-1 lists the operating parameters for this application example.  
10-1. Design Parameters  
Symbol  
Parameter  
Value  
3.3 V  
VIN  
Input voltage  
VOUT  
TOLVOUT  
TOLDC  
ΔIOUT  
tt  
Output voltage  
0.75 V  
±3.3%  
±1%  
Output voltage tolerance allowed by the application  
Output voltage tolerance of the TPS6287x-Q1 (DC accuracy)  
Output current load step  
±7.5 A  
Load step transition time  
1 μs  
2.25 MHz  
110 nH  
±20%  
fSW  
Switching frequency  
L
Inductance  
TOLIND  
gm  
Inductor tolerance  
Error amplifier transconductance  
Internal timing parameter  
1.5 mS  
12.5 μs  
±30%  
τ
TOLτ  
Tolerance of the internal timing parameter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
10-1. Design Parameters (continued)  
Symbol  
Parameter  
Ratio of switching frequency to converter bandwidth (must be 4)  
Number of phases  
Value  
kBW  
4
1
Nɸ  
Preliminary Calculations  
The maximum allowable deviation of the power supply is ±3.3%. The DC accuracy of the TPS6287x-Q1 is  
specified as ±1%, therefore, the maximum output voltage variation during a transient is given by:  
V  
= ± V  
× 3.3% – 1% = ± 17.25 mV  
OUT  
(4)  
OUT  
10.2.2 Detailed Design Procedure  
The following subsections describe how to calculate the external components required to meet the specified  
transient requirements of a given application. The calculations include the worst-case variation of components  
and use the RMS method to combine the variation of uncorrelated parameters.  
10.2.2.1 Selecting the Inductor  
The TPS6287x-Q1 devices have been optimized for inductors in the range 50 nH to 300 nH. If the transient  
response of the converter is limited by the slew rate of the current in the inductor, using a smaller inductor can  
improve performance. However, the output ripple current increases as the value of the inductor decreases, and  
higher output current ripple generates higher output voltage ripple, which adds to the transient overshoot or  
undershoot. The optimal configuration for a given application is always a trade-off between a number of  
parameters. TI recommends a starting value of 110 nH for typical applications.  
The peak-to-peak inductor current ripple is given by:  
V
V
– V  
OUT  
IN  
OUT  
sw  
I
=
=
(5)  
(6)  
L PP  
L PP  
V
Nɸ × L × f  
IN  
0.75  
3.3  
3.3 – 0.75  
I
= 2.342 A  
6
–9  
1 × 110 × 10 × 2.25 × 10  
10-2 lists a number of inductors suitable for use with this application. This list is not exhaustive and other  
inductors from other manufacturers can also be suitable.  
10-2. List of Recommended Inductors  
Current Rating  
(ISAT at 25°C)  
24 A  
Dimensions  
Inductance  
DC Resistance  
Part Number(1)  
(L × W × H)  
92 nH  
100 nH  
110 nH  
110 nH  
55 nH  
4 × 4 × 1.2 mm  
Coilcraft, XEL4012-920NE  
Coilcraft, XEL4030-101ME  
Coilcraft, XGL4020-111ME  
TDK, CLT32-R11  
5.2 mΩ(typical)  
1.5 mΩ(typical)  
1.4 mΩ(typical)  
1.9 mΩ(typical)  
1.0 mΩ(typical)  
3.0 mΩ(typical)  
1.9 mΩ(typical)  
0.8 mΩ(typical)  
30 A  
4 × 4 × 3.2 mm  
29 A  
4 × 4 × 2.1 mm  
29 A  
3.2 × 2.5 × 2.5 mm  
3.2 × 2.5 × 2.5 mm  
3.2 × 2.5 × 2.5 mm  
4.2 × 4.0 × 2.1 mm  
5.45 × 5.25 × 2.8 mm  
39.5 A  
17.0 A  
25 A  
TDK, CLT32-55N  
110 nH  
100 nH  
100 nH  
Cyntec, VCTA32252E-R11MS6  
Cyntec, VCHA042A-R10MS62M  
Cyntec, VCHW053T-R10NMS5  
44 A  
(1) See the Third-Party Products Disclaimer.  
10.2.2.2 Selecting the Input Capacitors  
As with all buck converters, the input current of the TPS6287x-Q1 devices is discontinuous. The input capacitors  
provide a low-impedance energy source for the device, and their value, type, and location are critical for correct  
operation. TI recommends low-ESR multilayer ceramic capacitors for best performance. In practice, the total  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
input capacitance is typically comprised of a combination of different capacitors, in which larger capacitors  
provide the decoupling at lower frequencies and smaller capacitors provide the decoupling at higher frequencies.  
The TPS6287x-Q1 devices feature a butterfly layout with two pairs of VIN and GND pins on opposite sides of the  
package. This allows the input capacitors to be placed symmetrically on the PCB so that the electromagnetic  
fields generated cancel each other out, thereby reducing EMI.  
The duty cycle of the converter is given by:  
V
OUT  
D =  
(7)  
η × V  
IN  
where  
VIN is the input voltage.  
VOUT is the output voltage.  
ηis the efficiency.  
0.75  
0.9 × 3.3  
D =  
= 0.253  
(8)  
(9)  
The value of input capacitance needed to meet the input voltage ripple requirements is given by:  
D × 1 D × I  
OUT  
C
=
IN  
V
× f  
IN PP  
sw  
where  
D is the duty cycle.  
fsw is the switching frequency.  
L is the inductance.  
IOUT is the output current.  
100mV is used as the input voltage ripple target.  
0.253 × 1 0.253 × 11.3  
C
=
= 9.5 μF  
(10)  
IN  
6
0.1 × 2.25 × 10  
The value of CIN calculated with 方程式 9 is the effective capacitance after all derating, tolerance, and aging  
effects have been considered. 5 µF effective capacitance per input pin is required. TI recommends multilayer  
ceramic capacitors with an X7R dielectric (or similar) for CIN, and these capacitors must be placed as close to  
the VIN and GND pins as possible to minimize the loop area.  
10-3 lists a number of capacitors suitable for this application. This list is not exhaustive and other capacitors  
from other manufacturers can also be suitable.  
10-3. List of Recommended Input Capacitors  
Dimensions  
Capacitance  
Voltage Rating  
Manufacturer, Part Number(1)  
mm (Inch)  
1005 (0402)  
1005 (0402)  
2012 (0805)  
470 nF ±10%  
470 nF ±10%  
10 μF ±10%  
10 μF ±10%  
22 μF ±10%  
22 μF ±20%  
10 V  
10 V  
10 V  
Murata, GCM155C71A474KE36D  
TDK, CGA2B3X7S1A474K050BB  
Murata, GCM21BR71A106KE22L  
2012 (0805)  
3216 (1206)  
3216 (1206)  
10 V  
10 V  
10 V  
TDK, CGA4J3X7S1A106K125AB  
Murata, GCM31CR71A226KE02L  
TDK, CGA5L1X7S1A226M160AC  
(1) See the Third-Party Products Disclaimer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
10.2.2.3 Selecting the Compensation Resistor  
Use 方程11 to calculate the recommended value of compensation resistor, RZ:  
I
L PP  
2
L
Nɸ  
π × I  
OUT  
+
×
1
2
2
R =  
– 1 1 + TOL  
+ TOL  
τ
(11)  
(12)  
Z
IND  
g
4 × τ × V  
m
OUT  
–9  
1
2.342  
2
–6  
110 × 10  
π × 7.5 +  
×
1
2
2
R =  
– 1 1 + 20% + 30% = 2.244 kΩ  
–3  
Z
–3  
1.5 × 10  
4 × 12.5 × 10 × 17.25 × 10  
Rounding up, the closest standard value from the E24 series is 2.4 kΩ.  
10.2.2.4 Selecting the Output Capacitors  
In practice, the total output capacitance is typically comprised of a combination of different capacitors, in which  
larger capacitors provide the load current at lower frequencies and smaller capacitors provide the load current at  
higher frequencies. The value, type, and location of the output capacitors are critical for correct operation. TI  
recommends low-ESR multilayer ceramic capacitors with an X7R dielectric (or similar) for best performance.  
The TPS6287x-Q1 devices feature a butterfly layout with two GND pins on opposite sides of the package. This  
allows the output capacitors to be placed symmetrically on the PCB such that the electromagnetic fields  
generated cancel each other out, thereby reducing EMI.  
The transient response of the converter is limited by one of two criteria:  
The slew rate of the current through the inductor, in which case, the feedback loop of the converter saturates.  
The maximum allowed ratio of converter bandwidth to switching frequency, in which the converter remains in  
regulation (that is, its loop does not saturate). TI recommends a minimum ratio of four for typical applications.  
Which of the above criteria applies in any given application depends on the operating conditions and component  
values used. Therefore, TI recommends that the user calculate the output capacitance for both cases, and select  
the higher of the two values.  
If the converter remains in regulation, the minimum output required capacitance is given by:  
τ × 1 + g × R  
m
Z
2
2
2
C
=
=
1 + TOL + TOL  
+ TOL  
(13)  
(14)  
OUT min reg  
OUT min reg  
τ
IND  
fSW  
f
L
SW  
4
2 × π ×  
×
Nɸ  
–6  
–3  
1 + 1.5 × 10 × 2.4 × 10  
3
12.5 × 10  
×
2
2
2
C
1 + 30% + 20% + 10% = 203.2 μF  
–9  
6
110 × 10  
1
2.25 × 10  
4
–9  
× 10  
2 × π ×  
×
If the converter loop saturates, the minimum output capacitance is given by:  
2
I
L PP  
2
L
Nɸ  
×
I +  
OUT  
I  
× t  
t
1
OUT  
2
C
=
=
1 + TOL  
(15)  
(16)  
OUT min sat  
OUT min sat  
IND  
V  
2 × V  
OUT  
OUT  
–9  
2
110 × 10  
1
2.342  
2
×
7.5 +  
–6  
1
7.5 × 1 × 10  
2
C
1 + 20% = 122.7 μF  
–3  
2 × 0.75  
17.25 × 10  
In this case, choose COUT(min) = 203 µF as the larger of the two values for the output capacitance.  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
When calculating worst-case component values, use the value calculated above as the minimum output  
capacitance required. For ceramic capacitors, the maximum capacitance when considering tolerance, DC bias,  
temperature, and aging effects is typically two times the minimum capacitance. In this case, the maximum  
capacitance COUT(max) is 406 μF.  
10-4. List of Recommended Output Capacitors  
Dimensions  
Capacitance  
Voltage Rating  
Manufacturer, Part Number(1)  
mm (Inch)  
2012 (0805)  
2012 (0805)  
3216 (1206)  
2012 (1210)  
3225 (1210)  
3216 (1210)  
6.3 V  
6.3 V  
4 V  
TDK, CGA4J1X7T0J226M125AC  
Murata, GCM31CR71A226KE02  
TDK, CGA5L1X7T0G476M160AC  
Murata, GCM32ER70J476ME19  
TDK, CGA6P1X7T0G107M250AC  
Murata, GRT32EC70J107ME13  
22 μF ±20%  
22 μF ±10%  
47 μF ±20%  
47 μF ±20%  
100 μF ±20%  
100 μF ±20%  
6.3 V  
4 V  
6.3 V  
(1) See the Third-Party Products Disclaimer.  
10.2.2.5 Selecting the Compensation Capacitor, CC  
First, use 方程17 to calculate the bandwidth of the inner loop:  
τ
BW  
=
(17)  
INNER  
L
Nɸ  
2π ×  
× C  
OUT max  
–6  
12.5 × 10  
BW  
=
= 89 kHz  
(18)  
(19)  
INNER  
–9  
110 × 10  
1
–6  
× 203.2 × 10  
2π ×  
Next, calculate the product of gmRZ:  
–3  
3
g
× R = 1.5 × 10 × 2.4 × 10 = 3.6  
Z
m
If gmRZ > than 1, use 方程式 20 to calculate the recommended value of CC. If gmRZ < 1, use 方程式 22 to  
calculate the recommended value of CC.  
2
C =  
(20)  
(21)  
C
2
π × BW  
× g × R  
m
INNER  
Z
2
C =  
= 0.828 nF  
C
2
3
3
–3  
π × 89 × 10 × 1.5 × 10  
× 2.4 × 10  
The closest standard value from the E12 series is 0.82 nF.  
2 × g  
m
C =  
(22)  
C
π × BW  
INNER  
10.2.2.6 Selecting the Compensation Capacitor, CC2  
The compensation capacitor, CC2, is an optional capacitor that TI recommends the user include to bypass high-  
frequency noise away from the COMP pin. The value of this capacitor is not critical; 10-pF or 22-pF capacitors  
are suitable for typical applications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
10.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0.405  
0.404  
0.403  
0.402  
0.401  
0.400  
0.399  
0.398  
0.397  
0.396  
0.395  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V  
VIN = 5 V  
10  
0
0
0
0
2
2
2
4
6
8
10  
12  
14 15  
0
0
0
2
2
2
4
6
8
10  
12  
14 15  
Output Current (A)  
Output Current (A)  
VOUT = 0.4 V  
VOUT = 0.4 V  
10-3. Load Regulation  
10-2. Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.505  
0.504  
0.503  
0.502  
0.501  
0.500  
0.499  
0.498  
0.497  
0.496  
0.495  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V  
VIN = 5 V  
4
6
8
10  
12  
14 15  
4
6
8
10  
12  
14 15  
Output Current (A)  
Output Current (A)  
VOUT = 0.5 V  
VOUT = 0.5 V  
10-5. Load Regulation  
10-4. Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.755  
0.754  
0.753  
0.752  
0.751  
0.750  
0.749  
0.748  
0.747  
0.746  
0.745  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V  
VIN = 5 V  
4
6
8
10  
12  
14 15  
4
6
8
10  
12  
14 15  
Output Current (A)  
Output Current (A)  
VOUT = 0.75 V  
VOUT = 0.75 V  
10-7. Load Regulation  
10-6. Efficiency  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
10.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.880  
0.879  
0.878  
0.877  
0.876  
0.875  
0.874  
0.873  
0.872  
VIN = 3.3 V  
VIN = 5 V  
0.871  
0.870  
VIN = 3.3 V  
VIN = 5 V  
0
2
4
6
8
10  
12  
14 15  
0
2
4
6
8
10  
12  
14 15  
Output Current (A)  
Output Current (A)  
VOUT = 0.875 V  
VOUT = 0.875 V  
10-9. Load Regulation  
10-8. Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.055  
1.054  
1.053  
1.052  
1.051  
1.050  
1.049  
1.048  
1.047  
1.046  
1.045  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V  
VIN = 5 V  
0
2
4
6
8
10  
12  
14 15  
0
2
4
6
8
10  
12  
14 15  
Output Current (A)  
Output Current (A)  
VOUT = 1.05 V  
VOUT = 1.05 V  
10-11. Load Regulation  
10-10. Efficiency  
1.0100  
1.0075  
1.0050  
1.0025  
1.0000  
0.9975  
0.9950  
0.9925  
0.9900  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
IOUT = 10 A  
10-13. Line Transient Response  
10-12. Line Regulation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
IOUT = 2 A  
10-15. PWM-CCM Operation  
CH1 = 50 mV/A  
ΔIOUT = 7.5 A  
10-14. Load Transient Response  
IOUT = 750 mA  
IOUT = 75 mA  
10-16. PWM-DCM Operation  
10-17. PFM Operation  
0
-20  
SSC Off  
SSC On  
-40  
-60  
-80  
-100  
100k  
1M  
10M  
Frequency(Hz)  
FSEL = 2.25 MHz  
f(SYNC) = 2 MHz  
Load = 0.75 Ω  
VOUT = 1.6 V  
IOUT = 6 A  
10-19. Synchronization to an External Clock  
10-18. Spread Spectrum Operation  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
10.2.3 Application Curves (continued)  
Load = 0.75 Ω  
Load = 7.5 Ω  
10-20. Start-Up Using the EN Pin  
10-21. Shutdown Using the EN Pin (Discharge Enabled)  
Load = 7.5 Ω  
10-23. Current Limit (Hiccup)  
10-22. Shutdown (Discharge Enabled)  
10.3 Best Design Practices  
INCORRECT  
CORRECT  
TPS6287x-Q1  
TPS6287x-Q1  
2.7 V to 6 V  
2.7 V to 6 V  
VIN  
15 k  
EN  
INCORRECT  
CORRECT  
TPS6287x-Q1  
TPS6287x-Q1  
2.7 V to 6 V  
2.7 V to 6 V  
VIN  
15 k  
ENABLE  
ENABLE  
EN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
10.4 Power Supply Recommendations  
The TPS6287x-Q1 family has no special requirements for its input power supply. The output current rating of the  
input power supply must be rated according to the supply voltage and current requirements of the TPS6287x-  
Q1.  
10.5 Layout  
10.5.1 Layout Guidelines  
Achieving the performance the TPS6287x-Q1 devices are capable of requires proper PDN and PCB design. TI  
therefore recommends the user perform a power integrity analysis on their design. There are a number of  
commercially available power integrity software tools, and the user can use these tools to model the effects on  
performance of the PCB layout and passive components.  
In addition to the use of power integrity tools, TI recommends the following basic principles:  
Place the input capacitors close to the VIN and GND pins. Position the input capacitors in order of increasing  
size, starting with the smallest capacitors closest to the VIN and GND pins. Use an identical layout for both  
VIN-GND pin pairs of the package, to gain maximum benefit from the butterfly configuration.  
Place the inductor close to the device and keep the SW node small.  
Connect the exposed thermal pad and the GND pins of the device together. Use multiple thermal vias to  
connect the exposed thermal pad of the device to one or more ground planes (TI's EVM uses nine 150-µm  
thermal vias).  
Use multiple power and ground planes.  
Route the VOSNS and GOSNS remote sense lines as a differential pair and connect them to the lowest-  
impedance point of the PDN. If the desired connection point is not the lowest impedance point of the PDN,  
optimize the PDN until it is. Do not route the VOSNS and GOSNS close to any of the switch nodes.  
Connect the compensation components between VOSNS and GOSNS. Do not connect the compensation  
components directly to power ground.  
If possible, distribute the output capacitors evenly between the TPS6287x-Q1 device and the point-of-load,  
rather than placing them altogether in one place.  
Use multiple vias to connect each capacitor pad to the power and ground planes (TI's EVM typically uses four  
vias per pad).  
Use plenty of stitching vias to ensure a low impedance connection between different power and ground  
planes.  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
www.ti.com.cn  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
10.5.2 Layout Example  
10-24 shows the top layer of one of the evaluation modules for this device. It demonstrates the practical  
implementation of the PCB layout principles previously listed. The user can find a complete set drawings of all  
the layers used in this PCB in the evaluation module's user guide.  
GND  
VIN  
COUT  
CIN  
L
CIN  
COUT  
VIN  
GND  
10-24. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
TPS62870-Q1, TPS62871-Q1, TPS62872-Q1, TPS62873-Q1  
ZHCSQI6B MAY 2022 REVISED JANUARY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS62870-Q1 TPS62871-Q1 TPS62872-Q1 TPS62873-Q1  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62870N0QWRXSRQ1  
TPS62870QWRXSRQ1  
TPS62870Y0QWRXSRQ1  
TPS62870Y1QWRXSRQ1  
TPS62870Y2QWRXSRQ1  
TPS62870Y3QWRXSRQ1  
TPS62871QWRXSRQ1  
TPS62871Y1QWRXSRQ1  
TPS62872N0QWRXSRQ1  
TPS62872QWRXSRQ1  
TPS62872Y1QWRXSRQ1  
TPS62873QWRXSRQ1  
TPS62873Y1QWRXSRQ1  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
ACTIVE VQFN-FCRLF  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
870N0B  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
870B  
870Y0B  
870Y1B  
870Y2B  
870Y3B  
871B  
871Y1B  
872N0B  
872B  
872Y1B  
873B  
873Y1B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2023  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS62872-Q1, TPS62873-Q1 :  
Catalog : TPS62872, TPS62873  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62870N0QWRXSRQ1 VQFN-  
FCRLF  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TPS62870QWRXSRQ1 VQFN-  
FCRLF  
TPS62870Y0QWRXSRQ1 VQFN-  
FCRLF  
TPS62870Y1QWRXSRQ1 VQFN-  
FCRLF  
TPS62870Y2QWRXSRQ1 VQFN-  
FCRLF  
TPS62870Y3QWRXSRQ1 VQFN-  
FCRLF  
TPS62871QWRXSRQ1 VQFN-  
FCRLF  
TPS62871Y1QWRXSRQ1 VQFN-  
FCRLF  
TPS62872N0QWRXSRQ1 VQFN-  
FCRLF  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62872QWRXSRQ1 VQFN-  
FCRLF  
RXS  
RXS  
RXS  
RXS  
16  
16  
16  
16  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
3.8  
3.8  
3.8  
3.8  
1.2  
1.2  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
TPS62872Y1QWRXSRQ1 VQFN-  
FCRLF  
TPS62873QWRXSRQ1 VQFN-  
FCRLF  
TPS62873Y1QWRXSRQ1 VQFN-  
FCRLF  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62870N0QWRXSRQ1  
TPS62870QWRXSRQ1  
TPS62870Y0QWRXSRQ1  
TPS62870Y1QWRXSRQ1  
TPS62870Y2QWRXSRQ1  
TPS62870Y3QWRXSRQ1  
TPS62871QWRXSRQ1  
TPS62871Y1QWRXSRQ1  
TPS62872N0QWRXSRQ1  
TPS62872QWRXSRQ1  
TPS62872Y1QWRXSRQ1  
TPS62873QWRXSRQ1  
TPS62873Y1QWRXSRQ1  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
VQFN-FCRLF  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
RXS  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
338.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
355.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
Pack Materials-Page 3  
PACKAGE OUTLINE  
VQFN-FCRLF - 1.05 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RXS0016A  
2.65  
2.45  
B
A
PIN 1 INDEX AREA  
3.65  
3.45  
0.1 MIN  
(0.1)  
SECTION A-A  
TYPICAL  
1.05  
0.95  
C
SEATING PLANE  
0.08  
C
0.00  
-0.01  
2X  
2
1.25±0.1  
(0.2) TYP  
3X 0.275  
SYMM  
7
8
6
0.2 MIN.  
2.25±0.1  
2X  
SYMM  
17  
3
0.5  
11X  
0.3  
A
A
13  
PIN 1 ID  
1
(45° X 0.35)  
16  
20X 0.5  
24X (0.18)  
0.3  
0.2  
16X  
0.1  
C
A
B
0.05  
C
4226093/E 09/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-FCRLF - 1.05 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RXS0016A  
(2.35)  
2X (2)  
(0.4)  
20X  
(0.5)  
16  
(R 0.05) TYP  
13  
1
11X (0.6)  
(1.675)  
(0.9)  
11X (0.25)  
2X (0.45)  
17  
(2.25)  
SYMM  
2X (3)  
2X (0.45)  
3X (0.9)  
(1.97)  
(0.275)  
6
7
8
(Ø 0.15) TYP  
SYMM  
(0.6)  
(0.25)  
(0.2)  
2X (0.4)  
2X (0.6)  
(1.25)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
PADS 6, 7 & 8  
PADS 1-5 & 9-17  
SOLDER MASK DETAILS  
4226093/E 09/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-FCRLF - 1.05 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RXS0016A  
2.35  
2X (2)  
20X (0.5)  
16  
(R 0.05) TYP  
13  
1
11X (0.6)  
(1.675)  
2X (1)  
11X (0.25)  
17  
SYMM  
2X (3)  
(0.2)  
(0.6)  
(1.97)  
6
8
7
(0.25)  
SYMM  
(0.6)  
2X (0.6)  
2X (1.17)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 15X  
4226093/E 09/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62873Y1QWRXSRQ1

汽车级 2.7V 至 6V 输入、15A 可堆叠同步降压转换器 | RXS | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62873Z0WRXSR

36V、5A 同步降压转换器 | RXS | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62873Z1WRXSR

36V、5A 同步降压转换器 | RXS | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62876-Q1

汽车类 2.7V 至 6V 输入、25A 可堆叠同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62901

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、1A 高效率低 IQ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62901RPJR

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、1A、高效率、低 IQ 降压转换器 | RPJ | 9 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62902

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、2A 高效率低 IQ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62902RPJR

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、2A 高效率、低 IQ 降压转换器 | RPJ | 9 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62903

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、3A 高效率低 IQ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62903-Q1

具有 165°C 结温的 3V 至 18V、3A 汽车类低 IQ 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62903QRYTRQ1

Automotive, 3-V to 18-V, 3-A low-IQ synchronous buck converter with 165°C junction temperature | RYT | 9 | -40 to 165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62903RPJR

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、3A、高效率、低 IQ 降压转换器 | RPJ | 9 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI