TPS62876-Q1 [TI]

汽车类 2.7V 至 6V 输入、25A 可堆叠同步降压转换器;
TPS62876-Q1
型号: TPS62876-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 2.7V 至 6V 输入、25A 可堆叠同步降压转换器

转换器
文件: 总71页 (文件大小:3505K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
TPS6287x-Q1 I2C 接口2.7V 6V 输入、15A20A25A 30A 汽车类快  
速瞬态同步降压转换器  
在省电模式下运行以充分提高效率可以在强制  
PWM 模式下运行以实现出色瞬态性能和超低输出电压  
纹波。  
1 特性  
• 符合面向汽车应用AEC-Q100 标准  
– 器件温度等1-40°C 125°C TA  
-40°C 150°C 的结温范围  
提供功能安全型  
可选的遥感功能可更大限度地提高负载点的电压调节,  
并且该器件可在整个输出电压范围内实现 ±0.8% 的直  
流电压精度。  
可帮助进行功能安全系统设计的文档  
• 输入电压范围2.7V 6V  
• 引脚对引脚兼容器件系列15A20A25A 和  
30A  
开关频率可通过 FSEL 引脚选择可设置为 1.5MHz、  
2.25MHz2.5MHz 3MHz也可与频率范围相同的  
外部时钟同步。  
I2C 兼容接口提供多种控制、监控和警告功能例如电  
压监控和温度相关警告。可快速调整输出电压使负载  
功耗适应性能需求。通过 VSEL 引脚默认启动电压  
可实现电阻可选。  
0.4V 1.675V 3 个可选输出电压范围  
0.4V 0.71875V、步长1.25mV  
0.4V 1.0375V步长2.5mV  
0.4V 1.675V步长5mV  
• 输出电压精度±0.8%  
• 内部电MOSFET2.6mΩ1.5mΩ  
• 可调软启动  
• 外部补偿  
• 可通VSEL 引脚选择启动输出电压  
• 可通FSEL 引脚选1.5MHz2.25MHz、  
2.5MHz 3MHz 开关频率  
器件信息  
封装(1)  
器件型号  
TPS62874-Q1 (2)  
TPS62875-Q1 (2)  
TPS62876-Q1  
电流额定值  
15A  
20 A  
RZVVQFN24)  
4.05mm × 3.05mm  
25 A  
TPS62877-Q1 (2)  
30 A  
• 强PWM 或省电模式运行  
• 通过外部电阻器I2C 选择启动输出电压  
I2C 兼容的接口频率高3.4MHz  
• 旨在提高输出电流能力的可选堆叠操作  
• 差分遥感  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 产品预发布。  
TPS6287x-Q1  
VIN  
L
VOUT  
VIN  
VIN  
SW  
COUT  
CIN  
• 热预警和热关断  
• 输出放电  
REN  
VOSNS  
MODE/SYNC  
LOAD  
GOSNS  
EN  
RZ CC  
• 可选展频时钟  
• 具有窗口比较器的电源正常输出  
COMP  
AGND  
FSEL  
RFSEL  
CC2  
VI/O  
VI/O  
RPG  
2 应用  
VSEL  
PG  
RVSEL  
SYNC_OUT  
AGND  
ADAS 摄像头ADAS 传感器融合  
ECU  
混合可重新配置仪表组  
音响主机远程信息处理控制单元  
SCL  
SDA  
GND  
GND  
简化版原理图  
3 说明  
TPS62874-Q1 TPS62875-Q1 TPS62876-Q1 和  
TPS62877-Q1 是具有 I2C 接口和差分遥感的引脚对引  
15A20A25A 30A 同步直流/直流降压转换器  
系列。所有器件都具有高效率且易于使用。低阻电源开  
关可在高温环境下支持高30A 的持续输出电流。  
这些器件可在堆叠模式下运行以提供更高的输出电流  
或将功耗分散到多个器件上。  
TPS6287x-Q1 系列实现了增强型 DCS 控制方案该  
方案支持具有固定频率运行的快速瞬变响应。器件可以  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFU1  
 
 
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Table of Contents  
8.6 Device Registers.......................................................37  
9 Application and Implementation..................................43  
9.1 Application Information............................................. 43  
9.2 Typical Application.................................................... 43  
9.3 Application Using Two TPS62876-Q1 in a  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings - Q100................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................7  
6.6 I2C Interface Timing Characteristics..........................11  
6.7 Typical Characteristics..............................................13  
7 Parameter Measurement Information..........................14  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................32  
8.5 Programming............................................................ 33  
Stacked Configuration.................................................52  
9.4 Application Using Three TPS62876-Q1 in a  
Stacked Configuration.................................................57  
9.5 Best Design Practices...............................................61  
9.6 Power Supply Recommendations.............................62  
9.7 Layout....................................................................... 62  
10 Device and Documentation Support..........................64  
10.1 接收文档更新通知................................................... 64  
10.2 支持资源..................................................................64  
10.3 Trademarks.............................................................64  
10.4 静电放电警告.......................................................... 64  
10.5 术语表..................................................................... 64  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 65  
11.1 Tape and Reel Information......................................65  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
April 2023  
*
Initial release.  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Device Options  
SOFT-  
START  
TIME  
OUTPUT  
CURRENT  
VSEL SETTING FOR START-UP  
VOLTAGE AND I2C ADDRESS  
TRANSIENT  
ASYNC MODE  
DEVICE NUMBER  
SSC  
TPS62874QWRZVRQ1(1)  
TPS62875QWRZVRQ1(1)  
TPS62876QWRZVRQ1  
15 A  
20 A  
25 A  
30 A  
25 A  
off  
off  
off  
off  
off  
off  
off  
off  
off  
on  
VSEL with 6.2 kΩto GND: 0.80 V, 0x44  
VSEL shorted to GND: 0.75 V, 0x45  
VSEL shorted to VIN: 0.875 V, 0x46  
VSEL with 47 kΩto VIN: 0.58 V, 0x47  
1 ms  
TPS62877QWRZVRQ1(1)  
TPS6287680QWRZVRQ1(1)  
(1) Product preview  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
TOP VIEW  
BOTTOM VIEW  
22  
21  
21  
22  
24  
24  
23  
23  
1
VOSNS  
EN  
20  
19  
SCL  
SDA  
VOSNS  
EN  
1
2
3
SCL  
SDA  
20  
2
19  
18  
MODE/  
SYNC  
MODE/  
SYNC  
3
FSEL  
VSEL  
VIN  
FSEL  
VSEL  
VIN  
18  
17  
16  
15  
4
5
SYNC_OUT  
4
5
SYNC_OUT  
17  
16  
15  
VIN  
VIN  
VIN  
6
7
VIN  
VIN  
VIN  
6
7
GND  
GND  
GND  
14  
13  
GND  
GND  
14  
13  
GND  
GND  
8
8
GND  
SW  
12  
SW  
11  
SW  
10  
SW  
9
SW  
9
SW  
10  
SW  
11  
SW  
12  
5-1. RZV Package 24 Pin VQFN  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
1
VOSNS  
I
Output voltage sense (differential output voltage sensing).  
This pin is the enable pin of the device. Connect to this pin using a series resistor of at least  
15 kΩ. A logic low level on this pin disables the device, and a logic high level on the pin  
enables the device. Do not leave this pin unconnected.  
2
EN  
I
For stacked operation interconnect EN pins of all stacked devices with a resistor to the  
supply voltage or a GPIO of a processor. See Stacked Operation for a detailed description.  
Frequency select pin. A resistor or a short circuit to GND or VIN determines the switching  
frequency if not externally synchronized. See 8.3.6 for the frequency options.  
3
4
FSEL  
VSEL  
VIN  
I
I
Start-up output voltage set pin. A resistor or short circuit to GND or VIN defines the selected  
output voltage.  
Power supply input. Connect the input capacitor as close as possible between pin VIN and  
GND.  
5, 6, 15, 16  
P
7, 8,  
13, 14  
GND  
SW  
GND  
O
Ground pin  
9, 10, 11, 12  
This is the switch pin of the converter and is connected to the internal Power MOSFETs.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
4
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Internal clock output pin for synchronization in stacked mode. Leave this pin floating for  
single device operation. Connect this pin to the MODE/SYNC pin of the successing device in  
the daisy-chain in stacked operation. Do not use this pin to connect to a non-TPS6287x-Q1  
device.  
During start-up, this pin is used to identify if a device must operate as a secondary converter  
in stacked operation. Connect a 47-kΩresistor from this pin to GND to define a secondary  
converter in stacked operation. See Stacked Operation for a detailed description.  
17  
SYNCOUT  
O
The device runs in Power-Save mode when this pin is pulled low. If the pin is pulled high, the  
device runs in Forced-PWM mode. Do not leave this pin unconnected. The mode pin can  
also be used to synchronize the device to an external clock.  
18  
19  
20  
MODE/SYNC  
SDA  
I
I2C serial data pin. Do not leave this pin floating. Connect a pullup to logic high level.  
Connect to GND for secondary devices in stacked operation.  
I/O  
I/O  
I2C serial clock pin. Do not leave this pin floating. Connect a pullup resistor to a logic high  
level.  
SCL  
Connect to GND for secondary devices in stacked operation.  
Open drain power good output. Low impedance when not "power good", high impedance  
when "power good". This pin can be left open or be tied to GND when not used in single  
device operation.  
In stacked operation interconnect the PG pins of all stacked devices. Only the PG pin of the  
primary converter in stacked operation is an open drain output. For devices that are defined  
as secondary converters in stacked mode the pin is an input pin. See Stacked Operation for  
a detailed description.  
21  
PG  
I/O  
22  
23  
24  
AGND  
COMP  
GOSNS  
GND  
Analog Ground. Connect to GND.  
Device compensation input. A resistor and capacitor from this pin to AGND define the  
compensation of the control loop.  
In stacked operation connect the COMP pins of all stacked devices together and connect a  
resistor and capacitor between the common COMP node and AGND.  
I
Output ground sense (differential output voltage sensing)  
Exposed  
The thermal pads must be soldered to GND to achieve an appropriate thermal resistance  
and for mechanical stability.  
-
Thermal Pads  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
3  
MAX  
6.5  
UNIT  
V
VIN(4)  
SW (DC)  
VIN + 0.3  
VIN  
V
Voltage(2)  
COMP  
V
SW (AC, less than 10ns)(3)  
10  
V
VOSNS  
1.8  
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
65  
Voltage(2)  
Voltage(2)  
Voltage((2))  
Voltage(2)  
Voltage(2)  
Tstg  
SCL, SDA  
5.5  
V
SYNC_OUT  
2
V
PG  
6.5  
V
FSEL, VSEL, EN, MODE/SYNC((4))  
GOSNS  
6.5  
V
0.3  
V
Storage temperature  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground terminal  
(3) While switching  
(4) The voltage at the pin can exceed the 6.5 V absolute max condition for a short period of time, but must remain less than 8 V. VIN at 8  
V for a 100 ms duration is equivalent to approximately 8 hours of aging for the device at room temperature.  
6.2 ESD Ratings - Q100  
VALUE  
UNIT  
Human body model (HBM), per AEC  
Q100-002 (1)  
HBM ESD classification level 2  
Electrostatic  
discharge  
V(ESD)  
±2000  
V
Charged device model (CDM) per AEC  
Q100-011  
CDM ESD classification level C5  
Electrostatic  
discharge  
V(ESD)  
±750  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN  
Input voltage range  
Output voltage range  
2.7  
6
V
1.675 V or  
(VIN - 1.5  
V)((1))  
VOUT  
0.4  
V
Voltage  
L
Nominal pull-up voltage on pins SDA and SCL  
Effective inductance for fSW = 1.5 MHz  
Effective inductance for fSW = 2.25 MHz, 2.5 MHz and 3 MHz  
Effective input capacitance per power input pin  
Effective output capacitance  
1.2  
100  
40  
5
200  
200  
V
150  
100  
22  
nH  
nH  
µF  
µF  
pF  
pF  
kΩ  
L
CIN  
10  
COUT  
CPAR  
CPAR  
REN  
47  
470  
100  
20  
Parasitic capacitance on FSEL, VSEL pin  
Parasitic capacitance on SYNC_OUT pin  
Pull-up resistance on EN pin  
15  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
6
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
 
 
 
 
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
Over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
RVSEL  
RFSEL  
,
,
,
Resistance on VSEL, VSEL to GND if not directly tied to GND or VIN  
Resistance on VSEL, VSEL to VIN if not directly tied to GND or VIN  
6.2  
kΩ  
RVSEL  
RFSEL  
47  
kΩ  
RVSEL  
RFSEL  
Resistor tolerance on VSEL, FSEL  
Sink current at PG pin  
± 2%  
ISINK_PG  
TJ  
0
1
mA  
°C  
(2)  
Operating junction temperature  
150  
40  
(1) Whatever VOUT value is lower  
(2) Operating lifetime is derated at junction temperatures greater than 125 °C.  
6.4 Thermal Information  
TPS6287x-Q1  
TPS6287x-Q1  
THERMAL METRIC(1)  
RZV (JEDEC)  
RZV (EVM)  
UNIT  
24 PINS  
34.7  
14.9  
6.5  
24 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
28  
-
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
-
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
-
ΨJT  
YJB  
6.5  
-
RθJC(bot)  
4.8  
-
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating junction temperature (TJ = 40 °C to +150 °C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ = 25  
°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = High, IOUT = 0 mA, device not  
switching; MODE = Low;  
CONTROL3:SINGLE = 0  
IQ  
Quiescent current  
4.2  
3.8  
mA  
mA  
EN = High, IOUT = 0 mA, device not  
switching; MODE = Low;  
CONTROL3:SINGLE = 1  
IQ  
Quiescent current  
Shutdown current  
2.1  
EN = Low, V(SW) = 0 V, max value at TJ =  
125 °C  
ISD  
15  
2.6  
2.5  
450  
2.7  
2.6  
µA  
V
Positive-going UVLO threshold voltage  
(VIN)  
VIT+  
2.5  
Negative-going UVLO threshold voltage  
(VIN)  
VIT-  
2.4  
80  
V
mV  
V
Vhys  
VIT+  
UVLO hysteresis voltage (VIN)  
Positive-going OVLO threshold voltage  
(VIN)  
6.1  
6.3  
6.2  
6.5  
6.4  
Negative-going OVLO threshold voltage  
(VIN)  
VIT-  
6.0  
80  
V
Vhys  
OVLO hysteresis voltage (VIN)  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over operating junction temperature (TJ = 40 °C to +150 °C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ = 25  
°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Negative-going power-on reset threshold  
voltage (VIN)  
VIT-(POR)  
1.4  
V
Thermal shutdown threshold temperature TJ rising  
Thermal shutdown hysteresis  
170  
20  
°C  
°C  
°C  
°C  
TSD  
Thermal warning threshold temperature  
Thermal warning hysteresis  
TJ rising  
150  
20  
TW  
CONTROL and INTERFACE  
Positive-going input threshold voltage  
(EN)  
VIT+  
0.97  
1.0  
0.9  
1.03  
0.93  
V
Negative-going input threshold voltage  
(EN)  
VIT-  
0.87  
95  
V
Vhys  
R(EN)  
IIH  
IIL  
Hysteresis voltage (EN)  
mV  
kΩ  
Only active during startup in stacked  
operation.  
Input resistance to GND (EN)  
1.4  
2
3
3
VIH = VIN, internal pulldown resistor  
disabled  
High-level input current (EN)  
Low-level input current (EN)  
µA  
nA  
VIL = 0 V, internal pulldown resistor  
disabled  
200  
High-level input voltage (MODE/SYNC,  
VSEL, FSEL, SYNC_OUT, PG)  
VIH  
VIH  
VIL  
VIL  
RIN  
0.8  
V
V
High-level input voltage (SDA, SCL)  
0.95  
Low-level input voltage (MODE/SYNC,  
VSEL, FSEL, SYNC_OUT, PG)  
0.4  
0.5  
4
V
Low-level input voltage (SDA, SCL)  
V
Input resistance to GND on pins MODE/  
SYNC, EN and PG  
2
3
MΩ  
VOL  
VOL  
ILKG  
IIL  
Low-level output voltage (SDA)  
IOL = 9 mA  
IOL = 5 mA  
VOH = 3.3 V  
VIL = 0 V  
0.4  
0.2  
200  
100  
3
V
V
Low-level output voltage (SDA)  
Input leakage current into SDA, SCL  
Low-level input current (MODE/SYNC)  
High-level input current (MODE/SYNC)  
Low-level input current (SYNC_OUT)  
High-level input current (SYNC_OUT)  
Low-level output voltage (SYNC_OUT)  
High-level output voltage (SYNC_OUT)  
nA  
nA  
µA  
nA  
nA  
V
100  
230  
IIH  
VIH = VIN  
IIL  
VIL = 0 V  
IIH  
VIH = 2 V  
110  
0.3  
2.1  
VOL  
VOH  
IOL = 1 mA  
IOH = 0.1 mA  
1.3  
V
Measured from when EN goes high to  
when device starts switching, SRVIN = 1  
V/µs  
td(EN)1  
Enable delay time when EN tied to VIN  
200  
600  
µs  
Enable delay time when VIN already  
applied  
Measured from when EN goes high to  
when device starts switching  
td(EN)2  
40  
0.5  
0.77  
1
100  
0.65  
1.0  
µs  
ms  
ms  
ms  
ms  
Output voltage ramp time for  
CONTROL2[1:0] = 00  
0.35  
0.54  
0.7  
Output voltage ramp time for  
CONTROL2[1:0] = 01  
Measured from when device starts  
switching to rising edge of PG  
td(Ramp)  
Output voltage ramp time for  
CONTROL2[1:0] = 10, default  
1.3  
Output voltage ramp time for  
CONTROL2[1:0] = 11  
1.4  
2
2.6  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
8
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over operating junction temperature (TJ = 40 °C to +150 °C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ = 25  
°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Synchronization clock frequency range  
(MODE/SYNC)  
f(SW)nom = 1.5 MHz, D(MODE/SYNC)  
45%...55%  
=
f(SYNC)  
1.2  
1.8  
MHz  
Synchronization clock frequency range  
(MODE/SYNC)  
f(SW)nom = 2.25 MHz, D(MODE/SYNC)  
45%...55%  
=
1.8  
2
2.7  
3.0  
3.3  
55  
MHz  
MHz  
MHz  
%
Synchronization clock frequency range  
(MODE/SYNC)  
f(SW)nom = 2.5 MHz, D(MODE/SYNC)  
45%...55%  
=
Synchronization clock frequency range  
(MODE/SYNC)  
f(SW)nom = 3 MHz, D(MODE/SYNC)  
45%...55%  
=
f(SYNC)  
2.4  
45  
D(MODE/ Duty cycle of synchronization clock  
frequency (MODE/SYNC)  
)
SYNC  
Phase shift at SYNC_OUT with reference CONTROL2:SYNCH_OUT_PHASE =  
to internal CLK or external CLK 0b0  
120  
°
Phase shift at SYNC_OUT with reference CONTROL2:SYNCH_OUT_PHASE =  
180  
50  
°
to internal CLK or external CLK  
0b1  
Time to lock to external frequency  
µs  
kΩ  
Resistance on FSEL, VSEL to GND if not  
tied to GND directly  
6.2  
Resistance on FSEL, VSEL to VIN if not  
tied to VIN directly  
47  
96  
kΩ  
%
%
%
%
Positive-going power good threshold  
voltage (output undervoltage)  
VT+(UVP)  
VT-(UVP)  
VT+(OVP)  
VT-(OVP)  
94  
92  
98  
96  
Negative-going power good threshold  
voltage (output undervoltage)  
94  
Positive-going power good threshold  
voltage (output overvoltage)  
104  
102  
106  
108  
106  
Negative-going power good threshold  
voltage (output overvoltage)  
104  
VOL  
IOH  
Low-level output voltage (PG)  
High-level output current (PG)  
IOL = 1 mA  
VOH = 5 V  
0.012  
0.3  
3
V
µA  
Device configured as secondary device in  
stacked operation  
IIH  
IIL  
High-level input current (PG)  
Low-level input current (PG)  
Deglitch time (PG)  
3
µA  
µA  
µs  
Device configured as secondary device in  
stacked operation  
1  
High-to-low or low-to-high transition on  
the PG pin  
td(PG)  
34  
40  
46  
OUTPUT  
VOUT  
VIN VOUT + 1.6 V, droop compensation  
disabled  
Output voltage accuracy  
0.8  
%
0.8  
3  
Output voltage change from no current to  
rated current  
droop compensation enabled  
±12  
mV  
ΔVOUT  
Accuracy of droop compensation voltage device in forced PWM mode  
3
mV  
Line regulation  
0.02  
%/V  
IOUT = 15 A, VIN VOUT + 1.6 V  
EN = High; V(GOSNS) = 100 mV to 100  
IIB  
Input bias current (GOSNS)  
3
µA  
µA  
mV  
60  
V(VOSNS) = 1.675 V, VIN = 6 V, droop  
compensation disabled  
IIB  
IIB  
Input bias current (VOSNS)  
5.5  
5.5  
V(VOSNS) = 1.675 V, VIN = 6 V, droop  
compensation enabled  
Input bias current (VOSNS)  
13.2  
100  
µA  
13.2  
100  
VICR  
Input common-mode range (GOSNS)  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over operating junction temperature (TJ = 40 °C to +150 °C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ = 25  
°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
OUT 1 V  
MIN  
TYP  
2.7  
MAX  
9.2  
UNIT  
RDIS  
Output discharge resistance  
V
Ω
fSW = 1.5 MHz, PWM operation  
fSW = 2.25 MHz, PWM operation  
fSW = 2.5 MHz, PWM operation  
fSW = 3 MHz, PWM operation  
1.35  
2.025  
2.25  
2.7  
1.5  
1.65  
2.475  
2.75  
3.3  
MHz  
MHz  
MHz  
MHz  
kHz  
2.25  
2.5  
fSW  
Switching frequency (SW)  
Modulation frequency  
3
fSSC  
fsw/2048  
Switching frequency variation during  
spread spectrum operation  
fSW–  
10%  
fSW+10%  
ΔfSW  
gm  
Transconductance of OTA on COMP pin  
Emulated current time constant  
1.5  
12.5  
3.4  
mS  
µs  
11.87  
13.2  
6.4  
τ
RDS(ON) High-side FET static on-resistance  
RDS(ON) Low-side FET static on-resistance  
VIN = 3.3 V  
VIN = 3.3 V  
mΩ  
mΩ  
1.9  
3.6  
SW pin current when HS-FET and LS-  
FET are off  
I(SW)(off)  
VIN = 6 V; V(SW) = 0 V, TJ = 25 °C  
VIN = 6 V; V(SW) = 6 V, TJ = 25 °C  
V(SW) = 0.4 V, current into SW pin  
TPS62874-Q1(1)  
0.1  
130  
3000  
26  
µA  
µA  
µA  
A
1.5  
SW pin current when HS-FET and LS-  
FET are off  
60  
SW pin current when HS-FET and LS-  
FET are off  
11  
22.5  
28.5  
34  
High-side FET forward switch current  
limit, DC  
19  
24  
High-side FET forward switch current  
limit, DC  
TPS62875-Q1(1)  
32  
A
ILIM  
High-side FET forward switch current  
limit, DC  
TPS62876-Q1  
29  
39  
A
High-side FET forward switch current  
limit, DC  
TPS62877-Q1(1)  
34  
39  
44  
A
Low-side FET forward switch current limit,  
ILIM  
DC  
TPS62874-Q1(1)  
15  
20  
24  
A
Low-side FET forward switch current limit,  
ILIM  
DC  
TPS62875-Q1(1)  
20  
24.5  
29  
29  
A
Low-side FET forward switch current limit,  
ILIM  
DC  
TPS62876-Q1  
24.5  
29.5  
33  
A
Low-side FET forward switch current limit,  
ILIM  
DC  
TPS62877-Q1(1)  
33  
38  
A
ILIM  
Low-side FET negative current limit, DC  
Minimum on-time of HS FET  
A
10  
45  
ton, min  
ton, min  
toff, min  
VIN = 3.3 V  
53  
44  
ns  
ns  
ns  
%
Minimum on-time of HS FET  
VIN = 5 V  
35  
Minimum off-time of HS FET  
VIN = 5 V  
70  
100  
Maximum duty cycle of power stage  
for TPS62877-Q1 only(1)  
45  
(1) Product preview  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
10  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6.6 I2C Interface Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
Standard mode  
MIN  
TYP  
MAX  
100  
400  
1
UNIT  
kHz  
Fast mode  
kHz  
Fast mode plus  
MHz  
High-speed mode (write operation), CB –  
100 pF max  
3.4  
3.4  
1.7  
1.7  
MHz  
MHz  
MHz  
MHz  
fSCL  
SCL clock frequency  
High-speed mode (read operation), CB –  
100 pF max  
High-speed mode (write operation), CB –  
400 pF max  
High-speed mode (read operation), CB –  
400 pF max  
Standard mode  
4
0.6  
0.26  
0.16  
4.7  
1.3  
0.5  
0.16  
0.32  
4
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Fast mode  
tHD, tSTA Hold time (repeated) START condition  
Fast mode plus  
High-speed mode  
Standard mode  
Fast mode  
Fast mode plus  
tLOW  
LOW period of the SCL clock  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
Fast mode  
0.6  
0.26  
0.06  
0.12  
4.7  
0.6  
0.26  
0.16  
250  
100  
50  
Fast mode plus  
tHIGH  
HIGH period of the SCL clock  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
Fast mode  
Setup time for a repeated START  
condition  
tSU, tSTA  
Fast mode plus  
High-speed mode  
Standard mode  
Fast mode  
tSU, tDAT Data setup time  
Fast mode plus  
High-speed mode  
10  
Standard mode  
0
3.45  
0.9  
Fast mode  
0
Fast mode plus  
0
tHD, tDAT Data hold time  
0
70  
150  
1000  
300  
120  
40  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
0
Fast mode  
20  
Fast mode plus  
tRCL  
Rise time of both SDA and SCL signals  
10  
20  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
80  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6.6 I2C Interface Timing Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Standard mode  
300  
ns  
20 x  
VDD/5.5  
V
Fast mode  
300  
ns  
ns  
tFCL  
Fall time of both SDA and SCL signals (1)  
20 x  
VDD/5.5  
V
Fast mode plus  
120  
10  
20  
40  
80  
ns  
ns  
µs  
µs  
µs  
µs  
pF  
pF  
pF  
pF  
µs  
µs  
µs  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
4
Fast mode  
0.6  
0.26  
0.16  
tSU, tSTO Setup time of STOP Condition  
Fast mode plus  
High-Speed mode  
Standard mode  
400  
400  
550  
400  
Fast mode  
CB  
Capacitive load for SDA and SCL  
Fast mode plus  
High-Speed mode  
Standard mode  
4.7  
1.3  
0.5  
Bus free time between a STOP and a  
START condition  
tBUF  
Fast mode  
Fast mode plus  
(1) VDD is the pull-up voltage of SDA and SCL  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
12  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
7
4
3.8  
3.6  
3.4  
3.2  
3
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
6.5  
6
5.5  
5
2.8  
2.6  
2.4  
2.2  
2
4.5  
4
3.5  
3
1.8  
1.6  
1.4  
1.2  
1
2.5  
2
1.5  
1
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (°C)  
Junction Temperature (°C)  
D002  
D002  
6-1. RDS(ON) of High Side Switch  
6-2. RDS(ON) of Low Side Switch  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (°C)  
Junction Temperature (°C)  
D002  
D002  
6-4. Quiescent Current vs Temperature  
6-3. Shutdown Current vs Temperature  
2.3  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
VIN = 3.3 V  
2.28  
2.26  
2.24  
2.22  
2.2  
VIN = 5.0 V  
2.18  
2.16  
2.14  
2.12  
2.1  
V
IN = 5 V  
1.7  
1.5  
VIN = 3.3 V  
-40 -20  
0
20  
40  
60  
80 100 120 140  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
Junction Temperature (°C)  
Output Voltage (V)  
D002  
D002  
6-6. Switching Frequency vs Temperature  
6-5. Maximum Switching Frequency vs Output  
Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
TPS6287x-Q1  
VIN  
L
VOUT  
VIN  
VIN  
SW  
COUT  
CIN  
REN  
VOSNS  
MODE/SYNC  
LOAD  
GOSNS  
EN  
RZ CC  
COMP  
AGND  
FSEL  
RFSEL  
CC2  
VI/O  
VI/O  
RPG  
VSEL  
PG  
RVSEL  
SYNC_OUT  
AGND  
SCL  
SDA  
GND  
GND  
7-1. Measurement Setup for TPS6287x-Q1  
7-1. List of Components  
Description  
Reference  
Manufacturer  
Texas Instruments  
Vishay  
IC  
L
TPS62877QWRZVRQ1  
IHSR2525CZ-56nH  
6 × 10 µF / 10 V; GCM21BR71A106KE22L  
+ 2 × 4.7 µF / 10 V; LMK107BJ475MAHT  
Murata,  
Taiyo Yuden  
CIN  
2 × 22 µF / 10 V; GCM31CR71A226KE02L  
+ 8 × 47 µF / 6.3 V; GCM32ER70J476ME19L  
COUT  
Murata  
+ 3 × 100 µF / 6.3 V;  
GRT32ER60J107NE13L  
CC  
RZ  
1 nF  
any  
any  
any  
3.6 kΩ  
4.7 pF  
CC2  
REN  
any  
any  
22 kΩ  
RFSEL  
0 kΩto GND  
6.2 kΩ  
RVSEL  
RPG  
any  
any  
or 47 kΩor 0 kΩ  
100 kΩ  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
14  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS6287x-Q1 devices are automotive-qualified synchronous step-down (buck) DC/DC converters. These  
devices use an enhanced DCS-control scheme that combines fast transient response with fixed frequency  
operation, which, together with their low output voltage ripple, high DC accuracy and differential remote sensing  
makes them designed for supplying the cores of modern high-performance processors.  
The three devices in this family are identical except for their current rating:  
The TPS62874-Q1 is a 15-A rated device  
The TPS62875-Q1 is a 20-A rated device  
The TPS62876-Q1 is a 25-A rated device  
The TPS62877-Q1 is a 30-A rated device  
To further increase the output current capability, combine multiple devices in a stack. For example, a stack  
of two TPS62875-Q1 devices has a current capability of 40 A.  
The TPS6287x-Q1 devices have a built-in I2C-compatible interface to control and monitor their operation. If the  
I2C-compatible interface is not used, connect the SCL and SDA pins to GND.  
8.2 Functional Block Diagram  
VIN  
SW  
VIN  
VIN  
SW  
SW  
SW  
Bias  
Regulator  
Gate Drive and Control  
VIN  
EN  
IHS  
ILS  
GND  
GND  
PG  
GND  
GND  
Ramp and Slope  
Compensation  
Device  
Control  
+
VOSNS  
GOSNS  
gm  
MODE/SYNC  
+
VREF  
Oscillator  
COMP  
FSEL  
VSEL  
SCL  
AGND  
SYNC_OUT  
Thermal  
Shutdown  
SDA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Fixed-Frequency DCS-Control Topology  
8-1 shows a simplified block diagram of the fixed-frequency DCS-control topology used in the TPS6287x-Q1  
devices. This topology comprises an inner emulated current loop and an outer voltage-regulating loop.  
VIN  
+
ON  
EN  
R
S
Q
L
Gate  
Driver  
COUT  
fsw  
Control  
Logic  
τaux  
Slope  
Compensation  
AGND  
VOSNS  
GOSNS  
+
COMP  
gm  
RLOAD  
RZ  
CC2  
CC  
AGND  
AGND  
8-1. Fixed-Frequency DCS-Control Topology (Simplified)  
8.3.2 Forced-PWM and Power-Save Modes  
The device can control the inductor current in three different ways to regulate the output:  
Pulse-width modulation with continuous inductor current (PWM-CCM)  
Pulse-width modulation with discontinuous inductor current (PWM-DCM)  
Pulse-frequency modulation with discontinuous inductor current and pulse skipping (PFM-CCM)  
During PWM-CCM operation, the device switches at a constant frequency and the inductor current is continuous  
(see 8-2). PWM operation achieves the lowest output voltage ripple and the best transient performance.  
t1/fSW  
t
0
Time  
8-2. Continuous Conduction Mode (CCM) Current Waveform  
During PWM-DCM operation the device switches at a constant frequency and the inductor current is  
discontinuous (see 8-3). In this mode the device controls the peak inductor current to maintain the selected  
switching frequency while still being able to regulate the output.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
16  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
t1/fSW  
t
0
Time  
8-3. Discontinuous Conduction Mode (DCM) Waveform  
During PFM-DCM operation the device keeps the peak inductor current constant (at a level corresponding to the  
minimum on-time of the converter) and skips pulses in order to regulate the output (see 8-3). The switching  
pulses that occur during PFM-DCM operation are synchronized to the internal clock.  
Minimum on-time  
t1/fSW  
t
t1/fSW  
t
t1/fSWt  
0
Time  
Skipped Pulses  
8-4. Discontinuous Conduction Mode (PFM-DCM) Current Waveform  
You can use 方程1 to calculate the output current threshold at which the device enters PFM-DCM:  
V
– V  
2L  
V
IN  
IN  
OUT  
2
I
=
t
f
sw  
(1)  
OUT PFM  
ON  
V
OUT  
8-5 shows how this threshold typically varies with VIN and VOUT for a switching frequency of 2.25 MHz.  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 5 V  
VIN = 3.3 V  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
Output Voltage (V)  
D002  
8-5. Output Current PFM-DCM Entry Threshold for fSW = 2.25 MHz  
You can configure the device to use either Forced-PWM (FPWM) mode or Power-Save Mode (PSM):  
In Forced-PWM mode the device uses PWM-CCM at all times  
In Power-Save Mode the device uses PWM-CCM at medium and high loads, PWM-DCM at low loads, and  
PFM-DCM at very low loads. Transition between the different operating modes is seamless.  
8-1 shows the function table of the MODE/SYNC pin and the FPWMEN bit in the CONTROL1 register, which  
control the operating mode of the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8-1. FPWM Mode and Power-Save Mode Selection  
MODE/SYNC Pin  
FPWMEN Bit  
Operating Mode  
Remark  
Low  
0
PSM  
Do not use in a stacked  
configuration  
1
X
X
FPWM  
FPWM  
FPWM  
High  
Sync Clock  
8.3.3 Transient Asynchronous Mode (optional)  
The TPS6287x-Q1 has a transient asynchronous mode that helps to minimize the output voltage overshoot  
during a load release. When the high side FET is turned off, the decay in inductor current is mainly determined  
by the output voltage as there is little voltage drop over the low side FET. For very low output voltages the  
current decays slowly so the output voltage overshoot is typically larger than the undershoot during a load step.  
Asynchronous mode turns off the low side FET for 6 switching cycles so the inductor current decays through the  
body diode. This adds extra voltage across the inductor so the current decays quicker and the output voltage  
overshoot is lower.  
8.3.4 Precise Enable  
The Enable (EN) pin is bidirectional, and has two functions:  
As an input, it enables and disables the DC/DC converter in the device  
As an output, it provides a SYSTEM_READY signal to other devices in a stacked configuration  
+
EN  
ENABLE  
VIT(EN)  
SYSTEM_READY  
CONTROL3:SINGLE  
8-6. Enable Functional Block Diagram  
Because there is an internal open-drain transistor connected to the EN pin, do not drive this pin directly from a  
low-impedance source. Instead, use a resistor to limit the current flowing into the EN pin (see 9.1).  
When power is first applied to the VIN pin, the device pulls the EN pin low until it has loaded its default register  
settings from nonvolatile memory and read the state of the VSEL, FSEL and SYNC_OUT pins. The device also  
pulls EN low if a fault such as thermal shutdown or overvoltage lockout occurs. In a stacked configuration all  
devices share a common enable signal, which means that the DC/DC converters in the stack cannot start to  
switch until all devices in the stack have completed their initialization. Similarly, a fault in one or more devices in  
the stack disables all converters in the stack (see 8.3.18).  
In stand-alone (non-stacked) applications, you can disable the active pulldown of the EN pin if you set SINGLE =  
1 in the CONTROL3 register. Fault conditions have no effect on the EN pin when SINGLE = 1. (Note that the EN  
pin is always pulled down during device initialization.) In stacked applications, make sure that SINGLE = 0.  
When the internal SYSTEM_READY signal is low (that is, initialization is complete and there are no fault  
conditions), the internal open-drain transistor is high impedance and the EN pin functions like a standard input: A  
high level on the EN pin enables the DC/DC converter in the device and a low level disables it. (The I2C interface  
is enabled as soon as the device has completed its initialization and is not affected by the state of the internal  
ENABLE or SYSTEM_READY signals.)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
18  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
A low level on the EN pin forces the device into shutdown. During shutdown, the MOSFETs in the power stage  
are off, the internal control circuitry is disabled, and the device consumes only 20 µA (typical).  
The rising threshold voltage of the EN pin is 1.0 V and the falling threshold voltage is 0.9 V. The tolerance of the  
threshold voltages is ±30 mV, which means that you can use the EN pin to implement precise turn-on and turn-  
off behavior.  
8.3.5 Start-Up  
When the voltage on the VIN pin exceeds the positive-going UVLO threshold, the device initializes as follows:  
It pulls the EN pin low  
It enables the internal reference voltage  
It reads the state of the VSEL, FSEL and SYNC_OUT pins  
It loads the default values into the device registers  
When initialization is complete, the device enables I2C communication and releases the EN pin. The external  
circuitry controlling the EN pin now determines the behavior of the device:  
If the EN pin is low, the device is disabled: you can write to and read from the device registers, but the DC/DC  
converter does not operate.  
If the EN pin is high, the device is enabled: you can write to and read from the device registers and, after a  
short delay from EN pin going high, the DC/DC converter starts to ramp up its output.  
8-7 shows the start-up sequence when the EN pin is pulled up to VIN.  
VIN  
EN  
VIT+(UVLO)  
EN pin pulled  
low internally  
Device initialization  
complete  
VOUT  
ttd(EN)1t  
ttd(RAMP)t  
PG  
Undefined  
td(PG)  
8-7. Start-Up Timing When EN is Pulled Up to VIN  
8-8 shows the start-up sequence when an external signal is connected to the EN pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
VIN  
EN  
VIT+(UVLO)  
VIT+(EN)  
VOUT  
ttd(EN)2  
t
ttd(RAMP)t  
Device initialization  
complete  
PG Undefined  
td(PG)  
8-8. Start-Up Timing When an External Signal is Connected to the EN Pin  
The SSTIME[1:0] bits in the CONTROL2 register select the duration of the soft-start ramp:  
td(RAMP) = 500 μs  
td(RAMP) = 770 μs  
td(RAMP) = 1 ms (default)  
td(RAMP) = 2 ms  
If you program new output voltage setpoint (VOUT[7:0]), output voltage range (VRANGE[1:0]), or soft-start time  
(SSTIME[1:0]) settings when the device has already begun its soft-start sequence, the device ignores the new  
values until the soft-start sequence is complete. For example, if you change the value of VSET[7:0] during soft-  
start, the device first ramps to the value that VSET[7:0] had when the soft-start sequence began and then, when  
soft-start is complete, ramps up or down to the new value.  
The device can start up into a prebiased output. In this case, only a portion of of the internal voltage ramp is  
seen externally (see 8-9).  
Final voltage  
VOUT  
Prebias voltage  
ttd(RAMP)  
t
8-9. Start-Up into a Prebiased Output  
Note that the device always operates in DCM/PFM allowed during the start-up ramp, regardless of other  
configuration settings or operating conditions.  
8.3.6 Switching Frequency Selection  
During device initialization, a resistor-to-digital converter in the device determines the state of the FSEL pin and  
sets the switching frequency of the DC/DC converter according to 8-2.  
8-2. Switching Frequency Options  
Resistor at FSEL (1%)  
6.2 kΩto GND  
Short to GND  
Switching Frequency  
1.5 MHz  
2.25 MHz  
Short to VIN  
2.5 MHz  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8-2. Switching Frequency Options (continued)  
Resistor at FSEL (1%)  
47 kΩto VIN  
Switching Frequency  
3 MHz  
8-10 shows a simplified block diagram of the R2D converter used to detect the state of the FSEL pin. (An  
identical circuit detects the state of the VSEL pin see 8-5.)  
VIN  
S1  
6.5 k  
FSEL  
VIL = < 0.4 V  
VIH = > 0.8 V  
1.6 k  
S2  
8-10. FSEL R2D Converter Functional Block Diagram  
Detection of the state of the FSEL pin works as follows:  
To detect the most significant bit (MSB), the circuit opens S1 and S2, and the input buffer detects if a high or a  
low level is connected to the FSEL pin.  
To detect the least significant bit (LSB):  
If the MSB was 0, the circuit closes S1. If the input buffer detects a high level, the LSB = 1; if the circuit  
detects a low level, the LSB = 0.  
If the MSB was 1, the circuit closes S2. If the input buffer detects a low level, the LSB = 0; if the circuit detects  
a high level, the LSB = 1.  
The propagation delay of the current-sensing comparator limits the minimum on-time of the device. In practice,  
this means that the maximum switching frequency the device can support decreases with small duty cycles. 图  
6-5 shows the practical operating range of the device with 3.3-V and 5-V supplies.  
8.3.7 Output Voltage Setting  
8.3.7.1 Output Voltage Range  
The device has three different voltage ranges. The VRANGE[1:0] bits in the CONTROL1 register control which  
range is active (see 8-3). The default output voltage range after device initialization is 0.4 V to 1.675 V in 5-  
mV steps.  
8-3. Voltage Ranges  
VRANGE[1:0]  
0b00  
Voltage Range  
0.4 V to 0.71875 V in 1.25-mV steps  
0.4 V to 1.0375 V in 2.5-mV steps  
0b01  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8-3. Voltage Ranges (continued)  
VRANGE[1:0]  
0b10  
Voltage Range  
0.4 V to 1.675 V in 5-mV steps  
0.4 V to 1.675 V in 5-mV steps  
0b11  
Note that every change to the VRANGE[1:0] bits must be followed by a write to the VSET register even if the  
value of the VSET[7:0] bits does not change. This sequence is necessary for the device to start to use the new  
voltage range.  
8.3.7.2 Output Voltage Setpoint  
Together with the selected range, the VSET[7:0] bits in the VSET register control the output voltage setpoint of  
the device (see 8-4).  
8-4. Start-Up Voltage Settings  
VRANGE[1:0]  
0b00  
Output Voltage Setpoint  
0.4 V + VSET[7:0] × 1.25 mV  
0.4 V + VSET[7:0] × 2.5 mV  
0.4 V + VSET[7:0] × 5 mV  
0.4 V + VSET[7:0] × 5 mV  
0b01  
0b10 (default)  
0b11  
During initialization, the device reads the state of the VSEL pin and selects the default output voltage according  
to 8-5. Note that the VSEL pin also selects the I2C target address of the device (see below).  
8-5. Default Output Voltage Setpoints  
VSEL Pin1  
VSET[7:0]  
Output Voltage Setpoint  
800 mV  
I2C Device Address  
0x50  
6.2 kΩto GND  
Short-Circuit to GND  
Short-Circuit to VIN  
0x44  
0x45  
0x46  
0x47  
0x46  
750 mV  
0x5F  
875 mV  
0x24  
47 kto VIN  
580 mV  
If you program new output voltage setpoint (VOUT[7:0]), output voltage range (VRANGE[1:0]), or soft-start time  
(SSTIME[1:0]) settings when the device has already begun its soft-start sequence, the device ignores the new  
values until the soft-start sequence is complete. For example, if you change the value of VSET[7:0] during soft-  
start, the device first ramps to the value that VSET[7:0] had when the soft-start sequence began and then, when  
soft-start is complete, ramps up or down to the new value.  
If you change VOUT[7:0], VRAMP[1:0], or SSTIME[1:0] while EN is low, the device uses the new values the next  
time you enable it.  
During start-up the output voltage ramps up to the target value set by the VSEL pin before ramping up or down  
to any new value programmed to the device over the I2C interface.  
8.3.7.3 Non-Default Output Voltage Setpoint  
If none of the default voltage range / voltage setpoint combinations is suitable for your application, you can you  
change these device settings via I2C before you enable the device. Then, when you pull the EN pin high, the  
device starts up with the desired start-up voltage.  
Note that if you change the device settings via I2C while the device is ramping, the device ignores the changes  
until the ramp is complete.  
1
For reliable voltage setting, make sure that there is no stray current path connected to the VSEL pin and that the parasitic capacitance  
between the VSEL pin and GND is less than 30 pF.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
22  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.3.7.4 Dynamic Voltage Scaling  
If you change the output voltage setpoint while the DC/DC converter is operating, the device ramps up or down  
to the new voltage setting in a controlled way.  
The VRAMP[1:0] bits in the CONTROL1 register set the slew rate when the device ramps from one voltage to  
another during DVS (see 8-6).  
8-6. Dynamic Voltage Scaling Slew Rate  
VRAMP[1:0]  
0b00  
DVS Slew Rate  
10 mV/μs  
0b01  
5 mV/μs  
0b10 (default)  
0b11  
1.25 mV/μs  
0.5 mV/μs  
Note that ramping the output to a higher voltage requires additional output current, so that during DVS the  
converter must generate a total output current given by:  
(2)  
where:  
IOUT is the total current the converter must generate while ramping to a higher voltage  
IOUT(DC) is the DC load current  
COUT is the total output capacitance  
dVOUT/dt is the slew rate of the output voltage (programmable in the range 0.5 mV/µs to 10 mV/µs)  
For correct operation, make sure that the total output current during DVS does not exceed the current limit of the  
device.  
8.3.7.5 Droop Compensation  
Droop Compensation scales the nominal output voltage based on the output current. This is done such that the  
output voltage is set to a higher value with no output current and to a lower value than the nominal value with the  
maximum output current. Droop Compensation therefore provides a higher margin during a load transient and  
helps to keep the output voltage within a certain tolerance band in case of a heavy load step or at load release  
or allows to use a lower output capacitance. The voltage scaling is absolute instead of relative. The voltage  
scaling vs output current depends on the output current version of TPS6287x-Q1 based on the rated output  
current of 15 A, 20 A, 25 A and 30 A, respectively. The behavior is shown in the graph Voltage Scaling with  
Output Current. Droop compensation is disabled by default and can be enabled by bit CONTROL3:DROOPEN.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Output  
Voltage  
+12 mV  
Nominal  
Output  
Voltage  
0 A  
50% of  
rated  
output  
current  
Rated  
output  
current  
Output Current  
-12 mV  
8-11. Voltage Scaling with Output Current  
8.3.8 Compensation (COMP)  
The COMP pin is the connection point for an external compensation network. A series-connected resistor and  
capacitor to GND is sufficient for typical applications and provides enough scope to optimize the loop response  
for a wide range of operating conditions.  
When using multiple devices in a stacked configuration, all devices share a common compensation network, and  
the COMP pin ensures equal current sharing between them (see 8.3.18).  
8.3.9 Mode Selection / Clock Synchronization (MODE/SYNC)  
A high level on the MODE/SYNC pin selects forced-PWM operation. A low level on the MODE/SYNC pin selects  
power-save operation, in which the device automatically transitions between PWM and PFM, according to the  
load conditions.  
If you apply a valid clock signal to the MODE/SYNC pin, the device synchronizes its switching cycles to the  
external clock and automatically selects forced-PWM operation.  
The MODE/SYNC pin is logically ORed with the FPWMEN bit in the CONTROL1 register (see 8-1).  
When multiple devices are used together in a stacked configuration the MODE/SYNC pin of the secondary  
devices is the input for the clock signal (see 8.3.18).  
8.3.10 Spread Spectrum Clocking (SSC)  
The device has a spread spectrum clocking function that can reduce electromagnetic interference (EMI). When  
the SSC function is active, the device modulates the switching frequency ±10% about the nominal value. The  
frequency modulation has a triangular characteristic (see 8-12).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
24  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Switching  
Frequency  
+10%  
Nominal fSW  
–10%  
t2048/fSW  
t
Time  
8-12. Spread Spectrum Clocking Behavior  
To use the SSC function, make sure that:  
SSCEN = 1 in the CONTROL1 register  
Forced-PWM operation is selected (MODE pin is high or FPWMEN = 1 in the CONTROL1 register)  
The device is not synchronized to an external clock  
To disable the SSC function, make sure that SCCEN = 0 in the CONTROL1 register.  
To use the SSC function with multiple devices in a stacked configuration, make sure that the primary converter  
runs from its internal oscillator and synchronize all secondary converters to the primary clock (see 8-16).  
8.3.11 Output Discharge  
The device has an output discharge function which ensures a defined ramp down of the output voltage when the  
device is disabled and keeps the output voltage close to 0 V while the device is off. The output discharge  
function is enabled when DISCHEN = 1 in the CONTROL1 register. The output discharge function is enabled by  
default.  
If enabled, the device discharges the output under the following conditions:  
A low level is applied to the EN pin  
SWEN = 0 in the CONTROL1 register  
A thermal shutdown event occurs  
An UVLO event occurs  
An OVLO event occurs  
The output discharge function is not available until you have enabled the device at least once after power up.  
During power-down, the device continues to discharge the output for as long as the supply voltage is greater  
than approximately 1.8 V.  
8.3.12 Undervoltage Lockout (UVLO)  
The TPS6287x-Q1 has an undervoltage lockout function that disables the device if the supply voltage is too low  
for correct operation. The negative-going threshold of the UVLO function is 2.5 V (typical). If the supply voltage  
decreases below this value, the device stops switching and, if DISCHEN = 1 in the CONTROL1 register, turns on  
the output discharge.  
8.3.13 Overvoltage Lockout (OVLO)  
The TPS6287x-Q1 has an overvoltage lockout function that disables the DC/DC converter if the supply voltage is  
too high for correct operation. The positive-going threshold of the OVLO function is 6.3 V (typical). If the supply  
voltage increases above this value, the device stops switching and, if DISCHEN = 1 in the CONTROL1 register,  
turns on the output discharge.  
The device automatically starts switching again it begins a new soft-start sequence when the supply  
voltage falls below 6.2 V (typical).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.3.14 Overcurrent Protection  
8.3.14.1 Cycle-by-Cycle Current Limiting  
If the peak inductor current increases above the high-side current limit threshold, the device turns off the high-  
side switch and turns on the low-side switch to ramp down the inductor current. The device only turns on the  
high-side switch again if the inductor current has decreased below the low-side current limit threshold.  
Note that because of the propagation delay of the current limit comparator, the current limit threshold in practice  
can be greater than the DC value specified in the Electrical Characteristics. The current limit in practice is given  
by:  
(3)  
where:  
IL is the peak inductor current  
ILIMH is the high-side current limit threshold measured at DC  
VIN is the input voltage  
VOUT is the output voltage  
L is the effective inductance at the peak current level  
tpd is the propagation delay of the current limit comparator (typically 50 ns)  
8.3.14.2 Hiccup Mode  
To enable hiccup operation, make sure that HICCUPEN = 1 in the CONTROL1 register. The HICCUP function is  
disabled by default.  
If hiccup operation is enabled and the high-side switch current exceeds the current limit threshold on 32  
consecutive switching cycles, the device:  
Stops switching for 128 µs, after which it automatically starts switching again (it starts a new soft-start  
sequence)  
Sets the HICCUP bit in the STATUS register  
Pulls the PG pin low. The PG pin stays low until the overload condition goes away and the device can start up  
correctly and regulate the output voltage. Note that power-good function has a deglitch circuit, which delays  
the rising edge of the power-good signal by 40 µs (typical).  
Hiccup operation continues in a repeating sequence of 32 cycles in current limit, followed by a pause of 128  
µs, followed by a soft-start attempt for as long as the output overload condition exists.  
The device clears the HICCUP bit if you read the STATUS register when the overload condition has been  
removed.  
8.3.14.3 Current-Limit Mode  
To enable current-limit mode, make sure that HICCUPEN = 0 in the CONTROL1 register.  
When current limit operation is enabled the device limits the high-side switch current cycle-by-cycle for as long  
as the overload condition exists. If the device limits the high-side switch current for four or more consecutive  
switching cycles it sets ILIM = 1 in the STATUS register.  
The device clears the ILIM bit if you read the STATUS register when the overload condition no longer exits.  
8.3.15 Power Good (PG)  
The Power-Good (PG) pin is bidirectional and has two functions:  
In a standalone configuration, and in the primary device of a stacked configuration, the PG pin is an open-  
drain output that indicates the status of the converter or stack.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
26  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
In a secondary device of a stacked configuration, the PG pin is an input that indicates when the soft-start  
sequence is complete and all converters in the stack can change from DCM switching to CCM switching.  
VT+(OVP)  
OVP  
VT+(OVP)-VHYS  
VO  
VT-(UVP)+VHYS  
UVP  
VT-(UVP)  
de-glitch me td(PG)  
de-glitch me td(PG)  
PG  
8-13. PG Timing  
8.3.15.1 Standalone / Primary Device Behavior  
The primary purpose of the PG pin is to indicate if the output voltage is in regulation, but it also indicates if the  
device is in thermal shutdown or disabled. 8-7 summarizes the behavior of the PG pin in a stand-alone or  
primary device.  
8-7. Power-Good Function Table  
PGBLNKDVS  
AND DVS_active  
VIN  
EN  
VOUT  
Soft Start  
TJ  
PG  
2 V > VIN  
X
X
L
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
Undefined  
Low  
V
IT(UVLO) VIN 2 V  
X
Low  
Active  
Low  
VOUT > VT(OVP)  
or  
low  
VIN > VIT(UVLO)  
Inactive  
1
TJ < TSD  
Hi-Z  
VT(UVP) > VOUT  
H
VT(OVP) > VOUT > VT(UVP)  
X
X
X
TJ < TSD  
TJ > TSD  
X
Hi-Z  
Low  
Low  
X
X
X
X
VIN > VIT(OVLO)  
8-14 shows a functional block diagram of the power-good function in a stand-alone or primary device. A  
window comparator monitors the output voltage, and the output of the comparator goes high if the output voltage  
is either less than 95% (typical) or greater than 105% (typical) of the nominal output voltage. The output of the  
window comparator is deglitched the typical deglitch time is 40 µs and then used to drive the open-drain  
PG pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
CONTROL1:HICCUPEN  
To converter  
control logic  
Hiccup  
Control  
PBOV  
PBUV  
STATUS  
Register  
4 Consecutive  
Pulses  
Detection  
Current  
Comparator  
ISW  
ILIM  
HICCUP  
Soft-Start Complete  
PG  
40-µs  
Deglitch  
VIN > VIT(OVLO)  
Window  
Comparator  
VOUT  
Blanking  
Thermal Shutdown  
VIN < VIT(UVLO)  
95% VOUT  
105% VOUT  
VEN < VIT(EN)  
DVS Active  
CONTROL3:PGBLNKDVS  
8-14. Power-Good Functional Block Diagram (Standalone / Primary Device)  
During DVS activity, when the DC/DC converter transitions from one output voltage setting to another, the output  
voltage can temporarily exceed the limits of the window comparator and pull the PG pin low. The device has a  
feature to disable this behavior: if PGBLNKDVS = 1 in the CONTROL3 register, the device ignores the output of  
the power-good window comparator while DVS is active.  
Note that the PG pin is always low regardless of the output of the window comparator when:  
The device is in thermal shutdown  
The device is disabled  
The device is in undervoltage lockout  
The device is in overvoltage lockout  
The device is in soft start  
The device is in HICCUP mode  
8.3.15.2 Secondary Device Behavior  
8-15 shows a functional block diagram of the power-good function in a secondary device. During initialization,  
the device presets FF1 and FF2, which pulls down the PG pin and forces the device to operate in DCM. When  
the device completes its soft start, it resets FF2, which turns off Q1. However, in a stacked configuration all  
devices share the same PG signal, and therefore the PG pin stays low until all devices in the stack have  
completed their soft start. When that happens, FF1 is reset and the converters operate in CCM. FF1 and FF2  
are pre-set such that DCM is allowed each time the converter is disabled, either by the EN pin, EN bit, thermal  
shutdown or UVLO.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
28  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
FF1  
Input  
Buffer  
FORCE DCM  
Latch  
PG  
VIL = < 0.4 V  
VIH = > 0.8 V  
SECONDARY DEVICE  
DETECTED  
Q1  
SOFT START  
COMPLETE  
Latch  
FF2  
8-15. Power-Good Functional Block Diagram (Secondary Device)  
8.3.16 Remote Sense  
The device has two pins, VOSNS and GOSNS, to remotely sense the output voltage. Remote sensing lets the  
converter sense the output voltage directly at the point-of-load and increases the accuracy of the output voltage  
regulation.  
In a stacked configuration, you must connect the VOSNS and GOSNS of the primary device directly at the point-  
of-load. For the secondary devices, you can connect the VOSNS and GOSNS pins to the local output capacitor  
or both pins to AGND (see 8.3.18).  
8.3.17 Thermal Warning and Shutdown  
The device has a two-level overtemperature detection function.  
If the junction temperature rises above the thermal warning threshold of 150 °C (typical), the device sets the  
TWARN bit in the STATUS register. The device clears the TWARN bit if you read the STATUS register when the  
junction temperature is below the TWARN threshold of 130 °C (typical).  
If the junction temperature rises above the thermal shutdown threshold of 170 °C (typical), the device:  
Stops switching  
Pulls down the EN pin (if SINGLE = 0 in the CONTROL3 register)  
Enables the output discharge (if DISCHEN = 1 in the CONTROL1 register)  
Sets the TSHUT bit in the STATUS register  
Pulls the PG pin low  
If the junction temperature falls below the thermal shutdown threshold of 150 °C (typical), the device:  
Starts switching again, starting with a new soft-start sequence  
Sets the EN pin to high impedance  
Sets the PG pin to high-impedance  
The device clears the TSHUT bit if you read the STATUS register when the junction temperature is below the  
TSHUT threshold of 150 °C (typical).  
In a stacked configuration, in which all devices share a common enable signal, a thermal shutdown condition in  
one device disables the entire stack. When the hot device cools down, the whole stack automatically starts  
switching again.  
8.3.18 Stacked Operation  
You can connect multiple TPS6287x-Q1 devices in parallel in what is known as a "stack"; for example, to  
increase output current capability or reduce device junction temperature. A stack comprises one primary device  
and one or more secondary devices. During initialization, each device monitors its SYNCOUT pin to determine if  
it must operate as a primary device or a secondary device:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
If there is a 47-kΩresistor between the SYNCOUT pin and ground, the device operates as a secondary  
device  
If the SYNCOUT pin is high impedance, the device operates as a primary device  
8-16 shows the recommended interconnections in a stack of two TPS6287x-Q1 devices.  
TPS6287x-Q1  
(Primary Device)  
CLOAD  
100 nH  
VIN  
2.7 V to 6 V  
VIN  
VIN  
SW  
COUT  
CIN  
VIO  
REN  
MODE/SYNC  
Load  
EN  
VOSNS  
GOSNS  
SDA  
SCL  
I2C  
AGND  
RZ  
VSEL  
FSEL  
VIO  
CC2  
CC  
RVSEL RFSEL  
RPG  
COMP  
PG  
PG  
SYNC_OUT  
AGND  
GND  
GND  
TPS6287x-Q1  
(Secondary Device)  
100 nH  
VIN  
VIN  
SW  
COUT  
CIN  
MODE/SYNC  
VOSNS  
GOSNS  
EN  
SDA  
SCL  
VSEL  
FSEL  
RFSEL  
COMP  
PG  
SYNC_OUT  
AGND  
GND  
GND  
47 k  
8-16. Two TPS6287x-Q1 Devices in a Stacked Configuration  
The key points to note are:  
All the devices in the stack share a common enable signal, which must be pulled up with a resistance of at  
least 15 kΩ.  
All the devices in the stack share a common power-good signal.  
All the devices in the stack share a common compensation signal.  
The remote sense pins (VOSNS and GOSNS) of each device must be connected (do not leave these pins  
floating).  
VOSNS and GOSNS of the primary device must be connected to the capacitor at the load  
VOSNS and GOSNS of the secondary devices can either be connected to the output capacitor at the device  
or alternatively both pins can be tied to AGND.  
Each device must be configured for the same switching frequency.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
30  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
The primary device must be configured for forced-PWM operation (secondary devices are automatically  
configured for forced-PWM operation).  
A stacked configuration can support synchronization to an external clock or spread-spectrum clocking.  
Only the VSEL pin of the primary device is used to set the default output voltage. The VSEL pin of secondary  
devices is not used and must be connected to ground.  
The SDA and SCL pins of secondary devices are not used and must be connected to ground.  
A stacked configuration uses a daisy-chained clocking signal, in which each device switches with a phase  
offset of approximately 120° relative to the adjacent devices in the daisy-chain. To daisy-chain the clocking  
signal, connect the SYNCOUT pin of the primary device to the MODE/SYNC pin of the first secondary device.  
Connect the SYNCOUT pin of the first secondary device to the MODE/SYNC pin of the second secondary  
device. Continue this connection scheme for all devices in the stack, to daisy-chain them together.  
Hiccup overcurrent protection must not be used in a stacked configuration.  
In a stacked configuration, the common enable signal also acts as a SYSTEM_READY signal (see 8.3.4).  
Each device in the stack can pull its EN pin low during device start-up or when a fault occurs. Thus, the stack is  
only enabled when all devices have completed their start-up sequence and are fault-free. A fault in any one  
device disables the whole stack for as long as the fault condition exists.  
During start-up, the primary device pulls the COMP pin low for as long as the enable signal (SYSTEM_READY)  
is low. When the enable signal goes high, the primary device actively controls the COMP pin and all devices in  
the stack follow the COMP voltage. During start-up, each device in the stack pulls its PG pin low while it  
initializes. When initialization is complete, each secondary device in the stack sets its PG pin to a high  
impedance and the primary device alone controls the state of the PG signal. The PG pin goes high when the  
stack has completed its start-up ramp and the output voltage is within specification. The secondary devices in  
the stack detect the rising edge of the power-good signal and switch from DCM operation to CCM operation.  
After the stack has successfully started up, the primary device controls the power-good signal in the normal way.  
In a stacked configuration, there are some faults that only affect individual devices, and other faults that affect all  
devices. For example, if one device enters current limit, only that device is affected. But a thermal shutdown or  
undervoltage lockout event in one device disables all devices through the shared enable (SYSTEM_READY)  
signal.  
Functionality During Stacked Operation  
Some device features are not available during stacked operation, or are only available in the primary converter.  
8-8 summarizes the available functionality during stacked operation.  
8-8. Functionality During Stacked Operation  
Function  
Primary Device  
Secondary Device  
Remark  
UVLO  
Yes  
Yes  
Common enable signal  
OVLO  
Yes  
Yes  
Yes  
Yes  
Common enable signal  
Individual  
OCP Current Limit  
Do not use during stacked  
operation  
No  
Yes  
No  
Yes  
No  
No  
No  
OCP Hiccup OCP  
Thermal Shutdown  
Common enable signal  
Primary device only  
Primary device only  
Power-Good (Window  
Comparator)  
Yes  
I2C Interface  
Yes  
Voltage loop controlled by  
primary device only  
DVS  
Via I2C  
Daisy-chained from primary  
device to secondary devices  
SSC  
Via I2C  
No  
Synchronization clock applied to  
primary device  
SYNC  
Yes  
No  
Yes  
No  
Precise Enable  
Only binary enable  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8-8. Functionality During Stacked Operation (continued)  
Function  
Primary Device  
Secondary Device  
Remark  
Always enabled in secondary  
devices  
Output Discharge  
Yes  
Yes  
Fault Handling During Stacked Operation  
In a stacked configuration, there are some faults that only affect individual devices, and other faults that affect all  
devices. For example, if one device enters current limit, only that device is affected. But a thermal shutdown or  
undervoltage lockout event in one device disables all devices via the shared enable (SYSTEM_READY) signal.  
8-9 summarizes the fault handling of the TPS6287x-Q1 devices during stacked operation.  
8-9. Fault Handling During Stacked Operation  
Fault Condition  
UVLO  
Device Response  
Enable signal pulled low  
Enable signal remains high  
System Response  
New soft start  
OVLO  
Thermal Shutdown  
Current Limit  
Error amplifier clamped  
SYNC_OUT and power-stage switch to  
internal oscillator  
System active but switching frequency is not  
synchronized if clk to a secondary device fails  
External CLK applied to MODE/SYNC fails  
8.4 Device Functional Modes  
8.4.1 Power-On Reset  
The device operates in POR mode when the supply voltage is less than the POR threshold.  
In POR mode no functions are available and the content of the device registers is not valid.  
The device leaves POR mode and enters UVLO mode when the supply voltage increases above the POR  
threshold.  
8.4.2 Undervoltage Lockout  
The device operates in UVLO mode when the supply voltage is between the POR and UVLO thresholds.  
If the device enters UVLO mode from POR mode, no functions are available. If the device enters UVLO mode  
from Standby mode, the output discharge function is available. The content of the device registers is valid in  
UVLO mode.  
The device leaves UVLO mode and enters POR mode when the supply voltage decreases below the POR  
threshold. The device leaves UVLO mode and enters Standby mode when the supply voltage increases above  
the UVLO threshold.  
8.4.3 Standby  
The device operates in standby mode when the supply voltage is greater than the UVLO threshold (and the  
device has completed its initialization2) and any of the following conditions is true:  
A low level is applied to the EN pin.  
SWEN = 0 in the CONTROL1 register.  
The device junction temperature is greater than the thermal shutdown threshold.  
The supply voltage is greater than the OVLO threshold.  
The following functions are available in standby mode:  
2
The device initializes for 400 µs (typical) after the supply voltage increases above the UVLO threshold voltage following a device  
power-on reset (f the supply voltage decreases below the UVLO threshold but not below the POR threshold, the device does not  
reinitialize when the supply voltage increases again). During initialization the device reads the state of the VSEL, FSEL, and  
SYNC_OUT pins.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
32  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
I2C interface  
Output discharge  
Power good  
The device leaves standby mode and enters UVLO mode when the supply voltage decreases below the UVLO  
threshold. The device leaves standby mode and enters on mode when all of the following conditions are true:  
A high-level is applied to the EN pin.  
SWEN = 1 in the CONTROL1 register.  
The device junction temperature is below the thermal shutdown threshold.  
The supply voltage is below the OVLO threshold.  
8.4.4 On  
The device operates in On mode when the supply voltage is greater than the UVLO threshold and all of the  
following conditions are true:  
A high-level is applied to the EN pin  
SWEN = 1 in the CONTROL1 register  
The device junction temperature is below the thermal shutdown threshold  
The supply voltage is below the OVLO threshold  
All functions are available in On mode.  
The device leaves On mode and enters UVLO mode when the supply voltage decreases below the UVLO  
threshold. The device leaves On mode and enters the Standby mode when any of the following conditions is  
true:  
A low level is applied to the EN pin  
SWEN = 0 in the CONTROL1 register  
The device junction temperature is greater than the thermal shutdown threshold  
The supply voltage is greater than the OVLO threshold  
8.5 Programming  
8.5.1 Serial Interface Description  
I2Cis a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors (see I2C-Bus  
Specification and User´s Manual, Revision 6, 4 April 2014). The bus consists of a data line (SDA) and a clock  
line (SCL) with pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C  
compatible devices connect to the I2C bus through open drain I/O pins, SDA and SCL. A controller, usually a  
microcontroller or a digital signal processor, controls the bus. The controller is responsible for generating the  
SCL signal and device addresses. The controller also generates specific conditions that indicate the START and  
STOP of data transfer. A target receives or transmits data on the bus under control of the controller.  
The TPS6287x-Q1 device operates as a target and supports the following data transfer modes, as defined in the  
I2C-Bus Specification: standard mode (100 kbps) and fast mode (400 kbps) and fast mode plus (1 Mbps). The  
interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values  
depending on the instantaneous application requirements. Register contents remain intact as long as the input  
voltage remains above 1.4V.  
The data transfer protocol for standard and fast modes is exactly the same, therefore they are referred to as F/S-  
mode in this document. The device supports 7-bit addressing; general call addresses are not supported. The  
device 7-bt address is selected by the status of pin VSEL (see 8-5).  
The protocol for high-speed mode is different from F/S-mode, and it is referred to as HS-mode.  
TI recommends that the I2C controller initiates a STOP condition on the I2C bus after the initial power up of SDA  
and SCL pull-up voltages to ensure reset of the I2C engine.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.5.2 Standard-, Fast-, Fast-Mode Plus Protocol  
The controller initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 8-17. All I2C-compatible devices must  
recognize a start condition.  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
8-17. START and STOP Conditions  
The controller then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
R/W on the SDA line. During all transmissions, the controller ensures that data is valid. A valid data condition  
requires the SDA line to be stable during the entire high period of the clock pulse (see 8-18). All devices  
recognize the address sent by the primary device and compare it to their internal fixed addresses. Only the  
target with a matching address generates an acknowledge (see 8-19) by pulling the SDA line low during the  
entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the controller knows that the  
communication link with a target has been established.  
DATA  
CLK  
Data line stable  
Change  
data valid  
of data  
allowed  
8-18. Bit Transfer on the Serial Interface  
The controller generates further SCL cycles to either transmit data to the target (write comand; R/W = 0) or  
receive data from the target (read command; R/W = 1). In either case, the receiver needs to acknowledge the  
data sent by the transmitter. So an acknowledge signal can either be generated by the controller or by the target,  
depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit  
acknowledge can continue as long as necessary.  
To signal the end of the data transfer, the controller generates a stop condition by pulling the SDA line from low  
to high while the SCL line is high (see 8-17). This releases the bus and stops the communication link with the  
addressed target. All I2C compatible devices must recognize the stop condition. Upon the receipt of a stop  
condition, all devices know that the bus is released, and they wait for a start condition followed by a matching  
address.  
Attempting to read data from register addresses not listed in this section results in 00h being read out.  
Data Output  
by Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
SCL from  
1
2
8
9
Controller  
S
Clock Pulse for  
START  
Acknowledgement  
Condition  
8-19. Acknowledge on the I2C Bus  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
34  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Recognize START or  
REPEATED START  
condition  
Recognize STOP or  
REPEATED START  
condition  
Generate ACKNOWLEDGE  
signal  
P
SDA  
MSB  
acknowledgement  
signal from Target  
acknowledgement  
signal from receiver  
Sr  
SCL  
1
2
7
8
9
1
2
3 to 8  
9
S or Sr  
Sr or P  
ACK  
ACK  
START or  
repeated START  
condition  
byte complete,  
interrupt within target  
clock line held low while  
interrupts are serviced  
STOP or  
repeated START  
condition  
8-20. Bus Protocol  
8.5.3 HS-Mode Protocol  
The controller generates a start condition followed by a valid serial byte containing HS controller code  
00001XXX. This transmission is made in F/S-mode at no more than 400 Kbps. No device is allowed to  
acknowledge the HS controller code, but all devices must recognize it and switch their internal setting to support  
3.4 Mbps operation.  
The controller then generates a repeated start condition (a repeated start condition has the same timing as the  
start condition). After this repeated start condition, the protocol is the same as F/S-mode, except that  
transmission speeds up to 3.4 Mbps are allowed. A stop condition ends the HS-mode and switches all the  
internal settings of the target devices to support the F/S-mode. Instead of using a stop condition, repeated start  
conditions must be used to secure the bus in HS-mode.  
Attempting to read data from register addresses not listed in this section results in 00h being read out.  
8.5.4 I2C Update Sequence  
This requires a start condition, a valid I2C address, a register address byte, and a data byte for a single update.  
After the receipt of each byte, device acknowledges by pulling the SDA line low during the high period of a single  
clock pulse. A valid I2C address selects the device. The device performs an update on the falling edge of the  
acknowledge signal that follows the LSB byte.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8
1
7
1
1
8
1
1
1
S
Device Address  
R/W  
A
Register Address  
A
Data  
A/A  
P
“0” Write  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
From Controller to Target  
From Target to Controller  
S
= START condition  
Sr = REPEATED START condition  
= STOP condition  
P
8-21. : WriteData Transfer Format in Standard-, Fast, Fast-Plus Modes  
8
1
7
1
1
8
1
1
7
1
1
1
1
S
Device Address  
R/W  
A
Register Address  
A
Sr  
Device Address  
R/W  
A
Data  
A
P
“0” Write  
“1” Read  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
From Controller to Target  
From Target to Controller  
S
= START condition  
Sr = REPEATED START condition  
= STOP condition  
P
8-22. ReadData Transfer Format in Standard-, Fast, Fast-Plus Modes  
F/S Mode  
HS Mode  
8
F/S Mode  
8
1
8
1
1
7
1
1
1
1
1
S
HS-Code  
A
Sr  
Device Address  
R/W  
A
Register Address  
A
Data  
A/A  
P
(n x Bytes + Acknowledge)  
HS Mode continues  
Device Address  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
From Controller to Target  
From Target to Controller  
Sr  
S
= START condition  
Sr = REPEATED START condition  
= STOP condition  
P
8-23. Data Transfer Format in HS-Mode  
8.5.5 I2C Register Reset  
The I2C registers can be reset by:  
pulling the input voltage below 1.4 V (typ).  
or setting the Reset bit in the CONTROL register. When Reset is set to 1, all registers are reset to the default  
values and a new startup is begun immediately. After tDelay, the I2C registers can be programmed again.  
8.5.6 Dynamic Voltage Scaling (DVS)  
To optimize the power consumption of the system, the output voltage of the TPS6287x-Q1 can be adapted  
during operation based on the actual power requirement of the load.  
The device starts up into the default output voltage selected through the external VSEL pin or the settings in the  
VSET register. The output voltage can be dynamically adapted via the I2C interface by writing the new target  
output voltage to the VSET register. The output voltage then increases or decrease to the desired value with the  
voltage ramp speed defined in the CONTROL1 register.  
Switching between different output voltage ranges  
TPS6287x-Q1 devices offer three different output voltages ranges as defined in the CONTROL2 register. To  
change the output voltage range of TPS6287x-Q1, first step to the closest output voltage value within the  
currently used range, then change the VRANGE bit in the CONTROL2 register to the next VRANGE seting. After  
that set the target output voltage in the VSET register.  
Note that a change in the output voltage range always must be followed by writing to the VSET Register, even  
though the output voltage does not change. The code in the VSET register must be updated to the correct value  
in the new range.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
36  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.6 Device Registers  
8-10 lists the memory-mapped registers for the Device registers. All register offset addresses not listed in 表  
8-10 must be considered as reserved locations and the register contents must not be modified.  
8-10. DEVICE Registers  
Address  
Acronym  
VSET  
Register Name  
Output Voltage Setpoint  
Control 1  
Section  
Go  
0h  
1h  
2h  
3h  
4h  
CONTROL1  
CONTROL2  
CONTROL3  
STATUS  
Go  
Control 2  
Go  
Control 3  
Go  
Status  
Go  
Complex bit access types are encoded to fit into small table cells. 8-11 shows the codes that are used for  
access types in this section.  
8-11. Device Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.6.1 VSET Register (Address = 0h) [Reset = X]  
VSET is shown in 8-24 and described in 8-12.  
Return to the Summary Table.  
This register controls the output voltage setpoint  
8-24. VSET Register  
7
6
5
4
3
2
1
0
VSET  
R/W-X  
8-12. VSET Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
VSET  
R/W  
X
Output voltage setpoint (see also the range-setting bits in the  
CONTROL2 register).  
Range 1: Output voltage setpoint = 0.4 V + VSET[7:0] × 1.25 mV  
Range 2: Output voltage setpoint = 0.4 V + VSET[7:0] × 2.5 mV  
Range 3: Output voltage setpoint = 0.4 V + VSET[7:0] × 5 mV  
The state of the VSEL pin during power up determines the reset  
value.  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.6.2 CONTROL1 Register (Address = 1h) [Reset = 2Ah]  
CONTROL1 is shown in 8-25 and described in 8-13.  
Return to the Summary Table.  
This register controls various device configuration options  
8-25. CONTROL1 Register  
7
6
5
4
3
2
1
0
VRAMP  
RESET  
R/W-0b  
SSCEN  
R/W-0b  
SWEN  
R/W-1b  
FPWMEN  
R/W-0b  
DISCHEN  
R/W-1b  
HICCUPEN  
R/W-0b  
R/W-10b  
8-13. CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
R/W  
0b  
Reset device.  
0b = No effect  
1b = The device is powered down, the pin status is read and all  
registers are reset to their default value. The device is then powered  
up again starting with a soft-start cycle.  
Reading this bit always returns 0.  
6
5
4
SSCEN  
SWEN  
R/W  
R/W  
R/W  
0b  
1b  
0b  
Spread spectrum clocking enable.  
0b = SSC operation disabled  
1b = SSC operation enabled  
Software enable.  
0b = Switching disabled (register values retained)  
1b = Switching enabled (without the enable delay)  
FPWMEN  
Forced-PWM enable.  
0b = Power-save operation enabled  
1b = Forced-PWM operation enabled  
This bit is logically ORed with the MODE/SYNC pin: If a high level or  
a synchronization clock is applied to the the MODE/SYNC pin, the  
device operates in Forced-PWM, regardless of the state of this bit.  
3
2
DISCHEN  
R/W  
R/W  
1b  
0b  
Output discharge enable.  
0b = Output discharge disabled.  
1b = Output discharge enabled.  
HICCUPEN  
Hiccup operation enable.  
0b = Hiccup operation disabled  
1b = Hiccup operation enabled. Do not enable Hiccup operation  
during stacked operation  
1-0  
VRAMP  
R/W  
10b  
Output voltage ramp speed when changing from one output voltage  
setting to another.  
00b = 10 mV/µs  
01b = 5 mV/µs  
10b = 1.25 mV/µs  
11b = 0.5 mV/µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.6.3 CONTROL2 Register (Address = 2h) [Reset = 0Ah]  
CONTROL2 is shown in 8-26 and described in 8-14.  
Return to the Summary Table.  
This register controls various device configuration options  
8-26. CONTROL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
SYNC_OUT_P  
HASE  
VRANGE  
R/W-10b  
SSTIME  
R/W-10b  
R/W-000b  
R/W-0b  
8-14. CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
RESERVED  
R/W  
000b  
Reserved for future use. To ensure compatibility with future device  
variants, program these bits to 0.  
4
SYNC_OUT_PHASE  
R/W  
R/W  
R/W  
0b  
Phase shift of SYNC_OUT with reference to internal clk or external  
clk applied at MODE/SYNC.  
0b = SYNC_OUT is phase shifted by 120°  
1b = SYNC_OUT is phase shifted by 180° The phase relation of  
180° is only valid from the primary to the first secondary converter.  
3-2  
1-0  
VRANGE  
SSTIME  
10b  
10b  
Output voltage range.  
00b = 0.4 V to 0.71875 V in 1.25-mV steps  
01b = 0.4 V to 1.0375 V in 2.5-mV steps  
10b = 0.4 V to 1.675 V in 5-mV steps  
11b = 0.4 V to 1.675 V in 5-mV steps  
Soft-start ramp time.  
00b = 0.5 ms  
01b = 0.77 ms  
10b = 1 ms  
11b = 2 ms  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.6.4 CONTROL3 Register (Address = 3h) [Reset = 00h]  
CONTROL3 is shown in 8-27 and described in 8-15.  
Return to the Summary Table.  
This register controls various device configuration options  
8-27. CONTROL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-00000b  
DROOPEN  
R/W-0b  
SINGLE  
R/W-0b  
PGBLNKDVS  
R/W-0b  
8-15. CONTROL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
RESERVED  
R/W  
00000b  
Reserved for future use. To ensure compatibility with future device  
variants, program these bits to 0.  
2
DROOPEN  
R/W  
R/W  
0b  
0b  
Droop compensation enable  
0b = droop compensation disabled  
1b = droop compensation enabled  
1
0
SINGLE  
Single operation. This bit controls the internal EN pulldown and  
SYNCOUT functions.  
0b = EN pin pulldown and SYNCOUT enabled  
1b = EN pin pulldown and SYNCOUT disabled. Do not set during  
stacked operation  
PGBLNKDVS  
R/W  
0b  
Power-good blanking during DVS.  
0b = PG pin reflects the output of the window comparator  
1b = PG pin is high impedance during DVS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
8.6.5 STATUS Register (Address = 4h) [Reset = 00h]  
STATUS is shown in 8-28 and described in 8-16.  
Return to the Summary Table.  
This register returns the device status flags  
8-28. STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-00b  
HICCUP  
R/W-0b  
ILIM  
TWARN  
R/W-0b  
TSHUT  
R/W-0b  
PBUV  
R/W-0b  
PBOV  
R/W-0b  
R/W-0b  
8-16. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R/W  
00b  
Reserved for future use. To ensure compatibility with future device  
variants, ignore these bits.  
5
HICCUP  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
Hiccup. This bit reports whether a hiccup event occurred since the  
last time the STATUS register was read.  
0b = No hiccup event occured  
1b = A hiccup event occurred  
4
3
2
1
ILIM  
Current limit. This bit reports whether an current limit event occurred  
since the last time the STATUS register was read.  
0b = No current limit event occured  
1b = An current limit event occurred  
TWARN  
TSHUT  
PBUV  
Thermal warning. This bit reports whether a thermal warning event  
occurred since the last time the STATUS register was read.  
0b = No thermal warning event occurred  
1b = A thermal warning event occurred  
Thermal shutdown. This bit reports whether a thermal shutdown  
event occurred since the last time the STATUS register was read.  
0b = No thermal shutdown event occurred  
1b = A thermal shutdown event occurred  
Power-bad undervoltage. This bit reports whether a power-bad event  
(output voltage too low) occurred since the last time the STATUS  
register was read.  
0b = No power-bad undervoltage event occurred  
1b = A power-bad undervoltage event occurred  
0
PBOV  
R/W  
0b  
Power-bad overvoltage. This bit reports whether a power-bad event  
(output voltage too high) occurred since the last time the STATUS  
register was read.  
0b = No power-bad overvoltage event occurred  
1b = A power-bad overvoltage event occurred  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The following section discusses selection of the external components to complete the power supply design for a  
typical application.  
9.2 Typical Application  
TPS6287x-Q1  
CLOAD  
L1  
VOUT  
VIN  
VIO  
VIN  
VIN  
SW  
COUT  
CIN  
MODE/SYNC  
REN  
Load  
RSDA  
EN  
VOSNS  
GOSNS  
RSCL  
SDA  
SCL  
I2C  
AGND  
RZ  
VSEL  
FSEL  
VIO  
CC2  
CC  
RPG  
COMP  
PG  
PG  
SYNC_OUT  
AGND  
GND  
GND  
9-1. Typical Application Schematic  
9.2.1 Design Requirements  
9-1 lists the operating parameters for this application example.  
9-1. Design Parameters  
SYMBOL  
PARAMETER  
VALUE  
3.3 V  
VIN  
VOUT  
TOLVOUT  
TOLDC  
ΔIOUT  
tr  
Input voltage  
Output voltage  
0.75 V  
±3.3%  
±0.8%  
±7.5 A  
Output voltage tolerance allowed by the application  
Output voltage tolerance of the TPS6287x-Q1 (DC accuracy)  
Output current load step  
Load step rise time  
1 μs  
1 μs  
tf  
Load step fall time  
fSW  
Switching frequency  
2.25 MHz  
80nH  
L
Inductance  
gm  
Error amplifier transconductance  
Internal timing parameter  
1.5 mS  
12.5 μs  
τ
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9-1. Design Parameters (continued)  
SYMBOL  
kBW  
PARAMETER  
VALUE  
4
Ratio of switching frequency to converter bandwidth (must be 4)  
Ratio of minimum to maximum output capacitance (typically 2)  
Pullup resistor on power-good output  
kCOUT  
2
RPG  
10 kΩ  
22 kΩ  
680 Ω  
REN  
Pullup resistor on enable  
RSCL, RSDA  
Pullup resistors on SDA and SCL  
Preliminary Calculations  
With a total allowable output voltage tolerance of ±3.3% and a maximum DC error of ±0.8%, the allowable output  
voltage tolerance during a load step is given by:  
V  
V  
= ±V  
× TOL  
– TOL  
DC  
(4)  
(5)  
OUT  
OUT  
OUT  
VOUT  
= ± 0.75 × 0.033 – 0.008 = ± 18.75 mV  
9.2.2 Detailed Design Procedure  
The following subsections describe how to calculate the external components required to meet the specified  
transient requirements of a given application. The calculations include the worst-case variation of components  
and use the RMS method to combine the variation of uncorrelated parameters.  
9.2.2.1 Inductor Selection  
The TPS6287x-Q1 devices have been optimized for inductors in the the range 42 nH to 200 nH. If the transient  
response of the converter is limited by the slew rate of the current in the inductor, using a smaller inductor can  
improve performance. However, the output ripple current increases as the value of the inductor decreases, and  
higher output current ripple generates higher output voltage ripple, which adds to the transient over- or  
undershoot. The optimum configuration for a given application is a trade-off between a number of parameters.  
We recommend a starting value of 60 nH to 80 nH for typical applications.  
The inductor ripple current is given by:  
V
V
– V  
OUT IN OUT  
I
=
=
(6)  
(7)  
L PP  
L PP  
V
L × f  
IN  
sw  
0.75  
3.3  
3.3 – 0.75  
–9  
I
A = 3.22 A  
6
80 × 10 × 2.25 × 10  
9-2 lists a number of inductors suitable for use with this application. This list is not exhaustive, however, and  
other inductors from other manufacturers may also be suitable.  
9-2. Typical Inductors  
DC  
DIMENSIONS  
[LxWxH] mm  
PART NUMBER  
INDUCTANCE [µH] CURRENT [A]  
Notes  
MANUFACTURER  
RESISTANCE  
0.056 µH  
IHSR2525CZ-5A  
XEL4030-101ME  
45  
22  
6.65 × 6.65 × 3  
4 × 4 × 3.2  
Vishay  
0.38 mΩ  
1.5 mΩ  
For f 2.25 MHz  
For f 1.5 MHz  
0.10 µH, ±20%  
Coilcraft  
744302010  
0.105 µH  
0.16 µH  
30  
25  
7 × 7 × 4.8  
Wurth  
0.235 mΩ  
For f 1.5 MHz  
XGL5030-161ME  
5.3 × 5.5 × 3  
Coilcraft  
1.3 mΩ  
For f 1.5 MHz  
For f 2.25 MHz  
0.22 mΩ  
744300006  
CLT32-55N  
CLT32-42N  
0.06 µH  
0.055 µH  
0.042 µH  
37  
28  
28  
8.64 × 6.35 × 4.5  
2.5 × 3.2 × 2.5  
2.5 × 3.2 × 2.5  
Wurth  
TDK  
1 mΩ  
1 mΩ  
For f 2.25 MHz  
For f 2.25 MHz  
TDK  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
44  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9-2. Typical Inductors (continued)  
DC  
DIMENSIONS  
[LxWxH] mm  
PART NUMBER  
INDUCTANCE [µH] CURRENT [A]  
Notes  
MANUFACTURER  
RESISTANCE  
HPL505032F1060MRD3  
P
0.06 µH  
0.08 µH  
34  
34  
5 × 5 × 3.2  
5 × 5 × 3.2  
TDK  
TDK  
0.7 mΩ  
For f 2.25 MHz  
For f 2.25 MHz  
HPL505028F080MRD3P  
0.8 mΩ  
9.2.2.2 Selecting the Input Capacitors  
As with all buck converters, the input current of the TPS6287x-Q1 devices is discontinuous. The input capacitors  
provide a low-impedance energy source for the device, and their value, type, and location are critical for correct  
operation. TI recommends low-ESR multilayer ceramic capacitors for best performance. In practice, the total  
input capacitance typically comprises a combination of different capacitors, in which larger capacitors provide the  
decoupling at lower frequencies and smaller capacitors provide the decoupling at higher frequencies.  
The TPS6287x-Q1 devices feature a butterfly layout with two VIN pin pairs on opposite sides of the package.  
This allows the input capacitors to be placed symmetrically on the PCB such that the electromagnetic fields  
generated cancel each other out, thereby reducing EMI.  
The duty cycle of the converter is given by:  
V
OUT  
D =  
(8)  
η × V  
IN  
where:  
VIN is the input voltage  
VOUT is the output voltage  
ηis the effciency  
0.75  
0.9 × 3.3  
D =  
= 0.253  
(9)  
The value of input capacitance needed to meet the input voltage ripple requirements is given by:  
D × 1 D × I  
OUT  
C
=
(10)  
IN  
V
× f  
IN PP  
sw  
where:  
D is the duty cycle  
fsw is the switching frequency  
VIN(PP) is the input voltage ripple  
IOUT is the output current  
0.253 × 1 0.253 × 11.3  
C
=
F = 9.5 μF  
(11)  
IN  
6
0.1 × 2.25 × 10  
The value of CIN calculated with 方程式 10 is the effective capacitance after all derating, tolerance, and ageing  
effects have been considered. We recommend multilayer ceramic capacitors with an X7R dielectric (or similar)  
for CIN, and these capacitors must be placed as close to the VIN and GND pins as possible, so as to minimize  
the loop area.  
9-3 lists a number of capacitors suitable for this application. This list is not exhaustive, however, and other  
capacitors from other manufacturers may also be suitable.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9-3. List of Recommended Input Capacitors  
DIMENSIONS  
CAPACITANCE  
VOLTAGE RATING  
MANUFACTURER, PART NUMBER  
mm (inch)  
1005 (0402)  
1005 (0402)  
2012 (0805)  
470 nF ±10%  
470 nF ±10%  
10 μF ±10%  
10 μF ±10%  
22 μF ±10%  
22 μF ±20%  
10 V  
10 V  
10 V  
Murata, GCM155C71A474KE36D  
TDK, CGA2B3X7S1A474K050BB  
Murata, GCM21BR71A106KE22L  
2012 (0805)  
3216 (1206)  
3216 (1206)  
10 V  
10 V  
10 V  
TDK, CGA4J3X7S1A106K125AB  
Murata, GCM31CR71A226KE02L  
TDK, CGA5L1X7S1A226M160AC  
9.2.2.3 Selecting the Compensation Resistor  
Use 方程12 to calculate the recommended value of compensation resistor RZ:  
π × ∆ I  
OUT  
× L  
1
R =  
1 + TOL  
(12)  
Z
IND  
g
4 × τ × ∆ V  
m
OUT  
–9  
1
π × 7.5 × 80 × 10  
–6  
R =  
1 + 0.2 Ω = 1.95 kΩ  
(13)  
Z
–3  
–3  
1.5 × 10  
4 × 12.5 × 10 × 18.75 × 10  
Rounding up, the closest standard value from the E24 series is 2.0 kΩ.  
9.2.2.4 Selecting the Output Capacitors  
In practice, the total output capacitance typically comprises a combination of different capacitors, in which larger  
capacitors provide the load current at lower frequencies and smaller capacitors provide the load current at higher  
frequencies. The value, type, and location of the output capacitors are critical for correct operation. TI  
recommends low-ESR multilayer ceramic capacitors with an X7R dielectric (or similar) for best performance.  
The TPS6287x-Q1 devices feature a butterfly layout with two GND pins on opposite sides of the package. This  
allows the output capacitors to be placed symmetrically on the PCB such that the electromagnetic fields  
generated cancel each other out, thereby reducing EMI.  
The transient response of the converter is defined by one of two criteria:  
The loop bandwidth, which must be at least 4 times smaller than the switching frequency.  
The slew rate of the current through the inductor and the output capacitance.  
In typical low-output-voltage application, this is limited by the value of the output voltage and the inductors.  
Which of the above criteria applies in any given application depends on the operating conditions and component  
values used. We therefore recommend calculating the output capacitance for both cases, and selecting the  
higher of the two values.  
If the converter remains in regulation, the minimum output capacitance required is given by:  
τ × g × R  
m
Z
2
2
C
=
=
1 + TOL  
+ TOL  
fSW  
(14)  
(15)  
OUT min reg  
OUT min reg  
IND  
f
SW  
2 × π × L ×  
4
6  
12.5 × 10  
3  
3
× 1.5 × 10  
× 2 . 0 × 10  
2
2
C
1 + 20% + 10% F = 162 μF  
6
2.25 × 10  
9  
2 × π × 80 × 10  
×
4
If the converter loop saturates, the minimum output capacitance is given by:  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
46  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
2
I
L PP  
2
L × I  
OUT  
+
I  
× t  
t
1
OUT  
2
C
C
=
=
1 + TOL  
(16)  
(17)  
OUT min sat  
IND  
V  
2 × V  
OUT  
OUT  
2
3.22  
2
–9  
80 × 10 × 7.5 +  
2 × 0.75  
–6  
1
7.5 × 1 × 10  
2
1 + 20% F = 43 μF  
OUT min sat  
–3  
18.75 × 10  
In this case, choose COUT(min) = 162 µF, as the larger of the two values, for the output capacitance.  
When calculating worst-case component values, use the value calculated above as the minimum output  
capacitance required. For ceramic capacitors, the nominal capacitance when considering tolerance, DC bias,  
temperature, and aging effects is typically two times the minimum capacitance. In this case the nominal  
capacitance is thus 324 μF.  
9-4. List of Recommended Output Capacitors  
DIMENSIONS  
CAPACITANCE  
VOLTAGE RATING  
MANUFACTURER, PART NUMBER  
mm (inch)  
2012 (0805)  
2012 (0805)  
3216 (1206)  
2012 (0805)  
3225 (1210)  
3216 (1210)  
6.3 V  
6.3 V  
4 V  
TDK, CGA4J1X7T0J226M125AC  
Murata, GCM31CR71A226KE02  
TDK, CGA5L1X7T0G476M160AC  
Murata, GCM32ER70J476ME19  
TDK, CGA6P1X7T0G107M250AC  
Murata, GRT32EC70J107ME13  
22 μF ±20%  
22 μF ±10%  
47 μF ±20%  
47 μF ±20%  
100 μF ±20%  
100 μF ±20%  
6.3 V  
4 V  
6.3 V  
9.2.2.5 Selecting the Compensation Capacitor CC  
First, use 方程18 to calculate the bandwidth of the loop:  
τ × g × R  
m
Z
BW =  
BW =  
(18)  
(19)  
2 × π × L × C  
× k  
COUT  
OUT, min  
6  
3  
3
12.5 × 10  
× 1.5 × 10  
× 2 × 10  
= 230kHz  
9  
6  
2 × π × 80 × 10  
× 162 × 10  
× 2  
Use 方程20 to calculate the recommended value of CC.  
k
BW  
C =  
(20)  
(21)  
C
2 × π × BW × R  
Z
4
C =  
= 1.38 nF  
3
C
3
2 × π × 230 × 10 × 2 × 10  
The closest standard value from the E12 series is 1.5 nF.  
9.2.2.6 Selecting the Compensation Capacitor CC2  
The compensation capacitor CC2 is an optional capacitor that we recommend you include to bypass high-  
frequency noise from the COMP pin. The value of this capacitor is not critical; 10-pF or 22-pF capacitors are  
suitable for typical applications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9.2.3 Application Curves  
0.5865  
0.585  
90  
85  
80  
75  
70  
65  
60  
0.5835  
0.582  
0.5805  
0.579  
0.5775  
0.576  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
0.5745  
0.573  
0.5715  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
0
5
10  
15  
20  
25  
30  
D002  
Output Current (A)  
D002  
VOUT = 0.58 V  
PWM; droop  
disabled  
TA = 25°C  
VOUT = 0.58 V  
PWM  
TA = 25°C  
9-2. Efficiency Versus Output Current  
9-3. Output Voltage Versus Output Current  
0.592  
0.59  
95  
90  
85  
80  
75  
0.588  
0.586  
0.584  
0.582  
0.58  
0.578  
0.576  
0.574  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
0.572  
0.57  
70  
65  
0.568  
0.566  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
D002  
Output Current (A)  
D002  
VOUT = 0.58 V  
PWM; TPS62877  
droop enabled  
TA = 25°C  
VOUT = 0.75 V  
PWM  
TA = 25°C  
9-5. Efficiency Versus Output Current  
9-4. Output Voltage Versus Output Current  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
0.7575  
0.756  
0.7545  
0.753  
0.7515  
0.75  
0.762  
0.76  
0.758  
0.756  
0.754  
0.752  
0.75  
0.748  
0.746  
0.744  
0.742  
0.74  
0.7485  
0.747  
0.7455  
0.744  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
0.738  
0.736  
0.7425  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
Output Current (A)  
D002  
D002  
VOUT = 0.75 V  
PWM; droop  
disabled  
TA = 25°C  
VOUT = 0.75 V  
PWM; TPS62877  
droop enabled  
TA = 25°C  
9-6. Output Voltage Versus Output Current  
9-7. Output Voltage Versus Output Current  
0.808  
0.807  
0.806  
0.805  
0.804  
0.803  
0.802  
0.801  
0.8  
0.799  
0.798  
0.797  
0.796  
0.795  
0.794  
0.793  
0.792  
95  
90  
85  
80  
75  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
70  
65  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
D002  
Output Current (A)  
D002  
VOUT = 0.8 V  
PWM; droop  
disabled  
TA = 25°C  
VOUT = 0.8 V  
PWM  
TA = 25°C  
9-8. Efficiency Versus Output Current  
9-9. Output Voltage Versus Output Current  
0.8125  
0.81  
95  
90  
85  
80  
75  
0.8075  
0.805  
0.8025  
0.8  
0.7975  
0.795  
0.7925  
0.79  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
V
V
IN = 2.7 V  
IN = 3.3 V  
VIN = 4.0 V  
70  
65  
V
V
IN = 5.0 V  
IN = 6.0 V  
0.7875  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
0
5
10  
15  
20  
25  
30  
D002  
Output Current (A)  
D002  
VOUT = 0.8 V  
PWM; TPS62877  
droop enabled  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
9-11. Efficiency Versus Output Current  
9-10. Output Voltage Versus Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
1.0125  
1.01  
1.01  
1.008  
1.006  
1.004  
1.002  
1
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
0.998  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
0.996  
0.994  
0.992  
0.99  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
0.9875  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
Output Current (A)  
D002  
D002  
VOUT = 1.0 V  
PWM; TPS62877  
droop enabled  
TA = 25°C  
VOUT = 1.0 V  
PWM; droop  
disabled  
TA = 25°C  
9-13. Output Voltage Versus Output Current  
9-12. Output Voltage Versus Output Current  
VOUT = 0.75 V  
VIN = 5 V  
PWM  
TA = 25°C  
VOUT = 0.75 V  
VIN = 5 V  
PWM  
TA = 25°C  
RLOAD = 66mΩ  
RLOAD = 66mΩ  
9-14. Start-Up Timing  
9-15. Output Voltage Ripple  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
50  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
VOUT = 0.75 V  
VIN = 5 V  
PWM, TPS62874  
droop disabled  
TA = 25°C  
VOUT = 0.75 V  
VIN = 5 V  
PWM, TPS62874  
droop enabled  
TA = 25°C  
Iout = 3.8A to 11.3A to 3.8A  
Iout = 3.8A to 11.3A to 3.8A  
9-16. Load Transient Response  
9-17. Load Transient Response  
VOUT = 0.75 V  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
IOUT = 11.3 A  
9-18. Line Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9.3 Application Using Two TPS62876-Q1 in a Stacked Configuration  
TPS62876-Q1  
(Primary Device)  
CLOAD  
L
VIN  
2.7 V to 6 V  
VIN  
VIN  
SW  
COUT  
CIN  
VIO  
REN  
MODE/SYNC  
Load  
EN  
VOSNS  
GOSNS  
SDA  
SCL  
I2C  
VIO  
RZ  
AGND  
COMP  
PG  
CC  
VSEL  
FSEL  
CC2  
RPG  
RVSEL  
RFSEL  
PG  
AGND  
GND  
GND  
SYNC_OUT  
TPS62876-Q1  
(Secondary Device)  
L
VIN  
VIN  
SW  
MODE/SYNC  
CIN  
COUT  
GOSNS  
VOSNS  
EN  
SDA  
SCL  
VSEL  
COMP  
PG  
FSEL  
RFSEL  
AGND  
GND  
GND  
SYNC_OUT  
47 k  
9-19. Stacking Two Devices  
9.3.1 Design Requirements For Two Stacked Devices  
9-5 lists the operating parameters for this application example.  
9-5. Design Parameters  
SYMBOL  
PARAMETER  
VALUE  
VIN  
Input voltage  
3.3 V  
0.8 V  
±4%  
VOUT  
TOLVOUT  
TOLDC  
ΔIOUT  
tr  
Output voltage  
Output voltage tolerance allowed by the application  
Output voltage tolerance of the TPS62876-Q1 -Q1 (DC accuracy)  
Output current load step  
±0.8%  
±24 A  
Load step rise time  
1 μs  
1 μs  
tf  
Load step fall time  
fSW  
Switching frequency  
2.25 MHz  
56 nH  
1.5 ms  
12.5 μs  
4
L
Inductance  
gm  
Error amplifier transconductance  
Internal timing parameter  
τ
kBW  
Ratio of switching frequency to converter bandwidth (must be 4)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
52  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9-5. Design Parameters (continued)  
SYMBOL  
PARAMETER  
VALUE  
2
NΦ  
kCOUT  
RPG  
Number of phases (number of stacked devices)  
Ratio of minimum to maximum output capacitance (typically 2)  
Pullup resistor on power-good output  
Pullup resistor on enable  
2
10 kΩ  
22 kΩ  
680 Ω  
REN  
RSCL, RSDA  
Pullup resistors on SDA and SCL  
Preliminary Calculations  
With a total allowable output voltage tolerance of ±4% and a maximum DC error of ±0.8%, the allowable output  
voltage tolerance during a load step is given by:  
V  
V  
= ±V  
× TOL  
– TOL  
DC  
(22)  
(23)  
OUT  
OUT  
OUT  
VOUT  
= ± 0.8 × 0.04 – 0.008 = ± 25 . 6 mV  
9.3.2 Detailed Design Procedure  
9.3.2.1 Selecting the Compensation Resistor  
The calculation for a stack of two converters is similar to the single device expect that the parameter "number of  
phases" NΦ is added to the equations. Use 方程式 24 to calculate the recommended value of compensation  
resistor RZ:  
π × ∆ I  
OUT  
× L  
1
R =  
1 + TOL  
(24)  
(25)  
Z
IND  
g
4 × τ × N × ∆ V  
m
ϕ
OUT  
–9  
1
π × 24 × 56 × 10  
–6  
R =  
1 + 0.2 Ω = 1.32 kΩ  
Z
–3  
–3  
1.5 × 10  
4 × 12.5 × 10 × 2 × 25.6 × 10  
Rounding up, the closest standard value from the E24 series is 1.5 kΩ.  
9.3.2.2 Selecting the Output Capacitors  
If the converter remains in regulation, the minimum output capacitance required is given by:  
τ × g × R  
m
Z
f
2
2
C
=
=
1 + TOL  
+ TOL  
fSW  
(26)  
(27)  
OUT min reg  
IND  
L
SW  
4
2 × π ×  
×
N
ϕ
6  
3  
3
12.5 × 10  
× 1.5 × 10  
× 1 . 5 × 10  
2
2
C
1 + 20% + 10% F = 350 μF  
OUT min reg  
9  
6
56 × 10  
2
2.25 × 10  
2 × π ×  
×
4
If the converter loop saturates, the minimum output capacitance is given by:  
2
I
L PP  
2
L
×
I +  
OUT  
N
I  
× t  
t
ϕ
1
OUT  
2
C
=
1 + TOL  
(28)  
OUT min sat  
IND  
V  
2 × V  
OUT  
OUT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
–9  
2
56 × 10  
2
2 . 4  
2
× 24 +  
–6  
1
24 × 1 × 10  
2
C
=
1 + 20% F = 90 μF  
(29)  
OUT min sat  
–3  
2 × 0.8  
25.6 × 10  
In this case, choose COUT(min) = 350 µF, as the larger of the two values, for the output capacitance.  
When calculating worst-case component values, use the value calculated above as the minimum output  
capacitance required. For ceramic capacitors, the nominal capacitance when considering tolerance, DC bias,  
temperature, and aging effects is typically two times the minimum capacitance. In this case the nominal  
capacitance is thus 700 μF.  
9.3.2.3 Selecting the Compensation Capacitor CC  
τ × g × R  
m
Z
BW =  
BW =  
(30)  
(31)  
L
N
2 × π ×  
× C  
× k  
COUT  
OUT, min  
6  
12.5 × 10  
3  
3
× 1.5 × 10  
× 1.5 × 10  
= 230kHz  
9  
56 × 10  
2
6  
2 × π ×  
× 350 × 10  
× 2  
Next, calculate CC:  
k
BW  
2 × π × BW × R  
C =  
(32)  
(33)  
C
Z
4
C =  
= 1.85 nF  
3
C
3
2 × π × 230 × 10 × 1.5 × 10  
The closest standard value from the E12 series is 2.2 nF.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
54  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9.3.3 Application Curves for Two Stacked Devices  
0.808  
0.807  
0.806  
0.805  
0.804  
0.803  
0.802  
0.801  
0.8  
0.799  
0.798  
0.797  
0.796  
0.795  
0.794  
0.793  
0.792  
95  
90  
85  
80  
75  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
70  
65  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Current (A)  
D002  
Output Current (A)  
D002  
VOUT = 0.8 V  
PWM  
TA = 25°C  
VOUT = 0.8 V  
PWM  
TA = 25°C  
9-21. Output Voltage Versus Output Current  
9-20. Efficiency Versus Output Current  
VOUT = 0.8 V  
VIN = 5 V  
PWM  
TA = 25°C  
VOUT = 0.8 V  
VIN = 5 V  
PWM  
TA = 25°C  
RLOAD = 20 mΩ  
RLOAD = 20 mΩ  
9-22. Start-Up Timing  
9-23. Output Voltage Ripple  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
VOUT = 0.8 V  
VIN = 5 V  
PWM; TPS62876  
droop disabled  
TA = 25°C  
VOUT = 0.8 V  
VIN = 5 V  
PWM; TPS62876  
droop enabled  
TA = 25°C  
Iout = 15 A to 40 A to 15 A  
Iout = 15 A to 40 A to 15 A  
9-24. Load Transient Response  
9-25. Load Transient Response  
VOUT = 0.8 V  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
IOUT = 40 A  
9-26. Line Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
56  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9.4 Application Using Three TPS62876-Q1 in a Stacked Configuration  
TPS62876-Q1  
(Primary Device)  
CLOAD  
L
VIN  
2.7 V to 6 V  
VIN  
VIN  
SW  
COUT  
CIN  
VIO  
REN  
MODE/SYNC  
Load  
EN  
VOSNS  
GOSNS  
SDA  
SCL  
I2C  
VIO  
RZ  
AGND  
COMP  
PG  
CC  
VSEL  
FSEL  
CC2  
RPG  
RVSEL  
RFSEL  
PG  
AGND  
GND  
GND  
SYNC_OUT  
TPS62876-Q1  
(Secondary Device)  
L
VIN  
VIN  
SW  
MODE/SYNC  
CIN  
COUT  
GOSNS  
VOSNS  
EN  
SDA  
SCL  
VSEL  
COMP  
PG  
FSEL  
RFSEL  
AGND  
GND  
GND  
SYNC_OUT  
47 k  
TPS62876-Q1  
(Secondary Device)  
L
VIN  
VIN  
SW  
CIN  
MODE/SYNC  
COUT  
GOSNS  
VOSNS  
EN  
SDA  
SCL  
VSEL  
COMP  
PG  
FSEL  
RFSEL  
AGND  
GND  
GND  
SYNC_OUT  
47 k  
9-27. Stacking Three Devices  
9.4.1 Design Requirements For Three Stacked Devices  
9-6 lists the operating parameters for this application example.  
9-6. Design Parameters  
SYMBOL  
PARAMETER  
VALUE  
3.3 V  
VIN  
Input voltage  
VOUT  
Output voltage  
0.875 V  
±3%  
TOLVOUT  
TOLDC  
Output voltage tolerance allowed by the application  
Output voltage tolerance of the TPS62876-Q1 -Q1 (DC accuracy)  
±0.8%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9-6. Design Parameters (continued)  
SYMBOL  
PARAMETER  
VALUE  
Output current load step  
±46 A  
ΔIOUT  
tr  
tf  
Load step rise time  
1 μs  
1 μs  
2.25 MHz  
56 nH  
1.5 ms  
12.5 μs  
4
Load step fall time  
fSW  
Switching frequency  
Inductance  
L
gm  
Error amplifier transconductance  
Internal timing parameter  
τ
kBW  
NΦ  
Ratio of switching frequency to converter bandwidth (must be 4)  
Number of phases (number of stacked devices)  
Ratio of minimum to maximum output capacitance (typically 2)  
Pullup resistor on power good output  
3
kCOUT  
RPG  
REN  
RSCL, RSDA  
2
10 kΩ  
22 kΩ  
680 Ω  
Pullup resistor on enable  
Pullup resistors on SDA and SCL  
Preliminary Calculations  
With a total allowable output voltage tolerance of ±3% and a maximum DC error of ±0.8%, the allowable output  
voltage tolerance during a load step is given by:  
V  
V  
= ±V  
× TOL  
– TOL  
DC  
(34)  
(35)  
OUT  
OUT  
OUT  
VOUT  
= ± 0.875 × 0.03 – 0.008 = ± 19.25 mV  
9.4.2 Detailed Design Procedure  
9.4.2.1 Selecting the Compensation Resistor  
The calculation for a stack of two converters is similar to the single device expect that the parameter "number of  
phases" NΦ is added to the equations. Use 方程式 36 to calculate the recommended value of compensation  
resistor RZ:  
π × ∆ I  
OUT  
× L  
1
R =  
1 + TOL  
(36)  
(37)  
Z
IND  
g
4 × τ × N × ∆ V  
m
ϕ
OUT  
–9  
1
π × 46 × 56 × 10  
–6  
R =  
1 + 0.2 Ω = 2.29 kΩ  
Z
–3  
–3  
1.5 × 10  
4 × 12.5 × 10 × 3 × 19.25 × 10  
Rounding up, the closest standard value from the E24 series is 2.4 kΩ.  
9.4.2.2 Selecting the Output Capacitors  
If the converter remains in regulation, the minimum output capacitance required is given by:  
τ × g × R  
m
Z
f
2
IND  
2
C
=
1 + TOL  
+ TOL  
fSW  
(38)  
OUT min reg  
L
SW  
4
2 × π ×  
×
N
ϕ
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
58  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
6  
3  
3
12.5 × 10  
× 1.5 × 10  
× 2 . 4 × 10  
6
2
2
C
=
1 + 20% + 10% F = 838 μF  
(39)  
OUT min reg  
9  
56 × 10  
3
2.25 × 10  
4
2 × π ×  
×
If the converter loop saturates, the minimum output capacitance is given by:  
2
I
L PP  
2
L
×
I +  
OUT  
N
I  
× t  
t
ϕ
1
OUT  
2
C
C
=
=
1 + TOL  
(40)  
(41)  
OUT min sat  
IND  
V  
2 × V  
OUT  
OUT  
–9  
2
56 × 10  
3
2 . 4  
2
× 46 +  
–6  
1
46 × 1 × 10  
2
1 + 20% F = 25.7 μF  
OUT min sat  
–3  
2 × 0.875  
19.25 × 10  
In this case, choose COUT(min) = 838 µF, as the larger of the two values, for the output capacitance.  
When calculating worst-case component values, use the value calculated above as the minimum output  
capacitance required. For ceramic capacitors, the nominal capacitance when considering tolerance, DC bias,  
temperature, and aging effects is typically two times the minimum capacitance. In this case the nominal  
capacitance is thus 1640 μF.  
9.4.2.3 Selecting the Compensation Capacitor CC  
τ × g × R  
m
Z
BW =  
BW =  
(42)  
(43)  
L
N
2 × π ×  
× C  
× k  
COUT  
OUT, min  
6  
12.5 × 10  
3  
3
× 1.5 × 10  
× 1.5 × 10  
= 143kHz  
9  
56 × 10  
3
6  
2 × π ×  
× 838 × 10  
× 2  
Next, calculate CC:  
k
BW  
2 × π × BW × R  
C =  
(44)  
(45)  
C
Z
4
C =  
= 1.85 nF  
3
C
3
2 × π × 143 × 10 × 2.4 × 10  
The closest standard value from the E12 series is 2.2 nF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9.4.3 Application Curves for Three Stacked Devices  
0.884  
0.882  
0.88  
95  
90  
85  
80  
75  
0.878  
0.876  
0.874  
0.872  
0.87  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
V
V
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 4.0 V  
IN = 5.0 V  
IN = 6.0 V  
70  
65  
0.868  
0.866  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
Output Current (A)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
Output Current (A)  
D002  
D002  
VOUT = 0.875 V  
PWM  
TA = 25°C  
VOUT = 0.875 V  
PWM  
TA = 25°C  
9-29. Output Voltage Versus Output Current  
9-28. Efficiency Versus Output Current  
VOUT = 0.875 V  
VIN = 5 V  
PWM  
TA = 25°C  
VOUT = 0.875 V  
VIN = 5 V  
PWM  
TA = 25°C  
RLOAD = 14 mΩ  
RLOAD = 14 mΩ  
9-30. Start-Up Timing  
9-31. Output Voltage Ripple  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
60  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
VOUT = 0.875 V  
VIN = 5 V  
PWM; TPS62876  
droop disabled  
TA = 25°C  
VOUT = 0.875 V  
VIN = 5 V  
PWM; TPS62876  
droop enabled  
TA = 25°C  
Iout = 17 A to 63 A to 17 A  
Iout = 17 A to 63 A to 17 A  
9-32. Load Transient Response  
9-33. Load Transient Response  
VOUT = 0.875 V  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
IOUT = 63 A  
9-34. Line Transient Response  
9.5 Best Design Practices  
INCORRECT  
CORRECT  
TPS6287x-Q1  
TPS6287x-Q1  
2.7 V to 6 V  
2.7 V to 6 V  
15 k  
VIN  
EN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
INCORRECT  
CORRECT  
TPS6287x-Q1  
TPS6287x-Q1  
2.7 V to 6 V  
2.7 V to 6 V  
15 k  
VIN  
EN  
ENABLE  
ENABLE  
9.6 Power Supply Recommendations  
The TPS6287x-Q1 device family has no special requirements for input power supply. The input power supply  
output current must be rated according to the supply voltage, output voltage, and output current of the  
TPS6287x-Q1.  
9.7 Layout  
Achieving the performance the TPS6287x-Q1 devices are capable of requires proper PDN and PCB design. TI  
therefore recommends the user perform a power integrity analysis on their design. There are a number of  
commercially available power integrity software tools, and the user can use these tools to model the effects on  
performance of the PCB layout and passive components.  
In addition to the use of power integrity tools, TI recommends the following basic principles:  
Place the input capacitors close to the VIN and GND pins. Position the input capacitors in order of increasing  
size, starting with the smallest capacitors closest to the VIN and GND pins. Use an identical layout for both  
VIN-GND pin pairs of the package, to gain maximum benefit from the butterfly configuration.  
Place the inductor close to the device and keep the SW node small.  
Connect the exposed thermal pad and the GND pins of the device together. Use multiple thermal vias to  
connect the exposed thermal pad of the device to one or more ground planes (TI's EVM uses nine 150-µm  
thermal vias).  
Use multiple power and ground planes.  
Route the VOSNS and GOSNS remote sense lines on the primary device as a differential pair and connect  
them to the lowest-impedance point of the PDN. If the desired connection point is not the lowest impedance  
point of the PDN, optimize the PDN until it is. Do not route the VOSNS and GOSNS close to any of the switch  
nodes.  
Connect the compensation components between COMP and AGND. Do not connect the compensation  
components directly to power ground.  
If possible, distribute the output capacitors evenly between the TPS6287x-Q1 device and the point-of-load,  
rather than placing them altogether in one place.  
Use multiple vias to connect each capacitor pad to the power and ground planes (TI's EVM typically uses four  
vias per pad).  
Use plenty of stitching vias to ensure a low impedance connection between different power and ground  
planes.  
9.7.1 Layout Guidelines  
9-35 shows the top layer of one of the evaluation modules for this device. the figure demonstrates the  
practical implementation of the PCB layout principles previously listed. The user can find a complete set  
drawings of all the layers used in this PCB in the evaluation module user's guide SLVUCL6.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
62  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
9.7.2 Layout Example  
9-35. TPS62876-Q1 EVM top layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
I2Cis a trademark of NXP Semiconductors.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
64  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
 
 
 
 
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
WQFN_FC  
RLF  
XPS62876QWRZVRQ1  
RZV  
24  
3000  
330  
12.4  
3.30  
4.40  
0.80  
8.0  
12.0  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
 
 
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
RZV 24  
SPQ  
Length (mm) Width (mm)  
338.0 355.0  
Height (mm)  
XPS62876QWRZVRQ1  
WQFN_FCRLF  
3000  
50.0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
66  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU1  
68  
Submit Document Feedback  
Product Folder Links: TPS62876-Q1  
TPS62876-Q1  
ZHCSLO0 APRIL 2023  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS62876-Q1  
English Data Sheet: SLVSFU1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XPS62876QWRZVRQ1  
ACTIVE WQFN-FCRLF  
RZV  
24  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62901

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、1A 高效率低 IQ 降压转换器
TI

TPS62901RPJR

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、1A、高效率、低 IQ 降压转换器 | RPJ | 9 | -40 to 150
TI

TPS62902

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、2A 高效率低 IQ 降压转换器
TI

TPS62902RPJR

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、2A 高效率、低 IQ 降压转换器 | RPJ | 9 | -40 to 150
TI

TPS62903

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、3A 高效率低 IQ 降压转换器
TI

TPS62903-Q1

具有 165°C 结温的 3V 至 18V、3A 汽车类低 IQ 同步降压转换器
TI

TPS62903QRYTRQ1

Automotive, 3-V to 18-V, 3-A low-IQ synchronous buck converter with 165°C junction temperature | RYT | 9 | -40 to 165
TI

TPS62903RPJR

采用 1.5mm × 2mm QFN 封装的 3V 至 17V、3A、高效率、低 IQ 降压转换器 | RPJ | 9 | -40 to 150
TI

TPS62912

TPS6291x 3-V to 17-V, 2-A/3-A Low Noise and Low Ripple Buck Converter with Integrated Ferrite Bead Filter Compensation
TI

TPS62912RPUR

TPS6291x 3-V to 17-V, 2-A/3-A Low Noise and Low Ripple Buck Converter with Integrated Ferrite Bead Filter Compensation
TI

TPS62913

TPS6291x 3-V to 17-V, 2-A/3-A Low Noise and Low Ripple Buck Converter with Integrated Ferrite Bead Filter Compensation
TI

TPS62913RPUR

TPS6291x 3-V to 17-V, 2-A/3-A Low Noise and Low Ripple Buck Converter with Integrated Ferrite Bead Filter Compensation
TI