TPS630252 [TI]

采用 WCSP 封装的 4A 开关单电感降压/升压转换器;
TPS630252
型号: TPS630252
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WCSP 封装的 4A 开关单电感降压/升压转换器

升压转换器 开关
文件: 总30页 (文件大小:3162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
TPS63025x 高电流、高效单电感器降压-升压转换器  
1 特性  
3 说明  
1
支持降压和升压运行间自动和无缝转换的实际降压  
或升压运行  
TPS63025 是一款高效、低静态电流降压-升压转换  
器,此转换器适用于输入电压会高于或低于输出的应  
用。 输出电流在升压模式中会高达 2A,而在降压模式  
中会高达 4A。 开关内的最大平均电流被限制在  
输入电压范围 2.3V 5.5V  
2A 持续输出电流:VIN 2.7VVOUT = 3.3V  
可调和固定输出电压  
4A(典型值)。 TPS63025 根据输入电压在降压或升  
压模式之间自动切换,以便在整个输入电压范围内调节  
输出电压,从而确保两个模式间的无缝转换。 此降压-  
升压转换器基于一个使用同步整流的固定频率、脉宽调  
(PWM) 控制器以获得最高效率。 在低负载电流情  
况下,此转换器进入省电模式,以便在整个负载电流范  
围内保持高效率。 有一个使用户能够在自动  
在降压或升压模式中效率高达 95%,而在 VIN  
=
VOUT 时,效率高达 97%  
2.5MHz 典型开关频率  
运行静态电流 35μA  
集成软启动  
省电模式  
真正关断功能  
PFM/PWM 模式运行和强制 PWM 运行之间进行选择  
PFM/PWM 引脚。 在 PWM 模式期间,通常使用一  
2.5MHz 的固定频率。 使用一个外部电阻分压器可  
对输出电压进行编程,或者在芯片上对输出电压进行内  
部固定。 转换器可被禁用以最大限度地减少电池消  
耗。 在关断期间,负载从电池上断开。 此器件采用  
20 引脚,1.766mm x 2.086 mmWCSP 封装。  
输出电容器放电功能  
过热保护和过流保护  
宽电容值选择  
小型 1.766mm x 2.086mm20 引脚晶圆级芯片尺  
(WCSP) 封装  
2 应用范围  
器件信息(1)  
封装  
手机、智能电话  
平板个人电脑  
产品型号  
TPS630250  
封装尺寸(标称值)  
个人电脑和智能手机配件  
负载点稳压  
芯片尺寸球状引脚  
栅格阵列  
TPS630251  
TPS630252  
1.766mm x 2.086mm  
(DSBGA) (20)  
电池供电类应用  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 典型应用  
.
.
效率与输出电流间的关系  
L1  
1µH  
TPS63025  
VIN  
VOUT  
L1  
L2  
2.7 V to 5.5 V  
3.3 V up to 2A  
VIN  
EN  
VOUT  
C1  
C2  
2X22µF  
FB  
10µF  
VINA  
GND  
PFM/  
PWM  
VIN = 2.8V, VOUT = 3.3V  
PGND  
V
V
V
IN = 3.3V, VOUT = 3.3V  
IN = 3.6V, VOUT = 3.3V  
IN = 4.2V, VOUT = 3.3V  
TPS63025, Power Save Enabled  
0.1  
Output Current (mA)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSBJ9  
 
 
 
 
 
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 11  
9.4 Device Functional Modes........................................ 14  
10 Application and Implementation........................ 15  
10.1 Application Information.......................................... 15  
10.2 Typical Application ............................................... 15  
11 Power Supply Recommendations ..................... 20  
12 Layout................................................................... 20  
12.1 Layout Guidelines ................................................. 20  
12.2 Layout Example .................................................... 20  
12.3 Thermal Information.............................................. 20  
13 器件和文档支持 ..................................................... 21  
13.1 器件支持 ............................................................... 21  
13.2 文档支持 ............................................................... 21  
13.3 相关链接................................................................ 21  
13.4 Trademarks........................................................... 21  
13.5 Electrostatic Discharge Caution............................ 21  
13.6 Glossary................................................................ 21  
14 机械封装和可订购信息 .......................................... 21  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
典型应用................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ...................................... 4  
8.2 Handling Ratings ...................................................... 4  
8.3 Recommended Operating Conditions....................... 4  
8.4 Thermal Information.................................................. 4  
8.5 Electrical Characteristics........................................... 5  
8.6 Timing Requirements................................................ 6  
8.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
9.1 Overview ................................................................. 10  
9.2 Functional Block Diagram ....................................... 10  
9
5 修订历史记录  
Changes from Original (May 2014) to Revision A  
Page  
已将标题的产品型号从 TPS63025 改为 TPS630250TPS630251TPS630252 ............................................................... 1  
Changed Load Regulation Typ spec from "125 mV/A" to "2.5 mV/A" ................................................................................... 5  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
6
Device Comparison Table  
(1)  
PART NUMBER  
VOUT  
Adjustable  
2.9V  
TPS630250YFF  
TPS630251YFF  
TPS630252YFF  
3.3V  
(1) For all available packages, see the orderable addendum at the end of the datasheet.  
7 Pin Configuration and Functions  
WCSP  
20-Pin  
YFF  
(TOP VIEW)  
E1  
E2  
D1  
C1  
C2  
C3  
C4  
B1  
B2  
B3  
B4  
A1  
A2  
A3  
A4  
D2  
E3  
E4  
D3  
D4  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VOUT  
FB  
NO.  
A1,A2,A3  
A4  
PWR Buck-boost converter output  
IN Voltage feedback of adjustable version, must be connected to VOUT on fixed output voltage versions  
PWR Connection for Inductor  
IN set low for PFM mode, set high for forced PWM mode. It must not be left floating  
L2  
B1,B2,B3  
B4  
PFM/PWM  
PGND  
GND  
L1  
C1,C2,C3  
C4  
PWR Ground for Power stage  
PWR Ground for Control stage  
PWR Connection for Inductor  
D1,D2,D3  
D4  
EN  
IN  
Enable input. Set high to enable and low to disable. It must not be left floating.  
VIN  
E1,E2,E3  
E4  
PWR Supply voltage for power stage  
PWR Supply voltage for control stage.  
VINA  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
Voltage(2)  
L2(3), VOUT, FB  
VIN, L1(3), EN, VINA, PFM/PWM  
Continuos average current into L1(4)  
4
7
V
Input current  
2.7  
125  
A
Operating junction temperature, TJ  
–40  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are DC-voltages with respect to ground terminal.  
(3) L2, L1 voltage can exceed Absolute Maximum ratings during normal operation. As long as the device is operated within recommend  
operating conditions device reliability is not affected.  
(4) Maximum continuos average input current 3.5A, under those condition do not exceed 105°C for more than 25% operating time.  
8.2 Handling Ratings  
MIN  
–65  
0
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
0
700  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions(1)  
MIN  
2.3  
2.3  
0.5  
20  
TYP  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
L
Input Voltage Range  
Output Voltage  
3.6  
V
(2)  
Inductance  
1
1.3  
µH  
µF  
°C  
°C  
Cout  
TA  
Output Capacitance(3)  
Operating ambient temperature  
Operating virtual junction temperature  
–40  
–40  
85  
TJ  
125  
(1) Refer to the Application Information section for further information  
(2) Effective inductance value at operating condition. The nominal value given matches a typical inductor to be chosen to meet the  
inductance required.  
(3) Due to the dc bias effect of ceramic capacitors, the effective capacitance is lower then the nominal value when a voltage is applied. This  
is why the capacitance is specified to allow the selection of the nominal capacitor required with the dc bias effect for this type of cap.  
The nominal value given matches a typical capacitor to be chosen to meet the minimum capacitance required.  
8.4 Thermal Information  
TPS63025x  
THERMAL METRIC(1)  
YFF  
20 PINS  
53.8  
0.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
10.1  
1.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
9.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
8.5 Electrical Characteristics  
TJ=-40°C to 125°C, typical values are at TA=25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
VIN  
Input voltage range  
2.3  
5.5  
V
V
A
VIN_Min  
IOUT  
Minimum input voltage to turn on into full load  
IOUT=2A  
2.8  
2
(1)  
Continuos Output Current  
VIN  
IOUT=0mA, EN=VIN=3.6V,  
VOUT=3.3V TJ=-40°C to 85°C,  
not switching  
35  
70 μA  
12 μA  
IQ  
Quiescent current  
VOUT  
Isd  
Shutdown current  
EN=low, TJ=-40°C to 85°C  
VIN falling  
0.1  
1.7  
180  
140  
20  
2
μA  
V
Under voltage lockout threshold  
Under voltage lockout hysteresis  
Thermal shutdown  
1.6  
1.9  
UVLO  
mV  
°C  
°C  
Temperature rising  
Thermal Shutdown hysteresis  
LOGIC SIGNALS EN, PFM/PWM  
VIH  
High level input voltage  
Low level input voltage  
Input leakage current  
VIN=2.3V to 5.5V  
VIN=2.3V to 5.5V  
EN=GND or VIN  
1.2  
2.3  
V
V
VIL  
0.4  
Ilkg  
0.01  
0.8  
0.2 μA  
OUTPUT  
VOUT  
VFB  
Output Voltage range  
3.6  
V
V
TPS630250 Feedback regulation voltage  
TPS630250 Feedback voltage accuracy(2)  
VFB  
PWM mode  
-1%  
-1%  
1%  
+3%  
(2)  
VFB  
TPS630250 Feedback voltage accuracy  
PFM mode  
1.3%  
2.9  
(2)  
VOUT  
VOUT  
VOUT  
VOUT  
IPWM/PFM  
IFB  
TPS630251 Output voltage accuracy  
TPS630251 Output voltage accuracy(2)  
PWM mode  
2.871  
2.871  
3.267  
3.267  
2.929  
2.987  
3.333  
3.399  
V
V
PFM mode  
2.938  
3.3  
(2)  
TPS630252 Output voltage accuracy  
PWM mode  
V
TPS630252 Output voltage accuracy(2)  
Output current to enter PFM mode  
Feedback input bias current  
High side FET on-resistance  
Low side FET on-resistance  
High side FET on-resistance  
Low side FET on-resistance  
PFM mode  
3.343  
350  
10  
V
VIN =3V; VOUT = 3.3V  
VFB = 0.8V  
mA  
100 nA  
mΩ  
VIN=3.0V, VOUT=3.3V  
VIN=3.0V, VOUT=3.3V  
VIN=3.0V, VOUT=3.3V  
VIN=3.0V, VOUT=3.3V  
35  
RDS_Buck(on)  
50  
mΩ  
25  
mΩ  
RDS_Boost(on)  
IIN  
50  
mΩ  
VIN=3.0V, VOUT=3.3V TJ=65°C  
to 125°C  
(3)  
Average input current limit  
3.5  
4.5  
5
A
fs  
Switching Frequency  
2.5  
MHz  
RON_DISC  
Discharge ON-Resistance  
EN=low  
120  
mV/  
V
Line regulation  
Load regulation  
VIN=2.8V to 5.5V, IOUT=2A  
7.4  
2.5  
mV/  
A
VIN=3.6V,IOUT=0A to 2A  
(1) For minimum and maximum output current in a specific working point see Figure 1 and Equation 1 trough Equation 4.  
(2) Conditions: L=1 µH, COUT= 2 × 22 µF.  
(3) For variation of this parameter with Input voltage and temperature see Figure 1.  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
8.6 Timing Requirements  
TJ=-40°C to 125°C, typical values are at TA=25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OUTPUT  
VOUT=EN=low to high, Buck  
mode VIN=3.6V, VOUT=3.3V,  
IOUT=2A  
450  
µs  
tSS  
Soft-start time  
VOUT=EN=low to high, Boost  
mode VIN=2.8V, VOUT=3.3V,  
IOUT=2A  
700  
100  
µs  
µs  
Time from when EN=high to  
when device starts switching  
td  
Start up delay  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
8.7 Typical Characteristics  
Table 1. Table Of Graphs  
DESCRIPTION  
FIGURE  
Minimum average input  
current  
vs Input voltage (TPS63025, VOUT = 3.3V)  
Figure 1  
Efficiency  
vs Output current (TPS63025, Power Save Enabled, VOUT = 3.3V)  
vs Output current (TPS63025, Power Save Disabled, VOUT = 3.3V)  
vs Output current (TPS63025, Power Save Enabled, VOUT = 2.9V)  
vs Output current (TPS63025, Power Save Disabled, VOUT = 2.9V)  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
vs Input voltage (TPS63025, Power Save Enabled, VOUT = 3.3V, IOUT = {10mA; 20mA; 1A; 2A})  
vs Input voltage (TPS63025, Power Save Disabled, VOUT = 3.3V, IOUT = {10mA; 20mA; 1A; 2A})  
vs Input voltage (TPS63025, Power Save Enabled, VOUT = 2.9V, IOUT = {10mA; 20mA; 1A; 2A})  
vs Input voltage (TPS63025, Power Save Disabled, VOUT = 2.9V, IOUT = {10mA; 20mA; 1A; 2A})  
vs Output current (TPS63025, VIN =2.8V, 3,3V, 3.6V, 4.2V, VOUT = 3.3V)  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Output voltage  
vs Output current (TPS63025, VIN =2.8V, 3,3V, 3.6V, 4.2V, VOUT = 3.3V)  
.
.
5
4.5  
4
3.5  
3
2.5  
2
VIN = 2.8V, VOUT = 3.3V  
V
V
V
IN = 3.3V, VOUT = 3.3V  
IN = 3.6V, VOUT = 3.3V  
IN = 4.2V, VOUT = 3.3V  
TPS63025, VOUT  
= 3.3V  
1.5  
1
TA  
TA  
= 25 °C  
= 85 °C  
5.1 5.5  
TPS63025, Power Save Enabled  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
0.1  
Input Voltage (V)  
Output Current (mA)  
Figure 1. Minimum Average Input Current vs Input Voltage  
Figure 2. Efficiency vs Output Current  
VIN = 2.8V, VOUT = 3.3V  
V
V
V
IN = 3.3V, VOUT = 3.3V  
IN = 3.6V, VOUT = 3.3V  
IN = 4.2V, VOUT = 3.3V  
TPS63025, Power Save Disabled  
0.1  
1
10  
100  
1k 2k  
Output Current (mA)  
Figure 3. Efficiency vs Output Current  
Copyright © 2014, Texas Instruments Incorporated  
7
 
 
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
VIN = 2.8V, VOUT = 2.9V  
VIN = 2.8V, VOUT = 2.9V  
V
V
V
V
IN = 2.9V, VOUT = 2.9V  
IN = 3.6V, VOUT = 2.9V  
IN = 4.2V, VOUT = 2.9V  
IN = 2.9V, VOUT = 2.9V  
V
IN = 3.6V, VOUT = 2.9V  
V
IN = 4.2V, VOUT = 2.9V  
TPS63025, Power Save Disabled  
TPS63025, Power Save Enabled  
0.1  
1
10  
100  
1k 2k  
0.1  
1
10  
100  
1k 2k  
Output Current (mA)  
Output Current (mA)  
Figure 4. Efficiency vs Output Current  
Figure 5. Efficiency vs Output Current  
I
I
OUT = 10mA  
OUT = 10mA  
I
OUT = 200mA  
= 1A  
I
OUT = 200mA  
= 1A  
IOUT  
IOUT = 2A  
IOUT  
IOUT = 2A  
TPS63025, VOUT = 3.3V, Power Save Disabled  
TPS63025, VOUT = 3.3V, Power Save enabled  
Input Voltage (V)  
Input Voltage (V)  
Figure 6. Efficiency vs Input Voltage  
Figure 7. Efficiency vs Input Voltage  
TPS63025, VOUT = 2.9V, Power Save Disabled  
I
OUT = 10mA  
I
OUT = 200mA  
= 1A  
I
OUT = 10mA  
IOUT  
IOUT = 2A  
I
OUT = 200mA  
= 1A  
IOUT  
IOUT = 2A  
TPS63025, VOUT = 2.9V, Power Save enabled  
Input Voltage (V)  
Input Voltage (V)  
Figure 8. Efficiency vs Input Voltage  
Figure 9. Efficiency vs Input Voltage  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
VIN = 2.8V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 2.8V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 4.2V  
TPS63025, Power Save Enabled  
Output Current (mA)  
Output Current (mA)  
Figure 10. Output Voltage vs Output Current  
Figure 11. Output Voltage vs Output Current  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS63025 use 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible  
operating conditions. This enables the device to keep high efficiency over the complete input voltage and output  
power range. To regulate the output voltage at all possible input voltage conditions, the device automatically  
switches from buck operation to boost operation and back as required by the configuration. It always uses one  
active switch, one rectifying switch, one switch is held on, and one switch held off. Therefore, it operates as a  
buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input  
voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are switching at  
the same time. Keeping one switch on and one switch off eliminates their switching losses. The RMS current  
through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses.  
Controlling the switches this way allows the converter to always keep higher efficiency.  
The device provides a seamless transition from buck to boost or from boost to buck operation.  
9.2 Functional Block Diagram  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
EN  
PGND  
PGND  
PGND  
VIN  
Gate  
Control  
VOUT  
_
+
_
+
VINA  
Modulator  
Oscillator  
FB  
+
-
VREF  
Device  
Control  
PFM/PWM  
EN  
Temperature  
Control  
PGND  
GND  
PGND  
Functional Block Diagram (Adjustable Output Voltage)  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
Functional Block Diagram (continued)  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
EN  
PGND  
PGND  
PGND  
VIN  
Gate  
Control  
VOUT  
FB  
_
+
_
+
VINA  
Modulator  
Oscillator  
+
-
VREF  
Device  
Control  
PFM/PWM  
EN  
Temperature  
Control  
PGND  
GND  
PGND  
Functional Block Diagram (Fixed Output Voltage)  
9.3 Feature Description  
9.3.1 Control Loop Description  
The controller circuit of the device is based on an average current mode topology. The average inductor current  
is regulated by a fast current regulator loop which is controlled by a voltage control loop. Figure 12 shows the  
control loop.  
The non inverting input of the transconductance amplifier, Gmv, is assumed to be constant. The output of Gmv  
defines the average inductor current. The inductor current is reconstructed by measuring the current through the  
high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck mode  
the current is measured during the on time of the same MOSFET. During the off time, the current is  
reconstructed internally starting from the peak value reached at the end of the on time cycle. The average  
current is then compared to the desired value and the difference, or current error, is amplified and compared to  
the buck or the boost sawtooth ramp. Depending on which of the two ramps the Gmc amplified output crosses  
either the Buck MOSFETs or the Boost MOSFETs will be activated. When the input voltage is close to the output  
voltage, one buck cycle is always followed by a boost cycle. In this condition, no more than three cycles in a row  
of the same mode are allowed. This control method in the buck-boost region ensures a robust control and the  
highest efficiency.  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
Feature Description (continued)  
0.8V  
Ramp and Clock  
Generator  
Figure 12. Average Current Mode Control  
9.3.2 Device Enable  
The device is put into operation when the EN pin is set high. It is put into shutdown mode when the EN pin is set  
low. In shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load is  
disconnected from the input. This means that during shutdown, the output voltage can drop below the input  
voltage.  
9.3.3 Output Discharge Function  
When the device is disabled by pulling enable low and the supply voltage is still applied, a transistor is turned on,  
and discharge the output capacitor. This means, if there is no supply voltage applied the output discharge  
function is also disabled. The transistor which is responsible of the discharge function, when turned on, operates  
like an equivalent 120resistor, ensuring typically less than 10ms discharge time for 20uF output capacitance  
and a 3.3V output.  
9.3.4 Soft Start  
To minimize inrush current and output voltage overshoot during start up, the device implements a soft start.  
At turn on, the input current raises in a controlled manner until the output voltage reaches regulation.  
During soft-start, the input current follows the current used to charge an internal soft start capacitor, this creates  
a linear and controlled increase of Vout.  
The soft start time, is measured as the time from when the EN pin is asserted to when the output voltage has  
reached 90% of it's nominal value. It is typically less than 1ms. There is typically a 100µs delay time from when  
the EN pin is asserted to when the device starts the switching activity.  
The soft start time depends on the load current, the input voltage, and the output capacitor. The soft start time in  
boost mode is longer then the time in buck mode.  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
Feature Description (continued)  
Thanks to its innovative soft start circuit, the device smoothly ramps up the input current bringing the output  
voltage to its regulated value without overshoot, even if a large capacitor is connected at the output. This specific  
case is never confused with a short circuit condition. The inductor current is able to increase and always  
guarantee soft start unless a real short circuit is applied at the output.  
9.3.5 Short Circuit Protection  
The TPS63025 provides short circuit protection to protect itself and the application. When the output voltage  
does not increase above 1.2V, the device assumes a short circuit at the output and keeps the input current  
controlled to protect itself and the application. In short circuit, the input current limit is kept at 3A  
9.3.6 Undervoltage Lockout  
An undervoltage lockout function prevents device start-up if the supply voltage on VIN and VINA is lower than its  
threshold (see electrical characteristics table). When in operation, the device automatically enters shutdown  
mode if the voltage on VIN and VINA drops below the undervoltage lockout threshold. The device automatically  
restarts, if the input voltage recovers above the hysteresis amount.  
9.3.7 Supply and Ground  
The TPS63025 provides two input pins (VIN and VINA) and two ground pins (PGND and GND).  
The VIN pin supplies the input power, while the VINA pin provides voltage for the control circuits. A similar  
approach is used for the ground pins. GND and PGND are used to avoid ground shift problems due to the high  
currents in the switches. The reference for all control functions is the GND pin. The power switches are  
connected to PGND. Both grounds must be connected on the PCB at only one point, ideally, close to the GND  
pin.  
9.3.8 Overtemperature Protection  
The device has a built-in temperature sensor which monitors the internal IC temperature. If the temperature  
exceeds the programmed threshold (see electrical characteristics table) the device stops operating. As soon as  
the IC temperature has decreased below the programmed threshold, it starts operating again. There is a built-in  
hysteresis to avoid unstable operation at IC temperatures at the overtemperature threshold.  
9.3.9 Current Limit  
The current limit varies depending on the difference between the input and output voltage. The maximum value  
of average input current is obtained at the highest difference.  
Given the curves provided in Figure 1, it is possible to calculate the output current reached in boost mode, using  
Equation 1 and Equation 2 and in buck mode using Equation 3 and Equation 4.  
V
- V  
IN  
OUT  
V
Duty Cycle Boost  
D =  
OUT  
(1)  
(2)  
Output Current Boost  
IOUT = 0 x IIN (1-D)  
V
OUT  
V
Duty Cycle Buck  
D =  
IN  
(3)  
(4)  
Output Current Buck  
IOUT = ( 0 x IIN ) / D  
With,  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
IIN=Minimum average input current (Figure 1)  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
 
 
 
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
9.4 Device Functional Modes  
9.4.1 Power Save Mode Operation  
www.ti.com.cn  
Depending on the load current, in order to provide the best efficiency over the complete load range, the device  
works in PWM mode at load currents of approximately 350mA or higher. At lighter loads, the device switches  
automatically into Power Save Mode to reduce power consumption and extend battery life. The PFM/PWM pin is  
used to select between the two different operation modes. To enable Power Save Mode, the PFM/PWM pin must  
be set low.  
During Power Save Mode, the part operates with a reduced switching frequency and lowest supply current to  
maintain high efficiency. The output voltage is monitored with a comparator at every clock cycle by the thresholds  
comp low and comp high. When the device enters Power Save Mode, the converter stops operating and the  
output voltage drops. The slope of the output voltage depends on the load and the output capacitance. When the  
output voltage reaches the comp low threshold, at the next clock cycle the device ramps up the output voltage  
again, by starting operation. Operation can last for one or several pulses until the comp high threshold is  
reached. At the next clock cycle, if the load is still lower than about 350mA, the device switches off again and the  
same operation is repeated. Instead, if at the next clock cycle, the load is above 350mA, the device automatically  
switches to PWM mode.  
In order to keep high efficiency in PFM mode, there is only a comparator active to keep the output voltage  
regulated. The AC ripple in this condition is increased, compared to the PWM mode. The amplitude of this  
voltage ripple in the worst case scenario is 50mV pk-pk, (typically 30mV pk-pk), with 20µF effective output  
capacitance. In order to avoid a critical voltage drop when switching from 0A to full load, the output voltage in  
PFM mode is typically 1.3% above the nominal value in PWM mode. Dynamic Voltage Positioning allows the  
converter to operate with a small output capacitor and still have a low absolute voltage drop during heavy load  
transients.  
Power Save Mode is disabled by setting the PFM/PWM pin high.  
Heavy Load transient step  
PFM mode at light load  
current  
Comparator High  
Vo+1.3%*Vo  
Vo  
30mV ripple  
Comparator low  
PWM mode  
Absolute Voltage drop  
with positioning  
Figure 13. Power Save Mode Operation  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
10 Application and Implementation  
10.1 Application Information  
The devices are designed to operate from an input voltage supply range between 2.3V and 5.5V with a  
maximum output current of 2A. The TPS63025 device operates in PWM mode for medium to heavy load  
conditions and in power save mode at light load currents.  
In PWM mode the TPS63025 converter operates with the nominal switching frequency of 2.5MHz. As the load  
current decreases, the converter enters power save mode, reducing the switching frequency and minimizing the  
IC quiescent current to achieve high efficiency over the entire load range.  
10.2 Typical Application  
L1  
TPS63025  
L1  
L2  
VOUT  
VIN  
VIN  
VOUT  
C3  
C1  
C2  
R1  
R2  
EN  
FB  
VINA  
PFM/  
PWM  
V
IN or GND  
PGND  
GND  
10.2.1 Design Requirements  
The TPS63025 series of buck-boost converter has internal loop compensation. Therefore, the external LC filter  
has to be selected according to the internal compensation. Nevertheless, it's important to consider, that the  
effective inductance, due to inductor tolerance and current derating can vary between +20% and -30%. The  
same for the capacitance of the output filter: the effective capacitance can vary between +20% and -50% of the  
specified datasheet value, due to capacitor tolerance and bias voltage. For this reason Table 3 shows the  
capacitance and inductance value allowed  
10.2.2 Detailed Design Procedure  
Table 2. List Of Components(1)  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
TPS63025  
Texas Instruments  
L1  
Shielded, Composite, 1µH, 8.75A,  
XAL4020-102MEB, Colicraft  
13m,SMD  
C1,C2  
C3  
10 μF 6.3V, 0603, X5R ceramic  
GRM188R60J106ME84D, Murata  
GRM219R60J476ME44D, Murata  
CAP, CERM,47uF, 6.3V, +/-20%,  
X5R,0805  
R1  
R2  
Depending on the output voltage at adjustable output voltage version, 0 Ω at fixed 3.3V or 2.9V  
Depending on the output voltage at adjustable output voltage version, not used at fixed 3.3V or 2.9V  
(1) See Third-Party Products Disclaimer  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
10.2.2.1 Output Filter Design  
Table 3. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL  
INDUCTOR  
NOMINAL OUTPUT CAPACITOR VALUE [µF](2)  
VALUE [µH](1)  
44  
47  
66  
88  
100  
0.680  
1.0  
+
+
+
+
+
+
+
+
+
(3)  
+
+
1.5  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and –30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and –50%.  
(3) Typical application. Other check mark indicates recommended filter combinations  
10.2.2.2 Inductor Selection  
For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady state operation is calculated using Equation 1. Only the equation which defines the switch  
current in boost mode is shown, because this provides the highest value of current and represents the critical  
current value for selecting the right inductor.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
(5)  
(6)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
Where,  
=
+
2 ´ f ´ L  
D =Duty Cycle in Boost mode  
f = Converter switching frequency (typical 2.5MHz)  
L = Inductor value  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
Note: The calculation must be done for the minimum input voltage which is possible to have in boost mode  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It's recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using Equation 6. The following inductors are recommended for use:  
The inductor value also affects the stability of the feedback loop. In particular the boost transfer function exhibits  
a right half-plane zero, whose frequency is inverse proportional to the inductor value and the load current. This  
means as the inductance and load current increase, the right half plane zero decreases in frequency. This could  
degrade the phase margin of the feedback loop. It is recommended to choose the inductor's value in order to  
have the frequency of the right half plane zero >300kHz. The frequency of the RHPZ can be calculated using  
Equation 7.  
(1 - D)2 ´ Vout  
f
RHPZ  
=
2p ´Iout ´ L  
(7)  
With,  
D =Duty Cycle in Boost mode  
Note: The calculation must be done for the minimum input voltage which is possible to have in boost mode  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
Table 4. List of Recommended Inductors(1)  
INDUCTOR VALUE  
COMPONENT SUPLIER  
Coilcraft XAL4020-102ME  
Toko, DFE322512C  
SIZE (LxWxH mm)  
4 X 4 X 2.10  
3.2 X 2.5 X 1.2  
4.4 X 4.1 X 1.2  
3 X 3 X 1.2  
Isat/DCR  
4.5A/10mΩ  
4.7A/34mΩ  
4.1A/38mΩ  
6.6A/42.10mΩ  
5A/17.40mΩ  
7.7A/36mΩ  
1 µH  
1 µH  
1 µH  
TDK, SPM4012  
1 µH  
Wuerth, 74438334010  
Coilcraft XFL4012-601ME  
Wuerth,744383340068  
0.6 µH  
0.68µH  
4 X 4 X 1.2  
3 X 3 X 1.2  
(1) See Third-Party Products Desclaimer  
10.2.2.3 Capacitor Selection  
10.2.2.3.1 Input Capacitor  
At least a 10μF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior  
of the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the VIN and  
PGND pins of the IC is recommended. This capacitance can be increased without limit.  
10.2.2.3.2 Output Capacitor  
For the output capacitor, use of a small ceramic capacitors placed as close as possible to the VOUT and PGND  
pins of the IC is recommended. The recommended nominal output capacitance value is 20µF with a variance as  
outlined in Table 4.  
There is also no upper limit for the output capacitance value. Larger capacitors causes lower output voltage  
ripple as well as lower output voltage drop during load transients.  
10.2.2.4 Setting The Output Voltage  
When the adjustable output voltage version TPS630250 is used, the output voltage is set by an external resistor  
divider. The resistor divider must be connected between VOUT, FB and GND. When the output voltage is  
regulated properly, the typical value of the voltage at the FB pin is 800mV. The current through the resistive  
divider should be about 10 times greater than the current into the FB pin. The typical current into the FB pin is  
0.1μA, and the voltage across the resistor between FB and GND, R2, is typically 800 mV. Based on these two  
values, the recommended value for R2 should be lower than 180k, in order to set the divider current at 4μA or  
higher. It is recommended to keep the value for this resistor in the range of 180k. From that, the value of the  
resistor connected between VOUT and FB, R1, depending on the needed output voltage (VOUT), can be  
calculated using Equation 8:  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(8)  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
10.2.3 Application Curves  
TPS63025  
TPS63025  
L2  
L2  
L1  
L1  
V
50mV/div  
= 3.3 V, I  
OUT_Ripple  
V
OUT_Ripple  
50mV/div  
V
= 2.8 V, V  
=3.3V, I  
=16mA  
V
= 200mA  
OUT  
Time 2µs/div  
Time 2µs/div  
IN  
OUT OUT  
IN  
Figure 14. Output Voltage Ripple in Buck-Boost Mode  
and PFM to PWM Transition  
Figure 15. Output Voltage Ripple in Boost Mode and PFM  
Operation  
TPS63025  
TPS63025  
L2  
L2  
L1  
L1  
V
50mV/div  
OUT_Ripple  
V
50mV/div  
OUT_Ripple  
V
= 4.2 V, V  
OUT  
=3.3V, I  
OUT  
=16mA  
V
= 2.5 V, V  
OUT  
=3.3V, I =1A  
OUT  
Time 2µs/div  
Time 1µs/div  
IN  
IN  
Figure 16. Output Voltage Ripple in Buck Mode  
and PFM Operation  
Figure 17. Switching Waveforms in Boost Mode  
and PWM Operation  
TPS63025  
TPS63025  
L2  
L2  
L1  
L1  
V
50mV/div  
V
50mV/div  
OUT_Ripple  
OUT_Ripple  
V
= 4.5V, V  
OUT  
=3.3V, I =1A  
OUT  
Time 1µs/div  
IN  
V
= 3.3V, V  
=3.3V, I =1A  
OUT  
Time 1µs/div  
IN  
OUT  
Figure 18. Switching Waveforms in Buck Mode  
and PWM Operation  
Figure 19. Switching Waveforms in Buck-Boost Mode  
and PWM Operation  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
TPS63025  
TPS63025  
Output Current  
1A/div, DC  
Output Current  
1A/div, DC  
Output Voltage  
100 mV/div, AC  
Output Voltage  
100 mV/div, AC  
V
= 2.8 V, V  
OUT  
= 3.3 V, I  
= 0A to 1.5A  
OUT  
V
= 4.2 V, V  
OUT  
= 3.3 V, I  
= 0A to 1.5A  
OUT  
Time 1 ms/div  
Time 1 ms/div  
IN  
IN  
Figure 20. Load Transient Response Boost Mode  
Figure 21. Load Transient Response Buck Mode  
TPS63025 V  
= 3.3 V  
TPS63025  
OUT  
V
= from 3V to 3.6V, I  
= 1.5A  
OUT  
IN  
Enable  
2 V/div, DC  
Input Voltage  
200 mV/div,  
Offset 3V  
Output Voltage  
1V/div, DC  
Output Voltage  
50 mV/div  
Inductor Current  
500 mA/div, DC  
Time 1 ms/div  
V
= 2.5 V, I = 0A  
L
Time 100 ms/div  
IN  
Figure 22. Line Transient Response  
Figure 23. Start Up After Enable  
TPS63025, V  
= 3.3V  
OUT  
Enable  
2 V/div, DC  
Output Voltage  
1V/div, DC  
Inductor Current  
500 mA/div, DC  
V
= 4.5 V, I = 0A  
L
Time 100 ms/div  
IN  
Figure 24. Start Up After Enable  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS630250  
TPS630251, TPS630252  
ZHCSCI9A MAY 2014REVISED MAY 2014  
www.ti.com.cn  
11 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.3V and 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the TPS63025 converter  
additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or  
tantalum capacitor with a value of 47 μF is a typical choice.  
12 Layout  
12.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TPS63025 devices.  
Place input and output capacitors, along with the inductor, as close as possible to the IC which keeps the  
traces short. Routing these traces direct and wide results in low trace resistance and low parasitic inductance.  
Use a common-power GND.  
Properly connect the low side of the input and output capacitors to the power GND to avoid a GND potential  
shift.  
The sense trace connected to FB is signal trace. Keep these trace away from L1 and L2 nodes.  
Use care to avoid noise induction. By a direct routing, parasitic inductance can be kept small.  
Use GND layers for shielding if needed.  
12.2 Layout Example  
12.3 Thermal Information  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS630250  
TPS630251, TPS630252  
www.ti.com.cn  
ZHCSCI9A MAY 2014REVISED MAY 2014  
Thermal Information (continued)  
Two basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
Application Note (SZZA017), and IC Package Thermal Metrics Application Note (SPRA953).  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 文档支持  
13.2.1 相关文档ꢀ  
相关文档如下:  
TPS63025EVM-553 用户指南,TPS63025 高电流、高效率单电感器降压-升压转换器》SLVUA24  
13.3 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访问。  
Table 5. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TPS630250  
TPS630251  
TPS630252  
13.4 Trademarks  
All trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS630250RNCR  
TPS630250RNCT  
TPS630250YFFR  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
DSBGA  
RNC  
RNC  
YFF  
14  
14  
20  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
63025P  
NIPDAU  
63025P  
SNAGCU  
TPS  
630250  
TPS630250YFFT  
TPS630251YFFR  
TPS630251YFFT  
TPS630252YFFR  
TPS630252YFFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
20  
20  
20  
20  
20  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TPS  
630250  
TPS  
630251  
TPS  
630251  
TPS  
630252  
TPS  
630252  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS630250RNCR  
TPS630250RNCT  
VQFN-  
HR  
RNC  
RNC  
14  
14  
3000  
250  
330.0  
12.4  
2.8  
3.3  
1.2  
8.0  
12.0  
Q1  
VQFN-  
HR  
180.0  
12.4  
2.8  
3.3  
1.2  
8.0  
12.0  
Q1  
TPS630250YFFR  
TPS630250YFFT  
TPS630251YFFR  
TPS630251YFFT  
TPS630252YFFR  
TPS630252YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
20  
20  
20  
20  
20  
20  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS630250RNCR  
TPS630250RNCT  
TPS630250YFFR  
TPS630250YFFT  
TPS630251YFFR  
TPS630251YFFT  
TPS630252YFFR  
TPS630252YFFT  
VQFN-HR  
VQFN-HR  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
RNC  
RNC  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
14  
14  
20  
20  
20  
20  
20  
20  
3000  
250  
346.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
346.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
33.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
D: Max = 2.116 mm, Min =2.056 mm  
E: Max = 1.796 mm, Min =1.736 mm  
PACKAGE OUTLINE  
RNC0014A  
VQFN-HR - 1 mm max height  
SCALE 4.000  
PLASTIC QUAD FLATPACK - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.9 0.1  
SEATING PLANE  
0.08 C  
2X  
(0.2) TYP  
1.5  
0.05  
0.00  
6X 0.5  
7
4
2X 0.5  
2X 0.49  
SYMM  
3
1
8
1
0.29  
0.19  
10  
0.29  
0.19  
11X  
0.5  
0.27  
0.17  
0.1  
C A B  
C
PINS 1 & 3  
0.05  
14  
11  
PKG  
11X  
0.3  
1.69  
1.49  
4221630/C 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNC0014A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
PKG  
11X (0.24)  
11X (0.6)  
SEE SOLDER MASK  
DETAIL  
11  
14  
8X (0.5)  
10  
1
2X  
(0.49)  
SYMM  
(2.8)  
(0.24)  
8
3
(0.22)  
PADS 1 & 3  
4
7
(0.555)  
(1.15)  
3X (1.79)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221630/C 04/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNC0014A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
PKG  
11X (0.24)  
11X (0.6)  
14  
11  
3X  
6X (0.795)  
EXPOSED METAL  
4X (0.22)  
1
10  
8X  
(0.5)  
(0.24)  
SYMM  
(2.8)  
2X (0.49)  
8
3
3X (0.06)  
7
4
3X (1.05)  
(1.15)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR EXPOSED PADS 1-3  
89% PRINTED SOLDER COVERAGE BY AREA  
SCALE:30X  
4221630/C 04/2018  
NOTES: (continued)  
5. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS630252YFFR

采用 WCSP 封装的 4A 开关单电感降压/升压转换器 | YFF | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS630252YFFT

采用 WCSP 封装的 4A 开关单电感降压/升压转换器 | YFF | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63027

高效 4.5A 开关单电感器降压/升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63027YFFR

高效 4.5A 开关单电感器降压/升压转换器 | YFF | 25 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63027YFFT

高效 4.5A 开关单电感器降压/升压转换器 | YFF | 25 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63030

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63030DSK

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63030DSKR

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63030DSKRG4

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63030DSKT

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63030DSKTG4

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63030_09

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI