TPS631000DRLR [TI]

1.5A 输出电流、高功率密度降压/升压转换器 | DRL | 8 | -40 to 125;
TPS631000DRLR
型号: TPS631000DRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.5A 输出电流、高功率密度降压/升压转换器 | DRL | 8 | -40 to 125

升压转换器
文件: 总27页 (文件大小:4081K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
TPS631000 1.5A 流高功率密度降/压转换器  
1 特性  
2 应用  
1.6V 5.5V 输入电压范围  
系统预稳压器(智能手机平板电脑、终端、远程  
信息处理)  
器件启动时输入电压大于 1.65 V  
1.2V 5.3V 输出电压范围(可调节)  
高输出电流能力,3A 峰值开关电流  
– VIN ≥ 3VVOUT = 3.3V 时,输出电流为 2A  
– VIN ≥ 2.7VVOUT = 3.3V 时,输出电流为 1.5A  
在整个负载范围内具有高效率  
– 8µA 静态电流(典型值)  
省电模式  
负载点调节(有线传感器、端口/电缆适配器加密  
)  
指纹、摄像头传感器(电子智能锁IP 网络摄像  
)  
射频放大器电源(智能传感器)  
稳压器(数据通信、光学模块、制冷/加热)  
3 说明  
1A 电流阶跃时具有 150mV 的负载阶跃响应  
峰值电流降压/升压模式架构  
TPS631000 是一款采用恒定频率峰值电流模式控制的  
降压/升压转换器。该器件具有 3A 峰值电流限制(典  
型值)和 1.6V 5.5V 输入电压范围。TPS631000 为  
系统预稳压器和稳压器提供电源解决方案。  
无缝转换模式,输出波纹 < 20mV  
正向和反向电流运行  
启动至预偏置输出  
固定频率运行,2MHz 开关频率  
安全、可靠运行的特性  
根据输入电压不同,当输入电压近似等于输出电压时,  
TPS631000 会自动以升压、降压或 3 周期降压/升  
压模式运行。以定义的占空比进行模式切换,避免不必  
要的模式内切换,以减少输出电压纹波。静态电流为  
8μA,电源处于省电模式,可在轻载甚至空载条件下实  
现出色效率。  
过流保护和短路保护  
采用有源斜坡的集成软启动  
过热保护和过压保护  
带负载断开功能的真正关断功能  
正向和反向电流限制  
小解决方案尺寸  
TPS631000 提供非常小的解决方案尺寸,采用 1.2mm  
× 2.1mm SOT-583 封装、一个 1μH 电感器和一个  
0805 输出电容器。  
小型 1µH 电感器  
在整个 VOUT 范围内支持一个 0805 输出电容器  
使用 TPS631000 并借助 WEBENCH® Power  
Designer 创建定制设计  
器件信息  
器件型号  
封装(1)  
封装尺寸(标称值)  
TPS631000  
SOT-583  
1.6 mm × 2.1 mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
L1  
100  
95  
LX1  
VIN  
LX2  
VI  
VOUT  
VO  
90  
CI  
CO  
85  
VEXT  
80  
VIN=1.6 V  
VIN=2.8 V  
VIN=3.6 V  
VIN=4.2 V  
Vin=5.5V  
75  
FB  
MODE  
EN  
To/From  
System  
70  
0.0001  
GND  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
效率目标与输出电流间的关系 (VOUT = 3.3V)  
典型应用  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFH3  
 
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Rating................................................................. 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics ............................................5  
7 Detailed Description........................................................6  
7.1 Overview.....................................................................6  
7.2 Functional Block Diagram...........................................6  
7.3 Feature Description ....................................................6  
7.4 Device Functional Modes............................................8  
8 Application and Implementation..................................10  
8.1 Application Information............................................. 10  
8.2 Typical Application.................................................... 10  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Example...................................................... 18  
11 Device and Documentation Support..........................19  
11.1 Device Support .......................................................19  
11.2 接收文档更新通知................................................... 19  
11.3 支持资源..................................................................19  
11.4 Trademarks............................................................. 19  
11.5 Electrostatic Discharge Caution..............................19  
11.6 术语表..................................................................... 19  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 20  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (January 2022) to Revision B (June 2022)  
Page  
Removed reference to PSM............................................................................................................................... 7  
Updated 8-2 .................................................................................................................................................11  
Updated 8-6 ................................................................................................................................................ 14  
Changes from Revision * (October 2021) to Revision A (January 2022)  
Page  
将文档状态从预告信息更改为量产数据”..........................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS631000  
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VOUT  
LX2  
1
2
3
4
8
7
6
5
FB  
GND  
MODE  
EN  
LX1  
VIN  
Not to scale  
5-1. 8-Pin DRL SOT-5X3 Package (Top View)  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
VOUT  
LX2  
NO.  
1
PWR  
PWR  
PWR  
PWR  
I
Power stage output  
2
Inductor switching node of the boost stage  
Inductor switching node of the buck stage  
LX1  
3
VIN  
4
Supply input voltage  
EN  
5
Device enable. Set High to enable and Low to disable. It must not be left floating.  
PFM/PWM selection. Set Low for power save mode, set High for forced PWM. It must not be  
left floating.  
MODE  
6
I
GND  
FB  
7
8
PWR  
I
Power ground  
Voltage feedback. Sensing pin  
(1) PWR = power, I = input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS631000  
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–40  
–65  
MAX  
UNIT  
V
Input voltage (VIN, LX1, LX2, VOUT, EN, FB, MODE)(2)  
6
7
VI  
Input voltage for less than 10 ns (LX1, LX2)(2)  
V
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal, unless otherwise noted.  
6.2 ESD Rating  
VALUE  
±1000  
± 500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged-device model (CDM), per JEDEC specification JS-002, all pins(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature (unless otherwise noted)  
MIN  
1.6  
NOM  
MAX  
5.5  
UNIT  
V
VI  
Supply voltage  
Output voltage  
Input capacitance  
VO  
CI  
1.2  
5.3  
V
VI = 1.6 V to 5.5 V  
4.2  
µF  
µF  
µF  
µH  
1.2 V ≤ VO ≤ 3.6 V, nominal value at VO = 3.3 V  
3.6 V < VO ≤ 5.3 V, nominal value at VO = 5 V  
10.4  
7.95  
0.7  
16.9  
10.6  
1
330  
330  
1.3  
CO  
Output capacitance  
L
Inductance  
Operating junction  
temperature range  
TJ  
–40  
125  
°C  
6.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
TPS631000  
THERMAL METRIC(1)  
DRL PACKAGE  
UNIT  
8 PINS  
132.7  
43.8  
27.3  
1.2  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
26.6  
N/A  
RΘJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS631000  
 
 
 
 
 
 
 
 
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over operating junction temperature range and recommended supply voltage range (unless otherwise noted). Typical values  
are at VI = 3.8 V, VO = 3.3 V, and TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
ISD  
Shutdown current into VIN  
VI = 3.8 V, V(EN) = 0 V  
TJ = 25°C  
0.5  
0.15  
8
0.9  
6.1  
μA  
μA  
μA  
V
Quiescent current into VIN  
VI = 2.2 V, VO = 3.3 V, V(EN) = 2.2 V, no switching  
VI = 2.2 V, VO = 3.3 V, V(EN) = 2.2 V, no switching  
IQ  
Quiescent current into VOUT  
VIT+  
Positive-going UVLO threshold voltage  
Negative-going UVLO threshold voltage  
UVLO threshold voltage hysteresis  
Positive-going POR threshold voltage  
Negative-going POR threshold voltage  
1.5  
1.4  
1.55  
1.45  
1.599  
1.499  
VIT–  
During start-up  
V
Vhys  
99  
mV  
V
VI(POR)T+  
VI(POR)T-  
I/O SIGNALS  
maximum of VI or VO  
1.25  
1.22  
1.45  
1.43  
1.65  
1.6  
V
Positive-going threshold  
EN, MODE  
VT+  
0.77  
0.5  
0.98  
1.2  
V
voltage  
Negative-going threshold  
EN, MODE  
VT-  
Vhys  
IIH  
0.66  
300  
0.76  
V
voltage  
Hysteresis voltage  
EN, MODE  
mV  
µA  
V(EN) = V(MODE) = 1.5 V,  
no pullup resistor  
High-level input current  
(EN, MODE)  
±0.01  
±0.25  
V(EN) = V(MODE) = 0 V,  
IIL  
Low-level input current  
Input bias current  
(EN, MODE)  
±0.01  
±0.01  
±0.1  
±0.3  
µA  
µA  
IBais  
(EN, MODE) V(EN) = 5.5 V  
POWER SWITCH  
Q1  
Q2  
45  
50  
50  
85  
0.8  
mΩ  
mΩ  
mΩ  
mΩ  
µA  
VI = 3.8 V, VO = 3.3 V,  
test current = 0.2 A  
rDS(on)  
On-state resistance  
Q3  
Q4  
VI = 0 V,  
TJ = 25°C  
2
IReverse  
Reverse current into VOUT  
VO = 3.3 V,  
V(EN) = 0 V  
TJ = –40°C to 125°C  
12  
µA  
CURRENT LIMIT  
Output sourcing current  
2.6  
3
3.35  
A
A
IL(PEAK)  
Switch peak current limit (1) Q1  
VO = 3.3 V  
IO falling  
Output sinking current, VI =  
3.3 V  
–0.7  
–0.55  
–0.45  
The output current at PFM mode entry  
threshold (peak) current (1)  
IPFM_entry  
145  
500  
mA  
OUTPUT  
CONTROL[FEEDBACK PIN]  
VFB  
Reference voltage on feedback pin  
495  
505  
mV  
PROTECTION FEATURES  
Positive-going OVP threshold  
voltage  
VT+(OVP)  
VT+(IVP)  
5.55  
5.55  
5.75  
5.75  
5.95  
5.95  
V
V
Positive-going IVP threshold  
voltage  
TIMING PARAMETERS  
Delay between a rising edge on the EN pin  
and the start of the output voltage ramp  
td(EN)  
0.87  
1.5  
ms  
td(ramp)  
fSW  
Soft-start ramp time  
6.42  
1.8  
7.55  
2
8.68  
2.2  
ms  
Switching frequency  
MHz  
(1) Current limit production test are performed under DC conditions. The current limit in operation will be somewhat higher and depend on  
propagation delay and the applied external components.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS631000  
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS631000 is a constant frequency peak current mode control buck-boost converter. The converter uses  
a fixed-frequency topology with approximately 2-MHz switching frequency. The modulation scheme has three  
clearly defined operation modes where the converter enters with defined thresholds over the full operation range  
of VIN and VOUT. The maximum output current is determined by the Q1 peak current limit, which is typically 3 A.  
7.2 Functional Block Diagram  
L
LX1  
LX2  
VOUT  
VIN  
CIN  
COUT  
Current  
Sensor  
Gate  
Driver  
Gate  
Driver  
Device  
Control  
Device  
Control  
VOUT  
VIN  
VMAX Switch  
EN  
+
Device Control  
Power Safe Mode  
Protection  
FB  
+
VIN  
Ref  
500 mV  
Gate  
Driver  
MODE  
GND  
Current Limit  
VOUT  
Buck/Boost Control  
Soft-Start  
LX1, LX2  
7.3 Feature Description  
7.3.1 Undervoltage Lockout (UVLO)  
The input voltage of the VIN pin is continuously monitored if the device is not in shutdown mode. UVLO only  
stops or starts the converter operation. The UVLO does not impact the core logic of the device. UVLO avoids  
a brownout of the device during device operation. In case the supply voltage on the VIN pin is lower that the  
negative-going threshold of UVLO, the converter stops its operation. To avoid a false disturbance of the power  
conversion, the UVLO falling threshold logic signal is digitally de-glitched.  
If the supply voltage on the VIN pin recovers to be higher than the UVLO rising threshold, the converter returns  
to operation. In this case, the soft-start procedure restarts faster than under start-up without a pre-biased output.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS631000  
 
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
7.3.2 Enable and Soft Start  
EN  
A
B
IL(lim_SS)  
IL  
95%* VOUT_TARGET  
VOUT  
td(RAMP)  
td(EN)  
7-1. Typical Soft-Start Behavior  
When the input voltage is above the UVLO rising threshold and the EN pin is pulled to a voltage above 1.2 V, the  
TPS631000 is enabled and starts up after a short delay time, td(EN)  
.
The TPS631000 has an inductor peak current clamp to limit inrush current during start-up. When the minimum  
current clamp (IL(lim_SS)) is lower than the current that is necessary to follow the voltage ramp, the current  
automatically increases to follow the voltage ramp. The minimum current limit ensures as fast as possible soft  
start if the capacitance is chosen lower than what the ramp time td(RAMP) was selected for.  
In a typical start-up case as shown in 7-1 (low output load, typical output capacitance), the minimum current  
clamp limits the inrush current and charges the output capacitor. The output voltage then rises faster than the  
reference voltage ramp (see phase A in 7-1). To avoid an output overshoot, the current clamp is deactivated  
when the output is close to the target voltage and follows the reference voltage ramp slew value given by the  
voltage ramp, which is finishing the start up (see phase B in 7-1). The transition from the minimum current  
clamp operation is sensed by using the threshold 95% × VOUT_TARGET. After phase B, the output voltage is well  
regulated to the nominal target voltage. The current waveform depends on the output load and operation mode.  
7.3.3 Adjustable Output Voltage  
The output voltage is set by an external resistor divider. The resistor divider must be connected between VOUT,  
FB, and GND. The feedback voltage is given by VFB. The low-side resistor R2 (between FB and GND) must not  
exceed 100 kΩ. The high-side resistor R1 (between FB and VOUT) is calculated by 方程式 1.  
R1 = R2 × (VOUT / VFB - 1)  
(1)  
The typical VFB voltage is 0.5 V.  
7.3.4 Mode Selection (PFM/FPWM)  
The mode pin is a digital input to enable PFM/FPWM.  
When the MODE pin is connected to logic low, the device works in auto PFM mode. The device features a power  
save mode to maintain the highest efficiency over the full operating output current range. PFM automatically  
changes the converter operation from CCM to pulse frequency modulation.  
When the MODE pin is connected to logic high, the device works in forced PWM mode, regardless of the output  
current, to achieve minimum output ripple.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS631000  
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
7.3.5 Reverse Current Operation  
The device can support reverse current operation (the current flows from VOUT pin to VIN pin). If the output  
feedback voltage on the FB pin is higher than the reference voltage, the converter regulation forces a current  
into the input capacitor. The reverse current operation is independent of the VIN voltage or VOUT voltage ratio,  
hence it is possible on all device operation modes boost, buck, or buck-boost.  
7.3.6 Protection Features  
The following sections describe the protection features of the device.  
7.3.6.1 Input Overvoltage Protection  
The TPS631000 has input overvoltage protection. It avoids any damage to the device in case the current flows  
from the output to the input and the input source cannot sink current (for example, a diode in the supply path).  
If forced PWM mode is active, the current can go negative until it reaches the sink current limit. Once the input  
voltage threshold, VT+(IVP), is reached on the VIN pin, the protection disables forced PWM mode and only allows  
current to flow from VIN to VOUT. After the input voltage drops under the input voltage protection threshold,  
forced PWM mode can be activated again.  
7.3.6.2 Output Overvoltage Protection  
The TPS631000 has the output overvoltage protection. It avoids any damage to the device in case the external  
feedback pin is not working properly.  
If the output voltage threshold VT+(OVP) is reach on the VOUT pin, the protection disables converter power stage  
and enter a high impedance at the switch nodes.  
7.3.6.3 Short Circuit Protection  
The device features peak current limit performance at short circuit protection. 7-2 shows a typical device  
behavior of an short/overload event of the short circuit protection.  
VO  
IL(PEAK)  
IL  
7-2. Typical Device Behavior During Short Circuit Protection  
7.3.6.4 Thermal Shutdown  
To avoid thermal damage of the device, the temperature of the die is monitored. The device stops operation  
once the sensed temperature rises over the thermal threshold. After the temperature drops below the thermal  
shutdown hysteresis, the converter returns to normal operation.  
7.4 Device Functional Modes  
The device has two functional modes: off and on. The device enters the on mode when the voltage on the VIN  
pin is higher than the UVLO threshold and a high logic level is applied to the EN pin. The device enters the off  
mode when the voltage on the VIN pin is lower than the UVLO threshold or a low logic level is applied to the EN  
pin.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS631000  
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
on  
VI > VIT+ &&  
EN pin = high  
VI < VITœ ||  
EN pin = low  
off  
7-3. Device Functional Modes  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS631000  
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The TPS631000 is a high-efficiency, low-quiescent current, buck-boost converter. The device is suitable for  
applications needing a regulated output voltage from an input supply that can be higher or lower than the output  
voltage.  
8.2 Typical Application  
L1  
1 µH  
LX1  
VIN  
LX2  
VI = 1.6 œ 5.5 V  
VO = 3.3 V  
VOUT  
CI  
CO  
47 µF  
22 µF  
R1  
511 k  
FB  
MODE  
EN  
To/From  
System  
R2  
91 kꢀ  
GND  
8-1. 3.3-VOUT Typical Application  
8.2.1 Design Requirements  
The design parameters are listed in 8-1.  
8-1. Design Parameters  
PARAMETERS  
Input voltage  
VALUES  
2.7 V to 4.3 V  
3.3 V  
Output voltage  
Output current  
1.5 A  
8.2.2 Detailed Design Procedure  
The first step is the selection of the output filter components. To simplify this process, 6.3 outlines minimum  
and maximum values for inductance and capacitance. Tolerance and derating should be taken into account  
when selecting nominal inductance and capacitance.  
8.2.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the TPS631000 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint or cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS631000  
 
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
8.2.2.2 Inductor Selection  
The inductor selection is affected by several parameters such as the following:  
Inductor ripple current  
Output voltage ripple  
Transition point into power save mode  
Efficiency  
See 8-2 for typical inductors.  
For high efficiencies, the inductor should have a low DC resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady state operation is calculated using 方程式 3. Only the equation that defines the switch  
current in boost mode is shown because this provides the highest value of current and represents the critical  
current value for selecting the right inductor.  
V
- V  
IN  
OUT  
V
Duty Cycle Boost  
D =  
OUT  
(2)  
(3)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
=
+
2 ´ f ´ L  
where:  
D = duty cycle in boost mode  
f = converter switching frequency (typical 2.2 MHz)  
L = inductor value  
η = estimated converter efficiency (use the number from the efficiency curves or 0.9 as an assumption)  
备注  
The calculation must be done for the minimum input voltage in boost mode.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It is recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using 方程式 3. Possible inductors are listed in 8-2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS631000  
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
8-2. List of Recommended Inductors  
SIZE  
(L × W × H  
mm)  
INDUCTOR  
VALUE [µH]  
SATURATION  
CURRENT [A]  
DCR [mΩ]  
PART NUMBER  
MANUFACTURER(1)  
MuRata  
1
1
1
1
4.3  
4.2  
2.2  
2.0  
42  
43  
DFE252012P-1R0M=P2  
HTEK20161T-1R0MSR  
MAKK2016T1R0M (2)  
DFE18SAN1R0ME0 (2)  
2.5 × 2.0 ×  
1.2  
Cyntec  
2.0 × 1.6 ×  
1.0  
75  
Taiyo Yuden  
Murata  
2.0 × 1.6 ×  
1.0  
144  
1.6 × 0.8 ×  
0.8  
(1) See the Third-Party Products Disclaimer.  
(2) This inductor does not support full output current range.  
8.2.2.3 Output Capacitor Selection  
For the output capacitor, use small ceramic capacitors placed as close as possible to the VOUT and PGND pins  
of the IC. The recommended nominal output capacitor value is a single 47 µF. If, for any reason, the application  
requires the use of large capacitors that cannot be placed close to the IC, use a smaller ceramic capacitor in  
parallel to the large capacitor. The small capacitor should be placed as close as possible to the VOUT and  
PGND pins of the IC.  
It is important that the effective capacitance is given according to the recommended value in 6.3. In general,  
consider DC bias effects resulting in less effective capacitance. The choice of the output capacitance is mainly a  
tradeoff between size and transient behavior as higher capacitance reduces transient response over/undershoot  
and increases transient response time. Possible output capacitors are listed in 8-3.  
There is no upper limit for the output capacitance value.  
8-3. List of Recommended Capacitors  
CAPACITOR  
VALUE [µF]  
SIZE  
(METRIC)  
VOLTAGE RATING [V]  
ESR [mΩ]  
PART NUMBER  
MANUFACTURER(1)  
47  
47  
6.3  
10  
10  
40  
GRM219R60J476ME44  
CL10A476MQ8QRN  
Murata  
Semco  
0805 (2012)  
0603 (1608)  
(1) See the Third-Party Products Disclaimer.  
8.2.2.4 Input Capacitor Selection  
A 22-µF input capacitor is recommended to improve line transient behavior of the regulator and EMI behavior  
of the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the VIN and  
PGND pins of the IC is recommended. This capacitance can be increased without limit. If the input supply is  
located more than a few inches from the TPS631000, additional bulk capacitance can be required in addition to  
the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 µF is a typical choice.  
8-4. List of Recommended Capacitors  
CAPACITOR  
VALUE [µF]  
SIZE  
(METRIC)  
VOLTAGE RATING [V]  
ESR [mΩ]  
PART NUMBER  
MANUFACTURER(1)  
22  
10  
6.3  
10  
43  
40  
GRM187R61A226ME15  
GRM188R61A106ME69  
Murata  
Murata  
0603 (1608)  
0603 (1608)  
(1) See the Third-Party Products Disclaimer.  
8.2.2.5 Setting the Output Voltage  
The output voltage is set by an external resistor divider. The resistor divider must be connected between VOUT,  
FB, and GND. The feedback voltage is 500 mV nominal.  
The low-side resistor R2 (between FB and GND) should not exceed 100 kΩ. The high-side resistor (between FB  
and VOUT) R1 is calculated with 方程式 4.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS631000  
 
 
 
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(4)  
where  
VFB = 500 mV  
8-5. Resistor Selection For Typical Output Voltages  
VOUT  
R1  
365  
511  
562  
806  
R2  
91  
91  
91  
91  
2.5 V  
3.3 V  
3.6 V  
5 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS631000  
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
8.2.3 Application Curves  
3.3  
3
100  
80  
60  
40  
20  
0
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
VIN=1.6 V  
VIN=2.8 V  
VIN=3.6 V  
VIN=4.2 V  
VIN=5.5 V  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (A)  
Input Voltage (V)  
VOUT = 3.3 V  
MODE = High  
VOUT = 3.3 V  
8-3. Efficiency vs Output Current (FPWM)  
8-2. Typical Output Current Capability vs Input Voltage  
3.3  
100  
95  
90  
85  
80  
75  
3.28  
3.26  
3.24  
VIN=1.6V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.5V  
VIN=1.6 V  
VIN=2.8 V  
VIN=3.6 V  
VIN=4.2 V  
Vin=5.5V  
3.22  
3.2  
0.0001  
70  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
Output Current (A)  
VOUT = 3.3 V  
MODE = High  
VOUT = 3.3 V  
MODE = Low  
8-4. Load Regulation (FPWM)  
8-5. Efficiency vs Input Voltage (PFM)  
3.28  
3.26  
3.24  
3.22  
3.2  
VIN=1.6V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
Vin=5.5V  
Vout(3.3V o set)  
20mV/div  
LX1  
2.0V/div  
LX2  
2.0V/div  
Inductor Current  
500mA/div  
Time Scale: 200ns/div  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
VIN = 2.7 V, VOUT = 3.3 V  
IOUT = 1 A, MODE = Low  
VO = 3.3 V  
MODE = High  
8-7. Switching Waveforms, Boost Operation with 1-A Load  
8-6. Load Regulation (PFM)  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS631000  
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
8.2.3 Application Curves (continued)  
Vout(3.3V o set)  
20mV/div  
Vout(3.3V o set)  
20mV/div  
LX1  
2.0V/div  
LX1  
2.0V/div  
LX2  
2.0V/div  
LX2  
2.0V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 200ns/div  
Time Scale: 200ns/div  
VIN = 3.3 V, VOUT = 3.3 V  
IOUT = 1 A, MODE = Low  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 1 A, MODE = Low  
8-8. Switching Waveforms with 1-A Load  
8-9. Switching Waveforms with 1-A Load  
Vout(3.3V o set)  
20mV/div  
Vout(3.3V o set)  
20mV/div  
LX1  
2.0V/div  
LX1  
2.0V/div  
LX2  
2.0V/div  
LX2  
2.0V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 200ns/div  
Time Scale: 2.0ms/div  
VIN = 4.3 V, VOUT = 3.3 V  
IOUT = 1 A, MODE = Low  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 1 mA, MODE = Low  
8-10. Switching Waveforms, Buck Operation with 1-A Load  
8-11. Switching Waveforms at 1-mA Load  
EN  
2.0V/div  
EN  
2.0V/div  
Vout  
2.0V/div  
LX1  
Vout  
2.0V/div  
2.0V/div  
LX1  
2.0V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 5.0ms/div  
Time Scale: 500 s/div  
VIN = 3.6 V, VOUT = 3.3 V  
Rload = 4 Ω, MODE = Low  
VIN = 3.6 V, VOUT = 3.3 V  
Rload = 4 Ω, MODE = Low  
8-12. Start-Up by EN  
8-13. Shutdown by EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS631000  
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
8.2.3 Application Curves (continued)  
Vout(3.3V o set)  
200mV/div  
Vout(3.3V o set)  
50mV/div  
LX1  
5.0V/div  
LX1  
5.0V/div  
LX2  
5.0V/div  
LX2  
5.0V/div  
Inductor Current  
1.0A/div  
Inductor Current  
1.0A/div  
Time Scale: 100 s/div  
Time Scale: 5.0ms/div  
VIN = 2.7 V, VOUT = 3.3 V  
IOUT = 100 mA to 1 A with 20-  
µs slew rate  
VIN = 2.7 V, VOUT = 3.3 V  
IOUT = 100 mA to 1-A sweep  
8-15. Load Sweep at 2.7-V Input Voltage  
8-14. Load Transient at 2.7-V Input Voltage  
Vout(3.3V o set)  
50mV/div  
Vout(3.3V o set)  
200mV/div  
LX1  
5.0V/div  
LX1  
5.0V/div  
LX2  
5.0V/div  
LX2  
5.0V/div  
Inductor Current  
1.0A/div  
Inductor Current  
1.0A/div  
Time Scale: 100 s/div  
Time Scale: 5.0ms/div  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 100 mA to 1 A with 20-  
µs slew rate  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 100 mA to 1-A sweep  
8-17. Load Sweep at 3.6-V Input Voltage  
8-16. Load Transient at 3.6-V Input Voltage  
Vout(3.3V o set)  
200mV/div  
Vout(3.3V o set)  
50mV/div  
LX1  
5.0V/div  
LX1  
5.0V/div  
LX2  
5.0V/div  
LX2  
5.0V/div  
Inductor Current  
1.0A/div  
Inductor Current  
1.0A/div  
Time Scale: 100 s/div  
Time Scale: 5.0ms/div  
VIN = 4.3 V, VOUT = 3.3 V  
IOUT = 100 mA to 1 A with 20-  
µs slew rate  
VIN = 4.3 V, VOUT = 3.3 V  
IOUT = 100 mA to 1-A sweep  
8-19. Load Sweep at 4.3-V Input Voltage  
8-18. Load Transient at 4.3-V Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS631000  
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
8.2.3 Application Curves (continued)  
Vin  
1.0V/div  
Vin  
1.0V/div  
Vout(3.3V o set)  
50mV/div  
Vout (3.3V o set)  
50mV/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 500 s/div  
Time Scale: 100ms/div  
VIN = 2.7 V to 4.3 V with 20-µs  
slew rate, VOUT = 3.3 V  
IOUT = 1 A  
VIN = 2.7-V to 4.3-V sweep,  
VOUT = 3.3 V  
IOUT = 1 A  
8-20. Line Transient at 1-A Load Current  
8-21. Line Sweep at 1-A Load Current  
Vout  
2.0V/div  
Vout  
2.0V/div  
LX1  
2.0V/div  
LX1  
2.0V/div  
LX2  
2.0V/div  
LX2  
2.0V/div  
Inductor Current  
1.0A/div  
Inductor Current  
1.0A/div  
Time Scale: 1.0ms/div  
Time Scale: 10 s/div  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 1 A, FPWM  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 1 A, FPWM  
8-22. Output Short Protection (Entry)  
8-23. Output Short Protection (Recover)  
8-6. Components for Application Characteristic Curves for VOUT = 3.3 V  
REFERENCE  
DESCRIPTION(2)  
PART NUMBER  
MANUFACTURER(1)  
Texas Instruments  
MuRata  
U1  
L1  
High Power Density 1.5 A Buck-Boost Converter  
1.0 µH, 2.5 mm x 2.0 mm, 4.3 A, 42 mΩ  
22 µF, 0603, Ceramic Capacitor, ±20%, 6.3 V  
47 µF, 0805, Ceramic Capacitor, ±20%, 6.3 V  
511 kΩ, 0603 Resistor, 1%, 100 mW  
TPS631000  
DFE252012P-1R0M=P2  
GRM187R61A226ME15  
GRM219R60J476ME44  
Standard  
C1  
C2  
R1  
R2  
Murata  
Murata  
Standard  
91 kΩ, 0603 Resistor, 1%, 100 mW  
Standard  
Standard  
(1) See the Third-Party Products Disclaimer.  
(2) For other output voltages, refer to 8-5 for resistor values.  
9 Power Supply Recommendations  
The TPS631000 device has no special requirements for its input power supply. The input power supply output  
current needs to be rated according to the supply voltage, output voltage, and output current of the TPS631000.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS631000  
 
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TPS631000 device.  
Place input and output capacitors as close as possible to the IC. Traces need to be kept short. Route  
wide and direct traces to the input and output capacitors results in low trace resistance and low parasitic  
inductance.  
The sense trace connected to FB is signal trace. Keep these traces away from LX1 and LX2 nodes.  
10.2 Layout Example  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS631000  
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此  
类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the TPS631000 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint or cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS631000  
 
 
 
 
 
 
 
 
TPS631000  
ZHCSP59B – OCTOBER 2021 – REVISED JUNE 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS631000  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS631000DRLR  
ACTIVE  
SOT-5X3  
DRL  
8
4000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-40 to 125  
2N4W  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-May-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS631000DRLR  
SOT-5X3  
DRL  
8
4000  
180.0  
8.4  
2.75  
1.9  
0.8  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-May-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-5X3 DRL  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TPS631000DRLR  
8
4000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/E 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4224486/E 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/E 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS631010

3A 峰值电流超小解决方案尺寸高效降压/升压转换器
TI

TPS631010YBGR

3A 峰值电流超小解决方案尺寸高效降压/升压转换器 | YBG | 8 | -40 to 125
TI

TPS634G1

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G10

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G11

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G12

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G14

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G2

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G20

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G4

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G5

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G7

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC