TPS63810 [TI]

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器;
TPS63810
型号: TPS63810
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器

升压转换器
文件: 总44页 (文件大小:1943K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
TPS63810 TPS63811 - 具有 I2C 接口的 2.5A 降压/升压转换器  
1 特性  
2 应用  
1
输入电压范围:2.2V 5.5V  
系统前置稳压器(智能手机、平板电脑、跟踪和远  
程信息处理、EPOSTWS 耳机、医用助听器)  
输出电压范围:1.8V 5.2V  
运行和关断期间,I2C 可配置  
负载点调节(飞行时间摄像头传感器、端口/电缆适  
配器和加密狗)  
VSEL 引脚用于在两个输出电压预设之间切换  
热电器件电源(TEC、光纤模块)  
输出电流  
宽带网络无线电或 SoC 电源(物联网、家庭自动  
化、EPOS)  
VI 2.5VVO = 3.3V 时可达 2.5A  
VI 2.8VVO = 3.5V 时可达 2.5A  
在整个负载范围内具有高效率  
3 说明  
13μA 低工作静态电流  
自动节电模式和强制 PWM 模式(I2C 可配置)  
TPS63810 TPS63811 是完全可编程(通过 I2C)  
的高效率、高输出电流降压/升压转换器。根据输入电  
压不同,当输入电压近似等于输出电压时,它们它会自  
动以升压、降压或全新的 4 周期降压/升压模式运行。  
峰值电流降压/升压模式架构  
可在降压、降压/升压和升压操作模式之间定义  
转换  
在定义的阈值内进行模式切换,避免不必要的模式内切  
换,以减少输出电压纹波。  
正向和反向电流运行  
启动至预偏置输出  
两个可通过 I2C 访问的寄存器用于设置输出电  
压,VSEL 引脚用于选择哪个输出电压寄存器处于激活  
状态。这样,这些器件就能够支持动态电压调节。如果  
输出电压寄存器在运行过程中发生了更改或切换了  
VSEL 引脚,则器件将以定义的可编程斜坡速率转换运  
行模式。  
安全、可靠运行 特性  
集成软启动  
过热和过压保护  
关断期间的真正负载断开  
正向和反向电流限制  
两个器件选项  
TPS63810:预编程输出电压(3.3V3.45V)  
TPS63811:启动前的程序输出电压  
器件信息(1)  
器件型号  
TPS63810  
TPS63811  
封装  
封装尺寸(标称值)  
解决方案尺寸小于 20 mm2,仅有四个外部器件  
DSBGA (15)  
2.3mm × 1.4mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
效率与输出电流间的关系  
0.47 µH  
100  
90  
80  
70  
60  
50  
40  
30  
VI  
2.2 V to 5.5 V  
VO  
3.3 V  
LX1  
VIN  
LX2  
VOUT  
EN  
10 µF  
2 × 22 µF  
TPS63810 /  
TPS63811  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
20  
10  
0
SCL  
SDA  
VSEL  
VI = 3.6 V  
TA = 25°C  
Power-save mode enabled  
GND  
AGND  
0.01  
0.1  
Output Current (A)  
1
3
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEK4  
 
 
 
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 17  
8.5 Programming........................................................... 17  
8.6 Register Map........................................................... 21  
Application and Implementation ........................ 25  
9.1 Application Information............................................ 25  
9.2 Typical Applications ............................................... 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Switching Characteristics.......................................... 7  
7.8 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 8  
9
10 Power Supply Recommendations ..................... 34  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example .................................................... 34  
12 器件和文档支持 ..................................................... 35  
12.1 器件支持 ............................................................... 35  
12.2 文档支持................................................................ 35  
12.3 相关链接................................................................ 35  
12.4 接收文档更新通知 ................................................. 35  
12.5 支持资源................................................................ 35  
12.6 ....................................................................... 35  
12.7 术语表 ................................................................... 35  
13 机械、封装和可订购信息....................................... 36  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (November 2019) to Revision C  
Page  
Changed the unit in 2 ........................................................................................................................................................ 7  
Changed "Output Disabled (Hi-Z)" to "Output Discharge Active" in 2 ............................................................................ 13  
Changed "EN pin is low" to "EN pin is low or the ENABLE bit is set to zero" in the Output Discharge section.................. 17  
Changed "TPS63810" to "Start-up value for TPS63810" in bit 5 of Table 3........................................................................ 22  
Changes from Revision A (October 2019) to Revision B  
Page  
将产品状态从预告信息更改成了生产数据” .......................................................................................................................... 1  
5 器件比较表  
器件型号  
TPS63810  
TPS63811  
输出启动状态  
已启用  
输出电压  
VSEL = 低:3.3V  
VSEL = 高:3.45V  
已禁用  
启动时可编程  
2
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
6 Pin Configuration and Functions  
YFF Package  
15-Ball DSBGA  
Top View  
1
2
3
A
B
C
D
E
EN  
VIN  
VIN  
VSEL  
AGND  
SCL  
LX1  
GND  
LX2  
LX1  
GND  
LX2  
SDA  
VOUT  
VOUT  
Not to scale  
BGA Package (YFF) Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
A1  
Device enable. A high logic level on this pin enables the device; a low logic level on this pin  
disables the device.  
EN  
I
A2  
A3  
VIN  
VIN  
Supply voltage for power stage  
Supply voltage for power stage  
This pin selects which VOUT register is active. When a low logic level is applied to this pin, the  
VOUT1 register sets the output voltage. When a high logic level is applied to this pin, the VOUT2  
register sets the output voltage.  
B1  
VSEL  
I
B2  
B3  
C1  
C2  
C3  
D1  
D2  
D3  
E1  
E2  
E3  
LX1  
LX1  
I/O  
I/O  
Inductor connection  
Inductor connection  
AGND  
GND  
GND  
SCL  
Analog ground  
Power ground  
Power ground  
I2C serial interface clock. Pull this pin up to the I2C bus voltage with a resistor or a current source.  
LX2  
Inductor connection  
LX2  
Inductor connection  
SDA  
VOUT  
VOUT  
I2C serial interface data. Pull this pin up to the I2C bus voltage with a resistor or a current source.  
Converter output  
Converter output  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–3  
MAX  
UNIT  
V
Input voltage (VIN, LX1, LX2, VOUT, SCL, SDA, EN, VSEL)(2)  
Input voltage for less than 10 ns (LX1, LX2)(2)  
6
9
VI  
V
TJ  
Operating junction temperature  
Storage temperature  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal, unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2  
1.8  
2.025  
1.3  
0
NOM  
MAX  
5.5  
4.975  
5.2  
VI  
UNIT  
VI  
Supply voltage  
Output voltage  
V
Low range  
VO  
V
High range  
VIH  
High-level input voltage  
Low-level input voltage  
Input voltage  
SCL, SDA, VSEL  
SCL, SDA, VSEL  
EN  
V
V
V
VIL  
0.3  
VI  
V(EN)  
0
VO = 3.3 V, VI 2.5 V  
VO = 3.5 V, VI 2.5 V  
VO = 3.5 V, VI 2.8 V  
VO = 3.3 V, VI 3 V  
2.5  
2
IO  
Output current(1)  
A
2.5  
3
CI  
CO  
L
Input capacitance(2)  
Output capacitance(2)  
5
13  
µF  
µF  
nH  
°C  
°C  
16  
Inductance  
390  
–40  
–40  
470  
560  
85  
TA  
TJ  
Operating free-air temperature range  
Operating junction temperature range  
125  
(1) The device can sustain the maximum recommended output current only for short durations before its junction temperature gets too hot.  
Users must verify that the thermal performance of the end application can support the maximum output current.  
(2) Effective capacitance after DC bias effects have been considered.  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
7.4 Thermal Information  
TPS63810,  
TPS63811  
THERMAL METRIC(1)  
UNIT  
YFF (DSBGA)  
15 PINS  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
80.5  
0.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
20.5  
0.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
20.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Over operating junction temperature range and recommended supply voltage range (unless otherwise noted). Typical values  
are at VI = 3.6 V, VO = 3.3 V and TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VI = 3.6 V, VO = 3.3 V, V(EN) = 3.6 V,  
not switching, TJ = 25°C  
IQ;VIN  
Supply current into VIN  
Supply current into VIN  
Shutdown current into VIN  
13  
µA  
VI = 3.6 V, VO = 0 V, V(EN) = 3.6 V, Output  
disabled with ENABLE bit in Control  
Register  
15  
µA  
TJ = 25°C  
VI = 3.6 V, VO = 0 V, V(EN) = 0 V  
TJ = 25°C  
ISD  
0.35  
µA  
VIT+  
Positive-going UVLO threshold voltage  
UVLO threshold voltage hysteresis  
2
2.1  
2.2  
V
Vhys  
200  
mV  
I/O SIGNALS  
SCL, SDA,  
VSEL  
1.2  
Positive-going input  
threshold voltage  
VIT+  
V
V
EN  
1.07  
0.4  
1.1  
1
1.13  
SCL, SDA,  
VSEL  
Negative-going input  
threshold voltage  
VIT–  
EN  
EN  
0.97  
40  
1.03  
Vhys  
IIH  
Hysteresis voltage  
mV  
µA  
V(SCL) = V(SDA) = V(VSEL) = 1.8 V,  
no pullup resistor  
SCL, SDA,  
VSEL  
High-level input current  
±0.01  
±0.01  
±0.1  
±0.1  
V(SCL) = V(SDA) = V(VSEL) = 0 V,  
no pullup resistor  
SCL, SDA,  
VSEL  
IIL  
Low-level input current  
µA  
IOL  
Low-level output current  
Input bias current  
SCL, SDA  
EN  
VOL = 0.4 V  
20  
mA  
µA  
IIB  
V(EN) = 0 V to 5.5 V  
±0.01  
±0.1  
POWER STAGE  
Low range  
1.8  
2.025  
–1.5  
4.975  
5.2  
VO  
Output voltage range  
V
%
V
High range  
PWM operation  
PSM operation  
VSEL = low  
VSEL = high  
1.5  
Output voltage accuracy  
–1.5  
3.5  
3.3  
Default output voltage (RANGE = 0)  
3.45  
VI = 2.9 V, VO = 3.6 V,  
boost operation, output sourcing current  
5.2  
3.8  
6.5  
5.2  
VI = 4.1 V, VO = 3.3 V,  
buck operation, output sourcing current  
4.3  
Switch current limit  
A
A
VI = 5 V, VO = 3.3 V,  
reverse-boost operation, output sinking  
current  
–1.3  
–0.35  
IT–(PSM)  
PSM entry threshold (peak) current  
VI = 4.2 V; VO = 3.3 V  
0.85  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating junction temperature range and recommended supply voltage range (unless otherwise noted). Typical values  
are at VI = 3.6 V, VO = 3.3 V and TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output discharge current  
VI = 3.6 V, VO 0.8 V  
50  
mA  
Positive-going power-good threshold  
voltage  
VT+(PG)  
VT–(PG)  
95  
%
Negative-going power-good  
threshold voltage  
90  
%
V
Positive-going input overvoltage threshold  
Reverse current operation  
5.7  
I2C INTERFACE  
7-Bit slave address  
75h  
THERMAL SHUTDOWN  
Thermal shutdown threshold temperature  
TJ rising  
150  
20  
°C  
°C  
Thermal shutdown hysteresis  
7.6 Timing Requirements  
Over operating junction temperature range and recommended supply voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
100  
UNIT  
Standard mode  
0
fSCL  
SCL clock frequency  
Fast mode  
0
400  
kHz  
Fast mode plus  
Standard mode  
Fast mode  
0
1000  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
4.7  
0.6  
0.26  
4.0  
0.6  
0.26  
250  
100  
50  
tLOW  
tHIGH  
tBUF  
LOW period of the SCL clock  
HIGH period of the SCL clock  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
Fast mode plus  
Standard mode  
Fast mode  
Fast mode plus  
Standard mode  
Fast mode  
Bus free time between a STOP and  
a START condition  
Fast mode plus  
Standard mode  
Fast mode  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;STA  
tSU;DAT  
tHD;DAT  
tr  
Fast mode plus  
Standard mode  
Fast mode  
Hold time (repeated) START  
condition  
Fast mode plus  
Standard mode  
Fast mode  
Data set-up time  
Data hold time  
Fast mode plus  
Standard mode  
Fast mode  
0
0
Fast mode plus  
Standard mode  
Fast mode  
0
1000  
300  
120  
300  
300  
120  
Rise time of both SDA and SCL  
signals  
20  
Fast mode plus  
Standard mode  
Fast mode  
Fall time of both SDA and SCL  
signals  
tf  
20×VDD/5.5  
20×VDD/5.5  
4.0  
Fast mode plus  
Standard mode  
Fast mode  
tsu;STO  
Set-up time for STOP condition  
0.6  
Fast mode plus  
0.26  
6
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
Timing Requirements (continued)  
Over operating junction temperature range and recommended supply voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.45  
0.9  
UNIT  
Standard mode  
tVD;DAT  
Data valid time  
Fast mode  
µs  
Fast mode plus  
Standard mode  
Fast mode  
0.45  
3.45  
0.9  
tVD;ACK  
Data valid acknowledge time  
µs  
µs  
Fast mode plus  
Standard mode  
Fast mode  
0.45  
400  
400  
550  
Cb  
Capacitive load for each bus line  
VSEL pulse duration  
Fast mode plus  
VSEL = high or low  
tw(VSEL)  
5
7.7 Switching Characteristics  
Over operating junction temperature range and recommended input voltage range (unless otherwise noted). Typical values  
are at VI = 3.6 V, VO = 3.3 V, and TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay between a rising edge on the  
EN pin and the start of the output  
voltage ramp  
td(EN)  
td(PG)  
TJ = 25°C, VI = 3.6 V  
229  
440  
µs  
Power-good delay  
VO falling  
50  
±1  
µs  
SLEW = 00b, forced-PWM operation  
SLEW = 01b, forced-PWM operation  
SLEW = 10b, forced-PWM operation  
SLEW = 11b, forced-PWM operation  
±2.5  
±5  
Slew rate of internal ramp during dynamic  
voltage scaling  
SR  
V/ms  
±10  
Inductor Switching Frequency, Boost  
Mode  
VI = 2.3 V, VO = 3.3 V, no Load, PWM  
operation  
2.6  
1.6  
2.0  
MHz  
MHz  
MHz  
µs  
Inductor Switching Frequency, Buck-  
Boost Mode  
VI = 3.3 V, VO = 3.3 V, no Load, PWM  
operation  
fSW  
Inductor Switching Frequency, Buck  
Mode  
VI = 4.3 V, VO = 3.3 V, no Load, PWM  
operation  
Delay between rising edge of VSEL and  
start of DVS ramp  
Measured from rising edge of VSEL to  
start of ramp.  
td(VSEL)  
5
7.8 Typical Characteristics  
1.2  
1
20  
VI = 2.2 V  
VI = 3.6 V  
VI = 5.5 V  
VI = 2.2 V  
VI = 3.6 V  
VI = 5.5 V  
18  
0.8  
0.6  
0.4  
0.2  
0
16  
14  
12  
10  
8
-0.2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperatur (èC)  
EN = LOW  
2. Shutdown Current versus Temperature  
MODE = LOW  
VO = 3.3 V  
IO = 0 mA, not  
switching  
1. Quiescent Current versus Temperature  
版权 © 2019–2020, Texas Instruments Incorporated  
7
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS63810 and TPS63811 devices are high-efficiency buck-boost converters. Each device uses four  
switches to maintain synchronous power conversion under all operating conditions, so that the device achieves  
high efficiency power conversion over a wide range of input voltages and output currents. The device  
automatically switches between buck, boost, and buck-boost operation as required by the operating conditions.  
The device operates as a true buck converter when VI > VO and as a true boost converter when VI < VO. When  
VI VO, the device operates in a 4-cycle buck-boost mode. The RMS current through the switches and the  
inductor is thus kept to a minimum, minimizing switching and conduction losses. Controlling the switches this way  
lets the converter achieve high efficiency over the whole input voltage range.  
8.2 Functional Block Diagram  
LX1  
LX2  
Q1  
Q4  
VIN  
VOUT  
ISNS  
Gate  
Drivers  
Gate  
Drivers  
Q2 Q3  
PGND  
Overvoltage  
Protection  
VSEL  
Control Logic  
EN  
SCL  
SDA  
Output  
Discharge  
Interface  
Control  
+
ISNS  
œ
œ
Current  
Comparator  
+
Vref  
Error  
Amplifier  
AGND  
Clamp  
8.3 Feature Description  
8.3.1 Control Scheme  
The device automatically selects the best switching scheme for the operating conditions. To make sure of stable  
operation, the selection logic includes hysteresis (see 3).  
Boost  
Buck-Boost  
Buck  
VI < VO  
VI ≈ VO  
VI > VO  
Hysteresis  
Hysteresis  
3. Switching Scheme Selection  
8
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
Feature Description (接下页)  
8.3.1.1 Buck Operation  
When VI > VO, the device switches like a buck converter:  
Q1 is the switch.  
Q2 is the rectifier.  
Q3 is permanently off.  
Q4 is permanently on.  
See 4. During buck operation, one switching cycle comprises two phases: on–off.  
I(SNS)  
L
Q1  
Q4  
CI  
Q2  
Q3  
CO  
On phase  
Off phase  
4. Buck Switch Configuration  
8.3.1.2 Boost Operation  
When VI < VO, the device switches like a boost converter:  
Q1 is permanently on.  
Q2 is permanently off.  
Q3 is the switch.  
Q4 is the rectifier.  
See 5. During boost operation, one switching cycle comprises two phases: on–off.  
I(SNS)  
Q1  
L
Q4  
CI  
Q2  
Q3  
CO  
On phase  
Off phase  
5. Boost Switch Configuration  
8.3.1.3 Buck-Boost Operation  
When VI VO, all four transistors switch continuously (see 6). During buck-boost operation, one switching  
cycle comprises four phases: on–commutate–off–commutate.  
版权 © 2019–2020, Texas Instruments Incorporated  
9
 
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
I(SNS)  
Q1  
L
Q4  
CI  
Q2  
Q3  
CO  
On phase  
Off phase  
Commutate phase  
6. Buck-Boost Switch Configuration  
8.3.2 Control Scheme  
The device uses a constant off-time, peak-current-mode control scheme where an outer voltage control loop  
generates the demand signal for an inner current control loop. During the on-time, the inner current control loop  
monitors the inductor current, and when the inductor current equals the demand signal from the error amplifier,  
the on-time stops and the next part of the switching cycle starts.  
The off-time is a function of VI and VO and the operating mode (buck, boost, or buck-boost) of the converter.  
Inductor  
Current  
Peak inductor current  
during the on time  
0
Time  
7. Peak Current Control (Buck and Boost Operation)  
Inductor  
Current  
Peak inductor current  
during the on time  
0
Time  
8. Peak Current Control – Buck-Boost Operation with VI < VO  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
Feature Description (接下页)  
Inductor  
Current  
Peak inductor current  
during the on time  
0
Time  
9. Peak Current Control – Buck-Boost Operation with VI > VO  
Inductor  
Current  
Peak inductor current  
during the on time  
0
Time  
10. Peak Current Control – Buck-Boost Operation with VI = VO  
During PWM operation, current can flow in the reverse direction (from output to input). In this case, the error  
amplifier provides a negative peak current target. Note that the average reverse current is greater (more  
negative) than the peak current (see 11 and 12).  
Inductor  
Current  
Time  
0
Peak inductor current  
during the on time  
Average inductor current  
11. Reverse Peak Current Control – Buck and Boost Operation  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
Inductor  
Current  
Time  
0
Peak inductor current  
during the on time  
Average inductor current  
12. Reverse Peak Current Control – Buck-Boost Operation, with VI > VO  
8.3.3 Power-Save Mode Operation (PSM)  
To increase efficiency across a wide range of operating conditions, the device automatically changes from pulse-  
width modulation (PWM) at medium and high output currents to pulse-frequency modulation (PFM) at low output  
currents.  
During PWM operation, the device switches continuously and adjusts the duty cycle of each switching cycle  
to regulate the output voltage.  
During PFM operation, the device switches in bursts of a few switching cycles, separated by periods when the  
device does not switch (see 13). PFM operation increases efficiency at low output currents because when  
the device does not switch, there are no switching losses and most of the internal circuitry is disabled, which  
reduces quiescent power consumption. A comparator with hysteresis compares the output voltage of the error  
amplifier to a predefined PFM threshold voltage. When the output voltage of the error amplifier is greater than  
the burst threshold voltage, the device starts switching. When the output voltage of the error amplifier is less  
than the burst threshold voltage, the device stops switching. This scheme automatically adjusts the frequency  
and the duration of the switching bursts to regulate the output voltage. During PFM operation, the output  
voltage ripple can be higher and the transient response is not as good as during PWM operation (see 1).  
To enable power-save mode, clear the FPWM bit in the Control register to 0.  
Converter  
output voltage  
Output voltage ripple  
Burst start threshold  
Burst stop threshold  
Error amplifier  
output voltage  
Inductor  
current  
Time  
tBurst  
tBurst periodt  
tdurationt  
13. Pulse-Frequency Modulation  
WHITESPACE  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
1. Forced-PWM versus Power-Save Mode  
Performance Comparison  
PERFORMANCE PARAMETER  
BEST OPERATING MODE  
Power-Save Mode (PSM)  
No difference  
Low-power efficiency  
Medium- and high-power efficiency  
DC Output voltage accuracy  
Transient response  
Forced-PWM  
Forced-PWM  
Output voltage ripple  
Forced-PWM  
WHITESPACE  
8.3.4 Forced-PWM Operation (FPWM)  
During forced-PWM operation, the device uses PWM for all operating conditions. Forced-PWM operation has  
lower output voltage ripple and better transient response than power-save mode operation, but lower efficiency at  
low output currents (see 1).  
Note that the device inhibits forced-PWM operation during start-up (that is, until the converter output has reached  
power-good for the first time).  
To enable forced-PWM operation, set the FPWM bit in the Control register to 1.  
8.3.5 Ramp-PWM Operation (RPWM)  
If Ramp-PWM operation is enabled, the device operates in forced-PWM when it ramps from one output voltage  
to another during dynamic voltage scaling. This function is useful if you want the device to operate in power-save  
mode, but you want to make sure that dynamic voltage scaling ramps the output voltage up and down in a  
controlled way. If the device operates in power-save mode and Ramp-PWM is disabled, the device cannot  
always control the ramp from a higher output voltage to a lower output voltage, because in power-save mode the  
device cannot sink current (see 14).  
To enable Ramp-PWM operation, set the RAMP bit in the Control register to 1. To disable Ramp-PWM  
operation, clear the RAMP bit in the Control register to 0.  
VO(2)  
Forced-PWM /  
Ramp-PWM  
VO(1)  
VO(2)  
Power-Save  
Mode  
VO(1)  
14. Ramp-PWM Operation  
8.3.6 Device Enable (EN)  
The EN pin enables and disables the device.  
When the EN pin is high, the device is enabled.  
When the EN pin is low, the device is disabled.  
You can also use the ENABLE bit in the Control register to enable and disable the output of the converter (see  
the Register Map).  
2. Device Enable Truth Table  
ENABLE PIN (EN)  
ENABLE BIT  
DEVICE STATE  
Device in Shutdown  
Programming Interface Active  
Device Active  
OUTPUT STATE  
Output Discharge Active  
Output Discharge Active  
Output Enabled  
0
1
1
X
0
1
版权 © 2019–2020, Texas Instruments Incorporated  
13  
 
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
8.3.7 Undervoltage Lockout (UVLO)  
The device has an undervoltage lockout function that disables the device when the supply voltage is too low for  
correct operation.  
8.3.8 Soft Start  
To minimize inrush current and output voltage overshoot during start-up, the device has a soft-start function. At  
turn on, the switch current limit ramps gradually to its maximum value and the device starts up in a controlled  
way. The gradual increase of the current limit generates the smallest inrush current for no-load conditions. It is  
also possible to start into a high load as long as the load does not exceed the device current limit.  
The rise time of the output voltage changes with the application circuit and the operating conditions. The output  
voltage rise time increases if the following occurs:  
The output capacitance is large.  
The load current is large.  
The device operates in boost mode.  
See the Application and Implementation section for output voltage rise times in a typical application.  
WHITESPACE  
EN  
VIT  
ttr(SS)  
t
max  
min  
0
Peak Inductor  
Current Limit  
ttd(EN)  
t
Inductor  
Current  
Output  
Voltage  
15. Device Start-Up  
8.3.9 Output Voltage Control  
The device can generate output voltages from 1.8 V to 5.2 V with a resolution of 25 mV. To set the output  
voltage, you must first program the RANGE bit in the Control register to select the output voltage range:  
When RANGE = 0, you can program the output voltage from 1.8 V to 4.975 V.  
When RANGE = 1, you can program the output voltage from 2.025 V to 5.2 V.  
WHITESPACE  
When you have selected the output voltage range, you can program the VOUT1 register and VOUT2 register to  
set the output voltage:  
When RANGE = 0, VO = (VOUT[6:0] × 0.025) + 1.8 V  
When RANGE = 1, VO = (VOUT[6:0] × 0.025) + 2.025 V  
VOUT[6:0] is the 7-bit value in the VOUT1 register or VOUT2 register, whichever is active.  
WHITESPACE  
The VSEL pin selects which VOUT register is active:  
When VSEL = low, the VOUT1 register sets the output voltage.  
When VSEL = high, the VOUT2 register sets the output voltage.  
WHITESPACE  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
To prevent output voltage transients, TI recommends that you do not change the output  
voltage range while the converter is in operation. Instead, clear the ENABLE bit in the  
Control register to 0 to disable the DC/DC converter before you change the RANGE bit.  
8.3.9.1 Dynamic Voltage Scaling  
The device has a dynamic voltage scaling (DVS) function which lets you change the output voltage in a  
controlled way during operation. 16 shows a simplified block diagram of the DVS function. The VSEL pin  
controls a multiplexer which selects either the VOUT1 register or the VOUT2 register to control the set voltage.  
The ramp control block detects when the target output voltage is different from the actual output voltage and  
ramps the output voltage to the target voltage in 25-mV steps. You can use the 2-bit SLEW parameter in the  
Control register to select one of four slew rates from 0.5 V/ms to 10 V/ms.  
The device starts a DVS ramp when you change the logic level on the VSEL pin or program to a new value in  
the active VOUT register.  
WHITESPACE  
VOUT1[6:0]  
VOUT2[6:0]  
0
1
VOUT[6:0]  
VSET[6:0]  
Ramp  
Control  
To rest of  
converter  
MUX  
VSEL  
SLEW[1:0]  
16. Dynamic Voltage Scaling Block Diagram  
Note that if you change the contents of the active VOUT register or change the state of the VSEL pin during  
start-up (that is, before the end of the soft start), the converter uses the new value immediately and does not  
ramp gradually to the final value.  
17 shows the timing diagram when you use the VSEL pin to change between the output voltage values in the  
VOUT1 and VOUT2 registers.  
WHITESPACE  
td(VSEL)  
td(VSEL)  
VSEL  
tr  
tf  
VO(2)  
VO  
VO(1)  
+VO(1) œ VO(2)  
+
tr = tf =  
Where  
SR  
°
°
°
VO(1) is the output voltage set by the VOUT1 register  
VO(2) is the output voltage set by the VOUT2 register  
SR is the slew rate set by the SLEW bits in the CONTROL register  
17. DVS Timing Diagram Using the VSEL Pin  
WHITESPACE  
18 shows the timing diagram when you use the I2C interface to change the output voltage value in one of the  
VOUT registers.  
WHITESPACE  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
 
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
VSEL  
low  
Write 30h  
to VOUT1  
Write 20h  
to VOUT1  
I2C  
tr  
tf  
3.0 V  
2.6 V  
VO  
3.0 œ 2.6  
tr = tf =  
SR  
Where SR is the slew rate set by the SLEW bits in the CONTROL register.  
18. DVS Timing Using the I2C Interface  
8.3.10 Protection Functions  
8.3.10.1 Input Voltage Protection (IVP)  
Under certain operating conditions, current can flow from the output of the device to the input. For example, this  
can occur during dynamic voltage scaling when the output ramps down to a lower voltage and the VOUT pin  
sinks current from the output capacitor. Under such conditions, if the voltage source supplying the device cannot  
sink current, the voltage on the VIN pin can rise uncontrollably.  
To make sure the input voltage stays within the permitted range, the device stops switching if the voltage on the  
VIN pin is greater than 5.7 V. The device automatically starts to switch again when the voltage on the VIN pin is  
less than 5.7 V.  
The device sets the PG bit in the Status register when an input overvoltage event occurs. The device clears the  
PG bit if the Status register is read when the power-not-good condition no longer exists.  
8.3.10.2 Current Limit Mode and Overcurrent Protection  
The device has a clamp circuit which limits the peak inductor current in the event of an overload. The exact value  
of the output current during an overload changes with the operating conditions (VI and VO) and the switching  
mode (buck, buck-boost, or boost) – see 52.  
Overloads increase the power dissipation in the device, which increases its temperature. If the device becomes  
too hot, the thermal shutdown function turns off the converter. When the device cools down, the thermal  
shutdown function automatically turns on the converter again. Thus, under a permanent overload condition, the  
device can periodically turn on and off, as it cools down and then heats up.  
8.3.10.3 Thermal Shutdown  
The device has a thermal shutdown function which turns off the converter if the junction temperature is greater  
than 150°C. The device automatically turns on the converter again when the junction temperature is less than  
130°C. You can still use the I2C interface to read and write to the registers when the device is in an  
overtemperature condition.  
When the device detects an overtemperature condition, it sets the TSD bit in the Status register to 1. The device  
clears the TSD bit to 0 if you read the Status register when the junction temperature of the device is less than  
130°C.  
8.3.11 Power Good  
The device has a power-good function which indicates if the output of the DC/DC converter is in regulation or  
not. The device detects a power-good condition when the output voltage is greater than 95% of its nominal value  
and detects a power-not-good condition when the output voltage is less than 90% of its nominal value.  
When a power-not-good condition occurs, the device sets the PG bit in the Status register to 1. The device clears  
the PG bit to 0 if you read the Status register when a power-good condition exists.  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
8.3.12 Load Disconnect  
During device shutdown, the input is disconnected from the output. This prevents any current flow from the  
output to the input or from the input to the output.  
8.3.13 Output Discharge  
The device actively discharges the output when the EN pin is low or the ENABLE bit is set to zero.  
8.4 Device Functional Modes  
The device has two functional modes: off and on. The device enters the on mode when the voltage on the VIN  
pin is higher than the UVLO threshold and a high logic level is applied to the EN pin. The device enters the off  
mode when the voltage on the VIN pin is lower than the UVLO threshold or a low logic level is applied to the EN  
pin.  
on  
VI > VIT+ &&  
EN pin = high  
VI < VITœ ||  
EN pin = low  
off  
19. Device Functional Modes  
8.5 Programming  
8.5.1 Serial Interface Description  
I2C is a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors (see NXP  
Semiconductors, UM10204 – I2C-Bus Specification and User Manual ). The bus consists of a data line (SDA)  
and a clock line (SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All  
the I2C-compatible devices connect to the I2C bus through open-drain I/O pins, SDA, and SCL. A master device,  
usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating  
the SCL signal and device addresses. The master also generates specific conditions that indicate the START  
and STOP of data transfer. A slave device receives and transmits data on the bus under control of the master  
device.  
The device works as a slave and supports the following data transfer modes, as defined in the I2C-Bus  
Specification:  
Standard-mode (100 kbps)  
Fast-mode (400 kbps)  
Fast-mode Plus (1 Mbps)  
The interface adds flexibility to the power supply solution, enabling most functions to be programmed to new  
values, depending on the instantaneous application requirements. Register contents remain intact as long as  
supply voltage remains above 2.1 V.  
The data transfer protocol for standard and fast modes is exactly the same, therefore, it is referred to as F/S-  
mode in this document. The device supports 7-bit addressing; 10-bit addressing and general call address are not  
supported. The device 7-bit address is 75h (1110101b).  
To make sure that the I2C function in the device is correctly reset, it is recommended that the I2C master initiates  
a STOP condition on the I2C bus after the initial power up of SDA and SCL pullup voltages.  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Programming (接下页)  
8.5.2 Standard-, Fast-, and Fast-Mode Plus Protocol  
The master initiates a data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 20. All I2C-compatible devices recognize a  
start condition.  
DATA  
CLK  
S
P
START  
STOP  
Condition  
Condition  
20. START and STOP Conditions  
The master then generates the SCL pulses and transmits the 7-bit address and the read/write direction bit, R/W,  
on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires  
the SDA line to be stable during the entire high period of the clock pulse (see 21). All devices recognize the  
address sent by the master and compare it to their internal fixed addresses. Only the slave device with a  
matching address generates an acknowledge (see 22) by pulling the SDA line low during the entire high  
period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a  
slave has been established.  
DATA  
CLK  
Data line stable;  
data valid  
Change of  
data allowed  
21. Bit Transfer on the Serial Interface  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the  
slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. An  
acknowledge signal can either be generated by the master or by the slave, depending on which one is the  
receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary.  
To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to  
high while the SCL line is high (see 20). This releases the bus and stops the communication link with the  
addressed slave. All I2C-compatible devices must recognize the stop condition. Upon the receipt of a stop  
condition, all devices know that the bus is released and they wait for a start condition followed by a matching  
address.  
Attempting to read data from register addresses not listed in this section results in 00h being read out.  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
Programming (接下页)  
Data Output by  
Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
SCL from  
Master  
1
2
8
9
S
START  
Condition  
Clock pulse for  
acknowledgment  
22. Acknowledge on the I2C Bus  
P
SDA  
SCL  
acknowledgement  
signal from slave  
acknowledgement  
signal from receiver  
MSB  
Sr  
S
or  
Sr  
Sr  
or  
P
1
2
7
8
9
1
2
3 to 8  
9
ACK  
ACK  
START or  
repeated START  
condition  
byte complete,  
interrupt within slave  
clock line held low while  
interrupts are serviced  
STOP or  
repeated START  
condition  
23. Bus Protocol  
8.5.3 I2C Update Sequence  
A single update requires the following:  
A start condition  
A valid I2C slave address  
A register address  
A data byte  
To acknowledge the receipt of each byte, the device pulls the SDA line low during the high period of a single  
clock pulse. The device performs an update on the falling edge of the acknowledge signal that follows the last  
byte.  
WHITESPACE  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Programming (接下页)  
1
7
1
1
8
1
8
1
1
S
Slave Address  
R/W  
A
Register Address  
A
Data  
A/A  
P
From master to slave  
From slave to master  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
24. “Write” Data Transfer Format in Standard, Fast, and Fast-Plus Modes  
1
7
1
1
8
1
1
8
1
1
8
1
1
S
Slave Address  
R/W  
A
Register Address  
A
Sr  
Slave Address  
R/W  
A
Data  
A/A  
P
"0" Write  
"1" Read  
From master to slave  
From slave to master  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
25. “Read” Data Transfer Format in Standard, Fast, and Fast-Plus Modes  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
8.6 Register Map  
8.6.1 Register Description  
8.6.1.1 Register Map  
ADDRESS  
0x01  
ACRONYM  
CONTROL  
STATUS  
DEVID  
REGISTER NAME  
SECTION  
Go  
Control Register  
Status Register  
DEVID Register  
VOUT1 Register  
VOUT2 Register  
0x02  
Go  
0x03  
Go  
0x04  
VOUT1  
Go  
0x05  
VOUT2  
Go  
Copyright © 2019–2020, Texas Instruments Incorporated  
21  
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
8.6.1.2 Register CONTROL (Slave address: 0b1110101; Register address: 0x01; Default: 0x00 or 0x20)  
Return to Register Map.  
Figure 26. Register CONTROL Format  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
RANGE  
R/W  
ENABLE  
R/W  
RESERVED  
R/W  
FPWM  
R/W  
RPWM  
R/W  
SLEW[1:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only  
Table 3. Register CONTROL Field Descriptions  
Bit Field  
Type Reset  
Description  
7
6
5
4
3
2
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
Reserved for future use.  
This bit can be written to and read from but it has no function. For compatibility with  
possible future device variants, it is recommended to program this bit to 0.  
RANGE  
ENABLE  
RESERVED  
FPWM  
0
This bit selects the output voltage range.  
0: Low range (1.800 V to 4.975 V)  
1 : High range (2.025 V to 5.200 V)  
X
0
This bit controls operation of the converter.  
0 : Converter operation disabled (Start-up value for TPS63811)  
1 : Converter operation enabled (Start-up value for TPS63810)  
Reserved for future use.  
This bit can be written to and read from but it has no function. For compatibility with  
possible future device variants, it is recommended to program this bit to 0.  
0
This bit controls the forced-PWM function.  
0: Forced-PWM operation disabled  
1 : Forced-PWM operation enabled  
RPWM  
0
This bit controls the ramp-PWM function.  
0: Ramp-PWM operation disabled  
1 : Ramp-PWM operation enabled  
1:0 SLEW[1:0]  
00  
These bits control the slew rate of the DVS function.  
00: 1.0 V/ms  
01: 2.5 V/ms  
10: 5.0 V/ms  
11: 10.0 V/ms  
8.6.1.3 Register STATUS (Slave address: 0b1110101; Register address: 0x02; Default: 0x00)  
Return to Register Map.  
Figure 27. Register STATUS Format  
7
6
5
4
3
2
1
TSD  
R
0
PGn  
R
NIL[5:0]  
R
LEGEND: R/W = Read/Write; R = Read only  
Table 4. Register STATUS Field Descriptions  
Bit Field  
Type Reset  
Description  
7:2 NIL[5:0]  
R
000000  
Not used.  
These bits always return 0 when read.  
1
TSD  
R
0
This bit shows the status of the thermal shutdown function.  
This bit is cleared if the STATUS register is read when the overtemperature condition  
no longer exists.  
0: Temperature good  
1 : An overtemperature event was detected.  
0
PGn  
R
0
This bit shows the status of the power-good comparator.  
This bit is cleared if the STATUS register is read when the power-not-good condition no  
longer exists.  
0: Power-good  
1 : A power-not-good event was detected.  
22  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
8.6.1.4 Register DEVID (Slave address: 0b1110101; Register address: 0x03; Default: 0x04)  
Return to Register Map.  
Figure 28. Register DEVID Format  
7
6
5
4
3
2
1
0
MANUFACTURER[3:0]  
R
MAJOR[1:0]  
R
MINOR[1:0]  
R
LEGEND: R/W = Read/Write; R = Read only  
Table 5. Register DEVID Field Descriptions  
Bit Field  
Type Reset  
Description  
7:4 MANUFACTURER[3:0]  
R
0000  
These bits identify the device manufacturer.  
0000: Texas Instruments  
3:2 MAJOR[1:0]  
R
01  
These bits identify the major silicon revision.  
00: A (initial silicon)  
01: B (first major revision)  
10: C (second major revision)  
11: D (third major revision)  
1:0 MINOR[1:0]  
R
00  
These bits identify the minor silicon revision.  
00: 0 (initial silicon)  
01: 1 (first minor revision)  
10: 2 (second minor revision)  
11: 3 (third minor revision)  
8.6.1.5 Register VOUT1 (Slave address: 0b1110101; Register address: 0x04; Default: 0x3C)  
Return to Register Map.  
Figure 29. Register VOUT1 Format  
7
NIL  
R
6
5
4
3
2
1
0
VOUT1[6:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only  
Table 6. Register VOUT1 Field Descriptions  
Bit Field  
NIL  
Type Reset  
Description  
7
R
0
Not used  
This bit always returns 0 when read.  
6:0 VOUT1[6:0]  
R/W  
0111100  
These bits set the output voltage when the VSEL pin is low.  
Output voltage = 1.800 + (VOUT1[6 :0] × 0.025) V (low range) (default = 3.3 V)  
Output voltage = 2.025 + (VOUT1[6 :0] × 0.025) V (high range) (default = 3.525 V)  
8.6.1.6 Register VOUT2 (Slave address: 0b1110101; Register address: 0x05; Default: 0x42)  
Back to Register Map.  
Figure 30. Register VOUT2 Format  
7
NIL  
R
6
5
4
3
2
1
0
VOUT2[6:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only  
Table 7. Register VOUT2 Field Descriptions  
Bit Field  
NIL  
Type Reset  
Description  
7
R
0
Not used  
This bit always returns 0 when read.  
Copyright © 2019–2020, Texas Instruments Incorporated  
23  
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Table 7. Register VOUT2 Field Descriptions (continued)  
Bit Field  
Type Reset  
R/W 1000010  
Description  
6:0 VOUT2[6:0]  
These bits set the output voltage when the VSEL pin is high.  
Output voltage = 1.800 + (VOUT2[6 :0] × 0.025) V (low range) (default = 3.45 V)  
Output voltage = 2.025 + (VOUT2[6 :0] × 0.025) V (high range) (default = 3.675 V)  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS63810 and TPS63811 devices are high efficiency, high current buck-boost converters, suitable for  
applications where the input voltage is higher, lower, or equal to the output voltage. The maximum peak current  
in the switches is limited to a typical value of 6 A.  
9.2 Typical Applications  
9.2.1 1.8-V to 5.2-V Output Smartphone Power Supply  
L1  
0.47 µH  
VI  
2.5 V to 4.8 V  
VO  
1.8 V to 5.2 V  
L1  
VIN  
L2  
VOUT  
EN  
C1  
10 µF  
C2  
22 µF  
C3  
22 µF  
C4  
22 µF  
3.3 V  
TPS63810 /  
TPS63811  
3.3 kΩ 3.3 kΩ  
SCL  
SDA  
To system  
VSEL  
GND  
AGND  
31. Typical Application Schematic  
9.2.1.1 Design Requirements  
This example uses the design parameters listed in 8.  
8. Design Parameters  
DESIGN PARAMETER  
Input voltage  
SYMBOL  
EXAMPLE VALUE  
2.5 V to 4.8 V  
1.8 V to 5.2 V  
2 A  
VI  
VO  
Output voltage  
Output current  
IO  
I2C bus voltage  
I2C bus capacitance  
I2C bus speed  
VBUS  
Cb  
3.3 V  
100 pF  
Fast-mode (400 kHz)  
版权 © 2019–2020, Texas Instruments Incorporated  
25  
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Input Capacitor Selection  
TI recommends a minimum input capacitance (including DC bias effects) of 5 µF. A 10-µF, 10-V ceramic  
capacitor is suitable for typical applications. If the input supply is located more than a few centimeters from the  
converter, you may need to add additional bulk capacitance (a 47-µF electrolytic or tantalum capacitor is a typical  
choice).  
The output capacitance does not have an upper limit; you can make it as big as you want.  
9.2.1.2.2 Inductor Selection  
TI recommends you use the TPS63810 device with 0.47-µH inductors. For high efficiencies, use an inductor with  
a low DC resistance (DCR) and low core losses.  
The saturation current of the inductor must be greater than the maximum inductor current in your application. To  
include sufficient margin for worst-case and transient operating conditions, TI recommends you use an inductor  
with saturation current that is at least 20% higher than the maximum inductor current in your application. The  
maximum current in the inductor occurs when the device operates in boost mode and the following is true:  
The input voltage is at its minimum value.  
The output voltage is at its maximum value.  
The output current is at its maximum value.  
To calculate the maximum inductor current, first use 公式 1 to calculate the maximum duty cycle during boost  
operation (which is when the maximum inductor current occurs).  
WHITESPACE  
VO œ VI  
D =  
VO  
where  
D is the duty cycle  
VI is the input voltage  
VO is the output voltage  
(1)  
WHITESPACE  
5 V œ 2.5 V  
D =  
= 0.5  
5 V  
WHITESPACE  
Next, use 公式 2 to calculate the maximum inductor current.  
IO  
DVI  
ILM  
=
+
:
;
1 œ D  
2fL  
where  
ILM is the peak inductor current  
IO is the output current  
η is the converter efficiency (use the value from the application curves or assume 90%)  
D is the duty cycle (calculated with 公式 1)  
VI is the input voltage  
f is the switching frequency (assume 2 MHz)  
L is the inductance (use 0.47 µH)  
(2)  
WHITESPACE  
:
;: ;  
0.5 2.5 V  
2 A  
;:  
ILM  
=
+
= 5.1 A  
:
;
: ;:  
;: ;  
0.9 1 œ 0.5  
2 2 MHz 0.47 H  
WHITESPACE  
26  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
To include enough margin for transient conditions, TI recommends you use an inductor with a saturation current  
rating at least 20% higher than the calculated maximum current. In this example, TI recommends an inductor  
with a saturation current of at least 6.1 A.  
9.2.1.2.3 Output Capacitor Selection  
TI recommends a minimum output capacitance (including DC bias effects) of 16 µF. Two 22-µF, 10-V ceramic  
capacitors are suitable for typical applications with VO 3.6 V. For VO > 3.6 V, three 22-µF or two 47-µF ceramic  
capacitors are suitable. If you want to minimize switching noise on the output, connect a small ceramic capacitor  
(100 nF is a typical value) in parallel to the two main output capacitors and place it closest to the VOUT pin.  
Smaller capacitors have lower parasitic inductance and are more effective at filtering high frequencies than the  
two main output capacitors.  
The output capacitance does not have an upper limit, however, very large values of output capacitance make the  
transient response of the converter slower.  
It is important that the effective capacitance is given according to the recommended value in Recommended  
Operating Conditions. In general, consider DC bias effects resulting in less effective capacitance. The choice of  
the output capacitance is mainly a trade-off between size and transient behavior as higher capacitance reduces  
transient response overshoot and undershoot and increases transient response time. 9 lists possible output  
capacitors.  
9. List of Recommended Capacitors(1)  
CAPACITOR  
[µF]  
SIZE  
(METRIC)  
VOLTAGE RATING [V]  
ESR [mΩ]  
PART NUMBER  
MANUFACTURER  
22  
22  
47  
47  
6.3  
10  
10  
40  
43  
43  
GRM187R60J226ME15  
GRM187R61A226ME15  
GRM188R60J476ME15  
GRM219R60J476ME44  
Murata  
Murata  
Murata  
Murata  
0603 (1608)  
0603 (1608)  
0603 (1608)  
0805 (2012)  
6.3  
6.3  
(1) See Third-party Products Disclaimer.  
9.2.1.2.4 I2C Pullup Resistor Selection  
Refer to the NXP Semiconductors, UM10204 – I2C-Bus Specification and User Manual for the specifications  
relevant to your application.  
Use 公式 3 to calculate the maximum permitted pullup resistor value for the bus speed used in the application.  
WHITESPACE  
tr  
: ;  
RP max =  
0.8473 × Cb  
where  
tr is the maximum permitted rise time (300 ns for Fast-mode)  
Cb is the capacitive load on each bus line  
(3)  
WHITESPACE  
300 ns  
: ;  
RP max =  
= 3.541 k  
0.8473 × 100 pF  
WHITESPACE  
If you do not know what the bus capacitance is in your application, start with a 1-kΩ pullup resistor and measure  
the rise time with an oscilloscope. Use 公式 3 to calculate the bus capacitance and thus the maximum permitted  
pullup resistor.  
Use 公式 4 to calculate the minimum permitted pullup resistor value for different bus speeds.  
WHITESPACE  
VBUS œ VOL  
: ;  
RP min =  
IOL  
版权 © 2019–2020, Texas Instruments Incorporated  
27  
 
 
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
where  
VBUS is the I2C bus pullup voltage  
VOL is the low-level output voltage (0.4 V)  
IOL is the low-level output current (3 mA for Fast-mode)  
(4)  
WHITESPACE  
3.3 V œ 0.4 V  
: ;  
RP min =  
= 967  
3 mA  
WHITESPACE  
A pullup resistor value of 3.3 kΩ meets both of these requirements.  
28  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
9.2.1.3 Application Curves  
10 lists the components that were used for the measurements contained in the following pages.  
10. Components for Application Characteristic Curves  
REFERENCE  
DESCRIPTION  
Capacitor, 10 µF, 10 V, 0603, ceramic  
Capacitor, 22 µF, 10 V, 0603, ceramic  
Inductor, 0.47 µH  
PART NUMBER  
GRM188R61A106ME69  
GRM187R61A226ME15  
XFL4015-471MEC  
MANUFACTURER  
Murata  
C1  
C2, C3  
L1  
Murata  
Coilcraft  
U1  
Integrated circuit  
TPS63810YFF  
Texas Instruments  
版权 © 2019–2020, Texas Instruments Incorporated  
29  
 
 
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
WHITESPACE  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
0.01  
0.1  
Output Current (A)  
1
2.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
VI = 3.6 V  
PSM  
TA = 25°C  
IO = 1 A  
PSM  
TA = 25°C  
32. Efficiency versus Output Current  
33. Efficiency versus Input Voltage  
0.3  
0.15  
0
0.3  
0.15  
0
-0.15  
-0.3  
-0.45  
-0.6  
-0.15  
-0.3  
-0.45  
-0.6  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
0
0.5  
1 1.5  
Output Current (A)  
2
2.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
VI = 3.6 V  
FPWM  
TA = 25°C  
IO = 1 A  
FPWM  
TA = 25°C  
34. Load Regulation  
35. Line Regulation  
tV(LX1) (2 V/div)t  
tV(LX1) (2 V/div)t  
tV(LX2) (2 V/div)t  
tV(LX2) (2 V/div)t  
tIL (1 A/div)t  
tIL (1 A/div)t  
tTime = 2 µs/divt  
tTime = 2 µs/divt  
VI = 5 V  
PSM  
TA = 25°C  
VI = 3.3 V  
VO = 3.3 V  
PSM  
TA = 25°C  
VO = 3.3 V  
IO = 100 mA  
IO = 100 mA  
36. PFM Switching Waveforms  
37. PFM Switching Waveforms  
(Buck Operation)  
(Buck-Boost Operation)  
30  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
tV(LX1) (2 V/div)t  
tV(LX2) (2 V/div)t  
tV(LX1) (2 V/div)t  
tV(LX2) (2 V/div)t  
tIL (1 A/div)t  
tIL (1 A/div)t  
tTime = 2 µs/divt  
tTime = 400 ns/divt  
VI = 2.5 V  
VO = 3.3 V  
PSM  
TA = 25°C  
VI = 5 V  
FPWM  
TA = 25°C  
IO = 100 mA  
VO = 3.3 V  
IO = 100 mA  
38. PFM Switching Waveforms  
39. PWM Switching Waveforms  
(Boost Operation)  
(Buck Operation)  
tV(LX1) (2 V/div)t  
tV(LX1) (2 V/div)t  
tV(LX2) (2 V/div)t  
tV(LX2) (2 V/div)t  
tIL (1 A/div)t  
tIL (1 A/div)t  
tTime = 400 ns/divt  
tTime = 400 ns/divt  
VI = 3.3 V  
VO = 3.3 V  
FPWM  
TA = 25°C  
VI = 2.5 V  
VO = 3.3 V  
FPWM  
TA = 25°C  
IO = 100 mA  
IO = 100 mA  
40. PWM Switching Waveforms  
41. PWM Switching Waveforms  
(Buck-Boost Operation)  
(Boost Operation)  
tVO (200 mV/div, ac)t  
tVO (200 mV/div, ac)t  
tVI (2 V/div)t  
tIL (2 A/div)t  
tVI (2 V/div)t  
tIL (2 A/div)t  
tTime = 200 µs/divt  
tTime = 200 µs/divt  
VI = 2.5 V to 5.5 V  
VO = 3.3 V  
PSM  
TA = 25°C  
VI = 2.5 V to 5.5 V  
VO = 3.3 V  
PSM  
TA = 25°C  
IO = 200 mA  
IO = 2 A  
42. Line Transient Response  
43. Line Transient Response  
版权 © 2019–2020, Texas Instruments Incorporated  
31  
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
tVO (200 mV/div, ac)t  
tVO (200 mV/div, ac)t  
tIL (1 A/div)t  
tIL (1 A/div)t  
tTime = 200 µs/divt  
tTime = 200 µs/divt  
VI = 4.2 V  
VO = 3.3 V  
PSM  
TA = 25°C  
VI = 3.3 V  
VO = 3.3 V  
PSM  
TA = 25°C  
IO = 10 mA to 2 A  
IO = 10 mA to 2 A  
44. Load Transient Response (Buck)  
45. Load Transient Response (Buck-Boost)  
tVI (1 V/div, ac)t  
tVO (200 mV/div, ac)t  
tVO (1 V/div, ac)t  
tIL (1 A/div)t  
tIL (1 A/div)t  
tTime = 200 µs/divt  
tTime = 200 µs/divt  
VI = 2.6 V  
VO = 3.3 V  
PSM  
TA = 25°C  
VI = 3.3 V ±0.9 V  
VO = 3.3 V  
FPWM  
TA = 25°C  
IO = 10 mA to 2 A  
RL = 3 Ω  
46. Load Transient Response (Boost)  
47. Line Sweep (PWM)  
tVI (2 V/div)t  
tVO (2 V/div)t  
tIL (1 A/div)t  
tVI (2 V/div)t  
tVO (2 V/div)t  
tIL (1 A/div)t  
tTime = 40 µs/divt  
tTime = 40 µs/divt  
VI = 3.6 V  
VO = 3.3 V  
PSM  
TA = 25°C  
VI = 3.6 V  
VO = 3.3 V  
PSM  
TA = 25°C  
RL = 33 Ω  
RL = 3.3 Ω  
48. Start-Up Waveforms  
49. Start-Up Waveforms  
(Light Load)  
(Heavy Load)  
32  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
tVO (2 V/div)t  
tVO (2 V/div)t  
tIL (1 A/div)t  
tIL (1 A/div)t  
tTime = 4 ms/divt  
tTime = 4 ms/divt  
VI = 3.6 V  
PSM  
TA = 25°C  
VI = 3.6 V  
PSM  
TA = 25°C  
VO = 2 V to 4 V  
RL = 330 Ω  
VO = 2 V to 4 V  
RPWM  
RL = 330 Ω  
50. Dynamic Voltage Scaling (PFM)  
51. Dynamic Voltage Scaling (RPWM)  
3.5  
3
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
tIL (5 A/div)t  
2.5  
2
tIO (2 A/div)t  
tVO (2 V/div, ac)t  
1.5  
1
tTime = 40 µs/divt  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
VI = 3.6 V  
VO = 3.3 V  
PSM  
TA = 25°C  
IO = 1 A  
VI rising  
FPWM  
TA = 25°C  
52. Overcurrent Protection  
53. Switching Frequency versus Input Voltage  
0.5  
0.1  
6
5
4
3
2
1
0
0.01  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
0.001  
0.005 0.01  
0.1  
Output Current (A)  
1
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
VI = 3.6 V  
PSM  
TA = 25°C  
PSM  
TA = 25°C  
54. Burst Switching Frequency versus Output Current  
55. Maximum Output Current versus Input Voltage  
版权 © 2019–2020, Texas Instruments Incorporated  
33  
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate with a DC supply voltage in the range 2.2 V to 5.5 V. If the input supply is  
more than a few centimeters from the device, TI recommends adding some bulk capacitance to the ceramic  
bypass capacitors. A 47-µF electrolytic capacitor is a typical selection for the bulk capacitance.  
11 Layout  
11.1 Layout Guidelines  
Correct PCB layout is necessary to obtain the full performance from the device. TI recommends to follow these  
basic principles:  
Place input and output capacitors close to the device to minimize the input and output loop areas.  
If you combine different-sized capacitors to make up the total input capacitance, place the smallest capacitor  
closest to the device. The same applies to the output capacitance.  
Keep PCB traces short and wide to minimize parasitic resistance and inductance.  
Use the following PCB layer stack (or something similar):  
Layer 1 (top): All components and all power traces  
Layer 2 (inner): Signals  
Layer 3 (inner): Signals  
Layer 4 (bottom): Ground plane  
56 shows an example of the PCB layout used for all of the measurement data in Application Curves.  
11.2 Layout Example  
Input  
Capacitance  
Output  
Capacitance  
TPS63810 /  
TPS63811  
56. Recommended PCB Layout for the TPS63810 Device  
34  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS63810, TPS63811  
www.ti.com.cn  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
NXP 半导体,《UM10204 - I2C 总线规范和用户手册》  
德州仪器 (TI)TPS63810 EVM 用户指南》  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
11. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TPS63810  
TPS63811  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 术语表  
SLYZ022 - TI 术语表  
版权 © 2019–2020, Texas Instruments Incorporated  
35  
TPS63810, TPS63811  
ZHCSKE6C JULY 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
36  
版权 © 2019–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS63810YFFR  
TPS63811YFFR  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
15  
15  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TPS63810  
TPS63811  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS63810YFFR  
TPS63811YFFR  
DSBGA  
DSBGA  
YFF  
YFF  
15  
15  
3000  
3000  
180.0  
180.0  
8.4  
8.4  
1.5  
1.5  
2.42  
2.42  
0.75  
0.75  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS63810YFFR  
TPS63811YFFR  
DSBGA  
DSBGA  
YFF  
YFF  
15  
15  
3000  
3000  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0015  
DSBGA - 0.625 mm max height  
S
C
A
L
E
6
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
0.8 TYP  
SYMM  
E
D
C
1.6  
D: Max = 2.285 mm, Min =2.225 mm  
E: Max = 1.374 mm, Min =1.314 mm  
TYP  
SYMM  
B
A
0.4 TYP  
0.3  
3
1
2
15X  
0.2  
0.015  
C A B  
0.4  
TYP  
4219378/B 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
15X ( 0.23)  
(0.4) TYP  
2
3
1
A
B
C
SYMM  
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:40X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219378/B 05/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
3
15X ( 0.25)  
1
2
A
B
(0.4) TYP  
METAL  
TYP  
SYMM  
C
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4219378/B 05/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS63810YFFR

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器 | YFF | 15 | -40 to 125
TI

TPS63811

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器
TI

TPS63811YFFR

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器 | YFF | 15 | -40 to 125
TI

TPS63900

具有输入电流限制和动态电压调节功能的 1.8V 至 5.5V、75nA IQ 降压/升压转换器
TI

TPS63900DSKR

具有输入电流限制和动态电压调节功能的 1.8V 至 5.5V、75nA IQ 降压/升压转换器 | DSK | 10 | -40 to 125
TI

TPS63901

具有纳安级 Iq 的 400mA 降压/升压转换器
TI

TPS63901YCJR

具有纳安级 Iq 的 400mA 降压/升压转换器 | YCJ | 12 | -40 to 125
TI

TPS64200

SOT23 STEP DOWN CONTROLLER
TI

TPS64200DBVR

SOT23 STEP DOWN CONTROLLER
TI

TPS64200DBVRG4

SOT23 STEP-DOWN CONTROLLER
TI

TPS64200DBVT

SOT23 STEP-DOWN CONTROLLER
TI

TPS64200DBVTG4

SOT23 STEP-DOWN CONTROLLER
TI