TPS650002TRTETQ1 [TI]

具有双 LDO 和 SVS 电源管理 IC (PMIC) 的 2.25MHz 降压转换器 | RTE | 16 | -40 to 105;
TPS650002TRTETQ1
型号: TPS650002TRTETQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双 LDO 和 SVS 电源管理 IC (PMIC) 的 2.25MHz 降压转换器 | RTE | 16 | -40 to 105

集成电源管理电路 转换器
文件: 总26页 (文件大小:2441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
TPS650002-Q1 具有双路 LDO 2.25MHz 降压转换器  
1 特性  
3 说明  
1
适用于汽车 应用  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 2-40°C +105°CTA  
降压转换器:  
TPS650002-Q1 器件是一款适合汽车应用的单芯片 电  
源管理 IC (PMIC)。这个器件包含一个带有两个低压降  
稳压器的单个降压转换器。为了在最大可能的负载电流  
范围内实现最大效率,这个降压转换器在轻负载时进入  
低功耗模式。对于低噪声 应用,该器件可通过 MODE  
引脚强制进入固定频率 PWM。此降压转换器允许使用  
小型电感器和电容器,因此可实现较小的解决方案尺  
寸。电源正常状态输出可用于排序。LDO 可提供  
300mA 的电流,并且可在 1.6V 6V 的输入电压范围  
内工作,因此可由降压转换器供电。该降压转换器和  
LDO 具有独立电压输入和使能端,从而实现了设计和  
排序的灵活性。  
输入电压范围为 2.3V 6V  
2.25MHz 固定频率运行  
600mA 输出电流  
LDO:  
VIN 范围从 1.6V 6V  
高达 300mA 的输出电流  
独立电源输入和使能端  
3mm × 3mm 16 引脚 WQFN  
TPS650002-Q1该器件采用 16 引脚无引线封装 (3mm  
× 3mm WQFN)。  
2 应用  
汽车摄像头模块  
器件信息(1)  
汽车信息娱乐系统  
汽车仪表组  
器件型号  
封装  
封装尺寸(标称值)  
TPS650002-Q1  
WQFN (16)  
3.00mm × 3.00mm  
汽车传感器融合  
(1) 如需了解所有可用封装,请参阅数据表书末尾的可订购产品附  
录。  
典型应用原理图  
TI Device  
2.2 µH  
VDCDC  
1.8 V  
EN_DCDC  
SW  
FB_DCDC  
VIN  
VINDCDC  
MODE  
10 F  
A
10 F  
P
P
470 k  
VIN  
PG  
VIN  
EN_LDO1  
VINLDO1  
VLDO1  
2.8 V  
VLDO1  
2.2 F  
FB_LDO1  
10 F  
P
P
P
P
VIN  
EN_LDO2  
VINLDO2  
VLDO2  
1.2 V  
VLDO2  
2.2 F  
FB_LDO2  
10 F  
AGND  
PGND  
A
P
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEW4  
 
 
 
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Examples................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持................................................................ 19  
11.2 文档支持................................................................ 19  
11.3 接收文档更新通知 ................................................. 19  
11.4 社区资源................................................................ 19  
11.5 ....................................................................... 19  
11.6 静电放电警告......................................................... 19  
11.7 术语表 ................................................................... 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
4 2019  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
5 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
16  
15  
14  
13  
EN_LDO1  
EN_LDO2  
PG  
1
2
3
4
12  
11  
10  
9
VLDO1  
FB_LDO1  
AGND  
Exposed Thermal Pad  
PGND  
FB_DCDC  
5
6
7
8
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
10  
8
AGND  
I
Analog ground – Star back to PGND as close to the IC as possible  
Enable DC-DC converter  
EN_DCDC  
EN_LDO1  
EN_LDO2  
FB_DCDC  
FB_LDO1  
FB_LDO2  
MODE  
1
I
Enable LDO1  
2
I
Enable LDO2  
9
I
Voltage to DC-DC error amplifier  
Voltage to LDO1 error amplifier  
Voltage to LDO2 error amplifier  
Selects forced-PWM or PWM-to-PFM automatic-transition mode  
Open-drain active-low power-good output  
Power ground – connected to the thermal pad  
Switch pin – connect inductor here  
Input voltage to DC-DC converter and all other control blocks  
Input voltage to LDO1  
11  
14  
7
I
I
I
PG  
3
O
O
I
PGND  
4
SW  
5
VINDCDC  
VINLDO1  
VINLDO2  
VLDO1  
VLDO2  
EP  
6
13  
16  
12  
15  
I
I
Input voltage to LDO2  
O
O
LDO1 output voltage  
LDO2 output voltage  
Exposed thermal pad  
Copyright © 2019, Texas Instruments Incorporated  
3
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
On all pins except AGND, PGND, EN_DCDC, FB_LDO1, FB_LDO2,  
pins with respect to AGND  
–0.3  
7
Input voltage  
V
On EN_DCDC with respect to AGND  
–0.3  
-0.3  
–0.3  
-0.3  
-0.6  
-2  
VIN + 0.3, 7  
FB_LDO1, FB_LDO2  
Output voltage On VLDO1, VLDO2,  
Output voltage /PG  
3.6  
3.6  
7
V
V
Output voltage SW  
7
V
Output voltage SW for 20ns transients  
VINDCDC, SW, PGND,  
10  
V
1800  
800  
1
mA  
mA  
mA  
°C  
°C  
°C  
Current  
VINLDO1, VINLDO2, VLDO1, VLDO1, AGND  
At all other pins  
Operating free-air temperature, TA  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
105  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
Electrostatic  
discharge  
Corner pins (1, 4, 5, 8, 9, 12, 13,  
and 16)  
V(ESD)  
±750  
±500  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
Other pins  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
VINDCDC  
2.3  
6.0  
V
V
V
VINLDO1,  
VINLDO2  
1.6  
0
VINDCDC  
VINDCDC  
MODE  
EN_DCDC  
,
EN_LDO1,  
EN_LDO2  
0
VINDCDC  
3.3  
V
L1  
SW pin inductor  
1.5  
10  
2.2  
μH  
μF  
Input capacitor at VINDCDC  
Input capacitor at VINLDO1, VINLDO2  
Output capacitor for VDCDC  
Output capacitor for LDO1, LDO2  
DC-DC converter output current  
LDO1 output current  
CI  
2.2  
10  
μF  
22  
μF  
CO  
2.2  
μF  
600  
300  
300  
105  
mA  
mA  
mA  
°C  
IO  
LDO2 output current  
TA  
Operating ambient temperature  
–40  
4
Copyright © 2019, Texas Instruments Incorporated  
 
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
6.4 Thermal Information  
TPS650002-Q1s  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
46.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
56.1  
19.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.1  
ψJB  
19.1  
RθJC(bot)  
5.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Over full operating ambient temperature range, typical values are at TA = 25° C. Unless otherwise noted, specifications apply  
for condition VIN = EN_LDOx = EN_DCDC = 3.6 V. External components L = 2.2 μH, COUT = 10 μF, CIN = 4.7 μF.  
PARAMETER  
OPERATING VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage for VINDCDC of DC-  
DC converter  
2.3  
6
V
VIN  
(1)  
(1)  
Input voltage for LDO1 (VINLDO1) See  
Input voltage for LDO2 (VINLDO2) See  
Internal undervoltage (UVLO)  
1.6  
1.6  
6
6
V
V
VCC falling  
1.72  
1.77  
160  
1.82  
V
lockout threshold  
Internal undervoltage (UVLO)  
lockout hysteresis  
mV  
SUPPLY CURRENT  
MODE low, EN_DCDC high,  
EN_LDO1, EN_LDO2 low,  
IOUT = 0 mA and no switching  
23  
50  
32  
57  
μA  
MODE low, EN_DCDC low,  
EN_LDO1, EN_LDO2 high, IOUT = 0 mA  
IOUT = 0 mA and no switching  
IQ  
Operating quiescent current  
EN_DCDC high, MODE high,  
EN_LDO1, EN_LDO2 low, IOUT = 0 mA  
4
mA  
ISD  
Shutdown Current  
EN_DCDC low EN_LDO1 and EN_LDO2 low  
0.16  
2.2  
μA  
DIGITAL PINS (EN_DCDC, EN_LDO1, EN_LDO2, MODE, PG  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
1.2  
V
V
V
0.4  
0.4  
VOL  
PG pins only, IO = –100 μA  
MODE, EN_DCDC, EN_LDO1, EN_LDO2 tied to  
GND or VINDCDC,  
Ilkg  
Input leakage current  
0.01  
2.25  
0.1  
μA  
OSCILLATOR  
fSW  
Oscillator frequency  
2.01  
2.41  
MHz  
STEP-DOWN CONVERTER POWER SWITCH  
High-side MOSFET ON-resistance VINDCDC = VGS = 3.6 V  
Low-side MOSFET ON-resistance VINDCDC = VGS = 3.6 V  
240  
185  
480  
380  
300  
600  
mΩ  
mΩ  
rDS(on)  
2.3 V VINDCDC 2.5 V  
2.5 V VINDCDC 6 V  
IO  
DC output current  
mA  
mA  
Forward current limit, PMOS and  
NMOS  
ILIMF  
2.3 V VINDCDC 6 V  
800  
1000  
1400  
(1) The design principle allows only VINDCDC to be the highest supply in the system. If separate input voltage supplies are used for the  
DC-DC converter and LDOs, then choose VINDCDC VINLDO1 and VINDCDC VINLDO2.  
Copyright © 2019, Texas Instruments Incorporated  
5
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over full operating ambient temperature range, typical values are at TA = 25° C. Unless otherwise noted, specifications apply  
for condition VIN = EN_LDOx = EN_DCDC = 3.6 V. External components L = 2.2 μH, COUT = 10 μF, CIN = 4.7 μF.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STEP-DOWN CONVERTER POWER SWITCH (continued)  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
30  
°C  
°C  
TSD  
Thermal shutdown hysteresis  
STEP-DOWN CONVERTER OUTPUT VOLTAGE  
VDCDC  
Fixed output voltage, VDCDC  
1.825  
V
Output-voltage DC accuracy (PWM MODE = high,  
-1.5%  
+1.5%  
mode)(2)  
2.3 VINDCDC 6 V  
VDCDC  
Output-voltage DC accuracy (PFM MODE low  
1%  
0.5  
mode)  
+1% voltage positioning active  
Load regulation (PWM mode)  
MODE high  
%/A  
Internal discharge resistance at  
SW  
RDIS  
EN_DCDC low  
450  
LOW-DROPOUT REGULATORS  
VI  
Input voltage for LDOx (VINLDOx)  
1.6  
6
V
V
Fixed output voltage, LDO1  
(VLDO1)(3)  
VLDO1  
2.8  
1.2  
Fixed output voltage, LDO2  
(VLDO2)(3)  
VLDO2  
IO  
V
Continuous-pass FET current  
300  
825  
825  
370  
370  
mA  
2.3 V VINLDOx  
340  
210  
ISC  
Short-circuit current limit  
mA  
VINLDOx < 2.3 V  
VINLDOx 2.3 V, IOUT = 250 mA  
VINLDOx < 2.3 V, IOUT = 175 mA  
mV  
mV  
(4)  
VDO  
Dropout voltage  
IO = 1 mA to 300 mA, VINLDOx = 2.3 V–6 V,  
VLDOx = 1.2 V  
–3.5%  
–3.5%  
–1.5%  
–0.5%  
3.5%  
3.5%  
1.5%  
0.5%  
Output voltage accuracy  
IO = 1 mA to 175 mA, VINLDOx = 1.6 V–6 V,  
VLDOx = 1.2 V  
IO = 1 mA to 300 mA, VINLDOx = 3.6 V  
VLDOx = 1.2 V  
Load regulation  
VINLDOx = 1.6 V–6 V, VLDOx = 1.2 V at  
IO = 1 mA  
Line regulation  
f
NOISE 10 kHz, COUT 2.2 μF, VIN = 2.3 V,  
PSRR  
Power-supply rejection ratio  
40  
dB  
VOUT = 1.3 V, IOUT = 10 mA  
Internal discharge resistance at  
VLDOx  
RDIS  
TSD  
EN_LDOx low  
450  
Thermal shutdown  
Increasing temperature  
Decreasing temperature  
150  
30  
°C  
°C  
Thermal shutdown hysteresis  
(2) For VINDCDC = VDCDC + 1 V  
(3) Maximum output voltage VLDOx = 3.6 V.  
(4) VDO = VINLDOx – VLDOx, where VINLDOx = VLDOx(nom) – 100 mV  
6
Copyright © 2019, Texas Instruments Incorporated  
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STEP-DOWN CONVERTER OUTPUT VOLTAGE  
EN_DCDC to start of switching  
(10%)  
tStart  
Start-up time  
250  
250  
µs  
µs  
tRamp  
VDCDC ramp-up time  
VDCDC ramp from 10% to 90%  
LOW-DROPOUT REGULATORS  
tRAMP VLDOx ramp time  
VLDOx ramp from 10% to 90%  
200  
µs  
6.7 Typical Characteristics  
100  
100  
90  
80  
70  
60  
50  
40  
30  
V
T
= 1.2V  
OUT  
= 25oC  
V
T
= 1.2V  
OUT  
= 25oC  
90  
80  
70  
60  
50  
40  
30  
4.2V  
A
A
3.6V  
3.3V  
6V  
2.8V  
3.3V  
5.5V  
6V  
5V  
4.5V  
2.3V  
2.8V  
5.5V  
4.2V  
3.6V  
2.3V  
5V  
20  
10  
0
20  
10  
0
4.5V  
0.00001 0.0001  
0.001  
0.01  
0.1  
1
0.00001 0.0001  
0.001  
- Output Current - A  
O
0.01  
0.1  
1
I
- Output Current - A  
I
O
Figure 1. Efficiency (DC-DC 600-mA PFM Mode)  
vs Output Current  
Figure 2. Efficiency (DC-DC 600-mA PWM Mode)  
vs Output Current  
Load Current = 60mA  
EN_DCDC = high  
EN_LDO1 = low  
VINDCDC = 3.6 V  
= 25oC  
Load DCDC = 400mA  
EN_DCDC = high  
EN_LDO1 = low  
VINDCDC = 3.6 V  
= 25oC  
T
T
A
A
VDCDC = 1.2 V  
VDCDC = 1.2 V  
EN_LDO2 = low  
EN_LDO2 = low  
t - Time - 2ms/div  
t - Time - 200ns/div  
Figure 4. Output Voltage Ripple (DC-DC PWM Mode)  
Figure 3. Output Voltage Ripple (DC-DC PFM Mode)  
Copyright © 2019, Texas Instruments Incorporated  
7
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
VINDCDC = 3.6 V  
VINLDOx = 2.3V  
T
= 25oC  
A
VLDOx = 1.2 V  
VINDCDC = 3.6 V  
T
= 25oC  
A
VDCDC = 1.2 V  
Load LDOx = 100mA  
EN_LDOx = 0V to 2.3V  
EN_DCDC = low  
Load DCDC = 100mA  
EN_DCDC = 0V to 3.6V  
EN_LDO1 = low  
EN_LDO2 = low  
t - Time - 100µs/div  
t - Time - 100µs/div  
Figure 5. Start-Up Timing (DC-DC)  
Figure 6. Start-Up Timing (LDOx)  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
T
A
T
A
VDCDC = 1.8V  
VDCDC = 1.8V  
DCDC Load Current = 50mA  
Mode = VINDCDC  
DCDC Load Current = 50mA  
Mode = GND  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 7. Line Transient Response (DC-DC PFM Mode)  
Figure 8. Line Transient Response (DC-DC PWM Mode)  
VINDCDC = 3.6V  
= 25oC  
VINDCDC = 6V  
VINLDOx = 1.6 V to 2.3V to 1.6V  
T
A
T
= 25oC  
VDCDC = 1.8V  
A
DCDC Load Current = 60mA to 540 mA  
Mode = GND  
VLDOx = 1.007V  
LDOx Load Current = 1mA  
EN_DCDC = GND  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 9. Line Transient Response (LDOx)  
Figure 10. Load Transient Response (DC-DC PFM Mode)  
8
Copyright © 2019, Texas Instruments Incorporated  
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
Typical Characteristics (continued)  
VINDCDC = 3.6V  
= 25oC  
T
A
VDCDC = 1.8V  
VINDCDC = 3.6V  
VINLDOx = 3.6V  
T
= 25oC  
A
LDOx Load Current = 15mA to 100mA  
VLDOx = 1.2V  
EN_DCDC = GND  
DCDC Load Current = 60mA to 540 mA  
Mode = VINDCDC  
t - Time - 100ms/div  
t - Time - 200ms/div  
Figure 11. Load Transient Response (DC-DC PWM Mode)  
Figure 12. Load Transient Response (LDOx)  
VINDCDC = 3.6V  
= 25oC  
T
A
DCDC Load Current = 30mA  
VDCDC = 1.8V  
VINDCDC = 3.6V  
= 25oC  
T
A
DCDC Load Current = 30mA  
VDCDC = 1.8V  
t - Time - 4ms/div  
t - Time - 4ms/div  
Figure 13. PFM to PWM Transition (DC-DC)  
Figure 14. PWM to PFM Transition (DC-DC)  
100  
V
= 2.3V  
IN  
VLDOx = 1.3V  
CI = 2.2mF  
90  
C
= 10mF  
O
80  
70  
60  
50  
I
= 10mA  
O
40  
30  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
f - Frequency - MHz  
Figure 15. Power-Supply Rejection Ratio (LDOx) vs Frequency  
Copyright © 2019, Texas Instruments Incorporated  
9
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS650002-Q1 device has one step-down converter, and two low dropout regulators. The device has an  
input voltage range of 2.3 V to 6 V. This device is intended for (but not limited to) powering automotive camera  
modules.  
To maximize efficiency, there are two modes of operation based on load conditions: PWM or PFM. By pulling the  
MODE pin high, forced PWM can be achieved. Pulling this pin low results in an automatic adjustment between  
PFM and PWM modes.  
The two general-purpose low-dropout regulators each have their own separate enables and voltage inputs. The  
inputs can be tied to the output of the step-down converter or to a separate voltage source.  
The switching frequency of the step-down converter is handled by the oscillator, with a typical frequency of  
2.25 MHz.  
The TPS650002-Q1 device also provides a power good signal to monitor the condition of the DC-DC and both  
LDOs. The DC-DC and LDOs are only monitored if their enable signal is high. If all enabled resources are in  
regulation, the pin is pulled low. If one or more of the enabled resources are out of regulation, the pin is placed in  
Hi-Z.  
7.2 Functional Block Diagram  
Oscillator  
VINDCDC  
EN_DCDC  
MODE  
SW  
Buck Converter  
600 mA  
FB_DCDC  
PG  
VLDO1  
VINLDO1  
EN_LDO1  
LDO1  
FB_LDO1  
300 mA  
PGND  
VINLDO2  
EN_LDO2  
VLDO2  
LDO2  
FB_LDO2  
300 mA  
AGND  
Band-Gap Reference  
7.3 Feature Description  
7.3.1 Step-Down Converter  
The step-down converter is intended to allow maximum flexibility in the end equipment. Figure 16 shows the  
necessary connections.  
10  
Copyright © 2019, Texas Instruments Incorporated  
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
Feature Description (continued)  
VIN_DCDC  
SW  
EN_DCDC  
CO  
Switch Control  
DISCHG  
P
ZLOAD  
MODE  
FB_DCDC  
Oscillator  
JA DIODE  
VREF(DCDC)  
P
P
AGND  
PGND  
P
A
Figure 16. DC-DC Converter Block Diagram  
Externally adjustable output voltages and additional current-limit options are also possible. Contact TI for further  
information.  
The step-down converter has two modes of operation to maximize efficiency at different load conditions. At  
moderate to heavy load currents, the device operates in a fixed-frequency pulse-width modulation (PWM) mode  
that results in small output ripple and high efficiency. Pulling the MODE pin to a DC-high level results in PWM  
mode over the entire load range.  
At light load currents, the device operates in a pulsed frequency-modulation (PFM) mode to improve efficiency.  
The transition to this mode occurs when the inductor current through the low-side FET becomes zero, indicating  
discontinuous conduction. PFM mode also results in the output voltage increasing by 1% from the PWM mode  
value. This voltage positioning is intended to minimize both the voltage undershoot of a load step from light to  
heavy loads, as when a processor moves from sleep to active modes, and the voltage overshoot at load  
removal. shows the voltage positioning behavior for a light-to-heavy load step.  
Output voltage  
VOUT(nom) + 1%  
Light load  
PFM Mode  
VOUT(nom)  
moderate to heavy load  
PWM Mode  
Time  
Figure 17. PFM Voltage Positioning  
Pulling the MODE pin to DC ground results in an automatic transition between PFM and PWM modes to  
maximize efficiency.  
Copyright © 2019, Texas Instruments Incorporated  
11  
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
Feature Description (continued)  
The DC-DC converter output automatically discharges to ground through an internal 450-Ω load when EN_DCDC  
goes low or when the UVLO condition is met.  
7.3.2 Soft Start  
The step-down converter has an internal soft-start circuit that limits the inrush current during start-up. During soft  
start, the output voltage ramp-up is controlled as shown in Figure 18.  
EN  
90%  
10%  
VOUT  
tRAMP  
tStart  
Figure 18. Soft Start  
7.3.3 Linear Regulators  
The two linear dropout regulators (LDOs) in the TPS650002-Q1 are designed to provide flexibility in system  
design. Each LDO has a separate voltage input and enable signal. The input can be tied to the output of the  
step-down converter or the output of another voltage source. Each LDO output discharges to ground  
automatically when EN_LDOx goes low.  
The LDOs are general-purpose devices that can handle inputs from 6 V down to 1.6 V. Figure 19 shows the  
necessary connections for LDO1. The same architecture applies to LDO2.  
VLDO1  
VINLDO1  
CO(LDO1)  
FB_LDO1  
DISCHG  
JA DIODE  
ZLOAD  
EN_LDO1  
VREF(LD01)  
P
AGND  
PGND  
A
P
Figure 19. LDO Block Diagram  
7.3.4 Power Good  
The open-drain PG output is used to indicate the condition of the step-down converter and each LDO. This is a  
combined output, with the outputs being compared when the appropriate enable signal is high. The pin is pulled  
low when all enabled outputs are greater than 95%of the target voltage, and it is pulled into Hi-Z when an  
enabled output is less than 90% of its intended value or when all the enable signals are pulled low.  
12  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
Feature Description (continued)  
EN_DCDC  
EN_LDO1  
EN_LDO2  
VDCDC  
VDCDC  
+
PG  
VDCDC  
-
Target  
A
VLDO1  
+
VLDO1  
-
Target  
VLDO2  
+
VLDO2  
-
Target  
Figure 20. Power-Good Functionality  
7.4 Device Functional Modes  
The step-down converter has two modes of operation to maximize efficiency:  
1. PFM  
For light loads  
For automatic transition between this mode and PWM mode when MODE pin is pulled low over all load  
ranges  
2. PWM  
For moderate to heavy loads  
For a small output ripple  
For maintaining the specified switching frequency variation by pulling the MODE pin high which places  
the device in a forced PWM mode over the entire load range.  
Copyright © 2019, Texas Instruments Incorporated  
13  
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS650002-Q1 can be used in an automotive-camera sensor module to generate the AVDD, DVDD, and  
IOVDD voltage rails. For noise immunity, one of the LDOs should be used to generate the AVDD voltage rail. To  
minimize power dissipation, the DC-DC converter should be used to power the DVDD rail because the DVDD rail  
normally has a lower operating voltage and higher current consumption.  
8.2 Typical Application  
Regulators with fixed voltage outputs do not require external feedback resistors. Feedback pins must externally  
connect to the output capacitors.  
TI Device  
2.2 µH  
VDCDC  
EN_DCDC  
SW  
1.8 V  
FB_DCDC  
VIN  
VINDCDC  
MODE  
10 F  
A
10 F  
P
P
470 kꢀ  
VIN  
PG  
VIN  
EN_LDO1  
VINLDO1  
VLDO1  
2.8 V  
VLDO1  
2.2 F  
FB_LDO1  
10 F  
P
P
P
P
VIN  
EN_LDO2  
VINLDO2  
VLDO2  
1.2 V  
VLDO2  
2.2 F  
FB_LDO2  
10 F  
AGND  
PGND  
A
P
Figure 21. Typical Fixed Voltage Application Schematic  
8.2.1 Design Requirements  
For this example, the fixed voltage TPS650002-Q1 device operates with the parameters listed in Table 1.  
Table 1. Design Parameters  
RESOURCES  
SW  
VOLTAGE  
1.8 V  
VLDO1  
2.8 V  
VLDO2  
1.2 V  
14  
Copyright © 2019, Texas Instruments Incorporated  
 
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Filter Design (Inductor and Output Capacitor)  
8.2.2.1.1 Inductor Selection  
The typical value for the converter inductor is 2.2-μH output inductor. Larger or smaller inductor values in the  
range of 1.5 μH to 3.3 μH can optimize the performance of the device for specific operation conditions. The  
selected inductor must be rated for its DC resistance and saturation current. The DC resistance of the inductance  
influences the efficiency of the converter directly. An inductor with lowest DC resistance must be selected for  
highest efficiency. For more information on inductor selection, refer to the Choosing Inductors and Capacitors for  
DC/DC Converters application report.  
Equation 1 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current as calculated with Equation 2. TI  
recommends this because during heavy load transient, the inductor current rises above the calculated value.  
VOUT  
1 -  
V
IN  
DIL = VOUT  
x
L x f  
where  
f = Switching Frequency (2.25-MHz typical)  
L = Inductor Value  
ΔIL = Peak-to-peak Inductor Ripple Current  
DIL  
(1)  
(2)  
ILmax = IOUTmax  
+
2
where  
ILmax = Maximum Inductor Current  
The highest inductor current occurs at maximum VIN.  
Open-core inductors have a soft saturation characteristic and can usually handle higher inductor currents versus  
a comparable shielded inductor.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Consider that the core material from inductor to inductor differs and impacts the  
efficiency especially at high-switching frequencies.  
The step down converter has internal loop compensation. TI designed the internal loop compensation to work  
with a certain output filter corner frequency calculated as in Equation 3:  
1
fC  
=
with L = 2.2mH, COUT = 10mF  
2p L x COUT  
(3)  
The selection of external L-C filter must be consistent with Equation 3. The product of L × COUT must be constant  
while selecting smaller inductor or increasing output capacitor value.  
Copyright © 2019, Texas Instruments Incorporated  
15  
 
 
 
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
8.2.2.1.2 Output Capacitor Selection  
The advanced fast response voltage mode control scheme of the converter allows the use of small ceramic  
capacitors with a typical value of 22 μF, without having large output voltage under and overshoots during heavy  
load transients. TI recommends ceramic capacitors with low ESR values because they result in lowest output  
voltage ripple. See for the TI-recommended components.  
If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application  
requirements. The RMS ripple current is calculated as in Equation 4:  
VOUT  
1 -  
V
1
IN  
IRMSCout = VOUT  
x
x
L x f  
2 x  
3
(4)  
At nominal load current, the device operates in PWM mode and the overall output voltage ripple is the sum of the  
voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and discharging the  
output capacitor as calculated in Equation 5:  
VOUT  
1 -  
æ
ç
ç
ö
V
1
÷
÷
÷
÷
ø
IN  
DVOUT = VOUT  
x
x
+ ESR  
ç
ç
è
L x f  
8 x C  
x f  
OUT  
(5)  
Where the highest output voltage ripple occurs at the highest input voltage VIN.  
At light load currents, the converter operates in power save mode and the output voltage ripple is dependent on  
the output capacitor value. The output voltage ripple is set by the internal comparator delay and the external  
capacitor. The typical output voltage ripple is less than 1% of the nominal output voltage.  
8.2.2.2 Input Capacitor Selection  
Due to the DC-DC converter having a pulsating input current, a low-ESR input capacitor is required for best input  
voltage filtering, and minimizing the interference with other circuits caused by high-input voltage spikes . Place  
the input capacitor as close as possible to the VINDCDC pin with the clean GND connection. Do the same for  
the output capacitor and the inductor. The converters require a ceramic input capacitor, a 10 μF is  
recommended . The input capacitor can increase without any limit for better input voltage filtering.  
8.2.3 Application Curves  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
T
A
T
A
VDCDC = 1.8V  
VDCDC = 1.8V  
DCDC Load Current = 50mA  
Mode = GND  
DCDC Load Current = 50mA  
Mode = VINDCDC  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 22. Line Transient Response (DC-DC PFM Mode)  
Figure 23. Line Transient Response (DC-DC PWM Mode)  
16  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
VINDCDC = 3.6V  
= 25oC  
VINDCDC = 6V  
VINLDOx = 1.6 V to 2.3V to 1.6V  
T
A
T
= 25oC  
VDCDC = 1.8V  
A
DCDC Load Current = 60mA to 540 mA  
Mode = GND  
VLDOx = 1.007V  
LDOx Load Current = 1mA  
EN_DCDC = GND  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 24. Line Transient Response (LDOx)  
Figure 25. Load Transient Response (DC-DC PFM Mode)  
VINDCDC = 3.6V  
= 25oC  
T
A
VDCDC = 1.8V  
VINDCDC = 3.6V  
VINLDOx = 3.6V  
T
= 25oC  
A
LDOx Load Current = 15mA to 100mA  
VLDOx = 1.2V  
EN_DCDC = GND  
DCDC Load Current = 60mA to 540 mA  
Mode = VINDCDC  
t - Time - 100ms/div  
t - Time - 200ms/div  
Figure 26. Load Transient Response (DC-DC PWM Mode)  
Figure 27. Load Transient Response (LDOx)  
Copyright © 2019, Texas Instruments Incorporated  
17  
TPS650002-Q1  
ZHCSJN8 APRIL 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate with an input voltage supply range from 1.6 V to 6 V. This input supply can be  
from a DC supply, or other externally regulated supply. If the input supply is located more than a few inches from  
the TPS650002-Q1, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
An electrolytic capacitor with a value of 10 µF is a typical choice.  
10 Layout  
10.1 Layout Guidelines  
The VINDCDC and VINLDOx pins must be bypassed to ground with a low-ESR ceramic bypass capacitor. TI  
recommends the typical bypass capacitance is 10 μF and 2.2 μF with a X5R dielectric.  
The optimum placement is closest to the VINDCDCx and VINLDOx pins of the device. Minimize the loop area  
formed by the bypass capacitor connection, the VINDCDC and VINLDO pins, and the thermal pad of the  
device.  
The thermal pad must be tied to the PCB ground plane with multiple vias.  
The traces of the VLDOx and VDCDCx pins (feedback pins) must be routed away from any potential noise  
source to avoid coupling.  
VODC output capacitance must be placed immediately at the VODC pin. Excessive distance between the  
capacitance and DCDCx pin may cause poor converter performance.  
AGND star back to PGND as close to the device as possible.  
DGND connect to the thermal pad  
10.2 Layout Examples  
Thermal pad  
Vias to GND  
plane  
Figure 28. Layout Recommendation  
Bypass capacitors to GND for VIN pins  
Vias to  
GND  
Figure 29. Bypass Capacitor and Via Placement Recommendation  
18  
版权 © 2019, Texas Instruments Incorporated  
TPS650002-Q1  
www.ti.com.cn  
ZHCSJN8 APRIL 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)为直流/直流转换器选择电感器和电容器 应用报告  
德州仪器 (TI)使用具有双路 LDO TPS65000EVM 2.25MHz 降压转换器 用户指南  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS650002TRTERQ1  
TPS650002TRTETQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
SJO2  
SJO2  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS650003

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650003RTE

IC 1.4 A SWITCHING REGULATOR, 2847 kHz SWITCHING FREQ-MAX, PQCC16, 3 X 3 MM, PLASTIC, QFN-16, Switching Regulator or Controller
TI

TPS650003RTER

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650003RTET

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650006

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650006RTER

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650006RTET

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS65000RTE

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS65000RTER

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS65000RTET

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS65000TRTERQ1

采用 2.25MHz 降压转换器且具有双路 LDO 和 SVS 的电源管理 IC (PMIC) | RTE | 16 | -40 to 105
TI

TPS65000_15

Step-Down Converter
TI