TPS65051QRSMRQ1 [TI]

汽车类 1.5V 至 6.5V 电源管理 IC,具有 2 个降压转换器和 4 个 LDO | RSM | 32 | -40 to 125;
TPS65051QRSMRQ1
型号: TPS65051QRSMRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 1.5V 至 6.5V 电源管理 IC,具有 2 个降压转换器和 4 个 LDO | RSM | 32 | -40 to 125

输入元件 转换器
文件: 总33页 (文件大小:1810K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
具有 2 个降压转换器和 4 个低输入电压 LDO TPS65051-Q1  
6 通道电源管理 IC  
1 特性  
对于低噪声 应用,用户可以通过将 MODE 引脚的电平  
1
拉高来强制器件进入固定频率 PWM 模式。运行在关  
断模式中可将流耗减少到少于 1μA。此器件允许使用  
小型电感器和电容器以实现一个小型解决方案尺寸。  
TPS65051-Q1 器件提供高达 1A (DCDC1) 0.6A  
(DCDC2) 的输出电流。TPS65051-Q1 器件还集成了  
两个 400mA LDO 和两个 200mA LDO 电压稳压器,  
可以使用每个 LDO 上的独立使能引脚打开或关闭相应  
的稳压器。每个 LDO 的工作输入电压介于 1.5V 至  
6.5V 之间,这使得它们可以由其中一个降压转换器供  
电,也可以由主电池直接供电。  
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C3B  
效率高达 95%  
直流/直流转换器的输出电流:  
DCDC1 = 1ADCDC2 = 0.6A  
直流/直流转换器的外部可调节输出电压  
TPS65051-Q1 器件的 LDO 电压可以使用外部电阻分  
压器进行调节。  
DC-DC 转换器的 VI范围是  
2.5V 6V  
2.25MHz 固定频率运行  
器件信息(1)  
轻负载电流时的省电模式  
180°异相操作  
器件型号  
封装  
封装尺寸(标称值)  
TPS65051-Q1  
VQFN (32)  
4.00mm x 4.00mm  
脉宽调制模式下的输出电压精度 ±1%  
低纹波脉冲频率调制 (PFM) 模式  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
方框图  
针对两个 DC-DC 转化器的总值为 32μA(典型值)  
的静态电流  
VINDCDC1/2  
1  
VCC  
Vbat  
22 F  
针对最低压降的占空比为 100%  
两个通用 400mA,高电源抑制比 (PSRR) LDO  
两个通用 200mA,高 PSRR LDO  
LDO VI范围:1.5V 6.5V  
L1  
1 F  
Cff  
DCDC1 (I/O)  
R1  
FB_DCDC1  
10 F  
Step-Down  
Converter  
1 A  
R2  
EN_DCDC1  
MODE  
ENABLE  
PGND1  
L2  
LDO 的数字电压选择  
R3  
R4  
VDCDC2  
DEFDCDC2  
PGND2  
DCDC2 (core)  
Step-Down  
Converter  
600 mA  
采用 4mm × 4mm32 引脚 VQFN 封装  
10 F  
EN_DCDC2  
ENABLE  
2 应用  
VIN_LDO1  
EN_LDO1  
VLDO1  
FB1  
VIN  
车用信息娱乐  
VLDO1  
R5  
R6  
400-mA LDO  
ENABLE  
汽车仪表盘  
4.7 F  
4.7 F  
2.2 F  
VLDO2  
FB2  
VIN_LDO2  
EN_LDO2  
汽车数字音频广播  
VIN  
VLDO2  
R5  
R6  
400-mA LDO  
ENABLE  
3 说明  
VIN_LDO3/4  
EN_LDO3  
VLDO3  
VIN  
VLDO3  
R9  
TPS65051-Q1 器件是一款集成式电源管理 IC,适用于  
由一节锂离子或锂聚合物电池供电并需要多个电源轨的  
应用 。TPS65051-Q1 器件提供两个高效的 2.25MHz  
降压转换器,用于在基于处理器的系统中提供内核电压  
I/O 电压。为了在可能的最宽负载电流范围内实现最  
大效率,这两个降压转换器在轻负载时进入低功耗模  
式。  
200-mA LDO  
FB3  
BP  
ENABLE  
R10  
0.1 F  
VLDO4  
FB4  
EN_LDO4  
ENABLE  
VLDO4  
R11  
R12  
I/O Voltage  
2.2 F  
200-mA LDO  
THRESHOLD  
R19  
RESET  
RESET  
HYSTERESIS  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSBJ1  
 
 
 
 
 
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application .................................................. 15  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 8  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 接收文档更新通知 ................................................. 25  
11.2 社区资源................................................................ 25  
11.3 ....................................................................... 25  
11.4 静电放电警告......................................................... 25  
11.5 Glossary................................................................ 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (November 2012) to Revision B  
Page  
已添加 添加了引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关  
建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ................................................................. 1  
已删除 删除了所有 TPS65050-Q1TPS65052-Q1TPS65054-Q1 TPS65056-Q1 器件型号引用 ................................. 1  
Deleted the Ordering Information table .................................................................................................................................. 3  
Changed the resistor labels of R3, R4, and R5 to R13, R14, and R15 in the RESET section............................................ 20  
已添加 添加了接收文档更新通知 部分 .................................................................................................................................. 25  
已更改 更改了静电放电声明.................................................................................................................................................. 25  
2
Copyright © 2012–2017, Texas Instruments Incorporated  
 
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
5 Pin Configuration and Functions  
RSM Package  
32-Pin VQFN With Exposed Thermal Pad  
Top View  
EN_DCDC1  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
VINLDO1  
VLDO1  
25  
16  
15  
14  
13  
12  
11  
10  
9
EN_LDO4  
EN_LDO3  
RESET  
FB4  
26  
27  
28  
29  
30  
31  
32  
Thermal  
Pad  
VLDO4  
VINLDO3/4  
VLDO3  
FB3  
FB1  
MODE  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
2
AGND  
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog GND, connect to PGND and thermal pad  
Input for bypass capacitor for internal reference  
BP  
1
DEFDCDC2  
EN_DCDC1  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
EN_LDO3  
EN_LDO4  
FB1  
17  
25  
26  
27  
28  
15  
16  
31  
6
Feedback pin for converter 2. Connect DEFDCDC2 to the center of the external resistor divider.  
Enable input for converter 1, active-high  
Enable input for converter 2, active-high  
Enable input for LDO1. Logic high enables the LDO, logic low disables the LDO.  
Enable input for LDO2. Logic high enables the LDO, logic low disables the LDO.  
Enable input for LDO3. Logic high enables the LDO, logic low disables the LDO.  
Enable input for LDO4. Logic high enables the LDO, logic low disables the LDO.  
Feedback input for the external voltage divider  
FB2  
Feedback input for the external voltage divider  
FB3  
9
Feedback input for the external voltage divider  
FB4  
13  
Feedback input for the external voltage divider  
Input to adjust output voltage of converter 1 between 0.6 V and VI. Connect an external resistor divider  
between VOUT1, this pin, and GND.  
FB_DCDC1  
24  
I
HYSTERESIS  
8
I
Input for hysteresis on reset threshold  
L1  
L2  
22  
20  
O
O
Switch pin of converter 1. Connected to inductor  
Switch pin of converter 2. Connected to inductor  
Copyright © 2012–2017, Texas Instruments Incorporated  
3
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Select between power-safe mode and forced-PWM mode for DCDC1 and DCDC2. In power-safe mode, the  
device uses PFM at light loads, PWM for higher loads. Setting this pin to high level selects forced-PWM mode.  
If this pin has low level, then the device operates in power-safe mode.  
MODE  
32  
I
PGND1  
23  
19  
14  
7
I
I
GND for converter 1  
PGND2  
GND for converter 2  
RESET  
O
I
Open-drain active-low reset output, 100-ms reset-delay time  
Reset input  
THRESHOLD  
Power supply for digital and analog circuitry of DCDC1, DCDC2 and LDOs. Connect this pin to the same  
voltage supply as VINDCDC1/2.  
VCC  
3
I
I
I
VDCDC2  
VINDCDC1/2  
18  
21  
Feedback voltage-sense input, connect directly to the output of converter 2.  
Input voltage for VDCDC1 and VDCDC2 step-down converters. Connect this pin to the same voltage supply as  
VCC  
.
VINLDO1  
VINLDO2  
VINLDO3/4  
VLDO1  
29  
4
I
I
Input voltage for LDO1  
Input voltage for LDO2  
Input voltage for LDO3 and LDO4  
Output voltage of LDO1  
Output voltage of LDO2  
Output voltage of LDO3  
Output voltage of LDO4  
Connect to GND  
11  
30  
5
I
O
O
O
O
VLDO2  
VLDO3  
10  
12  
VLDO4  
Thermal pad  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
Input voltage on all pins except AGND, PGND, and EN_LDO1 pins with respect to  
AGND  
7
VI  
V
Input voltage range on EN_LDO1 pins with respect to AGND  
Current at VINDCDC1/2, L1, PGND1, L2, PGND2  
Current at all other pins  
VCC + 0.5  
1800  
1000  
4
mA  
mA  
V
II  
VO  
Output voltage for LDO1, LDO2, LDO3, and LDO4  
–0.3  
See the Thermal  
Information  
Continuous total power dissipation  
TA  
Operating free-air temperature  
Storage temperature  
–40  
–65  
125  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
2000  
750  
UNIT  
V
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2012–2017, Texas Instruments Incorporated  
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0.6  
0.6  
1.5  
1
NOM  
MAX UNIT  
VI  
Input voltage for step-down converters, VINDCDC1/2  
Output voltage for step-down converter, VDCDC1  
Output voltage for step-down converter, VDCDC2  
Input voltage for LDOs, VINLDO1, VINLDO2, VINLDO3/4  
Output voltage for LDO1 and LDO2  
6
V
V
VINDCDC1/2  
VO  
VI  
VINDCDC1/2  
V
6.5  
3.6  
V
V
VO  
Output voltage for LDO3 and LDO4  
1
3.6  
V
Output current at L1 (DCDC1)  
1000  
600  
400  
200  
mA  
mA  
mA  
mA  
μH  
μF  
μF  
μF  
μF  
μF  
°C  
Output current at L2 (DCDC2)  
IO  
Output current at VLDO1, VLDO2  
Output current at VLDO3, VLDO4  
Inductor at L1, L2(1)  
1.5  
10  
2.2  
22  
Output capacitor at VDCDC1, VDCDC2(1)  
Output capacitor at VLDO1, VLDO2, VLDO3, VLDO4(1)  
Input capacitor at VCC(1)  
Input capacitor at VINLDO1, VINLDO2(1)  
Input capacitor at VINLDO3/4(1)  
CO  
2.2  
1
CI  
2.2  
2.2  
–40  
TA  
Operating ambient temperature  
Resistor from battery voltage to VCC used for filtering(2)  
125  
10  
1
(1) See the Application Information section of this data sheet for more details.  
(2) Up to 2 mA can flow into VCC; when both converters are running in PWM, this resistor causes the UVLO threshold to shift accordingly.  
6.4 Thermal Information  
TPS65051-Q1  
THERMAL METRIC(1)  
RSM (VQFN)  
32 PINS  
37.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
30.1  
7.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
7.6  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2012–2017, Texas Instruments Incorporated  
5
 
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 μH, CO = 10 μF, TA = –40°C to 125°C, typical values are at TA  
= 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
6
UNIT  
V
SUPPLY CURRENT  
VI  
Input voltage range at VINDCDC1/2  
2.5  
One converter, IO = 0 mA.  
PFM mode enabled (Mode = GND) device not switching,  
EN_DCDC1 = VI OR EN_DCDC2 = VI;  
EN_LDO1= EN_LDO2 = EN_LDO3 = EN_LDO = GND  
20  
32  
30  
μA  
Two converters, IO = 0 mA  
Operating quiescent current  
PFM mode enabled (Mode = 0) device not switching,  
EN_DCDC1 = VI AND EN_DCDC2 = VI;  
EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = GND  
IQ  
Total current into VCC, VINDCDC1/2,  
VINLDO1, VINLDO2, VINLDO3/4  
40  
μA  
μA  
One converter, IO = 0 mA.  
PFM mode enabled (Mode = GND) device not switching,  
EN_DCDC1 = VI OR EN_DCDC2 = VI;  
180  
0.85  
1.25  
250  
EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = VI  
One converter, IO = 0 mA.  
Switching with no load (Mode = VI), PWM operation  
EN_DCDC1 = VI OR EN_DCDC2 = VI; EN_LDO1 = EN_LDO2  
= EN_LDO3 = EN_LDO = GND  
mA  
mA  
IQ  
Operating quiescent current into VCC  
Two converters, IO = 0 mA  
Switching with no load (Mode = VI), PWM operation  
EN_DCDC1 = VI AND EN_DCDC2 = VI; EN_LDO1 =  
EN_LDO2 = EN_LDO3 = EN_LDO = GND  
EN_DCDC1 = EN_DCDC2 = GND EN_LDO1 = EN_LDO2 =  
EN_LDO3 = EN_LDO4 = GND  
I(SD)  
Shutdown current  
9
12  
2
μA  
Undervoltage lockout threshold for DC-  
DC converters and LDOs  
V(UVLO)  
Voltage at VCC  
1.8  
V
EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4  
MODE, EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1,  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2,  
EN_LDO3, EN_LDO4  
1.2  
0
VCC  
0.4  
V
V
MODE, EN_DCDC1, EN_DCDC2, DEFLDO1, DEFLDO2,  
DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3,  
EN_LDO4, DEFDCDC2  
MODE = GND or VI MODE, EN_DCDC1, EN_DCDC2,  
DEFDCDC2,  
DEFLDO1, DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1,  
EN_LDO2,  
EN_LDO3, EN_LDO4  
0.01  
1
μA  
IlB  
Input bias current  
V_FB_LDOx = 1 V, FB_LDO1, FB_LDO2, FB_LDO3,  
FB_LDO4  
100  
nA  
POWER SWITCH  
VINDCDC1/2 = 3.6 V  
280  
400  
280  
400  
630  
630  
DCDC1  
VINDCDC1/2 = 2.5 V  
rDS(on)  
P-channel MOSFET on-resistance  
m  
μA  
VINDCDC1/2 = 3.6 V  
DCDC2  
VINDCDC1/2 = 2.5 V  
Ilkg  
P-channel leakage current  
VDCDCx = V(DS) = 6 V  
1
VINDCDC1/2 = 3.6 V  
220  
320  
220  
320  
7
450  
DCDC1  
VINDCDC1/2 = 2.5 V  
rDS(on)  
N-channel MOSFET on-resistance  
mΩ  
VINDCDC1/2 = 3.6 V  
450  
DCDC2  
VINDCDC1/2 = 2.5 V  
Ilkg  
N-channel leakage current  
VDCDCx = V(DS) = 6 V  
10  
1.65  
1.15  
μA  
DCDC1, 2.5 V VINDCDC1/2 6 V  
DCDC2, 2.5 V VINDCDC1/2 6 V  
Increasing junction temperature  
Decreasing junction temperature  
1.19  
0.85  
1.4  
1
Forward current limit PMOS (high side)  
and NMOS (low side)  
I(LIMF)  
A
Thermal shutdown  
150  
20  
°C  
°C  
Thermal shutdown hysteresis  
OUTPUT  
VO  
Output-voltage range for DCDC1,  
DCDC2  
0.6  
VINDCDC1/2  
600  
V
Vref  
Reference voltage  
mV  
6
Copyright © 2012–2017, Texas Instruments Incorporated  
 
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
Electrical Characteristics (continued)  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 μH, CO = 10 μF, TA = –40°C to 125°C, typical values are at TA  
= 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VINDCDC1/2 = 2.5 V to 6 V, 0 mA < IO = < IO(maximum)  
MODE = GND, PFM operation  
–2%  
0
2%  
DC output-voltage accuracy, DCDC1,  
DCDC2(1)  
VO  
VINDCDC1/2 = 2.5 V to 6 V, 0 mA < IO = < IO(maximum)  
MODE = VI, PWM operation  
–1%  
0
1%  
0.2  
ΔVO  
VOL  
IOL  
Power-save-mode ripple voltage(2)  
RESET, PB_OUT output low voltage  
RESET, PB_OUT sink current  
IO = 1 mA, MODE = GND, VO = 1.3 V, bandwith = 20 MHz  
IOL = 1 mA, Vhysteresis < 1 V, Vthreshold < 1 V  
25  
mVPP  
V
1
10  
1
mA  
RESET, PB_OUT output leakage  
current  
After PB_IN has been pulled high once; Vthreshold > 1 V and  
Vhysteresis > 1 V, VOH = 6 V  
nA  
V
Vth  
Vthreshold, Vhysteresis threshold  
0.98  
1.5  
1.02  
6.5  
VLDO1, VLDO2, VLDO3 AND VLDO4 LOW-DROPOUT REGULATORS  
Input-voltage range for LDO1, LDO2,  
LDO3, LDO4  
VI  
V
V
Feedback voltage for FB_LDO1,  
V(FB)  
1
FB_LDO2, FB_LDO3, and FB_LDO4  
Maximum output current for LDO1,  
LDO2  
400  
200  
IO  
mA  
mA  
Maximum output current for LDO3,  
LDO4  
LDO1 short-circuit current limit  
LDO2 short-circuit current limit  
VLDO1 = GND  
VLDO2 = GND  
750  
850  
I(SC)  
LDO3 and LDO4 short-circuit current  
limit  
VLDO3 = GND, VLDO4 = GND  
420  
Dropout voltage at LDO1  
Dropout voltage at LDO2  
Dropout voltage at LDO3, LDO4  
IO = 400 mA, VINLDO = 3.4 V  
IO = 400 mA, VINLDO = 1.8 V  
IO = 200 mA, VINLDO = 1.8 V  
400  
280  
280  
mV  
Leakage current from VinLDOx to  
VLDOx  
Ilkg  
VO  
LDO enabled, VINLDO = 6.5 V, VO = 1 V at TA = 140°C  
IO = 10 mA  
3
μA  
Output voltage accuracy for LDO1,  
LDO2, LDO3, LDO4  
–2%  
–1%  
–1%  
1%  
1%  
1%  
VINLDO1,2 = VLDO1,2 + 0.5 V (minimum 2.5 V) to 6.5 V,  
VINLDO3,4 = VLDO3,4 + 0.5 V (minimum 2.5 V) to 6.5 V,  
IO = 10 mA  
Line regulation for LDO1, LDO2, LDO3,  
LDO4  
Load regulation for LDO1, LDO2,  
LDO3, LDO4  
IO = 0 mA to 400 mA for LDO1, LDO2  
IO = 0 mA to 200 mA for LDO3, LDO4  
PSRR  
R(DIS)  
Power-supply rejection ratio  
f = 10 kHz; IO = 50 mA; VI = VO + 1 V  
Active when LDO is disabled  
70  
dB  
Internal discharge resistor at VLDO1,  
VLDO2, VLDO3, VLDO4  
350  
Ω
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
140  
20  
°C  
°C  
Thermal shutdown hysteresis  
(1) Output voltage specification does not include tolerance of external voltage-programming resistors.  
(2) In power-save mode, device typically enters operation at IPSM = VI / 32 .  
Copyright © 2012–2017, Texas Instruments Incorporated  
7
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
6.6 Switching Characteristics  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 μH, CO = 10 μF, TA = –40°C to 125°C, typical values are at TA  
= 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OSCILLATOR  
fSW  
Oscillator frequency  
2.025  
2.25  
2.475  
MHz  
OUTPUT  
Time from active EN to start  
switching  
tStart  
Start-up time  
170  
μs  
tRamp  
VOUT ramp-up time  
RESET delay time  
Time to ramp from 5% to 95% of VO  
Input voltage at threshold pin rising  
750  
100  
32  
μs  
ms  
ms  
80  
26  
120  
38  
PB-ONOFF debounce time  
VLDO1, VLDO2, VLDO3 AND VLDO4 LOW-DROPOUT REGULATORS  
Regulation time for LDO1, LDO2,  
LDO3, LDO4  
Load change from 10% to 90%  
10  
μs  
6.7 Typical Characteristics  
100  
90  
100  
90  
80  
80  
70  
60  
50  
40  
30  
20  
3.8 V  
5 V  
4.2 V  
70  
3.8 V  
5 V  
60  
50  
40  
30  
20  
3.4 V  
3.4 V  
4.2 V  
V
T
= 3.3 V  
= 25oC  
V
T
= 3.3 V  
= 25oC  
O
O
A
A
10  
10  
0
PWM Mode  
PWM/PFM Mode  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
− Output Current − A  
O
0.1  
1
10  
I
− Output Current − A  
I
O
Figure 1. Efficiency vs Output Current  
Figure 2. Efficiency vs Output Current  
8
Copyright © 2012–2017, Texas Instruments Incorporated  
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
Typical Characteristics (continued)  
100  
100  
90  
3.3 V  
90  
V
T
= 1.3 V  
= 25oC  
O
A
PWM Mode  
80  
80  
70  
60  
50  
40  
30  
20  
70  
3.8 V  
3.8 V  
60  
4.2 V  
5 V  
50  
3.3 V  
5 V  
40  
4.2 V  
30  
20  
10  
V
T
= 1.3 V  
= 25oC  
O
A
10  
0
PFM Mode  
0
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
I
− Output Current − A  
I
O
− Output Current − A  
O
Figure 3. Efficiency vs Output Current  
Figure 4. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1k  
f − Frequency − Hz  
Figure 5. Power-Supply Rejection Ratio vs Frequency  
10k  
100k  
1M  
10M  
Copyright © 2012–2017, Texas Instruments Incorporated  
9
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS65051-Q1 device has 2 DC-DC buck converters and 4 LDOs. Each DC-DC and LDO has enable pins,  
allowing external sequence control of the PMU rails. The device also has a RESET feature that is generated  
from a THRESHOLD comparator. This RESET signal can be used to reset or warn of power shutdown to the  
embedded mircocontroller or processor. The TPS65051-Q1 device makes power-system integration easy for a  
variety of embedded processors or FPGAs.  
7.2 Functional Block Diagram  
VINDCDC1/2  
1  
VCC  
Vbat  
22 F  
L1  
1 F  
Cff  
R1  
FB_DCDC1  
DCDC1 (I/O)  
10 F  
Step-Down  
Converter  
1 A  
R2  
EN_DCDC1  
MODE  
ENABLE  
PGND1  
L2  
R3  
R4  
VDCDC2  
DEFDCDC2  
PGND2  
DCDC2 (core)  
Step-Down  
Converter  
600 mA  
10 F  
EN_DCDC2  
ENABLE  
VIN_LDO1  
EN_LDO1  
VLDO1  
FB1  
VIN  
VLDO1  
R5  
R6  
400-mA LDO  
ENABLE  
4.7 F  
4.7 F  
2.2 F  
VLDO2  
FB2  
VIN_LDO2  
EN_LDO2  
VIN  
VLDO2  
R5  
R6  
400-mA LDO  
ENABLE  
VIN_LDO3/4  
EN_LDO3  
VLDO3  
VIN  
VLDO3  
R9  
200-mA LDO  
FB3  
BP  
ENABLE  
R10  
0.1 F  
VLDO4  
FB4  
EN_LDO4  
ENABLE  
VLDO4  
R11  
R12  
I/O Voltage  
2.2 F  
200-mA LDO  
THRESHOLD  
R19  
RESET  
RESET  
HYSTERESIS  
Copyright © 2017, Texas Instruments Incorporated  
10  
Copyright © 2012–2017, Texas Instruments Incorporated  
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
7.3 Feature Description  
7.3.1 Operation  
The TPS65051-Q1 device has two synchronous step-down converters. The converters operate with 2.25-MHz  
(typical) fixed-frequency pulse-width modulation (PWM) at moderate to heavy load currents. At light load  
currents, the converters automatically enter power-save mode and operate with PFM (pulse-frequency  
modulation).  
During PWM operation, the converters use a unique fast-response voltage-mode controller scheme with input  
voltage feed-forward to achieve good line and load regulation, allowing the use of small ceramic input and output  
capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch turns  
on, the inductor current ramps up until the current comparator trips, and the control logic turns off the switch. The  
current-limit comparator turns off the switch if the current exceeds the limit of the P-channel switch. After the  
adaptive dead time, which prevents shoot-through current, the N-channel MOSFET rectifier turns on, and the  
inductor current ramps down. The clock signal turning off the N-channel rectifier and turning on the on the P-  
channel switch initiates the next cycle.  
The two DC-DC converters operate synchronized to each other, with converter 1 as the master. A 180° phase  
shift between converter 1 and converter 2 decreases the input rms current, allowing the use of smaller input  
capacitors.  
7.3.2 DCDC1 Converter  
An external resistor divider connected to FB_DCDC1 pin sets the converter 1 output voltage. See the Converter  
1 (DCDC1) section for more details. The maximum output current is 1 A.  
7.3.3 DCDC2 Converter  
Connect the VDCDC2 pin directly to the DCDC2 converter output voltage. The DEFDCDC2 pin selects the  
DCDC2 converter output voltage. See the Converter 2 (DCDC2) section for more details. The maximum output  
current is 600 mA.  
An external resistor divider sets the output voltage. Connect the DEFDCDC2 pin to the external resistor divider.  
7.3.4 Dynamic Voltage Positioning  
This feature reduces the voltage under- and overshoots at load steps from light to heavy load and vice versa. It  
is activated In the power-save mode of operation, running the converter in PFM mode activates dynamic voltage  
positioning. Dynamic voltage positioning provides more headroom for both the voltage drop at a load step and  
the voltage increase at a load throw-off, thereby improving load-transient behavior.  
At light loads, in which the converters operate in PFM mode, the typical output-voltage regulation is 1% higher  
than the nominal value. In the event of a load transient from light load to heavy load, the output voltage drops  
until it reaches the skip-comparator-low threshold, set to 1% below the nominal value, and enters PWM mode.  
During a release from heavy load to light load, active regulation turning on the N-channel switch minimizes the  
voltage overshoot.  
Smooth  
Increased Load  
Fast Load Transient  
+1%  
OUT_NOM  
-1%  
PFM Mode  
Light Load  
PFM Mode  
Light Load  
V
PFM Mode  
Medium/Heavy Load  
PFM Mode  
Medium/Heavy Load  
COMP_LOW Threshold  
Figure 6. Dynamic Voltage Positioning  
Copyright © 2012–2017, Texas Instruments Incorporated  
11  
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.5 Soft Start  
The two converters have an internal soft-start circuit that limits the inrush current during start-up. During soft  
start, control of the output-voltage ramp-up is as shown in Figure 7.  
EN  
95%  
5%  
V
OUT  
t
t
RAMP  
Start  
Figure 7. Soft Start  
7.3.6 100% Duty-Cycle Low-Dropout Operation  
The converters offer a low input-to-output voltage difference while still maintaining operation with the use of the  
100% duty-cycle mode. In this mode, the P-channel switch is constantly on. This operational mode is useful in  
battery-powered applications to achieve longest operation time by taking full advantage of the whole battery  
voltage range, (that is, the minimum input voltage to maintain regulation depends on the load current and output  
voltage) and can be calculated as:  
VI (min) = VO (max) + IO (max) x (rDS(on) (max) + RL)  
where  
IO max = maximum output current plus inductor ripple current  
rDS(on) max = maximum P-channel switch rDS(on)  
RL = dc resistance of the inductor  
VO (max) = nominal output voltage plus maximum output-voltage tolerance  
(1)  
7.3.7 Undervoltage Lockout  
The undervoltage-lockout circuit prevents the device from malfunctioning at low input voltages and from  
excessive discharge of the battery, and disables all internal circuitry. The undervoltage-lockout threshold, sensed  
at the VCC pin, is typically 1.8 V, maximum 2 V.  
7.3.8 Mode Selection  
The MODE pin allows mode selection between forced PWM mode and power-save mode for both converters.  
Connecting this pin to GND enables the automatic PWM and power-save mode of operation. The converters  
operate in fixed-frequency PWM mode at moderate-to-heavy loads and in the PFM mode during light loads,  
maintaining high efficiency over a wide load-current range.  
Pulling the MODE pin high forces both converters to operate constantly in the PWM mode even at light load  
currents. The advantage is the converters operate with a fixed frequency that allows simple filtering of the  
switching frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the power-  
save mode during light loads. For additional flexibility, it is possible to switch from power-save mode to forced-  
PWM mode during operation. This allows efficient power management by adjusting the operation of the  
converters to the specific system requirements.  
7.3.9 Enable  
To start up each converter independently, the device has a separate enable pin for each DC-DC converter and  
for each LDO. If EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, or EN_LDO4 is set to high, the  
corresponding converter starts up with soft start as previously described.  
12  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
Feature Description (continued)  
Pulling the enable pin low forces the device into shutdown, with a shutdown quiescent current as defined in the  
electrical characteristics. In this mode, the P- and N-Channel MOSFETs turn off, and the entire internal control  
circuitry switches off. If disabled, internal 350-resistors pull the outputs of the LDOs low, actively discharging  
the output capacitor. Proper operation requires termination of the enable pins. Do not leave them unconnected.  
7.3.10 RESET  
The device contains circuitry that can generate a reset pulse for a processor with a 100-ms delay time. The  
device senses the input voltage for a comparator at the THRESHOLD pin. When the voltage exceeds the  
threshold, the output goes high with a 100-ms delay time. An external resistor connected to the HYSTERESIS  
input defines the hysteresis. This circuitry is functional as soon as the supply voltage at VCC exceeds the  
undervoltage-lockout threshold. The TPS65051-Q1 device has a shutdown current (all DC-DC converters and  
LDOs are off) of 9 μA.  
Vbat  
HYSTERESIS  
RESET  
THRESHOLD  
+
100 ms  
Delay  
-
V
= 1 V  
ref  
Vbat  
THRESHOLD  
THRESHOLD - HYSTERESIS  
Comparator  
Output (Internal)  
t
NRESET  
RESET  
Figure 8. RESET Pulse Circuit  
7.3.11 Short-Circuit Protection  
All outputs are short-circuit protected with a maximum output current as defined in the Electrical Characteristics.  
7.3.12 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 150°C (typically) for the DC-DC converters, the device goes  
into thermal shutdown. In this mode, the P- and N-channel MOSFETs turn off. The device continues its operation  
when the junction temperature falls below the thermal shutdown hysteresis again. A thermal shutdown for one of  
the DC-DC converters disables both converters simultaneously.  
The thermal shutdown temperature for the LDOs is typically 140°C. Therefore, an LDO used to power an  
external voltage never heats up the chip high enough to turn off the DC-DC converters. If one LDO exceeds the  
thermal shutdown temperature, all LDOs turn off simultaneously.  
Copyright © 2012–2017, Texas Instruments Incorporated  
13  
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.13 Low Dropout Voltage Regulators  
The design of the low-dropout voltage regulators allows them to operate well with small ceramic input and output  
capacitors. They operate with input voltages down to 1.5 V. The LDOs offer a maximum dropout voltage of 400  
mV (LDO1) and 280 mV (LDO2, LDO3, and LDO4) at rated output current. Each LDO supports a current-limit  
feature. The EN_LDO1, ENLDO2, EN_LDO3, and EN_LDO4 pins enable the LDOs. The use of external resistor  
dividers sets the output voltage of the LDOs.  
7.4 Device Functional Modes  
7.4.1 Power-Save Mode  
The TPS65051-Q1 device is either in the ON or the OFF mode. The OFF mode is entered when the voltage on  
VCC is below the UVLO threshold of 1.8 V (typically). When the voltage at the VCC pin is higher than UVLO, the  
device enters ON mode. In the ON mode, the converters and LDOs are available for use.  
Setting the MODE pin to 0 enables the power-save mode. If the load current decreases, the converters enter the  
power-save mode of operation automatically. During power-save mode, the converters operate with reduced  
switching frequency in PFM mode, and with a minimum quiescent current to maintain high efficiency. The  
converters position the output voltage 1% above the nominal output voltage. This voltage-positioning feature  
minimizes voltage drops caused by a sudden load step.  
To optimize the converter efficiency at light load, the TPS65051-Q1 device monitors average current. If in PWM  
mode, the inductor current remains below a certain threshold, then the device enters power-save mode. Use  
Equation 2 to calculate the average output current threshold to enter PFM mode. Use Equation 3 to calculate the  
average output current threshold to leave PFM mode.  
VINDCDC  
I(PFM_enter)  
=
32 W  
VINDCDC  
(2)  
I(PSMDCDC_leave)  
=
24 W  
(3)  
During power-save mode, a comparator monitors the output voltage. As the output voltage falls below the skip-  
comparator (skip comp) threshold, the P-channel switch turns on, and the converter effectively delivers a  
constant current. If the load is below the delivered current, the output voltage rises until it crosses the skip comp  
threshold again; then all switching activity ceases, reducing the quiescent current to a minimum until the output  
voltage has dropped below the threshold. If the load current is greater than the delivered current, the output  
voltage falls until it crosses the skip-comparator-low (skip comp low) threshold set to 1% below nominal VO; then  
the device exits power-save mode, and the converter returns to the PWM mode.  
These control methods reduce the quiescent current to 12 μA per converter and the switching frequency to a  
minimum, achieving the highest converter efficiency. The PFM mode operates with low output-voltage ripple. The  
ripple depends on the comparator delay and the size of the output capacitor; increasing capacitor value  
decreases the output ripple voltage.  
Disable the power-save mode by driving the MODE pin high. In forced-PWM mode, both converters operate with  
fixed-frequency PWM mode regardless of the load.  
14  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
 
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
This device integrates two step-down converters and four LDOs, which can be used to power the voltage rails  
needed by a processor or any other application. The power management IC (PMIC) can be controlled through  
the ENABLE and MODE pins or sequenced from the VIN using RC delay circuits. A logic output (RESET)  
provides the application processor or load a logic signal indicating power good or reset.  
8.2 Typical Application  
VINDCDC1/2  
1  
VCC  
Vbat  
Vbat  
22 F  
L1  
2.2 µH  
Vout1 = 2.85 V  
Cff  
1 F  
R1  
10 F  
FB_DCDC1  
PGND1  
Vbat  
R2  
R13  
HYSTERESIS  
L2  
Vout2 = 1.575 V  
R14  
THRESHOLD  
2.2 µH  
R3  
R4  
VDCDC2  
DEFDCDC2  
PGND2  
VLDO1  
R15  
1 Mꢀ  
10 F  
RESET  
Vbat  
EN_DCDC1  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
EN_LDO3  
EN_LDO4  
TPS65051-Q1  
VLDO1 = 3.3 V  
R5  
R6  
FB1  
4.7 F  
VLDO2  
FB2  
VLDO2 = 1.8 V  
R7  
R8  
4.7 F  
VLDO3  
VLDO3 = 1.2 V  
R9  
VIN_LDO1  
VIN_LDO2  
Vbat  
FB3  
BP  
2.2 F  
R10  
Vbat  
VIN_LDO3/4  
0.1 F  
Vout1  
VLDO4  
FB4  
VLDO4 = 1.3 V  
R11  
R12  
MODE  
Vbat  
2.2 F  
AGND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9. Typical Application Schematic  
Copyright © 2012–2017, Texas Instruments Incorporated  
15  
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 1 lists the design requirements for this example.  
Table 1. Design Parameters  
PARAMETER  
VALUE  
2.5 V to 6 V  
2.85 V  
1 A  
DCDC1 and DCDC2 input voltage  
DCDC1 output voltage  
DCDC1 output current  
DCDC2 output voltage  
DCDC2 output current  
LDO1 output voltage  
LDO1 output current  
LDO2 output voltage  
LDO2 output current  
LDO3 output voltage  
LDO3 output current  
LDO4 output voltage  
LDO4 output current  
1.575 V  
600 mA  
3.3 V  
400 mA  
1.8 V  
400 mA  
1.2 V  
200 mA  
1.3 V  
200 mA  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output-Voltage Setting  
8.2.2.1.1 Converter 1 (DCDC1)  
An external resistor network can set the output voltage of converter 1. Calculate the output voltage using  
Equation 4,  
R1  
VO = Vref  
x
1 +  
(
)
R2  
where  
the internal reference voltage, Vref, is 0.6 V  
(4)  
TI recommends setting the total resistance of R1 + R2 to less than 1 M. The resistor network connects to the  
input of the feedback amplifier, therefore requiring a small feed-forward capacitor in parallel with R1. A typical  
value of 47 pF is sufficient.  
16  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
 
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
8.2.2.1.2 Converter 2 (DCDC2)  
The adjustable output voltage is defined with external resistor network on the DEFDCDC2 pin.  
Calculation of the adjustable output voltage is similar to that for the DCDC1 converter. TI recommends setting the  
total resistance of R3 + R4 to less than 1 M. Route the DEFDCDC2 line separate from noise sources, such as  
the inductor or the L2 line. Connect the VDCDC2 line directly to the output capacitor. As VDCDC2 is the sense  
pin for the output of L2, there is no need for a feedforward capacitor in conjunction with R3.  
Use an external resistor divider at DEFDCDC2 as shown in Figure 10.  
1 W  
V
Vbat  
CC  
1 mF  
VDCDC2  
L2  
V
O
VINDCDC1/2  
ENDCDC2  
L
C
I
C
O
R3  
R4  
DEFDCDC2  
AGND PGND  
Figure 10. External Resistor Divider  
V(DEFDCDC2) = 0.6 V  
VO = V(DEFDCDC2)  
VO  
R3 + R4  
R4  
x
R3 = R4 x  
- R4  
(
)
V(DEFDCDC2)  
(5)  
See Table 2 for typical resistor values:  
Table 2. Typical Resistor Values  
OUTPUT VOLTAGE  
R3  
R4  
NOMINAL VOLTAGE  
Typical CFF  
47 pF  
3.3 V  
3 V  
680 kΩ  
510 kΩ  
560 kΩ  
510 kΩ  
300 kΩ  
200 kΩ  
300 kΩ  
330 kΩ  
150 kΩ  
130 kΩ  
150 kΩ  
160 kΩ  
150 kΩ  
120 kΩ  
200 kΩ  
330 kΩ  
3.32 V  
2.95 V  
2.84 V  
2.51 V  
1.8 V  
47 pF  
2.85 V  
2.5 V  
1.8 V  
1.6 V  
1.5 V  
1.2 V  
47 pF  
47 pF  
47 pF  
1.6 V  
47 pF  
1.5 V  
47 pF  
1.2 V  
47 pF  
Copyright © 2012–2017, Texas Instruments Incorporated  
17  
 
 
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
8.2.2.2 Output Filter Design (Inductor and Output Capacitor)  
8.2.2.2.1 Inductor Selection  
The two converters operate with a 2.2-μH output inductor. A designer can use larger or smaller inductor values to  
optimize the performance of the device for specific operation conditions. The selected inductor must be rated for  
its dc resistance and saturation current. The dc resistance of the inductance directly influences the efficiency of  
the converters. Therefore, select an inductor with lowest dc resistance for highest efficiency. The minimum  
inductor value is 1.5 μH, but the circuit requires an output capacitor of 22 μF minimum in this case. For an output  
voltage above 2.8 V, TI recommends an inductor value of 3.3 μH minimum. Lower values result in an increased  
output-voltage ripple in PFM mode.  
Equation 6 calculates the maximum inductor current under static load conditions. The saturation-current rating of  
the inductor should be higher than the maximum inductor current as calculated with Equation 6. This  
recommendation is because during heavy load transient the inductor current rises above the calculated value.  
VO  
1 -  
VI  
DIL  
DIL = VO  
x
IL(max) = IO (max) +  
2
L x ¦  
where  
f = Switching frequency (2.25-MHz typical)  
L = Inductor value  
Δ IL= Peak-to-peak inductor ripple current  
ILmax = Maximum inductor current  
(6)  
The highest inductor current occurs at maximum VI. Open-core inductors have a soft saturation characteristic,  
and they can normally handle higher inductor currents versus a comparable shielded inductor.  
A more-conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Give consideration to the difference in the core material from inductor to inductor, which  
has an impact on the efficiency, especially at high switching frequencies. See Table 3 and the typical applications  
for possible inductors.  
Table 3. Tested Inductors  
INDUCTOR TYPE  
LPS3010  
INDUCTOR VALUE  
2.2 μH  
SUPPLIER  
Coilcraft  
Coilcraft  
Coilcraft  
TDK  
LPS3015  
3.3 μH  
LPS4012  
2.2 μH  
VLF4012  
2.2 μH  
8.2.2.2.2 Output-Capacitor Selection  
The advanced fast-response voltage-mode control scheme of the two converters allows the use of small ceramic  
capacitors with a value of 22-μF (typical), without having large output-voltage undershoots and overshoots during  
heavy load transients. TI recommends ceramic capacitors having low ESR values, which result in the lowest  
output-voltage ripple.  
If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application  
requirements. For completeness, the RMS ripple current is calculated as:  
VO  
1 -  
VI  
1
x
I(RMSCout) = VO  
x
2 x Ö3  
L x ¦  
(7)  
At nominal load current, the inductive converters operate in PWM mode, and the overall output voltage ripple is  
the sum of the voltage spike caused by the output-capacitor ESR plus the voltage ripple caused by charging and  
discharging the output capacitor:  
18  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
 
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
VO  
VI  
1 -  
1
x
+ ESR  
DVO = VO  
x
(
)
8 x CO x ¦  
L x ¦  
(8)  
where the highest output voltage ripple occurs at the highest input voltage VI.  
At light load currents, the converters operate in power-save mode and the output-voltage ripple depends on the  
output-capacitor value. The internal comparator delay and the external capacitor set the output-voltage ripple.  
The typical output-voltage ripple is less than 1% of the nominal output voltage.  
8.2.2.2.3 Input-Capacitor Selection  
The nature of the buck converters having a pulsating input current requires a low-ESR input capacitor for best  
input-voltage filtering and minimizing the interference with other circuits caused by high input-voltage spikes. The  
converters require a ceramic input capacitor of 10 μF. Increase the input capacitor as desired for better input-  
voltage filtering, without any limit.  
Table 4. Possible Capacitors  
CAPACITOR VALUE  
SIZE  
0805  
0805  
0805  
0805  
0603  
SUPPLIER  
TYPE  
2.2 μF  
2.2 μF  
10 μF  
10 μF  
10 μF  
TDK C2012X5R0J226MT  
Taiyo Yuden JMK212BJ226MG  
Taiyo Yuden JMK212BJ106M  
TDK C2012X5R0J106M  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Taiyo Yuden JMK107BJ106MA  
8.2.2.3 Low-Dropout Voltage Regulators (LDOs)  
An external resistor network sets the output voltage of all four LDOs. Calculate the output voltage using  
Equation 9:  
R5  
VO = Vref  
x
1 +  
(
)
R6  
where  
the internal reference voltage, Vref, is 1 V (typical).  
(9)  
TI recommends setting the total resistance of R5 + R6 to less than 1 M. Typically, there is no feedforward  
capacitor needed at the voltage dividers for the LDOs.  
VO  
R5 + R6  
VO = V(FB_LDOs)  
x
R5 = R6 x  
- R6  
(
)
V(FB_LDOs)  
R6  
(10)  
Typical resistor values:  
Table 5. Typical Resistor Values  
OUTPUT VOLTAGE  
R5  
R6  
NOMINAL VOLTAGE  
3.3 V  
3 V  
300 kΩ  
300 kΩ  
240 kΩ  
360 kΩ  
300 kΩ  
240 kΩ  
150 kΩ  
36 kΩ  
130 kΩ  
150 kΩ  
130 kΩ  
200 kΩ  
200 kΩ  
300 kΩ  
300 kΩ  
120 kΩ  
510 kΩ  
330 kΩ  
3.31 V  
3 V  
2.85 V  
2.8 V  
2.5 V  
1.8 V  
1.5 V  
1.3 V  
1.2 V  
1.1 V  
2.85 V  
2.8 V  
2.5 V  
1.8 V  
1.5 V  
1.3 V  
1.19 V  
1.1 V  
100 kΩ  
33 kΩ  
Copyright © 2012–2017, Texas Instruments Incorporated  
19  
 
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
8.2.2.4 RESET  
The device contains a comparator for supervising a voltage connected to an external voltage divider, and  
generating a reset signal if the voltage is lower than the threshold. The rising-edge delay is 100 ms at the open-  
drain RESET output. Calculate the values for the external resistors R13 to R15 as follows:  
VL = lower voltage threshold  
VH = higher voltage threshold  
VREF = reference voltage (1 V)  
Example:  
VL = 3.3 V  
VH = 3.4 V  
Set R15 = 100 kΩ  
R13 + R14 = 240 kΩ  
R14 = 3.03 kΩ  
R13 = 237 kΩ  
«
VH  
R13 + R14 = R15 ì  
-1  
÷
V
ref  
VH - VL  
R14 = R15 ì  
VL  
(11)  
Vout1  
Vbat  
R13  
HYSTERESIS  
R14  
THRESHOLD  
1 M  
R15  
RESET  
Figure 11. RESET Circuit  
20  
Copyright © 2012–2017, Texas Instruments Incorporated  
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
8.2.3 Application Curves  
V
= 4.2 V,  
T
= 25oC  
A
CH1 (VDCDC1 = 3.3 V)  
= 25oC  
A
I
V
= 4.2 V,  
T
CH1 (VDCDC1 = 3.3 V)  
I
CH1 (VDCDC2 = 1.5 V)  
CH2 (VDCDC2 = 1.5 V)  
CH3 (I DCDC2 = 600 mA)  
L
CH3 (I DCDC2 = 80 mA)  
L
CH4 (I DCDC1 = 600 mA)  
L
CH4 (I DCDC1 = 80 mA)  
L
t − Time = 500 ns/div  
t − Time = 2 ms/div  
Figure 13. Output Voltage Ripple PWM MODE = HIGH  
Figure 12. Output Voltage Ripple PWM or PFM MODE =  
LOW  
CH1 (EN)  
EN  
CH1 (VLDO1)  
CH4 (VLDO1)  
V
T
= 3.6 V  
= 25oC  
I
A
Mode = Low  
CH2 (VLDO2)  
CH3 (VLDO3)  
CH4 (VLDO4)  
CH3  
(VDCDC2 = 1.5 V)  
V
T
= 3.6 V  
= 25oC  
I
A
CH2  
(VDCDC1 = 3.3 V)  
Load DCDC1 = 600 mA  
Load DCDC2 = 600 mA  
ILDO1/2/3/4 = 100 mA  
Mode = Low  
t − Time = 200 ms/div  
Figure 14. DCDC1 Startup Timing  
t − Time = 20 ms/div  
Figure 15. LDO1 to LDO4 Startup Timing  
CH1 (VDCDC1)  
CH1 (VDCDC1)  
V
T
= 4.2 V  
= 25oC  
I
V
T
= 4.2 V  
= 25oC  
I
A
A
Mode = Low  
Mode = High  
CH2  
I(DCDC1)  
CH2  
I(DCDC1)  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
Load Current = 60 mA to 540 mA  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 16. DCDC1 Load Transient Response  
Figure 17. DCDC1 Load Transient Response  
Copyright © 2012–2017, Texas Instruments Incorporated  
21  
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
CH1 (VDCDC2)  
CH1 (VDCDC2)  
V
T
= 3.6 V  
= 25oC  
I
V
T
= 3.6 V  
= 25oC  
I
A
A
Mode = High  
Mode = Low  
CH2  
I(DCDC2)  
CH2  
I(DCDC2)  
VDCDC2 = 1.5 V  
VDCDC2 = 1.5 V  
ENDCDC1 = Low  
ENDCDC2 = High  
ENDCDC1 = Low  
ENDCDC2 = High  
Load Current = 60 mA to 540 mA  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 19. DCDC2 Load Transient Response  
Figure 18. DCDC2 Load Transient Response  
CH1  
VIN (VDCDC1)  
CH1  
VIN (VDCDC2)  
V
= 3.6 V to 4.5 V to 3.6 V  
I
T
= 25oC  
A
Mode = High  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
Load Current = 600 mA  
CH2 (VDCDC2)  
CH2 (VDCDC1)  
VDCDC2 = 1.5 V  
V
T
= 3.4 V to 4.4 V to 3.4 V  
= 25oC  
I
ENDCDC1 = Low  
ENDCDC2 = High  
Load Current = 600 mA  
A
Mode = High  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 20. DCDC1 Line Transient Response  
Figure 21. DCDC2 Line Transient Response  
CH1 (VLDO4)  
CH1 (VLDO1)  
V
= 3.6 V  
I
VLDO4 = 1.3 V  
V
T
= 3.6 V  
= 25oC  
I
A
VLDO4 = 20 mA to 180 mA  
= 25oC  
VLDO1 = 3.3 V  
VLDO1 = 40 mA to 360 mA  
T
A
CH2  
I(LDO4)  
CH2  
I(LDO1)  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 22. LDO1 Load Transient Response  
Figure 23. LDO4 Load Transient Response  
22  
Copyright © 2012–2017, Texas Instruments Incorporated  
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
CH1  
VIN (LDO1)  
CH2 (VLDO1)  
V
T
= 3.6 V to 4.2 V to 3.6 V  
= 25oC  
I
A
VLDO1 = 3.3 V  
VLDO1 = 100 mA  
Mode = High  
t − Time = 100 ms/div  
Figure 24. LDO1 Line Transient Response  
9 Power Supply Recommendations  
In addition to the values listed in the Recommended Operating Conditions table, additional recommendations for  
the power supply are as follows:  
1-μF bypass capacitor on VCC, located as close as possible to the VCC pin to ground.  
VCC and VINDCDC1/2 must be connected to the same voltage supply with minimal voltage difference.  
Input capacitors must be present on the VINDCDC1/2, VIN_LDO1, VINLDO2, and VIN_LDO3/4 supplies if  
used.  
Output inductor and capacitors must be used on the outputs of the DC-DC converters if used.  
Output capacitors must be used on the outputs of the LDOs if used.  
10 Layout  
10.1 Layout Guidelines  
The input capacitors for the DC-DC converters should be placed as close as possible to the VINDCDC1/2 pin  
and the PGND1 and PGND2 pins.  
The inductor of the output filter should be placed as close as possible to the device to provide the shortest  
switch node possible, reducing the noise emitted into the system and increasing the efficiency.  
Sense the feedback voltage from the output at the output capacitors to ensure the best DC accuracy.  
Feedback should be routed away from noisy sources such as the inductor. If possible route on the opposing  
side as the switch node and inductor and place a GND plane between the feedback and the noisy sources or  
keep out underneath them entirely.  
Place the output capacitors as close as possible to the inductor to reduce the feedback loop as much as  
possible. This will ensure best regulation at the feedback point.  
Place the device as close as possible to the most demanding or sensitive load. The output capacitors should  
be placed close to the input of the load. This will ensure the best AC performance possible.  
The input and output capacitors for the LDOs should be placed close to the device for best regulation  
performance.  
TI recommends using the common ground plane for the layout of this device. The AGND can be separated  
from the PGND but, a large low parasitic PGND is required to connect the PGNDx pins to the CIN and  
external PGND connections. If the AGND and PGND planes are separated, have one connection point to  
reference the grounds together. Place this connection point close to the IC.  
Copyright © 2012–2017, Texas Instruments Incorporated  
23  
TPS65051-Q1  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
www.ti.com.cn  
10.2 Layout Example  
/out  
[out  
[out  
/in  
/in  
ëin  
/out  
w1 C.  
Figure 25. Layout Example from EVM for TPS65051-Q1  
24  
版权 © 2012–2017, Texas Instruments Incorporated  
TPS65051-Q1  
www.ti.com.cn  
ZHCSAG3B SEPTEMBER 2012REVISED JANUARY 2017  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2012–2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65051QRSMRQ1  
ACTIVE  
VQFN  
RSM  
32  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TPS  
65051Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65051QRSMRQ1  
VQFN  
RSM  
32  
3000  
330.0  
12.4  
4.25  
4.25  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RSM 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TPS65051QRSMRQ1  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65051RSMR

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65051RSMRG4

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65051RSMT

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65051RSMTG4

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65052

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65052QRSMRQ1

IC POWER SUPPLY SUPPORT CKT, Power Management Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65052QRSMTQ1

IC POWER SUPPLY SUPPORT CKT, Power Management Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65052RSMR

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65052RSMRG4

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65052RSMT

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65052RSMTG4

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65053

5-CHANNEL POWER MGMT IC WITH TWO STEP DOWN CONVERTERS AND 3 LOW-INPUT VOLTAGE LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI