TPS650861 [TI]

具有 3 个转换器、3 个控制器、4 个 LDO 和 3 个负载开关的用户可编程电源管理 IC (PMIC);
TPS650861
型号: TPS650861
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 3 个转换器、3 个控制器、4 个 LDO 和 3 个负载开关的用户可编程电源管理 IC (PMIC)

开关 控制器 集成电源管理电路 转换器
文件: 总144页 (文件大小:2606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS650861  
ZHCSIK3 JULY 2018  
TPS650864 可配置多轨 PMU适用于多核处理器、FPGA 和系统的  
TPS650861 可配置多轨 PMU  
1 器件概述  
1.1 特性  
1
1.5V,各输出电流均为最高 600mA  
用于 DDR 存储器终端的 VTT LDO  
三个具有压摆率控制功能的负载开关  
两组用于为默认电压和序列进行编程的一次性可编  
程内存  
• 5.6V 21V 的宽输入电压范围  
三个采用 D-CAP2™ 拓扑的可变输出电压同步降压  
控制器  
输出电流高达 300mA,压降小于标称输入电压的  
1.5%  
使用外部 FET 的可扩展输出电流,支持可选电流  
限制  
输入电压为 1.8V 时,RDSON < 96mΩ  
• 5V 固定输出电压 LDO (LDO5)  
0.41V 1.67V 之间以  
用于 SMPS 的栅极驱动器和 LDOA1 的电源  
可自动切换至外部 5V 降压以实现更高效率  
内置可通过 OTP 编程功能实现的灵活性和可配置性  
10mV 为步长、在 1V 3.575V 之间以 25mV  
为步长或固定 5V 输出的 I2C DVS 控制  
三个采用 DCS-Control 拓扑的可变输出电压同步降  
压转换器  
六个 GPI 引脚均可配置为启用(CTL1 至  
CTL6)任意所选电压轨或使其进入睡眠模式  
CTL3 CTL6)  
四个 GPO 引脚均可配置为指示任意所选轨道的  
电源正常  
输入电压范围为 3V 5.5 V  
输出电流高达 3A  
0.425V 3.575V25mV 为步长的 I2C 控制  
三个具有可调节输出电压的 LDO 稳压器  
漏极开路中断输出引脚  
• I2C 接口支持标准模式 (100kHz)、快速模式  
(400kHz) 和超快速模式 (1MHz)  
– LDOA1I2C 可选输出电压为 1.35V 3.3V,输  
出电流最高 200mA  
– LDOA2 LDOA3I2C 可选输出为 0.7V 至  
1.2 应用  
可编程逻辑控制器  
机器视觉摄像机  
视频监控  
测试和测量  
嵌入式 PC  
运动控制  
1.3 说明  
TPS650861 器件系列是一款单芯片电源管理 IC (PMIC),按照设计,其经编程可实现最佳的输出电压和电源  
定序。TPS650861 具有三个控制器,可提供最高 30A 电流的灵活供电能力,采用可满足大功率设计需求的  
大型外部 FET,但该 FET 的使用可降低尺寸和成本,获得更小巧的设计。通过将三个 3A 转换器、三个通  
LDO、一个适用于 DDR 的终端 LDO 以及三个负载开关相结合,TPS650861 可为多种 应用提供系统电  
源。该 D-CAP2™DCS-Control 高频稳压器采用小型无源器件,以减小解决方案尺寸。D-CAP2 DCS-  
Control 拓扑具有出色的瞬态响应性能,非常适用于具有快速负载开关的处理器内核和系统内存电压轨。该  
器件具有两组一次性可编程 (OTP) 内存。如需大量采购,请联系当地的 TI 销售代表,以确定是否能够使用  
TI 制造的产品进行 OTP 定制。第三方经销商也支持为 TPS650861 编程。  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
8.00mm x 8.00mm  
TPS650861  
VQFN (64)  
(1) 有关详细信息,请参阅 机械、封装和可订购信息 部分。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。 TI 不保证翻译的准确性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWCS142  
 
 
 
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com.cn  
1.4 PMIC 功能框图  
LDO5V  
LDO1  
VIN  
BOOT1  
DRVH1  
LDOA1  
1.35 œ 3.3 V  
200 mA  
CTL1  
CTL2  
SW1  
V1  
VSET  
EN  
BUCK1  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL1  
CTL3/SLPENB1  
Control  
Inputs  
EN  
VSET  
FBVOUT1  
CTL4  
PGNDSNS1  
CTL5  
ILIM1  
CTL6/SLPENB2  
VPULL  
VPULL  
VIN  
BOOT2  
DRVH2  
CLK  
SoC  
&
System  
I2C CTL  
SW2  
DATA  
V2  
VSET  
EN  
BUCK2  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL2  
Control  
Outputs  
FBVOUT2  
PGNDSNS2  
IRQB  
GPO1  
GPO2  
GPO3  
GPO4  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
3.3V œ 5V  
PVIN3  
LX3  
TEST CTL  
OTP  
BUCK3  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VSET  
EN  
V3  
FB3  
<PGND_BUCK3>  
REGISTERS  
3 A  
3.3V œ 5V  
PVIN4  
LX4  
BUCK4  
VSET 0.425 3.575 V  
0.41 œ 1.67 V  
LDO5P0  
V5ANA  
LDO5P0  
Digital Core  
V4  
V5  
3.3V œ 5V  
EN  
FB4  
(DVS)  
3 A  
<PGND_BUCK4>  
3.3V œ 5V  
PVIN5  
LX5  
BUCK5  
œ
VSET  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
4.7V  
+
EN  
FB5  
STDBY  
LDO5V  
3 A  
<PGND_BUCK5>  
VIN  
REFSYS  
LDO3P3  
BOOT6  
DRVH6  
Thermal  
Monitoring  
VSYS  
5.6Vœ21V  
LDO3P3  
LDO3P3  
SW6  
DRVL6  
Thermal Shutdown  
VDDQ  
VSET  
EN  
BUCK6  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VREF  
AGND  
Bandgap  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVIN_VTT  
VTT  
VTT  
VTT_LDO  
VDDQ/2  
EN  
VTTFB  
LDOA2  
0.7 1.5 V  
600 mA  
LDOA3  
0.7 1.5 V  
600 mA  
LOAD SWA1  
LOAD SWB1  
LOAD SWB2  
Copyright © 2017, Texas Instruments Incorporated  
2
器件概述  
版权 © 2018, Texas Instruments Incorporated  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
内容  
1
器件概.................................................... 1  
5
Detailed Description ................................... 19  
5.1 Overview ............................................ 19  
5.2 Functional Block Diagram........................... 20  
5.3 Programming the TPS650861 ...................... 21  
5.4 SMPS Voltage Regulators .......................... 22  
5.5 LDOs and Load Switches ........................... 30  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 PMIC 功能框图 ....................................... 2  
修订历史记录............................................... 3  
Pin Configuration and Functions..................... 4  
3.1 Pin Functions ......................................... 4  
Specifications ............................................ 7  
4.1 Absolute Maximum Ratings .......................... 7  
4.2 ESD Ratings.......................................... 7  
4.3 Recommended Operating Conditions ................ 8  
4.4 Thermal Information .................................. 8  
2
3
5.6  
Power Goods (PGOOD or PG) and GPOs ......... 30  
5.7 One-Time Programmable Memory.................. 32  
5.8 Power Sequencing and VR Control ................. 33  
5.9 Device Functional Modes ........................... 38  
5.10 I2C Interface ......................................... 38  
5.11 I2C Address: 0x5E Register Maps .................. 42  
5.12 I2C Address: 0x38 Register Maps................... 83  
Applications, Implementation, and Layout ...... 123  
6.1 Application Information ............................ 123  
6.2 Typical Application ................................. 123  
4
4.5  
Electrical Characteristics: Total Current  
6
7
Consumption.......................................... 8  
Electrical Characteristics: Reference and Monitoring  
System................................................ 9  
4.6  
6.3  
Power Supply Coupling and Bulk Capacitors...... 134  
4.7  
4.8  
Electrical Characteristics: Buck Controllers......... 10  
6.4 Do's and Don'ts ................................... 134  
器件和文档支......................................... 135  
7.1 器件支持 ........................................... 135  
7.2 文档支持 ........................................... 135  
7.3 接收文档更新通.................................. 135  
7.4 社区资源 ........................................... 135  
7.5 商标 ................................................ 135  
7.6 静电放电警告....................................... 136  
7.7 术语.............................................. 136  
机械、封装和可订购信息 .............................. 136  
Electrical Characteristics: Synchronous Buck  
Converters........................................... 11  
4.9 Electrical Characteristics: LDOs .................... 12  
4.10 Electrical Characteristics: Load Switches........... 14  
4.11 Digital Signals: I2C Interface ........................ 15  
4.12 Digital Input Signals (CTLx)......................... 15  
4.13 Digital Output Signals (IRQB, GPOx) ............... 15  
4.14 Timing Requirements ............................... 15  
4.15 Switching Characteristics ........................... 16  
4.16 Typical Characteristics .............................. 17  
8
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
备注  
2018 7 月  
*
最初发布版本  
Copyright © 2018, Texas Instruments Incorporated  
Pin Configuration and Functions  
3
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
3 Pin Configuration and Functions  
Figure 3-1 shows the 64-pin RSK Plastic Quad Flatpack No-Lead package.  
FBGND2  
FBVOUT2  
DRVH2  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VTTFB  
2
VTT  
3
PVINVTT  
ILIM6  
SW2  
4
BOOT2  
5
FBVOUT6  
DRVH6  
SW6  
PGNDSNS2  
DRVL2  
6
7
DRV5V_2_A1  
LDOA1  
8
BOOT6  
PGNDSNS6  
DRVL6  
Thermal  
Pad  
9
LX3  
10  
11  
12  
13  
14  
15  
16  
PVIN3  
DRV5V_1_6  
DRVL1  
FB3  
CTL1  
PGNDSNS1  
BOOT1  
SW1  
CTL6/SLPENB2  
IRQB  
GPO1  
DRVH1  
Not to scale  
NOTE: The thermal pad must be connected to the system power ground plane.  
Figure 3-1. 64-Pin RSK VQFN With Exposed Thermal Pad (Top View)  
3.1 Pin Functions  
Pin Functions  
PIN  
NAME  
SMPS REGULATORS  
I/O  
DESCRIPTION  
NO.  
Remote negative feedback sense for BUCK2 controller. Connect to negative terminal of output capacitor. Connect to  
ground when not in use.  
1
FBGND2  
I
4
Pin Configuration and Functions  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
Pin Functions (continued)  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Remote positive feedback sense for BUCK2 controller. Connect to positive terminal of output capacitor. Connect to  
ground when not in use.  
2
FBVOUT2  
I
3
4
DRVH2  
SW2  
O
I
High-side gate driver output for BUCK2 controller. Leave floating when not in use.  
Switch node connection for BUCK2 controller. Connect to ground when not in use.  
Bootstrap pin for BUCK2 controller. Connect a 100-nF ceramic capacitor between this pin and SW2 pin. Leave floating  
when not in use.  
5
BOOT2  
I
Power GND connection for BUCK2. Connect to ground terminal of external low-side FET. Connect to ground when not  
in use.  
6
7
PGNDSNS2  
DRVL2  
I
O
I
Low-side gate driver output for BUCK2 controller. Leave floating when not in use.  
5-V supply to BUCK2 gate driver and LDOA1. Bypass to ground with a 2.2-µF (typical) ceramic capacitor. Shorted on  
board to LDO5P0 pin typically. Bypass not required if BUCK2 and LDOA1 are not in use.  
8
DRV5V_2_A1  
LX3  
10  
11  
O
I
Switch node connection for BUCK3 converter. Connect to ground when not in use.  
Power input to BUCK3 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor. Bypass not required if  
BUCK3 is not in use.  
PVIN3  
Remote feedback sense for BUCK3 converter. Connect to positive terminal of output capacitor. Connect to ground  
when not in use.  
12  
20  
21  
FB3  
LX5  
I
O
I
Switch node connection for BUCK5 converter. Leave floating when not in use.  
Power input to BUCK5 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor. Bypass not required if  
BUCK5 is not in use.  
PVIN5  
Remote feedback sense for BUCK5 converter. Connect to positive terminal of output capacitor. Connect to ground  
when not in use.  
22  
23  
FB5  
FB4  
I
I
Remote feedback sense for BUCK4 converter. Connect to positive terminal of output capacitor. Connect to ground  
when not in use.  
Power input to BUCK4 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor. Bypass not required if  
BUCK4 is not in use.  
24  
25  
29  
PVIN4  
LX4  
I
O
I
Switch node connection for BUCK4 converter. Leave floating when not in use.  
Remote feedback sense for BUCK1 controller. Connect to positive terminal of output capacitor. Connect to ground  
when not in use.  
FBVOUT1  
Current limit set pin for BUCK1 controller. Fit a resistor from this pin to ground to set current limit of external low-side  
FET. Connect to ground when BUCK1 not in use.  
30  
ILIM1  
I
33  
34  
DRVH1  
SW1  
O
I
High-side gate driver output for BUCK1 controller. Leave floating when not in use.  
Switch node connection for BUCK1 controller. Connect to ground when not in use.  
Bootstrap pin for BUCK1 controller. Connect a 100-nF ceramic capacitor between this pin and SW1 pin. Leave floating  
when not in use.  
35  
BOOT1  
I
Power GND connection for BUCK1. Connect to ground terminal of external low-side FET. Connect to ground when not  
in use.  
36  
37  
38  
39  
40  
PGNDSNS1  
DRVL1  
I
O
I
Low-side gate driver output for BUCK1 controller. Leave floating when not in use.  
5-V supply to BUCK1 and BUCK6 gate drivers. Bypass to ground with a 2.2-µF (typical) ceramic capacitor. Shorted on  
board to LDO5P0 pin typically. Bypass not required if BUCK1 and BUCK6 are not in use.  
DRV5V_1_6  
DRVL6  
O
I
Low-side gate driver output for BUCK6 controller. Leave floating when not in use.  
Power GND connection for BUCK6. Connect to ground terminal of external low-side FET. Connect to ground when not  
in use.  
PGNDSNS6  
Bootstrap pin for BUCK6 controller. Connect a 100-nF ceramic capacitor between this pin and SW6 pin. Leave floating  
when not in use.  
41  
BOOT6  
I
42  
43  
SW6  
I
Switch node connection for BUCK6 controller. Connect to ground when not in use.  
High-side gate driver output for BUCK6 controller. Leave floating when not in use.  
DRVH6  
O
Remote feedback sense for BUCK6 controller and reference voltage for VTT LDO regulation. Connect to positive  
terminal of output capacitor. Connect to ground when not in use.  
44  
45  
64  
FBVOUT6  
ILIM6  
I
I
I
Current limit set pin for BUCK6 controller. Fit a resistor from this pin to ground to set current limit of external low-side  
FET. Connect to ground when BUCK6 not in use.  
Current limit set pin for BUCK2 controller. Fit a resistor from this pin to ground to set current limit of external low-side  
FET. Connect to ground when BUCK2 not in use.  
ILIM2  
LDO AND LOAD SWITCHES  
9
LDOA1  
SWB1  
O
O
LDOA1 output. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not in use.  
Output of load switch B1. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating when not in use.  
17  
Power supply to load switch B1 and B2. Bypass to ground with a 1-µF (typical) ceramic capacitor to improve transient  
performance. Connect to ground when not in use.  
18  
PVINSWB1_B2  
I
Copyright © 2018, Texas Instruments Incorporated  
Pin Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
19  
NAME  
SWB2  
SWA1  
O
O
Output of load switch B2. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating when not in use.  
Output of load switch A1. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating when not in use.  
31  
Power supply to load switch A1. Bypass to ground with a 1-µF (typical) ceramic capacitor to improve transient  
performance. Connect to ground when not in use.  
32  
46  
47  
PVINSWA1  
PVINVTT  
VTT  
I
I
Power supply to VTT LDO. Bypass to ground with a 10-µF (minimum) ceramic capacitor. Bypass not required if VTT  
LDO is not in use.  
Output of load VTT LDO. Bypass to ground with 2× 22-µF (minimum) ceramic capacitors. Leave floating when not in  
use.  
O
Remote feedback sense for VTT LDO. Connect to positive terminal of output capacitor. Connect to ground when not in  
use.  
48  
49  
50  
VTTFB  
LDOA3  
I
O
I
Output of LDOA3. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not in use.  
Power supply to LDOA2 and LDOA3. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Connect to ground  
when not in use.  
PVINLDOA2_A3  
51  
54  
LDOA2  
O
O
Output of LDOA2. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not in use.  
Output of 3.3-V internal LDO. Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
LDO3P3  
Output of 5-V internal LDO or an internal switch that connects this pin to V5ANA. Bypass to ground with a 4.7-µF  
(typical) ceramic capacitor.  
56  
57  
LDO5P0  
V5ANA  
O
I
Bias used by converters (BUCK3, BUCK4, and BUCK5) for regulation. Must be same supply as PVINx. Also has an  
internal load switch that connects this pin to LDO5P0 pin if 5-V is used. Bypass this pin with an optional ceramic  
capacitor to improve transient performance.  
INTERFACE  
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of  
this pin.  
13  
CTL1  
I
I
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of  
this pin. Alternatively, when configured to active-low sleep enable, a group of VRs chosen can be entered into (L) or out  
of (H) sleep state where their output voltages may be different from those in normal state.  
14  
15  
16  
26  
CTL6/SLPENB2  
IRQB  
Open-drain output interrupt pin. Refer to Section 5.11.4, IRQ: PMIC Interrupt Register, for definitions. For programming,  
this pin must be supplied with a stable 7-V supply to burn the OTP memory. Recommend bypassing to ground with a 1-  
µF (typical) ceramic capacitor. Do not back-drive any pull-up on this output if programming.(1)  
O
O
O
General purpose output that can be configured to either open-drain or push-pull arrangement. Regardless of the  
configuration, the pin can be programmed either to reflect Power Good status of VRs of any choice or to be controlled  
by an I2C register bit by the user, which then can be used as an enable signal to an external VR.  
GPO1  
General purpose output that can be configured to either open-drain or push-pull arrangement. Regardless of the  
configuration, the pin can be programmed either to reflect Power Good status of VRs of any choice or to be controlled  
by an I2C register bit by the user, which then can be used as an enable signal to an external VR.  
GPO2  
General purpose output that can be configured to either open-drain or push-pull arrangement. Regardless of the  
configuration, the pin can be programmed either to reflect Power Good status of VRs of any choice or to be controlled  
by an I2C register bit by the user, which then can be used as an enable signal to an external VR.  
27  
28  
GPO3  
GPO4  
O
O
Open-drain output that can be configured to reflect Power Good status of VRs of any choice or to be controlled by an  
I2C register bit by the user, which then can be used as an enable signal to an external VR.  
I2C clock  
I2C data  
58  
59  
CLK  
I
DATA  
I/O  
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of  
this pin.  
60  
61  
CTL2  
I
I
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of  
this pin. Alternatively, when configured to active-low sleep enable, a group of VRs chosen can be entered into (L) or out  
of (H) sleep state where their output voltages may be different from those in normal state.  
CTL3/SLPENB1  
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of  
this pin. For programming, this pin must be supplied with a stable 7-V supply to enter the programming state. Because  
of this requirement, CTL4 is generally not used to enable or disable regulators for the TPS650861 to avoid enabling  
rails during programming or damaging devices connected to CTL4. No bypass capacitor is needed for this pin.(1)  
62  
63  
CTL4  
CTL5  
I
I
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of  
this pin.  
REFERENCE  
52  
AGND  
VREF  
O
Analog ground. Do not connect to the thermal pad ground on top layer. Connect to ground of VREF capacitor.  
Band-gap reference output. Stabilize it by connecting a 100-nF (typical) ceramic capacitor between this pin and quiet  
ground.  
53  
55  
System voltage detection and input to internal LDOs (3.3 V and 5 V). Bypass to ground with a 1-µF (typical) ceramic  
capacitor.  
VSYS  
I
(1) Ambient temperature must remain below 50 °C during programming, total time must be less than one minute.  
Pin Configuration and Functions  
6
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
Pin Functions (continued)  
PIN  
NAME  
THERMAL PAD  
Thermal pad  
I/O  
DESCRIPTION  
NO.  
Connect to PCB ground plane using multiple vias for good thermal and electrical performance.  
(PGND)  
4 Specifications  
4.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
ANALOG  
Input voltage from battery, VSYS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
5(2)  
2(3)  
–0.3  
28  
7
V
V
V
V
V
V
V
V
PVIN3, PVIN4, PVIN5, LDO5P0, DRV5V_1_6, DRV5V_2_A1, DRVL1, DRVL2, DRVL6  
V5ANA  
6
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
SW1, SW2, SW6  
0.3  
34  
28  
8
LX3, LX4, LX5  
Differential voltage, BOOTx to SWx  
5.5  
VREF, LDO3P3, FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5, ILIM1, ILIM2, ILIM6,  
PVINVTT, VTT, VTTFB, PVINSWA1, SWA1, PVINSWB1_B2, SWB1, SWB2, LDOA1  
–0.3  
–0.3  
3.6  
3.3  
V
V
PVINLDOA2_A3, LDOA2, LDOA3  
DIGITAL IO  
DATA, CLK, GPO1-GPO3  
CTL1-CTL6, GPO4, IRQB (normal use)  
CTL4, IRQB (programming)(4)  
Storage temperature, Tstg  
–0.3  
–0.3  
-0.3  
–40  
3.6  
7
V
V
8.4  
150  
V
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transient for less than 5 ns  
(3) Transient for less than 20 ns  
(4) Ambient temperature must remain below 50 °C during programming, total time must be less than one minute.  
4.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged Device Model (CDM), per JESD22-C101(2)  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
7
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
4.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
ANALOG  
VSYS  
5.6  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
13  
21  
1.3  
5.5  
0.3  
26.5  
5.5  
21  
V
V
V
V
v
VREF  
PVIN3, PVIN4, PVIN5, LDO5P0, V5ANA, DRV5V_1_6, DRV5V_2_A1  
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
DRVL1, DRVL2, DRVL6  
V
V
V
V
V
V
SW1, SW2, SW6  
LX3, LX4, LX5  
–1  
5.5  
3.6  
3.3  
FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5  
LDO3P3, ILIM1, ILIM2, ILIM6, LDOA1  
PVINVTT  
–0.3  
–0.3  
–0.3  
BUCK6 FBVOUT6  
0.5 ×  
FBVOUT6  
VTT, VTTFB  
–0.3  
V
PVINSWA1, SWA1, PVINSWB1_B2, SWB1, SWB2  
PVINLDOA2_A3  
–0.3  
–0.3  
–0.3  
3.6  
1.8  
1.5  
V
V
V
LDOA2, LDOA3  
DIGITAL IO  
DATA, CLK, CTL1–CTL6, GPO1–GPO4, IRQB (normal use)  
CTL4, IRQB (during programming)(1)  
CHIP  
–0.3  
6.7  
3.3  
V
V
7
7.3  
Operating ambient temperature, TA  
Operating junction temperature, TJ  
–40  
–40  
27  
27  
85  
°C  
°C  
125  
(1) Ambient temperature must remain below 50 °C during programming, total time must be less than one minute.  
4.4 Thermal Information  
TPS650861  
THERMAL METRIC(1)  
RSK (VQFN)  
64 PINS  
25.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
11.3  
4.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
4.4  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics application report.  
4.5 Electrical Characteristics: Total Current Consumption  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PMIC shutdown current that includes IQ for  
references, LDO5, LDO3P3, and digital core  
VSYS = 13 V, all functional output rails  
are disabled  
ISD  
65  
µA  
8
Specifications  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
4.6 Electrical Characteristics: Reference and Monitoring System  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE  
Band-gap reference voltage  
Accuracy  
1.25  
V
VREF  
–0.5%  
0.047  
5.24  
0.5%  
0.22  
5.56  
CVREF  
Band-gap output capacitor  
VSYS UVLO threshold for LDO5  
0.1  
5.4  
µF  
V
VSYS_UVLO_5V  
VSYS falling  
VSYS UVLO threshold hysteresis for VSYS rising above  
VSYS_UVLO_5V_HYS  
VSYS_UVLO_3V  
200  
3.6  
mV  
V
LDO5  
VSYS_UVLO_5V  
VSYS UVLO threshold for LDO3P3  
VSYS falling  
3.45  
3.75  
VSYS UVLO threshold hysteresis for VSYS rising above  
VSYS_UVLO_3V_HYS  
150  
mV  
LDO3P3  
VSYS_UVLO_3V  
TCRIT  
Critical threshold of die temperature  
Hysteresis of TCRIT  
TJ rising  
130  
110  
145  
10  
160  
120  
°C  
°C  
°C  
°C  
TCRIT_HYS  
THOT  
TJ falling  
TJ rising  
Hot threshold of die temperature  
Hysteresis of THOT  
115  
10  
THOT_HYS  
LDO5  
VIN  
TJ falling  
Input voltage at VSYS pin  
DC output voltage  
5.6  
4.9  
13  
5
21  
5.1  
V
V
VOUT  
IOUT = 10 mA  
IOUT  
DC output current  
100  
180  
mA  
Measured with output shorted to  
ground  
IOCP  
Overcurrent protection  
200  
mA  
Power Good assertion threshold in  
percentage of target VOUT  
VTH_PG  
VOUT rising  
94%  
VTH_PG_HYS  
IQ  
Power Good deassertion hysteresis  
Quiescent current  
VOUT rising or falling  
VIN = 13 V, IOUT = 0 A  
4%  
20  
µA  
µF  
COUT  
External output capacitance  
2.7  
4.7  
10  
1
V5ANA-to-LDO5P0 LOAD SWITCH  
VIN = 5 V, measured from  
V5ANA pin to LDO5P0 pin at  
IOUT = 200 mA  
RDSON  
On resistance  
Ω
Power Good threshold for external 5-  
V supply  
VTH_PG  
VTH_HYS_PG  
ILKG  
VV5ANA rising  
VV5ANA falling  
4.7  
V
Power Good threshold hysteresis for  
external 5-V supply  
100  
mV  
µA  
Switch disabled,  
VV5ANA = 5 V, VLDO5 = 0 V  
Leakage current  
10  
21  
LDO3P3  
VIN  
Input voltage at VSYS pin  
DC output voltage  
5.6  
13  
V
V
IOUT = 10 mA  
3.3  
VOUT  
VIN = 13 V,  
IOUT = 10 mA  
Accuracy  
–3%  
3%  
40  
IOUT  
IOCP  
DC output current  
Overcurrent protection  
mA  
mA  
Measured with output shorted to  
ground  
70  
Power Good assertion threshold in  
percentage of target VOUT  
VTH_PG  
VTH_PG_HYS  
IQ  
VOUT rising  
VOUT falling  
92%  
3%  
20  
Power Good deassertion hysteresis  
VIN = 13 V,  
IOUT = 0 A  
Quiescent current  
µA  
µF  
COUT  
External output capacitance  
2.2  
4.7  
10  
Copyright © 2018, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
4.7 Electrical Characteristics: Buck Controllers  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK1, BUCK2, BUCK6  
Power input voltage for  
external HSD FET  
VIN  
5.6  
0.41  
1(1)  
13  
21  
1.67  
3.575  
2%  
V
V
V
VID step size = 10 mV, BUCKx_VID[6:0]  
progresses from 0000001 to 1111111  
DC output voltage VID  
range and options  
VID step size = 25 mV, BUCKx_VID[6:0]  
progresses from 0000001 to 1111111  
VOUT  
DC output voltage  
accuracy  
VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3 V,  
IOUT = 100 mA to 7 A  
–2%  
Total output voltage  
accuracy (DC + ripple) in IOUT = 10 mA, VOUT 1 V  
DCM  
–30  
384  
40  
416  
65  
mV  
mV  
Applies only to the Buck1 Controller if  
programmed for external feedback voltage  
adjustability  
Feedback regulation  
voltage  
VFB_EXT_BUCK1  
400  
Applies only to the Buck1 Controller if  
programmed for external feedback voltage  
adjustability  
Feedback pin leakage  
current  
IFB_LKG_BUCK1  
nA  
VID step size = 10 mV  
VID step size = 25 mV  
2.5  
3.125  
4
SR(VOUT  
)
Output DVS slew rate  
mV/µs  
3.125  
Low-side output valley  
current limit accuracy  
(programmed by external  
ILIM_LSD  
–15%  
15%  
resistor RLIM  
)
Source current out of  
ILIM1 pin  
ILIMREF  
VLIM  
T = 25°C  
45  
0.2  
50  
55  
2.25  
µA  
V
Voltage at ILIM1 pin  
VLIM = RLIM × ILIMREF  
VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3 V,  
IOUT = 7 A  
ΔVOUT/ΔVIN  
Line regulation  
–0.5%  
0.5%  
VIN = 13 V, VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5,  
3.3 V, IOUT = 0 A to 7 A,  
ΔVOUT/ΔIOUT  
Load regulation  
0%  
1%  
referenced to VOUT at IOUT = IOUT_MAX  
Power Good deassertion VOUT rising  
threshold in percentage  
of target VOUT  
105.5%  
89.5%  
108%  
92%  
110.5%  
94.5%  
VTH_PG  
VOUT falling  
Source, IDRVH = –50 mA  
3
2
Ω
Ω
RDSON_DRVH  
Driver DRVH resistance  
Driver DRVL resistance  
Sink, IDRVH = 50 mA  
Source, IDRVL = –50 mA  
Sink, IDRVL = 50 mA  
3
Ω
RDSON_DRVL  
0.4  
100  
200  
500  
100  
Ω
BUCKx_DISCHG[1:0] = 01  
BUCKx_DISCHG[1:0] = 10  
BUCKx_DISCHG[1:0] = 11  
Ω
Output auto-discharge  
resistance  
RDIS  
Ω
Ω
CBOOT  
Bootstrap capacitance  
nF  
Bootstrap switch ON  
resistance  
RON_BOOT  
20  
Ω
(1) BUCKx_VID[6:0] = 0000001 – 0011000  
10  
Specifications  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
4.8 Electrical Characteristics: Synchronous Buck Converters  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
BUCK3, BUCK4, BUCK5  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Power input voltage  
3.0  
5.5  
V
V
VID step size = 25 mV,  
BUCKx_VID[6:0] progresses from  
0000001 to 1111111  
DC output voltage VID range  
and options  
0.425  
3.575  
VIN = 5.0 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8, 2.5, 3.3 V,  
IOUT = 1.5 A  
–2%  
–2%  
2%  
2%  
VIN = 3.3 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8 V,  
VOUT  
IOUT = 1.5 A  
DC output voltage accuracy  
VIN = 5.0 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8 V, 2.5, 3.3 V,  
IOUT = 100 mA  
–2.5%  
2.5%  
2.5%  
VIN = 3.3 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8 V,  
IOUT = 100 mA  
–2.5%  
3.125  
SR(VOUT  
)
Output DVS slew rate  
4
mV/µs  
IOUT  
Continuous DC output current  
HSD FET current limit  
3
7
A
A
IIND_LIM  
4.3  
VOUT = 1, 1.2, 1.35, 1.5, 1.8,  
2.5, 3.3 V, IOUT = 1.5 A  
ΔVOUT/ΔVIN  
Line regulation  
–0.5%  
0.5%  
VIN = 5 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8, 2.5, 3.3 V,  
IOUT = 0 A to 3 A, referenced to  
VOUT at IOUT = 1.5 A  
ΔVOUT/ΔIOUT  
Load regulation  
–0.2%  
2%  
Power Good deassertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
108%  
92%  
VTH_PG  
Power Good reassertion  
hysteresis entering back into  
VTH_PG  
VTH_HYS_PG  
COUT  
VOUT rising or falling  
3%  
Output filtering capacitance  
400  
µF  
BUCKx_DISCHG[1:0] = 01  
BUCKx_DISCHG[1:0] = 10  
BUCKx_DISCHG[1:0] = 11  
100  
200  
500  
Output auto-discharge  
resistance  
RDIS  
Ω
Copyright © 2018, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
4.9 Electrical Characteristics: LDOs  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LDOA1  
VIN  
Input voltage  
4.5  
1.35  
–2%  
5
5.5  
3.3  
V
V
DC output voltage  
Accuracy  
Set by LDOA1_VID[3:0]  
VOUT  
IOUT = 0 to 200 mA  
2%  
V
IOUT  
DC output current  
Line regulation  
200  
0.5%  
2%  
mA  
ΔVOUT/ΔVIN  
IOUT = 40 mA  
–0.5%  
–2%  
ΔVOUT/ΔIOUT Load regulation  
IOUT = 10 mA to 200 mA  
VIN = 5 V, Measured with output  
shorted to ground  
IOCP  
Overcurrent protection  
500  
mA  
Power Good deassertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
108%  
92%  
VTH_PG  
Measured from EN = H to reach 95%  
of final value,  
tSTARTUP  
Start-up time  
500  
µs  
COUT = 4.7 µF  
IQ  
Quiescent current  
External output capacitance  
ESR  
IOUT = 0 A  
23  
µA  
µF  
mΩ  
Ω
2.7  
4.7  
10  
COUT  
100  
LDOA1_DISCHG[1:0] = 01  
LDOA1_DISCHG[1:0] = 10  
LDOA1_DISCHG[1:0] = 11  
100  
190  
450  
Output auto-discharge  
resistance  
RDIS  
Ω
Ω
LDOA2 and LDOA3  
(1)  
VIN  
Power input voltage  
VOUT + VDROP  
1.8  
1.98  
1.5  
V
V
V
LDOA2 DC output voltage  
LDOA3 DC output voltage  
DC output voltage accuracy  
DC output current  
Set by LDOA2_VID[3:0]  
Set by LDOA3_VID[3:0]  
IOUT = 0 to 600 mA  
0.7  
0.7  
VOUT  
See  
1.5  
–2%  
3%  
600  
IOUT  
mA  
mV  
VOUT = 0.99 × VOUT_NOM  
IOUT = 600 mA  
,
VDROP  
Dropout voltage  
350  
ΔVOUT/ΔVIN  
Line regulation  
IOUT = 300 mA  
–0.5%  
–2%  
0.5%  
2%  
ΔVOUT/ΔIOUT Load regulation  
IOUT = 10 mA to 600 mA  
Measured with output shorted to  
ground  
IOCP  
Overcurrent protection  
0.65  
1.25  
A
Power Good assertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
108%  
92%  
VTH_PG  
Measured from EN = H to reach 95%  
of final value, COUT = 4.7 µF  
tSTARTUP  
IQ  
Start-up time  
500  
µs  
Quiescent current  
IOUT = 0 A  
20  
48  
µA  
f = 1 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
COUT = 2.2 µF – 4.7 µF  
dB  
dB  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
30  
COUT = 2.2 µF – 4.7 µF  
External output capacitance  
ESR  
2.2  
4.7  
10  
µF  
COUT  
100  
mΩ  
LDOA[2,3]_DISCHG[1:0] = 01  
LDOA[2,3]_DISCHG[1:0] = 10  
LDOA[2,3]_DISCHG[1:0] = 11  
80  
180  
475  
Output auto-discharge  
resistance  
RDIS  
Ω
(1) The minimum value must be equal to or greater than 1.62 V.  
12 Specifications  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
Electrical Characteristics: LDOs (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VTT LDO  
VIN  
Power input voltage  
DC output voltage  
1.2  
3.3  
V
V
VIN = 1.2 V, Measured at VTTFB pin  
VIN / 2  
Relative to VIN / 2, IOUT 10 mA,  
1.1 V VIN 1.35 V  
–10  
–25  
10  
25  
VOUT  
DC output voltage accuracy  
mV  
mA  
mA  
Relative to VIN / 2, IOUT 500 mA,  
1.1 V VIN 1.35 V  
DC Output Current (Rms  
Value Over Operation)  
1.1 V VIN 1.5 V  
–500  
–500  
–1800  
–10  
0
500  
500  
1800  
10  
source(+) and sink(–): IOCP = 0.95 A,  
1.1 V VIN 1.5 V  
IOUT  
Pulsed Current (Duty Cycle  
Limited to Remain Below DC  
Rms Specification)  
source(+) and sink(–): IOCP = 1.8 A,  
1.1 V VIN 1.5 V  
Relative to VIN / 2, IOUT 10 mA,  
1.1 V VIN 1.5 V  
Relative to VIN / 2, IOUT 500 mA,  
1.1 V VIN 1.5 V  
–20  
20  
ΔVOUT/ΔIOUT Load regulation  
mV  
Relative to VIN / 2, IOUT 1200 mA,  
1.1 V VIN 1.5 V  
–30  
30  
Relative to VIN / 2, IOUT 1800 mA,  
1.1 V VIN 1.5 V  
–40  
40  
DC + AC at sense point, 1.1 V VIN  
1.5 V,  
(IOUT = 0 to 350 mA and 350 mA to  
0) AND  
ΔVOUT_TR  
Load transient regulation  
–5%  
5%  
(0 to –350 mA and –350 mA to 0)  
with 1 µs of rise and fall time  
COUT = 40 µF  
Measured with output shorted to  
ground: OTPs with VTT ILIM = 0.95 A  
0.95  
1.8  
IOCP  
Overcurrent protection  
A
Measured with output shorted to  
ground: OTPs with VTT ILIM = 1.8 A  
Power Good deassertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
110%  
95%  
VTH_PG  
Power Good reassertion  
hysteresis entering back into  
VTH_PG  
VTH_HYS_PG  
5%  
IQ  
Total ground current  
VIN = 1.2 V, IOUT = 0 A  
VIN = 1.2 V, disabled  
240  
1
µA  
µA  
µF  
µF  
kΩ  
Ω
ILKG  
CIN  
COUT  
OFF leakage current  
External input capacitance  
External output capacitance  
10  
35  
VTT_DISCHG = 0  
VTT_DISCHG = 1  
1000  
60  
Output auto-discharge  
resistance  
RDIS  
80  
100  
Copyright © 2018, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
4.10 Electrical Characteristics: Load Switches  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SWA1  
VIN  
Input voltage range  
DC output current  
0.5  
3.3  
V
IOUT  
300  
mA  
VIN = 1.8 V, measured from PVINSWA1 pin  
to SWA1 pin at IOUT = IOUT(MAX)  
60  
93  
RDSON  
ON resistance  
mΩ  
VIN = 3.3 V, measured from PVINSWA1 pin  
to SWA1 pin at IOUT = IOUT(MAX)  
100  
165  
VOUT rising  
VOUT falling  
108%  
92%  
Power Good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
VTH_HYS_PG  
IINRUSH  
Power Good reassertion hysteresis  
entering back into VTH_PG  
VOUT rising or falling  
2%  
Inrush current upon turnon  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
10  
mA  
µA  
10.5  
9
IQ  
Quiescent current  
VIN = 1.8 V, IOUT = 0 A  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
370  
900  
ILKG  
Leakage current  
nA  
µF  
10  
COUT  
External output capacitance  
0.1  
100  
200  
500  
SWA1_DISCHG[1:0] = 01  
SWA1_DISCHG[1:0] = 10  
SWA1_DISCHG[1:0] = 11  
RDIS  
Output auto-discharge resistance  
Ω
SWB1, SWB2, SWB1_2  
VIN  
Input voltage range  
0.5  
3.3  
V
IOUT  
DC current per output  
400  
mA  
VIN = 1.8 V, measured from PVINSWB1_B2  
pin to SWBx pin at IOUT = IOUT(MAX), per  
output switch  
68  
75  
92 mΩ  
RDSON  
ON resistance per output  
VIN = 3.3 V, measured from PVINSWB1_B2  
pin to SWBx pin at IOUT = IOUT(MAX), per  
output switch  
125 mΩ  
VOUT rising  
VOUT falling  
108%  
92%  
Power Good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
VTH_HYS_PG  
IINRUSH  
Power Good reassertion hysteresis  
entering back into VTH_PG  
VOUT rising or falling  
2%  
Inrush current upon turning on  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
10  
mA  
µA  
10.5  
9
IQ  
Quiescent current  
VIN = 1.8 V, IOUT = 0 A  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
460  
ILKG  
Leakage current  
nA  
µF  
10  
1150  
COUT  
External output capacitance  
0.1  
100  
200  
500  
SWBx_DISCHG[1:0] = 01  
SWBx_DISCHG[1:0] = 10  
SWBx_DISCHG[1:0] = 11  
RDIS  
Output auto-discharge resistance  
Ω
14  
Specifications  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
4.11 Digital Signals: I2C Interface  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
Leakage current  
TEST CONDITIONS  
VPULL_UP = 1.8 V  
MIN  
TYP  
MAX UNIT  
VOL  
VIH  
VIL  
0.4  
V
V
1.2  
0.4  
0.3  
8.5  
2.5  
1
V
ILKG  
VPULL_UP = 1.8 V  
Standard mode  
Fast mode  
0.01  
µA  
RPULL-UP Pullup resistance  
kΩ  
Fast mode plus  
COUT  
Total load capacitance per pin  
50  
pF  
4.12 Digital Input Signals (CTLx)  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
High-level input voltage  
Low-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
0.85  
V
0.4  
V
4.13 Digital Output Signals (IRQB, GPOx)  
Over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
Leakage current  
TEST CONDITIONS  
IOL < 2 mA  
VPULL_UP = 1.8 V  
MIN  
TYP  
MAX UNIT  
VOL  
ILKG  
0.4  
V
0.35  
µA  
4.14 Timing Requirements  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
I2C INTERFACE  
Clock frequency (standard mode)  
100  
400  
kHz  
kHz  
kHz  
ns  
fCLK  
Clock frequency (fast mode)  
Clock frequency (fast mode plus)  
Rise time (standard mode)  
Rise time (fast mode)  
1000  
1000  
300  
tr  
ns  
Rise time (fast mode plus)  
Fall time (standard mode)  
Fall time (fast mode)  
120  
ns  
300  
ns  
tf  
300  
ns  
Fall time (fast mode plus)  
120  
ns  
Copyright © 2018, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
4.15 Switching Characteristics  
over operating free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK CONTROLLERS  
Measured from enable going high to when output reaches  
90% of target value.  
tPG  
Total turnon time  
550  
50  
850  
µs  
ns  
Minimum on-time of  
DRVH  
TON,MIN  
DRVH off to DRVL on  
DRVL off to DRVH on  
15  
30  
ns  
ns  
TDEAD  
fSW  
Driver dead-time  
Continuous-conduction mode,  
VIN = 13 V, VOUT 1 V  
Switching frequency  
1000  
kHz  
BUCK CONVERTERS  
Measured from enable going high to when output reaches  
90% of target value.  
tPG  
Total turnon time  
250  
1000  
µs  
fSW  
Switching frequency  
Start-up time  
Continuous-conduction mode  
See Figure 4-10  
MHz  
LDOAx  
Measured from enable going high to when output reaches  
95% of final value,  
VOUT = 1.2 V, COUT = 4.7 µF  
tSTARTUP  
180  
22  
µs  
µs  
VTT LDO  
tSTARTUP  
SWA1  
Measured from enable going high to PG assertion,  
VOUT = 0.675 V, COUT = 40 µF  
Start-up time  
Turnon time  
Measured from enable going high to reach 95% of final  
value,  
VIN = 3.3 V, COUT = 0.1 µF  
0.85  
0.63  
ms  
ms  
tTURN-ON  
SWB1_2  
tTURN-ON  
Measured from enable going high to reach 95% of final  
value,  
VIN = 1.8 V, COUT = 0.1 µF  
Measured from enable going high to reach 95% of final  
value,  
VIN = 3.3 V, COUT = 0.1 µF  
1.1  
ms  
ms  
Turnon time  
Measured from enable going high to reach 95% of final  
value,  
0.82  
VIN = 1.8 V, COUT = 0.1 µF  
16  
Specifications  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
4.16 Typical Characteristics  
Measurements are taken at 25°C.  
FET = CSD87588N  
L = PIMB061H-R22ms  
COUT = 2 × 150 µF + 1 × 22 µF  
Figure 4-1. Example BUCK2 Controller Start-Up  
BUCK3_MODE = 0b  
L = PIFE32251B-R47ms  
COUT = 4 × 22 µF  
BUCK2_MODE = 0b  
Figure 4-2. Example BUCK3 Converter Start-Up  
100%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
Vout = 1 V  
VOUT = 1 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4 5 6 7  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4 5 6 7  
Iout (A)  
Load (A)  
D011  
tps6  
FET = CSD87381P  
BUCK1_MODE = 0b  
L = PIMB061H-R47ms  
FET = CSD87381P  
BUCK1_MODE = 1b  
L = PIMB061H-R47ms  
Figure 4-3. Example BUCK1 Efficiency at VIN = 13 V In Auto Mode  
Figure 4-4. Example BUCK1 Efficiency at VIN = 13 V in Forced  
PWM Mode  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
100%  
90%  
80%  
70%  
60%  
65%  
VOUT = 1 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
Vout = 1 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
60%  
50%  
55%  
50%  
40%  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4 5 6 7  
0.1  
0.2  
0.3 0.4 0.5 0.7  
Output Current (A)  
1
2
3
Iout (A)  
D012  
tps6  
FET = CSD87381P  
BUCK1_MODE = 0b  
L = PIMB061H-R47ms  
L = PIFE32251B-R47ms  
Figure 4-6. Example BUCK3 Efficiency at VIN = 5 V  
Figure 4-5. Example BUCK1 Efficiency at VIN = 18 V In Auto Mode  
Copyright © 2018, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
Typical Characteristics (continued)  
Measurements are taken at 25°C.  
710  
700  
690  
680  
670  
660  
650  
640  
630  
2.9  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 2.8 V  
-40èC  
25èC  
85èC  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
0
1
2
3
4
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Load Current (A)  
Load Current (A)  
D014  
D015  
L = PIFE32251B-R47ms  
FBVOUT6 = PVINVTT = 1.35 V  
Figure 4-7. Converter Load Current Limitations with VIN = 3.3 V  
Figure 4-8. VTT LDO Regulation  
2.5  
3.5  
3
VIN = 5 V  
VIN = 12 V  
VIN = 18 V  
2.3  
2.1  
2.5  
2
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.5  
1
0.5  
0
VIN = 5 V  
VIN = 3.3 V  
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
Output Voltage Setting (V)  
Output Voltage Setting (V)  
tps6  
D017  
L = PIFE32251B-R47ms  
FET = CSD87381P  
BUCK1_MODE = 1b  
L = PIMB061H-R47ms  
Figure 4-10. Converter Switching Frequency  
Figure 4-9. Controller Switching Frequency (Forced PWM Mode)  
18  
Specifications  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5 Detailed Description  
5.1 Overview  
The TPS650861 power-management integrated circuit (PMIC) provides a highly flexible, programmable,  
and configurable power solution that can power a wide array of processors along with DDR3/DDR4  
memory and other peripherals. Integrated in the PMIC are three step-down controllers (BUCK1, BUCK2,  
and BUCK6), three step-down converters (BUCK3, BUCK4, and BUCK5), a sink or source LDO (VTT  
LDO), three low-voltage VIN LDOs (LDOA1–LDOA3), and three load switches (SWA1, SWB1, and SWB2).  
With on-chip one-time programmable (OTP) memory, configuration of each rail for default output value,  
power-up sequence, fault handling, and Power Good mapping into a GPO pin are all conveniently flexible.  
The TPS650861 has two OTP memory banks which are designed to be programmed to fit different  
designs. (See Section 5.7) All VRs have a built-in discharge resistor, and the value can be changed using  
the DISCHCNT1–DISCHCNT3 and LDOA1_SWB2_CTRL registers. When enabling a VR, the PMIC  
automatically disconnects the discharge resistor for that rail without any I2C command. lists the key  
characteristics of the voltage rails.  
Table 5-1. Summary of Voltage Regulators  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE RANGE (V)  
TYP  
RAIL  
TYPE  
CURRENT (mA)  
MIN  
4.5  
4.5  
3
MAX  
21  
MIN  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
1.35  
0.7  
MAX  
3.575  
3.575  
3.575  
3.575  
3.575  
3.575  
3.3  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
BUCK6  
LDOA1  
LDOA2  
LDOA3  
SWA1  
Step-down controller  
Step-down controller  
Step-down converter  
Step-down Converter  
Step-down converter  
Step-down controller  
LDO  
OTP-programmable  
OTP-programmable  
OTP-programmable  
OTP-programmable  
OTP-programmable  
OTP-programmable  
OTP-programmable  
OTP-programmable  
OTP-programmable  
scalable  
scalable  
3000  
21  
5.5  
5.5  
5.5  
21  
3
3000  
3
3000  
4.5  
4.5  
1.62  
1.62  
0.5  
0.5  
scalable  
200(1)  
600  
5.5  
1.98  
1.98  
3.3  
3.3  
LDO  
1.5  
LDO  
0.7  
1.5  
600  
Load switch  
300  
SWB1/SWB2  
VTT  
Load switch  
400  
OTP-  
programmable  
Sink and source LDO  
1.1  
1.8  
FBVOUT6 / 2  
(1) When powered from a 5-V supply through the DRV5V_2_A1 pin. Otherwise, max current is limited by max IOUT of LDO5.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
19  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.2 Functional Block Diagram  
LDO5V  
LDO1  
VIN  
BOOT1  
DRVH1  
LDOA1  
1.35 œ 3.3 V  
200 mA  
CTL1  
CTL2  
SW1  
V1  
VSET  
EN  
BUCK1  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL1  
CTL3/SLPENB1  
Control  
CTL4  
EN  
VSET  
FBVOUT1  
Inputs  
PGNDSNS1  
CTL5  
ILIM1  
CTL6/SLPENB2  
VPULL  
VPULL  
VIN  
BOOT2  
DRVH2  
CLK  
SoC  
&
System  
I2C CTL  
SW2  
DATA  
V2  
VSET  
EN  
BUCK2  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL2  
Control  
Outputs  
FBVOUT2  
PGNDSNS2  
IRQB  
GPO1  
GPO2  
GPO3  
GPO4  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
3.3V œ 5V  
PVIN3  
LX3  
TEST CTL  
OTP  
BUCK3  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VSET  
EN  
V3  
FB3  
<PGND_BUCK3>  
REGISTERS  
3 A  
3.3V œ 5V  
PVIN4  
LX4  
BUCK4  
VSET 0.425 3.575 V  
0.41 œ 1.67 V  
LDO5P0  
V5ANA  
LDO5P0  
Digital Core  
V4  
V5  
3.3V œ 5V  
EN  
FB4  
(DVS)  
3 A  
<PGND_BUCK4>  
3.3V œ 5V  
PVIN5  
LX5  
BUCK5  
œ
VSET  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
4.7V  
+
EN  
FB5  
STDBY  
LDO5V  
3 A  
<PGND_BUCK5>  
VIN  
REFSYS  
LDO3P3  
BOOT6  
DRVH6  
Thermal  
Monitoring  
VSYS  
5.6Vœ21V  
LDO3P3  
LDO3P3  
SW6  
DRVL6  
Thermal Shutdown  
VDDQ  
VSET  
EN  
BUCK6  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VREF  
AGND  
Bandgap  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVIN_VTT  
VTT  
VTT  
VTT_LDO  
VDDQ/2  
EN  
VTTFB  
LDOA2  
0.7 1.5 V  
600 mA  
LDOA3  
0.7 1.5 V  
600 mA  
LOAD SWA1  
LOAD SWB1  
LOAD SWB2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 5-1. PMIC Functional Block Diagram  
20  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
PMIC  
Example SoC  
VCORE  
PLATFORM  
VIN  
BUCK1  
EXT FET  
VIN  
BUCK2  
BUCK3 3A  
BUCK4 3A  
BUCK5 3A  
BUCK6  
EXT FET  
VGPU  
VCCIO  
5V Supply  
VCPU1  
Note: An LDO or  
Buck Can Supply  
the VPP Rail if  
VCPU2  
Needed for DDR.  
VIN  
EXT FET  
VDDQ, VDD1&2  
VDDQ, VDD1&2  
VTT LDO ±0.5A  
VREF, VTT  
DDR  
VREF, VTT  
DDR  
LDO5V or  
5V Supply  
VSUPP1  
VSUPP2  
VSUPP3  
VSUPP4  
VSUPP5  
VSUPP6  
LDOA1 0.2A  
LDOA2 0.6A  
LDOA3 0.6A  
SWA1 0.3A  
SWB1 0.3A  
SWB2 0.3A  
LDO5  
1.8V  
Input up to 3.3V  
Input up to 3.3V  
LDO5V  
VSYS  
VIN  
5V Supply  
PG_5V  
LDO3P3  
IRQB  
GPO1 œ GPO4  
SDA  
CTL1 œ CTL6  
SCL  
Copyright © 2017, Texas Instruments Incorporated  
Figure 5-2. Power Map Example  
5.3 Programming the TPS650861  
Detailed information regarding the programming of the non-volatile one-time programmable (OTP)  
memory is available in the TPS65086100 OTP Memory Programming Guide.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
21  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.4 SMPS Voltage Regulators  
The buck controllers integrate gate drivers for external power stages with programmable current limit (set  
by an external resistor at ILIMx pin), which allows for optimal selection of external passive components  
based on the desired system load. The buck converters include integrated power stage and require a  
minimum number of pins for power input, inductor, and output voltage feedback input. Combined with  
high-frequency switching, all these features allow use of inductors in small form factor, thus reducing total-  
system cost and size.  
The controllers, BUCK1, BUCK2, and BUCK6, have selectable auto- and forced-pulse width modulation  
(PWM) mode through the BUCKx_MODE bit in the BUCKxCTRL register. In auto mode, the VR  
automatically switches between PWM and pulsed frequency modulation (PFM) (discontinuous conduction  
mode) depending on the output load to maximize efficiency. In Force PWM mode, the VR remains in  
PWM (constant conduction mode) in order to keep the regulator switching even at low load to prevent  
switching noise in the audible range. The converters, BUCK3, BUCK4, and BUCK5, only support Forced  
PWM mode.  
All controllers and converters can be used with the default VOUT or can have their voltage dynamically  
changed at any time. This means that the rails can be default programmed for any available VOUT by OTP  
programming locally or at the factory, so the device starts up with the default voltage, or during operation  
the rail can be configured by I2C to another operating VOUT while the rail is enable or disabled. There are  
two step sizes or ranges available for VOUT selection for controllers: 10-mV and 25-mV steps. The step-  
size range must be selected prior to use and must be programmed in the OTP locally or at the factory. It is  
not subject to change during operation.  
For the 10-mV step-size range VOUT options, see Table 5-2. For the 25-mV step-size range VOUT options,  
see Table 5-3.  
22  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
Table 5-2. 10-mV Step-Size VOUT Range  
VID BITS  
VOUT  
0
VID BITS  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
VOUT  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
VID BITS  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
VOUT  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0.41  
0.42  
0.43  
0.44  
0.45  
0.46  
0.47  
0.48  
0.49  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
23  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
Table 5-3. 25-mV Step-Size VOUT Range  
VOUT  
(Converters)  
VOUT  
(Controllers)  
VID BITS  
VID BITS  
VOUT  
VID BITS  
VOUT  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0
0
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
1.900  
1.925  
1.950  
1.975  
2.000  
2.025  
2.050  
2.075  
2.100  
2.125  
2.150  
2.175  
2.200  
2.225  
2.250  
2.275  
2.300  
2.325  
2.350  
2.375  
2.400  
2.425  
2.450  
2.475  
2.500  
2.525  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
2.550  
2.575  
2.600  
2.625  
2.650  
2.675  
2.700  
2.725  
2.750  
2.775  
2.800  
2.825  
2.850  
2.875  
2.900  
2.925  
2.950  
2.975  
3.000  
3.025  
3.050  
3.075  
3.100  
3.125  
3.150  
3.175  
3.200  
3.225  
3.250  
3.275  
3.300  
3.325  
3.350  
3.375  
3.400  
3.425  
3.450  
3.475  
3.500  
3.525  
3.550  
3.575  
0.425  
0.450  
0.475  
0.500  
0.525  
0.550  
0.575  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
24  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.4.1 Controller Overview  
The controllers are fast-reacting, high-frequency, scalable output power controllers capable of driving two  
external N-MOSFETs. They are D-CAP2 controller scheme that optimizes transient responses at high load  
currents for such applications as CORE and DDR supplies. The output voltage is compared with internal  
reference voltage after divider resistors. The PWM comparator determines the timing to turn on the high-  
side MOSFET. The PWM comparator response maintains a very small PWM output ripple voltage.  
Because the device does not have a dedicated oscillator for control loop on board, switching cycle is  
controlled by the adaptive on-time circuit. The on-time is controlled to meet the target switching frequency  
by feed-forwarding the input and output voltage into the on-time one-shot timer.  
The D-CAP2 control scheme has an injected ripple from the SW node that is added to the reference  
voltage to simulate output ripple, which eliminates the need for ESR-induced output ripple from D-CAP™  
mode control. Thus, low-ESR output capacitors (such as low-cost ceramic MLCC capacitors) can be used  
with the controllers.  
VDD  
VREF œ VTH_PG  
+
UV  
PGOOD  
FAULT  
EN  
œ
PGOOD  
+
DCHG  
VFB  
OV  
VREF + VTH_PG  
œ
+
+
Control Logic  
œ
+
+
PWM  
Ramp Generator  
REF  
BOOTx  
DRVHx  
SWx  
SS Ramp Comp  
HS  
VSYS  
XCON  
œ
OC  
DRV5V_x_x  
œ
50 µA  
+
+
ILIM  
LS  
DRVLx  
œ
NOC  
+
PGNDSNSx  
One-Shot  
GND  
+
ZC  
œ
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 5-3. Controller Block Diagram  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
25  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.4.2 Converter Overview  
The PMIC synchronous step-down DCDC converters include a unique hysteretic PWM controller scheme  
which enables a high switching frequency converter, excellent transient and AC load regulation as well as  
operation with cost-competitive external components. The device operates on a quasi-fixed frequency and  
allows filtering of the switch noise by external filter components. The PMIC device offers fixed output  
voltage options featuring smallest solution size by using only three external components per converter.  
A significant advantage of PMIC compared to other hysteretic PWM controller topologies is its excellent  
AC load transient regulation capability. When the output voltage falls below the threshold of the error  
comparator, a switch pulse is initiated, and the high-side switch is turned on. The high-side switch remains  
turned on until a minimum ON-time of tONmin expires and the output voltage trips the threshold of the error  
comparator or the inductor current reaches the high-side switch current limit. When the high-side switch  
turns off, the low-side switch rectifier is turned on and the inductor current ramps down until the high-side  
switch turns on again. In PWM mode operation, negative inductor current is allowed to enable continuous  
conduction mode even at no load condition.  
PVINx  
Current  
Limit Comparator  
VREF  
0.40 V  
Bandgap  
High-Side  
Limit  
MODE or EN  
MODE  
Softstart  
VIN  
FB  
Gate Driver  
Anti  
Shoot-Through  
Control  
Logic  
Minimum ON Time  
Minimum OFF Time  
LXx  
EN  
VREF  
+
FBx  
œ
Error  
Low-Side  
Limit  
Integrated  
Feedback  
Network  
Comparator  
Zero (Negative)  
Current Limit Comparator  
PGND/Thermal Pad  
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 5-4. Converter Block Diagram  
5.4.3 DVS  
BUCK1–BUCK6 support dynamic voltage scaling (DVS) for maximum system efficiency. The VR outputs  
can slew up and down in either 10-mV or 25-mV steps using the 7-bit voltage ID (VID) defined in  
Section 4.7 and Section 4.8. DVS slew rate is minimum 2.5 mV/µs. In order to meet the minimum slew  
rate, VID progresses to the next code at 3-µs (nom) interval per 10-mV or at 6-µs interval per 25-mV  
steps. When DVS is active, the VR is forced into PWM mode, unless BUCKx_DECAY = 1, to ensure the  
output keeps track of VID code with minimal delay. Additionally, PGOOD is masked when DVS is in  
progress. Figure 5-5 shows an example of slew down and up from one VID to another (step size of  
10 mV).  
26  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
VID  
Number of Steps × 3 µs  
VOUT  
Figure 5-5. DVS Timing Diagram I (BUCKx_DECAY = 0)  
As shown in Figure 5-6, if a BUCKx_VID[6:0] is set to 7b000 0000, its output voltage will slew down to the  
minimum VID value first, and then will drift down to 0 V as the SMPS stops switching. Subsequently, if a  
BUCKx_VID[6:0] is set to a value (neither 7b000 0000 nor 7b000 0001) when its output voltage is less  
than 0.5 V, the VR will ramp up to 0.5 V first with soft-start kicking in, then will slew up to target voltage in  
the slew rate aforementioned. It must be noted that a fixed 200 µs of soft-start time is reserved for VOUT to  
reach 0.5 V.  
VID  
Number of  
Steps × 3 µs  
VOUT  
Load and Time  
Dependent  
200 µs  
Figure 5-6. DVS Timing Diagram II (BUCKx_DECAY = 0)  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.4.4 Decay  
In addition to DVS, BUCK1–BUCK6 can decay down to a lower voltage when BUCKx_DECAY bit in  
BUCKxCTRL register is set to 1. Decay mode is only used in a downward direction of VID. The VR does  
not control slew rate. As both high-side and low-side FETs stop switching, the output voltage ramps down  
naturally, dictated by current drawn from the load and output filtering capacitance. When the VR is in the  
middle of decay down its PGOOD is masked until VOUT falls below the over-voltage (OV) threshold of the  
set VID value. Figure 5-7 shows two cases that differ from each other as to whether VOUT has reached the  
target voltage corresponding to a new VID when the VR is commanded to slew back up to a higher  
voltage. In case that VOUT has not decayed down below VID as denoted case 2, the VR will wait for VID to  
catch up, and then VOUT will start ramping up to keep up with the VID ramp.  
VID  
VOUT  
case 2  
case 1  
Figure 5-7. Decay Down to a Lower VOUT and Slew Up  
VID  
VOUT  
case 2  
200 us  
case 1  
Figure 5-8. Decay Down to 0 V and Slew Up  
28  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.4.5 Current Limit  
The buck controllers (BUCK1, BUCK2, and BUCK6) have inductor-valley current-limit architecture and the  
current limit is programmable by an external resistor at the ILIMx pin. Equation 1 shows the calculation for  
a desired resistor value, depending on specific application conditions. ILIMREF is the current source out of  
the ILIMx pin that is typically 50 µA, and RDSON is the maximum channel resistance of the low-side FET.  
The scaling factor is 1.3 to take into account all errors and temperature variations of RDSON, ILIMREF, and  
RILIM. Finally, 8 is another scaling factor associated with ILIMREF  
.
Iripple(min)  
÷
RDSON ì 8 ì 1.3 ì I  
-
LIM  
2
«
RILIM  
=
ILIMREF  
where  
ILIM is the target current limit. An appropriate margin must be allowed when determining ILIM from  
maximum output DC load current.  
Iripple(min) is the minimum peak-to-peak inductor ripple current for a given VOUT  
.
(1)  
VOUT (V  
- VOUT )  
IN(MIN)  
Iripple(min)  
=
Lmax ì V  
ì fsw(max)  
IN(MIN)  
where  
Lmax is maximum inductance  
fsw(max) is maximum switching frequency  
VIN(MIN) minimum input voltage to the external power stage  
(2)  
The buck converter limit inductor peak current cycle-by-cycle to IIND_LIM is specified in Section 4.8.  
The current limit circuit also protects against reverse current going back into the low side FET from the  
load. When operating in Force PWM mode, the inductor current is expected to go negative so it is  
important to ensure that the RILIM value is sufficient to account for this. If operating in PFM, this can be  
neglected. The equation for Force PWM minimum RILIM value is:  
I
«
÷
ripple(max)  
RDSON ì 8 ì 1.3 ì  
2
RILIM  
í
ILIMREF  
where  
Iripple(max) is the maximum peak-to-peak inductor ripple current for a given VOUT  
.
(3)  
VOUT (V  
- VOUT )  
IN(MAX)  
Iripple(max)  
=
Lmin ì V  
ì fsw(min)  
IN(MAX)  
where  
Lmin is minimum inductance  
fsw(min) is minimum switching frequency  
VIN(MAX) maximum input voltage to the external power stage  
(4)  
If RILIM is too low for the chosen inductor and voltage conditions, then the ripple current at no load will  
trigger the negative current limit, forcing the low side FET to turn off. This will eventually result in the  
output voltage increasing above target regulation point due to irregular duty cycle created by current limit  
being triggered.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.5 LDOs and Load Switches  
5.5.1 VTT LDO  
Typically powered from the BUCK6 output, the VTT LDO tracks FBVOUT6 and regulates it's output to  
FBVOUT6 / 2. The LDO current limit is OTP dependent, and it is designed specifically to power DDR  
memory. The LDO core is a transconductance amplifier with large gain, and it drives a current output  
stage that either sources or sinks current depending on the deviation of the VTTFB pin voltage from the  
target regulation voltage.  
5.5.2 LDOA1–LDOA3  
The TPS650861 device integrates three general purpose LDOs. LDOA1 is powered from a 5-V supply  
through the DRV5V_2_A1 pin and it can be factory configured to be an Always-On rail (stay on even in  
case of emergency shutdown) as long as a valid power supply is available at VSYS. See Table 5-4 for  
LDOA1 output voltage options. LDOA2 and LDOA3 share a power input pin (PVINLDOA2_A3). The output  
regulation voltages are set by writing to LDOAx_VID[3:0] bits (Reg 0x9A, 0x9B, and 0xAE). See Table 5-5  
for LDOA2 and LDOA3 output voltage options. LDOA1 is controlled by the LDOA1_SWB2_CTRL register.  
Table 5-4. LDOA1 Output Voltage Options  
VID BITS  
0000  
VOUT  
1.35  
1.5  
VID BITS  
0100  
VOUT  
1.8  
VID BITS  
1000  
VOUT  
2.3  
VID BITS  
1100  
VOUT  
2.85  
0001  
0101  
1.9  
1001  
2.4  
1101  
3.0  
0010  
1.6  
0110  
2.0  
1010  
2.5  
1110  
3.3  
0011  
1.7  
0111  
2.1  
1011  
2.6  
1111  
Not Used  
Table 5-5. LDOA2 and LDOA3 Output Voltage Options  
VID BITS  
0000  
VOUT  
0.70  
0.75  
0.80  
0.85  
VID BITS  
0100  
VOUT  
0.90  
0.95  
1.00  
1.05  
VID BITS  
1000  
VOUT  
1.10  
1.15  
1.20  
1.25  
VID BITS  
1100  
VOUT  
1.30  
1.35  
1.40  
1.50  
0001  
0101  
1001  
1101  
0010  
0110  
1010  
1110  
0011  
0111  
1011  
1111  
5.5.3 Load Switches  
The PMIC features three general-purpose load switches. SWA1 has its own power input pin (PVINSWA1),  
while SWB1 and SWB2 share one power input pin (PVINSWB1_B2). All switches have built-in slew rate  
control during start-up to limit the inrush current.  
5.6 Power Goods (PGOOD or PG) and GPOs  
The device provides information on status of VRs through four GPO pins along with Power Good Status  
registers defined in Section 5.11.50 and Section 5.11.51. Power Good information of any individual VR  
and load switch can be assigned to be part of the PGOOD tree as defined from Section 5.11.40 to  
Section 5.11.47. PGOOD assertion delays are programmable from 0 ms to 15 ms for GPO1, 5 ms to 100  
ms for GPO3, and 0 ms to 100 ms for GPO2 and GPO4, respectively, as are defined in Section 5.11.21  
and Section 5.11.34.  
30  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
BUCK1_PG  
BUCK1_MSK (bit)  
BUCK2_PG  
BUCK2_MSK (bit)  
BUCK3_PG  
BUCK3_MSK (bit)  
BUCK4_PG  
BUCK4_MSK (bit)  
BUCK5_PG  
BUCK5_MSK (bit)  
BUCK6_PG  
BUCK6_MSK (bit)  
SWA1_PG  
SWA1_MSK (bit)  
LDOA2_PG  
LDOA2_MSK (bit)  
Selectable  
Rising  
Edge  
LDOA3_PG  
GPO_PG  
LDOA3_MSK (bit)  
Delay  
SWB1_PG  
SWB1_MSK (bit)  
SWB2_LDOA1_PG  
SWB2_LDOA1_MSK (bit)  
VTT_PG  
VTT_MSK (bit)  
CTL1  
CTL1_MSK (bit)  
CTL2  
CTL2_MSK (bit)  
CTL3/SLPENB1  
CTL3_MSK (bit)  
CTL4  
CTL4_MSK (bit)  
CTL5  
CTL5_MSK (bit)  
CTL6/SLPENB2  
CTL6_MSK (bit)  
Figure 5-9. Power Good Tree  
Alternatively, the GPOs can be used as general purpose outputs controlled by the user through I2C. Refer  
to the Section 5.11.37 for details on controlling the GPOs in I2C control mode.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
31  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.7 One-Time Programmable Memory  
The PMIC has two banks of non-volatile one-time programmable (OTP) memory which stores the default  
settings for the device. The OTP memory is mapped to corresponding volatile registers which are cleared  
when VSYS goes below UVLO. When VSYS goes above UVLO, the contents of the OTP memory is  
loaded into the corresponding volatile registers which are then used to control the PMIC. The OTP is also  
reloaded in case of any emergency shutdown condition. When programming the PMIC, the values in the  
volatile registers which have OTP memory equivalents are burned into the OTP.  
Some registers do not have OTP equivalent memory. For example, the IRQ register, which indicates  
which interrupts have been triggered, does not need OTP memory equivalent because its values are  
always determined after power up. Similarly, the IRQ_MASK register does not have OTP backing because  
in order to be useful, the processor needs to communicate with the PMIC to set the masks correctly.  
There is no need to have a default value other than 1b for these bits. OTP programmable bits are  
indicated with an 'X' in the register map. Some registers are accessed using I2C address 0x5E, which can  
be changed if necessary using the I2C_SLAVE_ADDR register (see Section 5.12.39). Other registers,  
which can only be accessed while in programming mode, are accessed using I2C address 0x38, which  
cannot be changed.  
The OTP memory settings are set to 1b with a 7 V supply, in a process called "burning". Lower voltages  
may result in values not being stored or the bit flipping (from 1b to 0b) after some time has passed. To  
avoid this occurring, the IRQB pin should be probed with an oscilloscope during the prototyping phase of  
development to ensure it does not drop below 6.7 V during OTP memory burn in. Any bit can be burned  
from a 0b to a 1b, but once a bit is a 1b, it cannot go back to being a 0b. As a result, it is possible to burn  
an OTP program and then make minor changes and re-burn the OTP as long as all of the changes are 0b  
to 1b. For example, if the original OTP program had BUCK3_VID = 1 V (0011000b) then it can be  
changed to BUCK3_VID = 1.15 V (0011110b) without issue since it is just bits 1 and 2 being changed  
from 0b to 1b. However, if the new desired BUCK3_VID = 0.9 V (0010100b), then the second bank of  
OTP would need to be used since bit 3 cannot change from 1b to 0b. The switch from OTP Bank 0 to  
OTP Bank 1 is permanent as the pointer bit is also OTP.  
Detailed information regarding the programming of the non-volatile one-time programmable (OTP)  
memory is available in the TPS65086100 OTP Memory Programming Guide.  
All OTP programmed settings should be validated during prototyping phase to ensure desired functionality  
because parts cannot be returned in case of incorrect programming. Any issues should be reported to  
http://e2e.ti.com/support/power_management/pmu/.  
32  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.8 Power Sequencing and VR Control  
The device has three different ways of sequencing the rails during power up and power down:  
Rail enabled by CTLx pin  
Rail enabled by Power Good (PG) of previously enabled rail  
Rail enabled by I2C software command  
A delay can be added from any CTLx pin or PG to the enable of the subjected enabled rail. This creates a  
very flexible device capable of many sequence options. If a rail cannot be sequenced automatically, any  
rail can be enabled or disabled through an I2C command.  
5.8.1 CTLx Sequencing  
The device has six control-input pins (CTL1–CTL6) to control six SMPS regulators, three LDO regulators,  
and three load switches. This allows the user to define up to six distinctive groups, to which each VR can  
be assigned for highly flexible power sequencing. Of the six CTLx pins, CTL3 and CTL6 can be configured  
alternatively to active-low sleep enable pins. For instance, if a system level SLEEP state is defined such  
that BUCK1 output regulation voltage is lower than in the normal mode, then BUCK1 SLEEP state can be  
assigned to CTL3 or CTL6. By being pulled low, either CTL3 or CTL6 can be used to put BUCK1 into  
SLEEP state, and BUCK1 will regulate its output at a voltage defined by BUCK1_SLP_VID[6:0] in  
Section 5.11.23. For a demonstration of this feature, Figure 5-10 shows how BUCK1 is enabled from the  
CTL1 pin.  
5.8.2 PG Sequencing  
Any rail can be sequenced by the Power Good of a prior rail. This can be combined with the CTLx method  
to allow for further sequence control and create more distinctive groups of enables than the six from CTLx.  
This also allows some of the CTLx pins to be freed up for other purposes such as logic input gates. For a  
demonstration of this feature, Figure 5-10 shows how the BUCK5 is enabled from the BUCK4 PG.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
VSYS  
5.6 V  
LDO5/LDO3P3  
LDOA1/GPO1  
I2C Available  
CTL1  
BUCK1  
BUCK2  
BUCK6  
CTL2  
2 ms  
4 ms  
BUCK3  
BUCK4  
BUCK5  
GPO4  
CTL4  
PG of all  
BUCKs  
LDOA2  
LDOA3  
GPO3  
CTL5  
16 ms  
PG of BUCKs and LDOs  
SWA1  
SWB1  
SWB2  
CTL6  
2 ms  
8 ms  
VTT  
Figure 5-10. Generic Power-Up Sequence Example  
5.8.3 Enable Delay  
A delay can be added to the enable of any rail after the desired CTLx and PGs are met. This allows for  
the option to create additional timing groups from either CTLx pins or internal PGs. For a demonstration of  
this feature, Figure 5-10 shows how BUCK2 and BUCK6 are enabled after BUCK1 is enabled from CTL1  
pin.  
34  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.8.4 Power-Up Sequence  
When a valid power supply is detected at the VSYS pin as VSYS crosses above VSYS_UVLO_5V  
+
VSYS_UVLO+5V_HYS, the power-up sequence is initiated by driving one of the control input pins high, followed  
by the rest of pins in order. Figure 5-10 is an example where CTL1–CTL4 are defined to control four  
groups of VRs, while GPO3 and GPO4 are defined to provide a PGOOD status of two groups. The control  
input pins do not necessarily have to be pulled up in a staggered manner. For instance, if CTL2 is pulled  
up from the preceding group of VRs before PGOOD has been asserted at GPO1, the BUCK4 enable will  
be delayed until the PGOOD is asserted.  
5.8.5 Power-Down Sequence  
The power-down sequence can follow the CTLx pins, or be controlled with the I2C commands. If the  
internal PGs are used for sequencing or if some rails need to ramp down before others a delay can be  
added to the deassertion low of the internal enable of the subjected rail. This delay can be independent of  
the power-up delay option. Thus, power-up and power-down sequences can be different or similar to  
match the specific application sequences required.  
Refer to Figure 5-11 for an example of a power-down sequence demonstrating the delay disable of  
BUCK1 and BUCK2.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
CTL6  
VTT  
CTL5  
SWA1  
SWB1  
SWB2  
CTL4  
GPO3  
LDOA2  
LDOA3  
CTL2  
GPO4  
BUCK6  
BUCK5  
BUCK4  
CTL1  
BUCK6  
BUCK2  
BUCK1  
2 ms  
4 ms  
Figure 5-11. Generic Power-Down Sequence Example  
36  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.8.6 Sleep State Entry and Exit  
Normal State  
Sleep State  
0 V  
Normal State  
1.8 V  
CTL6  
1.8 V  
CTL1-CTL4  
1.8V  
GPO1-GPO4  
BUCK1_VID  
BUCK1  
BUCK1_VID  
BUCK1_DECAY = 1  
BUCK1_SLP_VID  
BUCK1_DECAY = 0  
Figure 5-12. Sleep State Entry and Exit Sequence Example  
Figure 5-12 shows an example where BUCK1 is defined to enter Sleep State in response to CTL6 going  
low.  
NOTE  
All PGOODs from GPO1–GPO4 can stay asserted during the entry and the exit. Depending  
on status of the BUCK1_DECAY bit defined in the BUCK1CTRL register, BUCK1 output will  
either decay or slew down to a new voltage defined in BUCK1_SLP_VID[6:0].  
5.8.7 Emergency Shutdown  
5.4 V  
VSYS  
GPOx  
444 ns (nominal with ± 1 œ % variation)  
BUCKx  
LDOAx  
SWx  
VTT  
Figure 5-13. Emergency Shutdown Sequence  
When VSYS crosses below VSYS_UVLO_5V, all Power Good pins will be deasserted, and after 444 ns (nom) of  
delay all VRs will shut down. Upon shutdown, all internal discharge resistors are set to 100 Ω to ensure  
timely decay of all VR outputs. Other conditions that will cause emergency shutdown are the die  
temperature rising above the critical temperature threshold (TCRIT), deassertion of Power Good of any rail  
(configurable), or failure of any rail to reach power good within 10 ms of being enabled (configurable). If  
PMIC was shutdown by UVLO, it will wait until VSYS rises above VSYS_UVLO_5V + VSYS_UVLO_5V_HYS before  
reloading the default OTP and checking the state of the CTLx pins. If PMIC was shutdown by temperature,  
it will wait until temperature drops below TCRIT – TCRIT_HYS before reloading OTP and checking the state of  
the CTLx pins. If the PMIC was shutdown by power fault, it will reload OTP after disabling all rails and  
check the state of the CTLx pins once OTP has finished reloading.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.9 Device Functional Modes  
5.9.1 Off Mode  
When power supply at the VSYS pin is less than VSYS_UVLO_5V (5.4-V nominal) + VSYS_UVLO_5V_HYS (0.2-V  
nominal), the device is in off mode, where all output rails are disabled. If the supply voltage is greater than  
VSYS_UVLO_3V (3.6-V nominal) + VSYS_UVLO_3V_HYS (0.15-V nominal) while it is still less than VSYS_UVLO_5V  
+
VSYS_UVLO_5V_HYS, then the internal band-gap reference (VREF pin) along with LDO3P3 are enabled and  
regulated at target values.  
5.9.2 Standby Mode  
When power supply at the VSYS pin rises above VSYS_UVLO_5V + VSYS_UVLO_5V_HYS, the device enters  
standby mode, where all internal reference and regulators (LDO3P3 and LDO5) are up and running, and  
I2C interface and CTL pins are ready to respond. All default registers defined in Section 5.11 should have  
by now been loaded from one-time programmable (OTP) memory. Quiescent current consumption in  
standby mode is specified in Section 4.5.  
5.9.3 Active Mode  
The device proceeds to active mode when any output rail is enabled either via an input pin as discussed  
in Section 5.8 or by writing to EN bits through I2C. Output regulation voltage can also be changed by  
writing to VID bits defined in Section 5.11.  
5.10 I2C Interface  
The I2C interface is a 2-wire serial interface developed by NXP™ (formerly Philips Semiconductor) (see  
I2C-Bus Specification and user manual, Rev 4, 13 February 2012). The bus consists of a data line (SDA)  
and a clock line (SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled  
high. All the I2C compatible devices connect to the I2C bus through open drain I/O pins, DATA and CLK. A  
master device, usually a microcontroller or a digital signal processor, controls the bus. The master is  
responsible for generating the SCL signal and device addresses. The master also generates specific  
conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits  
data on the bus under control of the master device.  
The PMIC works as a slave and supports the following data transfer modes, as defined in the I2C-Bus  
Specification: standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1 Mbps). The  
interface adds flexibility to the power supply solution, enabling most functions to be programmed to new  
values depending on the instantaneous application requirements. Register contents are loaded when VSYS  
higher than VSYS_UVLO_5V is applied to the PMIC. The I2C interface is running from an internal oscillator that  
is automatically enabled when there is an access to the interface.  
The data transfer protocol for standard and fast modes are exactly the same, therefore, they are referred  
to as F/S-mode in this document. The protocol for high-speed mode is different from the F/S-mode, and it  
is referred to as H/S-mode.  
The PMIC device supports 7-bit addressing; however, 10-bit addressing and general call address are not  
supported. The default device address is 0x5E, though it can be modified by programming. The  
programming registers are located in device address 0x38, which cannot be changed.  
38  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.10.1 F/S-Mode Protocol  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high (see Figure 5-14). All I2C-compatible devices should  
recognize a start condition.  
The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse (see  
Figure 5-15). All devices recognize the address sent by the master and compare it to their internal fixed  
addresses. Only the slave device with a matching address generates an acknowledge (see Figure 5-16),  
by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this  
acknowledge, the master knows that the communication link with a slave has been established.  
The master generates further SCL cycles to either transmit data to the slave (R/W bit = 0) or receive data  
from the slave (R/W bit = 1). In either case, the receiver needs to acknowledge the data sent by the  
transmitter. An acknowledge signal can either be generated by the master or by the slave, depending on  
which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can  
continue as long as necessary.  
To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from  
low to high while the SCL line is high (see Figure 5-14). This releases the bus and stops the  
communication link with the addressed slave. All I2C-compatible devices must recognize the stop  
condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for  
a start condition followed by a matching address.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 5-14. START and STOP Conditions  
SDA  
SCL  
Data Valid  
Change of Data Allowed  
Figure 5-15. Bit Transfer on the I2C Bus  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
Data Output at  
Transmitter  
Not ACK  
Data Output at  
Receiver  
ACK  
SCL from Master  
1
2
8
9
S
START  
Clock pulse for ACK  
Condition  
Figure 5-16. Acknowledge on the I2C Bus  
Generate ACK Signal  
SDA  
MSB  
ACK Signal From Slave  
Address  
R/W  
7
SCL  
1
2
8
9
1
2
3-8  
9
ACK  
ACK  
Byte Complete, Interrupt  
Within Slave  
Clock Line Held Low While  
Interrupts Are Serviced  
S or Sr  
P or Sr  
START or  
STOP or  
Repeated START Condition  
Repeated START Condition  
Figure 5-17. I2C Bus Protocol  
40  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
SCL  
ZHCSIK3 JULY 2018  
SDA  
A6  
A5  
A4  
A0 R /W ACK  
R7  
R6  
R5  
R0 ACK  
0
D7  
D6  
D5  
D0 ACK  
0
0
0
START  
Slave Address  
Register Address  
Data  
STOP  
Figure 5-18. I2C Interface WRITE to TPS650861 in F/S Mode  
SCL  
SDA  
W
R/  
A6  
A0  
ACK  
0
R7  
R0 ACK  
0
A6  
A0  
ACK D7  
0
D0 ACK  
W
R/  
0
1
0
Master  
Drives ACK  
and Stop  
Slave Drives  
the Data  
Slave Address  
START  
Slave Address  
Register Address  
STOP  
Repeated  
START  
Figure 5-19. I2C Interface READ from TPS650861 in F/S Mode  
(Only Repeated START is Supported)  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11 I2C Address: 0x5E Register Maps  
5.11.1 Register Map Summary  
This section describes the registers that can be accessed using I2C address 0x5E. These registers can be  
accessed without putting the device into programming mode. The DEVICEID1 and DEVICEID2 registers  
can only be written to while the device is in programming mode. The I2C address can be changed if  
necessary from the default 0x5E using the I2C_SLAVE_ADDR register (see Section 5.12.39). See the  
TPS65086100 OTP Memory Programming Guide for more information on putting the device into  
programming mode.Do not attempt to write a RESERVED R/W bit to the opposite value. When the reset  
value of a bit register is 0bX, it means the bit value is coming from the OTP memory.  
Table 5-6. Register Map Summary  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
40h  
41h  
42h  
43h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Fh  
A0h  
A1h  
A2h  
Name  
DEVICEID1  
Short Description  
Device ID code indicating revision  
Device ID code indicating revision  
Interrupt statuses  
DEVICEID2  
IRQ  
IRQ_MASK  
Interrupt masking  
PMIC_STAT  
PMIC temperature indicator  
Shutdown root cause indicator bits  
SHUTDNSRC  
BUCK1CTRL  
BUCK2CTRL  
BUCK3DECAY  
BUCK3VID  
BUCK1 decay control and voltage select  
BUCK2 decay control and voltage select  
BUCK3 decay control  
BUCK3 voltage select  
BUCK3SLPCTRL  
BUCK4CTRL  
BUCK5CTRL  
BUCK6CTRL  
LDOA2CTRL  
LDOA3CTRL  
DISCHCTRL1  
DISCHCTRL2  
DISCHCTRL3  
PG_DELAY1  
FORCESHUTDN  
BUCK1SLPCTRL  
BUCK2SLPCTRL  
BUCK4VID  
BUCK3 voltage select for sleep state  
BUCK4 control  
BUCK5 control  
BUCK6 control  
LDOA2 control  
LDOA3 control  
Discharge resistors for each rail control  
Discharge resistors for each rail control  
Discharge resistors for each rail control  
System Power Good on GPO3 (if GPO3 is programmed to be system PG)  
Software force shutdown  
BUCK1 voltage select for sleep state  
BUCK2 voltage select for sleep state  
BUCK4 voltage select  
BUCK4SLPVID  
BUCK5VID  
BUCK4 voltage select for sleep state  
BUCK5 voltage select  
BUCK5SLPVID  
BUCK6VID  
BUCK5 voltage select for sleep state  
BUCK6 voltage select  
BUCK6SLPVID  
LDOA2VID  
BUCK6 voltage select for sleep state  
LDOA2 voltage select  
LDOA3VID  
LDOA3 voltage select  
BUCK123CTRL  
PG_DELAY2  
SWVTT_DIS  
I2C_RAIL_EN1  
I2C_RAIL_EN2/GPOCTRL  
PWR_FAULT_MASK1  
BUCK1, 2, and 3 disable and BUCK1, and 2 PFM/PWM mode control  
System Power Good on GPO1, 2, and 4 (if GPOs are programmed to be system PG)  
SWs and VTT I2C disable bits  
I2C Enable control of individual rails  
I2C Enable control of individual rails and I2C controlled GPOs, high or low  
Power fault masking for individual rails  
42  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
Table 5-6. Register Map Summary (continued)  
Address  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
B0h  
B1h  
B2h  
B3h  
B4h  
B5h  
Name  
Short Description  
PWR_FAULT_MASK2  
GPO1PG_CTRL1  
GPO1PG_CTRL2  
GPO4PG_CTRL1  
GPO4PG_CTRL2  
GPO2PG_CTRL1  
GPO2PG_CTRL2  
GPO3PG_CTRL1  
GPO3PG_CTRL2  
MISCSYSPG  
Power fault masking for individual rails  
Power good tree control for GPO1  
Power good tree control for GPO1  
Power good tree control for GPO4  
Power good tree control for GPO4  
Power good tree control for GPO2  
Power good tree control for GPO2  
Power good tree control for GPO3  
Power good tree control for GPO3  
Power good tree control with CTL3 and CTL6 for GPO  
Discharge resistor setting for VTT LDO  
LDOA1 and SWB2 control for discharge, voltage selection, and enable  
Power good statuses for individual rails  
Power good statuses for individual rails  
Power fault statuses for individual rails  
Power fault statuses for individual rails  
Critical temperature indicators  
VTT_DISCH_CTRL  
LDOA1_SWB2_CTRL  
PG_STATUS1  
PG_STATUS2  
PWR_FAULT_STATUS1  
PWR_FAULT_STATUS2  
TEMPCRIT  
TEMPHOT  
Hot temperature indicators  
Complex bit access types are encoded to fit into small table cells. Table 5-7 shows the codes that are  
used for access types in this section.  
Table 5-7. Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.2 DEVICEID1: 1st PMIC Device and Revision ID Register (offset = 00h) [reset = X]  
Figure 5-20. DEVICEID1 Register  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
PART_  
PART_  
PART_  
PART_  
PART_  
PART_  
PART_  
PART_  
NUMBER[7] NUMBER[6] NUMBER[5] NUMBER[4] NUMBER[3]  
NUMBER[2]  
NUMBER[1] NUMBER[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Table 5-8. DEVICEID1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:4  
PART_NUMBER[7:4]  
R
X
Device part number ID  
0000: TPS65086x0x  
0001: TPS65086x1x  
...  
1111: TPS65086xFx  
3:0  
PART_NUMBER[3:0]  
R
X
Device part number ID  
0000: TPS65086xx0  
0001: TPS65086xx1  
...  
1111: TPS65086xxF  
5.11.3 DEVICEID2: 2nd PMIC Device and Revision ID Register (offset = 01h) [reset = X]  
Figure 5-21. DEVICEID2 Register  
Bit  
7
6
5
4
3
2
1
0
OTP_  
OTP_  
PART_  
PART_  
PART_  
PART_  
Bit Name  
REVID[1]  
REVID[0]  
VERSION[1] VERSION[0] NUMBER[11] NUMBER[10] NUMBER[9] NUMBER[8]  
TPS65086100  
Access  
0
0
0
0
0
0
0
1
R
R
R
R
R
R
R
R
Table 5-9. DEVICEID2 Register Descriptions  
Bit  
7:6  
5:4  
Field  
Type Reset  
Description  
REVID[1:0]  
R
R
X
X
Silicon revision ID  
OTP_VERSION[1:0]  
OTP variation ID  
00: A  
01: B  
10: C  
11: D  
3:0  
PART_NUMBER[11:8]  
R
X
Device part number ID  
0001: TPS650861xx  
44  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.4 IRQ: PMIC Interrupt Register (offset = 02h) [reset = 0000 0000]  
Figure 5-22. IRQ Register  
Bit  
7
FAULT  
0
6
5
4
3
SHUTDN  
0
2
1
0
Bit Name  
TPS650861  
Access  
RESERVED RESERVED RESERVED  
RESERVED RESERVED  
DIETEMP  
0
0
0
0
0
0
R/W  
R
R
R
R/W  
R
R
R/W  
Table 5-10. IRQ Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
FAULT  
R/W  
0
Fault interrupt. Asserted when either condition occurs: power fault of any rail, or  
die temperature crosses over the critical temperature threshold (TCRIT). The  
user can read Reg. 0xB2–0xB6 to determine what has caused the interrupt.  
0: Not asserted  
1: Asserted. Host to write 1b to clear.  
3
0
SHUTDN  
DIETEMP  
R/W  
R/W  
0
0
Asserted when PMIC shuts down. To clear indicator, SHUTDNSRC must be  
cleared first, see Section 5.11.7  
0: Not asserted.  
1: Asserted. Host to write 1b to clear.  
Die temp interrupt. Asserted when PMIC die temperature crosses above the hot  
temperature threshold (THOT).  
0: Not asserted.  
1: Asserted. Host to write 1b to clear.  
5.11.5 IRQ_MASK: PMIC Interrupt Mask Register (offset = 03h) [reset = 1111 1111]  
Figure 5-23. IRQ_MASK Register  
Bit  
7
MFAULT  
1
6
5
4
3
msHUTDN  
1
2
1
0
Bit Name  
TPS650861  
Access  
RESERVED RESERVED RESERVED  
RESERVED RESERVED MDIETEMP  
1
1
1
1
1
1
R/W  
R
R
R
R/W  
R
R
R/W  
Table 5-11. IRQ_MASK Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
MFAULT  
R/W  
R/W  
R/W  
1
1
1
FAULT interrupt mask.  
0: Not masked.  
1: Masked.  
3
0
msHUTDN  
MDIETEMP  
PMIC shutdown event interrupt mask  
0: Not masked.  
1: Masked.  
Die temp interrupt mask.  
0: Not masked.  
1: Masked.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.6 PMICSTAT: PMIC Status Register (offset = 04h) [reset = 0000 0000]  
Figure 5-24. PMICSTAT Register  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS650861  
Access  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
SDIETEMP  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Table 5-12. PMICSTAT Register Descriptions  
Bit  
Field  
SDIETEMP  
Type Reset  
Description  
0
R
0
PMIC die temperature status.  
0: PMIC die temperature is below THOT  
.
1: PMIC die temperature is above THOT  
.
5.11.7 SHUTDNSRC: PMIC Shut-Down Event Register (offset = 05h) [reset = 0000 0000]  
Figure 5-25. SHUTDNSRC Register  
Bit  
7
6
5
4
3
COLDOFF  
0
2
UVLO  
0
1
0
CRITTEMP  
0
Bit Name  
TPS650861  
Access  
RESERVED RESERVED RESERVED RESERVED  
PWR_FAULT  
0
0
0
0
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Table 5-13. SHUTDNSRC Register Descriptions  
Bit  
Field  
Type Reset  
Description  
3
COLDOFF  
R/W  
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: N/A. Not enabled for existing OTPs.  
2
1
UVLO  
R/W  
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: PMIC was shut down due to a UVLO event (VSYS crosses below 5.4 V).  
Assertion of this bit sets the SHUTDN bit in Section 5.11.4.  
PWR_FAULT  
CRITTEMP  
R/W  
R/W  
0
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: PMIC was shut down due to an unmasked power fault event. Assertion of  
this bit sets the SHUTDN bit in Section 5.11.4. The source of the power fault  
can be determined from the PWR_FAULT registers (0xB2 and 0xB3).  
Overcurrent protection will limit IOUT and typically cause a power fault as VOUT  
droops.  
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: PMIC was shut down due to the rise of PMIC die temperature above critical  
temperature threshold (TCRIT). Assertion of this bit sets the SHUTDN bit in  
Section 5.11.4.  
46  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.8 BUCK1CTRL: BUCK1 Control Register (offset = 20h) [reset = X]  
Figure 5-26. BUCK1CTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK1_  
VID[6]  
BUCK1_  
VID[5]  
BUCK1_  
VID[4]  
BUCK1_  
VID[3]  
BUCK1_  
VID[2]  
BUCK1_  
VID[1]  
BUCK1_  
VID[0]  
BUCK1_  
DECAY  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-14. BUCK1CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK1_VID[6:0]  
R/W  
X
This field sets the BUCK1 regulator output regulation voltage in  
normal mode.  
See Table 5-2 and Table 5-3 for 10-mV and 25-mV step ranges  
for VOUT options.  
0
BUCK1_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
5.11.9 BUCK2CTRL: BUCK2 Control Register (offset = 21h) [reset = X]  
Figure 5-27. BUCK2CTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK2_  
VID[6]  
BUCK2_  
VID[5]  
BUCK2_  
VID[4]  
BUCK2_  
VID[3]  
BUCK2_  
VID[2]  
BUCK2_  
VID[1]  
BUCK2_  
VID[0]  
BUCK2_  
DECAY  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-15. BUCK2CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK2_VID[6:0]  
R/W  
X
This field sets the BUCK2 regulator output regulation voltage in  
normal mode.  
See Table 5-2 and Table 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK2_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.10 BUCK3DECAY: BUCK3 Decay Control Register (offset = 22h) [reset = X]  
Figure 5-28. BUCK3DECAY Register  
Bit  
7
6
5
4
3
2
1
0
BUCK3_  
DECAY  
Bit Name  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-16. BUCK3DECAY Register Descriptions  
Bit  
7:1  
0
Field  
Type Reset  
Description  
SPARE  
R/W  
R/W  
X
X
Unused. Typically mirror BUCK3_VID by default in OTP.  
BUCK3_DECAY  
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
5.11.11 BUCK3VID: BUCK3 VID Register (offset = 23h) [reset = X]  
Figure 5-29. BUCK3VID Register  
Bit  
7
6
5
4
3
2
1
0
BUCK3_  
VID[6]  
BUCK3_  
VID[5]  
BUCK3_  
VID[4]  
BUCK3_  
VID[3]  
BUCK3_  
VID[2]  
BUCK3_  
VID[1]  
BUCK3_  
VID[0]  
Bit Name  
RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Table 5-17. BUCK3VID Register Descriptions  
Bit  
Field  
Type Reset  
R/W  
Description  
7:1  
BUCK3_VID[6:0]  
X
This field sets the BUCK3 regulator output regulation voltage in  
normal mode.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
48  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.12 BUCK3SLPCTRL: BUCK3 Sleep Control VID Register (offset = 24h) [reset = X]  
Figure 5-30. BUCK3SLPCTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP  
Bit Name  
_ VID[6]  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
_ EN  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-18. BUCK3SLPCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK3_SLP_VID[6:0]  
R/W  
X
This field sets the BUCK3 regulator output regulation voltage in  
sleep mode if BUCK3_SLP_EN = 1b.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
0
BUCK3_SLP_EN  
R/W  
X
BUCK3 sleep mode enable. BUCK3 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
0: Disable. Uses BUCK3_VID in all cases.  
1: Enabled. Uses BUCK3_SLP_VID when assigned sleep pin is  
low.  
5.11.13 BUCK4CTRL: BUCK4 Control Register (offset = 25h) [reset = X]  
Figure 5-31. BUCK4CTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_SLP BUCK4_SLP  
BUCK4_  
MODE  
Bit Name  
RESERVED RESERVED  
RESERVED RESERVED  
BUCK4_DIS  
_ EN[1]  
_ EN[0]  
TPS65086100  
Access  
0
0
0
0
1
1
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-19. BUCK4CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
BUCK4_SLP_EN  
R/W  
X
BUCK4 sleep mode enable. BUCK4 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
00: Disable. Uses BUCK4_VID in all cases.  
11: Enabled. Uses BUCK4_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:2  
1
RESERVED  
R/W  
R/W  
11  
X
Reserved bits. Always write to 11.  
BUCK4_MODE  
This field sets the BUCK4 regulator operating mode.  
0: Reserved  
1: Forced PWM mode  
0
BUCK4_DIS  
R/W  
X
BUCK4 Disable Bit. Writing 0 to this bit forces BUCK4 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable  
1: Enable  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.14 BUCK5CTRL: BUCK5 Control Register (offset = 26h) [reset = X]  
Figure 5-32. BUCK5CTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK5_SLP BUCK5_SLP  
BUCK5_  
MODE  
Bit Name  
RESERVED RESERVED  
RESERVED RESERVED  
BUCK5_DIS  
_EN[1]  
_EN[0]  
TPS65086100  
Access  
0
0
0
0
1
1
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-20. BUCK5CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
BUCK5_SLP_EN  
R/W  
X
BUCK5 sleep mode enable. BUCK5 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
00: Disable. Uses BUCK5_VID in all cases.  
11: Enabled. Uses BUCK5_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:2  
1
RESERVED  
R/W  
R/W  
11  
X
Reserved bits. Always write to 11.  
BUCK5_MODE  
This field sets the BUCK5 regulator operating mode.  
0: Reserved  
1: Forced PWM mode  
0
BUCK5_DIS  
R/W  
X
BUCK5 Disable Bit. Writing 0 to this bit forces BUCK5 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable.  
1: Enable.  
5.11.15 BUCK6CTRL: BUCK6 Control Register (offset = 27h) [reset = X]  
Figure 5-33. BUCK6CTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6_SLP BUCK6_SLP  
BUCK6_  
MODE  
Bit Name  
RESERVED RESERVED  
RESERVED RESERVED  
BUCK6_DIS  
EN[1]  
EN[0]  
TPS65086100  
Access  
0
0
0
0
1
1
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-21. BUCK6CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
BUCK6_SLP_EN  
R/W  
X
BUCK6 sleep mode enable. BUCK6 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
00: Disable. Uses BUCK6_VID in all cases.  
11: Enabled. Uses BUCK6_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:2  
1
RESERVED  
R/W  
R/W  
11  
X
Reserved bits. Always write to 11.  
BUCK6_MODE  
This field sets the BUCK6 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
0
BUCK6_DIS  
R/W  
X
BUCK6 Disable Bit. Writing 0 to this bit forces BUCK6 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable.  
1: Enable.  
50  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.16 LDOA2CTRL: LDOA2 Control Register (offset = 28h) [reset = X]  
Figure 5-34. LDOA2CTRL Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_SLP LDOA2_SLP  
Bit Name  
RESERVED RESERVED  
RESERVED RESERVED RESERVED LDOA2_DIS  
_EN[1]  
_EN[0]  
TPS65086100  
Access  
0
0
0
0
1
1
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-22. LDOA2CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
LDOA2_SLP_EN  
R/W  
X
LDOA2 sleep mode enable. LDOA2 is factory configured to switch  
to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
00: Disable. Uses LDOA2_VID in all cases.  
11: Enabled. Uses LDOA2_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:1  
0
RESERVED  
LDOA2_DIS  
R/W  
R/W  
110  
X
Reserved bits. Always write to '110'.  
LDOA2 Disable Bit. Writing 0 to this bit forces LDOA2 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable.  
1: Enable.  
5.11.17 LDOA3CTRL: LDOA3 Control Register (offset = 29h) [reset = X]  
Figure 5-35. LDOA3CTRL Register  
Bit  
7
6
5
4
3
2
1
0
LDOA3_SLP LDOA3_SLP  
Bit Name  
RESERVED RESERVED  
RESERVED RESERVED RESERVED LDOA3_DIS  
_EN[1]  
_EN[0]  
TPS65086100  
Access  
0
0
0
0
1
1
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-23. LDOA3CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
LDOA3_SLP_EN  
R/W  
X
LDOA3 sleep mode enable. LDOA3 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
00: Disable. Uses LDOA3_VID in all cases.  
11: Enabled. Uses LDOA3_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:1  
0
RESERVED  
LDOA3_DIS  
R/W  
R/W  
110  
X
Reserved bits. Always write to '110'.  
LDOA3 Disable Bit. Writing 0 to this bit forces LDOA3 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable  
1: Enable  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.18 DISCHCTRL1: 1st Discharge Control Register (offset = 40h) [reset = X]  
All xx_DISCHG[1:0] bits internally set to 00 whenever the corresponding VR is enabled.  
Figure 5-36. DISCHCTRL1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_  
DISCHG[1]  
BUCK4_  
DISCHG[0]  
BUCK3_  
DISCHG[1]  
BUCK3_  
DISCHG[0]  
BUCK2_  
DISCHG[1]  
BUCK2_  
DISCHG[0]  
BUCK1_  
DISCHG[1]  
BUCK1_  
DISCHG[0]  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-24. DISCHCTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:6  
BUCK4_DISCHG[1:0]  
BUCK3_DISCHG[1:0]  
BUCK2_DISCHG[1:0]  
BUCK1_DISCHG[1:0]  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
BUCK4 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
5:4  
3:2  
1:0  
BUCK3 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK2 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
52  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.19 DISCHCTRL2: 2nd Discharge Control Register (offset = 41h) [reset = X]  
All xx_DISCHG[1:0] bits internally set to 00 whenever the corresponding VR is enabled.  
Figure 5-37. DISCHCTRL2 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
DISCHG[1]  
LDOA2_  
DISCHG[0]  
SWA1_  
DISCHG[1]  
SWA1_  
DISCHG[0]  
BUCK6_  
DISCHG[1]  
BUCK6_  
DISCHG[0]  
BUCK5_  
DISCHG[1]  
BUCK5_  
DISCHG[0]  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-25. DISCHCTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:6  
LDOA2_DISCHG[1:0]  
SWA1_DISCHG[1:0]  
BUCK6_DISCHG[1:0]  
BUCK5_DISCHG[1:0]  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
LDOA2 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
5:4  
3:2  
1:0  
SWA1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK6 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK5 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.20 DISCHCTRL3: 3rd Discharge Control Register (offset = 42h) [reset = X]  
All xx_DISCHG[1:0] bits internally set to 00 whenever the corresponding VR is enabled.  
Figure 5-38. DISCHCTRL3 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_  
DISCHG[1]  
SWB2_  
DISCHG[0]  
SWB1_  
DISCHG[1]  
SWB1_  
DISCHG[0]  
LDOA3_  
DISCHG[1]  
LDOA3_  
DISCHG[0]  
Bit Name  
RESERVED RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-26. DISCHCTRL3 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
SWB2_DISCHG[1:0]  
SWB1_DISCHG[1:0]  
LDOA3_DISCHG[1:0]  
R/W  
R/W  
R/W  
X
X
X
SWB2 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
3:2  
1:0  
SWB1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
LDOA3 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
5.11.21 PG_DELAY1: 1st Power Good Delay Register (offset = 43h) [reset = X]  
Programmable Power Good delay for GPO3 pin, measured from the moment when all VRs assigned to  
GPO3 pin reach their regulation range to Power Good assertion. This is an optional register as the PMIC  
can be programmed for system PG, level shifter or I2C controller GPO.  
Figure 5-39. PG_DELAY1 Register  
Bit  
7
6
5
4
3
2
1
0
GPO3_PG_ GPO3_PG_ GPO3_PG_  
Bit Name  
RESERVED RESERVED RESERVED RESERVED RESERVED  
DELAY[2]  
DELAY[1]  
DELAY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W  
R/W  
R/W  
Table 5-27. PG_DELAY1 Register Descriptions  
Bit  
Field  
Type Reset  
R/W  
Description  
2:0  
GPO3_PG_DELAY[2:0]  
X
Programmable delay Power Good or level shifter for GPO3 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
000: 2.5 ms  
001: 5.0 ms  
010: 10 ms  
011: 15 ms  
100: 20 ms  
101: 50 ms  
110: 75 ms  
111: 100 ms  
: Bits not used. If GPO3 is controlled by I2C rather than PG and  
is not used internally for VTT LDO enable, these bits have no  
impact. Default is set to 0b.  
54  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.22 FORCESHUTDN: Force Emergency Shutdown Control Register  
(offset = 91h) [reset = 0000 0000]  
Figure 5-40. FORCESHUTDN Register  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS650861  
Access  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
SDWN  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
Table 5-28. FORCESHUTDN Register Descriptions  
Bit  
Field  
SDWN  
Type Reset  
R/W  
Description  
0
0
Forces reset of the PMIC and reset of all registers. The bit is self-clearing.  
PMIC does not generate I2C ACK for this command because it goes into  
emergency shutdown.  
0: No action.  
1: PMIC initiates emergency shutdown.  
5.11.23 BUCK1SLPCTRL: BUCK1 Sleep Control Register (offset = 92h) [reset = X]  
Figure 5-41. BUCK1SLPCTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
SLP_ EN  
Bit Name  
SLP_ VID[6] SLP_ VID[5] SLP_ VID[4] SLP_ VID[3] SLP_ VID[2] SLP_ VID[1] SLP_ VID[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-29. BUCK1SLPCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK1_SLP_VID[6:0]  
R/W  
X
This field sets the BUCK1 regulator output regulation voltage in  
normal mode.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
0
BUCK1_SLP_EN  
R/W  
X
BUCK1 sleep mode enable. BUCK1 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
0: Disable. Uses BUCK1_VID in all cases.  
1: Enabled. Uses BUCK1_SLP_VID when assigned sleep pin is  
low.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.24 BUCK2SLPCTRL: BUCK2 Sleep Control Register (offset = 93h) [reset = X]  
Figure 5-42. BUCK2SLPCTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP  
Bit Name  
_ VID[6]  
0
_ VID[5]  
0
_ VID[4]  
0
_ VID[3]  
0
_ VID[2]  
0
_ VID[1]  
0
_ VID[0]  
0
_ EN  
0
TPS65086100  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-30. BUCK2SLPCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK2_SLP_VID[6:0]  
R/W  
X
This field sets the BUCK2 regulator output regulation voltage in  
normal mode.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
0
BUCK2_SLP_EN  
R/W  
X
BUCK2 sleep mode enable. BUCK2 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
0: Disable. Uses BUCK2_VID in all cases.  
1: Enabled. Uses BUCK2_SLP_VID when assigned sleep pin is  
low.  
5.11.25 BUCK4VID: BUCK4 VID Register (offset = 94h) [reset = X]  
Figure 5-43. BUCK4VID Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_  
VID[6]  
BUCK4_  
VID[5]  
BUCK4_  
VID[4]  
BUCK4_  
VID[3]  
BUCK4_  
VID[2]  
BUCK4_  
VID[1]  
BUCK4_  
VID[0]  
BUCK4_  
DECAY  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-31. BUCK4VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK4_VID[6:0]  
R/W  
X
This field sets the BUCK4 regulator output regulation voltage in  
normal mode.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
0
BUCK4_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
56  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.26 BUCK4SLPVID: BUCK4 Sleep VID Register (offset = 95h) [reset = X]  
Figure 5-44. BUCK4SLPVID Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP  
Bit Name  
RESERVED  
_ VID[6]  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Table 5-32. BUCK4SLPVID Register Descriptions  
Bit  
Field  
BUCK4_SLP_VID[6:0]  
Type Reset  
R/W  
Description  
7:1  
X
This field sets the BUCK4 regulator output regulation voltage in  
sleep mode.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
5.11.27 BUCK5VID: BUCK5 VID Register (offset = 96h) [reset = X]  
Figure 5-45. BUCK5VID Register  
Bit  
7
6
5
4
3
2
1
0
BUCK5_  
VID[6]  
BUCK5_  
VID[5]  
BUCK5_  
VID[4]  
BUCK5_  
VID[3]  
BUCK5_  
VID[2]  
BUCK5_  
VID[1]  
BUCK5_  
VID[0]  
BUCK5_  
DECAY  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-33. BUCK5VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK5_VID[6:0]  
R/W  
X
This field sets the BUCK5 regulator output regulation voltage in  
normal mode.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
0
BUCK5_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID  
bits. Decay rate depends on total capacitance and load present  
at the output.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.28 BUCK5SLPVID: BUCK5 Sleep VID Register (offset = 97h) [reset = X]  
Figure 5-46. BUCK5SLPVID Register  
Bit  
7
6
5
4
3
2
1
0
BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP  
Bit Name  
RESERVED  
_ VID[6]  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Table 5-34. BUCK5SLPVID Register Descriptions  
Bit  
Field  
BUCK5_SLP_VID[6:0]  
Type Reset  
R/W  
Description  
7:1  
X
This field sets the BUCK5 regulator output regulation voltage in  
sleep mode.  
See Table 5-3 for 25-mV step ranges for VOUT options.  
5.11.29 BUCK6VID: BUCK6 VID Register (offset = 98h) [reset = X]  
Figure 5-47. BUCK6VID Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6_  
VID[6]  
BUCK6_  
VID[5]  
BUCK6_  
VID[4]  
BUCK6_  
VID[3]  
BUCK6_  
VID[2]  
BUCK6_  
VID[1]  
BUCK6_  
VID[0]  
BUCK6_  
DECAY  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-35. BUCK6VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK6_VID[6:0]  
R/W  
X
This field sets the BUCK6 regulator output regulation voltage in  
normal mode.  
See Table 5-2 and Table 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK6_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
58  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.30 BUCK6SLPVID: BUCK6 Sleep VID Register (offset = 99h) [reset = X]  
Figure 5-48. BUCK6SLPVID Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP  
Bit Name  
RESERVED  
_ VID[6]  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Table 5-36. BUCK6SLPVID Register Descriptions  
Bit  
Field  
BUCK6_SLP_VID[6:0]  
Type Reset  
R/W  
Description  
7:1  
X
This field sets the BUCK6 regulator output regulation voltage in  
normal mode.  
See Table 5-2 and Table 5-3 for 10-mV and 25-mV step ranges  
for VOUT options.  
5.11.31 LDOA2VID: LDOA2 VID Register (offset = 9Ah) [reset = X]  
Figure 5-49. LDOA2VID Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_SLP LDOA2_SLP LDOA2_SLP LDOA2_SLP  
LDOA2_  
VID[3]  
LDOA2_  
VID[3]  
LDOA2_  
VID[1]  
LDOA2_  
VID[0]  
Bit Name  
_VID[3]  
_VID[2]  
_VID[1]  
_VID[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-37. LDOA2VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:4  
LDOA2_SLP_VID[3:0]  
R/W  
X
This field sets the LDOA2 regulator output regulation voltage in  
sleep mode.  
See Table 5-5 for Vout options.  
3:0  
LDOA2_VID[3:0]  
R/W  
X
This field sets the LDOA2 regulator output regulation voltage in  
normal mode.  
See Table 5-5 for Vout options.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.32 LDOA3VID: LDOA3 VID Register (offset = 9Bh) [reset = X]  
Figure 5-50. LDOA3VID Register  
Bit  
7
6
5
4
3
2
1
0
LDOA3_SLP LDOA3_SLP LDOA3_SLP LDOA3_SLP  
LDOA3_  
VID[3]  
LDOA3_  
VID[3]  
LDOA3_  
VID[1]  
LDOA3_  
VID[0]  
Bit Name  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-38. LDOA3VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:4  
LDOA3_SLP_VID[3:0]  
R/W  
X
This field sets the LDOA3 regulator output regulation voltage in  
sleep mode.  
See Table 5-5 for Vout options.  
3:0  
LDOA3_VID[3:0]  
R/W  
X
This field sets the LDOA3 regulator output regulation voltage in  
normal mode.  
See Table 5-5 for Vout options.  
5.11.33 BUCK123CTRL: BUCK1-3 Control Register (offset = 9Ch) [reset = X]  
Figure 5-51. BUCK123CTRL Register  
Bit  
7
6
5
4
3
2
1
0
BUCK3  
_MODE  
BUCK2  
_MODE  
BUCK1  
_MODE  
BUCK3  
_DIS  
BUCK2  
_DIS  
BUCK1  
_DIS  
Bit Name  
RESERVED RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-39. BUCK123CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5
BUCK3_MODE  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
This field sets the BUCK3 regulator operating mode.  
0: Reserved  
1: Forced PWM mode  
4
3
2
BUCK2_MODE  
BUCK1_MODE  
BUCK3_DIS  
This field sets the BUCK2 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
This field sets the BUCK1 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
BUCK3 Disable Bit. Writing 0 to this bit forces BUCK3 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable  
1: Enable  
1
0
BUCK2_DIS  
BUCK1_DIS  
R/W  
R/W  
X
X
BUCK2 Disable Bit. Writing 0 to this bit forces BUCK2 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable  
1: Enable  
BUCK1 Disable Bit. Writing 0 to this bit forces BUCK1 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable  
1: Enable  
60  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.34 PG_DELAY2: 2nd Power Good Delay Register (offset = 9Dh) [reset = X]  
Programmable Power Good delay for GPO1, GPO2, and GPO4 pins, measured from the moment when  
all VRs assigned to respective GPO reach their regulation range to Power Good assertion. This is an  
optional register as the PMIC can be programmed for system PG, level shifter or I2C controller GPO.  
Figure 5-52. PG_DELAY2 Register  
Bit  
7
6
5
4
3
2
1
0
GPO2_PG_ GPO2_PG_ GPO2_PG_ GPO4_PG_ GPO4_PG_ GPO4_PG_ GPO1_PG_ GPO1_PG_  
Bit Name  
DELAY[2]  
DELAY[1]  
DELAY[0]  
DELAY[2]  
DELAY[1]  
DELAY[0]  
DELAY[1]  
DELAY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-40. PG_DELAY2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:5  
GPO2_PG_DELAY[2:0]  
R/W  
X
Programmable delay Power Good or level shifter for GPO2 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
000: 0 ms  
001: 5.0 ms  
010: 10 ms  
011: 15 ms  
100: 20 ms  
101: 50 ms  
110: 75 ms  
111: 100 ms  
: Bits not used. If GPO2 is controlled by I2C rather than PG and  
is not used internally for VTT LDO enable, these bits have no  
impact. Default is set to 0b.  
4:2  
GPO4_PG_DELAY[2:0]  
R/W  
X
Programmable delay Power Good or level shifter for GPO4 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
000: 0 ms  
001: 5.0 ms  
010: 10 ms  
011: 15 ms  
100: 20 ms  
101: 50 ms  
110: 75 ms  
111: 100 ms  
: Bits not used. If GPO4 is controlled by I2C rather than PG,  
these bits have no impact. Default is set to 0b.  
1:0  
GPO1_PG_DELAY[1:0]  
R/W  
X
Programmable delay Power Good or level shifter for GPO1 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
00: 0 ms  
01: 5.0 ms  
10: 10 ms  
11: 15 ms  
: Bits not used. If GPO1 is controlled by I2C rather than PG,  
these bits have no impact. Default is set to 0b.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.35 SWVTT_DIS: SWVTT Disable Register (offset = 9Fh) [reset = X]  
Figure 5-53. SWVTT_DIS Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_DIS  
Bit Name  
SWB1_DIS  
SWA1_DIS  
VTT_DIS  
Reserved  
Reserved  
Reserved  
Reserved  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-41. SWVTT_DIS Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
SWB2_LDOA1_DIS  
R/W  
X
SWB2 or LDOA1 Disable Bit. Writing 0 to this bit forces  
SWB2 or LDOA1 to turn off regardless of any control input  
pin (CTL1–CTL6) status. OTP setting selects either SWB2  
or LDOA1.  
0: Disable.  
1: Enable.  
SWB2 for: OTP Dependent  
LDOA1 for: OTP Dependent  
6
5
SWB1_DIS  
SWA1_DIS  
R/W  
R/W  
X
X
SWB1 Disable Bit. Writing 0 to this bit forces SWB1 to  
turn off regardless of any control input pin (CTL1–CTL6)  
status.  
0: Disable.  
1: Enable.  
SWA1 Disable Bit. Writing 0 to this bit forces SWA1 to  
turn off regardless of any control input pin (CTL1–CTL6)  
status.  
0: Disable.  
1: Enable.  
4
VTT_DIS  
Reserved  
R/W  
R/W  
X
VTT Disable Bit. Writing 0 to this bit forces VTT to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0: Disable.  
1: Enable.  
3:0  
0000  
Reserved bits. Always write to 0000.  
62  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.36 I2C_RAIL_EN1: 1st VR Pin Enable Override Register (offset = A0h) [reset = X]  
Figure 5-54. I2C_RAIL_EN1 Register  
Bit  
7
LDOA2_EN  
0
6
SWA1_EN  
0
5
BUCK6_EN  
0
4
BUCK5_EN  
0
3
BUCK4_EN  
0
2
BUCK3_EN  
0
1
BUCK2_EN  
0
0
BUCK1_EN  
0
Bit Name  
TPS65086100  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-42. I2C_RAIL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA2 I2C Enable  
0: LDOA2 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: LDOA2 is forced on unless LDOA2_DIS = 0b.  
SWA1 I2C Enable  
0: SWA1 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: SWA1 is forced on unless SWA1_DIS = 0b.  
BUCK6 I2C Enable  
0: BUCK6 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK6 is forced on unless BUCK6_DIS = 0b.  
BUCK5 I2C Enable  
0: BUCK5 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK5 is forced on unless BUCK5_DIS = 0b.  
BUCK4 I2C Enable  
0: BUCK4 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK4 is forced on unless BUCK4_DIS = 0b.  
BUCK3 I2C Enable  
6
5
4
3
2
1
0
SWA1_EN  
BUCK6_EN  
BUCK5_EN  
BUCK4_EN  
BUCK3_EN  
BUCK2_EN  
BUCK1_EN  
0: BUCK3 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK3 is forced on unless BUCK3_DIS = 0b.  
BUCK2 I2C Enable  
0: BUCK2 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK2 is forced on unless BUCK2_DIS = 0b.  
BUCK1 I2C Enable  
0: BUCK1 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK1 is forced on unless BUCK1_DIS = 0b.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.37 I2C_RAIL_EN2/GPOCTRL: 2nd VR Pin Enable Override and GPO Control Register  
(offset = A1h) [reset = X]  
Figure 5-55. I2C_RAIL_EN2/GPOCTRL Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_EN  
Bit Name  
GPO4_LVL  
GPO3_LVL  
GPO2_LVL  
GPO1_LVL  
VTT_EN  
SWB1_EN  
LDOA3_EN  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-43. I2C_RAIL_EN2/GPOCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
GPO4_LVL  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
The field is to set GPO4 pin output if the pin is factory-  
configured as an I2C controlled open-drain general-purpose  
output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO4 is controlled by GPO4 PG  
tree. Default is set to 0b.  
6
5
4
GPO3_LVL  
GPO2_LVL  
GPO1_LVL  
VTT_EN  
The field is to set GPO3 pin output if the pin is factory-  
configured as either an I2C controlled open-drain or a push-pull  
general-purpose output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO3 is controlled by GPO3 PG  
tree. Default is set to 0b.  
The field is to set GPO2 pin output if the pin is factory-  
configured as either an I2C controlled open-drain or a push-pull  
general-purpose output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO2 is controlled by GPO2 PG  
tree. Default is set to 0b.  
The field is to set GPO1 pin output if the pin is factory-  
configured as either an I2C controlled open-drain or a push-pull  
general-purpose output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO1 is controlled by GPO1 PG  
tree. Default is set to 0b.  
VTT LDO I2C Enable  
0: VTT LDO is enabled or disabled by one of the control input  
pins or internal PG signals.  
1: VTT LDO is forced on unless VTT_DIS = 0b.  
3
2
R/W  
R/W  
X
X
SWB2_LDOA1_EN  
SWB2 or LDOA1 I2C Enable. Internal setting selects either  
SWB2 or LDOA1.  
0: SWB2 or LDOA1 is enabled or disabled by one of the control  
input pins or internal PG signals.  
1: SWB2 or LDOA1 is forced on unless SWB2_LDOA1_DIS =  
0b.  
SWB2 for: OTP Dependent  
LDOA1 for: OTP Dependent  
1
0
SWB1_EN  
LDOA3_EN  
R/W  
R/W  
X
X
SWB1 I2C Enable  
0: SWB1 is enabled or disabled by one of the control input pins  
or internal PG signals.  
1: SWB1 is forced on unless SWB1_DIS = 0b.  
LDOA3 I2C Enable  
0: LDOA3 is enabled or disabled by one of the control input pins  
or internal PG signals.  
1: LDOA3 is forced on unless LDOA3_DIS = 0b.  
64  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.38 PWR_FAULT_MASK1: 1st VR Power Fault Mask Register (offset = A2h) [reset = X]  
Figure 5-56. PWR_FAULT_MASK1 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
FLTmsK  
SWA1_  
FLTmsK  
BUCK6_  
FLTmsK  
BUCK5_  
FLTmsK  
BUCK4_  
FLTmsK  
BUCK3_  
FLTmsK  
BUCK2_  
FLTmsK  
BUCK1_  
FLTmsK  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-44. PWR_FAULT_MASK1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_FLTmsK  
SWA1_FLTmsK  
BUCK6_FLTmsK  
BUCK5_FLTmsK  
BUCK4_FLTmsK  
BUCK3_FLTmsK  
BUCK2_FLTmsK  
BUCK1_FLTmsK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA2 Power Fault Mask. When masked, power fault from  
LDOA2 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
6
5
4
3
2
1
0
SWA1 Power Fault Mask. When masked, power fault from SWA1  
does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK6 Power Fault Mask. When masked, power fault from  
BUCK6 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK5 Power Fault Mask. When masked, power fault from  
BUCK5 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK4 Power Fault Mask. When masked, power fault from  
BUCK4 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK3 Power Fault Mask. When masked, power fault from  
BUCK3 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK2 Power Fault Mask. When masked, power fault from  
BUCK2 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK1 Power Fault Mask. When masked, power fault from  
BUCK1 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.39 PWR_FAULT_MASK2: 2nd VR Power Fault Mask Register (offset = A3h) [reset = X]  
Figure 5-57. PWR_FAULT_MASK2 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA1_  
FLTmsK  
VTT_  
FLTmsK  
SWB2_  
FLTmsK  
SWB1_  
FLTmsK  
LDOA3_  
FLTmsK  
Bit Name  
RESERVED RESERVED RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-45. PWR_FAULT_MASK2 Register Descriptions  
Bit  
6
Field  
Type Reset  
Description  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
0
1
X
Reserved bit. Always write to 0b.  
Reserved bit. Always write to 1b.  
5
4
LDOA1_FLTmsK  
VTT_FLTmsK  
LDOA1 Power Fault Mask. When masked, power fault from  
LDOA1 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
X
X
X
X
VTT LDO Power Fault Mask. When masked, power fault from  
VTT LDO does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
SWB2_FLTmsK  
SWB1_FLTmsK  
LDOA3_FLTmsK  
SWB2 Power Fault Mask. When masked, power fault from  
SWB2 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
SWB1 Power Fault Mask. When masked, power fault from  
SWB1 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
LDOA3 Power Fault Mask. When masked, power fault from  
LDOA3 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
66  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.40 GPO1PG_CTRL1: 1st GPO1 PG Control Register (offset = A4h) [reset = X]  
Figure 5-58. GPO1PG_CTRL1 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2  
_msK  
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-46. GPO1PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO1 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
6
5
4
3
2
1
0
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
0: SWA1 PG is part of Power Good tree of GPO1 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK6 PG is part of Power Good tree of GPO1 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO1 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO1 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO1 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO1 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO1 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.41 GPO1PG_CTRL2: 2nd GPO1 PG Control Register (offset = A5h) [reset = X]  
Figure 5-59. GPO1PG_CTRL2 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
Bit Name  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK LDOA3_msK  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-47. GPO1PG_CTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO1 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO1 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO1 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO1 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO1 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO1 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of GPO1  
pin and is ignored.  
SWB2 for: OTP Dependent  
LDOA1 for:OTP Dependent  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO1 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO1 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
68  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.42 GPO4PG_CTRL1: 1st GPO4 PG Control Register (offset = A6h) [reset = X]  
Figure 5-60. GPO4PG_CTRL1 Register  
Bit  
7
6
5
4
3
2
1
0
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
Bit Name  
LDOA2_msK  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-48. GPO4PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO4 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
6
5
4
3
2
1
0
0: SWA1 PG is part of Power Good tree of GPO4 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO4 pin and  
is ignored.  
0: BUCK6 PG is part of Power Good tree of GPO4 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO4 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO4 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO4 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO4 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO4 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.43 GPO4PG_CTRL2: 2nd GPO4 PG Control Register (offset = A7h) [reset = X]  
Figure 5-61. GPO4PG_CTRL2 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
Bit Name  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK LDOA3_msK  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-49. GPO4PG_CTRL2 Register Descriptionsr  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO4 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO4 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO4 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO4 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO4 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO4 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of GPO4  
pin and is ignored.  
SWB2 for: OTP Dependent  
LDOA1 for: OTP Dependent  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO4 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO4 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO4 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO4 pin and  
is ignored.  
70  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.44 GPO2PG_CTRL1: 1st GPO2 PG Control Register (offset = A8h) [reset = X]  
Figure 5-62. GPO2PG_CTRL1 Register  
Bit  
7
6
5
4
3
2
1
0
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
Bit Name  
LDOA2_msK  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-50. GPO2PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO2 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
6
5
4
3
2
1
0
0: SWA1 PG is part of Power Good tree of GPO2 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK6 PG is part of Power Good tree of GPO2 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO2 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO2 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO2 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO2 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO2 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
71  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.45 GPO2PG_CTRL2: 2nd GPO2 PG Control Register (offset = A9h) [reset = X]  
Figure 5-63. GPO2PG_CTRL2 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
LDOA3_  
msK  
Bit Name  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-51. GPO2PG_CTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO2 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO2  
pin and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO2 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO2  
pin and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO2 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO2  
pin and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO2 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO2  
pin and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO2 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO2 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of  
GPO2 pin and is ignored.  
SWB2 for: OTP Dependent  
LDOA1 for: OTP Dependent  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO2 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO2 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO2 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
72  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.46 GPO3PG_CTRL1: 1st GPO3 PG Control Register (offset = AAh) [reset = X]  
Figure 5-64. GPO3PG_CTRL1 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2  
_msK  
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-52. GPO3PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO3 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
6
5
4
3
2
1
0
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
0: SWA1 PG is part of Power Good tree of GPO3 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK6 PG is part of Power Good tree of GPO3 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO3 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO3 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO3 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO3 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO3 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
73  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.47 GPO3PG_CTRL2: 2nd GPO3 PG Control Register (offset = ABh) [reset = X]  
Figure 5-65. GPO3PG_CTRL2 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
Bit Name  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK LDOA3_msK  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-53. GPO3PG_CTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO3 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO3 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO3 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO3 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO3 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO3 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of GPO3  
pin and is ignored.  
SWB2 for: OTP Dependent  
LDOA1 for: OTP Dependent  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO3 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO3 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
74  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.48 MISCSYSPG Register (offset = ACh) [reset = X]  
Figure 5-66. MISCSYSPG Register  
Bit  
7
6
5
4
3
2
1
0
GPO1_  
CTL3_msK  
GPO1_  
CTL6_msK  
GPO4_  
CTL3_msK  
GPO4_  
CTL6_msK  
GPO2_  
CTL3_msK  
GPO2_  
CTL6_msK  
GPO3_  
CTL3_msK  
GPO3_  
CTL6_msK  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-54. MISCSYSPG Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
GPO1_CTL3_msK  
GPO1_CTL6_msK  
GPO4_CTL3_msK  
GPO4_CTL6_msK  
GPO2_CTL3_msK  
GPO2_CTL6_msK  
GPO3_CTL3_msK  
GPO3_CTL6_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: CTL3 pin status is part of Power Good tree of GPO1 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO1 pin.  
6
5
4
3
2
1
0
0: CTL6 pin status is part of Power Good tree of GPO1 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO1 pin.  
0: CTL3 pin status is part of Power Good tree of GPO4 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO4 pin.  
0: CTL6 pin status is part of Power Good tree of GPO4 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO4 pin.  
0: CTL3 pin status is part of Power Good tree of GPO2 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO2 pin.  
0: CTL6 pin status is part of Power Good tree of GPO2 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO2 pin.  
0: CTL3 pin status is part of Power Good tree of GPO3 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO3pin.  
0: CTL6 pin status is part of Power Good tree of GPO3 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO3 pin.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
75  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.48.1 VTT_DISCH_CTRL Register (offset = ADh) [reset = X]  
Figure 5-67. VTT_DISCH_CTRL Register  
Bit  
7
6
5
4
3
2
1
0
VTT_  
DISCHG  
Bit Name  
RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED  
TPS65086100  
Access  
0
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-55. VTT_DISCH_CTRL Register Descriptions  
Bit  
7:5  
4
Field  
Type Reset  
Description  
RESERVED  
VTT_DISCHG  
R/W  
R/W  
X
X
Reserved bits. Always write to match OTP settings.  
0: no discharge  
1: 100 Ω  
3:0  
RESERVED  
R/W  
X
Reserved bits. Always write to match OTP settings.  
5.11.49 LDOA1_SWB2_CTRL: LDOA1 and SWB2 Control Register (offset = AEh) [reset = X]  
Figure 5-68. LDOA1_SWB2_CTRL Register  
Bit  
7
6
5
4
3
2
1
0
LDOA1_  
DISCHG[1]  
LDOA1_  
DISCHG[0]  
LDOA1_SWB2_  
SDWN_CONFIG  
LDOA1_  
VID[3]  
LDOA1_  
VID[2]  
LDOA1_  
VID[1]  
LDOA1_  
VID[0]  
LDOA1_  
SWB2_EN  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-56. LDOA1_SWB2_CTRL Register Descriptions  
Bit  
Field  
LDOA1_DISCHG[1:0]  
Type Reset  
Description  
7:6  
R/W  
X
LDOA1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
5
LDOA1_SWB2_SDWN_CON R/W  
FIG  
X
Control for Disabling LDOA1 or SWB2 (OTP dependent) during  
Emergency Shutdown. When LDOA1 is used in sequence and  
SWB1 and SWB2 are not merged, this will control SWB2.  
0: LDOA1 or SWB2 will turn off during Emergency Shutdown for  
factory-programmable duration of 1 ms, 5 ms, 10 ms, or 100 ms.  
1: LDOA1 or SWB2 is controlled by LDOA1_SWB2_EN bit only.  
LDOA1 for: OTP Dependent  
SWB2 for: OTP Dependent  
Unused for: OTP Dependent  
4:1  
0
LDOA1_VID[3:0]  
R/W  
R/W  
X
X
This field sets the LDOA1 regulator output regulation voltage.  
See Table 5-4 for VOUT options.  
LDOA1_SWB2_EN  
LDOA1 or SWB2 Enable Bit.  
0: Disable.  
1: Enable.  
LDOA1 for: OTP Dependent  
SWB2 for: OTP Dependent  
Unused for: OTP Dependent  
76  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.50 PG_STATUS1: 1st Power Good Status Register (offset = B0h) [reset = 0000 0000]  
Figure 5-69. PG_STATUS1 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
PGOOD  
SWA1_  
PGOOD  
BUCK6_  
PGOOD  
BUCK5_  
PGOOD  
BUCK4_  
PGOOD  
BUCK3_  
PGOOD  
BUCK2_  
PGOOD  
BUCK1_  
PGOOD  
Bit Name  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 5-57. PG_STATUS1 Register Descriptions  
Bit  
Field  
LDOA2_PGOOD  
Type Reset  
Description  
7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
LDOA2 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
6
5
4
3
2
1
0
SWA1_PGOOD  
BUCK6_PGOOD  
BUCK5_PGOOD  
BUCK4_PGOOD  
BUCK3_PGOOD  
BUCK2_PGOOD  
BUCK1_PGOOD  
SWA1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK6 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK5 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK4 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK3 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK2 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
77  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.51 PG_STATUS2: 2nd Power Good Status Register (offset = B1h) [reset = 0000 0000]  
Figure 5-70. PG_STATUS2 Register  
Bit  
7
6
5
4
3
2
1
0
LDO5  
_PGOOD  
LDOA1  
_PGOOD  
VTT  
_PGOOD  
SWB2  
_PGOOD  
SWB1  
_PGOOD  
LDOA3  
_PGOOD  
Bit Name  
RESERVED RESERVED  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 5-58. PG_STATUS2 Register Descriptions  
Bit  
Field  
LDO5_PGOOD  
Type Reset  
Description  
5
R
R
R
R
R
R
0
0
0
0
0
0
LDO5 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
4
3
2
1
0
LDOA1_PGOOD  
VTT_PGOOD  
LDOA1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
VTT LDO Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
SWB2_PGOOD  
SWB1_PGOOD  
LDOA3_PGOOD  
SWB2 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
SWB1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
LDOA3 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
78  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.52 PWR_FAULT_STATUS1: 1st Power Fault Status Register (offset = B2h) [reset =  
0000 0000]  
Figure 5-71. PWR_FAULT_STATUS1 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
PWRFLT  
SWA1_  
PWRFLT  
BUCK6_  
PWRFLT  
BUCK5_  
PWRFLT  
BUCK4_  
PWRFLT  
BUCK3_  
PWRFLT  
BUCK2_  
PWRFLT  
BUCK1_  
PWRFLT  
Bit Name  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-59. PWR_FAULT_STATUS1 Register Descriptions  
Bit  
Field  
LDOA2_PWRFLT  
Type Reset  
Description  
7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
This fields indicates that LDOA2 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
6
5
4
3
2
1
0
SWA1_PWRFLT  
BUCK6_PWRFLT  
BUCK5_PWRFLT  
BUCK4_PWRFLT  
BUCK3_PWRFLT  
BUCK2_PWRFLT  
BUCK1_PWRFLT  
This fields indicates that SWA1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK6 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK5 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK4 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK3 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK2 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
79  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.53 PWR_FAULT_STATUS2: 2nd Power Fault Status Register (offset = B3h) [reset =  
0000 0000]  
Figure 5-72. PWR_FAULT_STATUS2 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA1_  
PWRFLT  
VTT_  
PWRFLT  
SWB2_  
_PWRFLT  
SWB1_  
PWRFLT  
LDOA3_  
PWRFLT  
Bit Name  
RESERVED RESERVED RESERVED  
0
0
0
0
0
0
0
0
Access  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-60. PWR_FAULT_STATUS2 Register Descriptions  
Bit  
Field  
LDOA1_PWRFLT  
Type Reset  
Description  
4
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
This fields indicates that LDOA1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
3
2
1
0
VTT_PWRFLT  
This fields indicates that VTT LDO has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
SWB2_PWRFLT  
SWB1_PWRFLT  
LDOA3_PWRFLT  
This fields indicates that SWB2 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that SWB1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that LDOA3 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
80  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.54 TEMPCRIT: Temperature Fault Status Register (offset = B4h) [reset = 0000 0000]  
Asserted when an internal temperature sensor detects rise of die temperature above the CRITICAL  
temperature threshold (TCRIT). There are 5 temperature sensors across the die.  
Figure 5-73. TEMPCRIT Register  
Bit  
7
6
5
4
3
2
1
0
BOTTOM-  
RIGHT  
_CRIT  
TOP-RIGHT  
_CRIT  
TOP-LEFT  
_CRIT  
Bit Name  
RESERVED RESERVED RESERVED  
DIE_CRIT  
VTT_CRIT  
0
0
0
0
0
0
0
0
Access  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-61. TEMPCRIT Register Descriptions  
Bit  
Field  
Type Reset  
Description  
4
DIE_CRIT  
R/W  
R/W  
R/W  
0
0
0
Temperature of rest of die has exceeded TCRIT  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
.
3
2
VTT_CRIT  
Temperature of VTT LDO has exceeded TCRIT  
.
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
TOP-RIGHT_CRIT  
TOP-LEFT_CRIT  
Temperature of die Top-Right has exceeded TCRIT. Top-Right corner of die  
from top view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
1
0
R/W  
R/W  
0
0
Temperature of die Top-Left has exceeded TCRIT.Top-Left corner of die from  
top view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
BOTTOM-RIGHT_CRIT  
Temperature of die Bottom-Right has exceeded TCRIT. Bottom-Right corner of  
die from top view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
81  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.11.55 TEMPHOT: Temperature Hot Status Register (offset = B5h) [reset = 0000 0000]  
Asserted when an internal temperature sensor detects rise of die temperature above the HOT temperature  
threshold (THOT). There are 5 temperature sensors across the die.  
Figure 5-74. TEMPHOT Register  
Bit  
7
6
5
4
3
2
1
0
BOTTOM-  
RIGHT  
_HOT  
TOP-RIGHT  
_HOT  
TOP-LEFT  
_HOT  
Bit Name  
RESERVED RESERVED RESERVED  
DIE_HOT  
VTT_HOT  
0
0
0
0
0
0
0
0
Access  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-62. TEMPHOT Register Descriptions  
Bit  
Field  
Type Reset  
Description  
4
DIE_HOT  
R/W  
R/W  
R/W  
0
0
0
Temperature of rest of die has exceeded THOT  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
.
3
2
VTT_HOT  
Temperature of VTT LDO has exceeded THOT  
.
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
TOP-RIGHT_HOT  
TOP-LEFT_HOT  
Temperature of Top-Right has exceeded THOT. Top-Right corner of die from top  
view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
1
0
R/W  
R/W  
0
0
Temperature of Top-Left has exceeded THOT. Top-Left corner of die from top  
view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
BOTTOM-RIGHT_HOT  
Temperature of Bottom-Right has exceeded THOT. Bottom-Right corner of die  
from top view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
82  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.11.56 OC_STATUS: Overcurrent Fault Status Register (offset = B6h) [reset = 0000 0000]  
Asserted when overcurrent condition is detected from a LSD FET.  
Figure 5-75. OC_STATUS Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6  
_OC  
BUCK2  
_OC  
BUCK1  
_OC  
Bit Name  
RESERVED RESERVED RESERVED RESERVED RESERVED  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R/W  
R/W  
R/W  
Table 5-63. OC_STATUS Register Descriptions  
Bit  
Field  
Type Reset  
Description  
2
BUCK6_OC  
BUCK2_OC  
BUCK1_OC  
R/W  
R/W  
R/W  
0
0
0
BUCK6 LSD FET overcurrent has been detected.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
1
0
BUCK2 LSD FET overcurrent has been detected.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
BUCK1 LSD FET overcurrent has been detected.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
5.12 I2C Address: 0x38 Register Maps  
5.12.1 Register Map Summary  
This section describes the registers that can be accessed using I2C address 0x38. These registers can  
only be accessed by putting the device into programming mode. See the TPS65086100 OTP Memory  
Programming Guide for more information on putting the device into programming mode. It is  
recommended to use the OTP generator tool to make changes to these OTP settings. Do not attempt to  
write a RESERVED R/W bit to the opposite value. When the reset value of a bit register is 0bX, it means  
the bit value is coming from the OTP memory.  
NOTE  
There are additional registers not shown that are set by the OTP generator tool.  
Table 5-64.  
Address  
Name  
Short Description  
OTP control register for  
programming.  
02h  
OTP_CTRL1  
OTP control register for selecting  
OTP bank.  
03h  
OTP_CTRL2  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
BUCK1_CTRL_EN1  
BUCK1_CTRL_EN2  
BUCK1_CTRL_EN3  
BUCK2_CTRL_EN1  
BUCK2_CTRL_EN2  
BUCK2_CTRL_EN3  
BUCK3_CTRL_EN1  
BUCK3_CTRL_EN2  
BUCK3_CTRL_EN3  
BUCK4_CTRL_EN1  
BUCK4_CTRL_EN2  
BUCK1 enable control register 1.  
BUCK1 enable control register 2.  
BUCK1 enable control register 3.  
BUCK2 enable control register 1.  
BUCK2 enable control register 2.  
BUCK2 enable control register 3.  
BUCK3 enable control register 1.  
BUCK3 enable control register 2.  
BUCK3 enable control register 3.  
BUCK4 enable control register 1.  
BUCK4 enable control register 2.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
83  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
Table 5-64. (continued)  
Address  
Name  
Short Description  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
BUCK4_CTRL_EN3  
BUCK5_CTRL_EN1  
BUCK5_CTRL_EN2  
BUCK5_CTRL_EN3  
BUCK6_CTRL_EN1  
BUCK6_CTRL_EN2  
BUCK6_CTRL_EN3  
SWA1_CTRL_EN1  
SWA1_CTRL_EN2  
SWA1_CTRL_EN3  
LDOA2_CTRL_EN1  
LDOA2_CTRL_EN2  
LDOA2_CTRL_EN3  
LDOA3_CTRL_EN1  
LDOA3_CTRL_EN2  
LDOA3_CTRL_EN3  
SWB1_CTRL_EN1  
SWB1_CTRL_EN2  
SWB1_CTRL_EN3  
BUCK4 enable control register 3.  
BUCK5 enable control register 1.  
BUCK5 enable control register 2.  
BUCK5 enable control register 3.  
BUCK6 enable control register 1.  
BUCK6 enable control register 2.  
BUCK6 enable control register 3.  
SWA1 enable control register 1.  
SWA1 enable control register 2.  
SWA1 enable control register 3.  
LDOA2 enable control register 1.  
LDOA2 enable control register 2.  
LDOA2 enable control register 3.  
LDOA3 enable control register 1.  
LDOA3 enable control register 2.  
LDOA3 enable control register 3.  
SWB1 enable control register 1.  
SWB1 enable control register 2.  
SWB1 enable control register 3.  
SWB2 or LDOA1 enable control  
register 1.  
25h  
26h  
27h  
29h  
SWB2_LDOA1_CTRL_EN1  
SWB2_LDOA1_CTRL_EN2  
SWB2_LDOA1_CTRL_EN3  
SLP_PIN  
SWB2 or LDOA1 enable control  
register 2.  
SWB2 or LDOA1 enable control  
register 3.  
Sleep pin select for BUCK1-6,  
LDOA2, and LDOA3.  
2Ah  
5Fh  
OUTPUT_MODE  
GPO output mode control.  
I2C address control  
I2C_SLAVE_ADDR  
84  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.2 OTP_CTRL1 (offset = 02h) [reset = 0010 0000]  
Figure 5-76. OTP_CTRL1 Register  
Bit  
7
6
5
4
3
2
1
0
PROGRAMM  
ING_STATE  
PROGRAM_  
OTP  
Bit Name  
RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED  
TPS65086100  
Access  
0
0
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-65. OTP_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
PROGRAMMING_STATE  
R/W  
0
0: Programming mode not enabled (unless 7 V is applied to CTL4 pin).  
1: Programming mode enabled, regardless of CTL4 pin voltage.  
1
PROGRAM_OTP  
R/W  
0
Burns current register settings into selected OTP bank. Self clearing.  
0: Not asserted.  
1: Asserted.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
85  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.3 OTP_CTRL2 (offset = 03h) [reset = X]  
Figure 5-77. OTP_CTRL2 Register  
Bit  
7
6
5
4
3
2
1
0
OTP_  
BANK  
Bit Name  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-66. OTP_CTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
R/W  
Description  
0
OTP_BANK  
X
Determines which OTP bank to program into when PROGRAM_OTP is  
asserted.  
0: Bank 0.  
1: Bank 1.  
86  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.4 BUCK1_CTRL_EN1 (offset = 07h) [reset = X]  
Figure 5-78. BUCK1_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK1_  
LDOA3_  
PGM  
BUCK1_  
LDOA2_  
PGM  
BUCK1_  
BUCK6_  
PGM  
BUCK1_  
BUCK5_  
PGM  
BUCK1_  
BUCK4_  
PGM  
BUCK1_  
BUCK3_  
PGM  
BUCK1_  
BUCK2_  
PGM  
BUCK1_  
SWA1_PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-67. BUCK1_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
BUCK1_LDOA3_PGM  
BUCK1_LDOA2_PGM  
BUCK1_SWA1_PGM  
BUCK1_BUCK6_PGM  
BUCK1_BUCK5_PGM  
BUCK1_BUCK4_PGM  
BUCK1_BUCK3_PGM  
BUCK1_BUCK2_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
SWA1 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: BUCK6 PGOOD is part of Enable Logic.  
1: BUCK6 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
87  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.5 BUCK1_CTRL_EN2 (offset = 08h) [reset = X]  
Figure 5-79. BUCK1_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK1_  
PINEN_  
SEL[2]  
BUCK1_  
PINEN_  
SEL[1]  
BUCK1_  
PINEN_  
SEL[0]  
BUCK1_  
SWB2_LDO  
A1_PGM  
BUCK1_  
STEP_SIZE  
BUCK1_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED  
TPS65086100  
Access  
1
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-68. BUCK1_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5
BUCK1_STEP_SIZE(1)  
R/W  
X
BUCK1 step size.  
0: 10 mV  
1: 25 mV  
4:2  
BUCK1_PINEN_SEL[2:0]  
R/W  
X
BUCK1 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
BUCK1_SWB2_LDOA1_PG R/W  
M
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
BUCK1_SWB1_PGM  
R/W  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
(1) Should only be changed using the OTP generator tool.  
88  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.6 BUCK1_CTRL_EN3 (offset = 09h) [reset = X]  
Figure 5-80. BUCK1_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK1_  
FALLING_  
EDGE_  
BUCK1_  
FALLING_  
EDGE_  
BUCK1_  
FALLING_  
EDGE_  
BUCK1_  
RISING_  
EDGE_  
DLY[2]  
BUCK1_  
RISING_  
EDGE_  
DLY[1]  
BUCK1_  
RISING_  
EDGE_  
DLY[0]  
Bit Name  
RESERVED RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-69. BUCK1_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
BUCK1_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of BUCK1 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
BUCK1_RISING  
_EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of BUCK1 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
89  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.7 BUCK2_CTRL_EN1 (offset = 0Ah) [reset = X]  
Figure 5-81. BUCK2_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK2_  
LDOA3_  
PGM  
BUCK2_  
LDOA2_  
PGM  
BUCK2_  
BUCK6_  
PGM  
BUCK2_  
BUCK5_  
PGM  
BUCK2_  
BUCK4_  
PGM  
BUCK2_  
BUCK3_  
PGM  
BUCK2_  
BUCK1_  
PGM  
BUCK2_  
SWA1_PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-70. BUCK2_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
BUCK2_LDOA3_PGM  
BUCK2_LDOA2_PGM  
BUCK2_SWA1_PGM  
BUCK2_BUCK6_PGM  
BUCK2_BUCK5_PGM  
BUCK2_BUCK4_PGM  
BUCK2_BUCK3_PGM  
BUCK2_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
SWA1 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: BUCK6 PGOOD is part of Enable Logic.  
1: BUCK6 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
90  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.8 BUCK2_CTRL_EN2 (offset = 0Bh) [reset = X]  
Figure 5-82. BUCK2_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK2_  
PINEN_  
SEL[2]  
BUCK2_  
PINEN_  
SEL[1]  
BUCK2_  
PINEN_  
SEL[0]  
BUCK2_  
SWB2_LDO  
A1_PGM  
BUCK2_  
STEP_SIZE  
BUCK2_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED  
TPS65086100  
Access  
1
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-71. BUCK2_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5
BUCK2_STEP_SIZE(1)  
R/W  
X
BUCK2 step size.  
0: 10 mV  
1: 25 mV  
4:2  
BUCK2_PINEN_SEL[2:0]  
R/W  
X
BUCK2 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
BUCK2_SWB2_LDOA1_PG R/W  
M
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
BUCK2_SWB1_PGM  
R/W  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
(1) Should only be changed using the OTP generator tool.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
91  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.9 BUCK2_CTRL_EN3 (offset = 0Ch) [reset = X]  
Figure 5-83. BUCK2_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK2_  
FALLING_  
EDGE_  
BUCK2_  
FALLING_  
EDGE_  
BUCK2_  
FALLING_  
EDGE_  
BUCK2_  
RISING_  
EDGE_  
DLY[2]  
BUCK2_  
RISING_  
EDGE_  
DLY[1]  
BUCK2_  
RISING_  
EDGE_  
DLY[0]  
Bit Name  
RESERVED RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-72. BUCK2_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
BUCK2_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of BUCK2 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
BUCK2_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of BUCK2 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
92  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.10 BUCK3_CTRL_EN1 (offset = 0Ah) [reset = X]  
Figure 5-84. BUCK3_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK3_  
LDOA3_  
PGM  
BUCK3_  
LDOA2_  
PGM  
BUCK3_  
BUCK6_  
PGM  
BUCK3_  
BUCK5_  
PGM  
BUCK3_  
BUCK4_  
PGM  
BUCK3_  
BUCK2_  
PGM  
BUCK3_  
BUCK1_  
PGM  
BUCK3_  
SWA1_PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-73. BUCK3_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
BUCK3_LDOA3_PGM  
BUCK3_LDOA2_PGM  
BUCK3_SWA1_PGM  
BUCK3_BUCK6_PGM  
BUCK3_BUCK5_PGM  
BUCK3_BUCK4_PGM  
BUCK3_BUCK2_PGM  
BUCK3_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
SWA1 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: BUCK6 PGOOD is part of Enable Logic.  
1: BUCK6 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
93  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.11 BUCK3_CTRL_EN2 (offset = 0Eh) [reset = X]  
Figure 5-85. BUCK3_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK3_  
PINEN_  
SEL[2]  
BUCK3_  
PINEN_  
SEL[1]  
BUCK3_  
PINEN_  
SEL[0]  
BUCK3_  
SWB2_LDO  
A1_PGM  
BUCK3_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-74. BUCK3_CTRL_EN2 Register Descriptions  
Bit  
Field  
BUCK3_PINEN_SEL[2:0]  
Type Reset  
Description  
4:2  
R/W  
X
BUCK3 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
BUCK3_SWB2_LDOA1_PG R/W  
M
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
BUCK3_SWB1_PGM  
R/W  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
94  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.12 BUCK3_CTRL_EN3 (offset = 0Fh) [reset = X]  
Figure 5-86. BUCK3_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK3_  
FALLING_  
EDGE_  
BUCK3_  
FALLING_  
EDGE_  
BUCK3_  
FALLING_  
EDGE_  
BUCK3_  
RISING_  
EDGE_  
DLY[2]  
BUCK3_  
RISING_  
EDGE_  
DLY[1]  
BUCK3_  
RISING_  
EDGE_  
DLY[0]  
Bit Name  
RESERVED RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-75. BUCK3_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
BUCK3_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of BUCK3 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
BUCK3_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of BUCK3 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
95  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.13 BUCK4_CTRL_EN1 (offset = 10h) [reset = X]  
Figure 5-87. BUCK4_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_  
LDOA3_  
PGM  
BUCK4_  
LDOA2_  
PGM  
BUCK4_  
BUCK6_  
PGM  
BUCK4_  
BUCK5_  
PGM  
BUCK4_  
BUCK3_  
PGM  
BUCK4_  
BUCK2_  
PGM  
BUCK4_  
BUCK1_  
PGM  
BUCK4_  
SWA1_PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-76. BUCK4_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
BUCK4_LDOA3_PGM  
BUCK4_LDOA2_PGM  
BUCK4_SWA1_PGM  
BUCK4_BUCK6_PGM  
BUCK4_BUCK5_PGM  
BUCK4_BUCK3_PGM  
BUCK4_BUCK2_PGM  
BUCK4_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
SWA1 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: BUCK6 PGOOD is part of Enable Logic.  
1: BUCK6 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
96  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.14 BUCK4_CTRL_EN2 (offset = 11h) [reset = X]  
Figure 5-88. BUCK4_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_  
PINEN_  
SEL[2]  
BUCK4_  
PINEN_  
SEL[1]  
BUCK4_  
PINEN_  
SEL[0]  
BUCK4_  
SWB2_LDO  
A1_PGM  
BUCK4_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED RESERVED  
TPS65086100  
Access  
1
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-77. BUCK4_CTRL_EN2 Register Descriptions  
Bit  
Field  
BUCK4_PINEN_SEL[2:0]  
Type Reset  
Description  
4:2  
R/W  
X
BUCK4 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
BUCK4_SWB2_LDOA1_PG R/W  
M
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
BUCK4_SWB1_PGM  
R/W  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
97  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.15 BUCK4_CTRL_EN3 (offset = 12h) [reset = X]  
Figure 5-89. BUCK4_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_  
FALLING_  
EDGE_  
BUCK4_  
FALLING_  
EDGE_  
BUCK4_  
FALLING_  
EDGE_  
BUCK4_  
RISING_  
EDGE_  
DLY[2]  
BUCK4_  
RISING_  
EDGE_  
DLY[1]  
BUCK4_  
RISING_  
EDGE_  
DLY[0]  
Bit Name  
RESERVED RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-78. BUCK4_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
BUCK4_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of BUCK4 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
BUCK4_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of BUCK4 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
98  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.16 BUCK5_CTRL_EN1 (offset = 13h) [reset = X]  
Figure 5-90. BUCK5_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK5_  
LDOA3_  
PGM  
BUCK5_  
LDOA2_  
PGM  
BUCK5_  
BUCK6_  
PGM  
BUCK5_  
BUCK4_  
PGM  
BUCK5_  
BUCK3_  
PGM  
BUCK5_  
BUCK2_  
PGM  
BUCK5_  
BUCK1_  
PGM  
BUCK5_  
SWA1_PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-79. BUCK5_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
BUCK5_LDOA3_PGM  
BUCK5_LDOA2_PGM  
BUCK5_SWA1_PGM  
BUCK5_BUCK6_PGM  
BUCK5_BUCK4_PGM  
BUCK5_BUCK3_PGM  
BUCK5_BUCK2_PGM  
BUCK5_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
SWA1 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: BUCK6 PGOOD is part of Enable Logic.  
1: BUCK6 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
99  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.17 BUCK5_CTRL_EN2 (offset = 14h) [reset = X]  
Figure 5-91. BUCK5_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK5_  
PINEN_  
SEL[2]  
BUCK5_  
PINEN_  
SEL[1]  
BUCK5_  
PINEN_  
SEL[0]  
BUCK5_  
SWB2_LDO  
A1_PGM  
BUCK5_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-80. BUCK5_CTRL_EN2 Register Descriptions  
Bit  
Field  
BUCK5_PINEN_SEL[2:0]  
Type Reset  
Description  
4:2  
R/W  
X
BUCK5 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
BUCK5_SWB2_LDOA1_PG R/W  
M
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
BUCK5_SWB1_PGM  
R/W  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
100  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.18 BUCK5_CTRL_EN3 (offset = 15h) [reset = X]  
Figure 5-92. BUCK5_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK5_  
FALLING_  
EDGE_  
BUCK5_  
FALLING_  
EDGE_  
BUCK5_  
FALLING_  
EDGE_  
BUCK5_  
RISING_  
EDGE_  
DLY[2]  
BUCK5_  
RISING_  
EDGE_  
DLY[1]  
BUCK5_  
RISING_  
EDGE_  
DLY[0]  
Bit Name  
RESERVED RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-81. BUCK5_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
BUCK5_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of BUCK5 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
BUCK5_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of BUCK5 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
101  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.19 BUCK6_CTRL_EN1 (offset = 16h) [reset = X]  
Figure 5-93. BUCK6_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6_  
LDOA3_  
PGM  
BUCK6_  
LDOA2_  
PGM  
BUCK6_  
BUCK5_  
PGM  
BUCK6_  
BUCK4_  
PGM  
BUCK6_  
BUCK3_  
PGM  
BUCK6_  
BUCK2_  
PGM  
BUCK6_  
BUCK1_  
PGM  
BUCK6_  
SWA1_PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-82. BUCK6_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
BUCK6_LDOA3_PGM  
BUCK6_LDOA2_PGM  
BUCK6_SWA1_PGM  
BUCK6_BUCK5_PGM  
BUCK6_BUCK4_PGM  
BUCK6_BUCK3_PGM  
BUCK6_BUCK2_PGM  
BUCK6_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
SWA1 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
102  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.20 BUCK6_CTRL_EN2 (offset = 17h) [reset = X]  
Figure 5-94. BUCK6_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6_  
PINEN_  
SEL[2]  
BUCK6_  
PINEN_  
SEL[1]  
BUCK6_  
PINEN_  
SEL[0]  
BUCK6_  
SWB2_LDO  
A1_PGM  
BUCK6_  
STEP_SIZE  
BUCK6_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED  
TPS65086100  
Access  
1
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-83. BUCK6_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5
BUCK6_STEP_SIZE(1)  
R/W  
X
BUCK6 step size.  
0: 10 mV  
1: 25 mV  
4:2  
BUCK6_PINEN_SEL[2:0]  
R/W  
X
BUCK6 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
BUCK6_SWB2_LDOA1_PG R/W  
M
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
BUCK6_SWB1_PGM  
R/W  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
(1) Should only be changed using the OTP generator tool.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
103  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.21 BUCK6_CTRL_EN3 (offset = 18h) [reset = X]  
Figure 5-95. BUCK6_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6_  
FALLING_  
EDGE_  
BUCK6_  
FALLING_  
EDGE_  
BUCK6_  
FALLING_  
EDGE_  
BUCK6_  
RISING_  
EDGE_  
DLY[2]  
BUCK6_  
RISING_  
EDGE_  
DLY[1]  
BUCK6_  
RISING_  
EDGE_  
DLY[0]  
Bit Name  
RESERVED RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-84. BUCK6_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
BUCK6_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of BUCK6 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
BUCK6_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of BUCK6 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
104  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.22 SWA1_CTRL_EN1 (offset = 19h) [reset = X]  
Figure 5-96. SWA1_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
SWA1_  
LDOA3_  
PGM  
SWA1_  
LDOA2_  
PGM  
SWA1_  
BUCK6_  
PGM  
SWA1_  
BUCK5_  
PGM  
SWA1_  
BUCK4_  
PGM  
SWA1_  
BUCK3_  
PGM  
SWA1_  
BUCK2_  
PGM  
SWA1_  
BUCK1_  
PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-85. SWA1_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
SWA1_LDOA3_PGM  
SWA1_LDOA2_PGM  
SWA1_BUCK6_PGM  
SWA1_BUCK5_PGM  
SWA1_BUCK4_PGM  
SWA1_BUCK3_PGM  
SWA1_BUCK2_PGM  
SWA1_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
105  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.23 SWA1_CTRL_EN2 (offset = 1Ah) [reset = X]  
Figure 5-97. SWA1_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
SWA1_  
PINEN_  
SEL[2]  
SWA1_  
PINEN_  
SEL[1]  
SWA1_  
PINEN_  
SEL[0]  
SWA1_  
SWB2_LDO  
A1_PGM  
SWA1_  
PG_SEL[1]  
SWA1_  
PG_SEL[0]  
SWA1_  
SWB1_PGM  
Bit Name  
RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-86. SWA1_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
6:5  
SWA1_PG_SEL[1:0]  
R/W  
X
SWA1 PGOOD select..  
00: 1.5 V  
01: 1.8 V  
10: 2.5 V  
11: 3.3 V  
4:2  
SWA1_PINEN_SEL[2:0]  
R/W  
X
SWA1 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
SWA1_SWB2_LDOA1_PGM R/W  
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
SWA1_SWB1_PGM  
R/W  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
106  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.24 SWA1_CTRL_EN3 (offset = 1Bh) [reset = X]  
Figure 5-98. SWA1_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
SWA1_  
FALLING_  
EDGE_  
SWA1_  
FALLING_  
EDGE_  
SWA1_  
FALLING_  
EDGE_  
SWA1_  
RISING_  
EDGE_  
DLY[2]  
SWA1_  
RISING_  
EDGE_  
DLY[1]  
SWA1_  
RISING_  
EDGE_  
DLY[0]  
VTT_EN  
_SEL  
Bit Name  
RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-87. SWA1_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
6
VTT_EN_SEL  
R/W  
X
Pin Select for VTT EN Logic  
0: CTL3  
1: CTL6  
5:3  
SWA1_FALLING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for falling edge of SWA1 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
SWA1_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of SWA1 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
107  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.25 LDOA2_CTRL_EN1 (offset = 1Ch) [reset = X]  
Figure 5-99. LDOA2_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
LDOA3_  
PGM  
LDOA2_  
SWA1_  
PGM  
LDOA2_  
BUCK6_  
PGM  
LDOA2_  
BUCK5_  
PGM  
LDOA2_  
BUCK4_  
PGM  
LDOA2_  
BUCK3_  
PGM  
LDOA2_  
BUCK2_  
PGM  
LDOA2_  
BUCK1_  
PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-88. LDOA2_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_LDOA3_PGM  
LDOA2_SWA1_PGM  
LDOA2_BUCK6_PGM  
LDOA2_BUCK5_PGM  
LDOA2_BUCK4_PGM  
LDOA2_BUCK3_PGM  
LDOA2_BUCK2_PGM  
LDOA2_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
SWA1 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
108  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.26 LDOA2_CTRL_EN2 (offset = 1Dh) [reset = X]  
Figure 5-100. LDOA2_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
PINEN_  
SEL[2]  
LDOA2_  
PINEN_  
SEL[1]  
LDOA2_  
PINEN_  
SEL[0]  
LDOA2_  
SWB2_LDO  
A1_PGM  
LDOA2_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED RESERVED  
TPS65086100  
Access  
0
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-89. LDOA2_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
4:2  
LDOA2_PINEN_SEL[2:0]  
R/W  
X
LDOA2 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
LDOA2_SWB2_LDOA1_PG  
M
R/W  
R/W  
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
LDOA2_SWB1_PGM  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
109  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.27 LDOA2_CTRL_EN3 (offset = 1Eh) [reset = X]  
Figure 5-101. LDOA2_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
FALLING_  
EDGE_  
LDOA2_  
FALLING_  
EDGE_  
LDOA2_  
FALLING_  
EDGE_  
LDOA2_  
RISING_  
EDGE_  
DLY[2]  
LDOA2_  
RISING_  
EDGE_  
DLY[1]  
LDOA2_  
RISING_  
EDGE_  
DLY[0]  
ECLDO_  
DLY[1]  
ECLDO_  
DLY[0]  
Bit Name  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-90. LDOA2_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:6  
LDOA1_SWB2_  
DLY[1:0]  
R/W  
X
Sets the off time for LDOA1 during shutdown (all Values have 10% variations).  
00: 1 ms  
01: 5 ms  
10: 10 ms  
11: 100 ms  
5:3  
LDOA2_FALLING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for falling edge of LDOA2 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
LDOA2_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of LDOA2 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
110  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.28 LDOA3_CTRL_EN1 (offset = 1Fh) [reset = X]  
Figure 5-102. LDOA3_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA3_  
LDOA2_  
PGM  
LDOA3_  
SWA1_  
PGM  
LDOA3_  
BUCK6_  
PGM  
LDOA3_  
BUCK5_  
PGM  
LDOA3_  
BUCK4_  
PGM  
LDOA3_  
BUCK3_  
PGM  
LDOA3_  
BUCK2_  
PGM  
LDOA3_  
BUCK1_  
PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-91. LDOA3_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA3_LDOA2_PGM  
LDOA3_SWA1_PGM  
LDOA3_BUCK6_PGM  
LDOA3_BUCK5_PGM  
LDOA3_BUCK4_PGM  
LDOA3_BUCK3_PGM  
LDOA3_BUCK2_PGM  
LDOA3_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA2 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
SWA1 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
111  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.29 LDOA3_CTRL_EN2 (offset = 20h) [reset = X]  
Figure 5-103. LDOA3_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6_  
VSEL_  
OPTION  
LDOA3_  
PINEN_  
SEL[2]  
LDOA3_  
PINEN_  
SEL[1]  
LDOA3_  
PINEN_  
SEL[0]  
LDOA3_  
SWB2_LDO  
A1_PGM  
LDOA3_  
SWB1_PGM  
Bit Name  
RESERVED RESERVED  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-92. LDOA3_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
BUCK6_VSEL_OPTION  
R/W  
X
Determines whether high level on CTRL2 can set BUCK6 to 1.2 V. If step size  
is 25 mV the voltage will be 2.4 V. SLP pin will override this voltage.  
0: CTRL2 has no effect.  
1: CTRL2 controls output voltage.  
4:2  
LDOA3_PINEN_SEL[2:0]  
R/W  
X
LDOA3 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
LDOA3_SWB2_LDOA1_PG  
M
R/W  
R/W  
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
LDOA3_SWB1_PGM  
SWB1 PGOOD masked  
0: SWB1 PGOOD is part of Enable Logic.  
1: SWB1 PGOOD is masked and is not part of enable logic.  
112  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.30 LDOA3_CTRL_EN3 (offset = 21h) [reset = X]  
Figure 5-104. LDOA3_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA3_  
FALLING_  
EDGE_  
LDOA3_  
FALLING_  
EDGE_  
LDOA3_  
FALLING_  
EDGE_  
LDOA3_  
RISING_  
EDGE_  
DLY[2]  
LDOA3_  
RISING_  
EDGE_  
DLY[1]  
LDOA3_  
RISING_  
EDGE_  
DLY[0]  
LDOA1_  
SWB2  
Bit Name  
SWB12_EN  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-93. LDOA3_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
SWB12_EN  
R/W  
X
If set, combines the Enable logic for SWB1 and SWB2.  
0: Normal functionality.  
1: Enable logic for SWB1 is also used to enable SWB2.  
6
LDOA1_SWB2  
R/W  
X
Used to swap enable logic for LDOA1 and SWB2.  
0: Normal functionality.  
1: Enable logic for SWB2 (SWB2_LDOA1_CTRL_EN1,  
SWB2_LDOA1_CTRL_EN2, SWB2_LDOA1_CTRL_EN3, SWB2_LDOA1_msK,  
SWB2_LDOA1_EN, SWB2_LDOA1_DIS) is used for LDOA1 and Enable logic  
for LDOA1 (LDOA1_SWB2_EN,  
LDOA1_SWB2_DLY,LDOA1_SWB2_SDWN_CON FIG) is used for SWB2.  
5:3  
LDOA3_FALLING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for falling edge of LDOA3 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
LDOA3_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of LDOA3 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
113  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.31 SWB1_CTRL_EN1 (offset = 22h) [reset = X]  
Figure 5-105. SWB1_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
SWB1_  
LDOA2_  
PGM  
SWB1_  
SWA1_  
PGM  
SWB1_  
BUCK6_  
PGM  
SWB1_  
BUCK5_  
PGM  
SWB1_  
BUCK4_  
PGM  
SWB1_  
BUCK3_  
PGM  
SWB1_  
BUCK2_  
PGM  
SWB1_  
BUCK1_  
PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-94. SWB1_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
SWB1_LDOA2_PGM  
SWB1_SWA1_PGM  
SWB1_BUCK6_PGM  
SWB1_BUCK5_PGM  
SWB1_BUCK4_PGM  
SWB1_BUCK3_PGM  
SWB1_BUCK2_PGM  
SWB1_BUCK1_PGM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA2 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
SWA1 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
BUCK6 PGOOD masked  
0: BUCK6 PGOOD is part of Enable Logic.  
1: BUCK6 PGOOD is masked and is not part of enable logic.  
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
114  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.32 SWB1_CTRL_EN2 (offset = 23h) [reset = X]  
Figure 5-106. SWB1_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
SWB1_  
PINEN_  
SEL[2]  
SWB1_  
PINEN_  
SEL[1]  
SWB1_  
PINEN_  
SEL[0]  
SWB1_  
SWB2_LDO LDOA3_PG  
A1_PGM  
SWB1_  
SWB1_  
PG_SEL[1]  
SWB1_  
PG_SEL[0]  
Bit Name  
RESERVED  
M
0
TPS65086100  
Access  
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-95. SWB1_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
6:5  
SWB1_PG_SEL[2:0]  
R/W  
X
SWB1 PGOOD select..  
00: 1.5 V  
01: 1.8 V  
10: 2.5 V  
11: 3.3 V  
4:2  
SWB1_PINEN_SEL[2:0]  
R/W  
X
SWB1 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
SWB1_SWB2_LDOA1_PGM R/W  
X
X
SWB2_LDOA1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
SWB1_LDOA3_PGM  
R/W  
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
115  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.33 SWB1_CTRL_EN3 (offset = 24h) [reset = X]  
Figure 5-107. SWB1_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
SWB1_  
FALLING_  
EDGE_  
SWB1_  
FALLING_  
EDGE_  
SWB1_  
FALLING_  
EDGE_  
SWB1_  
RISING_  
EDGE_  
DLY[2]  
SWB1_  
RISING_  
EDGE_  
DLY[1]  
SWB1_  
RISING_  
EDGE_  
DLY[0]  
Bit Name  
RESERVED RESERVED  
DLY[2]  
DLY[1]  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-96. SWB1_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
SWB1_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of SWB1 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
SWB1_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of SWB1 Enable pin (all Values have 10% variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
116  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.34 SWB2_LDOA1_CTRL_EN1 (offset = 25h) [reset = X]  
Figure 5-108. SWB2_LDOA1_CTRL_EN1 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO  
A1_  
LDOA2_  
PGM  
A1_  
SWA1_  
PGM  
A1_  
BUCK6_PG  
M
A1_  
BUCK5_  
PGM  
A1_  
BUCK4_  
PGM  
A1_  
BUCK3_  
PGM  
A1_  
BUCK2_  
PGM  
A1_  
BUCK1_  
PGM  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-97. SWB2_LDOA1_CTRL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
R/W  
Description  
7
SWB2_LDOA1_LDOA2_PG  
M
X
X
X
X
X
X
X
X
LDOA2 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
6
5
4
3
2
1
0
SWB2_LDOA1_SWA1_PGM R/W  
SWA1 PGOOD masked  
0: LDOA2 PGOOD is part of Enable Logic.  
1: LDOA2 PGOOD is masked and is not part of enable logic.  
SWB2_LDOA1_BUCK6_PG R/W  
M
BUCK6 PGOOD masked  
0: SWA1 PGOOD is part of Enable Logic.  
1: SWA1 PGOOD is masked and is not part of enable logic.  
SWB2_LDOA1_BUCK5_PG R/W  
M
BUCK5 PGOOD masked  
0: BUCK5 PGOOD is part of Enable Logic.  
1: BUCK5 PGOOD is masked and is not part of enable logic.  
SWB2_LDOA1_BUCK4_PG R/W  
M
BUCK4 PGOOD masked  
0: BUCK4 PGOOD is part of Enable Logic.  
1: BUCK4 PGOOD is masked and is not part of enable logic.  
SWB2_LDOA1_BUCK3_PG R/W  
M
BUCK3 PGOOD masked  
0: BUCK3 PGOOD is part of Enable Logic.  
1: BUCK3 PGOOD is masked and is not part of enable logic.  
SWB2_LDOA1_BUCK2_PG R/W  
M
BUCK2 PGOOD masked  
0: BUCK2 PGOOD is part of Enable Logic.  
1: BUCK2 PGOOD is masked and is not part of enable logic.  
SWB2_LDOA1_BUCK1_PG R/W  
M
BUCK1 PGOOD masked  
0: BUCK1 PGOOD is part of Enable Logic.  
1: BUCK1 PGOOD is masked and is not part of enable logic.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
117  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.35 SWB2_LDOA1_CTRL_EN2 (offset = 26h) [reset = X]  
Figure 5-109. SWB2_LDOA1_CTRL_EN2 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO SWB2_LDO SWB2_LDO  
SWB2_LDO  
A1_  
LDOA3_PG  
M
SWB2_LDO SWB2_LDO  
SWB2_LDO  
A1_  
SWB1_PGM  
A1_  
A1_  
A1_  
Bit Name  
RESERVED  
A1_  
A1_  
PINEN_  
SEL[2]  
PINEN_  
SEL[1]  
PINEN_  
SEL[0]  
PG_SEL[1]  
PG_SEL[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-98. SWB2_LDOA1_CTRL_EN2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
6:5  
SWB2_LDOA1_PG_SEL[1:0] R/W  
X
SWB2_LDOA1 PGOOD select..  
00: 1.5 V  
01: 1.8 V  
10: 2.5 V  
11: 3.3 V  
4:2  
SWB2_LDOA1_PINEN_  
SEL[2:0]  
R/W  
X
SWB2_LDOA1 Enable pin select.  
000: CTL1  
001: CTL2  
010: CTL5  
011: CTL4  
100: CTL3  
101: CTL3 and CTL4  
110: CTL6  
111: 1 is inserted into CTL MUX. No pin is required to enable.  
1
0
SWB2_LDOA1_SWB1_PGM R/W  
X
X
SWB1 PGOOD masked  
0: SWB2_LDOA1 PGOOD is part of Enable Logic.  
1: SWB2_LDOA1 PGOOD is masked and is not part of enable logic.  
SWB2_LDOA1_LDOA3_PG  
M
R/W  
LDOA3 PGOOD masked  
0: LDOA3 PGOOD is part of Enable Logic.  
1: LDOA3 PGOOD is masked and is not part of enable logic.  
118  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.36 SWB2_LDOA1_CTRL_EN3 (offset = 27h) [reset = X]  
Figure 5-110. SWB2_LDOA1_CTRL_EN3 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO SWB2_LDO  
A1_  
A1_  
A1_  
A1_  
A1_  
A1_  
Bit Name  
RESERVED RESERVED  
FALLING_  
EDGE_  
DLY[2]  
FALLING_  
EDGE_  
DLY[1]  
FALLING_  
EDGE_  
DLY[0]  
RISING_  
EDGE_  
DLY[2]  
RISING_  
EDGE_  
DLY[1]  
RISING_  
EDGE_  
DLY[0]  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-99. SWB2_LDOA1_CTRL_EN3 Register Descriptions  
Bit  
Field  
Type Reset  
R/W X  
Description  
5:3  
SWB2_LDOA1_FALLING_  
EDGE_DLY[2:0]  
Delay for falling edge of SWB2_LDOA1 Enable pin (all Values have 10%  
variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
2:0  
SWB2_LDOA1_RISING_  
EDGE_DLY[2:0]  
R/W  
X
Delay for rising edge of SWB2_LDOA1 Enable pin (all Values have 10%  
variations).  
000: No Delay.  
001: 2 ms Delay.  
010: 4 ms Delay.  
011: 8 ms Delay.  
100: 16 ms Delay.  
101: 24 ms Delay.  
110: 32 ms Delay.  
111: 64 ms Delay.  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
119  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.37 SLP_PIN (offset = 29h) [reset = X]  
Figure 5-111. SLP_PIN Register  
Bit  
7
6
5
4
3
2
1
0
LDOA3_  
SLP_PIN  
LDOA2_  
SLP_PIN  
BUCK6_  
SLP_PIN  
BUCK5_  
SLP_PIN  
BUCK4_  
SLP_PIN  
BUCK3_  
SLP_PIN  
BUCK2_  
SLP_PIN  
BUCK1_  
SLP_PIN  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-100. SLP_PIN Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA3_SLP_PIN  
LDOA2_SLP_PIN  
BUCK6_SLP_PIN  
BUCK5_SLP_PIN  
BUCK4_SLP_PIN  
BUCK3_SLP_PIN  
BUCK2_SLP_PIN  
BUCK1_SLP_PIN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA3 SLP pin.  
0: CTL3  
1: CTL6  
6
5
4
3
2
1
0
LDOA2 SLP pin.  
0: CTL3  
1: CTL6  
BUCK6 SLP pin.  
0: CTL3  
1: CTL6  
BUCK5 SLP pin.  
0: CTL3  
1: CTL6  
BUCK4 SLP pin.  
0: CTL3  
1: CTL6  
BUCK3 SLP pin.  
0: CTL3  
1: CTL6  
BUCK2 SLP pin.  
0: CTL3  
1: CTL6  
BUCK1 SLP pin.  
0: CTL3  
1: CTL6  
120  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
5.12.38 OUTPUT_MODE (offset = 2Ah) [reset = X]  
Figure 5-112. OUTPUT_MODE Register  
Bit  
7
GPO4_CTL  
0
6
GPO3_CTL  
0
5
GPO2_CTL  
0
4
3
2
GPO3_MD  
0
1
0
Bit Name  
TPS65086100  
Access  
GPO1_CTL RESERVED  
GPO2_MD  
GPO1_MD  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-101. OUTPUT_MODE Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
GPO4_CTL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
GPO4 output control.  
0: PGOOD logic  
1: I2C register  
6
5
4
2
1
0
GPO3_CTL  
GPO2_CTL  
GPO1_CTL  
GPO3_MD  
GPO2_MD  
GPO1_MD  
GPO3 output control.  
0: PGOOD logic  
1: I2C register  
GPO2 output control.  
0: PGOOD logic  
1: I2C register  
GPO1 output control.  
0: PGOOD logic  
1: I2C register  
GPO3 mode.  
0: Push-pull  
1: Open drain  
GPO2 mode.  
0: Push-pull  
1: Open drain  
GPO1 mode.  
0: Push-pull  
1: Open drain  
Copyright © 2018, Texas Instruments Incorporated  
Detailed Description  
121  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
5.12.39 I2C_SLAVE_ADDR (offset = 5Fh) [reset = X]  
Figure 5-113. I2C_SLAVE_ADDR Register  
Bit  
7
6
5
4
3
2
1
0
SLV_  
ADDR_SEL  
SLV_  
ADDR[6]  
SLV_  
ADDR[5]  
SLV_  
ADDR[4]  
SLV_  
ADDR[3]  
SLV_  
ADDR[2]  
SLV_  
ADDR[1]  
SLV_  
ADDR[0]  
Bit Name  
TPS65086100  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 5-102. I2C_SLAVE_ADDR Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
SLV_ADDR_SEL  
R/W  
X
Slave address select bit.  
0: Use default 0x5E address  
1: Use programmable slave address  
6:0  
SLV_ADDR[6:0]  
R/W  
X
6 bit programmable slave address.  
0000000: Reserved due to I2C standard specifications.  
...  
0001000: Reserved due to I2C standard specifications.  
0001001: 0x08  
...  
0110111: 0x37  
0111000: Reserved for registers accessible by I2C address 0x38.  
0111001: 0x39  
...  
1110111: 0x77  
1111000: Reserved due to I2C standard specifications.  
...  
1111111: Reserved due to I2C standard specifications.  
122  
Detailed Description  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
6 Applications, Implementation, and Layout  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Application Information  
For a detailed description about application usage, refer to the TPS65086x Design Guide and to the  
TPS65086x Schematic and Layout Checklist.  
6.2 Typical Application  
6.2.1 Typical Application Example  
This section describes the general application information and provides a more detailed description on the  
PMIC that powers a generic multicore-processor application. An example system block diagram for the  
device powering an SoC and the rest of platform is shown in Figure 6-1. The functional block diagram in  
Figure 5-1 outlines the typical external components necessary for proper device functionality.  
Copyright © 2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
123  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
PMIC  
Example SoC  
VCORE  
PLATFORM  
VIN  
BUCK1  
EXT FET  
VIN  
BUCK2  
BUCK3 3A  
BUCK4 3A  
BUCK5 3A  
BUCK6  
EXT FET  
VGPU  
VCCIO  
5V Supply  
VCPU1  
Note: An LDO or  
Buck Can Supply  
the VPP Rail if  
VCPU2  
Needed for DDR.  
VIN  
EXT FET  
VDDQ, VDD1&2  
VDDQ, VDD1&2  
VTT LDO ±0.5A  
VREF, VTT  
DDR  
VREF, VTT  
DDR  
LDO5V or  
5V Supply  
VSUPP1  
VSUPP2  
VSUPP3  
VSUPP4  
VSUPP5  
VSUPP6  
LDOA1 0.2A  
LDOA2 0.6A  
LDOA3 0.6A  
SWA1 0.3A  
SWB1 0.3A  
SWB2 0.3A  
LDO5  
1.8V  
Input up to 3.3V  
Input up to 3.3V  
LDO5V  
VSYS  
VIN  
5V Supply  
PG_5V  
LDO3P3  
IRQB  
GPO1 œ GPO4  
SDA  
CTL1 œ CTL6  
SCL  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6-1. Typical Application Example  
124  
Applications, Implementation, and Layout  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
6.2.1.1 Design Requirements  
The PMIC requires decoupling caps on the supply pins. Follow the values for recommended capacitance  
on these supplies given in Section 4. The controllers, converter, LDOs, and some other features can be  
adjusted to meet specific application needs. Section 6.2.1.2 describes how to design and adjust the  
external components to achieve desired performance.  
6.2.1.2 Detailed Design Procedure  
6.2.1.2.1 Controller Design Procedure  
Designing the controller can be broken down into the following steps:  
1. Design the output filter  
2. Select the FETs  
3. Select the bootstrap capacitor  
4. Select the input capacitors  
5. Set the current limits  
Controllers BUCK1, BUCK2, and BUCK6 require a 5-V supply and capacitors at their corresponding  
DRV5V_x_x pins. For most applications, the DRV5V_x_x input should come from the LDO5P0 pin to  
ensure uninterrupted supply voltage; a 2.2-µF, X5R, 20%, 10-V, or similar capacitor must be used for  
decoupling.  
VSYS  
DRVHx  
BOOT1  
LDO5V  
DRV5V_x_x  
VOUT  
LOUT  
SWx  
COUT  
Controller  
DRVLx  
PGNDSNSx  
Control  
from SOC  
FBVOUTx  
RILIM  
ILIMx  
<FBGND2>(1)  
PowerPADTM  
Copyright © 2017, Texas Instruments Incorporated  
(1) <FBGND2> is only present for BUCK2.  
Figure 6-2. Controller Diagram  
Copyright © 2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
125  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
6.2.1.2.1.1 Selecting the Inductor  
Placement of an inductor is required between the external FETs and the output capacitors. Together, the  
inductor and output capacitors make the double-pole that contributes to stability. In addition, the inductor  
is directly responsible for the output ripple, efficiency, and transient performance. As the inductance used  
increases, the ripple current decreases, which typically results in an increased efficiency. However, with  
an increase in inductance used, the transient performance decreases. Finally, the inductor selected must  
be rated for appropriate saturation current, core losses, and DC resistance (DCR).  
Equation 5 shows the calculation for the recommended inductance for the controller.  
VOUT ì (V - VOUT  
IN ì fsw ì IOUT(MAX) ì KIND  
)
IN  
L =  
V
where  
VOUT is the typical output voltage  
VIN is the typical input voltage  
fSW is the typical switching frequency when loaded, 1 MHz unless otherwise noted  
IOUT(MAX) is the maximum load current  
KIND is the ratio of ILripple to the IOUT(MAX). For this application, TI recommends that KIND is set to a value  
from 0.2 to 0.4. Higher values have improved transient performance, lower values have improved  
efficiency  
(5)  
With the chosen inductance value, the peak current for the inductor in steady state operation, IL(max), can  
be calculated using Equation 6. The rated saturation current of the inductor must be higher than the IL(max)  
current.  
(V -VOUT ) ì VOUT  
2 ì VIN ì fsw ì L  
IN  
IL(MAX) = IOUT(MAX)  
+
(6)  
6.2.1.2.1.2 Selecting the Output Capacitors  
TI recommends using ceramic capacitors with low ESR values to provide the lowest output voltage ripple.  
The output capacitor requires an X7R or an X5R dielectric. Y5V and Z5U dielectric capacitors, aside from  
their wide variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents, the controller operates in PFM mode, and the output voltage ripple is dependent on  
the output-capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize  
the voltage ripple in PFM mode. To achieve specified regulation performance and low output voltage  
ripple, the DC-bias characteristic of ceramic capacitors must be considered. The effective capacitance of  
ceramic capacitors drops with increasing DC bias voltage.  
TI recommends the use of small ceramic capacitors placed between the inductor and load with many vias  
to the PGND plane for the output capacitors of the BUCK controllers. This solution typically provides the  
smallest and lowest cost solution available for D-CAP2 controllers.  
The selection of the output capacitor is typically driven by the output transient response. Equation 7 and  
Equation 8 provide a rough estimate of the minimum required capacitance to ensure proper transient  
response. Because the transient response is significantly affected by the board layout, some  
experimentation is expected in order to confirm that values derived in this section are applicable to any  
particular use case. These are not meant to be an absolute requirement, but rather a rough starting point.  
Alternatively, some known combination values from which to begin are provided in Table 6-1. VUNDER and  
VOVER values should be greater than or equal to 3% of VOUT setting in order for equations to be  
meaningful. The equations provide some margin so that actual capacitance requirement may be lower  
than calculated.  
2
ITRAN(MAX) ì L  
COUT  
>
(VIN - VOUT ) ì VUNDER  
where  
126  
Applications, Implementation, and Layout  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
 
 
 
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
ITRAN(max) is the maximum load current step  
L is the chosen inductance  
VIN is the maximum input voltage  
VOUT is the minimum programmed output voltage  
VUNDER is the maximum allowable undershoot from programmed voltage  
ITRAN(MAX)2 ìL  
(7)  
(8)  
COUT  
>
VOUT ì VOVER  
where  
VOVER is the maximum allowable overshoot from programmed voltage  
Another key performance factor can be the ripple voltage while in pulsed frequency modulation mode, also  
known as discontinuous conduction mode. At light load, the controller will disable the low side FET once it  
detects a zero-crossing event on the inductor current. It will stay disabled until VOUT crosses below the set  
VID threshold. This architecture allows significant power savings at light load conditions by minimizing  
power loss through the low side FET and through switching. The disadvantage is that there is higher  
voltage ripple since the ripple current is only positive. Additionally, for even higher efficiency, TON(PFM) for  
this device is typically 80% longer than TON(PWM), which can be calculated by dividing the duty cycle by the  
switching frequency. An estimate for the required capacitance for a given allowable ripple voltage at light  
load is shown in Equation 9. ESR of the output capacitor is neglected here because ceramic capacitors,  
which typically have low ESR, are recommended. VOVER should not be set lower than 3% of VOUT value.  
TON_EXT2 ì VOUT ì V - V  
(
)
IN  
OUT  
COUT  
>
2ì V ìƒSW2 ì VOVER ìL  
IN  
where  
TON_EXT is the PFM on time extension constant, 1.8 unless otherwise noted in the part number specific  
section  
VOUT is the maximum programmed output voltage  
VIN is the maximum input voltage  
fSW is the typical switching frequency when loaded, 1 MHz unless otherwise noted  
VOVER is the maximum allowable overshoot from programmed voltage  
L is the chosen inductance  
(9)  
In cases where the transient current change is very low and ripple voltage allowance is large, the DC  
stability may become important. DCAP2 is a very stable architecture so this value is likely to be the  
smallest of those calculated. Equation 10 approximates the amount of capacitance necessary to maintain  
DC stability. Again, this is provided as a starting point; actual values will vary on a board-to-board case.  
VOUT ì 50 ms  
COUT  
>
V
ì fSW ì L  
IN  
where  
VOUT is the maximum programmed output voltage  
50 µs is based on internal ramp setup  
VIN is the minimum input voltage  
fSW is the typical switching frequency  
L is the chosen inductance  
(10)  
Choosing the maximum valuable between Equation 7, Equation 8, Equation 9, and Equation 10 is  
recommended as a starting point to get the desired performance. All equations are estimates and have  
not been validated at all variable corners. Removing excess capacitance or adding extra capacitance may  
be necessary during board evaluation. Testing can typically be performed on the evaluation module or on  
prototype boards.  
Copyright © 2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
127  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
 
 
 
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
Table 6-1. Known LC Combinations for 1 µs Load Rise and Fall Time  
ITRAN(max) (A)  
L (µH)  
0.47  
0.47  
0.47  
0.33  
0.22  
VOUT (V)  
VUNDER (V)  
0.05  
VOVER (V)  
0.05  
COUT(µF)  
3.5  
4
1
1
110  
220  
220  
440  
550  
0.05  
0.05  
5
1.35  
1
0.068  
0.05  
0.068  
0.06  
8
20  
1
0.05  
0.16  
6.2.1.2.1.3 Selecting the FETs  
This controller is designed to drive two NMOS FETs. Typically, lower RDSON values are better for  
improving the overall efficiency of the controller, however higher gate charge thresholds will result in lower  
efficiency so the two need to be balanced for optimal performance. As the RDSON for the low-side FET  
decreases, the minimum current limit increases; therefore, ensure selection of the appropriate values for  
the FETs, inductor, output capacitors, and current limit resistor. TI's CSD85301Q2, CSD87331Q3D,  
CSD87381P, CSD87588N, and CSD87350Q5D devices are recommended for the controllers, depending  
on the required maximum current.  
6.2.1.2.1.4 Bootstrap Capacitor  
To ensure the internal high-side gate drivers are supplied with a stable low-noise supply voltage, a  
capacitor must be connected between the SWx pins and the respective BOOTx pins. TI recommends  
placing ceramic capacitors with the value of 0.1 µF for the controllers. During testing, a 0.1-µF, size 0402,  
10-V capacitor is used for the controllers.  
TI recommends reserving a small resistor in series with the bootstrap capacitor in case the turnon and  
turnoff of the FETs must be slowed to reduce voltage ringing on the switch node, which is a common  
practice for controller design.  
6.2.1.2.1.5 Setting the Current Limit  
The current-limiting resistor value must be chosen based on Equation 1.  
6.2.1.2.1.6 Selecting the Input Capacitors  
Due to the nature of the switching controller with a pulsating input current, a low ESR input capacitor is  
required for best input-voltage filtering and also for minimizing the interference with other circuits caused  
by high input-voltage spikes. For the controller, a typical 2.2-µF capacitor can be used for the DRV5V_x_x  
pin to handle the transients on the driver. For the FET input, 10 µF of input capacitance (after derating) is  
recommended for most applications. To achieve the low ESR requirement, a ceramic capacitor is  
recommended. However, the voltage rating and DC-bias characteristic of ceramic capacitors must be  
considered. For better input-voltage filtering, the input capacitor can be increased without any limit.  
NOTE  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
TI recommends placing a ceramic capacitor as close as possible to the FET across the respective VSYS  
and PGND pins of the FETs. The preferred capacitors for the controllers are two Murata  
GRM21BR61E226ME44: 22-µF, 0805, 25-V, ±20%, or similar capacitors.  
6.2.1.2.2 Converter Design Procedure  
Designing the converter has only two steps: design the output filter and select the input capacitors.  
Figure 6-3 shows a diagram of the converter.  
128  
Applications, Implementation, and Layout  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
LOUT  
VOUT  
PVINx  
LXx  
VIN_BUCK345_ANA  
CIN  
FBx  
Converter  
Control from SOC  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6-3. Converter Diagram  
6.2.1.2.2.1 Selecting the Inductor  
Internal parameters for the converters are optimized for either a 0.47 µH or 1 µH inductor, however it is  
possible to use other inductor values as long as they are chosen carefully and thoroughly tested. The  
equations from Section 6.2.1.2.1.1 can be utilized again with the parameters changed to match those of  
the converters. Switching frequency estimates can be found in Section 4.15.  
6.2.1.2.2.2 Selecting the Output Capacitors  
Ceramic capacitors with low ESR values are recommended because they provide the lowest output  
voltage ripple. The output capacitor requires either an X7R or X5R rating. Y5V and Z5U capacitors, aside  
from the wide variation in capacitance over temperature, become resistive at high frequencies.  
For the output capacitors of the BUCK converters, TI recommends placing small ceramic capacitors  
between the inductor and load with many vias to the PGND plane. This solution typically provides the  
smallest and lowest-cost solution available.  
The minimum output capacitance recommended is 22 µF for stability. Equation 7 and Equation 8 can be  
used to estimate the required output capacitance for a given load transient. Note that VIN will be different  
for the converters and that the switching frequency can be estimated using Section 4.15. Equation 9 can  
be neglected for converters as there is no on time extension and the VIN - VOUT term is typically smaller.  
6.2.1.2.2.3 Selecting the Input Capacitors  
Due to the nature of the switching converter with a pulsating input current, a low ESR input capacitor is  
required for best input-voltage filtering and for minimizing the interference with other circuits caused by  
high input-voltage spikes. For the PVINx pin, 2.5 µF of input capacitance (after derating) is required for  
most applications. A ceramic capacitor is recommended to achieve the low ESR requirement. However,  
the voltage rating and DC-bias characteristic of ceramic capacitors must be considered. The input  
capacitor can be increased without any limit for better input-voltage filtering.  
NOTE  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
The preferred capacitor for the converters is one Samsung CL05A106MP5NUNC: 10-µF, 0402, 10-V,  
±20%, or similar capacitor.  
Copyright © 2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
129  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
6.2.1.2.3 LDO Design Procedure  
The VTT LDO must handle the fast load transients from the DDR memory for termination. Therefore, it is  
recommended to use ceramic capacitors to maintain a high amount of capacitance with low ESR on the  
VTT LDO outputs and inputs. The preferred output capacitors for the VTT LDO are the  
GRM188R60J226MEA0 from Murata (22 µF, 0603, 6.3 V, ±20%, or similar capacitors). The preferred  
input capacitor for the VTT LDO is the CL05A106MP5NUNC from Samsung (10-µF, 0402, 10-V, ±20%, or  
similar capacitor).  
The remaining LDOs must have input and output capacitors chosen based on the values in Section 4.9.  
6.2.1.3 Application Curves  
FET = CSD87588N  
L = PIMB062D-R22ms  
L = PIFE32251B-R47ms  
COUT = 4 × 22 µF  
COUT = 2 × 300 µF + 1 × 22 µF  
Figure 6-4. BUCK2 Controller Load Transient  
Figure 6-5. BUCK3 Converter Load Transient  
6.2.1.4 Layout  
6.2.1.4.1 Layout Guidelines  
For a detailed description regarding layout recommendations, refer to the TPS65086x Design Guide and  
to the TPS65086x Schematic and Layout Checklist. For all switching power supplies, the layout is an  
important step in the design, especially at high peak currents and high switching frequencies. If the layout  
is not carefully done, the regulator can have stability problems and EMI issues. Therefore, use wide and  
short traces for the main current path and for the power ground tracks. The input capacitors, output  
capacitors, and inductors must be placed as close as possible to the device. Use a common-ground node  
for power ground and use a different, isolated node for control ground to minimize the effects of ground  
noise. Connect these ground nodes close to the AGND pin by one or two vias. Use of the design guide is  
highly encouraged in addition to the following list of other basic requirements:  
Do not allow the AGND, PGNDSNSx, or FBGND2 to connect to the thermal pad on the top layer.  
To ensure proper sensing based on FET RDSON, PGNDSNSx must not connect to PGND until very  
close to the PGND pin of the FET.  
All inductors, input and output capacitors, and FETs for the converters and controller must be on the  
same board layer as the IC.  
To achieve the best regulation performance, place feedback connection points near the output  
capacitors and minimize the control feedback loop as much as possible.  
130  
Applications, Implementation, and Layout  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
Bootstrap capacitors must be placed close to the device.  
The internal reference regulators must have their input and output capacitors placed close to the  
device pins.  
Route DRVHx and SWx as a differential pair. Ensure that there is a PGND path routed in parallel with  
DRVLx, which provides optimal driver loops.  
6.2.1.4.2 Layout Example  
BUCK2  
VREF Capacitor  
VTT  
BUCK6  
BUCK3  
BUCK5  
BUCK4  
BUCK1  
Figure 6-6. EVM Layout Example With All Components on the Top Layer  
Copyright © 2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
131  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com  
6.2.2 VIN 5-V Application  
The PMIC can be operated by a 5-V input voltage to the system because the power path of the controller  
does not go through the device itself. The concept is simple: supply the controller VINs with the 5-V input,  
and supply the VSYS with a 5.8-V step-up of the 5 V with a boost or charge pump. The 5.8 V is  
recommended because the UVLO of the internal LDO5 is at 5.6 V and the device measures the voltage at  
VSYS and determines the optimum internal compensation and controller settings thus, it is ideal the VSYS  
be close to the VIN of the controllers.  
PMIC  
Example SoC  
VCORE  
PLATFORM  
VIN  
BUCK1  
EXT FET  
VIN  
BUCK2  
BUCK3 3.5A  
BUCK4 3A  
BUCK5 3A  
BUCK6  
EXT FET  
VGPU  
VCCIO  
5V Supply  
VCPU1  
Note: An LDO or Buck  
Can Supply the VPP  
Rail if Needed for DDR.  
VCPU2  
VIN  
EXT FET  
VDDQ, VDD1&2  
VDDQ, VDD1&2  
VTT LDO ±0.5A  
VREF, VTT  
DDR  
VREF, VTT  
DDR  
LDO5V or  
5V Supply  
LDOA1 0.2A  
LDOA2 0.6A  
LDOA3 0.6A  
SWA1 0.3A  
SWB1 0.3A  
SWB2 0.3A  
LDO5  
VSUPP1  
VSUPP2  
VSUPP3  
VSUPP4  
VSUPP5  
VSUPP6  
1.8V  
Input up to 3.3V  
Input up to 3.3V  
Supply Diode Needed if  
Pre-bias is Not Supported  
Charge Pump or  
Boost  
LDO5V  
VSYS  
VSYS = Vout -  
Vf  
VIN  
40 mA œ 440 mA  
5V  
5 V  
PG_5V  
LDO3P3  
CTL1  
IRQB  
GPO1  
GPO2  
GPO3  
GPO4  
DATA  
SCLK  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6-7. VIN 5-V Application  
132  
Applications, Implementation, and Layout  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
www.ti.com  
ZHCSIK3 JULY 2018  
6.2.2.1 Design Requirements  
The PMIC requires a step-up voltage from the 5-V input to 5.8 V for the VSYS supply. TI recommends  
keeping the VSYS near 5.8 V for optimization of the controllers.  
Depending on the application use cases, the supply current to the VSYS can require from 40 mA with the  
drivers being supplied by the 5-V input to 440 mA with the drivers being supplied by the LDO5 and the  
LDOA1 being operated at max loading. This means that a charge pump may be used in some applications  
like the 5-V input but in others, a small boost may be required.  
A Schottky diode from the 5-V input to the VSYS is recommended to ensure the VSYS is biased and the  
internal reference LDOs are on before the step-up regulator is enabled or fully ramped up. If the step-up  
cannot tolerate pre-bias condition then, 2 diodes may be needed to prevent the initial 5-V supply biasing  
the output of the step-up.  
6.2.2.2 Design Procedure  
To design a 5-V input application, first provide a step-up voltage from the 5-V input to the VSYS. Design  
the step-up to output a voltage near 5.8 V. Next, route the 5-V input to the controller and converter VINs.  
Thus, all power paths (all high currents) are routed through the controllers or directly to the converters.  
None of the high currents are required from the step-up supply. After the input stage is complete, the rest  
of the system can be designed as normal following the typical application procedure, using 5 V as the  
input value to the controllers.  
6.2.2.3 Application Curves  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
40%  
Vout = 1 V  
VOUT = 1 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4 5 6 7  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4 5 6 7  
Iout (A)  
Load (A)  
D010  
tps6  
FET = CSD87381P L = PIMB061H-R47ms  
FET = CSD87381P  
L = PIMB061H-R47ms  
Figure 6-8. BUCK1 Efficiency at VIN = 5 V in Auto Mode  
Figure 6-9. Example BUCK1 Efficiency at VIN = 5 V in Forced  
PWM Mode  
Copyright © 2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
133  
Submit Documentation Feedback  
Product Folder Links: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com.cn  
6.3 Power Supply Coupling and Bulk Capacitors  
This device is designed to work with several different input voltages. The minimum voltage on the VSYS  
pin is 5.6 V for the device to start up; however, this is a low power rail. The input to the FETs must be  
from 4.5 V to 21 V as long as the proper BOM choices are made. Input to the converters should be  
between 3.3 V and 5 V. For the device to output maximum power, the input power must be sufficient. For  
the controllers, VIN must be able to supply sufficient input current for the output power of the application.  
For the converters, PVINx must be able to typically supply 2 A.  
A best practice here is to determine power usage by the system and back-calculate the necessary power  
input based on expected efficiency values.  
6.4 Do's and Don'ts  
Connect the LDO5V output to the DRV5V_x_x inputs for situations where an external 5-V supply is not  
initially available or is not available the entire time PMIC is on. If the external 5-V supply is always  
present, then DRV5V_x_x can be directly connected to remove the V5ANA-to-LDO5P0 load switch  
RDSON  
.
Ensure that none of the control pins are potentially floating.  
Include 0-Ω resistors on the DRVH or BOOT pins of controllers on prototype boards, which allows for  
slowing the controllers if the system is unable to handle the noise generated by the large switching or if  
switching voltage is too large due to layout.  
Do not connect the V5ANA power input to a different source other than PVINx. A mismatch here  
causes reference circuits to regulate incorrectly.  
Do not supply the V5ANA power input before the VSYS. Reference biasing of the internal FETs may  
turn on the HS FET passing the input to the output until VSYS is biased.  
Do not change the values of the reserved bits when writing I2C. This can have unexpected  
consequences. Expected values for each OTP are shown in the register map.  
134  
Applications, Implementation, and Layout  
版权 © 2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS650861  
TPS650861  
www.ti.com.cn  
ZHCSIK3 JULY 2018  
7 器件和文档支持  
7.1 器件支持  
7.1.1 开发支持  
与器件开发相关的文档,请参阅如下信息:  
德州仪器 (TI)TPS65086x 原理图和布局检查清单》  
德州仪器 (TI)TPS65086x 设计指南》  
7.2 文档支持  
7.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)CSD85301Q2 20V 双路 N 沟道 NexFET™ 功率 MOSFET数据表  
德州仪器 (TI)CSD87331Q3D 同步降压 NexFET™ 电源块》数据表  
德州仪器 (TI)CSD87588N 同步降压 NexFET™ 电源块 II数据表  
德州仪器 (TI)CSD87381P 同步降压 NexFET™ 电源块 II数据表  
德州仪器 (TI)CSD87350Q5D 同步降压 NexFET™ 电源块》数据表  
德州仪器 (TI)MSP430G2121 混合信号微控制器》数据表  
德州仪器 (TI)《适用于远距离负载点 应用的电源管理集成降压控制器》白皮书  
德州仪器 (TI)TPS65086x 评估模块》用户指南  
7.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周  
接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
7.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社为了促进工程师之间的合作,我们创建了 TI 工程师对工程师 (E2E) 社区。在 e2e.ti.com  
中,您可以提问、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信  
息。  
7.5 商标  
D-CAP2, D-CAP, NexFET, E2E are trademarks of Texas Instruments.  
NXP is a trademark of NXP Semiconductors.  
All other trademarks are the property of their respective owners.  
版权 © 2018, Texas Instruments Incorporated  
提交文档反馈意见  
器件和文档支持  
135  
产品主页链接: TPS650861  
TPS650861  
ZHCSIK3 JULY 2018  
www.ti.com.cn  
7.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.7 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
8 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
136  
机械、封装和可订购信息  
版权 © 2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS650861  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65086100RSKR  
TPS65086100RSKT  
ACTIVE  
VQFN  
VQFN  
RSK  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
T65086100  
PG1.0  
ACTIVE  
RSK  
NIPDAU  
T65086100  
PG1.0  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65086100RSKR  
TPS65086100RSKT  
VQFN  
VQFN  
RSK  
RSK  
64  
64  
2000  
250  
330.0  
180.0  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65086100RSKR  
TPS65086100RSKT  
VQFN  
VQFN  
RSK  
RSK  
64  
64  
2000  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65086100RSKR

具有 3 个转换器、3 个控制器、4 个 LDO 和 3 个负载开关的用户可编程电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS65086100RSKT

具有 3 个转换器、3 个控制器、4 个 LDO 和 3 个负载开关的用户可编程电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650864

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC
TI

TPS65086401RSKR

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS65086401RSKT

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS6508640RSKR

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS6508640RSKT

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS6508641RSKR

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS6508641RSKT

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS65086470RSKR

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS65086470RSKT

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS6508700

适用于 AMD™ 系列 17h 模型 10h-1Fh 处理器的 PMIC
TI