TPS6508641RSKT [TI]

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85;
TPS6508641RSKT
型号: TPS6508641RSKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85

集成电源管理电路
文件: 总129页 (文件大小:2651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
TPS650864 适用Xilinx® MPSoC FPGA 的可配置多PMU  
1 特性  
2 应用  
5.6V 21V VIN 范围  
• 三个采D-CAP2拓扑的  
可变输出电压同步降压控制器  
– 使用外FET 的可扩展输出电流支持可选电  
流限制  
• 可编程逻辑控制器  
• 机器视觉摄像机  
• 视频监控  
• 测试和测量  
• 嵌入PC  
• 运动控制  
• 便携式超声波设备  
0.41V 1.67V 之间10mV 为步长或  
1V 3.575V 之间25mV 为步长I2C  
DVS 控制  
3 说明  
• 三个采DCS-Control 拓扑的可变输出电压同步降  
压转换器  
TPS650864 件系列是一款单芯片电源管理 IC  
(PMIC) Xilinx Zynq® 处理器片上系统  
(MPSoC) 和现场可编程门阵列 (FPGA) 系列而设计。  
TPS650864 器件的输入电压范围为 5.6V 21V支  
持广泛的应用请参阅器件比较表。该器件适用于壁  
式供电应用或 234 节串联锂离子电池包NVDC  
或非 NVDC 电源架构。有关 5V 输入电源的信息,  
请参阅典型应用 部分。D-CAP2 DCS-Control 高频  
稳压器采用小型无源器件用于减小解决方案尺寸。  
D-CAP2 DCS-Control 拓扑具有出色的瞬态响应性  
非常适用于具有快速负载开关的处理器内核和系统  
内存电压轨。I2C 接口可通过嵌入式控制器 (EC) 或  
SoC 进行轻松控制。PMIC 的尺寸为 8mm × 8mm采  
用单VQFN 封装所带的散热垫可改善散热功能。  
– 输入电压范围3V 5.5 V  
– 输出电流高3A  
0.41V 1.67V 之间10mV 为步长或  
0.425V 3.575V 之间25mV 为步长的  
I2C DVS 控制  
• 三个具有可调节输出电压LDO 稳压器  
LDOA1I2C 可选电压的范围1.35V 至  
3.3V输出电流可高200mA  
LDOA2 LDOA3I2C 可选电压的范围0.7V  
1.5V每个的输出电流可高600mA  
• 用DDR 存储器终端VTT LDO  
• 三个具有压摆率控制功能的负载开关  
– 输出电流高300mA压降小于标称输入电压  
1.5%  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
VQFN (64)  
– 输入电压1.8V RDSON < 96mΩ  
5V 固定输出电LDO (LDO5)  
TPS650864 (2)  
8.00mm x 8.00mm  
– 用SMPS 的栅极驱动器LDOA1 的电源  
– 可自动切换至外5V 降压以实现更高效率  
• 内置可通过工OTP 编程功能实现的灵活性和可配  
置性  
(1) 如需更多信息请参阅机械、封装和可订购信部分。  
(2) 有关器件选项请参阅器件比较表。  
– 六GPI 引脚均可配置为启用CTL1 至  
CTL6任意所选电压轨或使其进入睡眠模式  
CTL3 CTL6)  
– 四GPO 引脚均可配置为指示任意所选轨道的  
电源正常  
– 漏极开路中断输出引脚  
I2C 接口支持标准模(100kHz)、快速模式  
(400kHz) 和超快速模(1MHz)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWCS138  
 
 
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
LDO5V  
LDO1  
VIN  
BOOT1  
DRVH1  
LDOA1  
1.35 œ 3.3 V  
200 mA  
CTL1  
CTL2  
SW1  
V1  
VSET  
EN  
BUCK1  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL1  
CTL3/SLPENB1  
Control  
CTL4  
EN  
VSET  
FBVOUT1  
Inputs  
PGNDSNS1  
CTL5  
ILIM1  
CTL6/SLPENB2  
VPULL  
VIN  
BOOT2  
DRVH2  
CLK  
SoC  
&
System  
I2C CTL  
SW2  
DATA  
V2  
VSET  
EN  
VPULL  
DRVL2  
BUCK2  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
Control  
Outputs  
FBVOUT2  
PGNDSNS2  
IRQB  
GPO1  
GPO2  
GPO3  
GPO4  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
3.3 V œ 5 V  
PVIN3  
LX3  
TEST CTL  
OTP  
BUCK3  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VSET  
EN  
V3  
FB3  
Registers  
<PGND_BUCK3>  
3 A  
3.3 V œ 5 V  
PVIN4  
LX4  
BUCK4  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
LDO5P0  
V5ANA  
LDO5P0  
VSET  
EN  
Digital Core  
V4  
3.3V œ 5V  
FB4  
3 A  
<PGND_BUCK4>  
3.3V œ 5V  
PVIN5  
LX5  
BUCK5  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
œ
VSET  
EN  
4.7V  
V5  
+
FB5  
STDBY  
3 A  
<PGND_BUCK5>  
LDO5V  
VIN  
REFSYS  
LDO3P3  
BOOT6  
DRVH6  
Thermal  
Monitoring  
VSYS  
5.6Vœ21V  
LDO3P3  
LDO3P3  
SW6  
DRVL6  
Thermal Shutdown  
VDDQ  
VSET  
EN  
BUCK6  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VREF  
AGND  
Bandgap  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVIN_VTT  
VTT  
VTT  
EN  
VTT_LDO  
VDDQ/2  
VTTFB  
LDOA2  
0.7 1.5 V  
600 mA  
LDOA3  
0.7 1.5 V  
600 mA  
LOAD SWA1  
LOAD SWB1  
LOAD SWB2  
3-1. PMIC 功能框图  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................22  
8.3 TPS6508640 Design and Settings............................24  
8.4 TPS65086401 Design and Settings..........................29  
8.5 TPS6508641 Design and Settings............................33  
8.6 TPS65086470 Design and Settings..........................39  
8.7 SMPS Voltage Regulators........................................ 43  
8.8 LDOs and Load Switches......................................... 51  
8.9 Power Goods (PGOOD or PG) and GPOs............... 51  
8.10 Power Sequencing and VR Control........................ 53  
8.11 Device Functional Modes........................................58  
8.12 I2C Interface............................................................58  
8.13 Register Maps.........................................................62  
9 Applications, Implementation, and Layout............... 108  
9.1 Application Information........................................... 108  
9.2 Typical Application.................................................. 108  
9.3 Power Supply Coupling and Bulk Capacitors..........119  
9.4 Do's and Don'ts.......................................................119  
10 Device and Documentation Support........................120  
10.1 Device Support..................................................... 120  
10.2 Documentation Support........................................ 120  
10.3 接收文档更新通知................................................. 120  
10.4 支持资源................................................................120  
10.5 Trademarks...........................................................120  
10.6 Electrostatic Discharge Caution............................120  
10.7 术语表................................................................... 120  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 3  
5 Device Comparison Table...............................................5  
6 Pin Configuration and Functions...................................6  
7 Specifications.................................................................. 9  
7.1 Absolute Maximum Ratings........................................ 9  
7.2 ESD Ratings............................................................... 9  
7.3 Recommended Operating Conditions.......................10  
7.4 Thermal Information..................................................10  
7.5 Electrical Characteristics: Total Current  
Consumption............................................................... 10  
7.6 Electrical Characteristics: Reference and  
Monitoring System.......................................................11  
7.7 Electrical Characteristics: Buck Controllers.............. 12  
7.8 Electrical Characteristics: Synchronous Buck  
Converters...................................................................13  
7.9 Electrical Characteristics: LDOs............................... 14  
7.10 Electrical Characteristics: Load Switches............... 16  
7.11 Digital Signals: I2C Interface................................... 17  
7.12 Digital Input Signals (CTLx).................................... 17  
7.13 Digital Output Signals (IRQB, GPOx)..................... 17  
7.14 Timing Requirements..............................................17  
7.15 Switching Characteristics........................................18  
7.16 Typical Characteristics............................................19  
8 Detailed Description......................................................21  
8.1 Overview...................................................................21  
Information.................................................................. 121  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (November 2020) to Revision E (December 2022)  
Page  
Changed the power-up sequence for TPS6508640 in the TPS6508640 Power-Up Sequence diagram......... 24  
Changed the power-down sequence for TPS6508640 in the TPS6508640 Power-Down Sequence diagram....  
24  
Changed the OTP_VERSION[1:0] bits from 01 to 10 for the TPS6508640 device in the DEVICEID2 Register  
table..................................................................................................................................................................64  
Changed the OTP_VERSION[1:0] bits from 00 to 01 for the TPS65086401 and TPS6506470 devices in the  
DEVICEID2 Register table................................................................................................................................64  
Changes from Revision C (June 2018) to Revision D (November 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changed the incorrect LX3 pin description from connect to ground when not in use to leave floating when not  
in use in the Pin Functions table.........................................................................................................................6  
Removed the line above the LDOA1 block in the PMIC Functional Block Diagram ........................................22  
Removed incorrect VREF notes from the middle and right DDR blocks in the Power Map Example figure.... 22  
Added when configured as push-pull, LDO3P3 is used for logic-level high to the Power Good Tree figure  
description ....................................................................................................................................................... 51  
Changed the bit values for BUCK4_MODE bits in the BUCK4CTRL Register table from 0 to 1 for the  
TPS65086401 and TPS65086470 devices ......................................................................................................69  
Changed the bit values for BUCK5_MODE bits in the BUCK5CTRL Register table from 0 to 1 for the  
TPS65086401 and TPS65086470 devices ......................................................................................................70  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
Added links and step ranges to BUCK2SLPCTRL Register Descriptions table............................................... 78  
Changed the bit values for BUCK3_MODE bits in the BUCK123CTRL Register table from 0 to 1 for the  
TPS65086401 and TPS65086470 devices.......................................................................................................82  
Removed the incorrect VREF notes from the middle and right DDR blocks in the VIN 5-V Application diagram  
........................................................................................................................................................................108  
Changes from Revision B (December 2017) to Revision C (June 2018)  
Page  
• 向数据手册添加TPS6508640 TPS6508641.............................................................................................. 1  
Added typical MPSoC variants to Device Comparison Table ............................................................................ 5  
Added BUCKx_MODE test condition for quiescent current .............................................................................13  
Added BUCKx_MODE information to relevant graphs .................................................................................... 19  
Changed the TPS65086401 Power Map Example in the TPS65086401 Design and Settings section............29  
Changed the TPS65086470 Power Map Example in the TPS65086470 Design and Settings section ...........39  
Added information regarding ILIM resistor minimum value for Force PWM condition .....................................50  
Changes from Revision A (November 2017) to Revision B (December 2017)  
Page  
Changed TPS65086401 from preview to production data..................................................................................5  
Changes from Revision * (February 2017) to Revision A (November 2017)  
Page  
• 将器件状态从“产品预发布”更改为“量产数据”.............................................................................................1  
Added pin connection when unused...................................................................................................................6  
Changed the TPS65086401 Power Map Example in the TPS65086401 Design and Settings section............29  
Fixed SWB1 and SWB2 current to 0.4A from 0.3A ......................................................................................... 39  
Changed typo from TPS6508470 to TPS65086470......................................................................................... 42  
Changed description to Sleep State from Connected Standby for consistency in the Sleep State Entry and  
Exit section....................................................................................................................................................... 57  
Changed the description of all PGOODs in the note in the Sleep State Entry and Exit section from stay to can  
stay because the behavior can vary based on the part-number specific settings............................................ 57  
Added failure to reach power good within 10 ms as emergency shutdown condition to the Emergency  
Shutdown section............................................................................................................................................. 57  
Changed bit 0 in the BUCK3VID Register register to Read only (R) ...............................................................68  
Changed the PG_DELAY2: 2nd Power Good Delay Register description from GPO3 to GPO1, GPO2, and  
GPO4 ...............................................................................................................................................................84  
Fixed a typo which showed the '000' option resulting in 2.5 ms instead of 0 ms in the PG_DELAY2 Register  
Descriptions table............................................................................................................................................. 84  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
5-1 lists a brief summary of the default values for each part number stored in one-time programmable (OTP)  
memory. A full summary of each part number can be found in the applications section linked in the SECTION  
column. The step size is indicated by the values in parenthesis. If alternate voltages are available through pin-  
strapping, they are separated with a comma.  
5-1. Default Values  
PART NUMBER APPLICATION  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
BUCK6  
LDOA1  
LDOA2  
LDOA3  
SECTION  
Xilinx Zynq  
3.3 V  
(25 mV)  
0.85 V, 0.9 V  
(10 mV)  
1.2 V  
(25 mV)  
0.9 V  
(25 mV)  
1.8 V  
(25 mV)  
1.2 V, 1.35 V  
(10 mV)  
TPS6508640  
TPS65086401  
Ultrascale+  
2.5 V  
1.5 V  
1.2 V  
8.3  
ZU7 - ZU15(1)  
Xilinx Zynq  
Ultrascale+  
ZU2 - ZU5(1)  
1.5 V, 1.2 V,  
1.1 V  
(10 mV)  
1.8 V  
(25 mV)  
0.85 V  
(10 mV)  
0.85 V  
(25 mV)  
3.3 V  
(25 mV)  
3.3 V  
(25 mV)  
1.8 V  
1.2 V  
1.2 V  
8.4  
Xilinx Zynq  
Ultrascale+  
ZU2 - ZU5(1)  
0.85 V  
(10 mV)  
1.1 V, 1.2 V  
(25 mV)  
3.3 V  
(25 mV)  
1.2 V  
(25 mV)  
1.8 V  
(25 mV)  
TPS6508641  
TPS65086470  
Ext FB  
1.8 V  
1.8 V  
1.2 V  
0.7 V  
1.2 V  
0.7 V  
8.5  
8.6  
Xilinx  
1 V  
(10 mV)  
1.8 V  
(25 mV)  
1.2 V  
(25 mV)  
2.5 V  
(25 mV)  
3.3 V  
(25 mV)  
1.35 V, 1.5 V  
(25 mV)  
Artix 7(1)  
(1) Indicates the original intent of the part number. Parts can be used for alternate applications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS650864  
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
6-1 shows the 64-pin RSK Plastic Quad Flatpack No-Lead package.  
FBGND2  
FBVOUT2  
DRVH2  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VTTFB  
2
VTT  
3
PVINVTT  
ILIM6  
SW2  
4
BOOT2  
5
FBVOUT6  
DRVH6  
SW6  
PGNDSNS2  
DRVL2  
6
7
DRV5V_2_A1  
LDOA1  
8
BOOT6  
PGNDSNS6  
DRVL6  
Thermal  
Pad  
9
LX3  
10  
11  
12  
13  
14  
15  
16  
PVIN3  
DRV5V_1_6  
DRVL1  
FB3  
CTL1  
PGNDSNS1  
BOOT1  
SW1  
CTL6/SLPENB2  
IRQB  
GPO1  
DRVH1  
Not to scale  
The thermal pad must be connected to the system power ground plane.  
6-1. 64-Pin RSK VQFN With Exposed Thermal Pad (Top View)  
6-1. Pin Functions  
PIN  
NAME  
SMPS REGULATORS  
I/O  
DESCRIPTION  
NO.  
Remote negative feedback sense for BUCK2 controller. Connect to negative terminal of output capacitor. Connect to  
ground when not in use.  
1
FBGND2  
I
Remote positive feedback sense for BUCK2 controller. Connect to positive terminal of output capacitor. Connect to  
ground when not in use.  
2
3
FBVOUT2  
DRVH2  
I
O
High-side gate driver output for BUCK2 controller. Leave floating when not in use.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
PIN  
6-1. Pin Functions (continued)  
I/O  
DESCRIPTION  
NO.  
NAME  
4
SW2  
I
I
Switch node connection for BUCK2 controller. Connect to ground when not in use.  
Bootstrap pin for BUCK2 controller. Connect a 100-nF ceramic capacitor between this pin and SW2 pin. Leave floating  
when not in use.  
5
BOOT2  
Power GND connection for BUCK2. Connect to ground terminal of external low-side FET. Connect to ground when not in  
use.  
6
PGNDSNS2  
DRVL2  
I
O
I
7
Low-side gate driver output for BUCK2 controller. Leave floating when not in use.  
5-V supply to BUCK2 gate driver and LDOA1. Bypass to ground with a 2.2-µF (typical) ceramic capacitor. Shorted on  
board to LDO5P0 pin typically. Bypass not required if BUCK2 and LDOA1 are not in use.  
8
DRV5V_2_A1  
LX3  
10  
11  
O
I
Switch node connection for BUCK3 converter. Leave floating when not in use.  
Power input to BUCK3 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor. Bypass not required if  
BUCK3 is not in use.  
PVIN3  
Remote feedback sense for BUCK3 converter. Connect to positive terminal of output capacitor. Connect to ground when  
not in use.  
12  
20  
21  
FB3  
LX5  
I
O
I
Switch node connection for BUCK5 converter. Leave floating when not in use.  
Power input to BUCK5 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor. Bypass not required if  
BUCK5 is not in use.  
PVIN5  
Remote feedback sense for BUCK5 converter. Connect to positive terminal of output capacitor. Connect to ground when  
not in use.  
22  
23  
FB5  
FB4  
I
I
Remote feedback sense for BUCK4 converter. Connect to positive terminal of output capacitor. Connect to ground when  
not in use.  
Power input to BUCK4 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor. Bypass not required if  
BUCK4 is not in use.  
24  
25  
29  
PVIN4  
LX4  
I
O
I
Switch node connection for BUCK4 converter. Leave floating when not in use.  
Remote feedback sense for BUCK1 controller. Connect to positive terminal of output capacitor. Connect to ground when  
not in use.  
FBVOUT1  
Current limit set pin for BUCK1 controller. Fit a resistor from this pin to ground to set current limit of external low-side  
FET. Connect to ground when BUCK1 not in use.  
30  
ILIM1  
I
33  
34  
DRVH1  
SW1  
O
I
High-side gate driver output for BUCK1 controller. Leave floating when not in use.  
Switch node connection for BUCK1 controller. Connect to ground when not in use.  
Bootstrap pin for BUCK1 controller. Connect a 100-nF ceramic capacitor between this pin and SW1 pin. Leave floating  
when not in use.  
35  
BOOT1  
I
Power GND connection for BUCK1. Connect to ground terminal of external low-side FET. Connect to ground when not in  
use.  
36  
37  
38  
39  
40  
PGNDSNS1  
DRVL1  
I
O
I
Low-side gate driver output for BUCK1 controller. Leave floating when not in use.  
5-V supply to BUCK1 and BUCK6 gate drivers. Bypass to ground with a 2.2-µF (typical) ceramic capacitor. Shorted on  
board to LDO5P0 pin typically. Bypass not required if BUCK1 and BUCK6 are not in use.  
DRV5V_1_6  
DRVL6  
O
I
Low-side gate driver output for BUCK6 controller. Leave floating when not in use.  
Power GND connection for BUCK6. Connect to ground terminal of external low-side FET. Connect to ground when not in  
use.  
PGNDSNS6  
Bootstrap pin for BUCK6 controller. Connect a 100-nF ceramic capacitor between this pin and SW6 pin. Leave floating  
when not in use.  
41  
BOOT6  
I
42  
43  
SW6  
I
Switch node connection for BUCK6 controller. Connect to ground when not in use.  
High-side gate driver output for BUCK6 controller. Leave floating when not in use.  
DRVH6  
O
Remote feedback sense for BUCK6 controller and reference voltage for VTT LDO regulation. Connect to positive  
terminal of output capacitor. Connect to ground when not in use.  
44  
45  
64  
FBVOUT6  
ILIM6  
I
I
I
Current limit set pin for BUCK6 controller. Fit a resistor from this pin to ground to set current limit of external low-side  
FET. Connect to ground when BUCK6 not in use.  
Current limit set pin for BUCK2 controller. Fit a resistor from this pin to ground to set current limit of external low-side  
FET. Connect to ground when BUCK2 not in use.  
ILIM2  
LDO AND LOAD SWITCHES  
9
LDOA1  
SWB1  
O
O
LDOA1 output. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not in use.  
Output of load switch B1. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating when not in use.  
17  
Power supply to load switch B1 and B2. Bypass to ground with a 1-µF (typical) ceramic capacitor to improve transient  
performance. Connect to ground when not in use.  
18  
PVINSWB1_B2  
I
19  
31  
SWB2  
SWA1  
O
O
Output of load switch B2. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating when not in use.  
Output of load switch A1. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating when not in use.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Power supply to load switch A1. Bypass to ground with a 1-µF (typical) ceramic capacitor to improve transient  
performance. Connect to ground when not in use.  
32  
PVINSWA1  
PVINVTT  
VTT  
I
I
Power supply to VTT LDO. Bypass to ground with a 10-µF (minimum) ceramic capacitor. Bypass not required if VTT  
LDO is not in use.  
46  
47  
Output of load VTT LDO. Bypass to ground with 2× 22-µF (minimum) ceramic capacitors. Leave floating when not in  
use.  
O
Remote feedback sense for VTT LDO. Connect to positive terminal of output capacitor. Connect to ground when not in  
use.  
48  
49  
50  
VTTFB  
LDOA3  
I
O
I
Output of LDOA3. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not in use.  
Power supply to LDOA2 and LDOA3. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Connect to ground  
when not in use.  
PVINLDOA2_A3  
51  
54  
LDOA2  
O
O
Output of LDOA2. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not in use.  
Output of 3.3-V internal LDO. Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
LDO3P3  
Output of 5-V internal LDO or an internal switch that connects this pin to V5ANA. Bypass to ground with a 4.7-µF  
(typical) ceramic capacitor.  
56  
57  
LDO5P0  
V5ANA  
O
I
Bias used by converters (BUCK3, BUCK4, and BUCK5) for regulation. Must be same supply as PVINx. Also has an  
internal load switch that connects this pin to LDO5P0 pin if 5-V is used. Bypass this pin with an optional ceramic  
capacitor to improve transient performance.  
INTERFACE  
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of this  
pin.  
13  
CTL1  
I
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of this  
pin. Alternatively, when configured to active-low sleep enable, a group of VRs chosen can be entered into (L) or out of  
(H) sleep state where their output voltages may be different from those in normal state.  
14  
15  
16  
CTL6/SLPENB2  
IRQB  
I
O
O
Open-drain output interrupt pin. Refer to 8.13.4, IRQ: PMIC Interrupt Register, for definitions.  
General purpose output that can be configured to either open-drain or push-pull arrangement. Regardless of the  
configuration, the pin can be programmed either to reflect Power Good status of VRs of any choice or to be controlled by  
an I2C register bit by the user, which then can be used as an enable signal to an external VR.  
GPO1  
General purpose output that can be configured to either open-drain or push-pull arrangement. Regardless of the  
configuration, the pin can be programmed either to reflect Power Good status of VRs of any choice or to be controlled by  
an I2C register bit by the user, which then can be used as an enable signal to an external VR.  
26  
GPO2  
O
General purpose output that can be configured to either open-drain or push-pull arrangement. Regardless of the  
configuration, the pin can be programmed either to reflect Power Good status of VRs of any choice or to be controlled by  
an I2C register bit by the user, which then can be used as an enable signal to an external VR.  
27  
28  
GPO3  
GPO4  
O
O
Open-drain output that can be configured to reflect Power Good status of VRs of any choice or to be controlled by an I2C  
register bit by the user, which then can be used as an enable signal to an external VR.  
58  
59  
CLK  
I
I2C clock  
I2C data  
DATA  
I/O  
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of this  
pin.  
60  
61  
CTL2  
I
I
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of this  
pin. Alternatively, when configured to active-low sleep enable, a group of VRs chosen can be entered into (L) or out of  
(H) sleep state where their output voltages may be different from those in normal state.  
CTL3/SLPENB1  
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of this  
pin.  
62  
63  
CTL4  
CTL5  
I
I
Active-high VR enable pin. A group of VRs can be assigned to be enabled at assertion or disabled at deassertion of this  
pin.  
REFERENCE  
52  
AGND  
VREF  
Analog ground. Do not connect to the thermal pad ground on top layer. Connect to ground of VREF capacitor.  
Band-gap reference output. Stabilize it by connecting a 100-nF (typical) ceramic capacitor between this pin and quiet  
ground.  
53  
55  
O
System voltage detection and input to internal LDOs (3.3 V and 5 V). Bypass to ground with a 1-µF (typical) ceramic  
capacitor.  
VSYS  
I
THERMAL PAD  
Thermal pad  
Connect to PCB ground plane using multiple vias for good thermal and electrical performance.  
(PGND)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
ANALOG  
Input voltage from battery, VSYS  
28  
7
V
V
V
V
V
V
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
5(2)  
2(3)  
0.3  
PVIN3, PVIN4, PVIN5, LDO5P0, DRV5V_1_6, DRV5V_2_A1, DRVL1, DRVL2, DRVL6  
V5ANA  
6
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
SW1, SW2, SW6  
0.3  
34  
28  
8
LX3, LX4, LX5  
Differential voltage, BOOTx to SWx  
5.5  
VREF, LDO3P3, FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5, ILIM1, ILIM2, ILIM6,  
PVINVTT, VTT, VTTFB, PVINSWA1, SWA1, PVINSWB1_B2, SWB1, SWB2, LDOA1  
3.6  
3.3  
V
V
0.3  
0.3  
PVINLDOA2_A3, LDOA2, LDOA3  
DIGITAL IO  
DATA, CLK, GPO1-GPO3  
CTL1-CTL6, GPO4, IRQB  
Storage temperature, Tstg  
3.6  
7
V
V
0.3  
0.3  
40  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transient for less than 5 ns  
(3) Transient for less than 20 ns  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged Device Model (CDM), per JESD22-C101(2)  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS650864  
 
 
 
 
 
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
ANALOG  
VSYS  
5.6  
0.3  
0.3  
0.3  
0.3  
0.3  
1  
13  
21  
1.3  
5.5  
0.3  
26.5  
5.5  
21  
V
V
V
V
v
VREF  
PVIN3, PVIN4, PVIN5, LDO5P0, V5ANA, DRV5V_1_6, DRV5V_2_A1  
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
DRVL1, DRVL2, DRVL6  
V
V
V
V
V
V
SW1, SW2, SW6  
LX3, LX4, LX5  
5.5  
3.6  
3.3  
1  
FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5  
LDO3P3, ILIM1, ILIM2, ILIM6, LDOA1  
PVINVTT  
0.3  
0.3  
0.3  
BUCK6 FBVOUT6  
0.5 ×  
FBVOUT6  
VTT, VTTFB  
V
0.3  
PVINSWA1, SWA1, PVINSWB1_B2, SWB1, SWB2  
PVINLDOA2_A3  
3.6  
1.8  
1.5  
V
V
V
0.3  
0.3  
0.3  
LDOA2, LDOA3  
DIGITAL IO  
3.3  
V
DATA, CLK, CTL1CTL6, GPO1GPO4, IRQB  
CHIP  
0.3  
Operating ambient temperature, TA  
Operating junction temperature, TJ  
27  
27  
85  
°C  
°C  
40  
40  
125  
7.4 Thermal Information  
TPS650864  
RSK (VQFN)  
64 PINS  
25.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
11.3  
4.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
4.4  
ψJB  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics: Total Current Consumption  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PMIC shutdown current that includes IQ for  
references, LDO5, LDO3P3, and digital core  
VSYS = 13 V, all functional output rails are  
disabled  
ISD  
65  
µA  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.6 Electrical Characteristics: Reference and Monitoring System  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE  
Band-gap reference voltage  
Accuracy  
1.25  
V
VREF  
0.5%  
0.22  
5.56  
0.5%  
0.047  
5.24  
CVREF  
Band-gap output capacitor  
VSYS UVLO threshold for LDO5  
0.1  
5.4  
µF  
V
VSYS_UVLO_5V  
VSYS falling  
VSYS UVLO threshold hysteresis for VSYS rising above  
VSYS_UVLO_5V_HYS  
VSYS_UVLO_3V  
200  
3.6  
mV  
V
LDO5  
VSYS_UVLO_5V  
VSYS UVLO threshold for LDO3P3  
VSYS falling  
3.45  
3.75  
VSYS UVLO threshold hysteresis for VSYS rising above  
LDO3P3 VSYS_UVLO_3V  
VSYS_UVLO_3V_HYS  
150  
mV  
TCRIT  
Critical threshold of die temperature TJ rising  
130  
110  
145  
10  
160  
120  
°C  
°C  
°C  
°C  
TCRIT_HYS  
THOT  
Hysteresis of TCRIT  
TJ falling  
TJ rising  
TJ falling  
Hot threshold of die temperature  
Hysteresis of THOT  
115  
10  
THOT_HYS  
LDO5  
VIN  
Input voltage at VSYS pin  
DC output voltage  
5.6  
4.9  
13  
5
21  
5.1  
V
V
VOUT  
IOUT = 10 mA  
IOUT  
DC output current  
100  
180  
mA  
Measured with output shorted to  
ground  
IOCP  
Overcurrent protection  
200  
mA  
Power Good assertion threshold in  
percentage of target VOUT  
VTH_PG  
VOUT rising  
94%  
VTH_PG_HYS  
IQ  
Power Good deassertion hysteresis VOUT rising or falling  
4%  
20  
Quiescent current  
VIN = 13 V, IOUT = 0 A  
µA  
µF  
COUT  
External output capacitance  
2.7  
4.7  
10  
1
V5ANA-to-LDO5P0 LOAD SWITCH  
VIN = 5 V, measured from  
V5ANA pin to LDO5P0 pin at  
IOUT = 200 mA  
RDSON  
On resistance  
Ω
Power Good threshold for external 5-  
V supply  
VTH_PG  
VTH_HYS_PG  
ILKG  
VV5ANA rising  
VV5ANA falling  
4.7  
V
Power Good threshold hysteresis for  
external 5-V supply  
100  
mV  
µA  
Switch disabled,  
VV5ANA = 5 V, VLDO5 = 0 V  
Leakage current  
10  
21  
LDO3P3  
VIN  
Input voltage at VSYS pin  
DC output voltage  
5.6  
13  
V
V
IOUT = 10 mA  
3.3  
VOUT  
VIN = 13 V,  
IOUT = 10 mA  
Accuracy  
3%  
40  
3%  
IOUT  
IOCP  
DC output current  
Overcurrent protection  
mA  
mA  
Measured with output shorted to  
ground  
70  
Power Good assertion threshold in  
percentage of target VOUT  
VTH_PG  
VOUT rising  
92%  
3%  
VTH_PG_HYS  
Power Good deassertion hysteresis VOUT falling  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.6 Electrical Characteristics: Reference and Monitoring System (continued)  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VIN = 13 V,  
IOUT = 0 A  
MIN  
TYP  
MAX  
UNIT  
IQ  
Quiescent current  
20  
µA  
COUT  
External output capacitance  
2.2  
4.7  
10  
µF  
7.7 Electrical Characteristics: Buck Controllers  
over recommended input voltage range, TA = 40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK1, BUCK2, BUCK6  
Power input voltage for  
external HSD FET  
VIN  
5.6  
0.41  
1(1)  
13  
See 5  
See 5  
21  
1.67  
3.575  
2%  
V
V
V
VID step size = 10 mV, BUCKx_VID[6:0]  
progresses from 0000001 to 1111111  
DC output voltage VID  
range and options  
VID step size = 25 mV, BUCKx_VID[6:0]  
progresses from 0000001 to 1111111  
VOUT  
DC output voltage  
accuracy  
VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3 V,  
IOUT = 100 mA to 7 A  
2%  
Total output voltage  
accuracy (DC + ripple) in  
DCM  
40  
416  
65  
mV  
mV  
IOUT = 10 mA, VOUT 1 V  
30  
Applies only to the Buck1 Controller if  
programmed for external feedback voltage  
adjustability  
Feedback regulation  
voltage  
VFB_EXT_BUCK1  
384  
400  
Applies only to the Buck1 Controller if  
programmed for external feedback voltage  
adjustability  
Feedback pin leakage  
current  
IFB_LKG_BUCK1  
nA  
VID step size = 10 mV  
VID step size = 25 mV  
2.5  
3.125  
4
SR(VOUT  
)
Output DVS slew rate  
mV/µs  
3.125  
Low-side output valley  
current limit accuracy  
(programmed by external  
ILIM_LSD  
15%  
15%  
resistor RLIM  
)
Source current out of  
ILIM1 pin  
ILIMREF  
VLIM  
T = 25°C  
45  
0.2  
50  
55  
2.25  
µA  
V
Voltage at ILIM1 pin  
Line regulation  
VLIM = RLIM × ILIMREF  
VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3 V,  
IOUT = 7 A  
0.5%  
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
0.5%  
VIN = 13 V, VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5,  
3.3 V, IOUT = 0 A to 7 A,  
Load regulation  
0%  
1%  
referenced to VOUT at IOUT = IOUT_MAX  
Power Good deassertion VOUT rising  
threshold in percentage of  
VOUT falling  
target VOUT  
105.5%  
89.5%  
108%  
92%  
110.5%  
94.5%  
VTH_PG  
3
2
Source, IDRVH = 50 mA  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
RDSON_DRVH  
Driver DRVH resistance  
Driver DRVL resistance  
Sink, IDRVH = 50 mA  
3
Source, IDRVL = 50 mA  
Sink, IDRVL = 50 mA  
RDSON_DRVL  
0.4  
100  
200  
500  
BUCKx_DISCHG[1:0] = 01  
BUCKx_DISCHG[1:0] = 10  
BUCKx_DISCHG[1:0] = 11  
Output auto-discharge  
resistance  
RDIS  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.7 Electrical Characteristics: Buck Controllers (continued)  
over recommended input voltage range, TA = 40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CBOOT  
Bootstrap capacitance  
100  
nF  
Bootstrap switch ON  
resistance  
RON_BOOT  
20  
Ω
(1) BUCKx_VID[6:0] = 0000001 0011000  
7.8 Electrical Characteristics: Synchronous Buck Converters  
over recommended input voltage range, TA = 40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BUCK3, BUCK4, BUCK5  
VIN  
Power input voltage  
3.0  
5.5  
V
VID step size = 10 mV,  
BUCKx_VID[6:0] progresses from  
0000001 to 1111111  
0.41  
1.67  
See 5  
See 5  
DC output voltage VID range  
and options  
V
VID step size = 25 mV,  
BUCKx_VID[6:0] progresses from  
0000001 to 1111111  
0.425  
2%  
3.575  
2%  
VIN = 5.0 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8, 2.5, 3.3 V,  
IOUT = 1.5 A  
VOUT  
VIN = 3.3 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8 V,  
2%  
2%  
IOUT = 1.5 A  
DC output voltage accuracy  
VIN = 5.0 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8 V, 2.5, 3.3 V,  
2.5%  
2.5%  
IOUT = 100 mA  
VIN = 3.3 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8 V,  
IOUT = 100 mA  
2.5%  
40  
2.5%  
30  
Total output voltage accuracy  
(DC + ripple) in DCM  
VIN = 5.0 V, IOUT = 10 mA, VOUT 1  
V
VDCM  
mV  
VID step size = 10 mV  
VID step size = 25 mV  
2.5  
3.125  
4
SR(VOUT  
)
Output DVS slew rate  
mV/µs  
3.125  
IOUT  
Continuous DC output current  
HSD FET current limit  
3
7
A
A
IIND_LIM  
4.3  
VIN = 5 V, VOUT = 1 V,  
BUCKx_MODE = 0b  
IQ  
Quiescent current  
Line regulation  
35  
µA  
VOUT = 1, 1.2, 1.35, 1.5, 1.8,  
2.5, 3.3 V, IOUT = 1.5 A  
0.5%  
2%  
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
0.5%  
0.2%  
VIN = 5 V, VOUT = 1, 1.2, 1.35, 1.5,  
1.8, 2.5, 3.3 V,  
IOUT = 0 A to 3 A, referenced to VOUT  
at IOUT = 1.5 A  
Load regulation  
Power Good deassertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
108%  
92%  
VTH_PG  
Power Good reassertion  
hysteresis entering back into  
VTH_PG  
VTH_HYS_PG  
VOUT rising or falling  
3%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.8 Electrical Characteristics: Synchronous Buck Converters (continued)  
over recommended input voltage range, TA = 40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
BUCKx_DISCHG[1:0] = 01  
BUCKx_DISCHG[1:0] = 10  
BUCKx_DISCHG[1:0] = 11  
MIN  
TYP  
100  
200  
500  
MAX  
UNIT  
Output auto-discharge  
resistance  
RDIS  
Ω
7.9 Electrical Characteristics: LDOs  
over recommended input voltage range, TA = 40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LDOA1  
VIN  
Input voltage  
4.5  
1.35  
5
5.5  
3.3  
V
V
DC output voltage  
Accuracy  
Set by LDOA1_VID[3:0]  
See 5  
VOUT  
IOUT = 0 to 200 mA  
2%  
V
2%  
IOUT  
DC output current  
Line regulation  
200  
0.5%  
mA  
IOUT = 40 mA  
ΔVOUT/ΔVIN  
0.5%  
2%  
ΔVOUT  
ΔIOUT  
/
Load regulation  
IOUT = 10 mA to 200 mA  
2%  
VIN = 5 V, Measured with output  
shorted to ground  
IOCP  
Overcurrent protection  
500  
mA  
Power Good deassertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
108%  
92%  
VTH_PG  
Measured from EN = H to reach 95%  
of final value,  
tSTARTUP  
Start-up time  
500  
µs  
COUT = 4.7 µF  
IQ  
Quiescent current  
External output capacitance  
ESR  
IOUT = 0 A  
23  
µA  
µF  
mΩ  
Ω
2.7  
4.7  
10  
COUT  
100  
LDOA1_DISCHG[1:0] = 01  
LDOA1_DISCHG[1:0] = 10  
LDOA1_DISCHG[1:0] = 11  
100  
190  
450  
Output auto-discharge  
resistance  
RDIS  
Ω
Ω
LDOA2 and LDOA3  
(1)  
VIN  
Power input voltage  
VOUT + VDROP  
1.8  
See 5  
See 5  
1.98  
1.5  
V
V
V
LDOA2 DC output voltage  
LDOA3 DC output voltage  
DC output voltage accuracy  
DC output current  
Set by LDOA2_VID[3:0]  
Set by LDOA3_VID[3:0]  
IOUT = 0 to 600 mA  
0.7  
0.7  
VOUT  
1.5  
3%  
600  
2%  
IOUT  
mA  
mV  
VOUT = 0.99 × VOUT_NOM  
IOUT = 600 mA  
,
VDROP  
Dropout voltage  
Line regulation  
Load regulation  
350  
0.5%  
2%  
IOUT = 300 mA  
ΔVOUT/ΔVIN  
0.5%  
2%  
ΔVOUT  
ΔIOUT  
/
IOUT = 10 mA to 600 mA  
Measured with output shorted to  
ground  
IOCP  
Overcurrent protection  
0.65  
1.25  
A
Power Good assertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
108%  
92%  
VTH_PG  
Measured from EN = H to reach 95%  
of final value, COUT = 4.7 µF  
tSTARTUP  
Start-up time  
500  
µs  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.9 Electrical Characteristics: LDOs (continued)  
over recommended input voltage range, TA = 40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IQ  
Quiescent current  
IOUT = 0 A  
20  
µA  
f = 1 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
COUT = 2.2 µF 4.7 µF  
48  
dB  
dB  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
30  
COUT = 2.2 µF 4.7 µF  
External output capacitance  
ESR  
2.2  
4.7  
10  
µF  
COUT  
100  
mΩ  
LDOA[2,3]_DISCHG[1:0] = 01  
LDOA[2,3]_DISCHG[1:0] = 10  
LDOA[2,3]_DISCHG[1:0] = 11  
80  
180  
475  
Output auto-discharge  
resistance  
RDIS  
Ω
VTT LDO  
VIN  
Power input voltage  
DC output voltage  
1.2  
3.3  
V
V
VIN = 1.2 V, Measured at VTTFB pin  
VIN / 2  
Relative to VIN / 2, IOUT 10 mA,  
1.1 V VIN 1.35 V  
10  
25  
10  
25  
VOUT  
DC output voltage accuracy  
mV  
mA  
mA  
Relative to VIN / 2, IOUT 500 mA,  
1.1 V VIN 1.35 V  
DC Output Current (Rms  
Value Over Operation)  
0
500  
500  
1800  
10  
1.1 V VIN 1.5 V  
500  
500  
1800  
10  
source(+) and sink(): IOCP = 0.95 A,  
1.1 V VIN 1.5 V  
IOUT  
Pulsed Current (Duty Cycle  
Limited to Remain Below DC  
Rms Specification)  
source(+) and sink(): IOCP = 1.8 A,  
1.1 V VIN 1.5 V  
Relative to VIN / 2, IOUT 10 mA,  
1.1 V VIN 1.5 V  
Relative to VIN / 2, IOUT 500 mA,  
1.1 V VIN 1.5 V  
20  
20  
ΔVOUT  
ΔIOUT  
/
Load regulation  
mV  
Relative to VIN / 2, IOUT 1200 mA,  
1.1 V VIN 1.5 V  
30  
30  
Relative to VIN / 2, IOUT 1800 mA,  
1.1 V VIN 1.5 V  
40  
40  
DC + AC at sense point, 1.1 V VIN  
1.5 V,  
(IOUT = 0 to 350 mA and 350 mA to 0)  
AND  
(0 to 350 mA and 350 mA to 0)  
with 1 µs of rise and fall time  
COUT = 40 µF  
Load transient regulation  
Overcurrent protection  
5%  
ΔVOUT_TR  
5%  
Measured with output shorted to  
ground: OTPs with VTT ILIM = 0.95 A  
0.95  
1.8  
IOCP  
A
Measured with output shorted to  
ground: OTPs with VTT ILIM = 1.8 A  
Power Good deassertion  
threshold in percentage of  
target VOUT  
VOUT rising  
VOUT falling  
110%  
95%  
VTH_PG  
Power Good reassertion  
hysteresis entering back into  
VTH_PG  
VTH_HYS_PG  
IQ  
5%  
Total ground current  
VIN = 1.2 V, IOUT = 0 A  
240  
µA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.9 Electrical Characteristics: LDOs (continued)  
over recommended input voltage range, TA = 40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ILKG  
CIN  
OFF leakage current  
External input capacitance  
External output capacitance  
VIN = 1.2 V, disabled  
1
µA  
10  
35  
µF  
COUT  
µF  
VTT_DISCHG = 0  
VTT_DISCHG = 1  
1000  
60  
kΩ  
Ω
Output auto-discharge  
resistance  
RDIS  
80  
100  
(1) The minimum value must be equal to or greater than 1.62 V.  
7.10 Electrical Characteristics: Load Switches  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SWA1  
VIN  
Input voltage range  
DC output current  
0.5  
3.3  
V
IOUT  
300 mA  
VIN = 1.8 V, measured from PVINSWA1 pin  
to SWA1 pin at IOUT = IOUT(MAX)  
60  
93  
mΩ  
165  
RDSON  
ON resistance  
VIN = 3.3 V, measured from PVINSWA1 pin  
to SWA1 pin at IOUT = IOUT(MAX)  
100  
VOUT rising  
VOUT falling  
108%  
92%  
Power Good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
Power Good reassertion hysteresis  
entering back into VTH_PG  
VTH_HYS_PG  
IINRUSH  
VOUT rising or falling  
2%  
Inrush current upon turnon  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
10 mA  
µA  
10.5  
9
IQ  
Quiescent current  
VIN = 1.8 V, IOUT = 0 A  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
370  
nA  
900  
ILKG  
Leakage current  
10  
COUT  
External output capacitance  
0.1  
100  
200  
500  
µF  
SWA1_DISCHG[1:0] = 01  
SWA1_DISCHG[1:0] = 10  
SWA1_DISCHG[1:0] = 11  
RDIS  
Output auto-discharge resistance  
Ω
SWB1, SWB2, SWB1_2  
VIN  
Input voltage range  
0.5  
3.3  
V
IOUT  
DC current per output  
400 mA  
VIN = 1.8 V, measured from PVINSWB1_B2  
pin to SWBx pin at IOUT = IOUT(MAX), per  
output switch  
68  
75  
92  
mΩ  
mΩ  
RDSON  
ON resistance per output  
VIN = 3.3 V, measured from PVINSWB1_B2  
pin to SWBx pin at IOUT = IOUT(MAX), per  
output switch  
125  
VOUT rising  
VOUT falling  
108%  
92%  
Power Good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
Power Good reassertion hysteresis  
entering back into VTH_PG  
VTH_HYS_PG  
IINRUSH  
VOUT rising or falling  
2%  
Inrush current upon turning on  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
VIN = 1.8 V, IOUT = 0 A  
10 mA  
µA  
10.5  
9
IQ  
Quiescent current  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.10 Electrical Characteristics: Load Switches (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
460  
ILKG  
Leakage current  
nA  
µF  
10 1150  
0.1  
COUT  
External output capacitance  
SWBx_DISCHG[1:0] = 01  
SWBx_DISCHG[1:0] = 10  
SWBx_DISCHG[1:0] = 11  
100  
RDIS  
Output auto-discharge resistance  
200  
Ω
500  
7.11 Digital Signals: I2C Interface  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
Leakage current  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOL  
VIH  
VIL  
VPULL_UP = 1.8 V  
0.4  
V
V
1.2  
0.4  
0.3  
8.5  
2.5  
1
V
ILKG  
VPULL_UP = 1.8 V  
Standard mode  
Fast mode  
0.01  
µA  
RPULL-UP Pullup resistance  
kΩ  
Fast mode plus  
COUT  
Total load capacitance per pin  
50  
pF  
7.12 Digital Input Signals (CTLx)  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
High-level input voltage  
Low-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
0.85  
V
0.4  
V
7.13 Digital Output Signals (IRQB, GPOx)  
Over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
Leakage current  
TEST CONDITIONS  
IOL < 2 mA  
VPULL_UP = 1.8 V  
MIN  
TYP  
MAX UNIT  
VOL  
ILKG  
0.4  
V
0.35  
µA  
7.14 Timing Requirements  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
I2C INTERFACE  
Clock frequency (standard mode)  
100  
400  
kHz  
kHz  
kHz  
ns  
fCLK  
Clock frequency (fast mode)  
Clock frequency (fast mode plus)  
Rise time (standard mode)  
Rise time (fast mode)  
1000  
1000  
300  
tr  
ns  
Rise time (fast mode plus)  
120  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS650864  
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
MIN  
NOM  
MAX  
300  
300  
120  
UNIT  
Rise time (standard mode)  
Rise time (fast mode)  
ns  
tf  
ns  
Rise time (fast mode plus)  
ns  
7.15 Switching Characteristics  
over operating free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK CONTROLLERS  
Measured from enable going high to when output reaches  
90% of target value.  
tPG  
Total turnon time  
550  
50  
850  
µs  
ns  
Minimum on-time of  
DRVH  
TON,MIN  
DRVH off to DRVL on  
DRVL off to DRVH on  
15  
30  
ns  
ns  
TDEAD  
Driver dead-time  
Continuous-conduction mode,  
VIN = 13 V, VOUT 1 V  
fSW  
Switching frequency  
1000  
kHz  
BUCK CONVERTERS  
Measured from enable going high to when output reaches  
90% of target value.  
tPG  
Total turnon time  
250  
1000  
µs  
fSW  
Switching frequency  
Continuous-conduction mode  
MHz  
See 7-10  
LDOAx  
Measured from enable going high to when output reaches  
95% of final value,  
VOUT = 1.2 V, COUT = 4.7 µF  
tSTARTUP  
Start-up time  
180  
22  
µs  
µs  
VTT LDO  
tSTARTUP  
SWA1  
Measured from enable going high to PG assertion,  
VOUT = 0.675 V, COUT = 40 µF  
Start-up time  
Turnon time  
Measured from enable going high to reach 95% of final  
value,  
VIN = 3.3 V, COUT = 0.1 µF  
0.85  
0.63  
ms  
ms  
tTURN-ON  
SWB1_2  
tTURN-ON  
Measured from enable going high to reach 95% of final  
value,  
VIN = 1.8 V, COUT = 0.1 µF  
Measured from enable going high to reach 95% of final  
value,  
VIN = 3.3 V, COUT = 0.1 µF  
1.1  
ms  
ms  
Turnon time  
Measured from enable going high to reach 95% of final  
value,  
0.82  
VIN = 1.8 V, COUT = 0.1 µF  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.16 Typical Characteristics  
Measurements are taken at 25°C.  
FET = CSD87588N  
L = PIMB061H-R22ms  
COUT = 2 × 150 µF + 1 × 22 µF  
7-1. Example BUCK2 Controller Start-Up  
BUCK3_MODE = 0b  
L = PIFE32251B-R47ms  
COUT = 4 × 22 µF  
BUCK2_MODE = 0b  
7-2. Example BUCK3 Converter Start-Up  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
Vout = 1 V  
Vout = 1 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
0.1  
0.2 0.3 0.40.5 0.7 1  
Iout (A)  
2
3
4 5 6 7  
0.1  
0.2 0.3 0.40.5 0.7 1  
Iout (A)  
2
3
4 5 6 7  
D012  
D011  
FET = CSD87381P  
BUCK1_MODE = 0b  
7-4. Example BUCK1 Efficiency at VIN = 18 V  
L = PIMB061H-R47ms  
FET = CSD87381P  
BUCK1_MODE = 0b  
7-3. Example BUCK1 Efficiency at VIN = 13 V  
L = PIMB061H-R47ms  
100%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
Vout = 1 V  
VOUT = 1 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
VOUT = 1.5 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
0.1  
0.2  
0.3 0.4 0.5 0.7  
Iout (A)  
1
2
3
0.1  
0.2  
0.3 0.4 0.5 0.7  
Load Current (A)  
1
2
3
D009  
D013  
BUCK3_MODE = 0b  
L = PIFE32251B-R47ms  
BUCK3_MODE = 0b  
L = PIFE32251B-R47ms  
7-5. Example BUCK3 Efficiency at VIN = 5 V  
7-6. Example BUCK3 Efficiency at VIN = 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.16 Typical Characteristics (continued)  
Measurements are taken at 25°C.  
2.9  
710  
700  
690  
680  
670  
660  
650  
640  
630  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 2.8 V  
-40èC  
25èC  
85èC  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
-2  
-1.5  
-1  
-0.5  
0
Load Current (A)  
0.5  
1
1.5  
2
0
1
2
Load Current (A)  
3
4
D015  
D014  
FBVOUT6 = PVINVTT = 1.35 V  
7-8. VTT LDO Regulation  
L = PIFE32251B-R47ms  
7-7. Converter Load Current Limitations with VIN = 3.3 V  
3.5  
3.5  
3
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
0
VIN = 5 V  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V  
0
0.4  
0.6  
0.8  
1
Output Voltage Setting (V)  
1.2  
1.4  
1.6 1.8  
0.4  
0.8  
1.2  
1.6  
2
Output Voltage Setting (V)  
2.4  
2.8  
3.2  
3.6  
D016  
D017  
L = PIFE32251B-R47ms  
L = PIFE32251B-R47ms  
7-9. Converter Switching Frequency (10-mV Step Size)  
7-10. Converter Switching Frequency (25-mV Step Size)  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS650864 power-management integrated circuit (PMIC) provides a highly flexible and configurable power  
solution that can power a wide array of processors along with DDR3/DDR4 memory and other peripherals.  
Integrated in the PMIC are three step-down controllers (BUCK1, BUCK2, and BUCK6), three step-down  
converters (BUCK3, BUCK4, and BUCK5), a sink or source LDO (VTT LDO), three low-voltage VIN LDOs  
(LDOA1LDOA3), and three load switches (SWA1, SWB1, and SWB2). With on-chip one-time programmable  
(OTP) memory, configuration of each rail for default output value, power-up sequence, fault handling, and Power  
Good mapping into a GPO pin are all conveniently flexible. All VRs have a built-in discharge resistor, and the  
value can be changed using the DISCHCNT1DISCHCNT3 and LDOA1_SWB2_CTRL registers. When  
enabling a VR, the PMIC automatically disconnects the discharge resistor for that rail without any I2C command.  
8-1 lists the key characteristics of the voltage rails.  
8-1. Summary of Voltage Regulators  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE RANGE (V)  
RAIL  
TYPE  
CURRENT (mA)  
MIN  
4.5  
4.5  
3
MAX  
21  
MIN  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
1.35  
0.7  
TYP  
MAX  
3.575  
3.575  
3.575  
3.575  
3.575  
3.575  
3.3  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
BUCK6  
LDOA1  
LDOA2  
LDOA3  
SWA1  
Step-down controller  
Step-down controller  
Step-down converter  
Step-down Converter  
Step-down converter  
Step-down controller  
LDO  
scalable  
scalable  
3000  
See 5  
See 5  
See 5  
See 5  
See 5  
See 5  
See 5  
See 5  
See 5  
21  
5.5  
5.5  
5.5  
21  
3
3000  
3
3000  
4.5  
4.5  
1.62  
1.62  
0.5  
0.5  
1.1  
scalable  
200(1)  
600  
5.5  
1.98  
1.98  
3.3  
3.3  
1.8  
LDO  
1.5  
LDO  
0.7  
1.5  
600  
Load switch  
300  
SWB1/SWB2  
VTT  
Load switch  
400  
Sink and source LDO  
FBVOUT6 / 2  
See 5  
(1) When powered from a 5-V supply through the DRV5V_2_A1 pin. Otherwise, max current is limited by max IOUT of LDO5.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS650864  
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
LDO5V  
LDO1  
VIN  
BOOT1  
DRVH1  
LDOA1  
1.35 œ 3.3 V  
200 mA  
CTL1  
CTL2  
SW1  
V1  
VSET  
EN  
BUCK1  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL1  
CTL3/SLPENB1  
Control  
CTL4  
EN  
VSET  
FBVOUT1  
Inputs  
PGNDSNS1  
CTL5  
ILIM1  
CTL6/SLPENB2  
VPULL  
VIN  
BOOT2  
DRVH2  
CLK  
SoC  
&
System  
I2C CTL  
SW2  
DATA  
V2  
VSET  
EN  
VPULL  
DRVL2  
BUCK2  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
Control  
Outputs  
FBVOUT2  
PGNDSNS2  
IRQB  
GPO1  
GPO2  
GPO3  
GPO4  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
3.3 V œ 5 V  
PVIN3  
LX3  
TEST CTL  
OTP  
BUCK3  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VSET  
EN  
V3  
FB3  
Registers  
<PGND_BUCK3>  
3 A  
3.3 V œ 5 V  
PVIN4  
LX4  
BUCK4  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
LDO5P0  
V5ANA  
LDO5P0  
VSET  
EN  
Digital Core  
V4  
3.3V œ 5V  
FB4  
3 A  
<PGND_BUCK4>  
3.3V œ 5V  
PVIN5  
LX5  
BUCK5  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
œ
VSET  
EN  
4.7V  
V5  
+
FB5  
STDBY  
3 A  
<PGND_BUCK5>  
LDO5V  
VIN  
REFSYS  
LDO3P3  
BOOT6  
DRVH6  
Thermal  
Monitoring  
VSYS  
5.6Vœ21V  
LDO3P3  
LDO3P3  
SW6  
DRVL6  
Thermal Shutdown  
VDDQ  
VSET  
EN  
BUCK6  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VREF  
AGND  
Bandgap  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVIN_VTT  
VTT  
VTT  
EN  
VTT_LDO  
VDDQ/2  
VTTFB  
LDOA2  
0.7 1.5 V  
600 mA  
LDOA3  
0.7 1.5 V  
600 mA  
LOAD SWA1  
LOAD SWB1  
LOAD SWB2  
8-1. PMIC Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
PMIC  
Example SoC  
PLATFORM  
VIN  
BUCK1  
EXT FET  
VIN  
VCORE  
VGPU  
BUCK2  
BUCK3 3A  
BUCK4 3A  
BUCK5 3A  
BUCK6  
EXT FET  
5V Supply  
VCCIO  
VCPU1  
Note: An LDO or  
Buck Can Supply  
the VPP Rail if  
VCPU2  
Needed for DDR.  
VIN  
EXT FET  
VDDQ, VDD1&2  
VDDQ, VDD1&2  
VTT LDO ±0.5A  
VTT  
VTT  
DDR  
DDR  
LDO5V or  
5V Supply  
VSUPP1  
VSUPP2  
VSUPP3  
VSUPP4  
VSUPP5  
VSUPP6  
LDOA1 0.2A  
LDOA2 0.6A  
LDOA3 0.6A  
SWA1 0.3A  
SWB1 0.3A  
SWB2 0.3A  
LDO5  
1.8V  
Input up to 3.3V  
Input up to 3.3V  
LDO5V  
VSYS  
VIN  
5V Supply  
PG_5V  
LDO3P3  
IRQB  
GPO1 – GPO4  
SDA  
CTL1 – CTL6  
SCL  
Copyright © 2017, Texas Instruments Incorporated  
8-2. Power Map Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3 TPS6508640 Design and Settings  
The TPS6508640 device is optimized to power the higher range of the Xilinx Zynq Ultrascale+ MPSoC, but is  
compatible with the lower range as well. See 8-3 for an example block diagram. Dashed lines show the option  
to short VCCINT with VCCBRAM for cases where their voltages are the same and current < 25 A. In this case,  
the TPS544C25 device is not needed and GPO1 should be shorted to CTL4.  
VIN  
(4.5 œ 18 V)  
TPS544C25  
Xilinx Zynq UltraScale+  
ZU7CG œ ZU15EG2  
0.72 V  
VCCINT  
VIN  
VOUT  
BUCK2_PG  
(GPO1)  
VCCINT_PG  
(CTL4)  
TPS6508640  
CNTL PGOOD  
VIN  
(5.6 œ 21 V)  
5 V (for DRV)  
LDO5  
VIN  
3.3 V  
CSD87381P1  
VIN  
BUCK1  
Peripherals  
0.85 V or 0.9 V  
VCCINT_IO  
5 V (from LDO5)  
CSD87381P1  
BUCK2  
BUCK5  
VCCBRAM  
PL Domain  
1.8 V  
VCCAUX  
VCCAUX_IO  
VCCADC  
Filter  
3.3 V (from BUCK1)  
1.8 V (from BUCK5)  
1.2 V  
0.9 V  
1.8 V  
VMGTAVTT  
BUCK3  
BUCK4  
SWB1  
VMGTAVCC  
VMGTAVCCAUX  
VCCO_HDIO  
0.7 œ 1.5 V  
0.7 œ 1.5 V  
1.8 V  
LDOA2  
LDOA3  
SWB2  
VCCO_HPIO  
VCC_PSINTLP  
VCC_PSAUX  
VCC_PSADC  
Filter  
Low-Power  
Domain  
VCC_PSPLL  
VCCO_PSIO  
3.3 V (from BUCK1)  
3.3 V  
SWA1  
PS Domain  
VCC_PSINTFP  
VCC_PSINTFP_DDR  
VCC_PSDDR_PLL  
Full-Power  
Domain  
Filter  
VCCO_PSDDR  
VIN  
5 V (from LDO5)  
BUCK6 Output  
1.2 V or 1.35 V  
VDDQ / VDD2  
VTT  
CSD87381P1  
BUCK6  
VTT LDO  
LDOA1  
0.6 V or 0.675 V  
DDR Memory  
5 V (from LDO5)  
DDR_EN  
2.5 V  
VPP  
I2C CLK & DATA  
I2C  
CTL1  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
DDR_SEL  
BUCK2_PG  
I2C_GPO  
GPO1  
GPO2  
GPO3  
GPO4  
Main Sequence  
VCCINT_PG  
VTT_EN  
PS_POR_B  
BUCK4_PG  
BUCK2_SEL  
(1) External FETs can be scaled to meet the current requirements of each design; CSD87381P is suitable up to approximately 15 A.  
(2) The TPS6508640 is not limited to the ZU7CG - ZU15EG. It can support other Ultrascale+ devices as long as the use case does not  
exceed the maximum specifications of the TPS6508640.  
8-3. TPS6508640 Power Map Example  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
The power up and power down sequences can be seen in 8-4 and 8-5. Regulators and GPOs are enabled  
by combination of CTL pins and regulator power good signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
VSYS  
5.6 V  
LDO5/LDO3P3  
I2C Available  
CTL3  
[and CTL1 if used]  
0.85 V (CTL6 = ‘0’)  
0.9 V (CTL6 = ‘1’)  
BUCK2  
(VCCBRAM)  
GPO1  
(BUCK2_PG)  
0.72 V  
VCCINT External Rail when  
not merged with VCCBRAM  
CTL4  
(VCCINT_PG)  
3.3 V  
BUCK1  
(VCC_3V3)  
0.9 V  
BUCK4  
(VMGTAVCC)  
GPO4  
(BUCK4_PG)  
1.2 V  
BUCK3  
(VMGTAVTT)  
2 ms  
1.8 V  
BUCK5  
(VCCAUX)  
SWB1  
(VMGTAVCCAUX)  
Disabled if CTL1 = ‘0’  
2.5 V (CTL1 = ‘1’)  
LDOA1  
(VPP)  
2 ms  
SWA1  
(VCCO_PSIO)  
Disabled if CTL1 = ‘0’  
1.2 V (CTL1 = ‘1’ & CTL2 = ‘0’)  
1.35 V (CTL1 = ‘1’ & CTL2 = ‘1’)  
BUCK6  
(VCCO_PSDDR / VDDQ)  
Disabled if CTL5 = ‘0’ or CTL1 = ‘0’  
0.6 V (CTL5 = ‘1’ & CTL2 = ‘0’)  
0.675 V (CTL5 = ‘1’ & CTL2 = ‘1’)  
VTT LDO  
(VTT)  
GPO3  
(PS_POR_B)  
75 ms  
8-4. TPS6508640 Power-Up Sequence  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
CTL3  
[and CTL1 if used]  
GPO3,  
GPO4  
SWA1  
[BUCK6, VTT LDO  
if used]  
BUCK3, BUCK5,  
SWB1 [LDOA1 if  
used]  
2 ms  
4 ms  
BUCK1, BUCK2,  
BUCK4  
GPO1  
8-5. TPS6508640 Power-Down Sequence  
TPS6508640 sequence includes an optional slot for an external rail to power VCCINT. When using an external  
rail, GPO1 should be connected to the enable of the external rail and the power good of the external rail should  
be connected to CTL4. When merging VCCINT and VCCBRAM, GPO1 can be connected directly to CTL4.  
CTL1 and CTL5 are used to enable the portion of the sequencing related to DDR memory. This includes BUCK6,  
LDOA1, and VTT LDO. Connecting the CTL1 pin to the same input as CTL3 will result in BUCK6 being enabled  
2 ms after BUCK5 and LDOA1 being enabled after BUCK6 PG. If CTL5 is connected to the same input as well,  
VTT LDO will turn on after BUCK6 PG as well.  
CTL2 is used to select DDR voltage between 1.2 V (logic level low) and 1.35 V (logic level high).  
CTL6 is used to select BUCK2 (VCCBRAM) voltage between 0.85 V (logic level low) and 0.9 V (logic level high).  
BUCK3 also has SLP_EN = 1b by default, so if using 0.85 V for VCCBRAM (CTL6 logic level low), then to  
modify BUCK3 VID during operation, BUCK3_SLP_VID register bits should be used.  
LDOA2 and LDOA3 are controlled only by I2C.  
A summary of the part number specific settings can be seen in 8.3.1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.1 TPS6508640 OTP Summary  
The following tables list the TPS6508640 device settings for the buck regulators, general purpose LDOs, VTT  
LDO, load switches, and GPOs. LDOA1 is used in sequence so all registers with SWB2_LDOA1 will function as  
LDOA1. Additionally, SWB1 and SWB2 are not merged so all registers with LDOA1_SWB2 will function as  
SWB2. All values which can be modified by I2C after power on are shown in italics. Additional details (such as  
GPO power good inputs) can be found in the register map.  
8-2. TPS6508640 Settings SummaryBuck Regulators  
SLEEP  
VOLTAGE  
POWER FAULT  
MASKED  
FORCE  
PWM  
REGULATOR  
DEFAULT VOLTAGE  
STEP SIZE  
SLP PIN  
SLP_EN  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
3.3 V  
0.9 V  
1.2 V  
0.9 V  
1.8 V  
3.3 V  
0.85 V  
1.2 V  
0.9 V  
1.8 V  
25 mV  
10 mV  
25 mV  
25 mV  
25 mV  
CTL6  
CTL6  
CTL6  
CTL6  
CTL6  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
CTL2 &  
CTL6  
BUCK6  
1.35 V / 1.2 V  
1.35  
10 mV  
No  
No  
Yes  
8-3. TPS6508640 Settings SummaryGeneral Purpose LDOs  
DEFAULT  
VOLTAGE  
POWER FAULT  
MASKED  
REGULATOR  
SLEEP VOLTAGE  
ALWAYS ON  
SLP PIN  
SLP_EN  
LDOA1  
LDOA2  
LDOA3  
2.5 V  
1.5 V  
1.2 V  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
1.5 V  
1.2 V  
CTL6  
CTL6  
8-4. TPS6508640 Settings SummaryVTT LDO  
REGULATOR  
ILIM SETTING  
ENABLE PIN  
POWER FAULT MASKED  
VTT LDO  
1.8 A  
CTL3  
No  
8-5. TPS6508640 Settings SummaryLoad Switches  
REGULATOR  
SWA1  
POWER GOOD VOLTAGE  
SWB1_2 MERGED  
POWER FAULT MASKED  
3.3 V  
1.8 V  
1.8 V  
Yes  
Yes  
Yes  
No  
No  
SWB1  
SWB2  
8-6. TPS6508640 Settings SummaryGPOs  
GPO  
GPO1  
GPO2  
GPO3  
GPO4  
POWER GOOD (PG) or I2C  
STATE  
OUTPUT TYPE  
Push Pull  
PG  
I2C  
PG  
PG  
Low  
Open Drain  
Open Drain  
Open Drain  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4 TPS65086401 Design and Settings  
The TPS65086401 device is intended to power the lower range of the Xilinx Zynq Ultrascale+ platform. An  
example block diagram for this system can be seen in 8-6.  
TPS65086401  
Xilinx Zynq UltraScale+  
ZU2CG œ ZU5EG2  
VIN  
0.85 V  
1.8 V  
5 V (from LDO5)  
VCCINT  
VCCBRAM  
VCCINT_IO  
CSD87381P1  
BUCK2  
BUCK33  
BUCK1  
5 V (from ext supply)  
0.85 V  
VIN  
VCCAUX  
VCCAUX_IO  
VCCADC  
PL Domain  
CSD87381P1  
1.8 V (BUCK1)  
1.8 V  
SWB1_23  
BUCK4  
Filter  
3.3 V  
3.3 V  
VCCO  
BUCK53  
VCC_PSINTLP  
5 V (from LDO5)  
1.8 V (BUCK1)  
1.8 V  
VCC_PSADC  
VCC_PSAUX  
LDOA1  
Low-Power  
Domain  
1.2 V  
VCC_PSPLL  
VCCO_PSIO  
LDOA2  
LDOA33  
SWA1  
1.2 V  
PS Domain  
VCC_PSINTFP  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
VCC_PSINTFP_DDR  
VCC_PSDDR_PLL  
VPS_MGTRAVTT  
Full-Power  
Domain  
Filter  
VPS_MGTRAVCC  
VCCO_PSDDR  
Filter  
VIN  
1.1, 1.2, or 1.5 V  
CSD87381P1  
BUCK6  
DDR Memory  
0.55, 0.6, or 0.75 V  
I2C CLK & DATA  
VTT LDO  
I2C  
Main Sequence  
DDR_SEL1  
CTL1  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
CTL1 Seq PG  
CTL4 Seq PG  
GPO1  
GPO2  
GPO3  
GPO4  
DDR_SEL2  
Secondary Sequence  
SWA1_EN  
PS_POR_B (CTL1 Seq PG + 5 ms)  
SWA1_PG  
BUCK4_VTT_EN  
(1) External FETs can be scaled to meet the current requirements of each design; CSD87381P is suitable up to approximately 15 A.  
(2) The TPS65086401 is not limited to the ZU2CG - ZU5EG. It can support other Ultrascale+ devices as long as the use case does not  
exceed the maximum specifications of the TPS65086401.  
(3) PL Domain can be optionally powered by BUCK3, SWB1_2, BUCK5, and LDOA3 to allow it to be enabled and disabled by CTL4.  
This applies only to use cases where VCCINT current is less than 3 A.  
8-6. TPS65086401 Power Map Example  
The power up and power down sequences can be seen in 8-7 and 8-8. Regulators and GPOs are enabled  
by combination of CTL pins and regulator power good signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
VSYS  
5.6 V  
LDO5/LDO3P3  
I2C Available  
CTL1  
0.85 V  
BUCK2  
1.8 V  
1.2 V  
1.8 V  
2 ms  
BUCK1  
LDOA2  
LDOA1  
BUCK6  
GPO1  
1.1 V (CTL3 = 0, CTL2 = 0 or 1)  
1.2 V (CTL3 = 1, CTL2 = 0)  
1.5 V (CTL3 = 1, CTL2 = 1)  
2 ms  
CTL1 and PG of above regulators  
Typically shorted to GPO1  
3.3 V  
CTL6  
0.55 V (CTL3 = 0, CTL2 = 0 or 1)  
0.6 V (CTL3 = 1, CTL2 = 0)  
0.75 V (CTL3 = 1, CTL2 = 1)  
BUCK4  
VTT LDO  
GPO3  
5 ms  
GPO1 + 5 ms delay  
CTL4  
0.85 V  
BUCK3  
1.2 V  
2 ms  
LDOA3  
SWB1_2  
BUCK5  
GPO2  
1.8 V (default PG level)  
3.3 V  
2 ms  
PG of BUCK3, BUCK5,  
LDOA3, and SWB1_2  
8-7. TPS65086401 Power-Up Sequence  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
CTL1  
GPO1,  
GPO3  
CTL6  
BUCK4, BUCK6,  
VTT LDO  
BUCK1, LDOA1,  
LDOA2  
2 ms  
4 ms  
BUCK2  
CTL4 or CTL1  
GPO2  
BUCK5  
LDOA3,  
SWB1_2  
2 ms  
4 ms  
BUCK3  
8-8. TPS65086401 Power-Down Sequence  
CTL1 is used to enable the general system, CTL6 is typically connected to GPO1, and CTL4 can be used or not  
used depending on the application. CTL5 enables SWA1 independently of the rest of the sequence. CTL2 and  
CTL3 are used for BUCK6 voltage selection.  
A summary of the part number specific settings can be seen in 8.4.1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.1 TPS65086401 OTP Summary  
The following tables list the TPS65086401 device settings for the buck regulators, general purpose LDOs, VTT  
LDO, load switches, and GPOs. LDOA1 is used in sequence so all registers with SWB2_LDOA1 will function as  
LDOA1. Additionally, SWB1 and SWB2 are merged so all registers with LDOA1_SWB2 will be unused. All  
values which can be modified by I2C after power on are shown in italics. Additional details (such as GPO power  
good inputs) can be found in the register map.  
8-7. TPS65086401 Settings SummaryBuck Regulators  
SLEEP  
VOLTAGE  
POWER FAULT  
MASKED  
FORCE  
PWM  
REGULATOR  
DEFAULT VOLTAGE  
STEP SIZE  
SLP PIN  
SLP_EN  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
1.8 V  
0.85 V  
0.85 V  
3.3 V  
1.8 V  
0.85 V  
0.85 V  
0 V  
25 mV  
10 mV  
25 mV  
25 mV  
25 mV  
CTL3  
CTL3  
CTL3  
CTL6  
CTL3  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
3.3 V  
3.3 V  
CTL2 &  
CTL3  
BUCK6  
1.5 V / 1.2 V  
1.1 V  
10 mV  
Yes  
No  
No  
8-8. TPS65086401 Settings SummaryGeneral Purpose LDOs  
DEFAULT  
VOLTAGE  
POWER FAULT  
MASKED  
REGULATOR  
SLEEP VOLTAGE  
ALWAYS ON  
SLP PIN  
SLP_EN  
LDOA1  
LDOA2  
LDOA3  
1.8 V  
No  
No  
No  
No  
No  
No  
1.2 V  
1.2 V  
1.2 V  
CTL3  
CTL3  
1.2 V  
8-9. TPS65086401 Settings SummaryVTT LDO  
REGULATOR  
ILIM SETTING  
ENABLE PIN  
POWER FAULT MASKED  
VTT LDO  
0.95 A  
CTL6  
Yes  
8-10. TPS65086401 Settings SummaryLoad Switches  
REGULATOR  
SWA1  
POWER GOOD VOLTAGE  
SWB1_2 MERGED  
POWER FAULT MASKED  
3.3 V  
1.8 V  
1.8 V  
No  
No  
No  
SWB1  
Yes  
Yes  
SWB2  
8-11. TPS65086401 Settings SummaryGPOs  
GPO  
GPO1  
GPO2  
GPO3  
GPO4  
POWER GOOD (PG) or I2C  
STATE  
OUTPUT TYPE  
Open Drain  
Open Drain  
Open Drain  
Open Drain  
PG  
PG  
PG  
PG  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5 TPS6508641 Design and Settings  
The TPS6508641 device is intended to power the lower range of the Xilinx Zynq Ultrascale+ platform. It removes  
the need for an external 5 V regulator when compared with the TPS65086401 device and also supports a wider  
variety of Zynq Ultrascale+ power states. 8-9 shows a simple example block diagram for an always-on  
system, while 8-10 shows a block diagram for full power domain flexibility. See Xilinx's Ultrascale Architecture  
PCB Design for explanation of the power supply configurations.  
TPS6508641  
Xilinx Zynq UltraScale+  
ZU2CG œ ZU5EG2  
VIN  
5 V  
CSD87381P1  
VIN  
BUCK1  
0.85 V  
VCCINT  
VCCINT_IO  
VCCBRAM  
5 V (from LDO5)  
CSD87381P1  
BUCK2  
PL Domain  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
VCCAUX  
VCCAUX_IO  
VCCADC  
SWB1_2  
Filter  
VCCO_HDIO  
1.2 V  
VIN  
1.8 V (from BUCK6)  
VCCO_HPIO  
LDOA3  
BUCK6  
VCC_PSINTLP  
1.8 V  
VCC_PSAUX  
VCC_PSADC  
VCCO_PSIO  
CSD87381P1  
Low-Power  
Domain  
Filter  
1.2 V  
VCC_PSPLL  
LDOA2  
PS Domain  
VCC_PSINTFP  
VCC_PSINTFP_DDR  
VCC_PSDDR_PLL  
VCCO_PSDDR  
Filter  
Full-Power  
Domain  
VIN  
(5.6 œ 21 V)  
5 V (for DRV)  
LDO5  
VTT LDO  
LDOA1  
0.9 V  
1.8 V  
1.8 V (from BUCK6)  
VPS_MGTRAVCC  
VPS_MGTRAVTT  
VDDQ / VDD2  
VDD1  
1.1 V or 1.2 V  
BUCK3  
DDR Memory  
Peripherals  
5 V (from BUCK1)  
3.3 V  
1.2 V  
BUCK4  
BUCK5  
SWA1  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
I2C CLK & DATA  
I2C  
PS_POR_PB_B  
SWA1_EN  
CTL1  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
BUCK1_PG  
I2C_GPO  
GPO1  
GPO2  
GPO3  
GPO4  
POWER_EN  
DDR_SEL  
PS_POR_B  
BUCK4_PG  
(1) External FETs can be scaled to meet the current requirements of each design; CSD87381P is suitable up to approximately 15 A.  
(2) The TPS6508641 is not limited to the ZU2CG - ZU5EG. It can support other Ultrascale+ devices as long as the use case does not  
exceed the maximum specifications of the TPS6508641.  
8-9. TPS6508641 Always-On Power Map Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
TPS6508641  
Xilinx Zynq UltraScale+  
ZU2CG œ ZU5EG2  
VIN  
5 V  
CSD87381P1  
VIN  
BUCK1  
GPO4  
0.85 V  
Load  
Switch  
VCCINT  
VCCINT_IO  
VCCBRAM  
5 V (from LDO5)  
BUCK2  
CSD87381P1  
PL Domain  
1.8 V  
1.8 V (from BUCK6)  
SWB1_2  
VCCAUX  
VCCAUX_IO  
VCCADC  
Filter  
VCCO_HDIO  
1.2 V  
VIN  
1.8 V (from BUCK6)  
LDOA3  
VCCO_HPIO  
VCC_PSINTLP  
1.8 V  
VCC_PSAUX  
VCC_PSADC  
VCCO_PSIO  
BUCK6  
LDOA2  
CSD87381P1  
Low-Power  
Domain  
Filter  
1.2 V  
VCC_PSPLL  
GPO1  
PS Domain  
VCC_PSINTFP  
Load  
Switch  
VCC_PSINTFP_DDR  
VCC_PSDDR_PLL  
VCCO_PSDDR  
Filter  
Full-Power  
Domain  
VIN  
(5.6 œ 21 V)  
5 V (for DRV)  
LDO5  
0.9 V  
1.8 V  
1.8 V (from BUCK6)  
VTT LDO  
VPS_MGTRAVCC  
VPS_MGTRAVTT  
LDOA1  
VDDQ / VDD2  
VDD1  
1.1 V or 1.2 V  
BUCK3  
DDR Memory  
Peripherals  
5 V (from BUCK1)  
BUCK4  
3.3 V  
1.2 V  
BUCK5  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
SWA1  
I2C CLK & DATA  
I2C  
PS_POR_PB_B  
CTL1  
SWA1_EN  
CTL2  
PSINTFP_EN  
I2C_GPO  
GPO1  
GPO2  
GPO3  
GPO4  
PS_FP_PWR_EN_LS  
CTL3  
POWER_EN  
CTL4  
PS_POR_B  
VCCINT_EN  
PL_PWR_EN  
CTL5  
DDR_SEL  
CTL6  
(1) External FETs can be scaled to meet the current requirements of each design; CSD87381P is suitable up to approximately 15 A.  
(2) The TPS6508641 is not limited to the ZU2CG - ZU5EG. It can support other Ultrascale+ devices as long as the use case does not  
exceed the maximum specifications of the TPS6508641.  
8-10. TPS6508641 Full Power Domain Flexibility Power Map Example  
The power up and power down sequences can be seen in 8-11 and 8-12. Regulators and GPOs are  
enabled by combination of CTL pins and regulator power good signals.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
VSYS  
5.6 V  
LDO5/LDO3P3  
I2C Available  
CTL4  
(POWER_EN)  
5 V  
BUCK1  
(VCC_5V0)  
CTL3  
(PS_FP_PWR_EN_LS)  
0.85 V  
BUCK2  
(VCC_PSINTLP)  
GPO1  
(PSINTFP EN)  
0.85 V  
1.2 V  
External Load Switch #1  
(VCC_PSINTFP)  
BUCK5  
(VCC_1V2)  
1.8 V  
BUCK6  
(VCC_PSAUX)  
1.2 V  
LDOA2  
(VCC_PSPLL)  
0.9 V  
VTT LDO  
(VPS_MGTRAVCC)  
1.8 V  
LDOA1  
(VPS_MGTRAVTT)  
1.1 V (CTL6 = 1)  
1.2 V (CTL6 = 0)  
BUCK3  
(VDDQ / VCCO_PSDDR)  
3.3 V  
BUCK4  
(VCC_3V3)  
CTL5  
(PL_PWR_EN)  
GPO4  
(VCCINT_EN)  
0.85 V  
External Load Switch #2  
(VCCINT)  
1.8 V  
2 ms  
4 ms  
SWB1_2  
(VCCAUX)  
1.2 V  
LDOA3  
(VCCO_HPIO)  
CTL1 = 1‘  
& 50 ms  
GPO3  
(PS_POR_B)  
8-11. TPS6508641 Power-Up Sequence  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
CTL4  
(POWER_EN)  
GPO3  
(PS_POR_B)  
BUCK3, LDOA11  
BUCK6, BUCK4,  
LDOA2, VTT LDO1,  
SWB1_22, LDOA32  
2 ms  
GPO42  
(VCCINT_EN)  
External Load Switch #22  
(VCCINT)  
BUCK1, BUCK2,  
BUCK5  
4 ms  
GPO11  
(PSINTFP_EN)  
External Load Switch #11  
(VCC_PSINTFP)  
(1) Sequence shown assumes CTL3 is high. If CTL3 is set low before this point, these voltage regulators will already be disabled.  
(2) Sequence shown assumes CTL5 is high. If CTL5 is set low before this point, these voltage regulators will already be disabled.  
8-12. TPS6508641 Power-Down Sequence  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
Full Power  
PL Disabled  
PS FP Disabled  
PL Disabled  
Full Power  
CTL5  
(PL_PWR_EN)  
GPO4  
(VCCINT_EN)  
External Load Switch #2  
(VCCINT)  
2 ms  
4 ms  
SWB1_2  
(VCCAUX)  
LDOA3  
(VCCO_HPIO)  
CTL3  
(PS_FP_PWR_EN_LS)  
GPO1  
(PSINTFP EN)  
External Load Switch #1  
(VCC_PSINTFP)  
VTT LDO  
(VPS_MGTRAVCC)  
LDOA1  
(VPS_MGTRAVTT)  
8-13. TPS6508641 Low Power States  
The TPS6508641 device is designed to be able to support always on and full power domain flexibility power  
modes. The low power states can be omitted if not required.  
CTL4 is used to start the primary power sequence and CTL1, CTL3, and CTL5 should all be high initially to  
complete the power up sequence. For always-on case, CTL3 and CTL5 can be shorted with CTL4.  
CTL6 is used to select BUCK3 voltage between BUCK3_VID and BUCK3_SLP_VID register bits. Logic level low  
will result in 1.2 V while logic level high will result in 1.1 V.  
CTL2 is used to enable and disable SWA1 and is independent of the rest of the sequence.  
When CTL1 is set low, GPO3 (PS_POR_B) is set low regardless of the power state and has 50 ms delay before  
going high after CTL1 goes high. It is used as a reset for the Zynq Ultrascale+ device. It can be pulled up to  
LDO3P3 (3.3 V) or BUCK6 (1.8 V) as preferred with a 10 kΩresistor and a pushbutton can short this CTL pin to  
GND when MPSoC reset is desired.  
GPO1 and GPO4 are used to control load switches when utilizing the low power modes. The load switches can  
be omitted for cases where low power modes are not necessary.  
VTT LDO voltage used to power VPS_MGTRAVCC is configured to 0.9 V in order to support all variant speeds,  
including -3E designs. It is within the absolute voltage range and is not expected to impact performance for  
non-3E designs based on testing with the Ultra96 board. For more information on VPS_MGTRAVCC voltage,  
see Xilinx's Ultrascale Architecture PCB Design, Table 7-2 MPSoC PS Voltage Matrix by Speed/Temperature  
Grade.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
A summary of the part number specific settings can be seen in 8.5.1.  
8.5.1 TPS6508641 OTP Summary  
The following tables list the TPS6508641 device settings for the buck regulators, general purpose LDOs, VTT  
LDO, load switches, and GPOs. LDOA1 is used in sequence so all registers with SWB2_LDOA1 will function as  
LDOA1. Additionally, SWB1 and SWB2 are merged so all registers with LDOA1_SWB2 are unused. All values  
which can be modified by I2C after power on are shown in italics. Additional details (such as GPO power good  
inputs) can be found in the register map.  
8-12. TPS6508641 Settings SummaryBuck Regulators  
SLEEP  
VOLTAGE  
POWER FAULT  
MASKED  
FORCE  
PWM  
REGULATOR  
DEFAULT VOLTAGE  
STEP SIZE  
SLP PIN  
SLP_EN  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
BUCK6  
Ext FB  
0.85 V  
1.1 V  
3.3 V  
1.2 V  
1.8 V  
Ext FB  
0.85 V  
1.2 V  
3.3 V  
1.2 V  
1.8 V  
CTL6  
CTL6  
CTL6  
CTL6  
CTL6  
CTL6  
No  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
10 mV  
25 mV  
25 mV  
25 mV  
25 mV  
8-13. TPS6508641 Settings SummaryGeneral Purpose LDOs  
DEFAULT  
VOLTAGE  
POWER FAULT  
MASKED  
REGULATOR  
SLEEP VOLTAGE  
ALWAYS ON  
SLP PIN  
SLP_EN  
LDOA1  
LDOA2  
LDOA3  
1.8 V  
No  
No  
No  
No  
No  
No  
1.2 V  
1.2 V  
1.2 V  
CTL6  
CTL6  
Yes  
Yes  
1.2 V  
8-14. TPS6508641 Settings SummaryVTT LDO  
REGULATOR  
ILIM SETTING  
ENABLE PIN  
POWER FAULT MASKED  
VTT LDO  
1.8 A  
CTL3  
No  
8-15. TPS6508641 Settings SummaryLoad Switches  
REGULATOR  
SWA1  
POWER GOOD VOLTAGE  
SWB1_2 MERGED  
POWER FAULT MASKED  
3.3 V  
1.8 V  
1.8 V  
Yes  
No  
SWB1  
Yes  
Yes  
SWB2  
No  
8-16. TPS6508641 Settings SummaryGPOs  
GPO  
GPO1  
GPO2  
GPO3  
GPO4  
POWER GOOD (PG) or I2C  
STATE  
OUTPUT TYPE  
Open Drain  
Open Drain  
Open Drain  
Open Drain  
PG  
I2C  
PG  
PG  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6 TPS65086470 Design and Settings  
The TPS65086470 device is originally intended to power a Xilinx Artix 7 platform. 8-14 shows an example  
block diagram for this system.  
TPS65086470  
Xilinx Artix 7  
VIN  
5 V (from LDO5)  
1 V  
VCCINT  
VCCBRAM  
VCCAUX  
CSD87381P1  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
LDOA1  
LDOA2  
LDOA3  
SWA1  
1.8 V  
CSD87381P1  
1.2 V  
VCCADC  
Filter  
5 V (from ext supply)  
VMGTAVTT  
VCCOa  
VCCOb  
2.5 V  
3.3 V  
5 V (from LDO5)  
1.8 V (BUCK2)  
1.35 œ 3.3 V  
0.7 œ 1.5 V  
0.7 œ 1.5 V  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
0.5 œ 3.3 V  
SWB1  
SWB2  
VCCO_DDR  
VIN  
5 V (from LDO5)  
BUCK6 Output  
1.35 or 1.5 V  
CSD87381P1  
BUCK6  
DDR Memory  
0.675 or 0.75 V  
I2C CLK & DATA  
VTT LDO  
I2C  
Main Sequence 1  
Main Sequence 2  
VTT_EN  
CTL1  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
BUCK1_2_PG  
System_PG  
I2C_GPO3  
GPO1  
GPO2  
GPO3  
GPO4  
SWA1_SWB1_EN  
SWB2_EN  
I2C_GPO4  
DDR_SEL  
(1) External FETs can be scaled to meet the current requirements of each design; CSD87381P is suitable up to approximately 15 A.  
8-14. TPS65086470 Power Map Example  
8-15 and 8-16 show the power-up and power-down sequences. Regulators and GPOs are enabled by  
combination of CTL pins and regulator power good signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
5.6 V  
VSYS  
LDO5/LDO3P3  
I2C Available  
CTL1  
1 V  
BUCK1  
(VCC_INT)  
1.8 V  
BUCK2  
(VCC_AUX)  
GPO1  
(BUCK1/2 PG)  
CTL2  
1.2 V  
BUCK3  
(VMGTAVTT)  
2.5 V  
BUCK4  
(VCCOa)  
3.3 V  
BUCK5  
(VCCOb)  
1.5 V if CTL6 = 0‘  
1.35 V if CTL6 = 1‘  
BUCK6  
(VCCO_DDR)  
Disabled if CTL3 = 0‘  
0.75 V if CTL6 = 0& CTL3 = 1‘  
0.675 V if CTL6 = 1& CTL3 = 1‘  
2.5 ms  
VTT LDO  
GPO2  
(System PG)  
PG of all BUCKs + VTT LDO  
8-15. TPS65086470 Power-Up Sequence  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
CTL2  
GPO2  
(System PG)  
VTT LDO  
BUCK6  
(VCCO_DDR)  
BUCK5  
(VCCOb)  
4 ms  
BUCK4  
(VCCOa)  
BUCK3  
(VMGTAVTT)  
CTL1  
GPO1  
(BUCK1/2 PG)  
BUCK2  
(VCC_AUX)  
4 ms  
BUCK1  
(VCC_INT)  
8-16. TPS65086470 Power-Down Sequence  
If CTL1 and CTL2 are set low at the same time, both sequences will occur simultaneously. If CTL1 is set low  
before CTL2, GPO1 and GPO2 will go low and remaining bucks will be disabled as their PG enable is lost. For  
example, as BUCK2 is disabled after 4 ms, BUCK3 will start it's 4 ms delay. As such it is recommended to not  
set CTL1 low before CTL2.  
Additionally, CTL4 can be used to enable SWA1 and SWB1. CTL5 can be used to enable SWB2. LDOA2 and  
LDOA3 are controlled only by I2C.  
A summary of the part number specific settings can be seen in 8.6.1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.1 TPS65086470 OTP Summary  
The following tables list the TPS65086470 device settings for the buck regulators (8-17), general purpose  
LDOs (8-18), VTT LDO (8-19), load switches (8-20), and GPOs (8-21). LDOA1 is not used in  
sequence so all registers with LDOA1_SWB2 will function as LDOA1. Additionally, SWB1 and SWB2 are not  
merged so all registers with SWB2_LDOA1 will function as SWB2. All values which can be modified by I2C after  
power on are shown in italics. Additional details (such as GPO power good inputs) can be found in the register  
map.  
8-17. TPS65086470 Settings SummaryBuck Regulators  
SLEEP  
VOLTAGE  
POWER FAULT  
MASKED  
FORCE  
PWM  
REGULATOR  
DEFAULT VOLTAGE  
STEP SIZE  
SLP PIN  
SLP_EN  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
BUCK6  
1 V  
1 V  
1.8 V  
1.2 V  
2.5 V  
3.3 V  
1.35 V  
10 mV  
25 mV  
25 mV  
25 mV  
25 mV  
25 mV  
CTL6  
CTL6  
CTL6  
CTL6  
CTL6  
CTL6  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
1.8 V  
1.2 V  
2.5 V  
3.3 V  
1.5 V  
8-18. TPS65086470 Settings SummaryGeneral Purpose LDOs  
DEFAULT  
VOLTAGE  
POWER FAULT  
MASKED  
REGULATOR  
SLEEP VOLTAGE  
ALWAYS ON  
SLP PIN  
SLP_EN  
LDOA1  
LDOA2  
LDOA3  
1.8 V  
No  
Yes  
Yes  
Yes  
No  
No  
0.7 V  
0.7 V  
0.7 V  
CTL6  
CTL6  
0.7 V  
8-19. TPS65086470 Settings SummaryVTT LDO  
REGULATOR  
ILIM SETTING  
ENABLE PIN  
POWER FAULT MASKED  
VTT LDO  
0.95 A  
CTL3  
No  
8-20. TPS65086470 Settings SummaryLoad Switches  
REGULATOR  
SWA1  
POWER GOOD VOLTAGE  
SWB1_2 MERGED  
POWER FAULT MASKED  
3.3 V  
1.8 V  
1.8 V  
Yes  
Yes  
Yes  
No  
No  
SWB1  
SWB2  
8-21. TPS65086470 Settings SummaryGPOs  
GPO  
GPO1  
GPO2  
GPO3  
GPO4  
POWER GOOD (PG) OR I2C  
STATE  
OUTPUT TYPE  
Open drain  
Open drain  
Open drain  
Open drain  
PG  
PG  
I2C  
I2C  
Low  
Low  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.7 SMPS Voltage Regulators  
The buck controllers integrate gate drivers for external power stages with programmable current limit (set by an  
external resistor at ILIMx pin), which allows for optimal selection of external passive components based on the  
desired system load. The buck converters include integrated power stage and require a minimum number of pins  
for power input, inductor, and output voltage feedback input. Combined with high-frequency switching, all these  
features allow use of inductors in small form factor, thus reducing total-system cost and size.  
BUCK1 BUCK6 have selectable auto- and forced-pulse width modulation (PWM) mode through the  
BUCKx_MODE bit in the BUCKxCTRL register. In default auto mode, the VR automatically switches between  
PWM and pulsed frequency modulation (PFM) depending on the output load to maximize efficiency.  
All controllers and converters can be used with the default VOUT or can have their voltage dynamically changed  
at any time. This means that the rails can be default programmed for any available VOUT by OTP programming  
at the factory, so the device starts up with the default voltage, or during operation the rail can be configured by  
I2C to another operating VOUT while the rail is enable or disabled. There are two step sizes or ranges available  
for VOUT selection : 10-mV and 25-mV steps. The step-size range must be selected prior to use and must be  
programmed in the OTP at the factory. It is not subject to change during operation.  
For the 10-mV step-size range VOUT options, see 8-22. For the 25-mV step-size range VOUT options, see 表  
8-23.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8-22. 10-mV Step-Size VOUT Range  
VID BITS  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
VOUT  
0
VID BITS  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
VOUT  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
VID BITS  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
VOUT  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
0.41  
0.42  
0.43  
0.44  
0.45  
0.46  
0.47  
0.48  
0.49  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
VID BITS  
8-23. 25-mV Step-Size VOUT Range  
VOUT  
(Converters)  
VOUT  
VID BITS  
VOUT  
VID BITS  
VOUT  
(Controllers)  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0
0
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
1.900  
1.925  
1.950  
1.975  
2.000  
2.025  
2.050  
2.075  
2.100  
2.125  
2.150  
2.175  
2.200  
2.225  
2.250  
2.275  
2.300  
2.325  
2.350  
2.375  
2.400  
2.425  
2.450  
2.475  
2.500  
2.525  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
2.550  
2.575  
2.600  
2.625  
2.650  
2.675  
2.700  
2.725  
2.750  
2.775  
2.800  
2.825  
2.850  
2.875  
2.900  
2.925  
2.950  
2.975  
3.000  
3.025  
3.050  
3.075  
3.100  
3.125  
3.150  
3.175  
3.200  
3.225  
3.250  
3.275  
3.300  
3.325  
3.350  
3.375  
3.400  
3.425  
3.450  
3.475  
3.500  
3.525  
3.550  
3.575  
0.425  
0.450  
0.475  
0.500  
0.525  
0.550  
0.575  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.7.1 Controller Overview  
The controllers are fast-reacting, high-frequency, scalable output power controllers capable of driving two  
external N-MOSFETs. They are D-CAP2 controller scheme that optimizes transient responses at high load  
currents for such applications as CORE and DDR supplies. The output voltage is compared with internal  
reference voltage after divider resistors. The PWM comparator determines the timing to turn on the high-side  
MOSFET. The PWM comparator response maintains a very small PWM output ripple voltage. Because the  
device does not have a dedicated oscillator for control loop on board, switching cycle is controlled by the  
adaptive on-time circuit. The on-time is controlled to meet the target switching frequency by feed-forwarding the  
input and output voltage into the on-time one-shot timer.  
The D-CAP2 control scheme has an injected ripple from the SW node that is added to the reference voltage to  
simulate output ripple, which eliminates the need for ESR-induced output ripple from D-CAPmode control.  
Thus, low-ESR output capacitors (such as low-cost ceramic MLCC capacitors) can be used with the controllers.  
VDD  
VREF œ VTH_PG  
+
UV  
PGOOD  
FAULT  
EN  
œ
PGOOD  
+
DCHG  
VFB  
OV  
VREF + VTH_PG  
œ
+
+
Control Logic  
œ
+
+
PWM  
Ramp Generator  
REF  
BOOTx  
DRVHx  
SWx  
SS Ramp Comp  
HS  
VSYS  
XCON  
œ
OC  
DRV5V_x_x  
œ
50 µA  
+
+
ILIM  
LS  
DRVLx  
œ
NOC  
+
PGNDSNSx  
One-Shot  
GND  
+
ZC  
œ
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2017, Texas Instruments Incorporated  
8-17. Controller Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.7.2 Converter Overview  
The PMIC synchronous step-down DCDC converters include a unique hysteretic PWM controller scheme which  
enables a high switching frequency converter, excellent transient and AC load regulation as well as operation  
with cost-competitive external components. The converter topology supports forced PWM mode as well as  
power-save mode operation. Power-save mode operation, or PFM mode, reduces the quiescent current  
consumption and ensures high conversion efficiency at light loads by skipping switch pulses. In forced PWM  
mode, the device operates on a quasi-fixed frequency, avoids pulse skipping, and allows filtering of the switch  
noise by external filter components. The PMIC device offers fixed output voltage options featuring smallest  
solution size by using only three external components per converter.  
A significant advantage of PMIC compared to other hysteretic PWM controller topologies is its excellent AC load  
transient regulation capability. When the output voltage falls below the threshold of the error comparator, a  
switch pulse is initiated, and the high-side switch is turned on. The high-side switch remains turned on until a  
minimum ON-time of tONmin expires and the output voltage trips the threshold of the error comparator or the  
inductor current reaches the high-side switch current limit. When the high-side switch turns off, the low-side  
switch rectifier is turned on and the inductor current ramps down until the high-side switch turns on again or the  
inductor current reaches zero. In forced PWM mode operation, negative inductor current is allowed to enable  
continuous conduction mode even at no load condition.  
PVINx  
Current  
Limit Comparator  
VREF  
0.40 V  
Bandgap  
High-Side  
Limit  
MODE or EN  
MODE  
Softstart  
VIN  
FB  
Gate Driver  
Anti  
Shoot-Through  
Control  
Logic  
Minimum ON Time  
Minimum OFF Time  
LXx  
EN  
VREF  
+
FBx  
œ
Error  
Comparator  
Low-Side  
Limit  
Integrated  
Feedback  
Network  
Zero (Negative)  
Current Limit Comparator  
PGND/Thermal Pad  
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2017, Texas Instruments Incorporated  
8-18. Converter Block Diagram  
8.7.3 DVS  
BUCK1BUCK6 support dynamic voltage scaling (DVS) for maximum system efficiency. The VR outputs can  
slew up and down in 25-mV steps for the converters, and either 10-mV or 25-mV steps for the controllers, using  
the 7-bit voltage ID (VID) defined in 7.7 and 7.8. DVS slew rate is minimum 2.5 mV/µs. In order to meet the  
minimum slew rate, VID progresses to the next code at 3-µs (nom) interval per 10-mV or at 6-µs interval per 25-  
mV steps. When DVS is active, the VR is forced into PWM mode, unless BUCKx_DECAY = 1, to ensure the  
output keeps track of VID code with minimal delay. Additionally, PGOOD is masked when DVS is in progress. 图  
8-19 shows an example of slew down and up from one VID to another (step size of  
10 mV).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
VID  
Number of Steps × 3 µs  
VOUT  
8-19. DVS Timing Diagram I (BUCKx_DECAY = 0)  
As shown in 8-20, if a BUCKx_VID[6:0] is set to 7b000 0000, its output voltage will slew down to 0.5 V first,  
and then will drift down to 0 V as the SMPS stops switching. Subsequently, if a BUCKx_VID[6:0] is set to a value  
(neither 7b000 0000 nor 7b000 0001) when its output voltage is less than 0.5 V, the VR will ramp up to 0.5 V first  
with soft-start kicking in, then will slew up to target voltage in the slew rate mentioned previously. It must be  
noted that a fixed 200 µs of soft-start time is reserved for VOUT to reach 0.5 V. In this case, however, the SMPS  
is not forced into PWM mode as it otherwise could cause VOUT to droop momentarily if VOUT might have been  
drifting above 0.5 V for any reason.  
VID  
Number of  
Steps × 3 µs  
VOUT  
Load and Time  
Dependent  
200 µs  
8-20. DVS Timing Diagram II (BUCKx_DECAY = 0)  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.7.4 Decay  
In addition to DVS, BUCK1BUCK6 can decay down to a lower voltage when BUCKx_DECAY bit in  
BUCKxCTRL register is set to 1. Decay mode is only used in a downward direction of VID. The VR does not  
control slew rate. As both high-side and low-side FETs stop switching, the output voltage ramps down naturally,  
dictated by current drawn from the load and output filtering capacitance. When the VR is in the middle of decay  
down its PGOOD is masked until VOUT falls below the over-voltage (OV) threshold of the set VID value. 8-21  
shows two cases that differ from each other as to whether VOUT has reached the target voltage corresponding to  
a new VID when the VR is commanded to slew back up to a higher voltage. In case that VOUT has not decayed  
down below VID as denoted case 2, the VR will wait for VID to catch up, and then VOUT will start ramping up to  
keep up with the VID ramp.  
VID  
VOUT  
case 2  
case 1  
8-21. Decay Down to a Lower VOUT and Slew Up  
VID  
VOUT  
case 2  
200 us  
case 1  
8-22. Decay Down to 0 V and Slew Up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.7.5 Current Limit  
The buck controllers (BUCK1, BUCK2, and BUCK6) have inductor-valley current-limit architecture and the  
current limit is programmable by an external resistor at the ILIMx pin. 方程式 1 shows the calculation for a  
desired resistor value, depending on specific application conditions. ILIMREF is the current source out of the ILIMx  
pin that is typically 50 µA, and RDSON is the maximum channel resistance of the low-side FET. The scaling factor  
is 1.3 to take into account all errors and temperature variations of RDSON, ILIMREF, and RILIM. Finally, 8 is another  
scaling factor associated with ILIMREF  
.
Iripple(min)  
÷
RDSON ì 8 ì 1.3 ì I  
-
LIM  
2
«
ILIMREF  
RILIM  
=
(1)  
where  
ILIM is the target current limit. An appropriate margin must be allowed when determining ILIM from maximum  
output DC load current.  
Iripple(min) is the minimum peak-to-peak inductor ripple current for a given VOUT  
.
VOUT (V  
- VOUT )  
IN(MIN)  
Iripple(min)  
=
Lmax ì V  
ì fsw(max)  
IN(MIN)  
(2)  
where  
Lmax is maximum inductance  
fsw(max) is maximum switching frequency  
VIN(MIN) minimum input voltage to the external power stage  
The buck converter limit inductor peak current cycle-by-cycle to IIND_LIM is specified in 7.8.  
The current limit circuit also protects against reverse current going back into the low side FET from the load.  
When operating in Force PWM mode, the inductor current is expected to go negative so it is important to ensure  
that the RILIM value is sufficient to account for this. If operating in PFM, this can be neglected. The equation for  
Force PWM minimum RILIM value is:  
I
«
÷
ripple(max)  
RDSON ì 8 ì 1.3 ì  
2
RILIM  
í
ILIMREF  
(3)  
(4)  
where  
Iripple(max) is the maximum peak-to-peak inductor ripple current for a given VOUT  
.
VOUT (V  
- VOUT )  
IN(MAX)  
Iripple(max)  
=
Lmin ì V  
ì fsw(min)  
IN(MAX)  
where  
Lmin is minimum inductance  
fsw(min) is minimum switching frequency  
VIN(MAX) maximum input voltage to the external power stage  
If RILIM is too low for the chosen inductor and voltage conditions, then the ripple current at no load will trigger the  
negative current limit, forcing the low side FET to turn off. This will eventually result in the output voltage  
increasing above target regulation point due to irregular duty cycle created by current limit being triggered.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.8 LDOs and Load Switches  
8.8.1 VTT LDO  
Typically powered from the BUCK6 output, the VTT LDO tracks FBVOUT6 and regulates it's output to  
FBVOUT6 / 2. The LDO current limit is OTP dependent, and it is designed specifically to power DDR memory.  
The LDO core is a transconductance amplifier with large gain, and it drives a current output stage that either  
sources or sinks current depending on the deviation of the VTTFB pin voltage from the target regulation voltage.  
8.8.2 LDOA1LDOA3  
The TPS650864 device integrates three general purpose LDOs. LDOA1 is powered from a 5-V supply through  
the DRV5V_2_A1 pin and it can be factory configured to be an Always-On rail (stay on even in case of  
emergency shutdown) as long as a valid power supply is available at VSYS. See 8-24 for LDOA1 output  
voltage options. LDOA2 and LDOA3 share a power input pin (PVINLDOA2_A3). The output regulation voltages  
are set by writing to LDOAx_VID[3:0] bits (Reg 0x9A, 0x9B, and 0xAE). See 8-25 for LDOA2 and LDOA3  
output voltage options. LDOA1 is controlled by the LDOA1_SWB2_CTRL register.  
8-24. LDOA1 Output Voltage Options  
VID BITS  
0000  
VOUT  
1.35  
1.5  
VID BITS  
VOUT  
VID BITS  
VOUT  
VID BITS  
1100  
VOUT  
2.85  
0100  
1.8  
1000  
2.3  
0001  
0101  
1.9  
1001  
2.4  
1101  
3.0  
0010  
1.6  
0110  
2.0  
1010  
2.5  
1110  
3.3  
0011  
1.7  
0111  
2.1  
1011  
2.6  
1111  
Not Used  
8-25. LDOA2 and LDOA3 Output Voltage Options  
VID BITS  
0000  
VOUT  
0.70  
0.75  
0.80  
0.85  
VID BITS  
VOUT  
0.90  
0.95  
1.00  
1.05  
VID BITS  
VOUT  
1.10  
1.15  
1.20  
1.25  
VID BITS  
1100  
VOUT  
1.30  
1.35  
1.40  
1.50  
0100  
1000  
0001  
0101  
1001  
1101  
0010  
0110  
1010  
1110  
0011  
0111  
1011  
1111  
8.8.3 Load Switches  
The PMIC features three general-purpose load switches. SWA1 has its own power input pin (PVINSWA1), while  
SWB1 and SWB2 share one power input pin (PVINSWB1_B2). All switches have built-in slew rate control during  
start-up to limit the inrush current.  
8.9 Power Goods (PGOOD or PG) and GPOs  
The device provides information on status of VRs through four GPO pins along with Power Good Status  
registers defined in 8.13.50 and 8.13.51. Power Good information of any individual VR and load switch can  
be assigned to be part of the PGOOD tree as defined from 8.13.40 to 8.13.47. PGOOD assertion delays  
are programmable from 0 ms to 15 ms for GPO1, 5 ms to 100 ms for GPO3, and 0 ms to 100 ms for GPO2 and  
GPO4, respectively, as are defined in 8.13.21 and 8.13.34.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS650864  
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
BUCK1_PG  
BUCK1_MSK (bit)  
BUCK2_PG  
BUCK2_MSK (bit)  
BUCK3_PG  
BUCK3_MSK (bit)  
BUCK4_PG  
BUCK4_MSK (bit)  
BUCK5_PG  
BUCK5_MSK (bit)  
BUCK6_PG  
BUCK6_MSK (bit)  
SWA1_PG  
SWA1_MSK (bit)  
LDOA2_PG  
LDOA2_MSK (bit)  
LDOA3_PG  
Selectable  
Rising Edge  
Delay  
GPOx_PG  
LDOA3_MSK (bit)  
SWB1_PG  
SWB1_MSK (bit)  
SWB2_LDOA1_PG  
SWB2_LDOA1_MSK (bit)  
GPOx  
(Output)  
0
1
GPOx_LVL  
GPOx_CTL  
VTT_PG  
VTT_MSK (bit)  
CTL1  
CTL1_MSK (bit)  
CTL2  
CTL2_MSK (bit)  
CTL3/SLPENB1  
CTL3_MSK (bit)  
CTL4  
CTL4_MSK (bit)  
CTL5  
CTL5_MSK (bit)  
CTL6/SLPENB2  
CTL6_MSK (bit)  
8-23. Power Good Tree  
Alternatively, the GPOs can be used as general purpose outputs controlled by the user through I2C. Refer to 节  
8.13.37 for details on controlling the GPOs in I2C control mode. When configured as push-pull, LDO3P3 is used  
for logic-level high.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.10 Power Sequencing and VR Control  
The device has three different ways of sequencing the rails during power up and power down:  
Rail enabled by CTLx pin  
Rail enabled by Power Good (PG) of previously enabled rail  
Rail enabled by I2C software command  
A delay can be added from any CTLx pin or PG to the enable of the subjected enabled rail. This creates a very  
flexible device capable of many sequence options. If a rail cannot be sequenced automatically, any rail can be  
enabled or disabled through an I2C command.  
8.10.1 CTLx Sequencing  
The device has six control-input pins (CTL1CTL6) to control six SMPS regulators, three LDO regulators, and  
three load switches. This allows the user to define up to six distinctive groups, to which each VR can be  
assigned for highly flexible power sequencing. Of the six CTLx pins, CTL3 and CTL6 can be configured  
alternatively to active-low sleep enable pins. For instance, if a system level SLEEP state is defined such that  
BUCK1 output regulation voltage is lower than in the normal mode, then BUCK1 SLEEP state can be assigned  
to CTL3 or CTL6. By being pulled low, either CTL3 or CTL6 can be used to put BUCK1 into SLEEP state, and  
BUCK1 will regulate its output at a voltage defined by BUCK1_SLP_VID[6:0] in 8.13.23. For a demonstration  
of this feature, 8-24 shows how BUCK1 is enabled from the CTL1 pin.  
8.10.2 PG Sequencing  
Any rail can be sequenced by the Power Good of a prior rail. This can be combined with the CTLx method to  
allow for further sequence control and create more distinctive groups of enables than the six from CTLx. This  
also allows some of the CTLx pins to be freed up for other purposes such as logic input gates. For a  
demonstration of this feature, 8-24 shows how the BUCK5 is enabled from the BUCK4 PG.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
VSYS  
5.6 V  
LDO5/LDO3P3  
LDOA1/GPO1  
I2C Available  
CTL1  
BUCK1  
BUCK2  
BUCK6  
CTL2  
2 ms  
4 ms  
BUCK3  
BUCK4  
BUCK5  
GPO4  
CTL4  
PG of all  
BUCKs  
LDOA2  
LDOA3  
GPO3  
CTL5  
16 ms  
PG of BUCKs and LDOs  
SWA1  
SWB1  
SWB2  
CTL6  
2 ms  
8 ms  
VTT  
8-24. Generic Power-Up Sequence Example  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.10.3 Enable Delay  
A delay can be added to the enable of any rail after the desired CTLx and PGs are met. This allows for the  
option to create additional timing groups from either CTLx pins or internal PGs. For a demonstration of this  
feature, 8-24 shows how BUCK2 and BUCK6 are enabled after BUCK1 is enabled from CTL1 pin.  
8.10.4 Power-Up Sequence  
When a valid power supply is detected at the VSYS pin as VSYS crosses above VSYS_UVLO_5V  
+
VSYS_UVLO+5V_HYS, the power-up sequence is initiated by driving one of the control input pins high, followed by  
the rest of pins in order. 8-24 is an example where CTL1CTL4 are defined to control four groups of VRs,  
while GPO3 and GPO4 are defined to provide a PGOOD status of two groups. The control input pins do not  
necessarily have to be pulled up in a staggered manner. For instance, if CTL2 is pulled up from the preceding  
group of VRs before PGOOD has been asserted at GPO1, the BUCK4 enable will be delayed until the PGOOD  
is asserted.  
For the specific sequencing of a TPS650864 device, see 5-1.  
8.10.5 Power-Down Sequence  
The power-down sequence can follow the CTLx pins, or be controlled with the I2C commands. If the internal PGs  
are used for sequencing or if some rails need to ramp down before others a delay can be added to the  
deassertion low of the internal enable of the subjected rail. This delay can be independent of the power-up delay  
option. Thus, power-up and power-down sequences can be different or similar to match the specific application  
sequences required.  
Refer to 8-25 for an example of a power-down sequence demonstrating the delay disable of BUCK1 and  
BUCK2.  
For the specific sequencing of a TPS650864 device, see 5-1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
CTL6  
VTT  
CTL5  
SWA1  
SWB1  
SWB2  
CTL4  
GPO3  
LDOA2  
LDOA3  
CTL2  
GPO4  
BUCK6  
BUCK5  
BUCK4  
CTL1  
BUCK6  
BUCK2  
BUCK1  
2 ms  
4 ms  
8-25. Generic Power-Down Sequence Example  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.10.6 Sleep State Entry and Exit  
Normal State  
Sleep State  
0 V  
Normal State  
1.8 V  
1.8 V  
1.8V  
CTL6  
CTL1-CTL4  
GPO1-GPO4  
BUCK1  
BUCK1_VID  
BUCK1_VID  
BUCK1_DECAY = 1  
BUCK1_SLP_VID  
BUCK1_DECAY = 0  
8-26. Sleep State Entry and Exit Sequence Example  
8-26 shows an example where BUCK1 is defined to enter Sleep State in response to CTL6 going low.  
备注  
All PGOODs from GPO1GPO4 can stay asserted during the entry and the exit. Depending on status  
of the BUCK1_DECAY bit defined in the BUCK1CTRL register, BUCK1 output will either decay or slew  
down to a new voltage defined in BUCK1_SLP_VID[6:0].  
8.10.7 Emergency Shutdown  
5.4 V  
VSYS  
GPOx  
444 ns (nominal with 1 œ % variation)  
BUCKx  
LDOAx  
SWx  
VTT  
8-27. Emergency Shutdown Sequence  
When VSYS crosses below VSYS_UVLO_5V, all Power Good pins will be deasserted, and after 444 ns (nominal) of  
delay all VRs will shut down. Upon shutdown, all internal discharge resistors are set to 100 Ω to ensure timely  
decay of all VR outputs. Other conditions that will cause emergency shutdown are the die temperature rising  
above the critical temperature threshold (TCRIT), deassertion of Power Good of any rail (configurable), or failure  
of any rail to reach power good within 10 ms of being enabled (configurable). If PMIC was shutdown by UVLO, it  
will wait until VSYS rises above VSYS_UVLO_5V + VSYS_UVLO_5V_HYS before reloading the default OTP and  
checking the state of the CTLx pins. If PMIC was shutdown by temperature, it will wait until temperature drops  
below TCRIT TCRIT_HYS before reloading OTP and checking the state of the CTLx pins. If the PMIC was  
shutdown by power fault, it will reload OTP after disabling all rails and check the state of the CTLx pins once  
OTP has finished reloading.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.11 Device Functional Modes  
8.11.1 Off Mode  
When power supply at the VSYS pin is less than VSYS_UVLO_5V (5.4-V nominal) + VSYS_UVLO_5V_HYS (0.2-V  
nominal), the device is in off mode, where all output rails are disabled. If the supply voltage is greater than  
VSYS_UVLO_3V (3.6-V nominal) + VSYS_UVLO_3V_HYS (0.15-V nominal) while it is still less than VSYS_UVLO_5V  
+
VSYS_UVLO_5V_HYS, then the internal band-gap reference (VREF pin) along with LDO3P3 are enabled and  
regulated at target values.  
8.11.2 Standby Mode  
When power supply at the VSYS pin rises above VSYS_UVLO_5V + VSYS_UVLO_5V_HYS, the device enters standby  
mode, where all internal reference and regulators (LDO3P3 and LDO5) are up and running, and I2C interface  
and CTL pins are ready to respond. All default registers defined in 8.13 should have by now been loaded from  
one-time programmable (OTP) memory. Quiescent current consumption in standby mode is specified in 7.5.  
8.11.3 Active Mode  
The device proceeds to active mode when any output rail is enabled either through an input pin as discussed in  
8.10 or by writing to EN bits through I2C. Output regulation voltage can also be changed by writing to VID bits  
defined in 8.13.  
8.12 I2C Interface  
The I2C interface is a 2-wire serial interface developed by NXP(formerly Philips Semiconductor) (see I2C-Bus  
Specification and user manual, Rev 4, 13 February 2012). The bus consists of a data line (SDA) and a clock line  
(SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C  
compatible devices connect to the I2C bus through open drain I/O pins, DATA and CLK. A master device, usually  
a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL  
signal and device addresses. The master also generates specific conditions that indicate the START and STOP  
of data transfer. A slave device receives and/or transmits data on the bus under control of the master device.  
The PMIC works as a slave and supports the following data transfer modes, as defined in the I2C-Bus  
Specification: standard mode (100 kbps), fast mode (400 kbps), and high-speed mode (1 Mbps). The interface  
adds flexibility to the power supply solution, enabling most functions to be programmed to new values depending  
on the instantaneous application requirements. Register contents are loaded when VSYS higher than  
VSYS_UVLO_5V is applied to the PMIC. The I2C interface is running from an internal oscillator that is automatically  
enabled when there is an access to the interface.  
The data transfer protocol for standard and fast modes are exactly the same, therefore, they are referred to as  
F/S-mode in this document. The protocol for high-speed mode is different from the F/S-mode, and it is referred  
to as H/S-mode.  
The PMIC device supports 7-bit addressing; however, 10-bit addressing and general call address are not  
supported. The default device address is 0x5E.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.12.1 F/S-Mode Protocol  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high (see 8-28). All I2C-compatible devices should recognize a  
start condition.  
The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W  
on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires  
the SDA line to be stable during the entire high period of the clock pulse (see  
8-29). All devices recognize the address sent by the master and compare it to their internal fixed addresses.  
Only the slave device with a matching address generates an acknowledge (see 8-30), by pulling the SDA line  
low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that  
the communication link with a slave has been established.  
The master generates further SCL cycles to either transmit data to the slave (R/W bit = 0) or receive data from  
the slave (R/W bit = 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. An  
acknowledge signal can either be generated by the master or by the slave, depending on which one is the  
receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary.  
To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to  
high while the SCL line is high (see 8-28). This releases the bus and stops the communication link with the  
addressed slave. All I2C-compatible devices must recognize the stop condition. Upon the receipt of a stop  
condition, all devices know that the bus is released, and they wait for a start condition followed by a matching  
address.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
8-28. START and STOP Conditions  
SDA  
SCL  
Data Valid  
Change of Data Allowed  
8-29. Bit Transfer on the I2C Bus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
Data Output at  
Transmitter  
Not ACK  
Data Output at  
Receiver  
ACK  
SCL from Master  
S
1
2
8
9
START  
Condition  
Clock pulse for ACK  
8-30. Acknowledge on the I2C Bus  
Generate ACK Signal  
SDA  
MSB  
ACK Signal From Slave  
Address  
R/W  
SCL  
1
2
7
8
9
1
2
3-8  
9
ACK  
ACK  
Byte Complete, Interrupt  
Within Slave  
Clock Line Held Low While  
Interrupts Are Serviced  
S or Sr  
P or Sr  
START or  
Repeated START Condition  
STOP or  
Repeated START Condition  
8-31. I2C Bus Protocol  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
SCL  
SDA  
A6  
A5  
A4  
A0 R /W ACK  
R7  
R6  
R5  
R0 ACK  
0
D7  
D6  
D5  
D0 ACK  
0
0
0
START  
Slave Address  
Register Address  
Data  
STOP  
8-32. I2C Interface WRITE to TPS650864 in F/S Mode  
SCL  
SDA  
W
R/  
A6  
A0  
ACK  
0
R7  
R0 ACK  
0
A6  
A0  
ACK D7  
0
D0 ACK  
W
R/  
0
1
0
Master  
Drives ACK  
and Stop  
Slave Drives  
the Data  
Slave Address  
START  
Slave Address  
Register Address  
STOP  
Repeated  
START  
8-33. I2C Interface READ from TPS650864 in F/S Mode (Only Repeated START is Supported)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13 Register Maps  
8.13.1 Register Map Summary  
Do not attempt to write a RESERVED R/W bit to the opposite value. When the reset value of a bit register is  
0bX, it means the bit value is coming from the OTP memory.  
8-26. Register Map Summary  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
40h  
41h  
42h  
43h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
Name  
DEVICEID1  
Short Description  
Device ID code indicating revision  
Device ID code indicating revision  
Interrupt statuses  
DEVICEID2  
IRQ  
IRQ_MASK  
Interrupt masking  
PMIC_STAT  
PMIC temperature indicator  
Shutdown root cause indicator bits  
SHUTDNSRC  
BUCK1CTRL  
BUCK2CTRL  
BUCK3DECAY  
BUCK3VID  
BUCK1 decay control and voltage select  
BUCK2 decay control and voltage select  
BUCK3 decay control  
BUCK3 voltage select  
BUCK3SLPCTRL  
BUCK4CTRL  
BUCK5CTRL  
BUCK6CTRL  
LDOA2CTRL  
LDOA3CTRL  
DISCHCTRL1  
DISCHCTRL2  
DISCHCTRL3  
PG_DELAY1  
BUCK3 voltage select for sleep state  
BUCK4 control  
BUCK5 control  
BUCK6 control  
LDOA2 control  
LDOA3 control  
Discharge resistors for each rail control  
Discharge resistors for each rail control  
Discharge resistors for each rail control  
System Power Good on GPO3 (if GPO3 is programmed to be system PG)  
Software force shutdown  
FORCESHUTDN  
BUCK1SLPCTRL  
BUCK2SLPCTRL  
BUCK4VID  
BUCK1 voltage select for sleep state  
BUCK2 voltage select for sleep state  
BUCK4 voltage select  
BUCK4SLPVID  
BUCK5VID  
BUCK4 voltage select for sleep state  
BUCK5 voltage select  
BUCK5SLPVID  
BUCK6VID  
BUCK5 voltage select for sleep state  
BUCK6 voltage select  
BUCK6SLPVID  
LDOA2VID  
BUCK6 voltage select for sleep state  
LDOA2 voltage select  
LDOA3VID  
LDOA3 voltage select  
BUCK123CTRL  
PG_DELAY2  
BUCK1, 2, and 3 disable and PFM/PWM mode control  
System Power Good on GPO1, 2, and 4 (if GPOs are programmed to be system PG)  
SWs and VTT I2C disable bits  
SWVTT_DIS  
I2C_RAIL_EN1  
I2C_RAIL_EN2/GPOCTRL  
PWR_FAULT_MASK1  
PWR_FAULT_MASK2  
GPO1PG_CTRL1  
GPO1PG_CTRL2  
I2C Enable control of individual rails  
I2C Enable control of individual rails and I2C controlled GPOs, high or low  
Power fault masking for individual rails  
Power fault masking for individual rails  
Power good tree control for GPO1  
Power good tree control for GPO1  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8-26. Register Map Summary (continued)  
Address  
A6h  
Name  
Short Description  
GPO4PG_CTRL1  
GPO4PG_CTRL2  
GPO2PG_CTRL1  
GPO2PG_CTRL2  
GPO3PG_CTRL1  
GPO3PG_CTRL2  
MISCSYSPG  
Power good tree control for GPO4  
Power good tree control for GPO4  
Power good tree control for GPO2  
Power good tree control for GPO2  
Power good tree control for GPO3  
Power good tree control for GPO3  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
B0h  
Power good tree control with CTL3 and CTL6 for GPO  
Discharge resistor setting for VTT LDO  
LDOA1 and SWB2 control for discharge, voltage selection, and enable  
Power good statuses for individual rails  
Power good statuses for individual rails  
Power fault statuses for individual rails  
Power fault statuses for individual rails  
Critical temperature indicators  
VTT_DISCH_CTRL  
LDOA1_SWB2_CTRL  
PG_STATUS1  
B1h  
PG_STATUS2  
B2h  
PWR_FAULT_STATUS1  
PWR_FAULT_STATUS2  
TEMPCRIT  
B3h  
B4h  
B5h  
TEMPHOT  
Hot temperature indicators  
Complex bit access types are encoded to fit into small table cells. 8-27 shows the codes that are used for  
access types in this section.  
8-27. Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.2 DEVICEID1: 1st PMIC Device and Revision ID Register (offset = 00h) [reset = X]  
8-34. DEVICEID1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
PART_  
PART_  
PART_  
PART_  
PART_  
PART_  
PART_  
PART_  
NUMBER[7] NUMBER[6] NUMBER[5] NUMBER[4] NUMBER[3]  
NUMBER[2]  
NUMBER[1] NUMBER[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
1
R
0
0
0
1
R
0
0
1
1
R
0
0
0
0
R
0
0
0
0
R
0
0
0
0
R
0
1
0
0
R
8-28. DEVICEID1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:4  
PART_NUMBER[7:4]  
PART_NUMBER[3:0]  
R
R
X
Device part number ID  
0000: TPS65086x0x  
0001: TPS65086x1x  
...  
1111: TPS65086xFx  
3:0  
X
Device part number ID  
0000: TPS65086xx0  
0001: TPS65086xx1  
...  
1111: TPS65086xxF  
8.13.3 DEVICEID2: 2nd PMIC Device and Revision ID Register (offset = 01h) [reset = X]  
8-35. DEVICEID2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
OTP_  
OTP_  
PART_  
PART_  
PART_  
PART_  
REVID[1]  
REVID[0]  
VERSION[1] VERSION[0] NUMBER[11] NUMBER[10] NUMBER[9] NUMBER[8]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
1
0
1
0
R
0
1
0
1
R
0
0
0
0
R
1
1
1
1
R
0
0
0
0
R
0
0
0
0
R
8-29. DEVICEID2 Register Descriptions  
Bit  
7:6  
5:4  
Field  
Type Reset  
Description  
REVID[1:0]  
R
R
X
X
Silicon revision ID  
OTP_VERSION[1:0]  
OTP variation ID  
00: A  
01: B  
10: C  
11: D  
3:0  
PART_NUMBER[11:8]  
R
X
Device part number ID  
0100: TPS650864xx  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.4 IRQ: PMIC Interrupt Register (offset = 02h) [reset = 0000 0000]  
8-36. IRQ Register  
Bit  
Bit Name  
7
FAULT  
0
6
5
4
3
SHUTDN  
0
2
1
0
DIETEMP  
0
RESERVED RESERVED RESERVED  
RESERVED RESERVED  
TPS650864  
Access  
0
0
0
0
0
R/W  
R
R
R
R/W  
R
R
R/W  
8-30. IRQ Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
FAULT  
R/W  
0
Fault interrupt. Asserted when either condition occurs: power fault of any rail,  
or die temperature crosses over the critical temperature threshold (TCRIT). The  
user can read Reg. 0xB20xB6 to determine what has caused the interrupt.  
0: Not asserted  
1: Asserted. Host to write 1b to clear.  
3
0
SHUTDN  
DIETEMP  
R/W  
R/W  
0
0
Asserted when PMIC shuts down. To clear indicator, SHUTDNSRC must be  
cleared first, see 8.13.7  
0: Not asserted.  
1: Asserted. Host to write 1b to clear.  
Die temp interrupt. Asserted when PMIC die temperature crosses above the  
hot temperature threshold (THOT).  
0: Not asserted.  
1: Asserted. Host to write 1b to clear.  
8.13.5 IRQ_MASK: PMIC Interrupt Mask Register (offset = 03h) [reset = 1111 1111]  
8-37. IRQ_MASK Register  
Bit  
Bit Name  
7
MFAULT  
1
6
5
4
3
msHUTDN  
1
2
1
0
RESERVED RESERVED RESERVED  
RESERVED RESERVED MDIETEMP  
TPS650864  
Access  
1
1
1
1
1
1
R/W  
R
R
R
R/W  
R
R
R/W  
8-31. IRQ_MASK Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
MFAULT  
R/W  
R/W  
R/W  
1
1
1
FAULT interrupt mask.  
0: Not masked.  
1: Masked.  
3
0
msHUTDN  
MDIETEMP  
PMIC shutdown event interrupt mask  
0: Not masked.  
1: Masked.  
Die temp interrupt mask.  
0: Not masked.  
1: Masked.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.6 PMICSTAT: PMIC Status Register (offset = 04h) [reset = 0000 0000]  
8-38. PMICSTAT Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED SDIETEMP  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
8-32. PMICSTAT Register Descriptions  
Bit  
Field  
SDIETEMP  
Type Reset  
Description  
0
R
0
PMIC die temperature status.  
0: PMIC die temperature is below THOT  
.
1: PMIC die temperature is above THOT  
.
8.13.7 SHUTDNSRC: PMIC Shut-Down Event Register (offset = 05h) [reset = 0000 0000]  
8-39. SHUTDNSRC Register  
Bit  
Bit Name  
7
6
5
4
3
COLDOFF  
0
2
UVLO  
0
1
0
CRITTEMP  
0
RESERVED RESERVED RESERVED RESERVED  
PWR_FAULT  
TPS650864  
Access  
0
0
0
0
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
8-33. SHUTDNSRC Register Descriptions  
Bit  
Field  
Type Reset  
Description  
3
COLDOFF  
R/W  
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: N/A. Not enabled for existing OTPs.  
2
1
UVLO  
R/W  
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: PMIC was shut down due to a UVLO event (VSYS crosses below 5.4 V).  
Assertion of this bit sets the SHUTDN bit in 8.13.4.  
PWR_FAULT  
CRITTEMP  
R/W  
R/W  
0
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: PMIC was shut down due to an unmasked power fault event. Assertion of  
this bit sets the SHUTDN bit in 8.13.4. The source of the power fault can be  
determined from the PWR_FAULT registers (0xB2 and 0xB3). Overcurrent  
protection will limit IOUT and typically cause a power fault as VOUT droops.  
0
Set by PMIC cleared by host. Host to write 1b to clear.  
0: Cleared  
1: PMIC was shut down due to the rise of PMIC die temperature above critical  
temperature threshold (TCRIT). Assertion of this bit sets the SHUTDN bit in 节  
8.13.4.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.8 BUCK1CTRL: BUCK1 Control Register (offset = 20h) [reset = X]  
8-40. BUCK1CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK1_  
VID[6]  
BUCK1_  
VID[5]  
BUCK1_  
VID[4]  
BUCK1_  
VID[3]  
BUCK1_  
VID[2]  
BUCK1_  
VID[1]  
BUCK1_  
VID[0]  
BUCK1_  
DECAY  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
0
1
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-34. BUCK1CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK1_VID[6:0]  
R/W  
X
This field sets the BUCK1 regulator output regulation voltage in  
normal mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK1_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
8.13.9 BUCK2CTRL: BUCK2 Control Register (offset = 21h) [reset = X]  
8-41. BUCK2CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK2_  
VID[6]  
BUCK2_  
VID[5]  
BUCK2_  
VID[4]  
BUCK2_  
VID[3]  
BUCK2_  
VID[2]  
BUCK2_  
VID[1]  
BUCK2_  
VID[0]  
BUCK2_  
DECAY  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
1
1
0
0
1
0
1
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-35. BUCK2CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK2_VID[6:0]  
R/W  
X
This field sets the BUCK2 regulator output regulation voltage in  
normal mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK2_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.10 BUCK3DECAY: BUCK3 Decay Control Register (offset = 22h) [reset = X]  
8-42. BUCK3DECAY Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK3_  
DECAY  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-36. BUCK3DECAY Register Descriptions  
Bit  
7:1  
0
Field  
Type Reset  
Description  
SPARE  
R/W  
R/W  
X
X
Unused. Typically mirror BUCK3_VID by default in OTP.  
BUCK3_DECAY  
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
8.13.11 BUCK3VID: BUCK3 VID Register (offset = 23h) [reset = X]  
8-43. BUCK3VID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK3_  
VID[6]  
BUCK3_  
VID[5]  
BUCK3_  
VID[4]  
BUCK3_  
VID[3]  
BUCK3_  
VID[2]  
BUCK3_  
VID[1]  
BUCK3_  
VID[0]  
RESERVED  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
R
0
0
1
1
1
0
0
0
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-37. BUCK3VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK3_VID[6:0]  
R/W  
X
This field sets the BUCK3 regulator output regulation voltage in  
normal mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.12 BUCK3SLPCTRL: BUCK3 Sleep Control VID Register (offset = 24h) [reset = X]  
8-44. BUCK3SLPCTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP BUCK3_SLP  
_ VID[6]  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
_ EN  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-38. BUCK3SLPCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK3_SLP_VID[6:0]  
R/W  
X
This field sets the BUCK3 regulator output regulation voltage in  
sleep mode if BUCK3_SLP_EN = 1b.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK3_SLP_EN  
R/W  
X
BUCK3 sleep mode enable. BUCK3 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0: Disable. Uses BUCK3_VID in all cases.  
1: Enabled. Uses BUCK3_SLP_VID when assigned sleep pin is  
low.  
8.13.13 BUCK4CTRL: BUCK4 Control Register (offset = 25h) [reset = X]  
8-45. BUCK4CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK4_SLP BUCK4_SLP  
_ EN[1]  
BUCK4_  
MODE  
RESERVED RESERVED  
RESERVED RESERVED  
BUCK4_DIS  
_ EN[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
0
1
0
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-39. BUCK4CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
BUCK4_SLP_EN  
R/W  
X
BUCK4 sleep mode enable. BUCK4 is factory configured to switch  
to sleep mode voltage either by CTL3/SLPENB1 pin or by CTL6/  
SLPENB2 pin.  
00: Disable. Uses BUCK4_VID in all cases.  
11: Enabled. Uses BUCK4_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:2  
1
RESERVED  
R/W 11  
Reserved bits. Always write to 11.  
BUCK4_MODE  
R/W  
X
This field sets the BUCK4 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
0
BUCK4_DIS  
R/W  
X
BUCK4 Disable Bit. Writing 0 to this bit forces BUCK4 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable  
1: Enable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.14 BUCK5CTRL: BUCK5 Control Register (offset = 26h) [reset = X]  
8-46. BUCK5CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK5_SLP BUCK5_SLP  
BUCK5_  
MODE  
RESERVED RESERVED  
RESERVED RESERVED  
BUCK5_DIS  
_EN[1]  
_EN[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-40. BUCK5CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
BUCK5_SLP_EN  
R/W  
X
BUCK5 sleep mode enable. BUCK5 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or by  
CTL6/SLPENB2 pin.  
00: Disable. Uses BUCK5_VID in all cases.  
11: Enabled. Uses BUCK5_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:2  
1
RESERVED  
R/W 11  
Reserved bits. Always write to 11.  
BUCK5_MODE  
R/W  
X
This field sets the BUCK5 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
0
BUCK5_DIS  
R/W  
X
BUCK5 Disable Bit. Writing 0 to this bit forces BUCK5 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable.  
1: Enable.  
8.13.15 BUCK6CTRL: BUCK6 Control Register (offset = 27h) [reset = X]  
8-47. BUCK6CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK6_SLP BUCK6_SLP  
BUCK6_  
MODE  
RESERVED RESERVED  
RESERVED RESERVED  
BUCK6_DIS  
EN[1]  
EN[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
0
1
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-41. BUCK6CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
BUCK6_SLP_EN  
R/W  
X
BUCK6 sleep mode enable. BUCK6 is factory configured to switch  
to sleep mode voltage either by CTL3/SLPENB1 pin or by CTL6/  
SLPENB2 pin.  
00: Disable. Uses BUCK6_VID in all cases.  
11: Enabled. Uses BUCK6_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:2  
1
RESERVED  
R/W 11  
R/W  
Reserved bits. Always write to 11.  
BUCK6_MODE  
X
This field sets the BUCK6 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8-41. BUCK6CTRL Register Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
0
BUCK6_DIS  
R/W  
X
BUCK6 Disable Bit. Writing 0 to this bit forces BUCK6 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable.  
1: Enable.  
8.13.16 LDOA2CTRL: LDOA2 Control Register (offset = 28h) [reset = X]  
8-48. LDOA2CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2_SLP LDOA2_SLP  
RESERVED RESERVED  
RESERVED RESERVED RESERVED LDOA2_DIS  
_EN[1]  
_EN[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-42. LDOA2CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
LDOA2_SLP_EN  
R/W  
X
LDOA2 sleep mode enable. LDOA2 is factory configured to switch  
to sleep mode voltage either by CTL3/SLPENB1 pin or by CTL6/  
SLPENB2 pin.  
00: Disable. Uses LDOA2_VID in all cases.  
11: Enabled. Uses LDOA2_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:1  
0
RESERVED  
LDOA2_DIS  
R/W 110  
R/W  
Reserved bits. Always write to '110'.  
X
LDOA2 Disable Bit. Writing 0 to this bit forces LDOA2 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable.  
1: Enable.  
8.13.17 LDOA3CTRL: LDOA3 Control Register (offset = 29h) [reset = X]  
8-49. LDOA3CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA3_SLP LDOA3_SLP  
RESERVED RESERVED  
RESERVED RESERVED RESERVED LDOA3_DIS  
_EN[1]  
_EN[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-43. LDOA3CTRL Register Descriptions  
Bit  
Field  
LDOA3_SLP_EN  
Type Reset  
Description  
5:4  
R/W  
X
LDOA3 sleep mode enable. LDOA3 is factory configured to switch  
to sleep mode voltage either by CTL3/SLPENB1 pin or by CTL6/  
SLPENB2 pin.  
00: Disable. Uses LDOA3_VID in all cases.  
11: Enabled. Uses LDOA3_SLP_VID when assigned sleep pin is  
low.  
01,10: Reserved. Do not write these values.  
3:1  
RESERVED  
R/W 110  
Reserved bits. Always write to '110'.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8-43. LDOA3CTRL Register Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
0
LDOA3_DIS  
R/W  
X
LDOA3 Disable Bit. Writing 0 to this bit forces LDOA3 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable  
1: Enable  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.18 DISCHCTRL1: 1st Discharge Control Register (offset = 40h) [reset = X]  
All xx_DISCHG[1:0] bits internally set to 00 whenever the corresponding VR is enabled.  
8-50. DISCHCTRL1 Register  
Bit  
7
6
5
4
3
2
1
0
BUCK4_  
DISCHG[1]  
BUCK4_  
DISCHG[0]  
BUCK3_  
DISCHG[1]  
BUCK3_  
DISCHG[0]  
BUCK2_  
DISCHG[1]  
BUCK2_  
DISCHG[0]  
BUCK1_  
DISCHG[1]  
BUCK1_  
DISCHG[0]  
Bit Name  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-44. DISCHCTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:6  
BUCK4_DISCHG[1:0]  
BUCK3_DISCHG[1:0]  
BUCK2_DISCHG[1:0]  
BUCK1_DISCHG[1:0]  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
BUCK4 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
5:4  
3:2  
1:0  
BUCK3 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK2 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.19 DISCHCTRL2: 2nd Discharge Control Register (offset = 41h) [reset = X]  
All xx_DISCHG[1:0] bits internally set to 00 whenever the corresponding VR is enabled.  
8-51. DISCHCTRL2 Register  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
DISCHG[1]  
LDOA2_  
DISCHG[0]  
SWA1_  
DISCHG[1]  
SWA1_  
DISCHG[0]  
BUCK6_  
DISCHG[1]  
BUCK6_  
DISCHG[0]  
BUCK5_  
DISCHG[1]  
BUCK5_  
DISCHG[0]  
Bit Name  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-45. DISCHCTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:6  
LDOA2_DISCHG[1:0]  
SWA1_DISCHG[1:0]  
BUCK6_DISCHG[1:0]  
BUCK5_DISCHG[1:0]  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
LDOA2 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
5:4  
3:2  
1:0  
SWA1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK6 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK5 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.20 DISCHCTRL3: 3rd Discharge Control Register (offset = 42h) [reset = X]  
All xx_DISCHG[1:0] bits internally set to 00 whenever the corresponding VR is enabled.  
8-52. DISCHCTRL3 Register  
Bit  
7
6
5
4
3
2
1
0
SWB2_  
DISCHG[1]  
SWB2_  
DISCHG[0]  
SWB1_  
DISCHG[1]  
SWB1_  
DISCHG[0]  
LDOA3_  
DISCHG[1]  
LDOA3_  
DISCHG[0]  
Bit Name  
RESERVED RESERVED  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-46. DISCHCTRL3 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5:4  
SWB2_DISCHG[1:0]  
SWB1_DISCHG[1:0]  
LDOA3_DISCHG[1:0]  
R/W  
R/W  
R/W  
X
X
X
SWB2 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
3:2  
1:0  
SWB1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
LDOA3 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
8.13.21 PG_DELAY1: 1st Power Good Delay Register (offset = 43h) [reset = X]  
Programmable Power Good delay for GPO3 pin, measured from the moment when all VRs assigned to GPO3  
pin reach their regulation range to Power Good assertion. This is an optional register as the PMIC can be  
programmed for system PG, level shifter or I2C controller GPO.  
8-53. PG_DELAY1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
GPO3_PG_ GPO3_PG_ GPO3_PG_  
DELAY[2]  
RESERVED RESERVED RESERVED RESERVED RESERVED  
DELAY[1]  
DELAY[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
0
0
0
0
R
0
0
0
0
R
0
0
0
0
R
1
0
1
1
0
0
0
1
1
R/W  
R/W  
R/W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8-47. PG_DELAY1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
2:0  
GPO3_PG_DELAY[2:0]  
R/W  
X
Programmable delay Power Good or level shifter for GPO3 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
000: 2.5 ms  
001: 5.0 ms  
010: 10 ms  
011: 15 ms  
100: 20 ms  
101: 50 ms  
110: 75 ms  
111: 100 ms  
: Bits not used. If GPO3 is controlled by I2C rather than PG and  
is not used internally for VTT LDO enable, these bits have no  
impact. Default is set to 0b.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.22 FORCESHUTDN: Force Emergency Shutdown Control Register  
(offset = 91h) [reset = 0000 0000]  
8-54. FORCESHUTDN Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SDWN  
0
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
TPS650864  
Access  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
8-48. FORCESHUTDN Register Descriptions  
Bit  
Field  
SDWN  
Type Reset  
Description  
0
R/W  
0
Forces reset of the PMIC and reset of all registers. The bit is self-clearing.  
PMIC does not generate I2C ACK for this command because it goes into  
emergency shutdown.  
0: No action.  
1: PMIC initiates emergency shutdown.  
8.13.23 BUCK1SLPCTRL: BUCK1 Sleep Control Register (offset = 92h) [reset = X]  
8-55. BUCK1SLPCTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
BUCK1_  
SLP_ EN  
SLP_ VID[6] SLP_ VID[5] SLP_ VID[4] SLP_ VID[3] SLP_ VID[2] SLP_ VID[1] SLP_ VID[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
0
1
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-49. BUCK1SLPCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK1_SLP_VID[6:0]  
R/W  
X
This field sets the BUCK1 regulator output regulation voltage in  
sleep mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK1_SLP_EN  
R/W  
X
BUCK1 sleep mode enable. BUCK1 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0: Disable. Uses BUCK1_VID in all cases.  
1: Enabled. Uses BUCK1_SLP_VID when assigned sleep pin is  
low.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.24 BUCK2SLPCTRL: BUCK2 Sleep Control Register (offset = 93h) [reset = X]  
8-56. BUCK2SLPCTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP BUCK2_SLP  
_ VID[6]  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
_ EN  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
1
0
0
1
1
1
1
0
0
1
1
1
0
0
1
0
1
1
0
1
0
0
1
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-50. BUCK2SLPCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK2_SLP_VID[6:0]  
R/W  
X
This field sets the BUCK2 regulator output regulation voltage in  
sleep mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK2_SLP_EN  
R/W  
X
BUCK2 sleep mode enable. BUCK2 is factory configured to  
switch to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0: Disable. Uses BUCK2_VID in all cases.  
1: Enabled. Uses BUCK2_SLP_VID when assigned sleep pin is  
low.  
8.13.25 BUCK4VID: BUCK4 VID Register (offset = 94h) [reset = X]  
8-57. BUCK4VID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK4_  
VID[6]  
BUCK4_  
VID[5]  
BUCK4_  
VID[4]  
BUCK4_  
VID[3]  
BUCK4_  
VID[2]  
BUCK4_  
VID[1]  
BUCK4_  
VID[0]  
BUCK4_  
DECAY  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
1
0
1
1
1
0
0
1
1
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
0
1
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-51. BUCK4VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK4_VID[6:0]  
R/W  
X
This field sets the BUCK4 regulator output regulation voltage in  
normal mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK4_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.26 BUCK4SLPVID: BUCK4 Sleep VID Register (offset = 95h) [reset = X]  
8-58. BUCK4SLPVID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP BUCK4_SLP  
_ VID[6]  
RESERVED  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
R
1
1
1
0
1
0
0
1
0
1
0
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-52. BUCK4SLPVID Register Descriptions  
Bit  
Field  
BUCK4_SLP_VID[6:0]  
Type Reset  
Description  
7:1  
R/W  
X
This field sets the BUCK4 regulator output regulation voltage in  
sleep mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
8.13.27 BUCK5VID: BUCK5 VID Register (offset = 96h) [reset = X]  
8-59. BUCK5VID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK5_  
VID[6]  
BUCK5_  
VID[5]  
BUCK5_  
VID[4]  
BUCK5_  
VID[3]  
BUCK5_  
VID[2]  
BUCK5_  
VID[1]  
BUCK5_  
VID[0]  
BUCK5_  
DECAY  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
1
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-53. BUCK5VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK5_VID[6:0]  
R/W  
X
This field sets the BUCK5 regulator output regulation voltage in  
normal mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK5_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.28 BUCK5SLPVID: BUCK5 Sleep VID Register (offset = 97h) [reset = X]  
8-60. BUCK5SLPVID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP BUCK5_SLP  
_ VID[6]  
RESERVED  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
1
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
R
0
1
0
0
0
0
0
1
1
1
0
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-54. BUCK5SLPVID Register Descriptions  
Bit  
Field  
BUCK5_SLP_VID[6:0]  
Type Reset  
Description  
7:1  
R/W  
X
This field sets the BUCK5 regulator output regulation voltage in  
sleep mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
8.13.29 BUCK6VID: BUCK6 VID Register (offset = 98h) [reset = X]  
8-61. BUCK6VID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK6_  
VID[6]  
BUCK6_  
VID[5]  
BUCK6_  
VID[4]  
BUCK6_  
VID[3]  
BUCK6_  
VID[2]  
BUCK6_  
VID[1]  
BUCK6_  
VID[0]  
BUCK6_  
DECAY  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
0
1
1
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
0
0
0
1
0
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-55. BUCK6VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:1  
BUCK6_VID[6:0]  
R/W  
X
This field sets the BUCK6 regulator output regulation voltage in  
normal mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK6_DECAY  
R/W  
X
Decay Bit  
0: The output slews down to a lower voltage set by the VID bits.  
1: The output decays down to a lower voltage set by the VID bits.  
Decay rate depends on total capacitance and load present at the  
output.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.30 BUCK6SLPVID: BUCK6 Sleep VID Register (offset = 99h) [reset = X]  
8-62. BUCK6SLPVID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP BUCK6_SLP  
_ VID[6]  
RESERVED  
_ VID[5]  
_ VID[4]  
_ VID[3]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
0
0
1
0
1
0
1
1
1
1
1
0
0
0
0
0
R
0
1
1
1
0
0
0
0
1
0
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-56. BUCK6SLPVID Register Descriptions  
Bit  
Field  
BUCK6_SLP_VID[6:0]  
Type Reset  
Description  
7:1  
R/W  
X
This field sets the BUCK6 regulator output regulation voltage in  
sleep mode.  
See 8-22 and 8-23 for 10-mV and 25-mV step ranges for  
VOUT options.  
8.13.31 LDOA2VID: LDOA2 VID Register (offset = 9Ah) [reset = X]  
8-63. LDOA2VID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2_SLP LDOA2_SLP LDOA2_SLP LDOA2_SLP  
_VID[3]  
LDOA2_  
VID[3]  
LDOA2_  
VID[3]  
LDOA2_  
VID[1]  
LDOA2_  
VID[0]  
_VID[2]  
_VID[1]  
_VID[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-57. LDOA2VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:4  
LDOA2_SLP_VID[3:0]  
R/W  
X
This field sets the LDOA2 regulator output regulation voltage in  
sleep mode.  
See 8-25 for Vout options.  
3:0  
LDOA2_VID[3:0]  
R/W  
X
This field sets the LDOA2 regulator output regulation voltage in  
normal mode.  
See 8-25 for Vout options.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.32 LDOA3VID: LDOA3 VID Register (offset = 9Bh) [reset = X]  
8-64. LDOA3VID Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA3_SLP LDOA3_SLP LDOA3_SLP LDOA3_SLP  
_ VID[3]  
LDOA3_  
VID[3]  
LDOA3_  
VID[3]  
LDOA3_  
VID[1]  
LDOA3_  
VID[0]  
_ VID[2]  
_ VID[1]  
_ VID[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-58. LDOA3VID Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:4  
LDOA3_SLP_VID[3:0]  
R/W  
X
This field sets the LDOA3 regulator output regulation voltage in  
sleep mode.  
See 8-25 for Vout options.  
3:0  
LDOA3_VID[3:0]  
R/W  
X
This field sets the LDOA3 regulator output regulation voltage in  
normal mode.  
See 8-25 for Vout options.  
8.13.33 BUCK123CTRL: BUCK1-3 Control Register (offset = 9Ch) [reset = X]  
8-65. BUCK123CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BUCK3  
_MODE  
BUCK2  
_MODE  
BUCK1  
_MODE  
BUCK3  
_DIS  
BUCK2  
_DIS  
BUCK1  
_DIS  
RESERVED RESERVED  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
0
0
R
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-59. BUCK123CTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
5
BUCK3_MODE  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
This field sets the BUCK3 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
4
3
2
BUCK2_MODE  
BUCK1_MODE  
BUCK3_DIS  
This field sets the BUCK2 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
This field sets the BUCK1 regulator operating mode.  
0: Automatic mode  
1: Forced PWM mode  
BUCK3 Disable Bit. Writing 0 to this bit forces BUCK3 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable  
1: Enable  
1
BUCK2_DIS  
R/W  
X
BUCK2 Disable Bit. Writing 0 to this bit forces BUCK2 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable  
1: Enable  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8-59. BUCK123CTRL Register Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
0
BUCK1_DIS  
R/W  
X
BUCK1 Disable Bit. Writing 0 to this bit forces BUCK1 to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable  
1: Enable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.34 PG_DELAY2: 2nd Power Good Delay Register (offset = 9Dh) [reset = X]  
Programmable Power Good delay for GPO1, GPO2, and GPO4 pins, measured from the moment when all VRs  
assigned to respective GPO reach their regulation range to Power Good assertion. This is an optional register as  
the PMIC can be programmed for system PG, level shifter or I2C controller GPO.  
8-66. PG_DELAY2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
GPO2_PG_ GPO2_PG_ GPO2_PG_ GPO4_PG_ GPO4_PG_ GPO4_PG_ GPO1_PG_ GPO1_PG_  
DELAY[2]  
DELAY[1]  
DELAY[0]  
DELAY[2]  
DELAY[1]  
DELAY[0]  
DELAY[1]  
DELAY[0]  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-60. PG_DELAY2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7:5  
GPO2_PG_DELAY[2:0]  
R/W  
X
Programmable delay Power Good or level shifter for GPO2 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
000: 0 ms  
001: 5.0 ms  
010: 10 ms  
011: 15 ms  
100: 20 ms  
101: 50 ms  
110: 75 ms  
111: 100 ms  
: Bits not used. If GPO2 is controlled by I2C rather than PG and  
is not used internally for VTT LDO enable, these bits have no  
impact. Default is set to 0b.  
4:2  
GPO4_PG_DELAY[2:0]  
R/W  
X
Programmable delay Power Good or level shifter for GPO4 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
000: 0 ms  
001: 5.0 ms  
010: 10 ms  
011: 15 ms  
100: 20 ms  
101: 50 ms  
110: 75 ms  
111: 100 ms  
: Bits not used. If GPO4 is controlled by I2C rather than PG,  
these bits have no impact. Default is set to 0b.  
1:0  
GPO1_PG_DELAY[1:0]  
R/W  
X
Programmable delay Power Good or level shifter for GPO1 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
00: 0 ms  
01: 5.0 ms  
10: 10 ms  
11: 15 ms  
: Bits not used. If GPO1 is controlled by I2C rather than PG,  
these bits have no impact. Default is set to 0b.  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.35 SWVTT_DIS: SWVTT Disable Register (offset = 9Fh) [reset = X]  
8-67. SWVTT_DIS Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWB2_LDOA  
1_DIS  
SWB1_DIS  
SWA1_DIS  
VTT_DIS  
Reserved  
Reserved  
Reserved  
Reserved  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-61. SWVTT_DIS Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
SWB2_LDOA1_DIS  
R/W  
X
SWB2 or LDOA1 Disable Bit. Writing 0 to this bit forces  
SWB2 or LDOA1 to turn off regardless of any control input  
pin (CTL1CTL6) status. OTP setting selects either  
SWB2 or LDOA1.  
0: Disable.  
1: Enable.  
SWB2 for: TPS65086470  
LDOA1 for: TPS6508640, TPS65086401, and  
TPS6508641  
6
5
SWB1_DIS  
SWA1_DIS  
R/W  
R/W  
R/W  
X
X
X
SWB1 Disable Bit. Writing 0 to this bit forces SWB1 to turn  
off regardless of any control input pin (CTL1CTL6)  
status.  
0: Disable.  
1: Enable.  
SWA1 Disable Bit. Writing 0 to this bit forces SWA1 to turn  
off regardless of any control input pin (CTL1CTL6)  
status.  
0: Disable.  
1: Enable.  
4
VTT_DIS  
Reserved  
VTT Disable Bit. Writing 0 to this bit forces VTT to turn off  
regardless of any control input pin (CTL1CTL6) status.  
0: Disable.  
1: Enable.  
3:0  
R/W 0000  
Reserved bits. Always write to 0000.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.36 I2C_RAIL_EN1: 1st VR Pin Enable Override Register (offset = A0h) [reset = X]  
8-68. I2C_RAIL_EN1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2_EN  
SWA1_EN  
BUCK6_EN BUCK5_EN BUCK4_EN BUCK3_EN BUCK2_EN BUCK1_EN  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-62. I2C_RAIL_EN1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA2 I2C Enable  
0: LDOA2 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: LDOA2 is forced on unless LDOA2_DIS = 0b.  
6
5
4
3
2
1
0
SWA1_EN  
BUCK6_EN  
BUCK5_EN  
BUCK4_EN  
BUCK3_EN  
BUCK2_EN  
BUCK1_EN  
SWA1 I2C Enable  
0: SWA1 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: SWA1 is forced on unless SWA1_DIS = 0b.  
BUCK6 I2C Enable  
0: BUCK6 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK6 is forced on unless BUCK6_DIS = 0b.  
BUCK5 I2C Enable  
0: BUCK5 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK5 is forced on unless BUCK5_DIS = 0b.  
BUCK4 I2C Enable  
0: BUCK4 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK4 is forced on unless BUCK4_DIS = 0b.  
BUCK3 I2C Enable  
0: BUCK3 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK3 is forced on unless BUCK3_DIS = 0b.  
BUCK2 I2C Enable  
0: BUCK2 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK2 is forced on unless BUCK2_DIS = 0b.  
BUCK1 I2C Enable  
0: BUCK1 is enabled or disabled by one of the control input pins  
or internal PG signal.  
1: BUCK1 is forced on unless BUCK1_DIS = 0b.  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.37 I2C_RAIL_EN2/GPOCTRL: 2nd VR Pin Enable Override and GPO Control Register (offset = A1h)  
[reset = X]  
8-69. I2C_RAIL_EN2/GPOCTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWB2_LDOA  
1_EN  
GPO4_LVL  
GPO3_LVL  
GPO2_LVL  
0
GPO1_LVL  
VTT_EN  
SWB1_EN  
LDOA3_EN  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-63. I2C_RAIL_EN2/GPOCTRL Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
GPO4_LVL  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
The field is to set GPO4 pin output if the pin is factory-  
configured as an I2C controlled open-drain general-purpose  
output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO4 is controlled by GPO4 PG  
tree. Default is set to 0b.  
6
5
4
GPO3_LVL  
GPO2_LVL  
GPO1_LVL  
VTT_EN  
The field is to set GPO3 pin output if the pin is factory-  
configured as either an I2C controlled open-drain or a push-pull  
general-purpose output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO3 is controlled by GPO3 PG  
tree. Default is set to 0b.  
The field is to set GPO2 pin output if the pin is factory-  
configured as either an I2C controlled open-drain or a push-pull  
general-purpose output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO2 is controlled by GPO2 PG  
tree. Default is set to 0b.  
The field is to set GPO1 pin output if the pin is factory-  
configured as either an I2C controlled open-drain or a push-pull  
general-purpose output.  
0: The pin is driven to logic low.  
1: The pin is driven to logic high.  
: Bit not used in this version; GPO1 is controlled by GPO1 PG  
tree. Default is set to 0b.  
3
2
R/W  
R/W  
X
X
VTT LDO I2C Enable  
0: VTT LDO is enabled or disabled by one of the control input  
pins or internal PG signals.  
1: VTT LDO is forced on unless VTT_DIS = 0b.  
SWB2_LDOA1_EN  
SWB2 or LDOA1 I2C Enable. Internal setting selects either  
SWB2 or LDOA1.  
0: SWB2 or LDOA1 is enabled or disabled by one of the control  
input pins or internal PG signals.  
1: SWB2 or LDOA1 is forced on unless SWB2_LDOA1_DIS =  
0b.  
SWB2 for: TPS65086470  
LDOA1 for: TPS6508640, TPS65086401, and TPS6508641  
1
SWB1_EN  
R/W  
X
SWB1 I2C Enable  
0: SWB1 is enabled or disabled by one of the control input pins  
or internal PG signals.  
1: SWB1 is forced on unless SWB1_DIS = 0b.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8-63. I2C_RAIL_EN2/GPOCTRL Register Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
0
LDOA3_EN  
R/W  
X
LDOA3 I2C Enable  
0: LDOA3 is enabled or disabled by one of the control input pins  
or internal PG signals.  
1: LDOA3 is forced on unless LDOA3_DIS = 0b.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.38 PWR_FAULT_MASK1: 1st VR Power Fault Mask Register (offset = A2h) [reset = X]  
8-70. PWR_FAULT_MASK1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2_  
FLTmsK  
SWA1_  
FLTmsK  
BUCK6_  
FLTmsK  
BUCK5_  
FLTmsK  
BUCK4_  
FLTmsK  
BUCK3_  
FLTmsK  
BUCK2_  
FLTmsK  
BUCK1_  
FLTmsK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-64. PWR_FAULT_MASK1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_FLTmsK  
SWA1_FLTmsK  
BUCK6_FLTmsK  
BUCK5_FLTmsK  
BUCK4_FLTmsK  
BUCK3_FLTmsK  
BUCK2_FLTmsK  
BUCK1_FLTmsK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
LDOA2 Power Fault Mask. When masked, power fault from  
LDOA2 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
6
5
4
3
2
1
0
SWA1 Power Fault Mask. When masked, power fault from SWA1  
does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK6 Power Fault Mask. When masked, power fault from  
BUCK6 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK5 Power Fault Mask. When masked, power fault from  
BUCK5 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK4 Power Fault Mask. When masked, power fault from  
BUCK4 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK3 Power Fault Mask. When masked, power fault from  
BUCK3 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK2 Power Fault Mask. When masked, power fault from  
BUCK2 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
BUCK1 Power Fault Mask. When masked, power fault from  
BUCK1 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.39 PWR_FAULT_MASK2: 2nd VR Power Fault Mask Register (offset = A3h) [reset = X]  
8-71. PWR_FAULT_MASK2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA1_  
FLTmsK  
VTT_  
FLTmsK  
SWB2_  
FLTmsK  
SWB1_  
FLTmsK  
LDOA3_  
FLTmsK  
RESERVED RESERVED RESERVED  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
0
0
R
0
0
1
1
0
0
0
1
1
0
1
0
1
0
0
1
0
0
0
0
0
0
1
1
0
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-65. PWR_FAULT_MASK2 Register Descriptions  
Bit  
6
Field  
Type Reset  
Description  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
0
1
X
Reserved bit. Always write to 0b.  
Reserved bit. Always write to 1b.  
5
4
LDOA1_FLTmsK  
VTT_FLTmsK  
LDOA1 Power Fault Mask. When masked, power fault from  
LDOA1 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
X
X
X
X
VTT LDO Power Fault Mask. When masked, power fault from  
VTT LDO does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
SWB2_FLTmsK  
SWB1_FLTmsK  
LDOA3_FLTmsK  
SWB2 Power Fault Mask. When masked, power fault from  
SWB2 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
SWB1 Power Fault Mask. When masked, power fault from  
SWB1 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
LDOA3 Power Fault Mask. When masked, power fault from  
LDOA3 does not cause PMIC to shutdown.  
0: Not Masked  
1: Masked  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.40 GPO1PG_CTRL1: 1st GPO1 PG Control Register (offset = A4h) [reset = X]  
8-72. GPO1PG_CTRL1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2  
_msK  
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
0
1
1
1
0
1
1
1
1
1
1
0
0
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-66. GPO1PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO1 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
6
5
4
3
2
1
0
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
0: SWA1 PG is part of Power Good tree of GPO1 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK6 PG is part of Power Good tree of GPO1 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO1 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO1 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO1 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO1 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO1 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.41 GPO1PG_CTRL2: 2nd GPO1 PG Control Register (offset = A5h) [reset = X]  
8-73. GPO1PG_CTRL2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK LDOA3_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-67. GPO1PG_CTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO1 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO1 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO1 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO1 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO1 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO1 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO1 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of GPO1  
pin and is ignored.  
SWB2 for: TPS65086470  
LDOA1 for:TPS6508640, TPS65086401, and TPS6508641  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO1 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO1 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO1 pin and  
is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.42 GPO4PG_CTRL1: 1st GPO4 PG Control Register (offset = A6h) [reset = X]  
8-74. GPO4PG_CTRL1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
LDOA2_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-68. GPO4PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO4 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
6
5
4
3
2
1
0
0: SWA1 PG is part of Power Good tree of GPO4 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO4 pin and  
is ignored.  
0: BUCK6 PG is part of Power Good tree of GPO4 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO4 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO4 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO4 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO4 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO4 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.43 GPO4PG_CTRL2: 2nd GPO4 PG Control Register (offset = A7h) [reset = X]  
8-75. GPO4PG_CTRL2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK LDOA3_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-69. GPO4PG_CTRL2 Register Descriptionsr  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO4 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO4 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO4 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO4 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO4 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO4 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO4 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of GPO4  
pin and is ignored.  
SWB2 for: TPS65086470  
LDOA1 for: TPS6508640, TPS65086401, and TPS6508641  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO4 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO4 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO4 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO4 pin and  
is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.44 GPO2PG_CTRL1: 1st GPO2 PG Control Register (offset = A8h) [reset = X]  
8-76. GPO2PG_CTRL1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
LDOA2_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
1
1
0
1
1
0
1
1
1
0
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-70. GPO2PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO2 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
6
5
4
3
2
1
0
0: SWA1 PG is part of Power Good tree of GPO2 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK6 PG is part of Power Good tree of GPO2 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO2 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO2 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO2 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO2 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO2 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.45 GPO2PG_CTRL2: 2nd GPO2 PG Control Register (offset = A9h) [reset = X]  
8-77. GPO2PG_CTRL2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
LDOA3_  
msK  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
1
0
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-71. GPO2PG_CTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO2 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO2 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO2 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO2 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO2 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO2 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO2 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of GPO2  
pin and is ignored.  
SWB2 for: TPS65086470  
LDOA1 for: TPS6508640, TPS65086401, and TPS6508641  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO2 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO2 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO2 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO2 pin and  
is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.46 GPO3PG_CTRL1: 1st GPO3 PG Control Register (offset = AAh) [reset = X]  
8-78. GPO3PG_CTRL1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2  
_msK  
SWA1  
_msK  
BUCK6  
_msK  
BUCK5  
_msK  
BUCK4  
_msK  
BUCK3  
_msK  
BUCK2  
_msK  
BUCK1  
_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
0
1
1
1
0
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
1
1
1
1
1
0
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-72. GPO3PG_CTRL1 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
LDOA2_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: LDOA2 PG is part of Power Good tree of GPO3 pin.  
1: LDOA2 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
6
5
4
3
2
1
0
SWA1_msK  
BUCK6_msK  
BUCK5_msK  
BUCK4_msK  
BUCK3_msK  
BUCK2_msK  
BUCK1_msK  
0: SWA1 PG is part of Power Good tree of GPO3 pin.  
1: SWA1 PG is NOT part of Power Good tree of GPO3 pin and is  
ignored.  
0: BUCK6 PG is part of Power Good tree of GPO3 pin.  
1: BUCK6 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK5 PG is part of Power Good tree of GPO3 pin.  
1: BUCK5 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK4 PG is part of Power Good tree of GPO3 pin.  
1: BUCK4 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK3 PG is part of Power Good tree of GPO3 pin.  
1: BUCK3 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK2 PG is part of Power Good tree of GPO3 pin.  
1: BUCK2 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: BUCK1 PG is part of Power Good tree of GPO3 pin.  
1: BUCK1 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.47 GPO3PG_CTRL2: 2nd GPO3 PG Control Register (offset = ABh) [reset = X]  
8-79. GPO3PG_CTRL2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
SWB2_LDO  
A1_msK  
CTL5_msK  
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
SWB1_msK LDOA3_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
0
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-73. GPO3PG_CTRL2 Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
CTL5_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
0: CTL5 pin status is part of Power Good tree of GPO3 pin.  
1: CTL5 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
6
5
4
3
2
CTL4_msK  
CTL2_msK  
CTL1_msK  
VTT_msK  
0: CTL4 pin status is part of Power Good tree of GPO3 pin.  
1: CTL4 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
0: CTL2 pin status is part of Power Good tree of GPO3 pin.  
1: CTL2 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
0: CTL1 pin status is part of Power Good tree of GPO3 pin.  
1: CTL1 pin status is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
0: VTT LDO PG is part of Power Good tree of GPO3 pin.  
1: VTT LDO PG is NOT part of Power Good tree of GPO3 pin  
and is ignored.  
SWB2_LDOA1_msK  
0: SWB2_LDOA1 PG is part of Power Good tree of GPO3 pin.  
1: SWB2_LDOA1 PG is NOT part of Power Good tree of GPO3  
pin and is ignored.  
SWB2 for: TPS65086470  
LDOA1 for: TPS6508640, TPS65086401, and TPS6508641  
1
0
SWB1_msK  
LDOA3_msK  
R/W  
R/W  
X
X
0: SWB1 PG is part of Power Good tree of GPO3 pin.  
1: SWB1 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
0: LDOA3 PG is part of Power Good tree of GPO3 pin.  
1: LDOA3 PG is NOT part of Power Good tree of GPO3 pin and  
is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.48 MISCSYSPG Register (offset = ACh) [reset = X]  
8-80. MISCSYSPG Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
GPO1_  
CTL3_msK  
GPO1_  
CTL6_msK  
GPO4_  
CTL3_msK  
GPO4_  
CTL6_msK  
GPO2_  
CTL3_msK  
GPO2_  
CTL6_msK  
GPO3_  
CTL3_msK  
GPO3_  
CTL6_msK  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
1
1
0
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-74. MISCSYSPG Register Descriptions  
Bit  
Field  
Type Reset  
Description  
7
GPO1_CTL3_msK  
GPO1_CTL6_msK  
GPO4_CTL3_msK  
GPO4_CTL6_msK  
GPO2_CTL3_msK  
GPO2_CTL6_msK  
GPO3_CTL3_msK  
GPO3_CTL6_msK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
X
X
X
X
0: CTL3 pin status is part of Power Good tree of GPO1 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO1 pin.  
6
5
4
3
2
1
0
0: CTL6 pin status is part of Power Good tree of GPO1 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO1 pin.  
0: CTL3 pin status is part of Power Good tree of GPO4 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO4 pin.  
0: CTL6 pin status is part of Power Good tree of GPO4 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO4 pin.  
0: CTL3 pin status is part of Power Good tree of GPO2 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO2 pin.  
0: CTL6 pin status is part of Power Good tree of GPO2 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO2 pin.  
0: CTL3 pin status is part of Power Good tree of GPO3 pin.  
1: CTL3 pin status is NOT part of Power Good tree of GPO3pin.  
0: CTL6 pin status is part of Power Good tree of GPO3 pin.  
1: CTL6 pin status is NOT part of Power Good tree of GPO3 pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.48.1 VTT_DISCH_CTRL Register (offset = ADh) [reset = X]  
8-81. VTT_DISCH_CTRL Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
VTT_  
DISCHG  
RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
1
0
1
0
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-75. VTT_DISCH_CTRL Register Descriptions  
Bit  
7:5  
4
Field  
Type Reset  
Description  
RESERVED  
VTT_DISCHG  
R/W  
R/W  
X
X
Reserved bits. Always write to match OTP settings.  
0: no discharge  
1: 100 Ω  
3:0  
RESERVED  
R/W  
X
Reserved bits. Always write to match OTP settings.  
8.13.49 LDOA1_SWB2_CTRL: LDOA1 and SWB2 Control Register (offset = AEh) [reset = X]  
8-82. LDOA1_SWB2_CTRL Register  
Bit  
7
6
5
4
3
2
1
0
LDOA1_  
DISCHG[1]  
LDOA1_  
DISCHG[0]  
LDOA1_SWB2_  
SDWN_CONFIG  
LDOA1_  
VID[3]  
LDOA1_  
VID[2]  
LDOA1_  
VID[1]  
LDOA1_  
VID[0]  
LDOA1_  
SWB2_EN  
Bit Name  
TPS6508640  
TPS65086401  
TPS6508641  
TPS65086470  
Access  
0
0
1
1
0
0
1
0
0
1
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-76. LDOA1_SWB2_CTRL Register Descriptions  
Bit  
Field  
LDOA1_DISCHG[1:0]  
Type Reset  
Description  
7:6  
R/W  
X
LDOA1 discharge resistance  
00: no discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
5
LDOA1_SWB2_SDWN_CO R/W  
NFIG  
X
Control for Disabling LDOA1 or SWB2 (OTP dependent) during  
Emergency Shutdown. When LDOA1 is used in sequence and  
SWB1 and SWB2 are not merged, this will control SWB2.  
0: LDOA1 or SWB2 will turn off during Emergency Shutdown for  
factory-programmable duration of 1 ms, 5 ms, 10 ms, or 100 ms.  
1: LDOA1 or SWB2 is controlled by LDOA1_SWB2_EN bit only.  
LDOA1 for: TPS65086470  
SWB2 for: TPS6508640  
Unused for: TPS65086401 and TPS6508641  
4:1  
0
LDOA1_VID[3:0]  
R/W  
R/W  
X
X
This field sets the LDOA1 regulator output regulation voltage.  
See 8-24 for VOUT options.  
LDOA1_SWB2_EN  
LDOA1 or SWB2 Enable Bit.  
0: Disable.  
1: Enable.  
LDOA1 for: TPS65086470  
SWB2 for: TPS6508640  
Unused for: TPS65086401 and TPS6508641  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.50 PG_STATUS1: 1st Power Good Status Register (offset = B0h) [reset = 0000 0000]  
8-83. PG_STATUS1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2_  
PGOOD  
SWA1_  
PGOOD  
BUCK6_  
PGOOD  
BUCK5_  
PGOOD  
BUCK4_  
PGOOD  
BUCK3_  
PGOOD  
BUCK2_  
PGOOD  
BUCK1_  
PGOOD  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
8-77. PG_STATUS1 Register Descriptions  
Bit  
Field  
LDOA2_PGOOD  
Type Reset  
Description  
7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
LDOA2 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
6
5
4
3
2
1
0
SWA1_PGOOD  
BUCK6_PGOOD  
BUCK5_PGOOD  
BUCK4_PGOOD  
BUCK3_PGOOD  
BUCK2_PGOOD  
BUCK1_PGOOD  
SWA1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK6 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK5 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK4 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK3 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK2 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.51 PG_STATUS2: 2nd Power Good Status Register (offset = B1h) [reset = 0000 0000]  
8-84. PG_STATUS2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDO5  
_PGOOD  
LDOA1  
_PGOOD  
VTT  
_PGOOD  
SWB2  
_PGOOD  
SWB1  
_PGOOD  
LDOA3  
_PGOOD  
RESERVED RESERVED  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
8-78. PG_STATUS2 Register Descriptions  
Bit  
Field  
LDO5_PGOOD  
Type Reset  
Description  
5
R
R
R
R
R
R
0
0
0
0
0
0
LDO5 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
4
3
2
1
0
LDOA1_PGOOD  
VTT_PGOOD  
LDOA1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
VTT LDO Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
SWB2_PGOOD  
SWB1_PGOOD  
LDOA3_PGOOD  
SWB2 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
SWB1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
LDOA3 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.52 PWR_FAULT_STATUS1: 1st Power Fault Status Register (offset = B2h) [reset = 0000 0000]  
8-85. PWR_FAULT_STATUS1 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA2_  
PWRFLT  
SWA1_  
PWRFLT  
BUCK6_  
PWRFLT  
BUCK5_  
PWRFLT  
BUCK4_  
PWRFLT  
BUCK3_  
PWRFLT  
BUCK2_  
PWRFLT  
BUCK1_  
PWRFLT  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-79. PWR_FAULT_STATUS1 Register Descriptions  
Bit  
Field  
LDOA2_PWRFLT  
Type Reset  
Description  
7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
This fields indicates that LDOA2 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
6
5
4
3
2
1
0
SWA1_PWRFLT  
BUCK6_PWRFLT  
BUCK5_PWRFLT  
BUCK4_PWRFLT  
BUCK3_PWRFLT  
BUCK2_PWRFLT  
BUCK1_PWRFLT  
This fields indicates that SWA1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK6 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK5 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK4 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK3 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK2 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.53 PWR_FAULT_STATUS2: 2nd Power Fault Status Register (offset = B3h) [reset = 0000 0000]  
8-86. PWR_FAULT_STATUS2 Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
LDOA1_  
PWRFLT  
VTT_  
PWRFLT  
SWB2_  
_PWRFLT  
SWB1_  
PWRFLT  
LDOA3_  
PWRFLT  
RESERVED RESERVED RESERVED  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-80. PWR_FAULT_STATUS2 Register Descriptions  
Bit  
Field  
LDOA1_PWRFLT  
Type Reset  
Description  
4
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
This fields indicates that LDOA1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
3
2
1
0
VTT_PWRFLT  
This fields indicates that VTT LDO has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
SWB2_PWRFLT  
SWB1_PWRFLT  
LDOA3_PWRFLT  
This fields indicates that SWB2 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that SWB1 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that LDOA3 has lost its regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.54 TEMPCRIT: Temperature Fault Status Register (offset = B4h) [reset = 0000 0000]  
Asserted when an internal temperature sensor detects rise of die temperature above the CRITICAL temperature  
threshold (TCRIT). There are 5 temperature sensors across the die.  
8-87. TEMPCRIT Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BOTTOM-  
RIGHT  
_CRIT  
TOP-RIGHT  
_CRIT  
TOP-LEFT  
_CRIT  
RESERVED RESERVED RESERVED  
DIE_CRIT  
VTT_CRIT  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
8-81. TEMPCRIT Register Descriptions  
Bit  
Field  
Type Reset  
Description  
4
DIE_CRIT  
R/W  
R/W  
R/W  
0
0
0
Temperature of rest of die has exceeded TCRIT  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
.
3
2
VTT_CRIT  
Temperature of VTT LDO has exceeded TCRIT  
0: Not asserted.  
.
1: Asserted. The host to write 1 to clear.  
TOP-RIGHT_CRIT  
TOP-LEFT_CRIT  
Temperature of die Top-Right has exceeded TCRIT. Top-Right corner of die from  
top view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
1
0
R/W  
R/W  
0
0
Temperature of die Top-Left has exceeded TCRIT.Top-Left corner of die from top  
view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
BOTTOM-RIGHT_CRIT  
Temperature of die Bottom-Right has exceeded TCRIT. Bottom-Right corner of  
die from top view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.55 TEMPHOT: Temperature Hot Status Register (offset = B5h) [reset = 0000 0000]  
Asserted when an internal temperature sensor detects rise of die temperature above the HOT temperature  
threshold (THOT). There are 5 temperature sensors across the die.  
8-88. TEMPHOT Register  
Bit  
Bit Name  
7
6
5
4
3
2
1
0
BOTTOM-  
RIGHT  
_HOT  
TOP-RIGHT  
_HOT  
TOP-LEFT  
_HOT  
RESERVED RESERVED RESERVED  
DIE_HOT  
VTT_HOT  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
8-82. TEMPHOT Register Descriptions  
Bit  
Field  
Type Reset  
Description  
4
DIE_HOT  
R/W  
R/W  
R/W  
0
0
0
Temperature of rest of die has exceeded THOT  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
.
3
2
VTT_HOT  
Temperature of VTT LDO has exceeded THOT  
0: Not asserted.  
.
1: Asserted. The host to write 1 to clear.  
TOP-RIGHT_HOT  
TOP-LEFT_HOT  
Temperature of Top-Right has exceeded THOT. Top-Right corner of die from top  
view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
1
0
R/W  
R/W  
0
0
Temperature of Top-Left has exceeded THOT. Top-Left corner of die from top  
view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
BOTTOM-RIGHT_HOT  
Temperature of Bottom-Right has exceeded THOT. Bottom-Right corner of die  
from top view given pin1 is in Top-Left corner.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.13.56 OC_STATUS: Overcurrent Fault Status Register (offset = B6h) [reset = 0000 0000]  
Asserted when overcurrent condition is detected from a LSD FET.  
8-89. OC_STATUS Register  
Bit  
7
6
5
4
3
2
1
0
BUCK6  
_OC  
BUCK2  
_OC  
BUCK1  
_OC  
Bit Name  
RESERVED RESERVED RESERVED RESERVED RESERVED  
TPS650864  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W  
R/W  
R/W  
8-83. OC_STATUS Register Descriptions  
Bit  
Field  
Type Reset  
Description  
2
BUCK6_OC  
BUCK2_OC  
BUCK1_OC  
R/W  
R/W  
R/W  
0
0
0
BUCK6 LSD FET overcurrent has been detected.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
1
0
BUCK2 LSD FET overcurrent has been detected.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
BUCK1 LSD FET overcurrent has been detected.  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Applications, Implementation, and Layout  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS650864 for Xilinx MPSoCs and FPGAs can be used in a variety of ways which is outlined in the  
following sections. 9.2 discusses the design procedure for the general case. Specific OTP information can be  
found starting with 8.6. In general, the PMIC is controlled by the state of the six CTL which can accept up to  
3.6 V inputs. How these control pins are set varies based on application. Some examples would be using the PG  
of external rails, looping GPOs back into CTL pins, connecting a locking push-button, using a push-button circuit,  
using an embedded controller (such as the msP430G2121), or controlled by the MPSoC itself.  
9.2 Typical Application  
This section describes the general application information and provides a more detailed description on the PMIC  
that powers a generic multicore-processor application. An example system block diagram for the device  
powering an SoC and the rest of platform is shown in 9-1. The functional block diagram in 8-1 outlines the  
typical external components necessary for proper device functionality.  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
PMIC  
Example SoC  
PLATFORM  
VIN  
BUCK1  
EXT FET  
VIN  
VCORE  
VGPU  
BUCK2  
BUCK3 3A  
BUCK4 3A  
BUCK5 3A  
BUCK6  
EXT FET  
5V Supply  
VCCIO  
VCPU1  
Note: An LDO or  
Buck Can Supply  
the VPP Rail if  
VCPU2  
Needed for DDR.  
VIN  
EXT FET  
VDDQ, VDD1&2  
VDDQ, VDD1&2  
VTT LDO ±0.5A  
VTT  
VTT  
DDR  
DDR  
LDO5V or  
5V Supply  
VSUPP1  
VSUPP2  
VSUPP3  
VSUPP4  
VSUPP5  
VSUPP6  
LDOA1 0.2A  
LDOA2 0.6A  
LDOA3 0.6A  
SWA1 0.3A  
SWB1 0.3A  
SWB2 0.3A  
LDO5  
1.8V  
Input up to 3.3V  
Input up to 3.3V  
LDO5V  
VSYS  
VIN  
5V Supply  
PG_5V  
LDO3P3  
IRQB  
GPO1 – GPO4  
SDA  
CTL1 – CTL6  
SCL  
Copyright © 2017, Texas Instruments Incorporated  
9-1. Typical Application Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
The PMIC requires decoupling caps on the supply pins. Follow the values for recommended capacitance on  
these supplies given in 7. The controllers, converter, LDOs, and some other features can be adjusted to meet  
specific application needs. 9.2.2 describes how to design and adjust the external components to achieve  
desired performance.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Controller Design Procedure  
Designing the controller can be broken down into the following steps:  
1. Design the output filter.  
2. Select the FETs.  
3. Select the bootstrap capacitor.  
4. Select the input capacitors.  
5. Set the current limits.  
Controllers BUCK1, BUCK2, and BUCK6 require a 5-V supply and capacitors at their corresponding DRV5V_x_x  
pins. For most applications, the DRV5V_x_x input should come from the LDO5P0 pin to ensure uninterrupted  
supply voltage; a 2.2-µF, X5R, 20%, 10-V, or similar capacitor must be used for decoupling.  
VSYS  
DRVHx  
BOOT1  
LDO5V  
DRV5V_x_x  
VOUT  
LOUT  
SWx  
COUT  
Controller  
DRVLx  
PGNDSNSx  
Control  
from SOC  
FBVOUTx  
RILIM  
ILIMx  
<FBGND2>(1)  
PowerPADTM  
Copyright © 2017, Texas Instruments Incorporated  
A. <FBGND2> is only present for BUCK2.  
9-2. Controller Diagram  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.2.1.1 Selecting the Inductor  
Placement of an inductor is required between the external FETs and the output capacitors. Together, the inductor  
and output capacitors make the double-pole that contributes to stability. In addition, the inductor is directly  
responsible for the output ripple, efficiency, and transient performance. As the inductance used increases, the  
ripple current decreases, which typically results in an increased efficiency. However, with an increase in  
inductance used, the transient performance decreases. Finally, the inductor selected must be rated for  
appropriate saturation current, core losses, and DC resistance (DCR).  
Equation 5 shows the calculation for the recommended inductance for the controller.  
VOUT ì (V - VOUT  
IN ì fsw ì IOUT(MAX) ì KIND  
)
IN  
L =  
V
(5)  
where  
VOUT is the typical output voltage  
VIN is the typical input voltage  
fSW is the typical switching frequency when loaded, 1 MHz unless otherwise noted  
IOUT(MAX) is the maximum load current  
KIND is the ratio of ILripple to the IOUT(MAX). For this application, TI recommends that KIND is set to a value from  
0.2 to 0.4. Higher values have improved transient performance, lower values have improved efficiency  
With the chosen inductance value, the peak current for the inductor in steady state operation, IL(max), can be  
calculated using Equation 6. The rated saturation current of the inductor must be higher than the IL(max) current.  
(V -VOUT ) ì VOUT  
2 ì VIN ì fsw ì L  
IN  
IL(MAX) = IOUT(MAX)  
+
(6)  
9.2.2.1.2 Selecting the Output Capacitors  
TI recommends using ceramic capacitors with low ESR values to provide the lowest output voltage ripple. The  
output capacitor requires an X7R or an X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their wide  
variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents, the controller operates in PFM mode, and the output voltage ripple is dependent on the  
output-capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize the voltage  
ripple in PFM mode. To achieve specified regulation performance and low output voltage ripple, the DC-bias  
characteristic of ceramic capacitors must be considered. The effective capacitance of ceramic capacitors drops  
with increasing DC bias voltage.  
TI recommends the use of small ceramic capacitors placed between the inductor and load with many vias to the  
PGND plane for the output capacitors of the BUCK controllers. This solution typically provides the smallest and  
lowest cost solution available for D-CAP2 controllers.  
The selection of the output capacitor is typically driven by the output transient response. Equation 7 and  
Equation 8 provide a rough estimate of the minimum required capacitance to ensure proper transient response.  
Because the transient response is significantly affected by the board layout, some experimentation is expected  
in order to confirm that values derived in this section are applicable to any particular use case. These are not  
meant to be an absolute requirement, but rather a rough starting point. Alternatively, some known combination  
values from which to begin are provided in 9-1. VUNDER and VOVER values should be greater than or equal to  
3% of VOUT setting in order for equations to be meaningful. The equations provide some margin so that actual  
capacitance requirement may be lower than calculated.  
2
ITRAN(MAX) ì L  
COUT  
>
(VIN - VOUT ) ì VUNDER  
(7)  
where  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPS650864  
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
ITRAN(max) is the maximum load current step  
L is the chosen inductance  
VIN is the maximum input voltage  
VOUT is the minimum programmed output voltage  
VUNDER is the maximum allowable undershoot from programmed voltage  
ITRAN(MAX)2 ìL  
COUT  
>
VOUT ì VOVER  
(8)  
where  
VOVER is the maximum allowable overshoot from programmed voltage  
Another key performance factor can be the ripple voltage while in pulsed frequency modulation mode, also  
known as discontinuous conduction mode. At light load, the controller will disable the low side FET once it  
detects a zero-crossing event on the inductor current. It will stay disabled until VOUT crosses below the set VID  
threshold. This architecture allows significant power savings at light load conditions by minimizing power loss  
through the low side FET and through switching. The disadvantage is that there is higher voltage ripple since the  
ripple current is only positive. Additionally, for even higher efficiency, TON(PFM) for this device is typically 80%  
longer than TON(PWM), which can be calculated by dividing the duty cycle by the switching frequency. An estimate  
for the required capacitance for a given allowable ripple voltage at light load is shown in Equation 9. ESR of the  
output capacitor is neglected here because ceramic capacitors, which typically have low ESR, are  
recommended. VOVER should not be set lower than 3% of VOUT value.  
TON_EXT2 ì VOUT ì V - V  
(
)
IN  
OUT  
COUT  
>
2ì V ìƒSW2 ì VOVER ìL  
IN  
(9)  
where  
TON_EXT is the PFM on time extension constant, 1.8 unless otherwise noted in the part number specific  
section  
VOUT is the maximum programmed output voltage  
VIN is the maximum input voltage  
fSW is the typical switching frequency when loaded, 1 MHz unless otherwise noted  
VOVER is the maximum allowable overshoot from programmed voltage  
L is the chosen inductance  
In cases where the transient current change is very low and ripple voltage allowance is large, the DC stability  
may become important. DCAP2 is a very stable architecture so this value is likely to be the smallest of those  
calculated. Equation 10 approximates the amount of capacitance necessary to maintain DC stability. Again, this  
is provided as a starting point; actual values will vary on a board-to-board case.  
VOUT ì 50 ms  
COUT  
>
V
ì fSW ì L  
IN  
(10)  
where  
VOUT is the maximum programmed output voltage  
50 µs is based on internal ramp setup  
VIN is the minimum input voltage  
fSW is the typical switching frequency  
L is the chosen inductance  
Choosing the maximum valuable between Equation 7, Equation 8, Equation 9, and Equation 10 is recommended  
as a starting point to get the desired performance. All equations are estimates and have not been validated at all  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
variable corners. Removing excess capacitance or adding extra capacitance may be necessary during board  
evaluation. Testing can typically be performed on the evaluation module or on prototype boards.  
9-1. Known LC Combinations for 1 µs Load Rise and Fall Time  
ITRAN(max) (A)  
L (µH)  
0.47  
0.47  
0.47  
0.33  
0.22  
VOUT (V)  
VUNDER (V)  
VOVER (V)  
COUT(µF)  
110  
3.5  
4
1
1
0.05  
0.05  
0.05  
0.05  
220  
5
1.35  
1
0.068  
0.05  
0.068  
0.06  
220  
8
440  
20  
1
0.05  
0.16  
550  
9.2.2.1.3 Selecting the FETs  
This controller is designed to drive two NMOS FETs. Typically, lower RDSON values are better for improving the  
overall efficiency of the controller, however higher gate charge thresholds will result in lower efficiency so the two  
need to be balanced for optimal performance. As the RDSON for the low-side FET decreases, the minimum  
current limit increases; therefore, ensure selection of the appropriate values for the FETs, inductor, output  
capacitors, and current limit resistor. TI's CSD85301Q2, CSD87331Q3D, CSD87381P, CSD87588N, and  
CSD87350Q5D devices are recommended for the controllers, depending on the required maximum current.  
9.2.2.1.4 Bootstrap Capacitor  
To ensure the internal high-side gate drivers are supplied with a stable low-noise supply voltage, a capacitor  
must be connected between the SWx pins and the respective BOOTx pins. TI recommends placing ceramic  
capacitors with the value of 0.1 µF for the controllers. During testing, a 0.1-µF, size 0402, 10-V capacitor is used  
for the controllers.  
TI recommends reserving a small resistor in series with the bootstrap capacitor in case the turnon and turnoff of  
the FETs must be slowed to reduce voltage ringing on the switch node, which is a common practice for controller  
design.  
9.2.2.1.5 Setting the Current Limit  
The current-limiting resistor value must be chosen based on Equation 1.  
9.2.2.1.6 Selecting the Input Capacitors  
Due to the nature of the switching controller with a pulsating input current, a low ESR input capacitor is required  
for best input-voltage filtering and also for minimizing the interference with other circuits caused by high input-  
voltage spikes. For the controller, a typical 2.2-µF capacitor can be used for the DRV5V_x_x pin to handle the  
transients on the driver. For the FET input, 10 µF of input capacitance (after derating) is recommended for most  
applications. To achieve the low ESR requirement, a ceramic capacitor is recommended. However, the voltage  
rating and DC-bias characteristic of ceramic capacitors must be considered. For better input-voltage filtering, the  
input capacitor can be increased without any limit.  
备注  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
TI recommends placing a ceramic capacitor as close as possible to the FET across the respective VSYS and  
PGND pins of the FETs. The preferred capacitors for the controllers are two Murata GRM21BR61E226ME44:  
22-µF, 0805, 25-V, ±20%, or similar capacitors.  
9.2.2.2 Converter Design Procedure  
Designing the converter has only two steps: design the output filter and select the input capacitors.  
9-3 shows a diagram of the converter.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
LOUT  
VOUT  
PVINx  
LXx  
VIN_BUCK345_ANA  
CIN  
FBx  
Converter  
Control from SOC  
Copyright © 2017, Texas Instruments Incorporated  
9-3. Converter Diagram  
9.2.2.2.1 Selecting the Inductor  
Internal parameters for the converters are optimized for either a 0.47 µH or 1 µH inductor, however it is possible  
to use other inductor values as long as they are chosen carefully and thoroughly tested. The equations from 节  
9.2.2.1.1 can be utilized again with the parameters changed to match those of the converters. Switching  
frequency estimates can be found in 7.15.  
9.2.2.2.2 Selecting the Output Capacitors  
Ceramic capacitors with low ESR values are recommended because they provide the lowest output voltage  
ripple. The output capacitor requires either an X7R or X5R rating. Y5V and Z5U capacitors, aside from the wide  
variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents, the converter operates in PFM mode and the output voltage ripple is dependent on the  
output-capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize the voltage  
ripple in PFM mode. To achieve specified regulation performance and low output voltage ripple, the DC-bias  
characteristic of ceramic capacitors must be considered. The effective capacitance of ceramic capacitors drops  
with increasing DC-bias voltage.  
For the output capacitors of the BUCK converters, TI recommends placing small ceramic capacitors between the  
inductor and load with many vias to the PGND plane. This solution typically provides the smallest and lowest-  
cost solution available.  
The minimum output capacitance recommended is 22 µF for stability. Equation 7 and Equation 8 can be used to  
estimate the required output capacitance for a given load transient. Note that VIN will be different for the  
converters and that the switching frequency can be estimated using 7.15. Equation 9 can be neglected for  
converters as there is no on time extension and the VIN - VOUT term is typically smaller.  
9.2.2.2.3 Selecting the Input Capacitors  
Due to the nature of the switching converter with a pulsating input current, a low ESR input capacitor is required  
for best input-voltage filtering and for minimizing the interference with other circuits caused by high input-voltage  
spikes. For the PVINx pin, 2.5 µF of input capacitance (after derating) is required for most applications. A  
ceramic capacitor is recommended to achieve the low ESR requirement. However, the voltage rating and DC-  
bias characteristic of ceramic capacitors must be considered. The input capacitor can be increased without any  
limit for better input-voltage filtering.  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TPS650864  
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
备注  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
The preferred capacitor for the converters is one Samsung CL05A106MP5NUNC: 10-µF, 0402, 10-V, ±20%, or  
similar capacitor.  
9.2.2.3 LDO Design Procedure  
The VTT LDO must handle the fast load transients from the DDR memory for termination. Therefore, it is  
recommended to use ceramic capacitors to maintain a high amount of capacitance with low ESR on the VTT  
LDO outputs and inputs. The preferred output capacitors for the VTT LDO are the GRM188R60J226MEA0 from  
Murata (22 µF, 0603, 6.3 V, ±20%, or similar capacitors). The preferred input capacitor for the VTT LDO is the  
CL05A106MP5NUNC from Samsung (10-µF, 0402, 10-V, ±20%, or similar capacitor).  
The remaining LDOs must have input and output capacitors chosen based on the values in 7.9.  
9.2.3 Application Curves  
FET = CSD87588N  
L = PIMB062D-R22ms  
L = PIFE32251B-R47ms  
COUT = 4 × 22 µF  
COUT = 2 × 300 µF + 1 × 22 µF  
9-5. BUCK3 Converter Load Transient  
9-4. BUCK2 Controller Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.4 Layout  
9.2.4.1 Layout Guidelines  
For a detailed description regarding layout recommendations, refer to the TPS65086x Design Guide and to the  
TPS65086x Schematic and Layout Checklist. For all switching power supplies, the layout is an important step in  
the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done,  
the regulator can have stability problems and EMI issues. Therefore, use wide and short traces for the main  
current path and for the power ground tracks. The input capacitors, output capacitors, and inductors must be  
placed as close as possible to the device. Use a common-ground node for power ground and use a different,  
isolated node for control ground to minimize the effects of ground noise. Connect these ground nodes close to  
the AGND pin by one or two vias. Use of the design guide is highly encouraged in addition to the following list of  
other basic requirements:  
Do not allow the AGND, PGNDSNSx, or FBGND2 to connect to the thermal pad on the top layer.  
To ensure proper sensing based on FET RDSON, PGNDSNSx must not connect to PGND until very close to  
the PGND pin of the FET.  
All inductors, input and output capacitors, and FETs for the converters and controller must be on the same  
board layer as the IC.  
To achieve the best regulation performance, place feedback connection points near the output capacitors and  
minimize the control feedback loop as much as possible.  
Bootstrap capacitors must be placed close to the device.  
The internal reference regulators must have their input and output capacitors placed close to the device pins.  
Route DRVHx and SWx as a differential pair. Ensure that there is a PGND path routed in parallel with DRVLx,  
which provides optimal driver loops.  
9.2.4.2 Layout Example  
BUCK2  
VREF Capacitor  
VTT  
BUCK6  
BUCK3  
BUCK5  
BUCK4  
BUCK1  
9-6. EVM Layout Example With All Components on the Top Layer  
Copyright © 2022 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.5 VIN 5-V Application  
The PMIC can be operated by a 5-V input voltage to the system because the power path of the controller does  
not go through the device itself. The concept is simple: supply the controller VINs with the 5-V input, and supply  
the VSYS with a 5.8-V step-up of the 5 V with a boost or charge pump. The 5.8 V is recommended because the  
UVLO of the internal LDO5 is at 5.6 V and the device measures the voltage at VSYS and determines the  
optimum internal compensation and controller settings thus, it is ideal the VSYS be close to the VIN of the  
controllers.  
PMIC  
Example SoC  
PLATFORM  
VIN  
BUCK1  
EXT FET  
VIN  
VCORE  
BUCK2  
BUCK3 3.5A  
BUCK4 3A  
BUCK5 3A  
BUCK6  
EXT FET  
VGPU  
VCCIO  
5V Supply  
VCPU1  
Note: An LDO or Buck  
Can Supply the VPP  
Rail if Needed for DDR.  
VCPU2  
VIN  
EXT FET  
VDDQ, VDD1&2  
VDDQ, VDD1&2  
VTT LDO ±0.5A  
VTT  
VTT  
DDR  
DDR  
LDO5V or  
5V Supply  
LDOA1 0.2A  
LDOA2 0.6A  
LDOA3 0.6A  
SWA1 0.3A  
SWB1 0.3A  
SWB2 0.3A  
LDO5  
VSUPP1  
VSUPP2  
VSUPP3  
VSUPP4  
VSUPP5  
VSUPP6  
1.8V  
Input up to 3.3V  
Input up to 3.3V  
Supply Diode Needed if  
Pre-bias is Not Supported  
Charge Pump or  
Boost  
LDO5V  
VSYS  
VSYS = Vout -  
Vf  
VIN  
40 mA –  
mA  
5V  
5 V  
PG_5V  
LDO3P3  
CTL1  
IRQB  
GPO1  
GPO2  
GPO3  
GPO4  
DATA  
SCLK  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
Copyright © 2017, Texas Instruments Incorporated  
9-7. VIN 5-V Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.5.1 Design Requirements  
The PMIC requires a step-up voltage from the 5-V input to 5.8 V for the VSYS supply. TI recommends keeping  
the VSYS near 5.8 V for optimization of the controllers.  
Depending on the application use cases, the supply current to the VSYS can require from 40 mA with the drivers  
being supplied by the 5-V input to 440 mA with the drivers being supplied by the LDO5 and the LDOA1 being  
operated at max loading. This means that a charge pump may be used in some applications like the 5-V input  
but in others, a small boost may be required.  
A Schottky diode from the 5-V input to the VSYS is recommended to ensure the VSYS is biased and the internal  
reference LDOs are on before the step-up regulator is enabled or fully ramped up. If the step-up cannot tolerate  
pre-bias condition then, 2 diodes may be needed to prevent the initial 5-V supply biasing the output of the step-  
up.  
9.2.5.2 Design Procedure  
To design a 5-V input application, first provide a step-up voltage from the 5-V input to the VSYS. Design the  
step-up to output a voltage near 5.8 V. Next, route the 5-V input to the controller and converter VINs. Thus, all  
power paths (all high currents) are routed through the controllers or directly to the converters. None of the high  
currents are required from the step-up supply. After the input stage is complete, the rest of the system can be  
designed as normal following the typical application procedure, using 5 V as the input value to the controllers.  
9.2.5.3 Application Curves  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
Vout = 1 V  
Vout = 1.8 V  
60%  
Vout = 2.5 V  
Vout = 3.3 V  
55%  
50%  
0.1  
0.2 0.3 0.40.5 0.7 1  
Iout (A)  
2
3
4 5 6 7  
D010  
FET = CSD87381P L = PIMB061H-R47 ms  
9-8. BUCK1 Efficiency at VIN = 5 V  
Copyright © 2022 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TPS650864  
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9.3 Power Supply Coupling and Bulk Capacitors  
This device is designed to work with several different input voltages. The minimum voltage on the VSYS pin is  
5.6 V for the device to start up; however, this is a low power rail. The input to the FETs must be from 4.5 V to 21  
V as long as the proper BOM choices are made. Input to the converters should be between 3.3 V and 5 V. For  
the device to output maximum power, the input power must be sufficient. For the controllers, VIN must be able to  
supply sufficient input current for the output power of the application. For the converters, PVINx must be able to  
typically supply 2 A.  
A best practice here is to determine power usage by the system and back-calculate the necessary power input  
based on expected efficiency values.  
9.4 Do's and Don'ts  
Connect the LDO5V output to the DRV5V_x_x inputs for situations where an external 5-V supply is not  
initially available or is not available the entire time PMIC is on. If the external 5-V supply is always present,  
then DRV5V_x_x can be directly connected to remove the V5ANA-to-LDO5P0 load switch RDSON  
.
Ensure that none of the control pins are potentially floating.  
Include 0-Ωresistors on the DRVH or BOOT pins of controllers on prototype boards, which allows for slowing  
the controllers if the system is unable to handle the noise generated by the large switching or if switching  
voltage is too large due to layout.  
Do not connect the V5ANA power input to a different source other than PVINx. A mismatch here causes  
reference circuits to regulate incorrectly.  
Do not supply the V5ANA power input before the VSYS. Reference biasing of the internal FETs may turn on  
the HS FET passing the input to the output until VSYS is biased.  
Do not change the values of the reserved bits when writing I2C. This can have unexpected consequences.  
Expected values for each OTP are shown in the register map.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TPS650864  
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.1.2 Development Support  
For documentation related to device development see the following:  
Texas Instruments, TPS65086x Schematic and Layout Checklist  
Texas Instruments, TPS65086x Design Guide  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, CSD85301Q2 20 V Dual N-Channel NexFET™ Power MOSFETs data sheet  
Texas Instruments, CSD87331Q3D Synchronous Buck NexFETPower Block data sheet  
Texas Instruments, CSD87588N Synchronous Buck NexFET™ Power Block II data sheet  
Texas Instruments, CSD87381P Synchronous Buck NexFET™ Power Block II data sheet  
Texas Instruments, CSD87350Q5D Synchronous Buck NexFET™ Power Block data sheet  
Texas Instruments, MSP430G2121 Mixed Signal Microcontroller data sheet  
Texas Instruments, Power management integrated buck controllers for distant point-of-load applications white  
paper  
Texas Instruments, TPS65086x Evaluation Module user's guide  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
D-CAP2, D-CAP, and NexFETare trademarks of Texas Instruments.  
NXPis a trademark of NXP Semiconductors.  
TI E2Eis a trademark of Texas Instruments.  
Xilinx® and Zynq® are registered trademarks of Xilinx.  
所有商标均为其各自所有者的财产。  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TPS650864  
 
 
 
 
 
 
 
 
TPS650864  
ZHCSG44E JUNE 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TPS650864  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65086401RSKR  
TPS65086401RSKT  
TPS6508640RSKR  
TPS6508640RSKT  
TPS6508641RSKR  
TPS6508641RSKT  
TPS65086470RSKR  
TPS65086470RSKT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RSK  
64  
64  
64  
64  
64  
64  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
T65086401  
PG1.0  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RSK  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
T65086401  
PG1.0  
RSK  
T6508640  
PG1.0  
RSK  
T6508640  
PG1.0  
RSK  
T6508641  
PG1.0  
RSK  
T6508641  
PG1.0  
RSK  
T65086470  
PG1.0  
RSK  
T65086470  
PG1.0  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-May-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65086401RSKR  
TPS65086401RSKT  
TPS65086401RSKT  
TPS6508640RSKR  
TPS6508640RSKT  
TPS6508641RSKR  
TPS6508641RSKT  
TPS65086470RSKR  
TPS65086470RSKR  
TPS65086470RSKT  
TPS65086470RSKT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
250  
330.0  
180.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
180.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
2000  
250  
2000  
250  
2000  
2000  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65086401RSKR  
TPS65086401RSKT  
TPS65086401RSKT  
TPS6508640RSKR  
TPS6508640RSKT  
TPS6508641RSKR  
TPS6508641RSKT  
TPS65086470RSKR  
TPS65086470RSKR  
TPS65086470RSKT  
TPS65086470RSKT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
250  
367.0  
210.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
210.0  
210.0  
367.0  
185.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
367.0  
185.0  
185.0  
38.0  
35.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
35.0  
35.0  
250  
2000  
250  
2000  
250  
2000  
2000  
250  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65086470RSKR

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS65086470RSKT

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS6508700

适用于 AMD™ 系列 17h 模型 10h-1Fh 处理器的 PMIC
TI

TPS6508700RSKR

适用于 AMD™ 系列 17h 模型 10h-1Fh 处理器的 PMIC | RSK | 64 | -40 to 85
TI

TPS6508700RSKT

适用于 AMD™ 系列 17h 模型 10h-1Fh 处理器的 PMIC | RSK | 64 | -40 to 85
TI

TPS65090

Front-End PMU With Switched-Mode Charger for 2 to 3 Cells In Series
TI

TPS65090A

Frontend PMU With Switchmode Charger for 2-3 Cells In Series
TI

TPS65090ARVNR

Frontend PMU With Switchmode Charger for 2-3 Cells In Series
TI

TPS65090ARVNT

Frontend PMU With Switchmode Charger for 2-3 Cells In Series
TI

TPS65094

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC)
TI

TPS650940A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650940A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI