TPS6508700RSKR [TI]

适用于 AMD™ 系列 17h 模型 10h-1Fh 处理器的 PMIC | RSK | 64 | -40 to 85;
TPS6508700RSKR
型号: TPS6508700RSKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 AMD™ 系列 17h 模型 10h-1Fh 处理器的 PMIC | RSK | 64 | -40 to 85

集成电源管理电路
文件: 总100页 (文件大小:2404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
适用于 AMD™ 系列 17h 10h-1Fh 处理器的 TPS6508700 PMIC  
1 器件概述  
1.1 特性  
1
• 5.6V 21V 的宽输入电压范围  
三个可变输出电压同步  
带有 BUCK6 LDO 作为输入电压  
三个具有压摆率控制功能的负载开关  
降压控制器,采用 DCAP2™拓扑  
输出电流高达 300mA,压降小于标称输入电压的  
使用外部 FET 的可扩展输出电流,支持可选电流  
限制  
针对 BUCK2 BUCK6 进行 I2C 动态电压调节  
(DVS) 控制,针对 BUCK1 进行外部反馈  
1.5%  
输入电压为 1.8V 时,RDSON < 96mΩ  
• 5V 固定输出电压 LDO (LDO5)  
用于 SMPS 的栅极驱动器和 LDOA1 的电源  
可自动切换至 5V 降压以实现更高效率  
工厂 OTP 编程提供的内置时序功能  
用于 G3'G3S5 S0 状态选择的 CTL1、  
CTL4 CTL5  
用于 PG_S0 PG_S5 GPO1 GPO2  
漏极开路中断输出引脚  
• I2C 接口支持:  
三个可变输出电压同步降压转换器,采用 DCS-  
Control 拓扑技术并支持 I2C DVS 功能  
输入电压 范围为 4.5V 5.5V  
输出电压范围为 0.425V 3.575V  
输出电流高达 3A  
三个具有可调节输出电压的 LDO 稳压器  
– LDOA1:可通过 I2C 选择的输出电压(1.35V 至  
3.3V),输出电流高达 200mA  
标准模式(100kHz)  
快速模式(400kHz)  
快速模式+1MHz)  
– LDOA2 LDOA3I2C 可选输出电压为 0.7V 至  
1.5V,输出电流高达 600mA  
1.2 应用  
23 4 电芯锂离子电池供电产品(NVDC 或非  
NVDC)  
平板电脑、超极本和笔记本电脑  
移动 PC 和移动网络设备  
墙供电设计,特别是 12V 电源  
1.3 说明  
TPS6508700 器件是一款单芯片电源管理 IC (PMIC),专为笔记本电脑和一体式台式机的 AMD™系列 17h  
10h-1Fh 处理器而设计。TPS6508700 器件可提供 5.6V 21V 的输入电压范围,用途 广泛。该器件非  
常适合使用 2S3S 4S 锂离子电池组的 NVDC 和非 NVDC 电源架构。该 D-CAP2™DCS-Control™  
高频稳压器采用小型电感和电容,以减小解决方案体积。D-CAP2 DCS-Control 拓扑具有出色的瞬态响应  
性能,特别适用于具有快速负载开关的处理器内核和系统内存电压轨。I2C 接口可通过嵌入式控制器 (EC) 或  
片上系统 (SoC) 进行轻松控制。PMIC 采用带散热焊盘的 8mm × 8mm 单行 VQFN 封装,因此散热性能良  
好,电路板布线简单。  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
TPS6508700  
VQFN (64)  
8.00mm x 8.00mm  
(1) 有关详细信息,请参阅 机械封装和可订购信息 部分。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SWCS134  
 
 
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
1.4 功能框图  
LDO5V  
LDO1  
VIN  
BOOT1  
DRVH1  
LDOA1  
1.35 œ 3.3 V  
200 mA  
CTL1  
SW1  
V1  
CTL2  
VSET  
EN  
BUCK1  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL1  
CTL3/SLPENB1  
CTL4  
Control  
Inputs  
EN  
VSET  
FBVOUT1  
PGNDSNS1  
CTL5  
ILIM1  
CTL6/SLPENB2  
VPULL  
VIN  
BOOT2  
DRVH2  
CLK  
SoC  
&
I2C CTL  
SW2  
DATA  
System  
VPULL  
V2  
VSET  
EN  
BUCK2  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL2  
Control  
Outputs  
FBVOUT2  
PGNDSNS2  
IRQB  
GP01  
GPO2  
GPO3  
GPO4  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
3.3V œ 5V  
PVIN3  
LX3  
TEST CTL  
OTP  
BUCK3  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VSET  
EN  
V3  
FB3  
<PGND_BUCK3>  
REGISTERS  
3 A  
3.3V œ 5V  
PVIN4  
LX4  
BUCK4  
VSET 0.425 3.575 V  
0.41 œ 1.67 V  
LDO5P0  
V5ANA  
LDO5P0  
Digital Core  
V4  
V5  
3.3V œ 5V  
EN  
FB4  
(DVS)  
3 A  
<PGND_BUCK4>  
3.3V œ 5V  
PVIN5  
LX5  
BUCK5  
œ
VSET  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
4.7V  
+
EN  
FB5  
STDBY  
LDO5V  
3 A  
<PGND_BUCK5>  
VIN  
REFSYS  
LDO3P3  
BOOT6  
DRVH6  
Thermal  
Monitoring  
VSYS  
5.6Vœ21V  
LDO3P3  
LDO3P3  
SW6  
DRVL6  
Thermal Shutdown  
VDDQ  
VSET  
EN  
BUCK6  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VREF  
AGND  
Bandgap  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVIN_VTT  
VTT  
VTT  
VTT_LDO  
VDDQ/2  
EN  
VTTFB  
LDOA2  
0.7 1.5 V  
600 mA  
LDOA3  
0.7 1.5 V  
600 mA  
LOAD SWA1  
LOAD SWB1  
LOAD SWB2  
Copyright © 2017, Texas Instruments Incorporated  
1-1. PMIC 功能框图  
2
器件概述  
版权 © 2017, Texas Instruments Incorporated  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
内容  
1
器件概.................................................... 1  
4.16 Typical Characteristics .............................. 17  
Detailed Description ................................... 18  
5.1 Overview ............................................ 18  
5.2 Functional Block Diagram........................... 19  
5.3 SMPS Voltage Regulators .......................... 20  
5.4 LDO Regulators and Load Switches ................ 26  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 功能框图 .............................................. 2  
修订历史记录............................................... 3  
Pin Configuration and Functions..................... 4  
3.1 Pin Functions ......................................... 4  
Specifications ............................................ 7  
4.1 Absolute Maximum Ratings .......................... 7  
4.2 ESD Ratings.......................................... 7  
4.3 Recommended Operating Conditions ................ 8  
4.4 Thermal Information .................................. 8  
5
2
3
5.5  
Power Good Information (PGOOD or PG) and GPO  
Pins.................................................. 27  
Power Sequencing and Voltage-Rail Control ....... 29  
5.6  
4
5.7 Device Functional Modes ........................... 31  
5.8 I2C Interface ......................................... 32  
5.9 Register Maps....................................... 35  
Applications, Implementation, and Layout........ 82  
6.1 Application Information.............................. 82  
6.2 Typical Application .................................. 82  
6
7
4.5  
Electrical Characteristics: Total Current  
Consumption.......................................... 8  
Electrical Characteristics: Reference and Monitoring  
System................................................ 9  
4.6  
6.3  
Power Supply Coupling and Bulk Capacitors....... 91  
6.4 Do's and Don'ts ..................................... 91  
器件和文档支持 .......................................... 92  
7.1 器件支持 ............................................ 92  
7.2 文档支............................................. 92  
7.3 接收文档更新通知 ................................... 92  
7.4 社区资............................................. 92  
7.5 商标.................................................. 92  
7.6 静电放电警告 ........................................ 92  
7.7 术语表 ............................................... 92  
机械、封装和可订购信息................................ 92  
4.7  
4.8  
Electrical Characteristics: Buck Controllers......... 10  
Electrical Characteristics: Synchronous Buck  
Converters........................................... 11  
4.9 Electrical Characteristics: LDOs .................... 12  
4.10 Electrical Characteristics: Load Switches........... 14  
4.11 Digital Signals: I2C Interface ........................ 15  
4.12 Digital Input Signals (CTLx)......................... 15  
4.13 Digital Output Signals (IRQB, GPOx) ............... 15  
4.14 Timing Requirements ............................... 15  
4.15 Switching Characteristics ........................... 16  
8
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 10 月  
*
初始发行版  
Copyright © 2017, Texas Instruments Incorporated  
修订历史记录  
3
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
3 Pin Configuration and Functions  
Figure 3-1 shows the 64-pin RSK plastic quad-flatpack no-lead package with exposed thermal pad.  
FBGND2  
FBVOUT2  
DRVH2  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VTTFB  
2
VTT  
3
PVINVTT  
ILIM6  
SW2  
4
BOOT2  
5
FBVOUT6  
DRVH6  
SW6  
PGNDSNS2  
DRVL2  
6
7
DRV5V_2_A1  
LDOA1  
8
BOOT6  
PGNDSNS6  
DRVL6  
Thermal  
Pad  
9
LX3  
10  
11  
12  
13  
14  
15  
16  
PVIN3  
DRV5V_1_6  
DRVL1  
FB3  
CTL1  
PGNDSNS1  
BOOT1  
SW1  
CTL6/SLPENB2  
IRQB  
GPO1  
DRVH1  
Not to scale  
The thermal pad must be connected to the system power ground plane.  
Figure 3-1. 64-pin RSK VQFN (Top View)  
3.1 Pin Functions  
Pin Functions  
PIN  
NAME  
SMPS REGULATORS  
I/O  
DESCRIPTION  
NO.  
Remote negative feedback sense for BUCK2 controller. Connect to negative terminal of output capacitor  
or input capacitor of load.  
1
FBGND2  
I
4
Pin Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Remote positive feedback sense for BUCK2 controller. Connect to positive terminal of output capacitor  
or input capacitor of load.  
2
FBVOUT2  
I
3
4
5
6
7
DRVH2  
SW2  
O
I
High-side gate driver output for BUCK2 controller.  
Switch node connection for BUCK2 controller.  
BOOT2  
I
Bootstrap pin for BUCK2 controller. Connect a 100-nF ceramic capacitor between this pin and SW2 pin.  
Power GND sense connection for BUCK2. Connect to ground terminal of external low-side FET.  
Low-side gate driver output for BUCK2 controller.  
PGNDSNS2  
DRVL2  
I
O
5-V supply to BUCK2 gate driver and LDOA1. Bypass to ground with a 2.2-µF (typical) ceramic  
capacitor. Shorted on board to LDO5P0 pin.  
8
DRV5V_2_A1  
I
10  
11  
12  
20  
21  
22  
23  
24  
25  
LX3  
PVIN3  
FB3  
O
I
Switch node connection for BUCK3 converter.  
Power input to BUCK3 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor.  
Remote feedback sense for BUCK3 converter. Connect to positive terminal of output capacitor.  
Switch node connection for BUCK5 converter.  
I
LX5  
O
I
PVIN5  
FB5  
Power input to BUCK5 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor.  
Remote feedback sense for BUCK5 converter. Connect to positive terminal of output capacitor.  
Remote feedback sense for BUCK4 converter. Connect to positive terminal of output capacitor.  
Power input to BUCK4 converter. Bypass to ground with a 10-µF (typical) ceramic capacitor.  
Switch node connection for BUCK4 converter.  
I
FB4  
I
PVIN4  
LX4  
I
O
Remote feedback sense for BUCK1 controller. Connect to external feedback near either output  
capacitor or input capacitor of load. Recommend a 4.7-pF feedforward capacitor.  
29  
30  
FBVOUT1  
ILIM1  
I
I
Current limit set pin for BUCK1 controller. Fit a resistor from this pin to ground to set current limit of  
external low-side FET.  
33  
34  
35  
36  
37  
DRVH1  
SW1  
O
I
High-side gate driver output for BUCK1 controller.  
Switch node connection for BUCK1 controller.  
BOOT1  
I
Bootstrap pin for BUCK1 controller. Connect a 100-nF ceramic capacitor between this pin and SW1 pin.  
Power GND sense connection for BUCK1. Connect to ground terminal of external low-side FET.  
Low-side gate driver output for BUCK1 controller.  
PGNDSNS1  
DRVL1  
I
O
5-V supply to BUCK1 and BUCK6 gate drivers. Bypass to ground with a 2.2-µF (typical) ceramic  
capacitor. Shorted on board to LDO5P0 pin.  
38  
DRV5V_1_6  
I
39  
40  
41  
42  
43  
DRVL6  
PGNDSNS6  
BOOT6  
O
I
Low-side gate driver output for BUCK6 controller.  
Power GND sense connection for BUCK6. Connect to ground terminal of external low-side FET.  
Bootstrap pin for BUCK6 controller. Connect a 100-nF ceramic capacitor between this pin and SW6 pin.  
Switch node connection for BUCK6 controller.  
I
SW6  
I
DRVH6  
O
High-side gate driver output for BUCK6 controller.  
Remote feedback sense for BUCK6 controller. Connect to positive terminal of output capacitor or input  
capacitor of load.  
44  
45  
64  
FBVOUT6  
ILIM6  
I
I
I
Current limit set pin for BUCK6 controller. Fit a resistor from this pin to ground to set current limit of  
external low-side FET.  
Current limit set pin for BUCK2 controller. Fit a resistor from this pin to ground to set current limit of  
external low-side FET.  
ILIM2  
LDO AND LOAD SWITCHES  
9
LDOA1  
O
O
LDOA1 output. Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
Output of load switch B1. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating  
when not in use.  
17  
SWB1  
Power supply to load switch B1 and B2. Bypass to ground with a 1-µF (typical) ceramic capacitor to  
improve transient performance. Connect to ground when not in use.  
18  
19  
31  
PVINSWB1_B2  
SWB2  
I
Output of load switch B2. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating  
when not in use.  
O
O
Output of load switch A1. Bypass to ground with a 0.1-µF (typical) ceramic capacitor. Leave floating  
when not in use.  
SWA1  
Copyright © 2017, Texas Instruments Incorporated  
Pin Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Power supply to load switch A1. Bypass to ground with a 1-µF (typical) ceramic capacitor to improve  
transient performance. Connect to ground when not in use.  
32  
PVINSWA1  
I
I
Power supply to VTT LDO. Bypass to ground with a 10-µF (minimum) ceramic capacitor. Connect to  
ground when not in use.  
46  
47  
48  
49  
50  
PVINVTT  
VTT  
Output of load VTT LDO. Bypass to ground with 2× 22-µF (minimum) ceramic capacitors. Leave floating  
when not in use.  
O
I
Remote feedback sense for VTT LDO. Connect to positive terminal of output capacitor. Leave floating  
when not in use.  
VTTFB  
Output of LDOA3. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not  
in use.  
LDOA3  
O
I
Power supply to LDOA2 and LDOA3. Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
Connect to ground when not in use.  
PVINLDOA2_A3  
Output of LDOA2. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave floating when not  
in use.  
51  
54  
56  
LDOA2  
LDO3P3  
LDO5P0  
O
O
O
Output of 3.3-V internal LDO. Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
Output of 5-V internal LDO or an internal switch that connects this pin to V5ANA. Bypass to ground with  
a 4.7-µF (typical) ceramic capacitor.  
External 5-V supply input to internal load switch that connects this pin to LDO5P0 pin. Bypass this pin  
with an optional ceramic capacitor to improve transient performance.  
57  
V5ANA  
I
I
INTERFACE  
Active-high enable pin for BUCK4, BUCK5, and BUCK6. Connect to AND of GPIO_G3 and EN_S5 for  
typical sequencing.  
13  
CTL1  
14  
15  
CTL6/SLPENB2  
IRQB  
I
Active-high unused control signal. Sleep state control for BUCK6 (masked).  
Open-drain output interrupt pin. Refer to Section 5.9.3 for definitions.  
O
PG_S5 output indicates S5 power state has been reached. Open drain output, pull up to appropriate  
voltage rail.  
16  
26  
27  
28  
GPO1  
GPO2  
GPO3  
GPO4  
O
O
O
PG_S0 output indicates S0 power state has been reached. Open drain output, pull up to appropriate  
voltage rail.  
General purpose output that is configured to push-pull output at 3.3V and controlled by I2C. Default state  
is low.  
General purpose output that is configured to open-drain output and controlled by I2C. Default state is  
high.  
I2C clock  
O
I
58  
59  
CLK  
DATA  
I/O I2C data  
Active-high LDOA2 and LDOA3 enable. Tie to GND unless using this pin to disable LDOA2 and LDOA3  
60  
61  
62  
63  
CTL2  
CTL3/SLPENB1  
CTL4  
I
I
I
I
after enabling them by I2C.  
Active-high VTT LDO enable and sleep state control for BUCK1-BUCK5 (masked), LDOA2, and LDOA3.  
Active-high enable pin for BUCK1 and BUCK3. Connect to OR of CTL1 input and inverted GPIO_G3 for  
typical sequencing. SWA1, SWB1, and SWB2 can also use CTL4 if configured by I2C after boot.  
CTL5  
Active-high enable pin for BUCK2. Connect to EN_S0 for typical sequencing.  
REFERENCE  
Band-gap reference output. Stabilize it by connecting a 100-nF (typical) ceramic capacitor between this  
pin and quiet ground.  
53  
VREF  
AGND  
VSYS  
O
I
Analog ground. Do not connect to the thermal pad ground on top layer. Connect to ground of VREF  
capacitor.  
52  
55  
System voltage detection and input to internal LDOs (3.3 V and 5 V). Bypass to ground with a 1-µF  
(typical) ceramic capacitor.  
THERMAL PAD  
Thermal pad  
Connect to PCB ground plane using multiple vias for good thermal and electrical performance.  
6
Pin Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
4 Specifications  
4.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
ANALOG  
Input voltage from battery, VSYS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
28  
7
V
V
V
V
V
V
V
V
V
PVIN3, PVIN4, PVIN5, LDO5P0, DRV5V_1_6, DRV5V_2_A1, DRVL1, DRVL2, DRVL6  
V5ANA  
6
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
SW1, SW2, SW6, transient for less than 5 ns.  
LX3, LX4, LX5  
0.3  
34  
28  
7
-0.3  
–2  
LX3, LX4, LX5, transient for less than 20 ns.  
Differential voltage, BOOTx to SWx  
9
–0.3  
5.5  
VREF, LDO3P3, FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5, ILIM1, ILIM2, ILIM6,  
PVINVTT, VTT, VTTFB, PVINSWA1, SWA1, PVINSWB1_B2, SWB1, SWB2, LDOA1  
–0.3  
–0.3  
3.6  
3.3  
V
V
PVINLDOA2_A3, LDOA2, LDOA3  
DIGITAL IO  
DATA, CLK, GPO1-GPO3  
CTL1-CTL6, GPO4, IRQB  
CHIP  
–0.3  
–0.3  
3.6  
7
V
V
Storage temperature, Tstg  
–40  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
7
Product Folder Links: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
4.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
13  
MAX  
UNIT  
ANALOG  
VSYS  
5.6  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
21  
1.3  
V
V
V
V
v
VREF  
PVIN3, PVIN4, PVIN5, LDO5P0, V5ANA, DRV5V_1_6, DRV5V_2_A1  
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
DRVL1, DRVL2, DRVL6  
5
5.5  
0.3  
26.5  
5.5  
V
V
V
V
V
V
SW1, SW2, SW6  
21  
LX3, LX4, LX5  
–1  
5.5  
FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5  
LDO3P3, ILIM1, ILIM2, ILIM6, LDOA1  
PVINVTT  
–0.3  
–0.3  
–0.3  
3.6  
3.3  
FBVOUT6  
FBVOUT6  
/ 2  
VTT, VTTFB  
–0.3  
V
PVINSWA1, SWA1  
–0.3  
–0.3  
–0.3  
3.3  
3.6  
1.8  
1.5  
V
V
V
PVINSWB1_B2, PVINLDOA2_A3, SWB1, SWB2  
LDOA2, LDOA3  
DIGITAL IO  
DATA, CLK, CTL1–CTL6, GPO1–GPO4, IRQB  
CHIP  
–0.3  
3.3  
V
Operating ambient temperature, TA  
Operating junction temperature, TJ  
–40  
–40  
27  
27  
85  
°C  
°C  
125  
4.4 Thermal Information  
TPS6508700  
RSK (VQFN)  
64 PINS  
25.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
11.3  
4.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
4.4  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4.5 Electrical Characteristics: Total Current Consumption  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PMIC shutdown current that includes  
IQ for references, LDO5, LDO3P3,  
and digital core  
VSYS = 13 V, all functional output rails are  
disabled  
ISD  
65  
µA  
8
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
4.6 Electrical Characteristics: Reference and Monitoring System  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
REFERENCE  
VREF  
Band-gap reference voltage  
Band-gap reference voltage accuracy  
Band-gap output capacitor  
1.25  
V
–0.5%  
0.047  
0.5%  
CVREF  
0.1  
5.4  
0.22  
µF  
V
VSYS_UV  
LO_5V  
VSYS UVLO threshold for LDO5  
VSYS falling  
5.24  
5.56  
VSYS_UV  
LO_5V_H  
YS  
VSYS UVLO threshold hysteresis for VSYS rising above  
200  
3.6  
mV  
V
LDO5  
VSYS_UVLO_5V  
VSYS_UV  
LO_3V  
VSYS UVLO threshold for LDO3P3  
VSYS falling  
3.45  
3.75  
VSYS_UV  
LO_3V_H  
YS  
VSYS UVLO threshold hysteresis for VSYS rising above  
150  
mV  
LDO3P3  
VSYS_UVLO_3V  
TCRIT  
Critical threshold of die temperature  
Hysteresis of TCRIT  
TJ rising  
130  
110  
145  
10  
160  
120  
°C  
°C  
°C  
°C  
TCRIT_H  
YS  
TJ falling  
TJ rising  
THOT  
Hot threshold of die temperature  
Hysteresis of THOT  
115  
10  
THOT_HY  
S
TJ falling  
LDO5  
VIN  
Input voltage at VSYS pin  
DC output voltage  
5.6  
4.9  
13  
5
21  
5.1  
V
V
VOUT  
IOUT  
IOCP  
IOUT = 10 mA  
DC output current  
100  
180  
mA  
mA  
Overcurrent protection  
Measured with output shorted to ground  
VOUT rising  
200  
Power good assertion threshold in  
percentage of target VOUT  
VTH_PG  
94%  
4%  
VTH_PG_  
HYS  
Power good deassertion hysteresis  
VOUT rising or falling  
VIN = 13 V, IOUT = 0 A  
IQ  
Quiescent current  
20  
µA  
µF  
COUT  
External output capacitance  
2.7  
4.7  
10  
1
V5ANA-to-LDO5P0 LOAD SWITCH  
VIN = 5 V, measured from V5ANA pin to LDO5P0  
pin at IOUT = 200 mA  
RDSON  
VTH_PG  
On resistance  
Ω
V
Power good threshold for external 5-  
V supply  
VV5ANA rising  
VV5ANA falling  
4.7  
VTH_HYS Power good threshold hysteresis for  
_PG  
100  
mV  
µA  
external 5-V supply  
Switch disabled,  
VV5ANA = 5 V, VLDO5 = 0 V  
ILKG  
Leakage current  
10  
21  
LDO3P3  
VIN  
Input voltage at VSYS pin  
DC output voltage  
5.6  
–3%  
70  
13  
V
V
VOUT  
IOUT = 10 mA  
3.3  
VIN = 13 V,  
IOUT = 10 mA  
DC output voltage accuracy  
3%  
40  
IOUT  
IOCP  
DC output current  
mA  
mA  
Overcurrent protection  
Measured with output shorted to ground  
VOUT rising  
Power good assertion threshold in  
percentage of target VOUT  
VTH_PG  
92%  
3%  
VTH_PG_  
HYS  
Power good deassertion hysteresis  
VOUT falling  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
Electrical Characteristics: Reference and Monitoring System (continued)  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 13 V,  
IOUT = 0 A  
IQ  
Quiescent current  
20  
µA  
COUT  
External output capacitance  
2.2  
4.7  
10  
µF  
4.7 Electrical Characteristics: Buck Controllers  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK1  
Power input voltage for external HSD  
FET  
VIN  
5.6  
13  
21  
V
V
VFBVOU  
T1  
Internal reference regulation voltage  
Low-side output valley current limit  
TA = 25°C  
TA = 25°C  
0.392  
0.4  
0.408  
ILIM_LSD accuracy (programmed by external  
resistor RLIM  
–15%  
15%  
)
ILIMREF Source current out of ILIM1 pin  
45  
0.2  
50  
55  
µA  
V
VLIM  
Voltage at ILIM1 pin  
VLIM = RLIM × ILIMREF  
VOUT rising  
2.25  
105.5%  
89.5%  
108% 110.5%  
Power good deassertion threshold in  
percentage of target VFB  
VTH_PG  
VOUT falling  
92%  
3
94.5%  
Source, IDRVH = –50 mA  
Sink, IDRVH = 50 mA  
Source, IDRVL = –50 mA  
Sink, IDRVL = 50 mA  
Ω
Ω
RDSON_  
DRVH  
Driver DRVH resistance  
Driver DRVL resistance  
2
3
Ω
RDSON_  
DRVL  
0.4  
100  
Ω
CBOOT  
Bootstrap capacitance  
nF  
RON_BO  
OT  
Bootstrap switch ON resistance  
20  
Ω
BUCK2, BUCK6  
Power input voltage for external HSD  
FET  
VIN  
5.6  
0.41  
1
13  
21  
1.67  
V
V
V
VID step size = 10 mV, BUCKx_VID[6:0]  
progresses from 0000001b to 1111111b  
DC output voltage VID range and  
options  
VID step size = 25 mV, BUCKx_VID[6:0]  
progresses from 0000001b to 1111111b  
3.575  
BUCK2 output voltage default  
BUCK6 output voltage default  
Set by BUCK2_VID[6:0], 10-mV step size selected  
Set by BUCK6_VID[6:0], 25-mV step size selected  
0.8  
3.3  
V
V
VOUT  
VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3 V  
IOUT = 100 mA to 7 A  
DC output voltage accuracy  
–2%  
–30  
2%  
40  
Total output voltage accuracy (DC  
plus ripple) in DCM  
IOUT = 10 mA, VOUT 1 V  
mV  
Step size = 10 mV  
Step size = 25 mV  
2.5  
5
3.125  
6.25  
mV/µs  
SR(VOU  
Output DVS slew rate  
)
T
Low-side output valley current limit  
ILIM_LSD accuracy (programmed by external  
resistor RLIM  
–15%  
15%  
)
ILIMREF Source current out of ILIM1 pin  
TA = 25°C  
45  
50  
55  
µA  
V
VLIM  
Voltage at ILIM1 pin  
VLIM = RLIM × ILIMREF  
0.2  
2.25  
ΔVOUT  
ΔVIN  
/
VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3 V,  
IOUT = 7 A  
Line regulation  
–0.5%  
0.5%  
10  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
Electrical Characteristics: Buck Controllers (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 13 V, VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5,  
3.3 V, IOUT = 0 A to 7 A,  
referenced to VOUT at IOUT = IOUT_MAX  
ΔVOUT  
ΔIOUT  
/
Load regulation  
0%  
1%  
VOUT rising  
105.5%  
89.5%  
108% 110.5%  
Power good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
VOUT falling  
92%  
3
94.5%  
Source, IDRVH = –50 mA  
Sink, IDRVH = 50 mA  
Source, IDRVL = –50 mA  
Sink, IDRVL = 50 mA  
BUCKx_DIS[1:0] = 01b  
BUCKx_DIS[1:0] = 10b  
BUCKx_DIS[1:0] = 11b  
Ω
Ω
RDSON_  
DRVH  
Driver DRVH resistance  
Driver DRVL resistance  
2
3
Ω
RDSON_  
DRVL  
0.4  
100  
200  
500  
100  
Ω
Ω
RDIS  
Output auto-discharge resistance  
Ω
Ω
CBOOT  
Bootstrap capacitance  
nF  
RON_BO  
OT  
Bootstrap switch ON resistance  
20  
Ω
4.8 Electrical Characteristics: Synchronous Buck Converters  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
BUCK3, BUCK4, BUCK5  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN  
Power input voltage  
4.5  
5
5.5  
V
V
DC output voltage VID range and  
options  
VID step size = 25 mV, BUCKx_VID[6:0]  
progresses from 0000001b to 1111111b  
0.425  
3.575  
BUCK3 output voltage default  
BUCK4 output voltage default  
BUCK5 output voltage default  
Set by BUCK3_VID[6:0], 25-mV step size  
Set by BUCK4_VID[6:0], 25-mV step size  
Set by BUCK5_VID[6:0], 25-mV step size  
1.8  
0.8  
1.8  
V
V
V
VOUT  
VOUT = 1, 1.2, 1.35, 1.5, 1.8,  
2.5, 3.3 V, IOUT = 1.5 A  
–2%  
–2.5%  
–30  
2%  
2.5%  
40  
DC output voltage accuracy  
VOUT = 1, 1.2, 1.35, 1.5, 1.8,  
2.5, 3.3 V, IOUT = 100 mA  
Total output voltage accuracy (DC  
plus ripple) in DCM  
IOUT = 10 mA, VOUT 1 V  
mV  
SR(VOU  
Output DVS slew rate  
5
6.25  
35  
mV/µs  
)
T
IOUT  
Continuous DC output current  
3
7
A
A
IIND_LIM HSD FET current limit  
4.3  
IQ  
Quiescent current  
VIN = 5 V, VOUT = 1 V  
µA  
ΔVOUT  
ΔVIN  
/
/
VOUT = 1, 1.2, 1.35, 1.5, 1.8,  
2.5, 3.3 V, IOUT = 1.5 A  
Line regulation  
–0.5%  
–0.2%  
0.5%  
2%  
VIN = 5 V, VOUT = 1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3 V,  
IOUT = 0 A to 3 A, referenced to VOUT at IOUT = 1.5  
A
ΔVOUT  
ΔIOUT  
Load regulation  
VOUT rising  
VOUT falling  
108%  
92%  
Power good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
VTH_HYS Power good reassertion hysteresis  
VOUT rising or falling  
3%  
entering back into VTH_PG  
_PG  
BUCKx_DIS[1:0] = 01b  
BUCKx_DIS[1:0] = 10b  
BUCKx_DIS[1:0] = 11b  
100  
200  
500  
RDIS  
Output auto-discharge resistance  
Ω
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
4.9 Electrical Characteristics: LDOs  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LDOA1  
VIN  
Input voltage  
4.5  
5
5.5  
V
DC output voltage  
Accuracy  
Set by LDOA1_VID[3:0]  
3.3  
VOUT  
IOUT  
IOUT = 0 to 200 mA  
–2%  
2%  
V
DC output current  
200  
mA  
ΔVOUT  
ΔVIN  
/
/
Line regulation  
IOUT = 40 mA  
–0.5%  
0.5%  
2%  
ΔVOUT  
ΔIOUT  
Load regulation  
IOUT = 10 mA to 200 mA  
–2%  
500  
IOCP  
Overcurrent protection  
VIN = 5 V, Measured with output shorted to ground  
mA  
µs  
VOUT rising  
VOUT falling  
108%  
92%  
Power good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
Measured from EN = H to reach 95% of final  
value,  
COUT = 4.7 µF  
tSTARTU  
P
Start-up time  
500  
IQ  
Quiescent current  
External output capacitance  
ESR  
IOUT = 0 A  
23  
µA  
µF  
mΩ  
Ω
2.7  
4.7  
10  
COUT  
100  
LDOA1_DIS[1:0] = 01b  
LDOA1_DIS[1:0] = 10b  
LDOA1_DIS[1:0] = 11b  
100  
190  
450  
RDIS  
Output auto-discharge resistance  
Ω
Ω
LDOA2 and LDOA3  
VOUT  
+
VIN  
Power input voltage  
VDROP  
1.8  
1.98  
V
(1)  
LDOA2 DC output voltage  
LDOA3 DC output voltage  
DC output voltage accuracy  
DC output current  
Set by LDOA2_VID[3:0]  
Set by LDOA3_VID[3:0]  
IOUT = 0 to 600 mA  
1.5  
1.2  
V
V
VOUT  
–2%  
3%  
IOUT  
600  
mA  
mV  
VOUT = 0.99 × VOUT_NOM  
IOUT = 600 mA  
,
VDROP  
Dropout voltage  
Line regulation  
350  
0.5%  
2%  
ΔVOUT  
ΔVIN  
/
/
IOUT = 300 mA  
–0.5%  
ΔVOUT  
ΔIOUT  
Load regulation  
IOUT = 10 mA to 600 mA  
–2%  
0.65  
IOCP  
Overcurrent protection  
Measured with output shorted to ground  
VOUT rising  
1.25  
108%  
92%  
A
Power good assertion threshold in  
percentage of target VOUT  
VTH_PG  
VOUT falling  
tSTARTU  
P
Measured from EN = H to reach 95% of final  
value, COUT = 4.7 µF  
Start-up time  
500  
µs  
IQ  
Quiescent current  
IOUT = 0 A  
20  
µA  
(1) It must be equal to or greater than 1.62 V.  
12  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
Electrical Characteristics: LDOs (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LDOA2 and LDOA3 (continued)  
f = 1 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
COUT = 2.2 µF – 4.7 µF  
48  
dB  
dB  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
30  
COUT = 2.2 µF – 4.7 µF  
External output capacitance  
ESR  
2.2  
4.7  
10  
µF  
COUT  
100  
mΩ  
LDOAx_DIS[1:0] = 01b  
LDOAx_DIS[1:0] = 10b  
LDOAx_DIS[1:0] = 11b  
80  
180  
475  
RDIS  
Output auto-discharge resistance  
Ω
VTT LDO  
VIN  
Power input voltage  
DC output voltage  
1.2  
3.3  
10  
V
V
VOUT  
VIN = 1.2 V, Measured at VTTFB pin  
VIN / 2  
Relative to VIN / 2, IOUT 10 mA,  
1.1 V VIN 1.35 V  
–10  
DC output voltage accuracy  
mV  
mA  
Relative to VIN / 2, IOUT 500 mA,  
1.1 V VIN 1.35 V  
–25  
–500  
–4%  
0.95  
25  
500  
4%  
IOUT  
DC output current  
Load regulation  
sink(–) and source(+)  
ΔVOUT  
/
1.1 V VIN 1.35 V,  
IOUT = –500 mA to 500 mA  
ΔIOUT  
IOCP  
Overcurrent protection  
Measured with output shorted to ground  
VOUT rising  
A
110%  
95%  
Power good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
VOUT falling  
VTH_HYS Power good reassertion hysteresis  
5%  
entering back into VTH_PG  
_PG  
IQ  
Total ground current  
VIN = 1.2 V, IOUT = 0 A  
VIN = 1.2 V, disabled  
240  
1
µA  
µA  
µF  
µF  
kΩ  
Ω
ILKG  
CIN  
COUT  
OFF leakage current  
External input capacitance  
External output capacitance  
10  
35  
VTT_DIS = 0b  
VTT_DIS = 1b  
1000  
60  
RDIS  
Output auto-discharge resistance  
80  
100  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
4.10 Electrical Characteristics: Load Switches  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SWA1  
VIN  
Input voltage range  
DC output current  
0.5  
1.5  
3.3  
V
IOUT  
300  
mA  
VIN = 1.8 V, measured from PVINSWA1 pin to  
SWA1 pin at IOUT = IOUT,MAX  
60  
93  
RDSON  
ON resistance  
mΩ  
VIN = 3.3 V, measured from PVINSWA1 pin to  
SWA1 pin at IOUT = IOUT,MAX  
100  
165  
VOUT rising  
VOUT falling  
108%  
92%  
Power good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
Power good reassertion hysteresis  
entering back into VTH_PG  
VTH_HYS_PG  
IINRUSH  
VOUT rising or falling  
2%  
Inrush current upon turnon  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
10  
mA  
µA  
10.5  
9
IQ  
Quiescent current  
VIN = 1.8 V, IOUT = 0 A  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
370  
900  
ILKG  
Leakage current  
nA  
µF  
10  
COUT  
External output capacitance  
0.1  
100  
200  
500  
SWA1_DIS[1:0] = 01  
SWA1_DIS[1:0] = 10  
SWA1_DIS[1:0] = 11  
RDIS  
Output auto-discharge resistance  
Ω
SWB1, SWB2  
VIN  
Input voltage range  
0.5  
1.5  
3.3  
V
IOUT  
DC current per channel  
400  
mA  
VIN = 1.8 V, measured from PVINSWB1_B2 pin to  
SWB1/SWB2 pin at IOUT = IOUT,MAX  
68  
75  
92  
mΩ  
mΩ  
RDSON  
ON resistance per channel  
VIN = 3.3 V, measured from PVINSWB1_B2 pin to  
SWB1/SWB2 pin at IOUT = IOUT,MAX  
125  
VOUT rising  
VOUT falling  
108%  
92%  
Power good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
Power good reassertion hysteresis  
entering back into VTH_PG  
VTH_HYS_PG  
IINRUSH  
VOUT rising or falling  
2%  
Inrush current upon turning on  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
10  
mA  
µA  
10.5  
9
IQ  
Quiescent current  
VIN = 1.8 V, IOUT = 0 A  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
460  
ILKG  
Leakage current  
nA  
µF  
10  
1150  
COUT  
External output capacitance  
0.1  
100  
200  
500  
SWBx_DIS[1:0] = 01  
SWBx_DIS[1:0] = 10  
SWBx_DIS[1:0] = 11  
RDIS  
Output auto-discharge resistance  
Ω
14  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
4.11 Digital Signals: I2C Interface  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
Leakage current  
TEST CONDITIONS  
VPULL_UP = 1.8 V  
MIN  
TYP  
MAX UNIT  
VOL  
VIH  
VIL  
0.4  
V
V
1.2  
0.4  
0.3  
8.5  
2.5  
1
V
ILKG  
VPULL_UP = 1.8 V  
Standard mode  
Fast mode  
0.01  
µA  
RPULL-  
UP  
Pullup resistance  
kΩ  
Fast mode plus  
COUT  
Total load capacitance per pin  
50  
pF  
4.12 Digital Input Signals (CTLx)  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
High-level input voltage  
Low-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
0.85  
V
0.4  
V
4.13 Digital Output Signals (IRQB, GPOx)  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
Leakage current  
TEST CONDITIONS  
IOL < 2 mA  
VPULL_UP = 1.8 V  
MIN  
TYP  
MAX UNIT  
VOL  
ILKG  
0.4  
V
0.35  
µA  
4.14 Timing Requirements  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
I2C INTERFACE  
Clock frequency (standard mode)  
100  
400  
kHz  
kHz  
kHz  
ns  
fCLK  
Clock frequency (fast mode)  
Clock frequency (fast mode plus)  
Rise time (standard mode)  
Rise time (fast mode)  
1000  
1000  
300  
tr  
ns  
Rise time (fast mode plus)  
Rise time (standard mode)  
Rise time (fast mode)  
120  
ns  
300  
ns  
tf  
300  
ns  
Rise time (fast mode plus)  
120  
ns  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
4.15 Switching Characteristics  
over operating free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
BUCK CONTROLLERS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Measured from enable going high to when output  
reaches 90% of target value.  
tPG  
Total turnon time  
550  
850  
µs  
TON,MIN Minimum on-time of DRVH  
50  
15  
30  
ns  
ns  
ns  
DRVH off to DRVL on  
DRVL off to DRVH on  
TDEAD  
fSW  
Driver dead-time  
Continuous-conduction mode,  
VIN = 13 V, VOUT 1 V  
Switching frequency  
1000  
kHz  
BUCK CONVERTERS  
Measured from enable going high to when output  
reaches 90% of target value.  
tPG  
Total turnon time  
250  
1.6  
1.7  
1.9  
2
1000  
µs  
Continuous-conduction mode, VOUT = 1 V, IOUT  
1 A  
=
MHz  
MHz  
MHz  
MHz  
MHz  
Continuous-conduction mode, VOUT = 1.05 V, IOUT  
= 1 A  
Continuous-conduction mode, VOUT = 1.24 V, IOUT  
= 1 A  
fSW  
Switching frequency  
Continuous-conduction mode, VOUT = 1.35 V, IOUT  
= 1 A  
Continuous-conduction mode, VOUT = 1.8 V, IOUT  
= 1 A  
2.5  
LDOAx  
Measured from enable going high to when output  
reaches 95% of final value,  
VOUT = 1.2 V, COUT = 4.7 µF  
tSTARTU  
P
Start-up time  
Start-up time  
180  
22  
µs  
µs  
VTT LDO  
tSTARTU  
P
Measured from enable going high to PG assertion,  
VOUT = 0.675 V, COUT = 40 µF  
SWA1  
Measured from enable going high to reach 95% of  
final value,  
VIN = 3.3 V, COUT = 0.1 µF  
0.85  
0.63  
ms  
ms  
tTURN-  
ON  
Turnon time  
Measured from enable going high to reach 95% of  
final value,  
VIN = 1.8 V, COUT = 0.1 µF  
SWB1_2  
Measured from enable going high to reach 95% of  
final value,  
VIN = 3.3 V, COUT = 0.1 µF  
1.1  
ms  
ms  
tTURN-  
ON  
Turnon time  
Measured from enable going high to reach 95% of  
final value,  
0.82  
VIN = 1.8 V, COUT = 0.1 µF  
16  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
4.16 Typical Characteristics  
Measurements done at 25°C.  
4-1. BUCK2 Controller Start Up to 1 V by I2C  
4-2. Converter Start Up to 1 V by I2C  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
65%  
Vout = 1 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
Vout = 1 V  
60%  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
55%  
50%  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4
5 6 7  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4 5 6 7  
Iout (A)  
Iout (A)  
D011  
D012  
4-3. BUCK6 Efficiency at VIN = 13 V  
4-4. BUCK6 Efficiency at VIN = 18 V  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
Vout = 1 V  
Vout = 1.8 V  
Vout = 2.5 V  
Vout = 3.3 V  
50%  
0.1  
0.2  
0.3 0.4 0.5 0.7  
Iout (A)  
1
2
3
D009  
4-5. Converter Efficiency at VIN = 5 V  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
17  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
5 Detailed Description  
5.1 Overview  
The TPS6508700 power-management integrated circuit (PMIC) provides all the required power supplies  
for the AMD Family 17h Models 10h-1Fh Processors. The PMIC has the following integrated components:  
three step-down controllers (BUCK1, BUCK2, and BUCK6), three step-down converters (BUCK3, BUCK4,  
and BUCK5), a sink or source LDO (VTT LDO), three low-voltage VIN LDOs (LDOA1–LDOA3), and three  
load switches (SWA1, SWB1, and SWB2). With on-chip, one-time programmable (OTP) memory,  
configuration of each rail for the default output value, power-up sequence, fault handling, and power good  
mapping into a GPO pin are all conveniently flexible. All voltage rails (VRs) have a built-in discharge  
resistor, and the value can be changed using the DISCHCNT1–DISCHCNT3 and LDOA1_CTRL registers.  
When enabling a VR, the PMIC automatically disconnects the discharge resistor for that rail without any  
I2C command. 5-1 lists the key characteristics of the voltage rails.  
5-1. Summary of Voltage Regulators  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE RANGE (V)  
CURRENT  
(mA)  
RAIL  
BUCK1  
TYPE  
MIN  
MAX  
MIN  
TYP  
MAX  
5 V by external  
feedback  
Step-down controller  
4.5  
21  
Scalable  
BUCK2  
BUCK3  
BUCK4  
BUCK5  
BUCK6  
LDOA1  
LDOA2  
LDOA3  
SWA1  
Step-down controller  
Step-down converter  
Step-down converter  
Step-down converter  
Step-down controller  
LDO  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
1.62  
1.62  
0.5  
0.5  
21  
5.5  
5.5  
5.5  
21  
0.41  
0.425  
0.425  
0.425  
1
0.8  
1.8  
0.8  
1.8  
3.3  
3.3  
1.5  
1.2  
1.5  
1.5  
1.67  
3.575  
3.575  
3.575  
3.575  
3.3  
Scalable  
3000  
3000  
3000  
Scalable  
200(1)  
600  
5.5  
1.98  
1.98  
3.3  
3.3  
1.35  
0.7  
LDO  
1.5  
LDO  
0.7  
1.5  
600  
Load switch  
300  
SWB1/SWB2  
Load switch  
300  
Sink and Source  
LDO  
VTT  
BUCK6 output  
VBUCK6 / 2  
(1) When powered from a 5-V supply through the DRV5V_2_A1 pin. Otherwise, max current is limited by max IOUT of LDO5.  
18  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5.2 Functional Block Diagram  
LDO5V  
LDO1  
VIN  
BOOT1  
DRVH1  
LDOA1  
1.35 œ 3.3 V  
200 mA  
CTL1  
CTL2  
SW1  
V1  
VSET  
EN  
BUCK1  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL1  
CTL3/SLPENB1  
Control  
CTL4  
EN  
VSET  
FBVOUT1  
Inputs  
PGNDSNS1  
CTL5  
ILIM1  
CTL6/SLPENB2  
VPULL  
VPULL  
VIN  
BOOT2  
DRVH2  
CLK  
SoC  
&
System  
I2C CTL  
SW2  
DATA  
V2  
VSET  
EN  
BUCK2  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
DRVL2  
Control  
Outputs  
FBVOUT2  
PGNDSNS2  
IRQB  
GP01  
GPO2  
GPO3  
GPO4  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
3.3V œ 5V  
PVIN3  
LX3  
TEST CTL  
OTP  
BUCK3  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VSET  
EN  
V3  
FB3  
<PGND_BUCK3>  
REGISTERS  
3 A  
3.3V œ 5V  
PVIN4  
LX4  
BUCK4  
VSET 0.425 3.575 V  
0.41 œ 1.67 V  
LDO5P0  
V5ANA  
LDO5P0  
Digital Core  
V4  
3.3V œ 5V  
EN  
FB4  
(DVS)  
3 A  
<PGND_BUCK4>  
3.3V œ 5V  
PVIN5  
LX5  
BUCK5  
œ
VSET  
0.425 3.575 V  
0.41 œ 1.67 V  
(DVS)  
4.7V  
+
V5  
EN  
FB5  
STDBY  
LDO5V  
3 A  
<PGND_BUCK5>  
VIN  
REFSYS  
LDO3P3  
BOOT6  
DRVH6  
Thermal  
Monitoring  
VSYS  
5.6Vœ21V  
LDO3P3  
LDO3P3  
SW6  
DRVL6  
Thermal Shutdown  
VDDQ  
VSET  
EN  
BUCK6  
1 3.575 V  
0.41 œ 1.67 V  
(DVS)  
VREF  
AGND  
Bandgap  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVIN_VTT  
VTT  
VTT  
VTT_LDO  
VDDQ/2  
EN  
VTTFB  
LDOA2  
0.7 1.5 V  
600 mA  
LDOA3  
0.7 1.5 V  
600 mA  
LOAD SWA1  
LOAD SWB1  
LOAD SWB2  
Copyright © 2017, Texas Instruments Incorporated  
5-1. PMIC Functional Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
19  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
5.3 SMPS Voltage Regulators  
The buck controllers integrate gate drivers for external power stages with a programmable current limit  
(set by an external resistor at ILIMx pin), which allows for optimal selection of external passive  
components based on the desired system load. The buck converters include an integrated power stage  
and require a minimum number of pins for power input, inductor, and output voltage feedback input.  
Combined with high-frequency switching, all these features allow the use of inductors in a small form  
factor, reducing total-system cost and size.  
BUCK1–BUCK6 have selectable auto-PWM and forced-PWM mode through the BUCKx_MODE bit in the  
BUCKxCTRL register. In default auto-PWM mode, the VR automatically switches between pulse width  
modulation (PWM) and pulse frequency modulation (PFM) depending on the output load to maximize  
efficiency.  
All controllers and converters can be set to the default output voltage (VOUT) or dynamically voltage  
changing at any time. This feature means that the rails can be programmed for any VOUT by the factory,  
therefore the device starts up with the default voltage, or during operation the rail can be programmed to  
another operating VOUT while the rail is enable or disabled. Two step sizes, or ranges, are available for  
VOUT selection: 10-mV steps and 25-mV steps. The step-size range must be selected prior to use and  
must be programmed by the factory. The step-size range is not subject to programming or change during  
operation.  
5-2 lists the options for the 10-mV step-size range VOUT. 5-3 lists the options for the 25-mV step-size  
range VOUT  
.
20  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5-2. 10-mV Step-Size VOUT Range  
VID BITS  
0000000b  
0000001b  
0000010b  
0000011b  
0000100b  
0000101b  
0000110b  
0000111b  
0001000b  
0001001b  
0001010b  
0001011b  
0001100b  
0001101b  
0001110b  
0001111b  
0010000b  
0010001b  
0010010b  
0010011b  
0010100b  
0010101b  
0010110b  
0010111b  
0011000b  
0011001b  
0011010b  
0011011b  
0011100b  
0011101b  
0011110b  
0011111b  
0100000b  
0100001b  
0100010b  
0100011b  
0100100b  
0100101b  
0100110b  
0100111b  
0101000b  
0101001b  
0101010b  
VOUT  
0
VID BITS  
0101011b  
0101100b  
0101101b  
0101110b  
0101111b  
0110000b  
0110001b  
0110010b  
0110011b  
0110100b  
0110101b  
0110110b  
0110111b  
0111000b  
0111001b  
0111010b  
0111011b  
0111100b  
0111101b  
0111110b  
0111111b  
1000000b  
1000001b  
1000010b  
1000011b  
1000100b  
1000101b  
1000110b  
1000111b  
1001000b  
1001001b  
1001010b  
1001011b  
1001100b  
1001101b  
1001110b  
1001111b  
1010000b  
1010001b  
1010010b  
1010011b  
1010100b  
1010101b  
VOUT  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
VID BITS  
1010110b  
1010111b  
1011000b  
1011001b  
1011010b  
1011011b  
1011100b  
1011101b  
1011110b  
1011111b  
1100000b  
1100001b  
1100010b  
1100011b  
1100100b  
1100101b  
1100110b  
1100111b  
1101000b  
1101001b  
1101010b  
1101011b  
1101100b  
1101101b  
1101110b  
1101111b  
1110000b  
1110001b  
1110010b  
1110011b  
1110100b  
1110101b  
1110110b  
1110111b  
1111000b  
1111001b  
1111010b  
1111011b  
1111100b  
1111101b  
1111110b  
1111111b  
VOUT  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
0.41  
0.42  
0.43  
0.44  
0.45  
0.46  
0.47  
0.48  
0.49  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
21  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
5-3. 25-mV Step-Size VOUT Range  
VOUT  
(Converters)  
VOUT  
VID BITS  
VID BITS  
VOUT  
VID BITS  
VOUT  
(Controllers)  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
0000000b  
0000001b  
0000010b  
0000011b  
0000100b  
0000101b  
0000110b  
0000111b  
0001000b  
0001001b  
0001010b  
0001011b  
0001100b  
0001101b  
0001110b  
0001111b  
0010000b  
0010001b  
0010010b  
0010011b  
0010100b  
0010101b  
0010110b  
0010111b  
0011000b  
0011001b  
0011010b  
0011011b  
0011100b  
0011101b  
0011110b  
0011111b  
0100000b  
0100001b  
0100010b  
0100011b  
0100100b  
0100101b  
0100110b  
0100111b  
0101000b  
0101001b  
0101010b  
0
0101011b  
0101100b  
0101101b  
0101110b  
0101111b  
0110000b  
0110001b  
0110010b  
0110011b  
0110100b  
0110101b  
0110110b  
0110111b  
0111000b  
0111001b  
0111010b  
0111011b  
0111100b  
0111101b  
0111110b  
0111111b  
1000000b  
1000001b  
1000010b  
1000011b  
1000100b  
1000101b  
1000110b  
1000111b  
1001000b  
1001001b  
1001010b  
1001011b  
1001100b  
1001101b  
1001110b  
1001111b  
1010000b  
1010001b  
1010010b  
1010011b  
1010100b  
1010101b  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
1.900  
1.925  
1.950  
1.975  
2.000  
2.025  
2.050  
2.075  
2.100  
2.125  
2.150  
2.175  
2.200  
2.225  
2.250  
2.275  
2.300  
2.325  
2.350  
2.375  
2.400  
2.425  
2.450  
2.475  
2.500  
2.525  
1010110b  
1010111b  
1011000b  
1011001b  
1011010b  
1011011b  
1011100b  
1011101b  
1011110b  
1011111b  
1100000b  
1100001b  
1100010b  
1100011b  
1100100b  
1100101b  
1100110b  
1100111b  
1101000b  
1101001b  
1101010b  
1101011b  
1101100b  
1101101b  
1101110b  
1101111b  
1110000b  
1110001b  
1110010b  
1110011b  
1110100b  
1110101b  
1110110b  
1110111b  
1111000b  
1111001b  
1111010b  
1111011b  
1111100b  
1111101b  
1111110b  
1111111b  
2.550  
2.575  
2.600  
2.625  
2.650  
2.675  
2.700  
2.725  
2.750  
2.775  
2.800  
2.825  
2.850  
2.875  
2.900  
2.925  
2.950  
2.975  
3.000  
3.025  
3.050  
3.075  
3.100  
3.125  
3.150  
3.175  
3.200  
3.225  
3.250  
3.275  
3.300  
3.325  
3.350  
3.375  
3.400  
3.425  
3.450  
3.475  
3.500  
3.525  
3.550  
3.575  
0.425  
0.450  
0.475  
0.500  
0.525  
0.550  
0.575  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
22  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5.3.1 Controller Overview  
The controllers are fast-reacting, high-frequency, scalable output-power controllers capable of driving two  
external N-MOSFETs. The controllers use the D-CAP2 control scheme that optimizes transient responses  
at high load currents for such applications as CORE and DDR supplies. The output voltage is compared  
with and internal reference voltage after divider resistors. The PWM comparator determines the timing to  
turn on the high-side MOSFET. The PWM comparator response maintains a very small PWM output ripple  
voltage. Because the device does not have a dedicated oscillator for the on-board control loop, the  
switching cycle is controlled by the adaptive on-time circuit. The on-time is controlled to meet the target  
switching frequency by feed-forwarding the input and output voltage into the on-time one-shot timer.  
The D-CAP2 control scheme has an injected ripple from the SW node that is added on to the reference  
voltage to simulate output ripple, which eliminates the need for ESR-induced output ripple from D-CAP  
mode control. Therefore, low-ESR output capacitors (such as low-cost ceramic MLCC capacitors) can be  
used with the controllers. 5-2 shows the block diagram for the controller  
VDD  
VREF œ VTH_PG  
+
UV  
PGOOD  
FAULT  
EN  
œ
PGOOD  
+
DCHG  
VFB  
OV  
VREF + VTH_PG  
œ
+
+
Control Logic  
œ
+
+
PWM  
Ramp Generator  
REF  
BOOTx  
DRVHx  
SWx  
SS Ramp Comp  
HS  
VSYS  
XCON  
œ
OC  
DRV5V_x_x  
œ
50 µA  
+
+
ILIM  
LS  
DRVLx  
œ
NOC  
+
PGNDSNSx  
One-Shot  
GND  
+
ZC  
œ
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2017, Texas Instruments Incorporated  
5-2. Controller Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
23  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
5.3.2 Converter Overview  
The PMIC synchronous step-down DC-DC converters include a unique, hysteretic PWM-controller scheme  
which enables a high switching-frequency converter, excellent transient and AC load regulation as well as  
operation with cost-competitive external components. The controller topology supports forced PWM mode  
as well as power-save mode operation. Power-save mode operation, or PFM mode, reduces the quiescent  
current consumption and ensures high conversion efficiency at light loads by skipping switch pulses. In  
forced PWM mode, the device operates on a quasi-fixed frequency, avoids pulse skipping, and allows  
filtering of the switch noise by external filter components. The PMIC device offers fixed output voltage  
options featuring a small solution size by using only three external components per converter.  
A significant advantage of a PMIC over other hysteretic PWM controller topologies is the excellent AC  
load transient regulation capability of PMICs. When the output voltage falls below the threshold of the  
error comparator, a switch pulse is initiated, and the high-side switch is turned on. The switch remains  
turned on until a minimum on-time (tONmin) expires and the output voltage trips the threshold of the error  
comparator, or until the inductor current reaches the current limit of the high-side switch. When the high-  
side switch turns off, the low-side switch rectifier is turned on and the inductor current ramps down until  
the high-side switch turns on again or the inductor current reaches zero. In forced PWM mode operation,  
negative inductor current is allowed to enable continuous conduction mode even at no load condition.  
PVINx  
Current  
Limit Comparator  
VREF  
0.40 V  
Bandgap  
High-Side  
Limit  
MODE or EN  
MODE  
Softstart  
VIN  
FB  
Gate Driver  
Anti  
Shoot-Through  
Control  
Logic  
Minimum ON Time  
Minimum OFF Time  
LXx  
EN  
VREF  
+
FBx  
œ
Error  
Low-Side  
Limit  
Integrated  
Feedback  
Network  
Comparator  
Zero (Negative)  
Current Limit Comparator  
PGND/Thermal Pad  
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2017, Texas Instruments Incorporated  
5-3. Converter Block Diagram  
24  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5.3.3 Dynamic Voltage Scaling  
The buck regulators (BUCK1 through BUCK6) support dynamic voltage scaling (DVS) for maximum  
system efficiency. The VR outputs can slew up and slew down in either 10-mV or 25-mV steps using the  
7-bit voltage ID (VID) defined in Section 4.7 and Section 4.8. The DVS slew rate is 2.5 mV/µs (minimum).  
To meet the minimum slew rate, VID progresses to the next code at 3-µs (nominal) interval per 10-mV or  
at 6-µs interval per 25-mV steps. When DVS is active, the VR is forced into PWM mode, unless the  
BUCKx_DECAY bit is 1b, to ensure the output keeps track of the VID code with minimal delay.  
Additionally, the PGOOD bits (in the PG_STATUS1 and PG_STATUS2 registers) are masked when DVS  
is in progress. 5-4 shows an example of slew down and slew up from one VID to another (step size of  
10 mV).  
VID  
Number of Steps × 3 µs  
VOUT  
5-4. DVS Timing Diagram I (BUCKx_DECAY = 0b)  
When DVS is enabled and the BUCKx_VID[6:0] bit is set to any setting except 0b or 1b, the slew rate of  
the voltage is as shown in 5-4.  
As shown in 5-5, if a BUCKx_VID[6:0] bit is set to 0000000b, the output voltage of that buck slews  
down to 0.5 V first, and then drifts down to 0 V as the SMPS stops switching. Subsequently, if a  
BUCKx_VID[6:0] bit is set to a value (neither 0000000b nor 0000001b) when the output voltage of that  
buck is less than 0.5 V, the VR ramps up to 0.5 V first and the soft-start time begins. The output voltage  
then slews up to the target voltage of the previously mentioned slew rate.  
A fixed 200 µs of soft-start time is reserved for the output voltage to reach 0.5 V. In this case,  
however, the SMPS is not forced into PWM mode as it otherwise could cause the output  
voltage to droop momentarily if the output voltage might have been drifting above 0.5 V for  
any reason.  
VID  
Number of  
Steps × 3 µs  
VOUT  
Load and Time  
Dependent  
200 µs  
5-5. DVS Timing Diagram II (BUCKx_DECAY = 0b)  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
25  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
5.3.4 Current Limit  
The buck controllers (BUCK1, BUCK2, and BUCK6) have inductor-valley current-limit architecture and the  
current limit is programmable by an external resistor at the ILIMx pin. 公式 1 shows the calculation for a  
desired resistor value, depending on specific application conditions. The ILIMREF current is the current  
source out of the ILIMx pin that is typically 50 µA, and RDSON is the maximum channel resistance of the  
low-side FET. The scaling factor is 1.3 to consider all errors and temperature variations of RDSON, ILIMREF  
,
and RILIM. Finally, 8 is another scaling factor associated with the ILIMREF current.  
Iripple(min)  
÷
RDSON ì 8 ì 1.3 ì I  
-
LIM  
2
«
RILIM  
=
ILIMREF  
where  
ILIM is the target current limit. An appropriate margin must be allowed when determining the value of ILIM  
from the maximum DC load current of the output.  
Iripple(min) is the minimum peak-to-peak inductor ripple current for a given output voltage.  
(1)  
VOUT (V  
- VOUT )  
IN(MIN)  
Iripple(min)  
=
Lmax ì V  
ì fsw(max)  
IN(MIN)  
where  
Lmax is the maximum inductance.  
fsw(max) is the maximum switching frequency.  
VIN(MIN) is the minimum input voltage to the external power stage.  
(2)  
The inductor of the buck converter limits the peak current. This current limiting is done on a cycle-by-cycle  
basis to the current limit (IIND_LIM), which is specified in Section 4.8.  
5.4 LDO Regulators and Load Switches  
5.4.1 VTT LDO  
Powered from the BUCK6 output, the VTT LDO tracks the VBUCK6 voltage by regulating its output to a half  
of its input. The LDO current limit is OTP dependent, and it is designed specifically to power DDR  
memory. The LDO core is a transconductance amplifier with large gain, and it drives a current output  
stage that either sources or sinks current depending on the deviation of VTTFB pin voltage from the target  
regulation voltage.  
5.4.2 LDOA1–LDOA3  
The TPS6508700 device integrates three general-purpose LDOs. LDOA1 is powered from a 5-V supply  
through the DRV5V_2_A1 pin and it can be factory configured as an always-on rail as long as a valid  
power supply is available at the VSYS pin. For LDOA1 output voltage options, see 5-4. LDOA2 and  
LDOA3 share a power input pin (PVINLDOA2_A3). The output regulation voltages are set by writing to the  
LDOAx_VID[3:0] bits (registers 0x9A, 0x9B, and 0xAE). For LDOA2 and LDOA3 output voltage options,  
See 5-5.  
5-4. LDOA1 Output Voltage Options  
VID Bits  
0000b  
0001b  
0010b  
0011b  
VOUT  
1.35  
1.5  
VID Bits  
0100b  
0101b  
0110b  
0111b  
VOUT  
1.8  
VID Bits  
1000b  
1001b  
1010b  
1011b  
VOUT  
2.3  
VID Bits  
1100b  
1101b  
1110b  
1111b  
VOUT  
2.85  
1.9  
2.4  
3.0  
1.6  
2.0  
2.5  
3.3  
1.7  
2.1  
2.6  
Not Used  
26  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5-5. LDOA2 and LDOA3 Output Voltage Options  
VID Bits  
0000b  
0001b  
0010b  
0011b  
VOUT  
0.70  
0.75  
0.80  
0.85  
VID Bits  
0100b  
0101b  
0110b  
0111b  
VOUT  
0.90  
0.95  
1.00  
1.05  
VID Bits  
1000b  
1001b  
1010b  
1011b  
VOUT  
1.10  
1.15  
1.20  
1.25  
VID Bits  
VOUT  
1.30  
1.35  
1.40  
1.50  
1100b  
1101b  
1110b  
1111b  
5.4.3 Load Switches  
The PMIC features three general-purpose load switches. The SWA1 switch has a dedicated power input  
pin (PVINSWA1). The SWB1 and SWB2 pins share one power input pin (PVINSWB1_B2). All switches  
have built-in slew-rate control during startup to limit the inrush current.  
5.5 Power Good Information (PGOOD or PG) and GPO Pins  
The device provides information on status of VRs through four GPO pins along with the power-good status  
registers defined in Section 5.9.47 and Section 5.9.48. Power good information of any individual VR and  
load switch can be assigned to be part of the PGOOD tree as defined from Section 5.9.37 to  
Section 5.9.44. PGOOD assertion delays are programmable from 0 ms to 15 ms for GPO1, 0 ms to 100  
ms for GPO2 and GPO4, and 2.5 ms to 100 ms for GPO3 as defined in Section 5.9.19 and Section 5.9.31  
(respectively).  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
27  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
BUCK1_PG  
BUCK1_PG_MASK  
BUCK2_PG  
BUCK2_PG_MASK  
BUCK3_PG  
BUCK3_PG_MASK  
BUCK4_PG  
BUCK4_PG_MASK  
BUCK5_PG  
BUCK5_PG_MASK  
BUCK6_PG  
BUCK6_PG_MASK  
SWA1_PG  
SWA1_PG_MASK  
LDOA2_PG  
LDOA2_PG_MASK  
Selectable MS  
Rising  
LDOA3_PG  
SYSTEM PG  
LDOA3_PG_MASK  
Edge  
Delay  
SWB1_PG  
SWB1_PG_MASK  
SWB2/LDOA1_PG  
SWB2/LDOA1_PG_MASK  
VTT_PG  
VTT_PG_MASK  
CTRL1  
CTRL1_MASK  
CTRL2  
CTRL2_MASK  
CTRL3/SLPENB1  
CTRL3_MASK  
CTRL4  
CTRL4_MASK  
CTRL5  
CTRL5_MASK  
CTRL6/SLPENB2  
CTRL6_MASK  
5-6. Power Good Tree  
Alternatively, the GPOs can be used as general-purpose outputs controlled by the user through I2C. For  
more information on controlling the GPOs in I2C control mode, see Section 5.9.34.  
28  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5.6 Power Sequencing and Voltage-Rail Control  
When a valid power source is available at the VSYS pin (VSYS 5.6 V), the internal analog blocks,  
including LDO5 and LDO3P3, are enabled. The device then has three ways of sequencing the rails during  
power up and power down:  
Rail enabled by CTLx pin  
Rail enabled by power good, (PG) of the previously enabled rail  
Rail enabled by I2C software command  
5.6.1 Power-Up and Power-Down Sequencing  
The power-up and power-down sequence uses the CTL1, CTL4, and CTL5 pins to enable and disable  
regulators as required by the system. 5-7 shows the sequencing of these enables in a typical power-up  
and power-down sequence.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
29  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
G3'  
G3  
S5  
S0  
S5  
G3  
VSYS  
5.6 V  
LDO5  
LDO3P3  
LDOA1  
I2C Available  
CTL4  
(GPIO_G3 OR  
EN_S5)  
BUCK1  
(VDD_5_S5)  
2 ms  
2 ms  
BUCK3  
(VDD_18_S5)  
CTL1  
(GPIO_G3 AND  
EN_S5)  
BUCK6  
(VDD33_S5)  
BUCK5  
(VDD_AUD_S5)  
BUCK4  
(VDDP_S5)  
5 ms  
GPO1  
(PG_S5)  
CTL5  
(EN_S0)  
BUCK2  
(VDDP)  
5 ms  
GPO2  
(PG_S0)  
(1) CTLx are control signals from the discrete digital from the processor to enable the rails.  
(2) The power fault is masked for 10 ms when the regulator is enabled.  
5-7. Power-Up and Power-Down Sequence  
5-6 lists the system power states.  
5-6. System Power States  
STATE  
G3’  
GPIO_G3  
EN_S5  
CTL4  
CTL5  
1
1
0
0
0
1
0
1
1
1
0
1
0
0
0
1
G3’  
G3 state  
S5 state  
30  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5.6.2 Emergency Shutdown  
5-8 shows the emergency shutdown sequence.  
5.4 V  
VSYS  
GPOx  
444 ns (nominal with ± 1 œ % variation)  
BUCKx  
LDOAx  
SWx  
VTT  
5-8. Emergency Shutdown Sequence  
When the VSYS voltage crosses below VSYS_UVLO_5V, all power good pins are deasserted, and after 444 ns  
(nominal) of delay, all VRs shut down. Upon shutdown, all internal discharge resistors are set to 100 Ω to  
ensure timely decay of all VR outputs. Other conditions that cause emergency shutdown are the die  
temperature rising above the critical temperature threshold (TCRIT), and deassertion of the power good of  
any rail (configurable).  
5.7 Device Functional Modes  
5.7.1 Off Mode  
When the power supply at the VSYS pin is less than VSYS_UVLO_5V (5.4-V nominal) + VSYS_UVLO_5V_HYS (0.2-  
V nominal), the device is in off mode, where all output rails are disabled. If the supply voltage is greater  
than VSYS_UVLO_3V (3.6-V nominal) + VSYS_UVLO_3V_HYS (0.15-V nominal) while the supply voltage is still less  
than VSYS_UVLO_5V + VSYS_UVLO_5V_HYS, then the internal band-gap reference (VREF pin) along with  
LDO3P3 are enabled and regulated at target values.  
5.7.2 Standby Mode  
When the power supply at the VSYS pin rises above VSYS_UVLO_5V + VSYS_UVLO_5V_HYS, the device enters  
standby mode, where all internal reference and regulators (LDO3P3 and LDO5) are up and running, and  
I2C interface and CTL pins are ready to respond. All default registers defined in Section 5.9.1 should have  
been loaded from one-time programmable (OTP) memory by now. Quiescent current consumption in  
standby mode is specified in Section 4.5.  
5.7.3 Active Mode  
The device proceeds to active mode when any output rail is enabled through an input pin as discussed in  
5.6 or by writing to EN bits through I2C. The output regulation voltage can also be changed by writing to  
the VID bits defined in Section 5.9.1.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
31  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
5.8 I2C Interface  
The I2C interface is a 2-wire serial interface. The bus consists of a data line (SDA) and a clock line (SCL)  
with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C  
compatible devices connect to the I2C bus through open drain I/O pins, DATA, and CLK. A master device,  
usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for  
generating the SCL signal and device addresses. The master also generates specific conditions that  
indicate the START and STOP of data transfer. A slave device receives data, transmits data, or both on  
the bus under control of the master device.  
The TPS6508700 device works as a slave and supports the following data transfer modes, as defined in  
the I2C-Bus Specification: standard mode (100 kbps), fast mode (400 kbps), and high-speed mode  
(1 Mbps). The interface adds flexibility to the power supply solution, enabling most functions to be  
programmed to new values depending on the instantaneous application requirements. Register contents  
are loaded when the VSYS voltage is higher than VSYS_UVLO_5V and is applied to the TPS6508700 device.  
The I2C interface is running from an internal oscillator that is automatically enabled when access to the  
interface is avaialble.  
The data transfer protocol for fast and standard modes are exactly the same, therefore, they are referred  
to as F/S-mode in this document. The protocol for high-speed mode is different from the F/S-mode, and it  
is referred to as H/S-mode.  
The TPS6508700 device supports 7-bit addressing; however, 10-bit addressing and a general call address  
are not supported. The default device address is 0x5E.  
5.8.1 F/S-Mode Protocol  
The master initiates a data transfer by generating a start condition. The start condition is a high-to-low  
transition that occurs on the SDA line while SCL is high (see 5-9). All I2C-compatible devices should  
recognize a start condition.  
The master then generates the SCL pulses, and transmits the 7-bit address and the read-write direction  
bit, R/W, on the SDA line. During all transmissions, the master ensures that data is valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse (see  
5-10). All devices recognize the address sent by the master and compare it to their internal fixed  
addresses. Only the slave device with a matching address generates an acknowledge (see 5-11) by  
pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this  
acknowledge, the master identifies that the communication link with a slave has been established.  
The master generates additional SCL cycles to either transmit data to the slave (R/W bit is 0b) or receive  
data from the slave (R/W bit is 1b). In either case, the receiver must acknowledge the data sent by the  
transmitter. An acknowledge signal can either be generated by the master or by the slave, depending on  
which one is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge  
can continue as long as required.  
To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from  
low to high while the SCL line is high (see 5-9). This process releases the bus and stops the  
communication link with the addressed slave. All I2C-compatible devices must recognize the stop  
condition. Upon receiving a stop condition, all devices identify that the bus is released, and wait for a start  
condition followed by a matching address.  
32  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
5-9. START and STOP Conditions  
SDA  
SCL  
Data Valid  
Change of Data Allowed  
5-10. Bit Transfer on the I2C Bus  
Data Output at  
Transmitter  
Not ACK  
Data Output at  
Receiver  
ACK  
SCL from Master  
1
2
8
9
S
START  
Clock pulse for ACK  
Condition  
5-11. Acknowledge on the I2C Bus  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
33  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
Generate ACK Signal  
ACK Signal From Slave  
SDA  
MSB  
Address  
R/W  
7
SCL  
1
2
8
9
1
2
3-8  
9
ACK  
ACK  
Byte Complete, Interrupt  
Within Slave  
Clock Line Held Low While  
Interrupts Are Serviced  
S or Sr  
P or Sr  
START or  
STOP or  
Repeated START Condition  
Repeated START Condition  
5-12. I2C Bus Protocol  
SCL  
SDA  
A6  
A5  
A4  
A0 R /W ACK  
R7  
R6  
R5  
R0 ACK  
0
D7  
D6  
D5  
D0 ACK  
0
0
0
START  
Slave Address  
Register Address  
Data  
STOP  
5-13. I2C Interface WRITE to TPS6508700 in F/S Mode  
SCL  
SDA  
W
R/  
A6  
A0  
ACK  
0
R7  
R0 ACK  
0
A6  
A0  
ACK D7  
0
D0 ACK  
0
W
R/  
0
1
Master  
Drives ACK  
and Stop  
Slave Drives  
the Data  
Slave Address  
START  
Slave Address  
Register Address  
STOP  
Repeated  
START  
5-14. I2C Interface READ From TPS6508700 in F/S Mode  
(Only Repeated START is Supported)  
34  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9 Register Maps  
5.9.1 Register Map Summary  
Table 5-7 lists the memory-mapped registers for the TPS6508700. All register offset addresses not listed  
in Table 5-7 should be considered as reserved locations and the register contents should not be modified.  
Table 5-7. Register Map Summary  
Offset  
1h  
Acronym  
DEVICEID  
Short Description  
Device ID code indicating revision  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
2h  
IRQ  
Interrupt statuses  
3h  
IRQ_MASK  
Interrupt masking  
4h  
PMICSTAT  
PMIC temperature indicator  
Shutdown root cause indicator bits  
BUCK2 decay control and voltage select  
BUCK3 decay control  
5h  
SHUTDNSRC  
BUCK2CTRL  
BUCK3DECAY  
BUCK3VID  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
40h  
41h  
42h  
BUCK3 voltage select  
BUCK3SLPCTRL  
BUCK4CTRL  
BUCK5CTRL  
BUCK6CTRL  
LDOA2CTRL  
LDOA3CTRL  
DISCHCTRL1  
DISCHCTRL2  
DISCHCTRL3  
BUCK3 voltage select for SLEEP state  
BUCK4 control  
BUCK5 control  
BUCK6 control  
LDOA2 control  
LDOA3 control  
Discharge resistors for each rail control  
Discharge resistors for each rail control  
Discharge resistors for each rail control  
System Power Good on GPO3 (if GPO3 is programmed to be system  
PG)  
43h  
PG_DELAY1  
Go  
91h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
FORCESHUTDN  
BUCK2SLPCTRL  
BUCK4VID  
Software force shutdown  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
BUCK2 voltage select for SLEEP state  
BUCK4 voltage select  
BUCK4SLPVID  
BUCK5VID  
BUCK4 voltage select for SLEEP state  
BUCK5 voltage select  
BUCK5SLPVID  
BUCK6VID  
BUCK5 voltage select for SLEEP state  
BUCK6 voltage select  
BUCK6SLPVID  
LDOA2VID  
BUCK6 voltage select for SLEEP state  
LDOA2 voltage select  
LDOA3VID  
LDOA3 voltage select  
BUCK123CTRL  
BUCK1, 2, and 3 disable and PFM/PWM mode control  
System Power Good on GPO1, 2, and 4 (if GPOs are programmed to be  
system PG)  
9Dh  
PG_DELAY2  
Go  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
SWVTT_DIS  
SWs and VTT I2C disable bits  
I2C enable control of individual rails  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
I2C_RAIL_EN1  
I2C_RAIL_EN2/GPOCTRL I2C enable control of individual rails and I2C controlled GPOs, high or low  
PWR_FAULT_MASK1  
PWR_FAULT_MASK2  
GPO1PG_CTRL1  
GPO1PG_CTRL2  
GPO4PG_CTRL1  
GPO4PG_CTRL2  
GPO2PG_CTRL1  
Power fault masking for individual rails  
Power fault masking for individual rails  
Power good tree control for GPO1  
Power good tree control for GPO1  
Power good tree control for GPO4  
Power good tree control for GPO4  
Power good tree control for GPO2  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
Table 5-7. Register Map Summary (continued)  
Offset  
Acronym  
Short Description  
Section  
Go  
A9h  
AAh  
ABh  
ACh  
AEh  
B0h  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
GPO2PG_CTRL2  
GPO3PG_CTRL1  
GPO3PG_CTRL2  
MISCSYSPG  
Power good tree control for GPO2  
Power good tree control for GPO3  
Go  
Power good tree control for GPO3  
Go  
Power Good tree control with CTL3 and CTL6 for GPO  
LDOA1 control for discharge, voltage selection, and enable  
Power Good statuses for individual rails  
Power Good statuses for individual rails  
Power fault statuses for individual rails  
Power fault statuses for individual rails  
Critical temperature indicators  
Go  
LDOA1CTRL  
Go  
PG_STATUS1  
Go  
PG_STATUS2  
Go  
PWR_FAULT_STATUS1  
PWR_FAULT_STATUS2  
TEMPCRIT  
Go  
Go  
Go  
TEMPHOT  
Hot temperature indicators  
Go  
OC_STATUS  
Overcurrent fault status  
Go  
Complex bit access types are encoded to fit into small table cells. Table 5-8 shows the codes that are  
used for access types in this section.  
Table 5-8. Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-nh  
Value after reset or the default  
value  
36  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.2 DEVICEID: PMIC Device and Revision ID Register (offset = 1h) [reset = 10h]  
DEVICEID is shown in Figure 5-15 and described in Table 5-9.  
Return to Summary Table.  
Figure 5-15. DEVICEID Register  
7
6
5
4
3
2
1
0
REVID[1:0]  
R-0h  
OTP_VERSION[1:0]  
R-1h  
PART_NUMBER[3:0]  
R-0h  
Table 5-9. DEVICEID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
REVID[1:0]  
R
0h  
Silicon revision ID  
5-4  
OTP_VERSION[1:0]  
R
1h  
OTP variation ID  
0h = A  
1h = B  
2h = C  
3h = D  
3-0  
PART_NUMBER[3:0]  
R
0h  
Device part number ID  
0h = TPS6508700  
1h = TPS6508701  
Fh = TPS650870F  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.3 IRQ: PMIC Interrupt Register (offset = 2h) [reset = 0h]  
IRQ is shown in Figure 5-16 and described in Table 5-10.  
Return to Summary Table.  
Figure 5-16. IRQ Register  
7
6
5
4
3
2
1
0
FAULT  
R/W-0h  
RESERVED  
R-0h  
SHUTDN  
R/W-0h  
RESERVED  
R-0h  
DIETEMP  
R/W-0h  
Table 5-10. IRQ Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FAULT  
R/W  
0h  
Fault interrupt. Asserted when either condition occurs: SYS <  
UVLO, power fault of any rail, or die temperature crosses over  
the critical temperature threshold (TCRIT). The user can read  
registers 0xB2 through 0xB6 to determine what has caused the  
interrupt.  
0h = Not asserted  
1h = Asserted. Host to write 1 to clear.  
6-4  
3
RESERVED  
SHUTDN  
R
0h  
0h  
R/W  
Asserted when PMIC shuts down. To clear indicator,  
SHUTDNSRC must be cleared first, see Section 5.9.6  
0h = Not asserted.  
1h = Asserted. Host to write 1 to clear.  
2-1  
0
RESERVED  
DIETEMP  
R
0h  
0h  
R/W  
Die temp interrupt. Asserted when PMIC die temperature  
crosses above the hot temperature threshold (THOT).  
0h = Not asserted.  
1h = Asserted. Host to write 1 to clear.  
38  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.4 IRQ_MASK: PMIC Interrupt Mask Register (offset = 3h) [reset = FFh]  
IRQ_MASK is shown in Figure 5-17 and described in Table 5-11.  
Return to Summary Table.  
Figure 5-17. IRQ_MASK Register  
7
6
5
4
3
2
1
0
MFAULT  
R/W-1h  
RESERVED  
R-7h  
MSHUTDN  
R/W-1h  
RESERVED  
R-3h  
MDIETEMP  
R/W-1h  
Table 5-11. IRQ_MASK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MFAULT  
R/W  
1h  
FAULT interrupt mask.  
0h = Not masked.  
1h = Masked.  
6-4  
3
RESERVED  
MSHUTDN  
R
7h  
1h  
R/W  
PMIC shutdown event interrupt mask  
0h = Not masked.  
1h = Masked.  
2-1  
0
RESERVED  
MDIETEMP  
R
3h  
1h  
R/W  
Die temp interrupt mask.  
0h = Not masked.  
1h = Masked.  
5.9.5 PMICSTAT: PMIC Status Register (offset = 4h) [reset = 0h]  
PMICSTAT is shown in Figure 5-18 and described in Table 5-12.  
Return to Summary Table.  
Figure 5-18. PMICSTAT Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SDIETEMP  
R-0h  
Table 5-12. PMICSTAT Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SDIETEMP  
R
0h  
PMIC die temperature status.  
0h = PMIC die temperature is below THOT  
.
1h = PMIC die temperature is above THOT  
.
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.6 SHUTDNSRC: PMIC Shut-Down Event Register (offset = 5h) [reset = 0h]  
SHUTDNSRC is shown in Figure 5-19 and described in Table 5-13.  
Return to Summary Table.  
Figure 5-19. SHUTDNSRC Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
COLDOFF  
R/W-0h  
UVLO  
R/W-0h  
PWRFLT  
R/W-0h  
CRITTEMP  
R/W-0h  
Table 5-13. SHUTDNSRC Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
COLDOFF  
R/W  
0h  
Set by PMIC cleared by host. Host to write 1 to clear. This bit is  
always 0h for TPS6508700.  
0h = Cleared  
1h = PMIC was shut down by pulling down CTL1 pin.  
2
1
0
UVLO  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Set by PMIC cleared by host. Host to write 1 to clear.  
0h = Cleared  
1h = PMIC was shut down due to a UVLO event (VSYS crosses  
below 5.4 V). Assertion of this bit sets the SHUTDN bit in  
Section 5.9.3.  
PWRFLT  
CRITTEMP  
Set by PMIC cleared by host. Host to write 1 to clear.  
0h = Cleared  
1h = PMIC was shut down due to a power fault on a rail with  
power fault not masked. Assertion of this bit sets the SHUTDN  
bit in Section 5.9.3.  
Set by PMIC cleared by host. Host to write 1 to clear.  
0h = Cleared  
1h = PMIC was shut down due to the rise of PMIC die  
temperature above critical temperature threshold (TCRIT).  
Assertion of this bit sets the SHUTDN bit in Section 5.9.3.  
40  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.7 BUCK2CTRL: BUCK2 Control Register (offset = 21h) [reset = 50h]  
BUCK2CTRL is shown in Figure 5-20 and described in Table 5-14.  
Return to Summary Table.  
Figure 5-20. BUCK2CTRL Register  
7
6
5
4
3
2
1
0
BUCK2_VID[6:0]  
BUCK2_DECA  
Y
R/W-28h  
R/W-0h  
Table 5-14. BUCK2CTRL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK2_VID[6:0]  
R/W  
28h  
This field sets the BUCK2 regulator output regulation voltage in  
normal mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK2_DECAY  
R/W  
0h  
Decay bit  
0h = The output slews down to a lower voltage set by the VID  
bits.  
1h = The output decays down to a lower voltage set by the VID  
bits. Decay rate depends on total capacitance and load present  
at the output.  
5.9.8 BUCK3DECAY: BUCK3 Decay Control Register (offset = 22h) [reset = 70h]  
BUCK3DECAY is shown in Figure 5-21 and described in Table 5-15.  
Return to Summary Table.  
Figure 5-21. BUCK3DECAY Register  
7
6
5
4
3
2
1
0
RESERVED  
BUCK3_DECA  
Y
R/W-38h  
R/W-0h  
Table 5-15. BUCK3DECAY Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
RESERVED  
R/W  
38h  
Reserved bits are don't care bits, can be 1h or 0h.  
Decay bit  
0
BUCK3_DECAY  
R/W  
0h  
0h = The output slews down to a lower voltage set by the VID  
bits.  
1h = The output decays down to a lower voltage set by the VID  
bits. Decay rate depends on total capacitance and load present  
at the output.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.9 BUCK3VID: BUCK3 VID Register (offset = 23h) [reset = 70h]  
BUCK3VID is shown in Figure 5-22 and described in Table 5-16.  
Return to Summary Table.  
Figure 5-22. BUCK3VID Register  
7
6
5
4
3
2
1
0
BUCK3_VID[6:0]  
R/W-38h  
RESERVED  
R/W-0h  
Table 5-16. BUCK3VID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK3_VID[6:0]  
R/W  
38h  
This field sets the BUCK3 regulator output regulation voltage in  
normal mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
RESERVED  
R/W  
0h  
5.9.10 BUCK3SLPCTRL: BUCK3 Sleep Control VID Register (offset = 24h) [reset = 70h]  
BUCK3SLPCTRL is shown in Figure 5-23 and described in Table 5-17.  
Return to Summary Table.  
Figure 5-23. BUCK3SLPCTRL Register  
7
6
5
4
3
2
1
0
BUCK3_SLP_VID[6:0]  
BUCK3_SLP_E  
N
R/W-38h  
R/W-0h  
Table 5-17. BUCK3SLPCTRL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK3_SLP_VID[6:0]  
R/W  
38h  
This field sets the BUCK3 regulator output regulation voltage in  
sleep mode. BUCK3_SLP_VID bits are copied to BUCK3_VID  
bits upon enters sleep mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK3_SLP_EN  
R/W  
0h  
BUCK3 sleep mode enable. BUCK3 is factory configured to  
change to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0h = Disable.  
1h = Enable.  
42  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.11 BUCK4CTRL: BUCK4 Control Register (offset = 25h) [reset = Dh]  
BUCK4CTRL is shown in Figure 5-24 and described in Table 5-18.  
Return to Summary Table.  
Figure 5-24. BUCK4CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
BUCK4_SLP_EN[1:0]  
R/W-0h  
RESERVED  
R/W-3h  
BUCK4_MODE  
R/W-0h  
BUCK4_DIS  
R/W-1h  
Table 5-18. BUCK4CTRL Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
BUCK4_SLP_EN[1:0]  
R/W  
0h  
BUCK4 sleep mode enable. BUCK4 is factory configured to  
change to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0h = Disable.  
1h = Enable.  
2h = Enable.  
3h = Enable.  
3-2  
1
RESERVED  
R/W  
R/W  
3h  
0h  
Reserved as 3h. 0h, 1h, and 2h will result in BUCK4 regulation  
ignoring BUCK4_VID and BUCK4_SLP_VID values.  
BUCK4_MODE  
This field sets the BUCK4 regulator operating mode.  
0h = Automatic mode  
1h = Forced PWM mode  
0
BUCK4_DIS  
R/W  
1h  
BUCK4 disable bit. Writing 0 to this bit forces BUCK4 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable  
1h = Enable  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.12 BUCK5CTRL: BUCK5 Control Register (offset = 26h) [reset = Dh]  
BUCK5CTRL is shown in Figure 5-25 and described in Table 5-19.  
Return to Summary Table.  
Figure 5-25. BUCK5CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
BUCK5_SLP_EN[1:0]  
R/W-0h  
RESERVED  
R/W-3h  
BUCK5_MODE  
R/W-0h  
BUCK5_DIS  
R/W-1h  
Table 5-19. BUCK5CTRL Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
BUCK5_SLP_EN[1:0]  
R/W  
0h  
BUCK5 sleep mode enable. BUCK5 is factory configured to  
change to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0h = Disable.  
1h = Enable.  
2h = Enable.  
3h = Enable.  
3-2  
1
RESERVED  
R/W  
R/W  
3h  
0h  
Reserved as 3h. 0h, 1h, and 2h will result in BUCK5 regulation  
ignoring BUCK5_VID and BUCK5_SLP_VID values.  
BUCK5_MODE  
This field sets the BUCK5 regulator operating mode.  
0h = Automatic mode  
1h = Forced PWM mode  
0
BUCK5_DIS  
R/W  
1h  
BUCK5 disable bit. Writing 0 to this bit forces BUCK5 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable.  
1h = Enable.  
44  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.13 BUCK6CTRL: BUCK6 Control Register (offset = 27h) [reset = Dh]  
BUCK6CTRL is shown in Figure 5-26 and described in Table 5-20.  
Return to Summary Table.  
Figure 5-26. BUCK6CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
BUCK6_SLP_EN[1:0]  
R/W-0h  
RESERVED  
R/W-3h  
BUCK6_MODE  
R/W-0h  
BUCK6_DIS  
R/W-1h  
Table 5-20. BUCK6CTRL Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
BUCK6_SLP_EN[1:0]  
R/W  
0h  
BUCK6 sleep mode enable. BUCK6 is factory configured to  
change to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0h = Disable.  
1h = Enable.  
2h = Enable.  
3h = Enable.  
3-2  
1
RESERVED  
R/W  
R/W  
3h  
0h  
Reserved as 3h. 0h, 1h, and 2h will result in BUCK6 regulation  
ignoring BUCK6_VID and BUCK6_SLP_VID values.  
BUCK6_MODE  
This field sets the BUCK6 regulator operating mode.  
0h = Automatic mode  
1h = Forced PWM mode  
0
BUCK6_DIS  
R/W  
1h  
BUCK6 disable bit. Writing 0 to this bit forces BUCK6 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable.  
1h = Enable.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.14 LDOA2CTRL: LDOA2 Control Register (offset = 28h) [reset = Ch]  
LDOA2CTRL is shown in Figure 5-27 and described in Table 5-21.  
Return to Summary Table.  
Figure 5-27. LDOA2CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
LDOA2_SLP_EN[1:0]  
R/W-0h  
RESERVED  
R/W-6h  
LDOA2_DIS  
R/W-0h  
Table 5-21. LDOA2CTRL Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
LDOA2_SLP_EN[1:0]  
R/W  
0h  
LDOA2 sleep mode enable. LDOA2 is factory configured to  
change to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0h = Disable.  
1h = Enable.  
2h = Enable.  
3h = Enable.  
3-1  
0
RESERVED  
LDOA2_DIS  
R/W  
R/W  
6h  
0h  
Reserved as 3h. 0h, 1h, and 2h will result in LDOA2 regulation  
ignoring LDOA2_VID and LDOA2_SLP_VID values.  
LDOA2 disable bit. Writing 0 to this bit forces LDOA2 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable.  
1h = Enable.  
46  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.15 LDOA3CTRL: LDOA3 Control Register (offset = 29h) [reset = 3Ch]  
LDOA3CTRL is shown in Figure 5-28 and described in Table 5-22.  
Return to Summary Table.  
Figure 5-28. LDOA3CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
LDOA3_SLP_EN[1:0]  
R/W-3h  
RESERVED  
R/W-6h  
LDOA3_DIS  
R/W-0h  
Table 5-22. LDOA3CTRL Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
LDOA3_SLP_EN[1:0]  
R/W  
3h  
LDOA3 sleep mode enable. LDOA3 is factory configured to  
change to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0h = Disable.  
1h = Enable.  
2h = Enable.  
3h = Enable.  
3-1  
0
RESERVED  
LDOA3_DIS  
R/W  
R/W  
6h  
0h  
Reserved as 3h. 0h, 1h, and 2h will result in LDOA3 regulation  
ignoring LDOA3_VID and LDOA3_SLP_VID values.  
LDOA3 disable bit. Writing 0h to this bit forces LDOA3 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable  
1h = Enable  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.16 DISCHCTRL1: Discharge Control1 Register (offset = 40h) [reset = 55h]  
DISCHCTRL1 is shown in Figure 5-29 and described in Table 5-23.  
Return to Summary Table.  
All xx_DISCHG[1:0] bits internally set to 0h whenever the corresponding VR is enabled.  
Figure 5-29. DISCHCTRL1 Register  
7
6
5
4
3
2
1
0
BUCK4_DISCHG[1:0]  
R/W-1h  
BUCK3_DISCHG[1:0]  
R/W-1h  
BUCK2_DISCHG[1:0]  
R/W-1h  
BUCK1_DISCHG[1:0]  
R/W-1h  
Table 5-23. DISCHCTRL1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BUCK4_DISCHG[1:0]  
R/W  
1h  
BUCK4 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
5-4  
3-2  
1-0  
BUCK3_DISCHG[1:0]  
BUCK2_DISCHG[1:0]  
BUCK1_DISCHG[1:0]  
R/W  
R/W  
R/W  
1h  
1h  
1h  
BUCK3 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
BUCK2 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
BUCK1 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
48  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.17 DISCHCTRL2: Discharge Control2 Register (offset = 41h) [reset = 55h]  
DISCHCTRL2 is shown in Figure 5-30 and described in Table 5-24.  
Return to Summary Table.  
All xx_DISCHG[1:0] bits internally set to 0h whenever the corresponding VR is enabled.  
Figure 5-30. DISCHCTRL2 Register  
7
6
5
4
3
2
1
0
LDOA2_DISCHG[1:0]  
R/W-1h  
SWA1_DISCHG[1:0]  
R/W-1h  
BUCK6_DISCHG[1:0]  
R/W-1h  
BUCK5_DISCHG[1:0]  
R/W-1h  
Table 5-24. DISCHCTRL2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LDOA2_DISCHG[1:0]  
R/W  
1h  
LDOA2 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
5-4  
3-2  
1-0  
SWA1_DISCHG[1:0]  
BUCK6_DISCHG[1:0]  
BUCK5_DISCHG[1:0]  
R/W  
R/W  
R/W  
1h  
1h  
1h  
SWA1 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
BUCK6 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
BUCK5 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.18 DISCHCTRL3: Discharge Control3 Register (offset = 42h) [reset = 15h]  
DISCHCTRL3 is shown in Figure 5-31 and described in Table 5-25.  
Return to Summary Table.  
All xx_DISCHG[1:0] bits internally set to 0h whenever the corresponding VR is enabled.  
Figure 5-31. DISCHCTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SWB2_DISCHG[1:0]  
R/W-1h  
SWB1_DISCHG[1:0]  
R/W-1h  
LDOA3_DISCHG[1:0]  
R/W-1h  
Table 5-25. DISCHCTRL3 Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SWB2_DISCHG[1:0]  
SWB1_DISCHG[1:0]  
LDOA3_DISCHG[1:0]  
R/W  
1h  
SWB2 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
3-2  
1-0  
R/W  
R/W  
1h  
1h  
SWB1 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
LDOA3 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
50  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.19 PG_DELAY1: Power Good Delay1 Register (offset = 43h) [reset = 0h]  
PG_DELAY1 is shown in Figure 5-32 and described in Table 5-26.  
Return to Summary Table.  
Programmable power good delay for GPO3 pin, measured from the moment when all VRs assigned to  
GPO3 pin reach their regulation range to power good assertion. This register is optional as the PMIC can  
be programmed for system PG, level shifter or I2C controller GPO.  
Figure 5-32. PG_DELAY1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
GPO3_PG_DELAY[2:0]  
R/W-0h  
Table 5-26. PG_DELAY1 Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
GPO3_PG_DELAY[2:0]  
R/W  
0h  
Programmable delay power good or level shifter for GPO3 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
Register not used (GPO3 controlled by I2C)  
0h = 2.5 ms  
1h = 5 ms  
2h = 10 ms  
3h = 15 ms  
4h = 20 ms  
5h = 50 ms  
6h = 75 ms  
7h = 100 ms  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.20 FORCESHUTDN: Force Emergency Shutdown Control Register (offset = 91h) [reset  
= 0h]  
FORCESHUTDN is shown in Figure 5-33 and described in Table 5-27.  
Return to Summary Table.  
Figure 5-33. FORCESHUTDN Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SDWN  
R/W-0h  
Table 5-27. FORCESHUTDN Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SDWN  
R/W  
0h  
Forces reset of the PMIC and reset of all registers. The bit is  
self-clearing.  
0h = No action.  
1h = PMIC is forced to shut down.  
52  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.21 BUCK2SLPCTRL: BUCK2 Sleep Control Register (offset = 93h) [reset = 50h]  
BUCK2SLPCTRL is shown in Figure 5-34 and described in Table 5-28.  
Return to Summary Table.  
Figure 5-34. BUCK2SLPCTRL Register  
7
6
5
4
3
2
1
0
BUCK2_SLP_VID[6:0]  
BUCK2_SLP_E  
N
R/W-28h  
R/W-0h  
Table 5-28. BUCK2SLPCTRL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK2_SLP_VID[6:0]  
R/W  
28h  
This field sets the BUCK2 regulator output regulation voltage in  
sleep mode. Mapping between bits and output voltage is defined  
as in Section 5.9.7.  
0
BUCK2_SLP_EN  
R/W  
0h  
BUCK2 sleep mode enable. BUCK2 is factory configured to  
change to sleep mode voltage either by CTL3/SLPENB1 pin or  
by CTL6/SLPENB2 pin.  
0h = Disable.  
1h = Enable.  
5.9.22 BUCK4VID: BUCK4 VID Register (offset = 94h) [reset = 20h]  
BUCK4VID is shown in Figure 5-35 and described in Table 5-29.  
Return to Summary Table.  
Figure 5-35. BUCK4VID Register  
7
6
5
4
3
2
1
0
BUCK4_VID[6:0]  
BUCK4_DECA  
Y
R/W-10h  
R/W-0h  
Table 5-29. BUCK4VID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK4_VID[6:0]  
R/W  
10h  
This field sets the BUCK4 regulator output regulation voltage in  
normal mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK4_DECAY  
R/W  
0h  
Decay bit  
0h = The output slews down to a lower voltage set by the VID  
bits.  
1h = The output decays down to a lower voltage set by the VID  
bits. Decay rate depends on total capacitance and load present  
at the output.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.23 BUCK4SLPVID: BUCK4 Sleep VID Register (offset = 95h) [reset = 20h]  
BUCK4SLPVID is shown in Figure 5-36 and described in Table 5-30.  
Return to Summary Table.  
Figure 5-36. BUCK4SLPVID Register  
7
6
5
4
3
2
1
0
BUCK4_SLP_VID[6:0]  
R/W-10h  
RESERVED  
R-0h  
Table 5-30. BUCK4SLPVID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK4_SLP_VID[6:0]  
R/W  
10h  
This field sets the BUCK4 regulator output regulation voltage in  
sleep mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
RESERVED  
R
0h  
5.9.24 BUCK5VID: BUCK5 VID Register (offset = 96h) [reset = 70h]  
BUCK5VID is shown in Figure 5-37 and described in Table 5-31.  
Return to Summary Table.  
Figure 5-37. BUCK5VID Register  
7
6
5
4
3
2
1
0
BUCK5_VID[6:0]  
BUCK5_DECA  
Y
R/W-38h  
R/W-0h  
Table 5-31. BUCK5VID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK5_VID[6:0]  
R/W  
38h  
This field sets the BUCK5 regulator output regulation voltage in  
normal mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK5_DECAY  
R/W  
0h  
Decay bit  
0h = The output slews down to a lower voltage set by the VID  
bits.  
1h = The output decays down to a lower voltage set by the VID  
bits. Decay rate depends on total capacitance and load present  
at the output.  
54  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.25 BUCK5SLPVID: BUCK5 Sleep VID Register (offset = 97h) [reset = E8h]  
BUCK5SLPVID is shown in Figure 5-38 and described in Table 5-32.  
Return to Summary Table.  
Figure 5-38. BUCK5SLPVID Register  
7
6
5
4
3
2
1
0
BUCK5_SLP_VID[6:0]  
R/W-74h  
RESERVED  
R-0h  
Table 5-32. BUCK5SLPVID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK5_SLP_VID[6:0]  
R/W  
74h  
This field sets the BUCK5 regulator output regulation voltage in  
sleep mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
RESERVED  
R
0h  
5.9.26 BUCK6VID: BUCK6 VID Register (offset = 98h) [reset = E8h]  
BUCK6VID is shown in Figure 5-39 and described in Table 5-33.  
Return to Summary Table.  
Figure 5-39. BUCK6VID Register  
7
6
5
4
3
2
1
0
BUCK6_VID[6:0]  
BUCK6_DECA  
Y
R/W-74h  
R/W-0h  
Table 5-33. BUCK6VID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK6_VID[6:0]  
R/W  
74h  
This field sets the BUCK6 regulator output regulation voltage in  
normal mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
BUCK6_DECAY  
R/W  
0h  
Decay bit  
0h = The output slews down to a lower voltage set by the VID  
bits.  
1h = The output decays down to a lower voltage set by the VID  
bits. Decay rate depends on total capacitance and load present  
at the output.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.27 BUCK6SLPVID: BUCK6 Sleep VID Register (offset = 99h) [reset = E8h]  
BUCK6SLPVID is shown in Figure 5-40 and described in Table 5-34.  
Return to Summary Table.  
Figure 5-40. BUCK6SLPVID Register  
7
6
5
4
3
2
1
0
BUCK6_SLP_VID[6:0]  
R/W-74h  
RESERVED  
R-0h  
Table 5-34. BUCK6SLPVID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BUCK6_SLP_VID[6:0]  
R/W  
74h  
This field sets the BUCK6 regulator output regulation voltage in  
normal mode.  
See 5-2 and 5-3 for 10-mV and 25-mV step ranges for  
VOUT options.  
0
RESERVED  
R
0h  
5.9.28 LDOA2VID: LDOA2 VID Register (offset = 9Ah) [reset = FFh]  
LDOA2VID is shown in Figure 5-41 and described in Table 5-35.  
Return to Summary Table.  
Figure 5-41. LDOA2VID Register  
7
6
5
4
3
2
1
0
LDOA2_SLP_VID[3:0]  
R/W-Fh  
LDOA2_VID[3:0]  
R/W-Fh  
Table 5-35. LDOA2VID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LDOA2_SLP_VID[3:0]  
R/W  
Fh  
This field sets the LDOA2 regulator output regulation voltage in  
sleep mode.  
See 5-5 for VOUT options.  
3-0  
LDOA2_VID[3:0]  
R/W  
Fh  
This field sets the LDOA2 regulator output regulation voltage in  
normal mode.  
See 5-5 for VOUT options.  
56  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.29 LDOA3VID: LDOA3 VID Register (offset = 9Bh) [reset = AAh]  
LDOA3VID is shown in Figure 5-42 and described in Table 5-36.  
Return to Summary Table.  
Figure 5-42. LDOA3VID Register  
7
6
5
4
3
2
1
0
LDOA3_SLP_VID[3:0]  
R/W-Ah  
LDOA3_VID[3:0]  
R/W-Ah  
Table 5-36. LDOA3VID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LDOA3_SLP_VID[3:0]  
R/W  
Ah  
This field sets the LDOA3 regulator output regulation voltage in  
sleep mode.  
See 5-5 for VOUT options.  
3-0  
LDOA3_VID[3:0]  
R/W  
Ah  
This field sets the LDOA3 regulator output regulation voltage in  
normal mode.  
See 5-5 for VOUT options.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.30 BUCK123CTRL: BUCK1-3 Control Register (offset = 9Ch) [reset = 7h]  
BUCK123CTRL is shown in Figure 5-43 and described in Table 5-37.  
Return to Summary Table.  
Figure 5-43. BUCK123CTRL Register  
7
6
5
4
3
2
1
0
SPARE  
R/W-0h  
BUCK3_MODE BUCK2_MODE BUCK1_MODE  
R/W-0h R/W-0h R/W-0h  
BUCK3_DIS  
R/W-1h  
BUCK2_DIS  
R/W-1h  
BUCK1_DIS  
R/W-1h  
Table 5-37. BUCK123CTRL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SPARE  
R/W  
0h  
Spare bits.  
5
4
3
2
BUCK3_MODE  
BUCK2_MODE  
BUCK1_MODE  
BUCK3_DIS  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
1h  
This field sets the BUCK3 regulator operating mode.  
0h = Automatic mode  
1h = Forced PWM mode  
This field sets the BUCK2 regulator operating mode.  
0h = Automatic mode  
1h = Forced PWM mode  
This field sets the BUCK1 regulator operating mode.  
0h = Automatic mode  
1h = Forced PWM mode  
BUCK3 disable bit. Writing 0 to this bit forces BUCK3 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable  
1h = Enable  
1
0
BUCK2_DIS  
BUCK1_DIS  
R/W  
R/W  
1h  
1h  
BUCK2 disable bit. Writing 0 to this bit forces BUCK2 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable  
1h = Enable  
BUCK1 disable bit. Writing 0 to this bit forces BUCK1 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable  
1h = Enable  
58  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.31 PG_DELAY2: Power Good Delay2 Register (offset = 9Dh) [reset = 21h]  
PG_DELAY2 is shown in Figure 5-44 and described in Table 5-38.  
Return to Summary Table.  
Programmable Power Good delay for GPO1, GPO2, and GPO4 pins, measured from the moment when  
all VRs assigned to respective GPO reach their regulation range to Power Good assertion. This is an  
optional register as the PMIC can be programmed for system PG, level shifter or I2C controller GPO.  
Figure 5-44. PG_DELAY2 Register  
7
6
5
4
3
2
1
0
GPO2_PG_DELAY[2:0]  
R/W-1h  
GPO4_PG_DELAY[2:0]  
R/W-0h  
GPO1_PG_DELAY[1:0]  
R/W-1h  
Table 5-38. PG_DELAY2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPO2_PG_DELAY[2:0]  
R/W  
1h  
Programmable delay power good or level shifter for GPO2 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation.  
0h = 0 ms  
1h = 5 ms  
2h = 10 ms  
3h = 15 ms  
4h = 20 ms  
5h = 50 ms  
6h = 75 ms  
7h = 100 ms  
4-2  
GPO4_PG_DELAY[2:0]  
R/W  
0h  
Programmable delay power good or level shifter for GPO4 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation  
0h = 0 ms  
1h = 5 ms  
2h = 10 ms  
3h = 15 ms  
4h = 20 ms  
5h = 50 ms  
6h = 75 ms  
7h = 100 ms  
1-0  
GPO1_PG_DELAY[1:0]  
R/W  
1h  
Programmable delay power good or level shifter for GPO1 pin.  
Measured from the moment when all rails grouped to this pin  
reach their regulation range. All values have ±10% variation  
0h = 0 ms  
1h = 5 ms  
2h = 10 ms  
3h = 15 ms  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.32 SWVTT_DIS: SWVTT Disable Register (offset = 9Fh) [reset = 0h]  
SWVTT_DIS is shown in Figure 5-45 and described in Table 5-39.  
Return to Summary Table.  
Figure 5-45. SWVTT_DIS Register  
7
6
5
4
3
2
1
0
SWB2_DIS  
R/W-0h  
SWB1_DIS  
R/W-0h  
SWA1_DIS  
R/W-0h  
VTT_DIS  
R/W-0h  
RESERVED  
R/W-0h  
Table 5-39. SWVTT_DIS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SWB2_DIS  
SWB1_DIS  
SWA1_DIS  
VTT_DIS  
R/W  
0h  
SWB2 disable bit. Writing 0h to this bit forces SWB2 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable.  
1h = Enable.  
6
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
SWB1 disable bit. Writing 0 to this bit forces SWB1 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable.  
1h = Enable.  
5
SWA1 disable bit. Writing 0 to this bit forces SWA1 to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable.  
1h = Enable.  
4
VTT Disable Bit. Writing 0 to this bit forces VTT to turn off  
regardless of any control input pin (CTL1–CTL6) status.  
0h = Disable.  
1h = Enable.  
3-0  
Reserved  
Reserved, Keep bit set to 0h at all times. Do not write to 1h.  
60  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.33 I2C_RAIL_EN1: VR Pin Enable Override1 Register (offset = A0h) [reset = 80h]  
I2C_RAIL_EN1 is shown in Figure 5-46 and described in Table 5-40.  
Return to Summary Table.  
Figure 5-46. I2C_RAIL_EN1 Register  
7
6
5
4
3
2
1
0
LDOA2_EN  
R/W-1h  
SWA1_EN  
R/W-0h  
BUCK6_EN  
R/W-0h  
BUCK5_EN  
R/W-0h  
BUCK4_EN  
R/W-0h  
BUCK3_EN  
R/W-0h  
BUCK2_EN  
R/W-0h  
BUCK1_EN  
R/W-0h  
Table 5-40. I2C_RAIL_EN1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
LDOA2_EN  
SWA1_EN  
BUCK6_EN  
BUCK5_EN  
BUCK4_EN  
BUCK3_EN  
BUCK2_EN  
BUCK1_EN  
R/W  
1h  
LDOA2 I2C enable  
0h = LDOA2 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = LDOA2 is forced on unless LDOA2_DIS = 0.  
SWA1 I2C enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = SWA1 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = SWA1 is forced on unless SWA1_DIS = 0.  
BUCK6 I2C enable  
0h = BUCK6 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = BUCK6 is forced on unless BUCK6_DIS = 0.  
BUCK5 I2C enable  
0h = BUCK5 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = BUCK5 is forced on unless BUCK5_DIS = 0.  
BUCK4 I2C enable  
0h = BUCK4 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = BUCK4 is forced on unless BUCK4_DIS = 0.  
BUCK3 I2C enable  
0h = BUCK3 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = BUCK3 is forced on unless BUCK3_DIS = 0.  
BUCK2 I2C enable  
0h = BUCK2 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = BUCK2 is forced on unless BUCK2_DIS = 0.  
BUCK1 I2C enable  
0h = BUCK1 is enabled or disabled by one of the control input  
pins or internal PG signal.  
1h = BUCK1 is forced on unless BUCK1_DIS = 0.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.34 I2C_RAIL_EN2/GPOCTRL: VR Pin Enable Override2/GPO Control Register  
(offset = A1h) [reset = 89h]  
I2C_RAIL_EN2/GPOCTRL is shown in Figure 5-47 and described in Table 5-41.  
Return to Summary Table.  
Figure 5-47. I2C_RAIL_EN2/GPOCTRL Register  
7
6
5
4
3
2
1
0
GPO4_LVL  
R/W-1h  
GPO3_LVL  
R/W-0h  
GPO2_LVL  
R/W-0h  
GPO1_LVL  
R/W-0h  
VTT_EN  
R/W-1h  
SWB2_EN  
R/W-0h  
SWB1_EN  
R/W-0h  
LDOA3_EN  
R/W-1h  
Table 5-41. I2C_RAIL_EN2/GPOCTRL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPO4_LVL  
GPO3_LVL  
R/W  
1h  
The field is to set GPO4 pin output if the pin is factory-  
configured as an open-drain general-purpose output.  
0h = The pin is driven to logic low.  
1h = The pin is driven to logic high.  
6
R/W  
R/W  
R/W  
0h  
0h  
0h  
The field is to set GPO3 pin output if the pin is factory-  
configured as either an open-drain or a push-pull general-  
purpose output.  
0h = The pin is driven to logic low.  
1h = The pin is driven to logic high.  
5
4
GPO2_LVL  
GPO1_LVL  
The field is to set GPO2 pin output if the pin is factory-  
configured as either an open-drain or a push-pull general-  
purpose output.  
0h = The pin is driven to logic low.  
1h = The pin is driven to logic high.  
The field is to set GPO1 pin output if the pin is factory-  
configured as either an open-drain or a push-pull general-  
purpose output.  
0h = The pin is driven to logic low.  
1h = The pin is driven to logic high.  
3
2
1
0
VTT_EN  
R/W  
R/W  
R/W  
R/W  
1h  
0h  
0h  
1h  
VTT LDO I2C enable  
0h = VTT LDO is enabled or disabled by one of the control input  
pins or internal PG signals.  
1h = VTT LDO is forced on unless VTT_DIS = 0.  
SWB2 I2C enable  
SWB2_EN  
SWB1_EN  
LDOA3_EN  
0h = SWB2 is enabled or disabled by one of the control input  
pins or internal PG signals.  
1h = SWB2 is forced on unless SWB2_DIS = 0.  
SWB1 I2C enable  
0h = SWB1 is enabled or disabled by one of the control input  
pins or internal PG signals.  
1h = SWB1 is forced on unless SWB1_DIS = 0.  
LDOA3 I2C enable  
0h = LDOA3 is enabled or disabled by one of the control input  
pins or internal PG signals.  
1h = LDOA3 is forced on unless LDOA3_DIS = 0.  
62  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.35 PWR_FAULT_MASK1: VR Power Fault Mask1 Register (offset = A2h) [reset = C0h]  
PWR_FAULT_MASK1 is shown in Figure 5-48 and described in Table 5-42.  
Return to Summary Table.  
Figure 5-48. PWR_FAULT_MASK1 Register  
7
6
5
4
3
2
1
0
LDOA2_FLTMS SWA1_FLTMS BUCK6_FLTM BUCK5_FLTM BUCK4_FLTM BUCK3_FLTM BUCK2_FLTM BUCK1_FLTM  
K
K
SK  
SK  
SK  
SK  
SK  
SK  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 5-42. PWR_FAULT_MASK1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDOA2_FLTMSK  
SWA1_FLTMSK  
BUCK6_FLTMSK  
BUCK5_FLTMSK  
BUCK4_FLTMSK  
BUCK3_FLTMSK  
BUCK2_FLTMSK  
BUCK1_FLTMSK  
R/W  
1h  
LDOA2 power fault mask. When masked, power fault from  
LDOA2 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
SWA1 power fault mask. When masked, power fault from SWA1  
does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
BUCK6 power fault mask. When masked, power fault from  
BUCK6 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
BUCK5 power fault mask. When masked, power fault from  
BUCK5 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
BUCK4 power fault mask. When masked, power fault from  
BUCK4 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
BUCK3 power fault mask. When masked, power fault from  
BUCK3 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
BUCK2 power fault mask. When masked, power fault from  
BUCK2 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
BUCK1 power fault mask. When masked, power fault from  
BUCK1 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.36 PWR_FAULT_MASK2: VR Power Fault Mask2 Register (offset = A3h) [reset = 3Fh]  
PWR_FAULT_MASK2 is shown in Figure 5-49 and described in Table 5-43.  
Return to Summary Table.  
Figure 5-49. PWR_FAULT_MASK2 Register  
7
6
5
4
3
2
1
0
RESERVED  
LDOA1_FLTMS VTT_FLTMSK SWB2_FLTMS SWB1_FLTMS LDOA3_FLTMS  
K
K
K
K
R-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 5-43. PWR_FAULT_MASK2 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
1h  
Description  
RESERVED  
LDOA1_FLTMSK  
R/W  
1h  
LDOA1 power fault mask. When masked, power fault from  
LDOA1 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
3
2
1
0
VTT_FLTMSK  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
VTT LDO Power Fault Mask. When masked, power fault from  
VTT LDO does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
SWB2_FLTMSK  
SWB1_FLTMSK  
LDOA3_FLTMSK  
SWB2 power fault mask. When masked, power fault from SWB2  
does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
SWB1 power fault mask. When masked, power fault from SWB1  
does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
LDOA3 power fault mask. When masked, power fault from  
LDOA3 does not cause PMIC to shutdown.  
0h = Not masked  
1h = Masked  
64  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.37 GPO1PG_CTRL1: GPO1 PG Control1 Register (offset = A4h) [reset = C2h]  
GPO1PG_CTRL1 is shown in Figure 5-50 and described in Table 5-44.  
Return to Summary Table.  
Figure 5-50. GPO1PG_CTRL1 Register  
7
6
5
4
3
2
1
0
LDOA2_MSK  
R/W-1h  
SWA1_MSK  
R/W-1h  
BUCK6_MSK  
R/W-0h  
BUCK5_MSK  
R/W-0h  
BUCK4_MSK  
R/W-0h  
BUCK3_MSK  
R/W-0h  
BUCK2_MSK  
R/W-1h  
BUCK1_MSK  
R/W-0h  
Table 5-44. GPO1PG_CTRL1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
LDOA2_MSK  
SWA1_MSK  
BUCK6_MSK  
BUCK5_MSK  
BUCK4_MSK  
BUCK3_MSK  
BUCK2_MSK  
BUCK1_MSK  
R/W  
1h  
0h = LDOA2 PG is part of power good tree of GPO1 pin.  
1h = LDOA2 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
0h  
0h  
0h  
0h  
1h  
0h  
0h = SWA1 PG is part of power good tree of GPO1 pin.  
1h = SWA1 PG is NOT part of power good tree of GPO1 pin and  
is ignored.  
0h = BUCK6 PG is part of power good tree of GPO1 pin.  
1h = BUCK6 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
0h = BUCK5 PG is part of power good tree of GPO1 pin.  
1h = BUCK5 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
0h = BUCK4 PG is part of power good tree of GPO1 pin.  
1h = BUCK4 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
0h = BUCK3 PG is part of power good tree of GPO1 pin.  
1h = BUCK3 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
0h = BUCK2 PG is part of power good tree of GPO1 pin.  
1h = BUCK2 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
0h = BUCK1 PG is part of power good tree of GPO1 pin.  
1h = BUCK1 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.38 GPO1PG_CTRL2: GPO1 PG Control2 Register (offset = A5h) [reset = AFh]  
GPO1PG_CTRL2 is shown in Figure 5-51 and described in Table 5-45.  
Return to Summary Table.  
Figure 5-51. GPO1PG_CTRL2 Register  
7
6
5
4
3
2
1
0
CTL5_MSK  
R/W-1h  
CTL4_MSK  
R/W-0h  
CTL2_MSK  
R/W-1h  
CTL1_MSK  
R/W-0h  
VTT_MSK  
R/W-1h  
SWB2_MSK  
R/W-1h  
SWB1_MSK  
R/W-1h  
LDOA3_MSK  
R/W-1h  
Table 5-45. GPO1PG_CTRL2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
CTL5_MSK  
CTL4_MSK  
CTL2_MSK  
CTL1_MSK  
VTT_MSK  
R/W  
1h  
0h = CTL5 pin status is part of power good tree of GPO1 pin.  
1h = CTL5 pin status is NOT part of power good tree of GPO1  
pin and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
1h  
0h  
1h  
1h  
1h  
1h  
0h = CTL4 pin status is part of power good tree of GPO1 pin.  
1h = CTL4 pin status is NOT part of power good tree of GPO1  
pin and is ignored.  
0h = CTL2 pin status is part of power good tree of GPO1 pin.  
1h = CTL2 pin status is NOT part of power good tree of GPO1  
pin and is ignored.  
0h = CTL1 pin status is part of power good tree of GPO1 pin.  
1h = CTL1 pin status is NOT part of power good tree of GPO1  
pin and is ignored.  
0h = VTT LDO PG is part of power good tree of GPO1 pin.  
1h = VTT LDO PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
SWB2_MSK  
SWB1_MSK  
LDOA3_MSK  
0h = SWB2 pin status is part of power good tree of GPO1 pin.  
1h = SWB2 pin status is NOT part of power good tree of GPO1  
pin and is ignored.  
0h = SWB1 PG is part of power good tree of GPO1 pin.  
1h = SWB1 PG is NOT part of power good tree of GPO1 pin and  
is ignored.  
0h = LDOA3 PG is part of power good tree of GPO1 pin.  
1h = LDOA3 PG is NOT part of power good tree of GPO1 pin  
and is ignored.  
66  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.39 GPO4PG_CTRL1: GPO4 PG Control1 Register (offset = A6h) [reset = 0h]  
GPO4PG_CTRL1is shown in Figure 5-52 and described in Table 5-46.  
Return to Summary Table.  
Figure 5-52. GPO4PG_CTRL1 Register  
7
6
5
4
3
2
1
0
LDOA2_MSK  
R/W-0h  
SWA1_MSK  
R/W-0h  
BUCK6_MSK  
R/W-0h  
BUCK5_MSK  
R/W-0h  
BUCK4_MSK  
R/W-0h  
BUCK3_MSK  
R/W-0h  
BUCK2_MSK  
R/W-0h  
BUCK1_MSK  
R/W-0h  
Table 5-46. GPO4PG_CTRL1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
LDOA2_MSK  
SWA1_MSK  
BUCK6_MSK  
BUCK5_MSK  
BUCK4_MSK  
BUCK3_MSK  
BUCK2_MSK  
BUCK1_MSK  
R/W  
0h  
0h = LDOA2 PG is part of power good tree of GPO4 pin.  
1h = LDOA2 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = SWA1 PG is part of power good tree of GPO4 pin.  
1h = SWA1 PG is NOT part of power good tree of GPO4 pin and  
is ignored.  
0h = BUCK6 PG is part of power good tree of GPO4 pin.  
1h = BUCK6 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
0h = BUCK5 PG is part of power good tree of GPO4 pin.  
1h = BUCK5 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
0h = BUCK4 PG is part of power good tree of GPO4 pin.  
1h = BUCK4 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
0h = BUCK3 PG is part of power good tree of GPO4 pin.  
1h = BUCK3 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
0h = BUCK2 PG is part of power good tree of GPO4 pin.  
1h = BUCK2 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
0h = BUCK1 PG is part of power good tree of GPO4 pin.  
1h = BUCK1 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.40 GPO4PG_CTRL2: GPO4 PG Control2 Register (offset = A7h) [reset = 0h]  
GPO4PG_CTRL2 is shown in Figure 5-53 and described in Table 5-47.  
Return to Summary Table.  
Figure 5-53. GPO4PG_CTRL2 Register  
7
6
5
4
3
2
1
0
CTL5_MSK  
R/W-0h  
CTL4_MSK  
R/W-0h  
CTL2_MSK  
R/W-0h  
CTL1_MSK  
R/W-0h  
VTT_MSK  
R/W-0h  
SWB2_MSK  
R/W-0h  
SWB1_MSK  
R/W-0h  
LDOA3_MSK  
R/W-0h  
Table 5-47. GPO4PG_CTRL2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
CTL5_MSK  
CTL4_MSK  
CTL2_MSK  
CTL1_MSK  
VTT_MSK  
R/W  
0h  
0h = CTL5 pin status is part of power good tree of GPO4 pin.  
1h = CTL5 pin status is NOT part of power good tree of GPO4  
pin and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = CTL4 pin status is part of power good tree of GPO4 pin.  
1h = CTL4 pin status is NOT part of power good tree of GPO4  
pin and is ignored.  
0h = CTL2 pin status is part of power good tree of GPO4 pin.  
1h = CTL2 pin status is NOT part of power good tree of GPO4  
pin and is ignored.  
0h = CTL1 pin status is part of power good tree of GPO4 pin.  
1h = CTL1 pin status is NOT part of power good tree of GPO4  
pin and is ignored.  
0h = VTT LDO PG is part of power good tree of GPO4 pin.  
1h = VTT LDO PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
SWB2_MSK  
SWB1_MSK  
LDOA3_MSK  
0h = SWB2 pin status is part of power good tree of GPO4 pin.  
1h = SWB2 pin status is NOT part of power good tree of GPO4  
pin and is ignored.  
0h = SWB1 PG is part of power good tree of GPO4 pin.  
1h = SWB1 PG is NOT part of power good tree of GPO4 pin and  
is ignored.  
0h = LDOA3 PG is part of power good tree of GPO4 pin.  
1h = LDOA3 PG is NOT part of power good tree of GPO4 pin  
and is ignored.  
68  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.41 GPO2PG_CTRL1: GPO2 PG Control1 Register (offset = A8h) [reset = C0h]  
GPO2PG_CTRL1 is shown in Figure 5-54 and described in Table 5-48.  
Return to Summary Table.  
Figure 5-54. GPO2PG_CTRL1 Register  
7
6
5
4
3
2
1
0
LDOA2_MSK  
R/W-1h  
SWA1_MSK  
R/W-1h  
BUCK6_MSK  
R/W-0h  
BUCK5_MSK  
R/W-0h  
BUCK4_MSK  
R/W-0h  
BUCK3_MSK  
R/W-0h  
BUCK2_MSK  
R/W-0h  
BUCK1_MSK  
R/W-0h  
Table 5-48. GPO2PG_CTRL1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
LDOA2_MSK  
SWA1_MSK  
BUCK6_MSK  
BUCK5_MSK  
BUCK4_MSK  
BUCK3_MSK  
BUCK2_MSK  
BUCK1_MSK  
R/W  
1h  
0h = LDOA2 PG is part of power good tree of GPO2 pin.  
1h = LDOA2 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = SWA1 PG is part of power good tree of GPO2 pin.  
1h = SWA1 PG is NOT part of power good tree of GPO2 pin and  
is ignored.  
0h = BUCK6 PG is part of power good tree of GPO2 pin.  
1h = BUCK6 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
0h = BUCK5 PG is part of power good tree of GPO2 pin.  
1h = BUCK5 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
0h = BUCK4 PG is part of power good tree of GPO2 pin.  
1h = BUCK4 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
0h = BUCK3 PG is part of power good tree of GPO2 pin.  
1h = BUCK3 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
0h = BUCK2 PG is part of power good tree of GPO2 pin.  
1h = BUCK2 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
0h = BUCK1 PG is part of power good tree of GPO2 pin.  
1h = BUCK1 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.42 GPO2PG_CTRL2: GPO2 PG Control2 Register (offset = A9h) [reset = 2Fh]  
GPO2PG_CTRL2 is shown in Figure 5-55 and described in Table 5-49.  
Return to Summary Table.  
Figure 5-55. GPO2PG_CTRL2 Register  
7
6
5
4
3
2
1
0
CTL5_MSK  
R/W-0h  
CTL4_MSK  
R/W-0h  
CTL2_MSK  
R/W-1h  
CTL1_MSK  
R/W-0h  
VTT_MSK  
R/W-1h  
SWB2_MSK  
R/W-1h  
SWB1_MSK  
R/W-1h  
LDOA3_ MSK  
R/W-1h  
Table 5-49. GPO2PG_CTRL2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
CTL5_MSK  
CTL4_MSK  
CTL2_MSK  
CTL1_MSK  
VTT_MSK  
R/W  
0h  
0h = CTL5 pin status is part of power good tree of GPO2 pin.  
1h = CTL5 pin status is NOT part of power good tree of GPO2  
pin and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
1h  
0h  
1h  
1h  
1h  
1h  
0h = CTL4 pin status is part of power good tree of GPO2 pin.  
1h = CTL4 pin status is NOT part of power good tree of GPO2  
pin and is ignored.  
0h = CTL2 pin status is part of power good tree of GPO2 pin.  
1h = CTL2 pin status is NOT part of power good tree of GPO2  
pin and is ignored.  
0h = CTL1 pin status is part of power good tree of GPO2 pin.  
1h = CTL1 pin status is NOT part of power good tree of GPO2  
pin and is ignored.  
0h = VTT LDO PG is part of power good tree of GPO2 pin.  
1h = VTT LDO PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
SWB2_MSK  
SWB1_MSK  
LDOA3_MSK  
0h = SWB2 pin status is part of power good tree of GPO2 pin.  
1h = SWB2 pin status is NOT part of power good tree of GPO2  
pin and is ignored.  
0h = SWB1 PG is part of power good tree of GPO2 pin.  
1h = SWB1 PG is NOT part of power good tree of GPO2 pin and  
is ignored.  
0h = LDOA3 PG is part of power good tree of GPO2 pin.  
1h = LDOA3 PG is NOT part of power good tree of GPO2 pin  
and is ignored.  
70  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.43 GPO3PG_CTRL1: GPO3 PG Control1 Register (offset = AAh) [reset = 0h]  
GPO3PG_CTRL1 is shown in Figure 5-56 and described in Table 5-50.  
Return to Summary Table.  
Figure 5-56. GPO3PG_CTRL1 Register  
7
6
5
4
3
2
1
0
LDOA2_MSK  
R/W-0h  
SWA1_MSK  
R/W-0h  
BUCK6_MSK  
R/W-0h  
BUCK5_MSK  
R/W-0h  
BUCK4_MSK  
R/W-0h  
BUCK3_MSK  
R/W-0h  
BUCK2_MSK  
R/W-0h  
BUCK1_MSK  
R/W-0h  
Table 5-50. GPO3PG_CTRL1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
LDOA2_MSK  
SWA1_MSK  
BUCK6_MSK  
BUCK5_MSK  
BUCK4_MSK  
BUCK3_MSK  
BUCK2_MSK  
BUCK1_MSK  
R/W  
0h  
0h = LDOA2 PG is part of power good tree of GPO3 pin.  
1h = LDOA2 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = SWA1 PG is part of power good tree of GPO3 pin.  
1h = SWA1 PG is NOT part of power good tree of GPO3 pin and  
is ignored.  
0h = BUCK6 PG is part of power good tree of GPO3 pin.  
1h = BUCK6 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
0h = BUCK5 PG is part of power good tree of GPO3 pin.  
1h = BUCK5 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
0h = BUCK4 PG is part of power good tree of GPO3 pin.  
1h = BUCK4 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
0h = BUCK3 PG is part of power good tree of GPO3 pin.  
1h = BUCK3 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
0h = BUCK2 PG is part of power good tree of GPO3 pin.  
1h = BUCK2 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
0h = BUCK1 PG is part of power good tree of GPO3 pin.  
1h = BUCK1 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
71  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.44 GPO3PG_CTRL2: GPO3 PG Control2 Register (offset = ABh) [reset = 0h]  
GPO3PG_CTRL2 is shown in Figure 5-57 and described in Table 5-51.  
Return to Summary Table.  
Figure 5-57. GPO3PG_CTRL2 Register  
7
6
5
4
3
2
1
0
CTL5_MSK  
R/W-0h  
CTL4_MSK  
R/W-0h  
CTL2_MSK  
R/W-0h  
CTL1_MSK  
R/W-0h  
VTT_MSK  
R/W-0h  
SWB2_MSK  
R/W-0h  
SWB1_MSK  
R/W-0h  
LDOA3_MSK  
R/W-0h  
Table 5-51. GPO3PG_CTRL2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
CTL5_MSK  
CTL4_MSK  
CTL2_MSK  
CTL1_MSK  
VTT_MSK  
R/W  
0h  
0h = CTL5 pin status is part of power good tree of GPO3 pin.  
1h = CTL5 pin status is NOT part of power good tree of GPO3  
pin and is ignored.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h = CTL4 pin status is part of power good tree of GPO3 pin.  
1h = CTL4 pin status is NOT part of power good tree of GPO3  
pin and is ignored.  
0h = CTL2 pin status is part of power good tree of GPO3 pin.  
1h = CTL2 pin status is NOT part of power good tree of GPO3  
pin and is ignored.  
0h = CTL1 pin status is part of power good tree of GPO3 pin.  
1h = CTL1 pin status is NOT part of power good tree of GPO3  
pin and is ignored.  
0h = VTT LDO PG is part of power good tree of GPO3 pin.  
1h = VTT LDO PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
SWB2_MSK  
SWB1_MSK  
LDOA3_MSK  
0h = SWB2 pin status is part of power good tree of GPO3 pin.  
1h = SWB2 pin status is NOT part of power good tree of GPO3  
pin and is ignored.  
0h = SWB1 PG is part of power good tree of GPO3 pin.  
1h = SWB1 PG is NOT part of power good tree of GPO3 pin and  
is ignored.  
0h = LDOA3 PG is part of power good tree of GPO3 pin.  
1h = LDOA3 PG is NOT part of power good tree of GPO3 pin  
and is ignored.  
72  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.45 MISCSYSPG Register (offset = ACh) [reset = FFh]  
MISCSYSPG is shown in Figure 5-58 and described in Table 5-52.  
Return to Summary Table.  
Figure 5-58. MISCSYSPG Register  
7
6
5
4
3
2
1
0
GPO1_CTL3_  
MSK  
GPO1_  
CTL6_MSK  
GPO4_CTL3_  
MSK  
GPO4_  
CTL6_MSK  
GPO2_CTL3_  
MSK  
GPO2_CTL6_  
MSK  
GPO3_CTL3_  
MSK  
GPO3_CTL6_  
MSK  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 5-52. MISCSYSPG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPO1_CTL3_MSK  
GPO1_CTL6_MSK  
GPO4_CTL3_MSK  
GPO4_CTL6_MSK  
GPO2_CTL3_MSK  
GPO2_CTL6_MSK  
GPO3_CTL3_MSK  
GPO3_CTL6_MSK  
R/W  
1h  
0h = CTL3 pin status is part of power good tree of GPO1 pin.  
1h = CTL3 pin status is NOT part of power good tree of GPO1  
pin.  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
0h = CTL6 pin status is part of power good tree of GPO1 pin.  
1h = CTL6 pin status is NOT part of power good tree of GPO1  
pin.  
0h = CTL3 pin status is part of power good tree of GPO4 pin.  
1h = CTL3 pin status is NOT part of power good tree of GPO4  
pin.  
0h = CTL6 pin status is part of power good tree of GPO4 pin.  
1h = CTL6 pin status is NOT part of power good tree of GPO4  
pin.  
0h = CTL3 pin status is part of power good tree of GPO2 pin.  
1h = CTL3 pin status is NOT part of power good tree of GPO2  
pin.  
0h = CTL6 pin status is part of power good tree of GPO2 pin.  
1h = CTL6 pin status is NOT part of power good tree of GPO2  
pin.  
0h = CTL3 pin status is part of power good tree of GPO3 pin.  
1h = CTL3 pin status is NOT part of power good tree of  
GPO13pin.  
0h = CTL6 pin status is part of power good tree of GPO3 pin.  
1h = CTL6 pin status is NOT part of power good tree of GPO3  
pin.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
73  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.46 LDOA1CTRL: LDOA1 Control Register (offset = AEh) [reset = 7Dh]  
LDOA1CTRL is shown in Figure 5-59 and described in Table 5-53.  
Return to Summary Table.  
Figure 5-59. LDOA1CTRL Register  
7
6
5
4
3
2
1
0
LDOA1_DISCHG[1:0]  
LDOA1_SDWN  
_CONFIG  
LDOA1_VID[3:0]  
LDOA1_EN  
R/W-1h  
R/W-1h  
R/W-Eh  
R/W-1h  
Table 5-53. LDOA1CTRL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LDOA1_DISCHG[1:0]  
R/W  
1h  
LDOA1 discharge resistance  
0h = no discharge  
1h = 100 Ω  
2h = 200 Ω  
3h = 500 Ω  
5
LDOA1_SDWN_CONFIG  
R/W  
1h  
Control for Disabling LDOA1 during Emergency Shutdown  
0h = LDOA1 will turn off during Emergency Shutdown for  
factory-programmable duration of 1 ms, 5 ms, 10 ms, or 100 ms.  
1h = LDOA1 is controlled by LDOA1_EN bit only.  
4-1  
0
LDOA1_VID[3:0]  
LDOA1_EN  
R/W  
R/W  
Eh  
1h  
This field sets the LDOA1 regulator output regulation voltage.  
See 5-4 for VOUT options.  
LDOA1 Enable Bit.  
0h = Disable.  
1h = Enable.  
74  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.47 PG_STATUS1: Power Good Status1 Register (offset = B0h) [reset = 0h]  
PG_STATUS1 is shown in Figure 5-60 and described in Table 5-54.  
Return to Summary Table.  
Figure 5-60. PG_STATUS1 Register  
7
6
5
4
3
2
1
0
LDOA2_PGOO SWA1_PGOOD BUCK6_PGOO BUCK5_PGOO BUCK4_PGOO BUCK3_PGOO BUCK2_PGOO BUCK1_PGOO  
D
D
D
D
D
D
D
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 5-54. PG_STATUS1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDOA2_PGOOD  
SWA1_PGOOD  
BUCK6_PGOOD  
BUCK5_PGOOD  
BUCK4_PGOOD  
BUCK3_PGOOD  
BUCK2_PGOOD  
BUCK1_PGOOD  
R
0h  
LDOA2 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
SWA1 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
BUCK6 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
BUCK5 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
BUCK4 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
BUCK3 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
BUCK2 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
BUCK1 power good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
75  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.48 PG_STATUS2: Power Good Status2 Register (offset = B1h) [reset = 0h]  
PG_STATUS2 is shown in Figure 5-61 and described in Table 5-55.  
Return to Summary Table.  
Figure 5-61. PG_STATUS2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
LDO5_PGOOD LDOA1_PGOO VTT_PGOOD SWB2_PGOOD SWB1_PGOOD LDOA3_PGOO  
D
D
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 5-55. PG_STATUS2 Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
LDO5_PGOOD  
LDOA1_PGOOD  
VTT_PGOOD  
R
0h  
LDO5 Power Good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
4
3
2
1
0
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
LDOA1 Power Good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
VTT LDO Power Good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
SWB2_PGOOD  
SWB1_PGOOD  
LDOA3_PGOOD  
SWB2 Power Good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
SWB1 Power Good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
LDOA3 Power Good status.  
0h = The output is not in target regulation range.  
1h = The output is in target regulation range.  
76  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.49 PWR_FAULT_STATUS1: Power Fault Status1 Register (offset = B2h) [reset = 0h]  
PWR_FAULT_STATUS1 is shown in Figure 5-62 and described in Table 5-56.  
Return to Summary Table.  
Figure 5-62. PWR_FAULT_STATUS1 Register  
7
6
5
4
3
2
1
0
LDOA2_PWRF SWA1_PWRFL BUCK6_PWRF BUCK5_PWRF BUCK4_PWRF BUCK3_PWRF BUCK2_PWRF BUCK1_PWRF  
LT  
T
LT  
LT  
LT  
LT  
LT  
LT  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 5-56. PWR_FAULT_STATUS1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDOA2_PWRFLT  
SWA1_PWRFLT  
BUCK6_PWRFLT  
BUCK5_PWRFLT  
BUCK4_PWRFLT  
BUCK3_PWRFLT  
BUCK2_PWRFLT  
BUCK1_PWRFLT  
R
0h  
This fields indicates that LDOA2 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
This fields indicates that SWA1 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK6 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK5 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK4 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK3 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK2 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK1 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
77  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.50 PWR_FAULT_STATUS2: Power Fault Status2 Register (offset = B3h) [reset = 0h]  
PWR_FAULT_STATUS2 is shown in Figure 5-63 and described in Table 5-57.  
Return to Summary Table.  
Figure 5-63. PWR_FAULT_STATUS2 Register  
7
6
5
4
3
2
1
0
RESERVED  
LDOA1_PWRF VTT_PWRFLT SWB2_PWRFL SWB1_PWRFL LDOA3_PWRF  
LT  
T
T
LT  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 5-57. PWR_FAULT_STATUS2 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
LDOA1_PWRFLT  
R/W  
0h  
This fields indicates that LDOA1 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
3
4
3
0
VTT_PWRFLT  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
This fields indicates that VTT LDO has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
SWB2_PWRFLT  
SWB1_PWRFLT  
LDOA3_PWRFLT  
This fields indicates that SWB2 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that SWB1 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
This fields indicates that LDOA3 has lost its regulation.  
0h = No Fault.  
1h = Power fault has occurred. The host to write 1 to clear.  
78  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com  
ZHCSGZ6 OCTOBER 2017  
5.9.51 TEMPCRIT: Temperature Fault Status Register (offset = B4h) [reset = 0h]  
TEMPCRIT is shown in Figure 5-64 and described in Table 5-58.  
Return to Summary Table.  
Asserted when an internal temperature sensor detects rise of die temperature above the CRITICAL  
temperature threshold (TCRIT). There are 5 temperature sensors across the die.  
Figure 5-64. TEMPCRIT Register  
7
6
5
4
3
2
1
0
RESERVED  
DIE_CRIT  
VTT_CRIT  
TOP-  
TOP-  
BOTTOM-  
RIGHT_CRIT  
LEFT_CRIT  
RIGHT_CRIT  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 5-58. TEMPCRIT Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
DIE_CRIT  
R/W  
0h  
Temperature of rest of die has exceeded TCRIT  
.
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
3
2
VTT_CRIT  
R/W  
R/W  
0h  
0h  
Temperature of VTT LDO has exceeded TCRIT  
.
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
TOP-RIGHT_CRIT  
Temperature of die Top-Right has exceeded TCRIT. Top-Right  
corner of die from top view given pin1 is in Top-Left corner.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
1
0
TOP-LEFT_CRIT  
R/W  
R/W  
0h  
0h  
Temperature of die Top-Left has exceeded TCRIT.Top-Left  
corner of die from top view given pin1 is in Top-Left corner.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
BOTTOM-RIGHT_CRIT  
Temperature of die Bottom-Right has exceeded TCRIT. Bottom-  
Right corner of die from top view given pin1 is in Top-Left  
corner.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
Copyright © 2017, Texas Instruments Incorporated  
Detailed Description  
79  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com  
5.9.52 TEMPHOT: Temperature Hot Status Register (offset = B5h) [reset = 0h]  
TEMPHOT is shown in Figure 5-65 and described in Table 5-59.  
Return to Summary Table.  
Asserted when an internal temperature sensor detects rise of die temperature above the HOT temperature  
threshold (THOT). There are 5 temperature sensors across the die.  
Figure 5-65. TEMPHOT Register  
7
6
5
4
3
2
1
0
RESERVED  
DIE_HOT  
VTT_HOT  
TOP-  
TOP-  
BOTTOM-  
RIGHT_HOT  
LEFT_HOT  
RIGHT_HOT  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 5-59. TEMPHOT Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
DIE_HOT  
R/W  
0h  
Temperature of rest of die has exceeded THOT  
.
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
3
2
VTT_HOT  
R/W  
R/W  
0h  
0h  
Temperature of VTT LDO has exceeded THOT  
.
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
TOP-RIGHT_HOT  
Temperature of Top-Right has exceeded THOT. Top-Right corner  
of die from top view given pin1 is in Top-Left corner.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
1
0
TOP-LEFT_HOT  
R/W  
R/W  
0h  
0h  
Temperature of Top-Left has exceeded THOT. Top-Left corner  
of die from top view given pin1 is in Top-Left corner.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
BOTTOM-RIGHT_HOT  
Temperature of Bottom-Right has exceeded THOT. Bottom-Right  
corner of die from top view given pin1 is in Top-Left corner.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
80  
Detailed Description  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS6508700  
 
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
5.9.53 OC_STATUS: Overcurrent Fault Status Register (offset = B6h) [reset = 0h]  
OC_STATUS is shown in Figure 5-66 and described in Table 5-60.  
Return to Summary Table.  
Asserted when overcurrent condition is detected from a LSD FET.  
Figure 5-66. OC_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
BUCK6_OC  
R/W-0h  
BUCK2_OC  
R/W-0h  
BUCK1_OC  
R/W-0h  
Table 5-60. OC_STATUS Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
BUCK6_OC  
R/W  
0h  
BUCK6 LSD FET overcurrent has been detected.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
1
0
BUCK2_OC  
BUCK1_OC  
R/W  
R/W  
0h  
0h  
BUCK2 LSD FET overcurrent has been detected.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
BUCK1 LSD FET overcurrent has been detected.  
0h = Not asserted.  
1h = Asserted. The host to write 1 to clear.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
81  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
6 Applications, Implementation, and Layout  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Application Information  
The TPS6508700 device can be used in several different applications from computing, industrial  
interfacing and much more. 6.2 describes the general application information and provides a more  
detailed description on the TPS6508700 device that powers the AMD system. 6-2 shows the functional  
block diagram for the device, which outlines the typical external connections required for proper device  
functionality.  
6.2 Typical Application  
3.3 V_EC  
(LDOA1)  
100 k  
EN_S5  
CTL4  
100 kꢀ  
100 kꢀ  
GPIO_G3  
CTL1  
EN_S0  
CTL5  
6-1. CTL Pin Implementation Option  
82  
Applications, Implementation, and Layout  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
VIN  
PMIC  
AMD SoC  
PLATFORM  
VDD_5  
LDO5 V  
5 V  
BUCK1 (8 A)  
EXT FET  
VIN  
VDD_5_S5  
LS  
LS  
BUCK2 (4 A)  
BUCK3 (3 A)  
EXT FET  
VDDP  
VDD_18  
VIN (5.4 V to 21 V)  
VDD_18_S5  
VDDP_S5  
BUCK4 (1 A)  
BUCK5 (0.25 A)  
BUCK6 (8 A/15 A)  
VTT LDO ±0.5 A  
LDOA1 0.2 A  
VDD_AUD_S5  
VIN  
LS  
VDD_33  
EXT FET  
VDD33_S5  
3.3V_G3  
VINLDO up to 2 V  
LDOA2 0.6 A  
LDOA3 0.6 A  
VSUPP1  
VSUPP2  
VING1 up to 3.3 V  
VING2 up to 3.3 V  
SWA1 0.3 A  
SWB1 0.4 A  
SWB2 0.4 A  
VSUPP3  
VSUPP4  
VSUPP5  
VSYS  
LDO5 V  
LDO5  
PG_5 V  
LDO3P3  
EN_S5  
CTL1  
IRQB  
CTL2  
GPO1 (PG_S5)  
GPO2 (PG_S0)  
GPO3  
GPIO_G3  
CTL3  
CTL4  
GPO4  
CTL5  
CTL6  
EN_S0  
DATA  
SCLK  
Copyright © 2017, Texas Instruments Incorporated  
6-2. Typical Application Example  
6.2.1 Design Requirements  
The TPS6508700 device requires decoupling capacitors on the supply pins. Follow the values for  
recommended capacitance on these supplies given in Section 4. The controllers, converter, LDOs, and  
some other features can be adjusted to meet specific application needs. 6.2.2 describes how to design  
and adjust the external components to achieve the desired performance. In most cases, the controller and  
converter designs should be copied directly from the AMD reference design. If significant changes must  
be made, some guidelines are provided in 6.2.2.  
版权 © 2017, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
83  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
6.2.2 Detailed Design Procedure  
6.2.2.1 Controller Design Procedure  
Designing the controller can be broken down into the following steps:  
1. Design the output filter  
2. Select the FETs  
3. Select the bootstrap capacitor  
4. Select the input capacitors  
5. Set the current limits  
The BUCK1, BUCK2, and BUCK6 controllers require a 5-V supply and capacitors at their corresponding  
DRV5V_x_x pins. For most applications, the DRV5V_x_x input must come from the LDO5P0 pin to ensure  
uninterrupted supply voltage. A 2.2-µF, X5R, 20%, 10-V, or similar capacitor must be used for decoupling.  
VSYS  
DRVHx  
BOOT1  
LDO5V  
DRV5V_x_x  
VOUT  
LOUT  
SWx  
COUT  
Controller  
DRVLx  
PGNDSNSx  
Control  
from SOC  
FBVOUTx  
RILIM  
ILIMx  
<FBGND2>(1)  
PowerPADTM  
Copyright © 2017, Texas Instruments Incorporated  
6-3. Controller Diagram  
6.2.2.1.1 Controller With External Feedback Resistor  
For BUCK1, the voltage can be set using external feedback resistor. For all other bucks, the voltage is set  
by the default OTP settings and no resistor divider is required. For BUCK1, The internal voltage reference  
is set to 0.4 V.The output voltage is set with a resistor divider from the output node to the FB pin. TI  
recommends using a 1% tolerance or better to get accurate number. Use 公式 3 to calculate the value of  
R2.  
R2 = R1 (0.4 / VO – 0.4)  
(3)  
To set the output voltage to 5 V, use a value of 294 kΩ for R1 and 25.5 kΩ for R2.  
84  
Applications, Implementation, and Layout  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
VSYS  
DRVHx  
BOOT1  
LDO5V  
DRV5V_x_x  
LOUT  
VOUT  
SWx  
COUT  
Controller  
CFF  
DRVLx  
PGNDSNSx  
Control  
from SOC  
FBVOUTx  
RILIM  
ILIMx  
<FBGND2>(1)  
PowerPADTM  
Copyright © 2017, Texas Instruments Incorporated  
6-4. Controller Diagram With External Feedback Resistor  
6.2.2.1.2 Selecting the Inductor  
Placement of an inductor is required between the external FETs and the output capacitors. Together, the  
inductor and output capacitors make the double-pole that contributes to stability. Additionally, the inductor  
is directly responsible for the output ripple, efficiency, and transient performance. As the inductance used  
increases, the ripple current decreases, which typically results in increased efficiency. However, as the  
inductance used increases, the transient performance decreases. Finally, the inductor selected must be  
rated for appropriate saturation current, core losses, and DC resistance (DCR).  
Use 公式 4 to calculate the recommended inductance for the controller.  
VOUT ì (V - VOUT  
IN ì fsw ì IOUT(MAX) ì KIND  
)
IN  
L =  
V
where  
VOUT is the typical output voltage.  
VIN is the typical input voltage.  
fSW is the typical switching frequency.  
IOUT(MAX) is the maximum load current.  
KIND is the ratio of ILripple to the IOUT(MAX). For this application, TI recommends that KIND is set to a value  
from 0.2 to 0.4.  
(4)  
With the chosen inductance value, the peak current for the inductor in steady state operation, IL(MAX), can  
be calculated using 公式 5. The rated saturation current of the inductor must be higher than the IL(MAX)  
current.  
(V -VOUT ) ì VOUT  
2 ì VIN ì fsw ì L  
IN  
IL(MAX) = IOUT(MAX)  
+
(5)  
版权 © 2017, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
85  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
 
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
6.2.2.1.3 Selecting the Output Capacitors  
TI recommends using ceramic capacitors with low ESR values to provide the lowest output voltage ripple.  
The output capacitor requires an X7R or an X5R dielectric. Y5V and Z5U dielectric capacitors, aside from  
their wide variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents, the controller operates in PFM mode, and the output voltage ripple is dependent on  
the output-capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize  
the voltage ripple in PFM mode. To achieve the specified regulation performance and low output-voltage  
ripple, the DC-bias characteristic of ceramic capacitors must be considered. The effective capacitance of  
ceramic capacitors drops with increasing DC bias voltage.  
TI recommends using small ceramic capacitors placed between the inductor and load with many vias to  
the power ground (PGND) plane for the output capacitors of the buck controllers. This solution typically  
provides the smallest and lowest cost solution available for D-CAP2 controllers.  
The selection of the output capacitor is typically driven by the output transient response. 公式 6 provides a  
rough estimate of the minimum required capacitance to ensure proper transient response. Because the  
transient response is significantly affected by the board layout, some experimentation is expected to  
confirm that values derived in this section are applicable to any particular use case. 公式 6 is not meant to  
be an absolute requirement, but rather a rough starting point. Alternatively, some known combination  
values from which to begin are provided in 6-1.  
2
ITRAN(MAX) ì L  
COUT  
>
(VIN - VOUT ) ì VUNDER  
where  
ITRAN(MAX) is the maximum load current step.  
L is the chosen inductance.  
VOUT is the minimum programmed output voltage.  
VIN is the maximum input voltage.  
VUNDER is the minimum allowable undershoot from the programmable voltage.  
(6)  
In cases where the transient current change is very low, the DC stability may become important. Use 公式  
7 to calculate the approximate amount of capacitance required to maintain DC stability. Again, this  
equation is provided as a starting point; actual values will vary on a board-to-board case.  
VOUT ì 50 ms  
COUT  
>
V
ì fSW ì L  
IN  
where  
VOUT is the maximum programmed output voltage  
50 µs is based on internal ramp setup  
VIN is the minimum input voltage  
fSW is the typical switching frequency  
L is the chosen inductance  
(7)  
The maximum valuable between 公式 6 and 公式 7 must be selected. 6-1 lists some known inductor-  
capacitor combinations.  
6-1. Known LC Combinations  
ITRAN(max) (A)  
L (µH)  
0.47  
0.47  
0.47  
0.33  
0.22  
VOUT (V)  
VUNDER (V)  
0.05  
COUT(µF)  
110  
3.5  
4
1
1
0.05  
220  
5
1.35  
1
0.068  
0.06  
220  
8
440  
20  
1
0.16  
550  
86  
Applications, Implementation, and Layout  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
 
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
6.2.2.1.4 Selecting the FETs  
This controller is designed to drive two NMOS FETs. Typically, lower RDSON values are better for  
improving the overall efficiency of the controller; however, higher gate-charge thresholds result in lower  
efficiency so the twovalues must be balanced for optimal performance. As the RDSON for the low-side FET  
decreases, the minimum current limit increases; therefore, appropriately select the values for the FETs,  
inductor, output capacitors, and current limit resistor. TI's CSD87331Q3D, CSD87381P, and CSD87588N  
devices are recommended for the controllers, depending on the required maximum current.  
6.2.2.1.5 Bootstrap Capacitor  
To ensure the internal high-side gate drivers are supplied with a stable low-noise supply voltage, a  
capacitor must be connected between the SWx pins and the respective BOOTx pins. TI recommends  
placing ceramic capacitors with a value of 0.1 µF for the controllers. During testing, a 0.1-µF, size 0402,  
10-V capacitor is used for the controllers.  
TI recommends reserving a small resistor in series with the bootstrap capacitor in case the turnon and  
turnoff of the FETs must be slowed to reduce voltage ringing on the switch node, which is a common  
practice for controller design.  
6.2.2.1.6 Setting the Current Limit  
The current-limiting resistor value must be chosen based on 公式 1.  
6.2.2.1.7 Selecting the Input Capacitors  
Because of the nature of the switching controller with a pulsating input current, a low-ESR input capacitor  
is required for best input-voltage filtering and also for minimizing the interference with other circuits caused  
by high input-voltage spikes. For the controller, a typical 2.2-µF capacitor can be used for the DRV5V_x_x  
pin to support the transients on the driver. For the FET input, 10 µF of input capacitance (after derating) is  
recommended for most applications. To achieve the low-ESR requirement, a ceramic capacitor is  
recommended. However, the voltage rating and DC-bias characteristic of ceramic capacitors must be  
considered. For better input-voltage filtering, the input capacitor can be increased without any limit.  
Use the correct capacitance value for the ceramic capacitor after derating to achieve the  
recommended input capacitance.  
TI recommends placing a ceramic capacitor as close as possible to the FET across the respective VSYS  
and PGND pins of the FETs. The preferred capacitors for the controllers are two Murata  
GRM21BR61E226ME44: 22-µF, 0805, 25-V, ±20%, or similar capacitors.  
6.2.2.2 Converter Design Procedure  
Designing the converter has only two steps: design the output filter and select the input capacitors.  
The converter must be supplied by a 5-V source. 6-5 shows a diagram of the converter.  
版权 © 2017, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
87  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
LOUT  
VOUT  
PVINx  
LXx  
VIN_BUCK345_ANA  
CIN  
FBx  
Converter  
Control from SOC  
Copyright © 2017, Texas Instruments Incorporated  
6-5. Converter Diagram  
6.2.2.2.1 Selecting the Inductor  
Placement of an inductor between the external FETs and the output capacitors is required. Together, the  
inductor and output capacitors form a double pole in the control loop that contributes to stability.  
Additionally, the inductor is directly responsible for the output ripple, efficiency, and transient performance.  
As the inductance used increases, the ripple current decreases, which typically results in an increase in  
efficiency. However, with an increase in inductance used, the transient performance decreases. Finally,  
the inductor selected must be rated for appropriate saturation current, core losses, and DCR.  
Internal parameters for the converters are optimized for a 0.47-µH inductor for BUCK3 and a  
1-µH inductor for BUCK4 and BUCK5; however, using other inductor values is possible as  
long as they are chosen carefully and thoroughly tested.  
VOUT ì (V - VOUT  
IN ì fsw ì IOUT(MAX) ì KIND  
)
IN  
L =  
V
(8)  
With the chosen inductance value and the peak current for the inductor in steady state operation, IL(MAX)  
can be calculated using 公式 9. The rated saturation current of the inductor must be higher than the IL(MAX)  
current.  
(V -VOUT ) ì VOUT  
2 ì VIN ì fsw ì L  
IN  
IL(MAX) = IOUT(MAX)  
+
(9)  
6.2.2.2.2 Selecting the Output Capacitors  
Ceramic capacitors with low ESR values are recommended because they provide the lowest output  
voltage ripple. The output capacitor requires either an X7R or X5R rating. Y5V and Z5U capacitors, aside  
from the wide variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents, the converter operates in PFM mode and the output voltage ripple is dependent on  
the output-capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize  
the voltage ripple in PFM mode. To achieve the specified regulation performance and low output-voltage  
ripple, the DC-bias characteristic of ceramic capacitors must be considered. The effective capacitance of  
ceramic capacitors drops with increasing DC-bias voltage.  
88  
Applications, Implementation, and Layout  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
 
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
For the output capacitors of the buck converters, TI recommends placing small ceramic capacitors  
between the inductor and load with many vias to the PGND plane. This solution typically provides the  
smallest and lowest-cost solution available for D-CAP2 controllers.  
The output capacitance must equal or exceed the minimum capacitance listed for BUCK3, BUCK4, and  
BUCK5 (assuming quality layout techniques are followed).  
6.2.2.2.3 Selecting the Input Capacitors  
Because of the nature of the switching converter with a pulsating input current, a low-ESR input capacitor  
is required for the best input-voltage filtering and for minimizing the interference with other circuits caused  
by high input-voltage spikes. For the PVINx pin, 2.5 µF of input capacitance (after derating) is required for  
most applications. A ceramic capacitor is recommended to achieve the low-ESR requirement. However,  
the voltage rating and DC-bias characteristic of ceramic capacitors must be considered. The input  
capacitor can be increased without any limit for better input-voltage filtering.  
Use the correct capacitance value for the ceramic capacitor after derating to achieve the  
recommended input capacitance.  
The preferred capacitor for the converters is one Samsung CL05A106MP5NUNC: 10-µF, 0402, 10-V,  
±20%, or similar capacitor.  
6.2.2.3 LDO Design Procedure  
The VTT LDO must support the fast load transients from the DDR memory for termination. Therefore, TI  
recommends using ceramic capacitors to maintain a high amount of capacitance with low ESR on the VTT  
LDO outputs and inputs. The preferred output capacitors for the VTT LDO are the GRM188R60J226MEA0  
from Murata (22 µF, 0603, 6.3 V, ±20%, or similar capacitors). The preferred input capacitor for the VTT  
LDO is the CL05A106MP5NUNC from Samsung (10-µF, 0402, 10-V, ±20%, or similar capacitor).  
The remaining LDOs must have input and output capacitors chosen based on the values in Section 4.9.  
6.2.3 Application Curves  
6-6. BUCK2 Load Transient  
6-7. BUCK2 Load Transient  
版权 © 2017, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
89  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
6.2.4 Layout  
6.2.4.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak  
currents and high switching frequencies. If the layout is not carefully done, the regulator can have stability  
problems and EMI issues. Therefore, use wide and short traces for the main current path and for the  
power ground (PGND) tracks. The input capacitors, output capacitors, and inductors must be placed as  
close as possible to the device. Use a common-ground node for the power ground and use a different,  
isolated node for the control ground to minimize the effects of ground noise. Connect these ground nodes  
close to the AGND pin by one or two vias. Use of the design guide is highly recommended in addition to  
following these other basic requirements:  
Do not allow the AGND, PGNDSNSx, or FBGND2 pin to connect to the thermal pad on the top layer.  
To ensure proper sensing based on the FET RDSON, the PGNDSNSx pin must not connect to the board  
ground or to the PGND pin of the FET.  
All inductors, input and output capacitors, and FETs for the converters and controller must be on the  
same board layer as the device.  
To achieve the best regulation performance, place feedback connection points near the output  
capacitors and minimize the control feedback loop as much as possible.  
Bootstrap capacitors must be placed close to the device.  
The internal reference regulators must have their input and output capacitors placed close to the  
device pins.  
Route the DRVHx and SWx pins as a differential pair. Ensure that a power-ground path is routed in  
parallel with the DRVLx pin, which provides optimal driver loops.  
6.2.4.2 Layout Example  
BUCK2  
VREF Capacitor  
VTT  
BUCK6  
BUCK3  
BUCK5  
BUCK4  
BUCK1  
6-8. EVM Layout Example With All Components on the Top Layer  
90  
Applications, Implementation, and Layout  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
www.ti.com.cn  
ZHCSGZ6 OCTOBER 2017  
6.3 Power Supply Coupling and Bulk Capacitors  
This device is designed to work with several different input voltages. The minimum voltage on the VSYS  
pin is 5.6 V for the device to start up; however, this is a low power rail. The input to the FETs must be  
from 4.5 V to 21 V as long as the proper bill of materials (BOM) choices are made. The input to the  
converters must be 5 V. For the device to output maximum power, the input power must be sufficient. For  
the controllers, VIN must be able to supply sufficient input current for the output power of the application.  
For the converters, the PVINx converter must be able to supply 2 A (typical).  
As a best practice, determine the power usage by the system and back-calculate the necessary power  
input based on the expected efficiency values.  
6.4 Do's and Don'ts  
Connect the LDO5V output to the DRV5V_x_x inputs. This output initially supplies 5 V for the drivers  
from the VSYS pin and then switches to using the 5-V buck converter when available for optimal  
efficiency.  
Ensure that none of the control pins are potentially floating.  
Include 0-Ω resistors on the DRVH or BOOT pins of the controllers on prototype boards, which allows  
for slowing the controllers if the system is unable to handle the noise generated by the large switching  
or if switching voltage is too large because of layout.  
Do not connect the V5ANA power input to a different source other than PVINx. A mismatch here  
causes reference circuits to regulate incorrectly.  
Do not supply the V5ANA power input before the VSYS. Reference biasing of the internal FETs may  
turn on the HS FET passing the input to the output until VSYS is biased.  
版权 © 2017, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
91  
提交文档反馈意见  
产品主页链接: TPS6508700  
TPS6508700  
ZHCSGZ6 OCTOBER 2017  
www.ti.com.cn  
7 器件和文档支持  
7.1 器件支持  
7.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构  
成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
7.2 文档支持  
7.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)CSD87331Q3D 同步降压 NexFET™ 电源块》数据表  
德州仪器 (TI)CSD87381P 同步降压 NexFET™ 电源块 II数据表  
德州仪器 (TI)CSD87588N 同步降压 NexFET™ 电源块 II数据表  
7.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
7.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社为了促进工程师之间的合作,我们创建了 TI 工程师对工程师 (E2E) 社区。在 e2e.ti.com  
中,您可以提问、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信  
息。  
7.5 商标  
DCAP2, D-CAP2, DCS-Control, NexFET, E2E are trademarks of Texas Instruments.  
AMD is a trademark of Advanced Micro Devices.  
All other trademarks are the property of their respective owners.  
7.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.7 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
8 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另  
行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
92  
机械、封装和可订购信息  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS6508700  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6508700RSKR  
TPS6508700RSKT  
ACTIVE  
VQFN  
VQFN  
RSK  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
T6508700  
PG1.0  
ACTIVE  
RSK  
NIPDAU  
T6508700  
PG1.0  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6508700RSKR  
TPS6508700RSKT  
VQFN  
VQFN  
RSK  
RSK  
64  
64  
2000  
250  
330.0  
180.0  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6508700RSKR  
TPS6508700RSKT  
VQFN  
VQFN  
RSK  
RSK  
64  
64  
2000  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS6508700RSKT

适用于 AMD™ 系列 17h 模型 10h-1Fh 处理器的 PMIC | RSK | 64 | -40 to 85
TI

TPS65090

Front-End PMU With Switched-Mode Charger for 2 to 3 Cells In Series
TI

TPS65090A

Frontend PMU With Switchmode Charger for 2-3 Cells In Series
TI

TPS65090ARVNR

Frontend PMU With Switchmode Charger for 2-3 Cells In Series
TI

TPS65090ARVNT

Frontend PMU With Switchmode Charger for 2-3 Cells In Series
TI

TPS65094

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC)
TI

TPS650940A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650940A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650941A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650941A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650942A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650942A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI