TPS65131TRGERQ1 [TI]

具有双路正负输出(750mA 典型值)的汽车类双电源转换器 | RGE | 24 | -40 to 105;
TPS65131TRGERQ1
型号: TPS65131TRGERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双路正负输出(750mA 典型值)的汽车类双电源转换器 | RGE | 24 | -40 to 105

开关 输出元件 转换器
文件: 总34页 (文件大小:2379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
TPS65131-Q1 正负输出直流/直流转换器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
AEC-Q100 在测试指南中包括以下结果:  
TPS65131-Q1 器件作为双输出直流/直流转换器,可产  
生高达 15V 的正输出电压和低至 -15V 的负输出电  
压,输出电流通常为 200mA,具体值取决于输入电压  
与输出电压比。凭借高达 85% 的总体效率,此器件非  
常适合于便携式电池供电类设备。输入电压范围为  
2.7V 5.5V,因此允许诸如 3.3V 5V 的电压轨为  
TPS65131-Q1 器件供电。TPS65131-Q1 器件采用带  
有散热垫的 QFN-24 封装。由于只需少量较小的外部  
组件,因此总体解决方案尺寸可以非常小。  
器件温度 2 级:–40°C 105°C 的环境运行温  
度范围  
已在 -40°C 125°C 的结温范围内测试电气特  
器件 HBM ESD 分类等级 H1C  
器件 CDM ESD 分类等级 C4B  
高达 15V 和低至 -15V 的双向可调输出电压  
对升压和逆变器主开关具有 2A 典型开关电流限制  
高转换效率  
此转换器采用定频 PWM 控制拓扑运行,而且在启用  
省电模式后,它在轻负载电流的情况下使用脉冲跳跃模  
式。在运行时,典型的总体器件静态电流只有  
500µA。在关断状态下,器件一般消耗 0.2µA。独立使  
能引脚可实现针对两个输出的加电和断电排序。为了尽  
可能地实现故障情况下的高可靠性,此器件有一个内部  
电流限制、过压保护和热关断。  
正输出轨高达 91%  
负输出轨高达 85%  
低负载状态下的省电模式  
针对加电和断电排序的独立使能输入  
用于外部 PFET 的控制输出可支持在关断时完全断  
2.7V 5.5V 输入电压范围  
最低 1.25MHz 的定频 PWM 操作  
热关断  
根据 AEC-Q100 温度 2 级要求,TPS65131-Q1 器件  
符合汽车 应用的要求。该器件在 –40°C 125°C 的  
器件结温范围内接受了电气特性测试。该器件还具有最  
低关断电流、小巧的解决方案尺寸、带散热垫的封装以  
及良好的效率和保护 特性,适合汽车和工业 应用。  
在两个输出上的过压保护  
0.2µA 典型关断电流  
小型 4mm x 4mm QFN-24 封装 (RGE)  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
2 应用范围  
超薄四方扁平无引线  
(VQFN) (24)  
小尺寸至中等尺寸有机发光二极管 (OLED) 显示器  
(TFT) LCDCCD 偏置电源  
TPS65131-Q1  
4mm x 4mm  
(1) 如需了解所有可用封装,请参阅可订购产品附录。  
应用电路原理图  
L1  
4.7 µH  
D1  
VI  
VPOS  
C4  
Q1  
C1  
4.7 µF  
R1  
22 µF  
C9  
VPOS  
FBP  
INP  
BSW  
VREF  
R2  
C8  
220 nF  
R4  
R3  
TPS65131-Q1  
FBN  
INN  
VIN  
C10  
VNEG  
R7  
100 Ω  
ENP  
PSP  
ENN  
PSN  
VNEG  
OUTN  
CN  
C3  
100 nF  
C2  
4.7 µF  
D2  
L2  
4.7 µH  
C5  
22 µF  
C6 C7  
10nF 4.7nF  
CP  
AGND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSBB2  
 
 
 
 
 
 
 
 
 
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Applications ................................................ 12  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
9
10 Power Supply Recommendations ..................... 25  
11 Layout................................................................... 25  
11.1 Layout Guidelines ................................................. 25  
11.2 Layout Example .................................................... 25  
12 器件和文档支持 ..................................................... 26  
12.1 器件支持................................................................ 26  
12.2 ....................................................................... 26  
12.3 静电放电警告......................................................... 26  
12.4 Glossary................................................................ 26  
13 机械、封装和可订购信息....................................... 26  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (October 2014) to Revision E  
Page  
已更改 特性项标条目文本从“...通过认证..”改为“...测试指南..”并且 HBM 分类等级从“H2”改为“H1C”...................................... 1  
Moved Tstg spec to the Abs Max Ratings table per new data sheet standard ....................................................................... 5  
Changed "Handling Ratings" to "ESD Ratings" and HBM Value From "±2 kV" to "±1000 V"................................................ 5  
Changed Electrical Characteristics condition statement to "This specification applies over the full recommended  
input voltage range VI = 2.7 V to 5.5 V and over the temperature range TJ = –40°C to 125°C unless otherwise  
noted. Typical values apply for VI = 3.6 V and TJ = 25°C.".................................................................................................... 6  
Changed The specification applies over the full recommended input voltage range VI = 2.7 V to 5.5 V and over the  
temperature range TJ = –40 °C to 125°C unless otherwise noted. Typical values apply for VI = 3.6 V and TJ = 25°........... 7  
已添加 Analog Supply Input Filter description ..................................................................................................................... 16  
Changes from Revision C (March 2014) to Revision D  
Page  
全局编辑更改,数据表使用了全新的格式 ............................................................................................................................... 1  
已更改 最大效率从 89% 改为 91% 以及从 81% 改为 85% .................................................................................................... 1  
已删除 最低 1.25MHz........................................................................................................................................................... 1  
已更改 1µA 关断电流至典型的 0.2µA ..................................................................................................................................... 1  
Relocated and renamed the pin Functions table ................................................................................................................... 4  
Added thermal pad to pin Functions Table............................................................................................................................. 4  
Added Thermal Pad to Absolute Maximum Ratings. Added min./max. values where missing.............................................. 5  
Added V(VIN), V(INN), VNEG, VPOS, V(ENN), V(ENP), V(PSN) to Recommended Operating Conditions table .................................... 5  
Changed symbol names to JEDEC compliance..................................................................................................................... 6  
Added frequency and duty cycles to Switching Characteristics table. Removed from Electrical Characteristics table ......... 7  
已添加 Rectifier Diode Selection Guide................................................................................................................................ 15  
已添加 P-MOSFET Selection Guide..................................................................................................................................... 15  
2
版权 © 2012–2017, Texas Instruments Incorporated  
 
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
Changes from Revision B (February 2013) to Revision C  
Page  
已添加 已在 -40°C 125°C 的结温范围内测试电气特性.................................................................................................... 1  
Deleted TA table row............................................................................................................................................................... 5  
Changed INN to VINN, added pin names VIN and INN............................................................................................................. 5  
Added pin name VPOS .......................................................................................................................................................... 5  
Added pin name VNEG .......................................................................................................................................................... 5  
Changed INP to VINP, added pin name INP ............................................................................................................................. 5  
Changed "between pins OUTN to VINN" to "between pins OUTN to INN".............................................................................. 5  
Added operating junction temperature ................................................................................................................................... 5  
Added "In applications where high power dissipation and/or poor package thermal resistance is present, the  
maximum ambient temperature may require derating. See Thermal Information for details."............................................... 5  
Deleted "virtual" from "Operating virtual junction temperature range".................................................................................... 5  
Changed Electrical Characteristics condition statement to "This specification applies over the full recommended  
input voltage range VI = 2.7 V to 5.5 V and over the temperature range TJ = TA = –40°C to 125°C unless otherwise  
noted. Typical values apply for VI = 3.6 V and TJ = TA = 25°C."............................................................................................ 6  
Changed ILIM,min = 1800 mA to 1700 mA ................................................................................................................................ 6  
Deleted VPOS = 5 V (105°C) row............................................................................................................................................. 6  
Changed rDS(on)P,max (VPOS = 5 V) = 300 mto 390 m......................................................................................................... 6  
Changed rDS(on)P,max (VPOS = 10 V) = 200 mto 230 m....................................................................................................... 6  
Changed ILIMP,min = 1800 mA to 1700 mA............................................................................................................................... 6  
Changed ILIMP,max = 2200 mA to 2250 mA.............................................................................................................................. 6  
Added TA = –40°C to 85°C ..................................................................................................................................................... 6  
Changed minimum f = 1250 kHz to 1150 kHz........................................................................................................................ 7  
Editorially updated Block Diagram.......................................................................................................................................... 9  
已更改 "The maximum recommended junction temperature (TJ) of the TPS65131-Q1 is 125°C." to "The  
recommended device junction temperature range, TJ, is -40°C to 125°C." ......................................................................... 16  
已更改 RθJA = 37.8°C/W to RθJA = 34.1°C/W ........................................................................................................................ 16  
已更改 "Specified regulator operation is ensured to a maximum ambient temperature TA of 105°C." to "The  
recommended operating ambient temperature range for the device is TA = –40°C to 105°C."........................................... 16  
已更改 "Therefore, the maximum power dissipation is about 1058 mW" to "Use 公式 13 to calculate the maximum  
power dissipation, PDmax, as a function of TA. In this equation, use TJ = 125°C to operate the device within the  
recommended temperature range, use TJ = T(TS) to determine the absolute maximum threshold when the device  
might go into thermal shutdown." ......................................................................................................................................... 16  
已更改 公式 13...................................................................................................................................................................... 16  
Changes from Revision A (November 2012) to Revision B  
Page  
CDM ESD 等级从 C3B 改为 C4B................................................................................................................................... 1  
Changes from Original (May 2012) to Revision A  
Page  
器件将从预览推进到生产 ........................................................................................................................................................ 1  
Added thermal information table values. ................................................................................................................................ 6  
Added VPOS = 5 V (105°C) row and values to Electrical Characteristics table....................................................................... 6  
Copyright © 2012–2017, Texas Instruments Incorporated  
3
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
24-pin VQFN With PowerPAD™ Package  
RGE Package  
place  
place  
(Top View)  
(Bottom View)  
19 20 21 22 23 24  
24 23 22 21 20 19  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
CN  
VREF  
FBN  
INP  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
INP  
PGND  
PGND  
VIN  
CN  
PGND  
PGND  
VIN  
VREF  
FBN  
Thermal Pad  
Thermal Pad  
VNEG  
OUTN  
OUTN  
VNEG  
OUTN  
OUTN  
INN  
INN  
INN  
INN  
12 11 10  
9
8
7
7
8
9
10 11 12  
NC – No internal Connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AGND  
BSW  
CN  
NO.  
19  
O
Analog ground pin  
Gate-control pin for external battery switch. This pin goes low when ENP is set high.  
7
18  
I/O Compensation pin for inverting converter control  
I/O Compensation pin for boost converter control  
CP  
21  
ENN  
ENP  
FBN  
10  
I
I
Enable pin for the negative-output voltage (0 V: disabled, VIN: enabled)  
Enable pin for the positive-output voltage (0 V: disabled, VIN: enabled)  
Feedback pin for the negative-output voltage divider  
Feedback pin for the positive-output voltage divider  
Inverting converter switch pin  
8
16  
I
FBP  
22  
I
INN  
5, 6  
1, 24  
12, 20  
13, 14  
2, 3  
11  
O
O
INP  
Boost converter switch pin  
NC(1)  
OUTN  
PGND  
PSN  
PSP  
Not connected  
I/O Inverting converter switch output  
Power ground pin  
I
I
I
I
I
Power-save mode enable for inverter stage (0 V: disabled, VIN: enabled)  
Power-save mode enable for boost converter stage (0 V: disabled, VIN: enabled)  
Control supply input  
9
VIN  
4
VNEG  
VPOS  
15  
Negative-output voltage-sense input  
23  
Positive-output voltage-sense input  
Reference output voltage. Bypass this pin with a 220-nF capacitor to ground. Connect the lower resistor of the  
negative-output voltage divider to this pin.  
VREF  
17  
O
Thermal pad  
Thermal pad for thermal performance, connect to PGND(1)  
(1) NC - No internal connection  
4
Copyright © 2012–2017, Texas Instruments Incorporated  
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature, unless otherwise noted  
(1)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
MAX  
(2)  
Input voltage range at pins VIN, INN  
6
V
V
(2)  
Voltage at pin VPOS  
17  
(2)  
Voltage at pin VNEG  
–17 V(VIN) + 0.3  
–0.3 V(VIN) + 0.3  
V
(2)  
Voltage at pins ENN, ENP, FBP, FBN, CN, CP, PSP, PSN, BSW  
V
(2)  
Input voltage at pin INP  
–0.3  
–0.3  
–0.3  
–40  
–65  
17  
24  
V
(2)  
Differential voltage between pins OUTN to INN  
V
Thermal pad(2)  
0.3  
150  
150  
V
TJ  
Operating junction temperature  
Storage temperature range  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground pin, unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±1000  
±750  
UNIT  
V
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature, unless otherwise noted  
MIN  
MAX  
UNIT  
VI , V(VIN)  
V(INN)  
,
Application input voltage range, input voltage range at VIN and INN pins  
2.7  
5.5  
V
VPOS  
VNEG  
Adjustable output voltage range for the boost converter  
Adjustable output voltage range for the inverting converter  
Enable signals voltage  
VI + 0.5  
–15  
15  
–2  
V
V
V
V(ENN)  
V(ENP)  
,
0
5.5  
V(PSN)  
,
Power-save mode enable signals voltage  
0
5.5  
V
V(PSP)  
TA  
TJ  
Operating free-air temperature range(1)  
Operating junction temperature range  
–40  
–40  
105  
125  
°C  
°C  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
require derating. See Thermal Information for details.  
Copyright © 2012–2017, Texas Instruments Incorporated  
5
 
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
6.4 Thermal Information  
TPS65131-Q1  
THERMAL METRIC(1)  
RGE PACKAGE  
UNIT  
24 PINS  
34.1  
36.8  
12.2  
0.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
12.3  
2.8  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 Electrical Characteristics  
This specification applies over the full recommended input voltage range VI = 2.7 V to 5.5 V and over the temperature range  
TJ = –40°C to 125°C unless otherwise noted. Typical values apply for VI = 3.6 V and TJ = 25°C.  
PARAMETER  
DC-DC STAGE (V(VPOS), V(VNEG)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
)
Vref  
Reference voltage  
Iref = 10 µA  
1.2  
1.213  
50  
1.225  
V
nA  
nA  
V
I(FBP)  
I(FBN)  
V(FBP)  
V(FBN)  
Positive feedback input bias current  
Negative feedback input bias current  
Positive feedback regulation voltage  
Negative feedback regulation voltage  
Total output dc accuracy  
V(FBP) = Vref  
V(FBN) = 0.1 Vref  
50  
1.189  
1.213  
0
1.237  
0.024  
–0.024  
V
3%  
V(VIN) = 3.6 V  
440  
330  
1950  
230  
170  
1950  
620  
530  
rDS(on)(N)  
I(LIM-N)  
rDS(on)(P)  
Inverter switch on-resistance  
Inverter switch current limit  
Boost switch on-resistance  
Boost switch current limit  
m  
mA  
mΩ  
mA  
V(VIN) = 5 V  
V(VIN) = 3.6 V  
1700  
2200  
390  
V(POS) = 5 V  
V(POS) = 10 V  
230  
I(LIM-P)  
CONTROL STAGE  
V(VIN) = 3.6 V, V(POS) = 8 V  
1700  
1.4  
2250  
High-level input voltage, ENP, ENN,  
PSP, PSN  
VIH  
VIL  
V
V
Low-level input voltage, ENP, ENN,  
PSP, PSN  
0.4  
0.1  
ENP, ENN, PSP, PSN connected  
to GND or VIN  
Input current, ENP, ENN, PSP, PSN  
0.01  
µA  
R(BSW)  
Output resistance  
VIN  
27  
300  
100  
100  
kΩ  
V(VIN) = 3.6 V, I(POS) = I(NEG) = 0,  
ENP = ENN = PSP = PSN =  
500  
120  
120  
VPOS  
VNEG  
IQ  
Quiescent current  
µA  
µA  
V(VIN)  
,
V(POS) = 8 V, V(NEG) = –5 V  
ENN = ENP = LOW, TA = –40°C to  
85°C  
ISD  
Shutdown supply current  
0.2  
1.5  
2.7  
V(UVLO)  
T(TS)  
Undervoltage lockout threshold  
Thermal shutdown  
2.1  
2.35  
150  
5
V
°C  
°C  
T(TS-HYS)  
Thermal shutdown hysteresis  
Junction temperature decreasing  
6
Copyright © 2012–2017, Texas Instruments Incorporated  
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
6.6 Switching Characteristics  
The specification applies over the full recommended input voltage range VI = 2.7 V to 5.5 V and over the temperature range  
TJ = –40 °C to 125°C unless otherwise noted. Typical values apply for VI = 3.6 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY  
f
Oscillator frequency  
1150  
1380  
1500  
kHz  
DUTY CYCLE  
D(MAX-P)  
Maximum-duty-cycle, boost converter  
87.5%  
87.5%  
12.5%  
12.5%  
Maximum-duty-cycle, inverting  
converter  
D(MAX-N)  
D(MIN-P)  
D(MIN-N)  
Minimum-duty-cycle, boost converter  
Minimum-duty-cycle, inverting  
converter  
6.7 Typical Characteristics  
At 25°C, unless otherwise noted.  
0.9  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VPOS = 10.5 V  
VNEG = -10 V  
VNEG = -15 V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VPOS = 15 V  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D001  
D002  
1. Boost Converter (VPOS) Maximum Output Current vs  
2. Inverting Converter (VPOS) Output Current vs Input  
Input Voltage  
Voltage  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
1.2  
VI = 5.5 V  
VI = 3.3 V  
1
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D004  
D003  
VI = 3.6 V  
4. Quiescent Current (Into VIN and INN) Over Input  
3. Shutdown Current (Into VIN and INN) Over Input  
Voltage  
Voltage  
版权 © 2012–2017, Texas Instruments Incorporated  
7
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
1. List of Components  
REFERENCE  
SETUP  
VALUE, DESCRIPTION  
4.7 µF, ceramic, 6.3 V, X5R  
0.1 µF, ceramic, 10 V, X5R  
4 x 4.7 µF, ceramic, 25 V, X7R  
10 nF, ceramic, 16 V, X7R  
4.7 nF, 50 V, C0G  
220 nF, ceramic, 6.3 V, X5R  
1 MΩ  
C1, C2  
C3  
C4, C5  
C6  
C7  
C8  
VPOS = 10.5 V  
VPOS = 15 V  
VPOS = 10.5 V  
VPOS = 15 V  
VNEG = –10 V  
VNEG = –15 V  
VNEG = –10 V  
VNEG = –15 V  
R1  
R2  
R3  
R4  
975 kΩ  
130 kΩ  
85.8 kΩ  
1 MΩ  
1.3 MΩ  
121.2 kΩ  
104.8 kΩ  
R7  
D1, D2  
L1, L2  
Q1  
100 Ω  
Schottky, 1 A, 20 V, Onsemi  
MBRM120  
4.7 µH, Epcos B82462-G4472  
MOSFET, p-channel, 12 V, 4 A,  
Vishay Si2323DS  
D1  
L1  
VI  
Q1  
V
POS  
C1  
C4  
R1  
R2  
INP  
VPOS  
FBP  
BSW  
VREF  
TPS65131-Q1  
C8  
R4  
R3  
INN  
FBN  
R7  
VIN  
VNEG  
ENP  
PSP  
ENN  
PSN  
AGND  
VNEG  
OUTN  
CN  
C2  
C3  
D2  
C5  
L2  
CP  
C7  
C6  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
5. Parameter Measurement Setup  
8
版权 © 2012–2017, Texas Instruments Incorporated  
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
8 Detailed Description  
8.1 Overview  
The TPS65131-Q1 is a dual-output dc-dc converter that generates two adjustable output voltages. One output  
voltage is positive (boost converter), the other is negative (inverting converter). The positive output is adjustable  
up to 15 V, the negative output is adjustable down to –15 V. The device operates with an input voltage range of  
2.7 V to 5.5 V. Both converters (positive and negative output) work independently of each other. They share a  
common clock and a common voltage reference. A fixed-frequency, pulse-width-modulated (PWM) regulator  
controls both outputs separately. In general, each converter operates in continuous-conduction mode (CCM). To  
improve efficiency at light loads, the converters can operate in discontinuous-conduction mode (DCM). When the  
power-save mode is enabled, the converters automatically transition between CCM and DCM operation: As the  
load current decreases, the converter enters DCM mode. Power-save mode is individually configurable for both  
outputs. The transition as a function of the load current works independently for each converter.  
8.2 Functional Block Diagram  
INP  
VIN  
VPOS  
VIN  
VPOS  
Date  
/ontrol  
VIN  
ENP  
PSP  
CP  
.oost /onverter /ontrol  
FBP  
+
-
VREF  
BSW  
+
-
VIN  
VIN  
Çemperature  
hscillator  
/ontrol  
Vref  
ENN  
PSN  
VNEG  
FBN  
Lnverting /onverter /ontrol  
CN  
-
+
INN  
VIN  
Date  
/ontrol  
INN  
OUTN  
PGND  
AGND  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2012–2017, Texas Instruments Incorporated  
9
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Power Conversion  
Both converters operate in a fixed-frequency, PWM control scheme. The on-time of the internal switches varies  
depending on the input-to-output voltage ratio and the load. During the on-time, the inductors connected to the  
converters charge with current. In the remaining time, the off-time with a time period set by the fixed operating  
frequency, the inductors discharge into the output capacitors through the rectifier diodes. Usually at higher loads,  
the inductor currents are continuous. At lighter loads, the boost converter uses an additional internal switch to  
allow current to flow back to the input. This avoids inductor current becoming discontinuous in the boost  
converter. At the inverting converter, during light loads, the inductor current can become discontinuous. In this  
case, the control circuit of the inverting controller output automatically takes care of these changing conditions to  
operate always with an optimum control setup.  
8.3.2 Control  
The controller circuits of both converters employ a fixed-frequency, multiple-feedforward controller topology.  
These circuits monitor input voltage, output voltage, and voltage drop across the switches. Changes in the  
operating conditions of the converters directly affect the duty cycle and must not take the indirect and slow way  
through the output voltage-control loops. A self-learning control corrects measurement errors in this feedforward  
system. An external capacitor damps the output to avoid output-voltage steps due to output changes of this self-  
learning control system.  
The voltage loops, determined by the error amplifiers, must only handle small signal errors. The error amplifiers  
feature internal compensation. Their inputs are the feedback voltages on the FBP and FBN pins. The device  
uses a comparison of these voltages with the internal reference voltage to generate an accurate and stable  
output voltage.  
8.3.3 Output Rails Enable or Disable  
Both converters can be enabled or disabled individually. Applying a logic HIGH signal at the enable pins (ENP for  
the boost converter, ENN for the inverting converter) enables the corresponding output. After enabling, internal  
circuitry, necessary to operate the specific converter, then turns on, followed by the Soft Start.  
Applying a low signal at the enable ENP or ENN pin shuts down the corresponding converter. When both enable  
pins are low, the device enters shutdown mode, where all internal circuitry turns off. The device now consumes  
shutdown current flowing into the VIN pin. The output loads of the converters can be disconnected from the  
input, see Load Disconnect.  
8.3.4 Load Disconnect  
The device supports completely disconnecting the load when the converters are disabled. For the inverting  
converter, the device turns off the internal PMOS switch. If the inverting converter is turned off, no dc current  
path remains which could discharge the battery or supply.  
This is different for the boost converter. The external rectifying diode, together with the boost inductor, form a dc  
current path which could discharge the battery or supply if any load connects to the output. The device has no  
internal switch to prevent current from flowing. For this reason, the device offers a PMOS gate control output  
(BSW) to enable and disable a PMOS switch in this dc current path, ideally directly between the boost inductor  
and battery. To be able to fully disconnect the battery, the forward direction of the parasitic backgate diode of this  
switch must point to the battery or supply. The external PMOS switch, which connects to BSW, turns on when  
the boost converter is enabled and turns off when the boost converter is disabled.  
8.3.5 Soft Start  
Both converters have implemented soft-start functions. When each converter is enabled, the implemented switch  
current limit ramps up slowly to its nominal programmed value in typically 1 ms. The device includes this function  
to limit the input current during start-up to avoid high peak input currents, which could interfere with other  
systems connected to the same battery or supply.  
If the application includes the Load Disconnect PMOS switch, a current flows from the input to the output of the  
boost converter at the moment the PMOS switch becomes conducting.  
10  
版权 © 2012–2017, Texas Instruments Incorporated  
 
 
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
Feature Description (接下页)  
8.3.6 Overvoltage Protection  
Both built-in converters (boost and inverter) have implemented individual overvoltage protection. If the feedback  
voltage under normal operation exceeds the nominal value by typically 5%, the corresponding converter shuts  
down immediately to protect any connected circuitry from possible damage.  
8.3.7 Undervoltage Lockout  
An undervoltage lockout prevents the device from starting up and operating if the supply voltage at the VIN pin is  
lower than the undervoltage lockout threshold. For this case, the device automatically shuts down both  
converters when the supply voltage at VIN falls below this threshold. Nevertheless, parts of the control circuits  
remain active, which is different than device shutdown using EN inputs. The device includes the undervoltage  
lockout function to prevent device malfunction.  
8.3.8 Overtemperature Shutdown  
The device automatically shuts down both converters if the implemented internal temperature sensor detects a  
chip temperature above the thermal shutdown temperature. It automatically starts operating again when the chip  
temperature falls below this threshold plus hysteresis threshold. The built-in hysteresis avoids undefined  
operation caused by ringing from shutdown and prevents operating at a temperature close to the  
overtemperature shutdown threshold.  
8.4 Device Functional Modes  
8.4.1 Power-Save Mode  
The power-save mode can improve efficiency at light loads. In power-save mode, the converter only operates  
when the output voltage falls below an device internally set threshold voltage. The converter ramps up the output  
voltage with one or several operating pulses and goes again into power-save mode once the inductor current  
becomes discontinuous.  
The PSN and PSP logic level selects between power-save mode and continuous-conduction mode. If the specific  
pins (PSP for the boost converter, PSN for the inverting converter) are HIGH, the power-save mode for the  
corresponding converter operates at light loads. Similary, a LOW on the PSP pin or PSN pin disables the power-  
save mode for the corresponding converter.  
版权 © 2012–2017, Texas Instruments Incorporated  
11  
 
 
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS656131-Q1 boost converter output voltage, VPOS, and the inverting converter output voltage, VNEG  
,
require external components to set the required output voltages. The valid output voltage ranges are as shown in  
Recommended Operating Conditions). The passages below show typical application examples with different  
output voltage settings and guidance for external component choices.  
9.2 Typical Applications  
9.2.1 TPS65131-Q1 With VPOS = 10.5 V, VNEG = –10 V  
L1  
4.7 µH  
D1  
VI  
VPOS  
Q1  
C4  
22 µF  
C1  
4.7 µF  
R1  
C9  
VPOS  
FBP  
INP  
BSW  
VREF  
R2  
C8  
220 nF  
R4  
R3  
TPS65131-Q1  
FBN  
INN  
VIN  
C10  
VNEG  
R7  
100 Ω  
ENP  
PSP  
ENN  
PSN  
VNEG  
OUTN  
CN  
C3  
100 nF  
C2  
4.7 µF  
D2  
L2  
4.7 µH  
C5  
22 µF  
C6 C7  
10nF 4.7nF  
CP  
AGND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
6. Typical Application Schematic With VPOS = 10.5 V, VNEG = –10 V  
9.2.1.1 Design Requirements  
This design example uses the following parameters:  
2. Design Parameters  
Design Parameter  
Example Value  
Input voltage range  
2.7 V to 5.5 V  
R1 = 1 MΩ  
R2 = 130 kΩ  
C9 = 6.8 pF  
Boost converter output  
voltage, VPOS  
10.5 V  
12  
版权 © 2012–2017, Texas Instruments Incorporated  
 
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
2. Design Parameters (接下页)  
Design Parameter  
Example Value  
R3 = 1 MΩ  
R4 = 121.2 kΩ  
C10 = 7.5 pF  
Inverting converter output  
voltage, VNEG  
–10 V  
In this example, the converters operate with power-save mode both enabled and disabled (see Power-Save  
Mode).  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Programming the Output Voltage  
9.2.1.2.1.1 Boost Converter  
An external resistor divider adjusts the output voltage of the TPS65131-Q1 boost converter stage. Connect this  
divider to the FBP pin. The typical value of the voltage at the FBP pin is the reference voltage, which is 1.213 V.  
The maximum recommended output voltage at the boost converter is 15 V. To achieve appropriate accuracy, the  
current through the feedback divider should be about 100 times higher than the current into the FBP pin. Typical  
current into the FBP pin is 0.05 µA, and the voltage across R2 is 1.213 V. Based on those values, the  
recommended value for R2 should be lower than 200 kΩ in order to set the divider current at 5 µA or higher.  
Calculate the value of resistor R1, as a function of the needed output voltage (VPOS), with 公式 1:  
«
VPOS  
R1= R2ì  
-1  
÷
V
ref  
(1)  
In this example, with R2 = 130 kΩ, choose R1 = 1 MΩ to set VPOS = 10.5 V.  
9.2.1.2.1.2 Inverting Converter  
An external resistor divider adjusts the output voltage of the TPS65131-Q1 inverting converter stage. Connect  
this divider to the FBN pin. Unlike the feedback divider at the boost converter, the reference point of the feedback  
divider is not GND, but Vref. So the typical value of the voltage at the FBN pin is 0 V. The minimum  
recommended output voltage at the inverting converter is –15 V. Feedback divider current considerations are  
similar to the considerations for the boost converter. For the same reasons, the feedback divider current should  
be in the range of 5 µA or higher. The voltage across R4 is 1.213 V. Based on those values, the recommended  
value for R4 should be lower than 200 kΩ in order to set the divider current at the required value.  
Calculate the value of resistor R3, as a function of the needed output voltage (VNEG), with 公式 2:  
«
÷
VNEG  
V
R3 = -R4ì  
ref ◊  
(2)  
In this example, with R4 = 121.2 kΩ kΩ, choose R3 = 1 MΩ to set VNEG = –10 V.  
9.2.1.2.2 Inductor Selection  
An inductive converter normally requires two main passive components to store energy during the conversion.  
Therefore, each converter requires an inductor and a storage capacitor. To select the right inductor, it is  
recommended to keep the possible peak inductor current below the current-limit threshold of the power switch in  
the chosen configuration. For example, the current-limit threshold of the switch for the boost converter and for the  
inverting converters is nominally 1950 mA. The highest peak current through the switches and the inductor  
depends on the output load (IPOS, INEG), the input voltage (VI), and the output voltages (VPOS, VNEG). Use 公式 3  
to estimate the peak inductor current in the boost converter, I(L-P). 公式 4 shows the corresponding formula for the  
inverting converter, I(L-N)  
.
VPOS  
I(L-P)  
=
ìIPOS  
V ì0.64  
I
(3)  
(4)  
V - VNEG  
I
I(L-N)  
=
ìINEG  
V ì0.64  
I
版权 © 2012–2017, Texas Instruments Incorporated  
13  
 
 
 
 
 
 
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
The second parameter for choosing the inductor is the desired current ripple in the inductor. Normally, it is  
advisable to work with a ripple of less than 20% of the average inductor current. A smaller ripple reduces the  
losses in the inductor, as well as output voltage ripple and EMI. But in the same way, output voltage regulation  
gets slower, causing higher voltage changes during fast load changes. In addition, a larger inductor usually  
increases the total system cost. Keep those parameters in mind and calculate the possible inductor value with 公  
5 for the boost converter (L1) and 公式 6 for the inverting converter (L2).  
V ì V  
- V  
I
(
)
I
POS  
L1=  
DI(L-P) ì f ì VPOS  
(5)  
V ì VNEG  
I
L2 =  
DI(L-N) ì f ì V  
- V  
I
(
)
NEG  
(6)  
The parameter f is the switching frequency. For the boost converter, ΔI(L-P) is the ripple current in the inductor,  
that is, 20% of I(L-P). Accordingly, for the inverting converter, ΔI(L-N) is the ripple current in the inductor, that is,  
20% of I(L-N). VI is the input voltage, which is 3.3 V in this example. So, the calculated inductance value for the  
boost inductor is 5.1 µH and for the inverting converter inductor is 5.1 µH. With these calculated values and the  
calculated currents, it is possible to choose a suitable inductor.  
In typical applications, the recommendation is to choose a 4.7-µH inductor. The device is optimized to work with  
inductance values between 3.3 µH and 6.8 µH. Nevertheless, operation with higher inductance values may be  
possible in some applications. Perform detailed stability analysis in this case. Be aware of the possibility that load  
transients and losses in the circuit can lead to higher currents than estimated in 公式 3 and 公式 4. Also, the  
losses caused by magnetic hysteresis and conductor resistance are a major parameter for total circuit efficiency.  
The following table shows inductors from different suppliers used with the TPS65131-Q1 converter:  
3. List of Inductors  
VENDOR(1)  
INDUCTOR SERIES  
B8246284-G4  
7447789XXX  
744031XXX  
VLF3010  
EPCOS  
Wurth Elektronik  
TDK  
VLF4012  
Cooper Electronics Technologies  
SD12  
(1) See Third-party Products Disclaimer  
9.2.1.2.3 Capacitor Selection  
9.2.1.2.3.1 Input Capacitor  
As a recommendation, choose an input capacitors of at least 4.7 µF for the input of the boost converter (INP)  
and accordingly for the input of the inverting converter (INN). This improves transient behavior of the regulators  
and EMI behavior of the total power-supply circuit. Choose a ceramic capacitor or a tantalum capacitor. For the  
use of a tantalum capcitor, an additonal, smaller ceramic capacitor (100 nF) in parallel is required. Place the  
input capacitor(s) close to the input pins.  
9.2.1.2.3.2 Output Capacitors  
One of the major parameters necessary to define the capacitance value of the output capacitor is the maximum  
allowed output voltage ripple of the converter. Two parameters, which are the capacitance and the equivalent  
series resitance (ESR), affect this ripple. It is possible to calculate the minimum capacitance needed for the  
defined ripple, supposing that the ESR is zero. Use 公式 7 for the boost-converter output capacitor (C4min) and  
公式 8 for the inverting-converter output capacitor (C5min).  
IPOS ì V  
- V  
I
(
)
POS  
C4min =  
C5min =  
f ì DVPOS ì VPOS  
INEG ì VNEG  
f ì DVNEG ì V  
(7)  
- V  
I
(
)
NEG  
(8)  
14  
版权 © 2012–2017, Texas Instruments Incorporated  
 
 
 
 
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
The parameter f is the switching frequency. ΔVPOS and ΔVNEG are the maximum allowed ripple voltages for each  
converter.  
Choosing a ripple voltage in the range of 10 mV requires a minimum capacitance of 12 µF. The total ripple is  
larger due to the ESR of the output capacitor. Use 公式 9 for the boost converter and 公式 10 for the inverting  
converter to calculate this additional ripple component.  
DV  
= IPOS ìR(ESR-C4)  
(ESR-P)  
(9)  
DV  
= INEG ìR(ESR-C5)  
(ESR-N)  
(10)  
In this example, an additional ripple of 2 mV is the result of using a typical ceramic capacitor with an ESR in the  
10-mΩ range. The total ripple is the sum of the ripple caused by the capacitance and the ripple caused by the  
ESR of the capacitor. In this example, the total ripple is 10 mV.  
Load transients can create additional ripple. When the load current increases rapidly, the output capacitor must  
provide the additional current until the inductor current increases by the control loop which sets a higher on-time  
(duty cycle) of the main switch. The higher duty cycle results in longer inductor charging periods. The inductance  
itself also limits the rate of increase of the inductor current. When the load current decreases rapidly, the output  
capacitor must store the excess energy (stored in the inductor) until the regulator has decreased the inductor  
current by reducing the duty cycle. The recommendation is to use higher capacitance values, as the foregoing  
calculations show.  
9.2.1.2.4 Rectifier Diode Selection  
Both converters (the boost and inverting converter) require rectifier diodes, D1 and D2. As a recommendation, to  
reduce losses, use Schottky diodes. The forward current rating needed is equal to the maximum output current.  
Consider that the maximum currents, IPOSmax and INEGmax, might differ for VPOS and VNEG when choosing the  
diodes.  
9.2.1.2.5 External P-MOSFET Selection  
During shutdown, when connected to a power supply, a path from the power supply to the positive output  
conducts through the inductor and an external diode. Optionally, in oder to fully disconnect the positive output  
VPOS during shutdown, add an external p-MOSFET (Q1). The BSW pin controls the gate of the p-MOSFET.  
When choosing a proper p-MOSFET, the VGS and VGD voltage ratings must cover the input voltage range, the  
drain current rating must not be lower than the maximum input current flowing into the application, and conditions  
of the p-MOSFET operating area must fit.  
If there is no intention to use an external p-MOSFET, leave the BSW pin floating.  
9.2.1.2.6 Stabilizing the Control Loop  
9.2.1.2.6.1 Feedforward Capacitors  
As a recommendation, to speed up the control loop, place feedforward capacitors in the feedback divider, parallel  
to R1 (boost converter) and R3 (inverting converter). 公式 11 shows how to calculate the appropriate value for  
the boost converter, and 公式 12 for the inverting converter.  
6.8 s  
C9 =  
R1  
(11)  
(12)  
7.5 s  
C10 =  
R3  
In this application example, C9 = 6.8 pF and C10 = 7.5 pF match the choices of R1 and R3.  
To avoid coupling noise into the control loop from the feedforward capacitors, it is possible to place a series  
resistor to limit the bandwidth of the feedforward effect. Any value between 10 kand 100 kis suitable. The  
higher the resistance, the lower the noise coupled into the control loop system.  
版权 © 2012–2017, Texas Instruments Incorporated  
15  
 
 
 
 
 
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
9.2.1.2.6.2 Compensation Capacitors  
The device features completely internally compensated control loops for both converters. The internal  
feedforward system has built-in error correction which requires external capacitors. As a recommendation, use a  
10-nF capacitor at the CP pin of the boost converter and a 4.7-nF capacitor at the CN pin of the inverting  
converter.  
9.2.1.3 Analog Supply Input Filter  
To ensure a noise free voltage supply of the IC, it is recommended to add an RC or LC filter between IIN and  
VIN pins.  
9.2.1.3.1 RC-Filter  
For most applications an RC filter can be used with a resistance value of 100 Ω minimum and capacitor value of  
0.1 µF as in the application example 6.  
9.2.1.3.2 LC-Filter  
For applications where input voltages VI with a fast rising edge (slew rate 275 mV/µs) are expected, it is  
recommended to replace the resistor R7 with a ferrite bead to minimize the delay between the signals on IIN and  
VIN. A ferrite bead with the lowest possible DCR and a proper current rating should be selected -  
BLM18KG101TN1 for example. A conservative approach for the current rating specification is to set it at 1.5  
times or twice the maximum input current.  
4. List of Ferrite Beads  
VENDOR  
FERRITE BEAD SERIES  
Murata  
BLMxKG  
9.2.1.4 Thermal Information  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues, such as thermal coupling, airflow, added  
heatsinks and convection surfaces, and the presence of heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance follow.  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow to the system  
The recommended device junction temperature range, TJ, is –40°C to 125°C. The thermal resistance of the 24-  
pin QFN, 4–mm × 4–mm package (RGE) is RθJA = 34.1°C/W. The recommended operating ambient temperature  
range for the device is TA = –40°C to 105°C. Use 公式 13 to calculate the maximum power dissipation, PDmax,  
as a function of TA. In this equation, use TJ = 125°C to operate the device within the recommended temperature  
range, use TJ = T(TS) to determine the absolute maximum threshold when the device might go into thermal  
shutdown. If the maximum ambient temperature of the application is lower, more heat dissipation is possible.  
TJ - TA  
RqJA  
PD max =  
(13)  
16  
版权 © 2012–2017, Texas Instruments Incorporated  
 
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
9.2.1.5 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VPOS = 10.5 V PSM OFF  
VPOS = 10.5 V PSM ON  
VPOS = 10.5 V PSM OFF  
VPOS = 10.5 V PSM ON  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D005  
D006  
Power-save mode  
on and off  
VI = 3.3 V  
VPOS = 10.5 V  
Power-save mode  
on and off  
VI = 5 V  
VPOS = 10.5 V  
7. Boost Converter (VPOS) Efficiency vs Output Current  
8. Boost Converter (VPOS) Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VNEG = -10 V PSM OFF  
10  
VNEG = -10 V PSM OFF  
10  
VNEG = -10 V PSM ON  
VNEG = -10 V PSM ON  
0
0.001  
0
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D007  
Power-save mode  
on and off  
D008  
Power-save mode  
on and off  
VI = 3.3 V  
VNEG = –10 V  
VI = 5 V  
VNEG = –10 V  
9. Inverting Converter (VNEG) Efficiency vs Output  
10. Inverting Converter (VNEG) Efficiency vs Output  
Current  
Current  
版权 © 2012–2017, Texas Instruments Incorporated  
17  
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
11  
11  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
VPOS = 10.5 V PSM OFF  
VPOS = 10.5 V PSM ON  
VPOS = 10.5 V PSM OFF  
VPOS = 10.5 V PSM ON  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
Output Current (A)  
Output Current (A)  
D009  
D010  
VI = 3.3 V  
VPOS = 10.5 V  
Power-save mode  
on and off  
VI = 5 V  
VPOS = 10.5 V  
Power-save mode  
on and off  
11. Boost Converter (VPOS) Output Voltage vs Output  
12. Boost Converter (VPOS) Output Voltage vs Output  
Current  
Current  
-9.5  
-9.6  
-9.5  
-9.6  
-9.7  
-9.7  
-9.8  
-9.8  
-9.9  
-9.9  
-10  
-10  
-10.1  
-10.2  
-10.3  
-10.1  
-10.2  
-10.3  
VNEG = -10 V PSM OFF  
-10.4  
VNEG = -10 V PSM OFF  
-10.4  
VNEG = -10 V PSM ON  
VNEG = -10 V PSM ON  
-10.5  
-10.5  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
D011  
D012  
VI = 3.3 V  
VNEG = –10 V  
Power-save mode  
on and off  
VI = 5 V  
VNEG = –10 V  
Power-save mode  
on and off  
13. Inverting Converter (VNEG) Output Voltage vs Output  
14. Inverting Converter (VNEG) Output Voltage vs Output  
Current  
Current  
Output Voltage 50 mV/div  
Inductor Current 200 mA/div  
Output Voltage 10 mV/div  
Inductor Current 200 mA/div  
Time = 400 ns/div  
Time = 20 s/div  
VI = 3.3 V  
VPOS = 10.5 V  
IPOS = 200 mA  
Power-save mode  
off  
VI = 3.3 V  
VPOS = 10.5 V  
IPOS = 20 mA  
Power-save mode  
on  
15. Boost Converter (VPOS) Output Ripple  
16. Boost Converter (VPOS) Output Ripple  
18  
版权 © 2012–2017, Texas Instruments Incorporated  
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
Output Voltage 10 mV/div  
Inductor Current 100 mA/div  
Time = 40 s/div  
Output Voltage 10 mV/div  
Inductor Current 100 mA/div  
Time = 1 s/div  
VI = 3.3 V  
VNEG = –10 V  
INEG = 200 mA  
Power-save mode  
off  
VI = 3.3 V  
VNEG = –10 V  
INEG = 20 mA  
Power-save mode  
on  
17. Inverting Converter (VNEG) Output Ripple  
18. Inverting Converter (VNEG) Output Ripple  
Output Current 20 mA/div  
Offset = 200 mA  
Output Current 20 mA/div  
Offset = 150 mA  
Output Voltage 50 mV/div  
Output Voltage 100 mV/div  
Time = 1 ms/div  
Time = 1 ms/div  
VI = 3.3 V  
VPOS = 10.5 V  
VI = 3.3 V  
VNEG = –10 V  
IPOS = 200 mA to 250 mA  
INEG = 150 mA to 200 mA  
19. Boost Converter (VPOS) Load Transient Response  
20. Inverting Converter (VNEG) Load Transient Response  
Input Voltage 500 mV/div  
Offset = 3 V  
Input Voltage 500 mV/div  
Offset = 3 V  
Output Voltage 200 mV/div  
Output Voltage 500 mV/div  
Time = 2 ms/div  
Time = 2 ms/div  
VI = 3 V to 3.6 V  
VPOS = 10.5 V  
IPOS = 150 mA  
VI = 3 V to 3.6 V  
VNEG = –10 V  
INEG = 100 mA  
21. Boost Converter (VPOS) Line Transient Response  
22. Inverting (VNEG) Converter Line Transient Response  
版权 © 2012–2017, Texas Instruments Incorporated  
19  
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
Input Voltage 2 V/div  
Input Voltage 2 V/div  
Output Voltage 5 V/div  
Output Voltage 5 V/div  
Inductor Current 1 A/div  
Inductor Current 500 mA/div  
Voltage at Switching Pin 10 V/div  
Voltage at Switching Pin 10 V/div  
Time = 200 s/div  
Time = 400 s/div  
VI = 3.3 V  
VPOS = 10.5 V  
IPOS = 46 mA  
VI = 3.3 V  
VNEG = –10 V  
INEG = 150 mA  
23. Boost Converter (VPOS) Start-Up Into Load  
24. Inverting Converter (VNEG) Start-Up Into Load  
Enabling Boost Converter  
2 V/div  
Output Voltage, Boost Converter  
5 V/div  
Enabling Inverter Converter  
2 V/div  
Output Voltage, Inverting Converter  
10 V/div  
Time = 1 ms/div  
VI = 3.3 V  
VPOS = 10.5 V  
VNEG = –10 V  
IPOS = INEG= 160 mA  
25. Boost and Inverting Converter Start-Up Into Load  
9.2.2 TPS65131-Q1 With VPOS = 5.5 V, VNEG = –5 V  
9.2.2.1 Design Requirements  
The design procedure for this setup is similar to the first example, see Detailed Design Procedure. Change the  
feedback dividers to set the output voltage, see Programming the Output Voltage. Further, choose the feed-  
forward capacitors according to Feedforward Capacitors. 5 shows the components being changed. See 6.  
5. Design Parameters  
Design Parameter  
Example Value  
Input voltage range  
2.7 V to 5.5 V  
R1 = 390 kΩ  
R2 = 110 kΩ  
C9 = 18 pF  
Boost converter output  
voltage, VPOS  
5.5 V  
–5 V  
R3 = 620 kΩ  
R4 = 150 kΩ  
C10 = 12 pF  
Inverting converter output  
voltage, VNEG  
20  
版权 © 2012–2017, Texas Instruments Incorporated  
 
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
In this example, the converters are operated with power-save mode both enabled and disabled (see Power-Save  
Mode).  
9.2.2.2 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VPOS = 5.5 V PSM OFF  
VPOS = 5.5 V PSM ON  
VPOS = 5.5 V PSM OFF  
VPOS = 5.5 V PSM ON  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D013  
D014  
VI = 3.3 V  
VPOS = 5.5 V  
Power-save mode  
on and off  
VI = 5 V  
VPOS = 5.5 V  
Power-save mode  
on and off  
26. Boost Converter (VPOS) Efficiency vs Output Current  
27. Boost Converter (VPOS) Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VNEG = -5 V PSM OFF  
10  
VNEG = -5 V PSM OFF  
10  
VNEG = -5 V PSM ON  
VNEG = -5 V PSM ON  
0
0.001  
0
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D015  
Power-save mode  
on and off  
D016  
Power-save mode  
on and off  
VI = 3.3 V  
VNEG = –5 V  
VI = 5 V  
VNEG = –5 V  
28. Inverting Converter (VNEG) Efficiency vs Output  
29. Inverting Converter (VNEG) Efficiency vs Output  
Current  
Current  
版权 © 2012–2017, Texas Instruments Incorporated  
21  
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
VPOS = 5.5 V PSM OFF  
VPOS = 5.5 V PSM ON  
VPOS = 5.5 V PSM OFF  
VPOS = 5.5 V PSM ON  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
Output Current (A)  
D017  
D018  
VI = 3.3 V  
VPOS = 5.5 V  
Power-save mode  
on and off  
VI = 5 V  
VPOS = 5.5 V  
Power-save mode  
on and off  
30. Boost Converter (VPOS) Output Voltage vs Output  
31. Boost Converter (VPOS) Output Voltage vs Output  
Current  
Current  
-4.5  
-4.5  
VNEG = -5 V PSM OFF  
VNEG = -5 V PSM ON  
VNEG = -5 V PSM OFF  
VNEG = -5 V PSM ON  
-4.6  
-4.7  
-4.8  
-4.9  
-5  
-4.6  
-4.7  
-4.8  
-4.9  
-5  
-5.1  
-5.2  
-5.3  
-5.4  
-5.5  
-5.1  
-5.2  
-5.3  
-5.4  
-5.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
Output Current (A)  
Output Current (A)  
D019  
D020  
VI = 3.3 V  
VNEG = –5 V  
Power-save mode  
on and off  
VI = 3.3 V  
VNEG = –5 V  
Power-save mode  
on and off  
32. Inverting Converter (VNEG) Output Voltage vs Output  
33. Inverting Converter (VNEG) Output Voltage vs Output  
Current  
Current  
9.2.3 TPS65131-Q1 With VPOS = 15 V, VNEG = –15 V  
9.2.3.1 Design Requirements  
The design procedure for this setup is similar to the first example, see Detailed Design Procedure. Change the  
feedback dividers to set the output voltage, see Programming the Output Voltage. Further, choose the  
feedforward capacitors according to Feedforward Capacitors. 6 shows the components being changed. See  
6.  
6. Design Parameters  
Design Parameter  
Example Value  
Input voltage range  
2.7 V to 5.5 V  
R1 = 975 kΩ  
R2 = 85.8 kΩ  
C9 = 6.8 pF  
Boost converter output  
voltage, VPOS  
15 V  
R3 = 1.3 MΩ  
R4 = 104.8 kΩ  
C10 = 5.6 pF  
Inverting converter output  
voltage, VNEG  
–15 V  
22  
版权 © 2012–2017, Texas Instruments Incorporated  
 
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
In this example, the converters operate with power-save mode both enabled and disabled (see Power-Save  
Mode).  
9.2.3.2 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VPOS = 15 V PSM OFF  
VPOS = 15 V PSM ON  
VPOS = 15 V PSM OFF  
VPOS = 15 V PSM ON  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D021  
D022  
VI = 3.3 V  
VPOS = 15 V  
Power-save mode  
on and off  
VI = 5 V  
VPOS = 15 V  
Power-save mode  
on and off  
34. Boost Converter (VPOS) Efficiency vs Output Current  
35. Boost Converter (VPOS) Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VNEG = -15 V PSM OFF  
10  
VNEG = -15 V PSM OFF  
10  
VNEG = -15 V PSM ON  
VNEG = -15 V PSM ON  
0
0.001  
0
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D023  
Power-save mode  
on and off  
D024  
Power-save mode  
on and off  
VI = 3.3 V  
VNEG = –15 V  
VI = 5 V  
VNEG = –15 V  
36. Inverting Converter (VNEG) Efficiency vs Output  
37. Inverting Converter (VNEG) Efficiency vs Output  
Current  
Current  
版权 © 2012–2017, Texas Instruments Incorporated  
23  
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
15.5  
15.4  
15.3  
15.2  
15.1  
15  
15.5  
15.4  
15.3  
15.2  
15.1  
15  
VPOS = 15 V PSM OFF  
VPOS = 15 V PSM ON  
VPOS = 15 V PSM OFF  
VPOS = 15 V PSM ON  
14.9  
14.8  
14.7  
14.6  
14.5  
14.9  
14.8  
14.7  
14.6  
14.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
D025  
D026  
VI = 3.3 V  
VPOS = 15 V  
Power-save mode  
on and off  
VI = 5 V  
VPOS = 15 V  
Power-save mode  
on and off  
38. Boost Converter (VPOS) Output Voltage vs Output  
39. Boost Converter (VPOS) Output Voltage vs Output  
Current  
Current  
-14.5  
-14.5  
VNEG = -15 V PSM OFF  
VNEG = -15 V PSM ON  
-14.6  
-14.7  
-14.8  
-14.9  
-15  
-14.6  
-14.7  
-14.8  
-14.9  
-15  
-15.1  
-15.2  
-15.3  
-15.4  
-15.5  
-15.1  
-15.2  
-15.3  
-15.4  
-15.5  
VNEG = -15 V PSM OFF  
VNEG = -15 V PSM ON  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
D027  
D028  
VI = 3.3 V  
VNEG = –15 V  
Power-save mode  
on and off  
VI = 5 V  
VNEG = –15 V  
Power-save mode  
on and off  
40. Inverting Converter (VNEG) Output Voltage vs Output  
41. Inverting Converter (VNEG) Output Voltage vs Output  
Current  
Current  
24  
版权 © 2012–2017, Texas Instruments Incorporated  
TPS65131-Q1  
www.ti.com.cn  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
10 Power Supply Recommendations  
The TPS65131-Q1 input voltage ranges from 2.7 V to 5.5 V. Consequently, the supply can come, for example,  
from a 3.3-V or 5-V rail. If the device starts into load during the Soft Start phase, the drawn input current can be  
higher than during post-start operation. Consider the application requirements when selecting the power supply.  
To avoid unintended toggling of the Undervoltage Lockout, connect the TPS65131-Q1 via a low-impedance path  
to the power supply.  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. Improper layout might show the symptoms of poor line or load regulation, ground  
and output voltage shifts, stability issues, unsatisfying EMI behavior or worsened efficiency. Therefore, use wide  
and short traces for the main current paths and for the power ground tracks. The input capacitors (C1, C2, C3),  
output capacitors (C4, C5), the inductors (L1, L2), and the rectifying diodes (D1, D2) should be placed as close  
as possible to the IC to keep parasitic inductances low. Use a wide PGND plane. Connect the analog ground pin  
(AGND) to the PGND plane. Further, connect the PGND plane with the exposed thermal pad. Place the feedback  
dividers as close as possible to the control pin (boost converter) or the VREF pin (inverting converter) of the IC.  
42 provides an layout example which is recommended to be followed.  
11.2 Layout Example  
C8  
R4  
R3  
C10  
C7  
AGND  
NC  
19  
20  
12  
NC  
PGND  
L2  
D2  
C6  
R2  
11 PSN  
CP 21  
22  
10  
9
ENN  
PSP  
ENP  
BSW  
FBP  
VPOS 23  
8
C9  
R1  
PGND  
C4  
24  
7
INP  
C5  
D1  
U1  
R7  
VNEG  
C3  
VI  
PGND  
C2  
VPOS  
L1  
C1  
Q1  
42. TPS65131-Q1 Layout Recommendation  
版权 © 2012–2017, Texas Instruments Incorporated  
25  
 
TPS65131-Q1  
ZHCSAI3E MAY 2012REVISED MARCH 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 商标  
PowerPAD is a trademark of Texas Instruments.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件提供的最新数据。这些数据会在无通知且不对本  
文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
26  
版权 © 2012–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65131TRGERQ1  
ACTIVE  
VQFN  
RGE  
24  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
2U65131  
Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65131TRGERQ1  
VQFN  
RGE  
24  
3000  
330.0  
12.4  
4.25  
4.25  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGE 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TPS65131TRGERQ1  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.2) TYP  
2.45 0.1  
7
12  
EXPOSED  
SEE TERMINAL  
DETAIL  
THERMAL PAD  
13  
6
2X  
SYMM  
25  
2.5  
18  
1
0.3  
24X  
20X 0.5  
0.2  
19  
24  
0.1  
C A B  
SYMM  
24X  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
4219013/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.45)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(R0.05)  
TYP  
25  
SYMM  
(3.8)  
20X (0.5)  
13  
6
(
0.2) TYP  
VIA  
7
12  
(0.975) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219013/A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.08)  
(0.64) TYP  
19  
24  
24X (0.6)  
1
25  
18  
24X (0.25)  
(R0.05) TYP  
SYMM  
(0.64)  
TYP  
(3.8)  
20X (0.5)  
13  
6
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219013/A 05/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65132

TPS65132 Single Inductor - Dual Output Power Supply
TI

TPS65132A0YFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132AYFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132B0YFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132B2YFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132B5YFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132BYFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132L0YFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132L0YFFT

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132LYFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132S

适用于双极小型/中型显示屏的单电感器 - 双路输出电源
TI

TPS65132SYFFR

适用于双极小型/中型显示屏的单电感器 - 双路输出电源 | YFF | 15 | -40 to 85
TI