TPS65235 [TI]

具有 I2C 接口的 LNB 稳压器;
TPS65235
型号: TPS65235
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I2C 接口的 LNB 稳压器

稳压器
文件: 总40页 (文件大小:2308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65235  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
I2C 接口TPS65235 LNB 电压稳压器  
1 特性  
3 说明  
• 用LNB I2C 接口的完整集成解决方案  
• 兼DiSEqC 2.x DiSEqC 1.x  
• 支5V12V 15V 电源轨  
TPS65235 专为模拟和数字卫星接收器而设计是一款  
I2C 接口的单片稳压器。该器件专用于向碟形天线  
中的 LNB 降压转换器或多开关箱提供 13V 18V 电  
源以及 22kHz 音调信号。该器件提供了一套完整的解  
决方案具有元件数极少、功率耗散低、设计简单以及  
I2C 标准接口等优点。  
• 高1000mA 的外部电阻器可调精确输出电流限制  
• 升压开关峰值电流限制LDO 电流限制成正比  
• 具140mΩRds(on) 内部电源开关的升压转换器  
• 可选1MHz 500kHz 升压开关频率  
• 适用于I2C 应用的专用使能引脚  
• 具有推挽式输出级的低压(LDO) 稳压器用于提  
VLNB 输出  
• 内置精确22kHz 音调发生器并支持外部音调输入  
• 支44kHz 22kHz 外部音调输入  
• 可调节软启动13V 18V 电压转换时间  
650mV 750mV 22kHz 音调振幅选择  
• 通过EN 为低电平时进行访问I2C 寄存器  
• 短路动态保护  
TPS65235 具有高功效。该升压转换器集成了一个在  
1MHz 500kHz 可选开关频率下运行140mΩ率  
MOSFET。线性稳压器中的压降为 0.8V能够更大限  
度地降低功率损耗。TPS65235 供了多种生成  
22kHz 信号的方法。具有推挽式输出级的集成线性稳  
压器可生成 22kHz 音调信号在输出端叠加),即使  
在零负载条件下也是如此。可由外部电阻器以 ±10%  
的精度来设定线性稳压器的电流限值。通I2C 读取的  
全范围诊断可用于系统监控。  
TPS65235 支持面向 22kHz 音调检测电路和输出接口  
的高DiSEqC 2.x 标准。  
• 输出电压电平、DiSEqC 音调输入和输出、电流电  
平以及电缆连接诊断  
• 具有过热保护功能  
器件信息(1)  
20 WQFN 3mm x 3mm (RUK) 封装  
封装尺寸标称值)  
器件型号  
TPS65235  
封装  
2 应用  
WQFN  
3.00mm x 3.00mm  
机顶盒卫星接收器  
电视卫星接收器  
PC 卡卫星接收器  
卫星电视  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
TPS65235  
100nF  
VOUT  
VLNB  
0.1mF  
VCP  
ISET  
BOOST  
2x22mF  
110k  
TCAP  
AGND  
22nF  
PGND  
10mH  
VIN  
LX  
10mF  
VCC  
VIN  
1mF  
1mF  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD80  
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
Table of Contents  
7.5 Programming............................................................ 18  
7.6 Register Maps...........................................................20  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Application for DiSEqc1.x Support................23  
9 Power Supply Recommendations................................29  
10 Layout...........................................................................30  
10.1 Layout Guidelines................................................... 30  
10.2 Layout Example...................................................... 30  
11 Device and Documentation Support..........................31  
11.1 接收文档更新通知................................................... 31  
11.2 支持资源..................................................................31  
11.3 Trademarks............................................................. 31  
11.4 Electrostatic Discharge Caution..............................31  
11.5 Glossary..................................................................31  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 Typical Characteristics................................................7  
7 Detailed Description........................................................8  
7.1 Overview.....................................................................8  
7.2 Functional Block Diagram...........................................8  
7.3 Feature Description.....................................................8  
7.4 Device Functional Modes..........................................17  
Information.................................................................... 31  
4 Revision History  
Changes from Revision C (July 2019) to Revision D (May 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
Changed V(drop) min and max values..................................................................................................................5  
Changed I(rev_dis) min and max values................................................................................................................5  
Changes from Revision B (July 2018) to Revision C (July 2019)  
Page  
Changed V(drop) at TONEAMP = 0b From: MIN = 0.59 TYP = 0.8 MAX = 1 To: MIN = 0.49 TYP = 0.8 MAX =  
1.1 in the Electrical Characteristics ....................................................................................................................5  
Changed V(drop) at TONEAMP = 1b From: MIN = 0.71 TYP = 0.9 MAX = 1.12 To: MIN = 0.65 TYP = 0.9 MAX  
= 1.2 in the Electrical Characteristics .................................................................................................................5  
Changes from Revision A (December 2017) to Revision B (December 2017)  
Page  
Changed the GDR TONE_TRANS = 1b value From: MAX = 24.03V To: MAX = 24.33V in the Electrical  
Characteristics ...................................................................................................................................................5  
Changes from Revision * (January 2017) to Revision A (December 2017) Page  
Changed the VCP values From: VLNB to 7 V To: 0.3 V to 7 V in the Absolute Maximum Ratings ............... 4  
Changed the GDR values From: VLNB to VCP To: 0.3 V to 7 V in the Absolute Maximum Ratings .............4  
Changed the Operating junction temperature From: 125°C To: 150°C in the Absolute Maximum Ratings .......4  
Changed VIN MAX value From: 16 V To: 20 V in Recommended Operating Conditions ...................................4  
Changed VIN MAX value From: 16 V To: 20 V in Electrical Characteristics .......................................................5  
Changed 4.7 µF To: 4 µF in the line callouts of 7-6 .................................................................................... 13  
Changed 4 µF To: 5 µF in the graph legends of 7-7 ................................................................................... 13  
Changed the description of bit 1 TONE_AUTO From: "controlled by TONE_RECEIVE" To: "controlled by  
TONE_TRANS" in 7-7 .................................................................................................................................21  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
5 Pin Configuration and Functions  
15 14 13  
12  
11  
VLNB  
16  
10  
9
VCTRL  
ADDR  
17  
VCP  
BOOST  
GDR  
18  
19  
20  
8
7
FAULT  
EN  
ISET  
6
PGND  
3
2
4
5
1
5-1. 20 Pin (WQFN-20) RUK Package (Top View)  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
LX  
NO.  
1
I
Switching node of the boost converter  
Input of internal linear regulator  
VIN  
2
S
Internal 6.3-V power supply. Connect a 1-μF ceramic capacitor from this pin to ground. When VIN is 5 V,  
connect VCC to VIN.  
VCC  
3
O
AGND  
TCAP  
ISET  
4
5
6
S
O
O
Analog ground. Connect all ground pins and power pad together.  
Connect a capacitor to this pin to set the rise time of the LNB output.  
Connect a resistor to this pin to set the LNB output current limit.  
Enable pin to enable the VLNB output; pull to ground to disable output, and output will be pulled to  
ground, when the EN is low, the I2C can be accessed  
EN  
7
I
FAULT  
ADDR  
VCTRL  
SDA  
8
O
Oopen drain output pin, it goes low if any fault flag is set.  
Connecting different resistor to this pin to set different I2C address, see 7-4.  
Voltage level at this pin to set the output voltage, see 7-3.  
I2C compatible bi-directional data  
9
I
I
10  
11  
12  
I/O  
I
SCL  
I2C compatible clock input  
External modulation logic input pin which activates the 22-kHz tone output, feeding signal can be 22-kHz  
tone or logic high or low.  
EXTM  
13  
I
DOUT  
DIN  
14  
15  
16  
17  
18  
19  
20  
O
I
Tone detection output  
Tone detection input  
VLNB  
VCP  
O
O
O
O
S
Output of the power supply connected to satellite receiver or switch.  
Gate drive supply voltage, output of charge pump, connect a capacitor between this pin to pin VLNB.  
Output of the boost regulator and Input voltage of the internal linear regulator.  
Control the gate of the external MOSFET for DiSEqc 2.x support.  
Power ground for Boost Converter  
BOOST  
GDR  
PGND  
Must be soldered to PCB for optimal thermal performance. Have thermal Vias on the PCB to enhance  
power dissipation.  
Thermal PAD  
(1) I = input, O = output, I/O = input and output, S = power supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65235  
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1
MAX  
30  
UNIT  
VIN, LX, BOOST, VLNB  
VCP, GDR (referenced to VLNB pin)  
7
0.3  
VCC, EN, ADDR, FAULT, SCL, SDA, VCTRL, EXTM, DOUT, DIN,  
TCAP  
7
Voltage  
0.3  
V
ISET  
3.6  
0.3  
0.3  
0.3  
40  
55  
PGND  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
20  
UNIT  
V
VIN  
TA  
Input operating voltage  
Operating junction temperature  
125  
°C  
40  
6.4 Thermal Information  
TPS65235  
THERMAL METRIC(1)  
RUK (WQFN)  
20 PINS  
44.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
47.3  
16.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
16.4  
ψJB  
RθJC(bot)  
3.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS65235  
 
 
 
 
 
 
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V, fSW = 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY  
VIN  
Input voltage range  
VIN  
4.5  
90  
12  
120  
5
20  
150  
7.8  
V
IDD(SDN)  
ILDO(Q)  
UVLO  
Shutdown supply current  
LDO quiescent current  
VIN Undervoltage Lockout  
EN = 0  
µA  
mA  
V
EN = 1, IO = 0 A, VLNB = 18.2 V  
VIN Rising  
2.2  
4.15  
280  
4.3  
480  
4.45  
550  
Hysteresis  
mV  
OUTPUT VOLTAGE  
VOUT Regulated output voltage  
V(ctrl) = 1, IO = 500 mA  
18  
13.25  
19.18  
14.44  
580  
18.2  
13.4  
19.4  
14.6  
650  
18.4  
13.55  
19.62  
14.76  
720  
V
V
V(ctrl) = 0, IO = 500 mA  
SCL = 1, V(ctrl) = 1, IO = 500 mA (Non I2C)  
SCL = 1, V(ctrl) = 0, IO = 500 mA (Non I2C)  
R(SET) = 200 kΩ, Full temperature  
TJ = 25°C  
V
V
I(OCP)  
Output short circuit current limit  
mA  
mA  
kHz  
629  
650  
688  
Fsw  
Boost switching frequency  
Switching current limit  
1 MHz  
977  
1060  
1134  
I(limitsw)  
VIN = 12 V, VOUT = 18.2 V,  
R(SET) = 200 kΩ  
2.4  
3
3.6  
A
Rds(on)_LS  
V(drop)  
On resistance of low side FET  
Linear regulator voltage drop-out  
VIN = 12 V  
90  
0.44  
0.55  
0.9  
140  
0.8  
0.9  
5
210  
1.15  
1.2  
8.8  
65  
mΩ  
V
IO = 500 mA, TONEAMP = 0  
IO = 500 mA, TONEAMP = 1  
VIN = 12 V, VOUT = 13.4 V or 18.2 V  
EN = 1, VLNB = 21 V  
V
I(cable)  
I(rev)  
Cable good detection current threshold  
Reverse bias current  
mA  
mA  
mA  
49  
58  
I(rev_dis)  
Disabled reverse bias current  
EN = 0, VLNB = 21 V  
2.9  
4.6  
6.3  
LOGIC SIGNALS  
V(EN) Enable threshold High  
1.6  
V
V
Enable threshold Low  
0.8  
7
I(EN)  
Enable internal pull up current  
V(EN) = 1.5 V  
5
2
6
3
µA  
µA  
V(EN) = 1 V  
4
V(VCTRL_H)  
V(EXTM_H)  
VCTRL, EXTM Logic threshold level  
FAULT output low voltage  
High level input voltage  
2
V
V(VCTRL_L)  
V(EXTM_L)  
Low level input voltage  
0.8  
0.4  
V
V
VOL(FAULT)  
TONE  
f(tone)  
FAULT open drain, IOL = 1 mA  
Tone frequency  
Tone amplitude  
22 kHz tone output  
20  
22  
24  
kHz  
mV  
A(tone)  
IO = 0 mA to 500 mA, CO = 100 nF,  
TONEAMP = 0  
617  
650  
696  
IO = 0 mA to 500 mA, CO = 100 nF,  
TONEAMP = 1  
703  
750  
803  
mV  
D(tone)  
f(EXTM)  
Tone duty cycle  
45%  
17.6  
35.2  
50%  
22  
55%  
26.4  
52.8  
External tone input frequency range  
22 kHz tone output  
44 kHz tone output  
kHz  
kHz  
44  
TONE DETECTION  
f(DIN)  
Tone detector frequency capture range  
0.4 VPP sine wave  
17.6  
0.3  
22  
26.4  
1.5  
kHz  
V
V(DIN)  
V(DOUT)  
GDR  
Tone detector input amplitude  
DOUT output voltage  
Sine wave, 22 kHz  
Tone present, Iload = 2 mA  
TONE_TRANS = 1, V(LNB) = 18.2 V  
TONE_TRANS = 0, V(LNB) = 18.2 V  
0.4  
V
Bypass FET gate voltage/LNB  
23.11  
18.17  
23.5  
18.2  
24.33  
18.23  
V
V
THERMAL SHUT-DOWN (JUNCTION TEMPERATURE)  
T(TRIP)  
Thermal protection trip Point  
Thermal protection hysteresis  
Temperature Rising  
160  
20  
°C  
°C  
T(HYST)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
TJ = 40°C to 125°C, VIN = 12 V, fSW = 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C READ BACK FAULT STATUS  
V(PGOOD)  
PGOOD trip levels  
Feedback voltage UVP low  
Feedback voltage UVP high  
Feedback voltage OVP high  
Feedback voltage OVP low  
94%  
93%  
96%  
94.5%  
106.6%  
104.6%  
125  
97.1%  
95.5%  
108%  
106%  
104%  
102%  
T(warn)  
Temperature warning Threshold  
°C  
I2C INTERFACE  
VIH  
VIL  
II  
SDA,SCL input high voltage  
2
10  
400  
V
V
SDA,SCL input low voltage  
Input current  
0.8  
10  
SDA, SCL, VI = 0.4 to 4.5 V  
SDA open drain, IOL = 2 mA  
µA  
V
VOL  
f(SCL)  
SDA output low voltage  
Maximum SCL clock frequency  
0.4  
kHz  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
OUTPUT VOLTAGE  
tr, tf  
13 V to 18 V transition rising falling time  
C(TCAP) = 22 nF  
2
ms  
ns  
tON(min)  
TONE  
tr(tone)  
Minimum on time for the Low side FET  
75  
102  
130  
Tone rise time  
IO = 0 mA to 500 mA, CO = 100 nF,  
Control Reg1[0] = 0  
11  
5.5  
µs  
µs  
µs  
µs  
IO = 0 mA to 500 mA, CO = 100 nF,  
Control Reg1[0] = 1, and EXTM has  
44 kHz input  
tf(tone)  
Tone fall time  
IO = 0 mA to 500 mA, CO = 100 nF,  
Control Reg1[0] = 0  
10.8  
5.4  
IO = 0 mA to 500 mA, CO = 100 nF,  
Control Reg1[0] = 1, and EXTM has  
44 kHz input  
PROTECTION  
tON  
Overcurrent protection ON Time  
Overcurrent protection OFF Time  
TIMER=0  
TIMER=0  
2.3  
3.75  
118  
5.52  
ms  
ms  
tOFF  
98.5  
133.5  
I2C INTERFACE  
tBUF  
Bus free time between a STOP and START  
condition  
1.3  
µs  
tHD_STA  
tSU_STO  
tLOW  
Hold time (repeated) START condition  
Setup time for STOP condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data setup time  
0.6  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
0.6  
1.3  
tHIGH  
0.6  
tSU_STA  
tSU_DAT  
tHD_DAT  
tRCL  
0.6  
0.1  
0
Data hold time  
0.9  
Rise time of SCL signal  
Capacitance of one bus line (pF)  
20 + 0.1 CB  
300  
tRCL1  
Rise time of SCL Signal after a Repeated START Capacitance of one bus line (pF)  
condition and after an acknowledge BIT  
20 + 0.1 CB  
300  
ns  
tFCL  
tRDA  
tFDA  
CB  
Fall time of SCL signal  
Capacitance of one bus line (pF)  
Capacitance of one bus line (pF)  
Capacitance of one bus line (pF)  
20 + 0.1 CB  
20 + 0.1 CB  
20 + 0.1 CB  
300  
300  
300  
400  
ns  
ns  
ns  
pF  
Rise time of SDA signal  
Fall time of SDA signal  
Capacitance of one bus line(SCL and SDA)  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
6.7 Typical Characteristics  
TA = 25°C, VIN = 12 V, fSW = 1 MHz, CBoost = 2 x 22 µF/35 V (unless otherwise noted)  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
13.45  
13.44  
13.43  
13.42  
13.41  
13.4  
13.39  
13.38  
13.37  
13.36  
13.35  
V(LNB) = 13.4 V  
V(LNB) = 18.2 V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D002  
D001  
V(LNB) = 13.4 V  
L = 4.7 µH  
6-2. Load Regulation  
6-1. Power Efficiency  
18.3  
18.28  
18.26  
18.24  
18.22  
18.2  
7
6.5  
6
5.5  
5
18.18  
18.16  
18.14  
18.12  
18.1  
4.5  
4
3.5  
3
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
D003  
Junction Temperature (èC)  
D004  
V(LNB) = 18.2 V  
6-4. Input Supply Quiescent Current vs Junction  
6-3. Load Regulation  
Temperature  
135  
130  
125  
120  
115  
110  
105  
680  
670  
660  
650  
640  
630  
620  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D006  
ILOAD = 650 mA  
6-5. Shutdown Current vs Junction Temperature  
6-6. LNB Current Limit vs Junction Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7 Detailed Description  
7.1 Overview  
TPS65235 is the Power management IC that integrates a boost converter, a LDO and a 22 kHz tone generator  
to serve as a LNB power supply. This solution compiles the DiSEqC 2.x standard with or without I2C interface.  
Output current limitation can be precisely programmed by an external resistor. There are two ways to generate  
the 22 kHz tone signal, with or without I2C. Integrated boost features low Rds(on) MOSFET and internal  
compensation. 1 MHz or 500 kHz selectable switching frequency is designed to save passive components size  
and be flexible for design.  
TPS65235 can support the 44-kHz tone output, when the EXTM has 44-kHz tone input, and the bit EXTM TONE  
of Control Register 1 is set to 1, the LNB tone output is 44 kHz. By default, the TPS65235 has a typical 22-  
kHz tone output.  
7.2 Functional Block Diagram  
EN  
REF_Boost  
Internal Regulator  
VCC  
PWM Controller  
PGND  
REF_Boost  
TCAP  
BOOST  
REF  
VCTRL  
VCP  
Charge Pump  
VLNB  
REF_LDO  
SDA  
SCL  
I2C Interface  
I2C EN  
ADDR  
EN  
Tone  
Generator  
VLNB  
OCP  
OTP  
Tone_Auto  
Tone_Trans  
EXTM  
Fault Diagnose  
PGOOD  
GDR  
DIN  
Logic  
Tone  
Det  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Boost Converter  
The TPS65235 consists of an internal compensated boost converter and linear regulator. The boost converter  
tracks the LNB output voltage within 800 mV even at loading 1000 mA, which minimizes power loss. When the  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS65235  
 
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
input voltage VIN is greater than the expected output voltage VLNB, the linear regulator drops the voltage  
difference between VIN and VLNB, which causes the lower efficiency and the higher power loss on the internal  
linear regulator if the current loading is high. For this application, care must be taken to ensure that the safe  
operating temperature range of the TPS65235 is not exceeded. Recommend to work at force PWM mode when  
VIN > VOUT to reduce output ripple.  
As default, the boost converter operates at 1 MHz. TPS65235 has internal cycle-by-cycle peak current limit in  
the boost converter and DC current limit in the LNB output to protect the IC against short circuits and over  
loading. When the LNB output is shorted to ground, the LNB output current is clamped at the LDO current limit.  
The LDO current limit is set by the external resistor at ISET pin; meanwhile the Boost switch current limit is  
proportional with LDO current limit. If overcurrent condition lasts for more than 4 ms, the Boost converter enters  
hiccup mode and will re-try startup in 128 ms. This hiccup mode ON/OFF time can be selectable by I2C control  
register 0x01, either 4 ms / 128 ms or 8 ms / 256 ms. At extremely light loads, the boost converter operates in a  
pulse-skipping mode automatically.  
Boost converter is stable with either ceramic capacitor or electrolytic capacitor.  
If two or more set top box LNB outputs are connected together, one output voltage could be set higher than  
others. The output with lower set voltage would be effectively turned off. Once the voltage drops to the set level,  
the LNB output with lower set output voltage returns to normal conditions.  
7.3.2 Linear Regulator and Current Limit  
The linear regulator is used to generate the 22-kHz tone signal by changing the LDO reference voltage. The  
linear regulator features low drop out voltage to minimize power loss while keeps enough head room for the 22-  
kHz tone with 650-mV amplitude. It also implements a tight current limit for overcurrent protection. The current  
limit is set by an external resistor connected to ISET pin. 7-1 shows the relationship between the current limit  
threshold and the resistor value.  
550  
y = 117.08x-1.267  
500  
450  
400  
350  
300  
250  
200  
150  
100  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
ISET (A)  
D007  
7-1. Linear Regulator Current Limit Vs Resistor  
-1.267  
R
(kW) = 117.08 x I  
(A)  
SET  
SET  
(1)  
A 200-kΩresistor sets the current to be 0.65 A, and 110-kΩresistor sets the current to approximately 1 A.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.3.3 Boost Converter Current Limit  
The boost converter has the cycle-by-cycle peak current limit on the internal Power MOSFET switch to serve as  
the secondary protection when LNB output is hard short. With ISW bit default setting 0on I2C control  
register 0x01, the switch current limit ISW is proportional as LDO current limit I(OCP) set by ISET pin resistor, and  
the relationship can be expressed as:  
I
= 3 x I  
+ 0.8A  
SW  
(OCP)  
(2)  
For the 5 V VIN, if LNB current load is up to 1 A, the ISW bit should be written as 1, the switch current limit  
ISW for the internal Power MOSFET is:  
I
= 5 x I  
+ 0.8A  
SW  
(OCP)  
(3)  
While due to the high power loss at 5 V, VIN, it has a chance to trigger the thermal shutdown before the loading is  
up to 1 A, especially the VLNB output is high.  
7.3.4 Charge Pump  
The charge pump circuitry generates a voltage to drive the NMOS of the linear regulator. The voltage across the  
charge pump capacitor between VLNB and VCP is about 5.4 V, so the absolute value of the VCP voltage will be  
VLNB + 5.4 V.  
7.3.5 Slew Rate Control  
When LNB output voltage transits from 13.4 V to 18.2 V or 18.2 V to 13.4 V, the cap at pin TCAP controls the  
transition time. This transition time makes sure the boost converter output to follow LNB output change. Usually  
boost converter has low bandwidth and cant response fast. The voltage at TCAP acts as the reference voltage  
of the linear regulator. The boost converters reference is also based on TCAP with additional fixed voltage to  
generate a 0.8 V above the LNB output.  
The charging and discharging current is 10 µA, thus the transition time can be estimated as:  
C
I
(nF)  
SS  
t
(ms) = 0.8 x  
TCAP  
(mA)  
SS  
(4)  
A 22-nF capacitor generates about 2 ms transition time.  
In light load conditions, when LNB output voltage is set from 18.2 V to 13.4 V, the voltage drops very slow, which  
causes wrong VOUT_GOOD (Bit 0 at status register 0x02) logic for LNB output voltage detection. TPS65235  
has integrated a pull down circuit to pull down the output during the transition. This ensures the voltage change  
can follow the voltage at TCAP. When the 22-kHz tone signal is superimposing on the LNB output voltage, the  
pull down current can also provide square wave instead of a distorted waveforms.  
7.3.6 Short Circuit Protection, Hiccup and Overtemperature Protection  
The LNB output current limit can be set by an external resistor. When short circuit conditions occur or current  
limit is triggered, the output current is clamped at the current limit for 4 ms with LDO on. If the condition retains,  
the converter will shut down for 128 ms and then restart. This hiccup behavior prevents IC from being overheat.  
The hiccup ON/OFF time can be set by I2C register. Refer to Control Register 1 for detail.  
The low side MOSFET of the boost converter has a peak current limit threshold which serves as the secondary  
protection. If boost converters peak current limit is triggered, the peak current will be clamped as high as 3.8 A  
when setting ISW default and LNB current limit up to 1 A. If loading current continues to increase, output voltage  
starts to drop and output power drops.  
Thermal shutdown prevents the chip from operating at exceedingly high temperatures. When the junction  
temperature exceeds 160°C, the output shuts down. When the die temperature drops below its lower threshold  
typically 140°C, the output is enabled.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
When the chip is in overcurrent protection or thermal shutdown, the I2C interface and logic are still active. The  
Fault pin is pulled down to signal the processor. The Fault pin signal remains low unless the following action is  
taken:  
1. If I2C interface is not used to control, EN pin must be recycled in order to pull Fault pin back to high.  
2. If I2C interface is used, the I2C master need to read the status Control Register 2, then the Fault pin will be  
back to high.  
7.3.7 Tone Generation  
22 kHz tone signal is implemented at the LNB output voltage as a carrier for DiSEqC command. This tone signal  
can be generated by feeding an external 22-kHz clock at the EXTM pin, and it can also be generated with its  
internal tone generator controlled by EXTM pin. If EXTM pin is toggled to high, the internal tone signal will be  
superimposed at the LNB output, if EXTM pin is low, there will be no tone superimposed at the output stage of  
the regulator facilitates a push-pull circuit, so even at zero loading; the 22-kHz tone at the output is still clean  
without distortion.  
There are two ways to generate the 22 kHz tone signal at the output.  
For option1, if the EXTM has 44-kHz tone input, and the bit EXTM TONE of the Control Register 1 is set to "1",  
the LNB tone output is 44 kHz.  
EXTM  
TONE  
VLNB(V)  
Option 1. Use external tone, gated by EXTM logic pulse  
EXTM  
TONE  
VLNB(V)  
Option 2. Use internal tone, gated by EXTM logic envelop  
7-2. Two Ways to Generate 22 kHz Tone  
7.3.8 Tone Detection  
A 22-kHz tone detector is implemented in the TPS65235 solution. The detector extracts the AC coupled tone  
signal from the DIN input and provides it as an open-drain signal on the DOUT pin. With bit DOUTMODE default  
setting of the Control Register 2, if tone is present, the DOUT output is logic low; if tone is not present, the  
internal output FET is off. If a pull high resistor is connected to the DOUT pin, the output is logic high. The  
maximum tone out delay with respect to the input is one and half tone cycle.  
Bit DOUTMODE of Control Register 2 is reserved and should not be used.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.3.9 Disable and Enable  
TPS65235 has a dedicated EN pin to disable and enable the LNB output. At non-I2C application, when the EN  
pin is pulled to high, the LNB output is enabled, when the EN pin is pull to low, the LNB output is disabled. At I2C  
application, either EN pin is low or high, the I2C registers can be accessed, which allows customer to change the  
default LNB output when system power up. When the bit I2C_CON of Control Register 1 is set to 1, the LNB  
output enable or disable is controlled by bit EN of Control Register 2. By default, the bit I2C_CON of the control  
register is set to 0, which makes the LNB output is controlled by the EN pin. 7-3 and 7-4 shows the  
detail control behavior.  
EN pin = 0 V  
Bit I2C_CON = 1  
Bit I2C_CON = 0  
7-3. VLNB Output Controlled by bit EN of  
7-4. VLNB Output Controlled by EN Pin  
Control Register 2  
7.3.10 Component Selection  
7.3.10.1 Boost Inductor  
TPS65235 is recommended to operate with a boost inductor value of 4.7 µH or 10 µH. The boost inductor must  
be able to support the peak current requirement to maintain the maximum LNB output current without saturation.  
Below formula can be used to estimate the peak current of the boost inductor.  
I
V
x D  
1
2
OUT  
IN  
I
=
+
x
peak  
1-D  
L x f  
S
(5)  
(6)  
V
IN  
D = 1-  
VLNB + 0.8  
With the different inductance, the system will have different gain and phase margins, 7-5 shows a Bode plot of  
boost loop with 2 x 10 µF / 35 V of boost capacitor and 4.7 µH, 5.6 µH, 6.8 µH, 8.2 µH and 10 µH of boost  
inductance. As the boost inductance increases, the 0 dB crossover frequency keeps relatively constant while the  
phase and gain margins reduced. With 4.7 µH, the phase margin is 66.96° and with 10 µH the phase margin is  
39.63°.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS65235  
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
4.7 mH  
5.6 mH  
6.8 mH  
8.2 mH  
10 mH  
4.7 mH, 66.96 deg  
10 mH, 39.63 deg  
4.7 mH  
5.6 mH  
6.8 mH  
8.2 mH  
10 mH  
7-5. Gain and Phase Margin of the Boost Loop with Different Inductance (VIN = 12 V, VOUT = 18.2 V,  
ILOAD = 1 A, FSW = 1 MHz, 5 µF, Typical Bode Plot)  
7.3.10.2 Capacitor Selection  
TPS65235 has a 1 MHz nonsynchronous boost converter integrated and the boost converter features the  
internal compensation network. TPS65235 works well with both ceramic capacitor and electrolytic capacitor.  
In TPS65235 application, the recommended ceramic capacitors rated are at least X7R/X5R, 35 V rating and  
1206 size for the achieving lower LNB output ripple. 7-1 shows the recommended ceramic capacitors list for  
both 4.7uH and 10uH boost inductors.  
If lower cost is demanded, a 100-µF electrolytic (Low ESR) and a 10-µF/35-V ceramic capacitor also work well,  
this solution provides lower system cost.  
7-1. Boost Inductor and Capacitor Selections  
Boost Inductor  
Capacitors  
2 x 22 µF  
2 x 10 µF  
2 x 22 µF  
2 x 10 µF  
22 µF  
Tolerance (%)  
Rating (V)  
Size  
1206  
1206  
1206  
1206  
1206  
±10  
±10  
±10  
±10  
±10  
35  
35  
35  
35  
35  
10 µH  
4.7 µH  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65235  
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7-6 and 7-7 show a Bode plot of boost loop with 4.7 µH / 10 µH inductance and 4 µF, 5 µF, 7.5 µF, 10 µF,  
15 µF and 20 µF of boost capacitance after degrading. As the boost capacitance increases, the phase margin  
decreases.  
4 mF  
4 mF  
5 mF  
7.5 mF  
10 mF  
20 mF  
15 mF  
20 mF  
4 mF, 57.45 deg  
20 mF, 84.49 deg  
4 mF  
5 mF  
7.5 mF  
10 mF  
15 mF  
20 mF  
7-6. Gain and Phase Margin of the Boost Loop With Different Boost Capacitance (VIN = 12 V, VOUT  
=
18.2 V, ILOAD = 1 A, FSW = 1 MHz, 4.7 µH, Typical Bode Plot)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
5 mF  
7.5 mF  
10 mF  
15 mF  
20 mF  
5 mF  
20 mF  
5 mF, 37.23 deg  
20 mF, 78.74 deg  
5 mF  
7.5 mF  
10 mF  
15 mF  
20 mF  
7-7. Gain and Phase Margin of the Boost Loop With Different Boost Capacitance (VIN = 12 V, VOUT  
18.2 V, ILOAD = 1 A, FSW = 1 MHz, 10 µH, Typical Bode Plot)  
=
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.3.10.3 Surge Components  
If surge test is needed for the application, D0 and D2 should be added as the external protection components. If  
no surge test needed. The D0 and D2 can be removed.  
7-2. Surge Components  
Designator  
Description  
Part Number  
Manufacturer  
Fairchild Semiconductor  
Diodes Inc.  
D0  
D2  
Diode, TVS, Uni, 28 V, 1500 W, SMC  
Diode, Schottky, 40 V, 2 A, SMA  
SMCJ28A  
B240A-13-F  
100nF 0.1mF  
VOUT  
16 VLNB  
D3  
D0  
D2  
17  
VCP  
BOOST  
18  
19  
20  
2x22mF  
GDR  
D1  
TPS65235  
PGND  
1
2
10mH  
VIN  
10mF  
1mF  
Copyright © 2016, Texas Instruments Incorporated  
7-8. Surge Components Selection  
7.3.10.4 Consideration for Boost Filtering and LNB Noise  
Smaller capacitance on boost will lead the cost down for the system, while when the inductor in system is same,  
the smaller capacitance on the boost and the larger ripple on the LNB output.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.4 Device Functional Modes  
7-3. Logic table  
EN  
H
12C_CON(1) (2) (3)  
SCL  
VCTRL  
VLNB(4)  
19.4 V  
14.6 V  
18.2 V  
13.4 V  
0
0
0
0
H
H
L
H
H
H
L
H
L
H
L
Controlled by VSET[3:0]  
bits at 0x01 register(5)  
X
L
1
0
X
X
X
X
0 V  
(1) I2C_CON is the bit7 of the I2C control register 0x01, which is used to set the VLNB output controlled by the I2C register or not.  
(2) When I2C interface is used in design, all the I2C registers are accessible even if the I2C_CON bit is 0.  
(3) When I2C_CON is 1, the VLNB output is controlled by the I2C control register even if the EN pin is low.  
(4) When I2C interface is used in design, it is recommended to set the I2C_CON with 1, if not, the LNB output will be variable because  
the SCL is toggled by the I2C register access as the clock signal.  
(5) Bit EN of the control register2 is used to disable or enable the LNB output, by default , the bit EN is "1" which enable the LNB output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65235  
 
 
 
 
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.5 Programming  
7.5.1 Serial Interface Description  
I2C is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1,  
January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the  
bus is idle, both SDA and SCL lines are pulled high external. All the I2C compatible devices connect to the I2C  
bus through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal  
processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The  
master also generates specific conditions that indicate the START and STOP of data transfer. A slave device  
receives and/or transmits data on the bus under control of the master device.  
The TPS65235 device works as a slave and supports the following data transfer modes, as defined in the  
I2CBus Specification: standard mode (100 kbps), and fast mode (400 kbps). The interface adds flexibility to the  
power supply solution, enabling most functions to be programmed to new values depending on the  
instantaneous application requirements. Register contents remain intact as long as supply voltage remains  
above 4.5 V (typical).  
The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as  
F/S-mode in this document. The TPS65235 device supports 7-bit addressing; 10-bit addressing and general call  
address are not supported.  
The TPS65235 device has a 7-bit address set by ADDR pin. 7-4 shows how to set the I2C address.  
7-4. I2C Address Selection  
ADDR PIN  
I2C ADDRESS  
Address Format (A6 A0)  
Connect to VCC  
Floating  
0x08H  
000 1000  
0x09H  
000 1001  
Connected to GND  
0x10H  
001 0000  
Resistor divider to make ADDR pin voltage in 3 V ~ VCC - 0.8 V  
0x11H  
001 0001  
SDA  
tSU, STA  
tHD, STA  
tBUF  
tSU, STO  
tSU, DAT  
tHD, DAT  
tLOW  
SCL  
tHD, STA  
tHIGH  
tSP  
Start  
Condition  
Repeated Start  
Condition  
Stop Start  
Condition Condition  
tr  
tf  
7-9. I2C Interface Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS65235  
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.5.2 TPS65235 I2C Update Sequence  
The TPS65235 requires a start condition, a valid I2C address, a register address byte, and a data byte for a  
single update. After the receipt of each byte, TPS65235 device acknowledges by pulling the SDA line low during  
the high period of a single clock pulse. TPS65235 performs an update on the falling edge of the LSB byte.  
When the TPS65235 is disabled (EN pin tied to ground) the device cannot be updated via the I2C interface.  
7-Bit Slave Address  
A6.A0  
S
0
A
A
A
P
Register Address  
Data Byte  
7-10. I2C Write Data Format  
7-Bit Slave Address  
A6.A0  
S
0
A
A
Sr  
1
A
Register1 Address  
7-Bit Slave Address  
N
P
Data Byte  
A: Acknowledge  
N: Not Acknowledge  
S: Start  
System Host  
Chip  
P: Stop  
Sr: Repeated Start  
7-11. I2C Read Data Format  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.6 Register Maps  
7.6.1 Control Register 1 (address = 0x00H) [reset = 00010000]  
7-10. Control Register 1  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-5. Control Register 1  
Bit  
Field  
Type  
Reset  
Description  
1: I2C control enabled  
0: I2C control disabled  
7
I2C_CON  
R/W  
0
0: PSM at light load  
1: Forced PWM  
6
PWM/PSM  
R/W  
0
5
4
3
2
1
R/W  
R/W  
R/W  
R/W  
R/W  
VSET3  
VSET2  
VSET1  
VSET0  
0
1
0
0
See 7-6 for output voltage selection  
1: EXTM 44-kHz tone input support, with 44-kHz tone output at  
LNB  
0
EXTM TONE  
R/W  
0
0: EXTM 44-kHz tone input not support, with only 22-kHz tone  
output at LNB  
7-6. LNB Output Voltage Selection  
VSET3  
VSET2  
VSET1  
VSET0  
LNB(V)  
11  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
11.6  
12.2  
12.8  
13.4  
14  
14.6  
15.2  
15.8  
16.4  
17  
17.6  
18.2  
18.8  
19.4  
20  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS65235  
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.6.2 Control Register 2 (address = 0x01H) [reset = 0000101]  
7-11. Control Register 2  
7
0
6
0
5
0
4
3
2
0
1
0
0
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-7. Control Register 2  
Bit  
Field  
Type  
Reset  
Description  
1: 22 kHz tone amplitude is 750 mV (typ)  
0: 22 kHz tone amplitude is 650 mV (typ)  
7
TONEAMP  
R/W  
0
1: Hiccup ON/OFF time set to 8 ms / 256 ms  
0: Hiccup ON/OFF time set to 4 ms / 128 ms  
6
5
TIMER  
ISW  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
1
0
1: Boost switch peak current limit set to 5 x Iocp + 0.8 A  
0: Boost switch peak current limit set to 3 x Iocp + 0.8 A  
4
3
2
1
FSET  
1: 500 kHz switching frequency  
0: 1 MHz switching frequency  
EN  
1: LNB output voltage Enabled  
0: LNB output disabled  
DOUTMODE  
TONE_AUTO  
1: Reserved, cannot set to "1"  
0: DOUT is kept to low when DIN has the tone input  
1: GDR (External bypass FET control) is automatically controlled  
by 22 kHz tones transmit  
0: GDR (External bypass FET control) is controlled by  
TONE_TRANS  
R/W  
R/W  
0
1
1: GDR output with VCP voltage. Bypass FET is ON for tone  
transmit from TPS65235  
0: GDR output with VLNB voltage for tone receive. Bypass FET  
is OFF for tone receiving from satellite  
0
TONE_TRANS  
7-8. 22-kHz Tone Receive Mode Selection  
TONE_AUTO  
TONE_TRANS  
Bypass FET  
OFF  
0
0
1
0
1
x
ON  
Auto Detect  
TPS65235 has full range of diagnostic flags for operation and debug. Processor can read the status register to  
check the error conditions. Once the error happens, the flags are changed, once the errors are gone, the flags  
are set back without I2C access.  
If flags TSD and OCP are triggered, FAULT pin will be pulled low, so FAULT pin can be the interrupt signal to  
processor. Once TSD and OCP are set to 1, the FAULT pin logic is latched to low, processor need to read  
this status register in order to release the fault conditions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65235  
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
7.6.3 Status Register (address = 0x02H) [reset = x0100000]  
7-12. Status Register  
7
0
6
0
5
0
4
3
2
0
1
0
0
1
0
1
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-9. Status Register  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R
Reserved  
1: 22 kHz tone detected on DIN pin is in range  
0: 22 kHz tone detected on DIN pin is out of range  
6
5
TDETGOOD  
LDO_ON  
R
R
R
0
1
0
1: Internal LDO is turned on and boost converter is on  
0: Internal LDO is turned off but boost converter is on  
4
3
T125  
TSD  
Die temperature > 125°C  
Die temperature < 125°C  
1: Thermal shutdown triggered. The Fault pin logic is latched to  
low, processor need to read this register in order to release the  
fault conditions  
R
R
0
0
0: No thermal shutdown triggered  
2
OCP  
1: Over current protection triggered. The Fault pin logic is  
latched to low, processor need to read this register in order to  
release the fault conditions  
0: Overcurrent protection conditions released  
1
0
CABLE_GOOD  
VOUT_GOOD  
1: Cable connection good  
0: Cable not connected  
R
R
0
0
1: LNB output voltage in range  
0: LNB output voltage out of range  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.2 Typical Application for DiSEqc1.x Support  
TPS65235 can work at both I2C and non I2C interface mode, 8-1 shows the application with I2C interface for  
supporting DiSEqC 1.x application. With nonI2C mode, the SCL, SDA and ADDR pins can be floating.  
15  
14  
13  
11  
12  
VOUT  
D0  
100nF 0.1mF  
16 VLNB  
VCTRL  
10  
9
D3  
D2  
17  
VCP  
ADDR  
10k  
FAULT  
8
7
6
BOOST  
18  
TPS65235  
2x22mF  
EN  
19  
20  
GDR  
D1  
ISET  
PGND  
110k  
1
2
3
4
5
10mH  
VIN  
22nF  
1mF  
10mF  
1mF  
Copyright © 2016, Texas Instruments Incorporated  
8-1. Application for DiSEqc1.x Support  
8.2.1 Design Requirements  
For this design example, see the parameters in 8-1.  
8-1. Design Parameters  
PARAMETER  
VALUE  
Input voltage range, VIN  
Output voltage range VLNB  
Output current range  
4.5 V to 16 V  
11 V to 20 V  
0 A to 1 A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65235  
 
 
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
8.2.2 Detailed Design Procedure  
To begin the design process, following need to be done:  
Inductor choose  
Based on the cost requirement, ripple requirement and 7.3.10 to choose the appropriate inductor.  
Boost capacitor choose  
Based on the cost requirement, ripple requirement and 7.3.10 to choose the appropriate capacitors.  
Diodes choose.  
D0 and D2 are for the surge protection requirement, if not requirement for surge, it can be removed. Refer  
to 7.3.10.3 for the part selection.  
D1 is for the boost loop, schottky diode is recommended. The current and voltage capability of the D1 can  
be determined by the detail application which including input and output power range, and current  
requirement.  
D3 is for the VLNB output protection, schottky diode is recommended. The current and voltage capability of  
the D3 can be determined by the detail application for the output.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
8.2.3 Application Curves  
TA = 25°C, VIN = 12 V, fSW = 1 MHz, CBoost = 2 x 22 µF/35 V (unless otherwise noted)  
VLNB = 13.4 V  
VLNB = 13.4 V  
8-2. Soft Start, Delay from EN High to LNB  
8-3. Disabled, Delay From EN Low to LNB  
Output High  
Output Low  
VLNB = 18.2 V  
VLNB = 18.2 V  
8-5. Disabled, Delay From EN Low to LNB  
8-4. Soft Start,Delay from EN High to LNB  
Output Low  
Output High  
EN = 0  
VLNB = 13.4 V  
EN = 0  
VLNB = 13.4 V  
8-6. Soft Start, Delay From I2C Enable  
8-7. Delay From I2C Disable (I2C_CON=0) to LNB  
(I2C_CON=1) to LNB Output High  
Output Low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
VLNB = 13.4 V  
VLNB = 13.4 V  
8-8. No Load, 22 kHz Tone Output  
8-9. 950 mA Load, 22 kHz Tone Output  
VLNB = 18.2 V  
VLNB = 18.2 V  
8-10. No Load, 22 kHz Tone Output  
8-11. 950 mA Load, 22 kHz Tone Output  
8-13. No load, 22 kHz Tone Delay from EXTM 22  
8-12. No load, 22 kHz Tone Delay from EXTM 22  
kHz Input Turns Low To Output Tone Off  
kHz Input Turns High To Output Tone On  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
8-15. No Load, 22 kHz Tone Delay From EXTM  
8-14. No Load, 22 kHz Tone Delay From EXTM  
Tone Envelop Input Turns Low To Output Tone Off  
Tone Envelop Input Turns High To Output Tone On  
8-16. No Load, 44 kHz Tone Delay From EXTM  
8-17. No Load, 44 kHz Tone Delay From EXTM  
22 kHz Input Turns High To Output Tone On  
22 kHz Input Turns Low To Output Tone Off  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65235  
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
8.2.4 Typical Application for DiSEqc2.x Support  
TPS65235 can support both DiSEqC 1.x application and DiSEqC 2.x application, 8-18 shows the application  
for supporting DiSEqC 2.x application.  
10k  
10nF  
10k  
15  
14  
13  
11  
12  
220mH  
VOUT  
0.1mF  
16 VLNB  
VCTRL  
10  
9
100nF  
D0  
D3  
D2  
22nF  
17  
VCP  
ADDR  
10k  
15 Ohm  
FAULT  
8
7
6
BOOST  
18  
TPS65235  
2x22mF  
EN  
19  
20  
GDR  
D1  
ISET  
PGND  
110k  
1
2
3
4
5
10mH  
VIN  
22nF  
1mF  
10mF  
1mF  
Copyright © 2016, Texas Instruments Incorporated  
8-18. Application for DiSEqc2.x Support  
8.2.4.1 Design Requirements  
Refer to 8.2 for design requirements.  
8.2.4.2 Detailed Design Procedure  
Refer to 8.2 for detailed design procedures.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS65235  
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
8.2.4.3 Application Curves  
Refer to 8.2 for application curves. While 8-19 is special for DiSEqC 2.x application for tone detection.  
8-19. DOUT Tone Detection Output  
9 Power Supply Recommendations  
The devices are designed to operate from an input supply ranging from 4.5 V to 16 V. The input supply should  
be well regulated. If the input supply is located more than a few inches from the converter, an additional bulk  
capacitance typically 100 µF may be required in addition to the ceramic bypass capacitors.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65235  
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
10 Layout  
10.1 Layout Guidelines  
TPS65235 is designed to layout in 2layer PCB. To ensure reliability of the device, following common printed-  
circuit board layout guidelines is recommended.  
It is critical to make sure the GND of input capacitor, output capacitor and the boost converter are connected  
at one point at same layer.  
PGND and AGND are in different region, they are connected to the thermal pad. Other components are  
connected AGND.  
Put the capacitors for boost as close as possible.  
The loop from VIN, inductor to LX should be as short as possible.  
The loop from VIN, inductor, D1 Schottky diode to Boost should be as short as possible.  
The loop for boost capacitors to PGND should be within the loop from LX, D1 Schottky diode to Boost.  
10.2 Layout Example  
Polygonal Copper Pour  
VIA to GND Plane (Inner Layer)  
15 14 13  
11  
12  
D3  
100nF  
VOUT  
VLNB  
16  
17  
VCTRL  
10  
9
0.1uF  
D2  
VCP  
ADDR  
10k  
FAULT  
8
7
6
BOOST  
18  
19  
20  
EN  
GDR  
2x22uF  
ISET  
PGND  
110k  
D1  
1
2
3
4
5
1uF  
1uF  
VIN  
10uH  
22nF  
10uF  
10-1. Layout  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS65235  
 
 
 
TPS65235  
www.ti.com.cn  
ZHCSEC5D NOVEMBER 2015 REVISED MAY 2021  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65235  
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65235RUKR  
TPS65235RUKT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
65235  
65235  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65235RUKR  
TPS65235RUKT  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65235RUKR  
TPS65235RUKT  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RUK0020B  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
3.1  
2.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
DIMENSION A  
OPTION 01  
OPTION 02  
(0.1)  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(DIM A) TYP  
OPT 02 SHOWN  
1.7 0.05  
6
10  
EXPOSED  
THERMAL PAD  
16X 0.4  
5
11  
21  
SYMM  
4X  
1.6  
1
15  
SEE TERMINAL  
DETAIL  
0.25  
20X  
0.15  
0.1  
C A  
B
20  
16  
PIN 1 ID  
SYMM  
0.05  
(OPTIONAL)  
0.5  
0.3  
20X  
4222676/A 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.7)  
SYMM  
20  
16  
20X (0.6)  
1
15  
20X (0.2)  
(0.6)  
TYP  
21  
SYMM  
(2.8)  
16X (0.4)  
5
11  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
6
10  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222676/A 02/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.47) TYP  
16  
(R0.05) TYP  
20  
20X (0.6)  
1
15  
21  
20X (0.2)  
(0.47)  
TYP  
SYMM  
(2.8)  
16X (0.4)  
11  
5
METAL  
TYP  
6
10  
4X ( 0.75)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 21:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222676/A 02/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65235-1

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65235-1RUKR

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65235-1RUKT

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65235-3RUKR

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS652353

具有 I2C 接口的 LNB 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65235RUKR

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65235RUKT

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65250

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65250RHAR

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65250RHAT

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65250_1

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65251

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK SWITCHER WITH INTEGRATED FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI