TPS65301QPWPRQ1 [TI]

具有 3 个 LDO 和受保护传感器电源的汽车类 5.6V 至 40V、1.2A 降压转换器 | PWP | 24 | -40 to 125;
TPS65301QPWPRQ1
型号: TPS65301QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 3 个 LDO 和受保护传感器电源的汽车类 5.6V 至 40V、1.2A 降压转换器 | PWP | 24 | -40 to 125

开关 光电二极管 传感器 转换器
文件: 总38页 (文件大小:2229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
3MHz 降压稳压器和三重线性稳压器以及受保护传感器电源  
查询样片: TPS65301-Q1  
1
特性  
描述  
输入 VIN 电压范围介于 5.75V 40V 之间,瞬态  
TPS65301-Q1 电源是一个单开关模式降压电源和三个  
电压高达 45V  
线性稳压器的组合。 这是一款单片高压开关稳压器,  
此稳压器具有一个集成型 1.2A 峰值电流开关,45V 功  
率金属氧化物半导体场效应晶体管 (MOSFET),一个  
低压线性稳压器,两个电压稳压器控制器以及一个受保  
护传感器电源。  
为了实现稳定性,所有输出支持陶瓷输出电容器  
带有集成高侧开关的 5.45V 开关模式稳压器  
建议使用的开关模式频率范围为 2MHz 至  
3MHz  
过流保护和 1.2A 峰值开关电流  
一个线性稳压器 5V ± 2%  
此器件具有一个电压监视器,此监视器监控开关模式电  
源的输出,3.3V 线性稳压器和 1.2V 线性稳压器。 一  
个外部定时电容器用于设定加电延迟时间和复位输出  
nRST 的释放时间。 这个复位输出还被用于表示开关  
模式电源,3.3V 线性稳压器电源或者 1.2V 线性稳压  
器电源是否在设定的限值之外。 受保护传感器电源  
5VS 在额定限值内跟踪 3.3V 线性稳压器。  
两个电压为 3.3V 的线性稳压器控制器,分别  
1.2V ± 2%  
受保护 5V 传感器电源输出,此输出跟踪 3.3V 电源  
IGN_EN 输入的状态指示器输出  
点火 (IGN_EN) / 使能输入 (EN) 周期上的软启动  
用于同步的外部时钟输入  
TPS65301-Q1 器件开关频率范围介于 2MHz 3MHz  
之间,从而实现半高电感器和低值输入以及输出陶瓷电  
容器的使用。 外部环路补偿为用户提供了针对适当的  
运行条件而进行转换器优化的灵活性。  
针对快速负瞬态的可编程加电复位延迟、复位功能  
滤波器定时器  
针对下列电源的电压监视器  
VREG3.3V1.2V  
针对过多功率耗散的热关断保护  
此器件具有内置保护特性,诸如 IGN_EN ON 或者使  
能周期上的软启动、逐脉冲电流限制、热感测、和过多  
功率耗散而引起的关断。  
运行结温范围高达 150°C  
耐热增强型 24 引脚超薄型小外形尺寸 (HTSSOP)  
或者 24 引脚四方扁平无引线 (QFN) 封装  
VIN_D  
2
4
BOOT  
PH  
VI = 5.6 V to 40 V  
3
1
VIN  
Supply  
应用范围  
5.45 V  
用于 TMS570 微控制器的电源  
EN  
9
22  
14  
VREG  
COMP  
IGN_EN  
RT/CLK  
5
8
用于 C28XXX 数字信号处理器 (DSP) 的电源  
15  
针对车载应用的通用电源  
VSENSE  
SS  
20  
TPS65301PWPR-Q1  
BOOT_LDO  
3.3VDRIVE  
3.3VSENSE  
6
19  
18  
3.3 V  
5 V  
GND  
10  
12  
21  
DELAY  
nRST  
23  
5VS  
7
1.2VDRIVE  
1.2VSENSE  
17  
16  
1.2 V  
PGND  
24  
1. 典型应用电路原理图  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLVSC10  
 
 
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
FUNCTION  
Buck Regulator  
TERMINAL  
VALUE  
–0.3 to 45  
–0.3 to 50  
UNIT  
VIN, VIN_D  
BOOT  
V
V
V
PH  
–1 to 45  
–2 V for 30 nS  
VSENSE  
IGN_EN  
EN  
–0.3 to 5.5  
–0.3 to 45  
–0.3 to 5.5  
–0.3 to 5.5  
–0.3 to 5.5  
–0.3 to 5.5  
–0.3 to 8  
–0.3 to 8  
–0.3 to 8  
–0.3 to 5.5  
–0.3 to 5.5  
–0.3 to 7  
–0.3 to 7  
–0.3 to 7  
–0.3 to 9  
–0.3 to 7  
–1 to 45  
V
V
Control  
V
3.3VSENSE  
1.2VSENSE  
RT/CLK  
VREG  
V
V
V
V
Output  
3.3VDRIVE  
1.2VDRIVE  
nRST  
V
V
V
IGN_ST  
SS  
V
V
DELAY  
COMP  
V
V
BOOT_LDO  
5V  
V
V
5VS  
V
Temperature  
Operating junction temperature range, TJ  
Storage Temperature Range, TS  
ESD(2)  
–40 to 150  
–55 to 165  
±2  
°C  
°C  
kV  
Electrostatic Discharge HBM  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5.6  
5.6  
–1  
0
NOM  
MAX  
40  
UNIT  
V
VIN, VIN_D  
BOOT  
48  
V
PH  
40  
V
IGN_EN  
40  
V
EN, VSENSE, 3.3VSENSE, 1.2VSENSE, RT/CLK, nRST, IGN_ST  
VREG, 3.3VDRIVE, 1.2VDRIVE  
SS, DELAY, COMP  
0
5.25  
7.5  
6.5  
8.1  
125  
V
0
V
0
V
BOOT_LDO  
0
V
Operating ambient temperature range, TA  
–40  
°C  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
THERMAL INFORMATION  
TPS65301-Q1  
THERMAL METRIC(1)  
PWP  
24 PINS  
33.6  
RHF  
24 PINS  
30.3  
30.5  
8.7  
UNIT  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
16.6  
14.5  
ψJT  
0.4  
0.3  
ψJB  
14.3  
8.8  
θJCbot  
1.3  
1.6  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
DC CHARACTERISTICS  
VIN = 6 V to 27 V, IGN_EN = VIN, TJ-Max = 150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN, VIN_D (Input Power Supply)  
VIN,  
Supply voltage on VIN, line  
VIN_D  
Normal mode, after initial startup  
5.6  
14  
40  
V
Iq-Normal  
ISD VIN  
Current normal mode  
Open-loop test  
5.57  
2.2  
mA  
IGN = 0 V, VIN = 12 V, TA = –40°C to 125°C  
IGN = 0 V, VIN = 12 V, TA = –40°C to 125°C  
15  
15  
Shut down  
µA  
ISD VIND  
2.2  
IGN_EN (Ignition Input)  
VIGN_EN Input voltage range  
VIH  
Input into IGN_EN pin  
14  
3.16  
3.03  
23.7  
4
40  
V
V
V
Input high  
Input low  
Enable device to be ON (rising signal)  
Enable device to be OFF (falling signal)  
Enable device to be ON, VIGN_EN = 18 V  
Enable device to be ON, VIGN_EN = 3.7 V  
3.6  
VIL  
2.2  
0.7  
50  
7
IIH  
Input high  
µA  
EN (Logic Level Enable)  
VIH  
VIL  
Input high  
Input low  
Enable device to be ON (rising signal)  
Enable device to be OFF (falling signal)  
1.7  
2.3  
V
V
1.53  
Switch-Mode Output 5.45 V  
Regulator output internal  
resistor network  
VREG  
CO  
Fixed output based on internal resistor network  
5.30  
10  
5.45  
5.70  
V
ESR = 0.001 Ω to 100 mΩ; large output capacitance  
may be required for load transients  
Output capacitor for 5.45 V  
µF  
rds(on)  
IO-CL  
tON-min  
Dmax  
Internal switch resistance  
Switch current limit  
Minimum ON time  
Measured across VIN_D and PH pins, IVREG = 1 A  
VIN = 12 V  
0.3  
2
Ω
A
1.2  
3
40  
ns  
Maximum duty cycle  
97%  
VSENSE (Internal Reference Voltage)  
VREG ref Internal reference voltage  
1.954  
2
2.046  
V
Copyright © 2013, Texas Instruments Incorporated  
3
 
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
DC CHARACTERISTICS (continued)  
VIN = 6 V to 27 V, IGN_EN = VIN, TJ-Max = 150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SS (Soft-Start Timer for Switch-Mode Converter)  
ISS  
Soft-start source current  
Css = 0.001 µF to 0.01 µF  
40  
50  
60  
µA  
IGN_ST (Ignition Input Status)  
Output asserted low when IGN_EN < 2.2 V, IOL = 1  
mA  
VOL  
IIH  
Output low  
0.056  
0.05  
0.4  
2
V
Leakage test  
IGN_ST = 5 V  
µA  
5V (5-V Linear Regulator)  
5VO  
Output voltage  
Line regulation  
IO = 1 mA, VREG = 5.45 V  
4.9  
5
10  
10  
5.1  
20  
30  
V
VO-Line  
5.15 V < VREG < 5.45 V, IO = 1 mA, VIN = 12 V  
1 mA < IO < 200 mA, VREG = 5.45 V, VIN = 12 V  
mV  
mV  
VO-Load Load regulation  
IO = 150 mA, measure VREG when VO(nom) – 0.1  
V, then VDO = VREG – (5VO – 0.1) V, VREG > 5 V  
VDO  
I5V-CL  
CO  
Dropout voltage  
Current limit  
0.15  
1080  
2.2  
0.26  
V
5VO = 0.8 x 5VO (nom)  
350  
1
mA  
µF  
ESR = 0.001 Ω to 2 Ω. Larger output capacitance  
may be required for load transients.  
Output capacitor  
10  
75  
f = 100 Hz, VREG = 5.45 V, IO = 100 mA, VIN = 12  
V
PSRR  
Power-supply rejection ratio  
Soft start on enable cycle  
45  
60  
13  
dB  
ms  
Vsoft-start  
5VO = 0 V (initially) with fsw = 2.5 MHz  
3.3-V Linear Regulator Controller (3.3VSENSE)  
3.3VO  
Output voltage  
IO = 5 mA, Vnpn_power input = 5.3 V  
3.234  
3.3  
1
3.366  
10  
V
3.3VO-  
Line  
3.8 V < Vnpn_power input < 7 V (with nRST not  
triggered)  
Line regulation  
mV  
3.3VO-  
Load  
Load regulation  
5 mA < IO < 550 mA  
7.5  
4.7  
30  
10  
75  
mV  
µF  
ESR = 0.001 Ω to 2 Ω. Large output capacitance  
may be required for load transients.  
CO  
Output capacitor for 3.3 V  
1
f = 100 Hz, VREG = 5.45 V, IO = 200 mA, VIN = 12  
V
PSRR  
tss  
Power-supply rejection ratio  
Soft-start time  
45  
60  
dB  
ms  
3.3VO = 0 V (initially) with fsw = 2.5 MHz  
12.3  
3.3VDRIVE (Ex. Switch Control Output)  
Base drive current. NPN turn  
ON  
IOH  
3.3VDRIVE – 3.3VSENSE = 1 V  
3.3VDRIVE – 3.3VSENSE at 0.2 V  
10  
28  
50  
mA  
mA  
IOL  
NPN turn off  
0.1  
0.412  
1.2-V Linear Regulator Controller (1.2VSENSE)  
1.2VO  
Output voltage  
IO = 5 mA, Vnpn_power input = 5.3 V  
1.176  
1.2  
1
1.224  
10  
V
1.2VO-  
Line  
3.25 V < Vnpn_power input < 7 V (with nRST not  
triggered)  
Line regulation  
mV  
1.2VO-  
Load  
Load regulation  
5 mA < IO < 350 mA  
5
15  
mV  
µF  
ESR = 0.001 Ω to 100 mΩ. Large output  
capacitance may be required for load transients.  
CO  
Output capacitor for 1.2 V  
8
10  
12  
75  
PSRR  
tss  
Power-supply rejection ratio  
Soft-start time  
f = 100 Hz, VREG = 6 V, IO = 200 mA, VIN = 12 V  
1.2VO = 0 V (initially) with fsw = 2.5 MHz  
45  
60  
dB  
ms  
8.5  
1.2VDRIVE (Ex. Switch Control Output)  
Base drive current. NPN turn  
ON  
IOH  
IOL  
1.2VDRIVE – 1.2VSENSE = 1 V  
1.2VDRIVE – 1.2VSENSE at 0.2 V  
10  
27  
50  
mA  
mA  
NPN turn off  
0.1  
0.47  
5VS (Protected Sensor Supply Linear Regulator)  
VSENSOR Output tolerant range  
VSENSOR output shorted fault conditions  
–1  
VIN  
5.1  
V
V
VSENSO  
Output voltage  
R
IO = 1 mA to 100 mA, VREG = 5.45 V  
4.9  
5
4
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
DC CHARACTERISTICS (continued)  
VIN = 6 V to 27 V, IGN_EN = VIN, TJ-Max = 150°C, unless otherwise noted  
PARAMETER  
Short circuit current  
Output current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
I5VS_SC  
I5VS  
5VS = 45 V  
2.25  
VREG = 5.45 V  
150  
mA  
5VSLOA  
D
Load regulation  
1 mA < I5VS < 75 mA, VREG = 5.45 V, VIN = 12 V  
15  
mV  
IO = 150 mA, Measure VREG when 5VS (nom) –  
0.1 V  
Then VDO = VREG – (5VS – 0.1) V, VREG > 5.1 V  
VDO  
Drop out voltage  
0.4  
10  
V
Output capacitor for protected ESR = 0.001 Ω to 2 Ω, Larger output capacitance  
CO  
1
µF  
5-V supply  
may be required for load transients  
I5VS-CL  
ILkg  
Current limit  
5VS = 0.8 x 5VS (nom)  
180  
320  
60  
650  
5
mA  
µA  
dB  
Leakage current  
Power-supply rejection ratio  
EN_LIN_REG = 0 V with VIN = 14 V  
f = 100 Hz, VREG = 6 V, I5VS = 75 mA, VIN = 12 V  
PSRR  
DELAY (Power-On-Reset Delay)  
VThreshold Threshold voltage  
Threshold to release nRST high  
1.3  
1.4  
2.05  
2
2.6  
2.6  
V
ICharge  
Capacitor charging current  
µA  
nRST (Reset Indicator)  
Reset asserted due to falling VREG or 3.3 VO or 1.2  
VO output voltages, IOL = 1 mA  
VOL  
Output low  
0
0.16  
0.4  
V
tnRSTdly  
Filter time  
Delay before nRST is asserted low  
11  
0.875  
0.93  
µs  
Trigger nRST for VREG output  
0.845  
0.9  
0.905  
0.96  
0.96  
2
VREG  
3.3 VO  
1.2 VO  
µA  
VTH_VREG Trigger nRST for 3.3 VO  
Trigger nRST for 1.2 VO  
VREG ramp down  
0.9  
0.93  
IIH  
Leakage test  
Reset = 5 V  
0.07  
RT/CLK (Oscillator Setting of External Clock Input)  
Switching freq using RT mode  
2
2
3
3
MHz  
ns  
Switching freq using CLK  
mode  
fsw  
Minimum clock input pulse  
duration  
40  
Internal oscillator frequency  
External clock input  
Input high  
–14%  
–20%  
14%  
10%  
2.3  
Switching frequency tolerance for clock  
VIH  
VIL  
V
V
Input low  
0.6  
Copyright © 2013, Texas Instruments Incorporated  
5
 
 
 
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
DEVICE INFORMATION  
17  
14 13  
12  
19 18  
20  
16 15  
VREG  
nRST  
COMP  
NC  
21  
11  
10  
GND  
PGND  
PH  
22  
23  
IGN_ST  
5V  
9
8
24  
VIN_D  
2
3
4
5
1
6
7
PIN DESCRIPTIONS  
PIN  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PWP RHF  
PH  
VIN_D  
BOOT  
1
2
3
4
5
6
7
23  
24  
1
O
I
Source of internal switching FET  
Drain input for internal high side MOSFET. Pin 2 and pin 4 must be connected together externally.  
External bootstrap capacitor connected to PH (pin 1) to drive gate of internal switching FET  
Unregulated input voltage supply. Pin 2 and pin 4 must be connected together externally.  
Ignition input (high-voltage tolerant) internally pulls to ground. Must be externally pulled up to enable  
External capacitor connected to ground for stability of internal regulator  
O
I
VIN  
2
IGN_EN  
BOOT_LDO  
5VS  
3
I
4
O
O
5
External capacitor to ground for stability of regulated output  
External resistor connected ground to program the internal oscillator. Alternative option is to feed an  
external clock to provide reference for switching frequency.  
RT/CLK  
8
6
I/O  
A high logic-level input signal to enable and low signal to disable device. Internally pulled down to  
ground  
EN  
5V  
9
7
8
9
I
10  
11  
O
O
External capacitor to ground for stability of regulated output  
Active-low, open-drain ignition input indicator, output connected to external bias voltage through a  
resistor. Asserted high after ignition input is high  
IGN_ST  
GND  
NC  
12  
13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
O
O
I
Ground pin, must be electrically connected to exposed pad on PCB for proper thermal performance  
Connect to ground  
COMP  
VSENSE  
14  
Error amplifier output to connect external compensation components  
Inverting node of error amplifier for voltage-mode control of preregulated supply  
Voltage node of 1.2-V supply  
115  
1.2VSENSE 16  
1.2VDRIVE 17  
3.3VSENSE 18  
I
O
I
Output current source to drive the base of an external bipolar transistor to regulate the 1.2-V supply  
Voltage node of 3.3-V supply  
3.3VDRIVE  
SS  
19  
20  
21  
O
O
O
Output current source to drive the base of an external bipolar transistor to regulate the 3.3-V supply  
External capacitor to ground to program soft-start time  
DELAY  
External capacitor to ground to program the power-on-reset delay  
Buck converter output. Integrated internal low-side FET to load output during start-up or limit voltage  
overshoot  
VREG  
22  
20  
I
6
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
PIN DESCRIPTIONS (continued)  
PIN  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PWP RHF  
Active-low, open-drain reset output connected to external bias voltage through a resistor. This output is  
asserted high after the preregulator, 3.3-V, and 1.2-V regulator outputs are regulating and the delay  
timer has expired. Also, output is asserted low if any one of these three supplies is out of the set  
regulation, this threshold is internally set.  
nRST  
23  
21  
O
Power ground pin, must be electrically connected to exposed pad on PCB for proper thermal  
performance  
PGND  
24  
22  
O
Thermal  
pad  
Electrically connect to ground and solder to ground plane of PCB for thermal efficiency  
Copyright © 2013, Texas Instruments Incorporated  
7
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
EFFICIENCY  
vs  
OUTPUT CURRENT ON VREG  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
1
5.50  
5.45  
5.40  
5.35  
5.30  
T
= 25ƒC  
A
Vin = 12 V  
0.8  
Vin = 6 V  
0.6  
0.4  
0.2  
0
Vin = 12 V  
Vin = 7 V  
Vin = 5.9 V  
Vreg=5  
Vin = 5.8 V  
0.8  
Vin = 5.6 V  
0.2  
Fsw=2245 kHz  
L=10 uH  
Co=10 uF  
0
200  
400  
600  
Output Current (mA)  
800  
1000  
1200  
0.0  
0.4  
0.6  
1.0  
1.2  
1.4  
G001  
I_VREG (A)  
C002  
Figure 2.  
Figure 3.  
BUCK CURRENT LIMIT  
vs  
VSENSE REFERENCE VOLTAGE  
vs  
TEMPERATURE  
TEMPERATURE  
2.10  
1.90  
1.70  
1.50  
1.994  
1.993  
1.992  
1.991  
1.99  
1.989  
1.988  
1.987  
1.986  
1.985  
0
1
2
3
4
5
6
Temperature (°C)  
7
8
9
10  
-50  
0
50  
100  
150  
Temperature (°C)  
G002  
G003  
Figure 4.  
Figure 5.  
CURRENT CONSUMPTION IIN  
QUIESCENT CURRENT  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
7
6
5
Isd_total  
4.98  
4
3
Isd_vind  
4.92  
4.86  
4.8  
2
1
Isd_vin  
0
-40  
-10  
0
25  
50  
Temperature (°C)  
85  
100 125 150  
G005  
-50  
-25  
0
25  
50  
Temperature (°C)  
75  
100 125 150  
G004  
Figure 6.  
Figure 7.  
8
Copyright © 2013, Texas Instruments Incorporated  
 
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
TYPICAL CHARACTERISTICS (continued)  
A001  
Figure 8. Load Transient Response, 10 mA to 1 A  
5-V Linear Regulator (5 VO)  
DROPOUT VOLTAGE  
OUTPUT VOLTAGE 5VO  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
5.015  
5.01  
5.005  
5
250  
230  
210  
190  
170  
150  
130  
110  
4.995  
4.99  
−60 −40 −20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
-50  
0
50 100  
Temperature (°C)  
150  
G006  
G007  
Figure 9.  
Figure 10.  
A002  
Figure 11. Load Transient Response, 10 mA to 200 mA  
Copyright © 2013, Texas Instruments Incorporated  
9
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
3.3-V Linear Regulator Controller (3.3 VO)  
OUTPUT BASE DRIVE  
vs  
3.3VSENSE  
vs  
TEMPERATURE  
TEMPERATURE  
32  
30  
3.314  
3.310  
3.306  
3.302  
3.298  
28  
26  
24  
22  
-40  
-10  
0
25  
Temperature (°C)  
50  
85  
100 125 150  
-40  
-10  
0
25  
Temperature (°C)  
50  
85  
100 125 150  
G008  
G009  
Figure 12.  
Figure 13.  
A003  
Figure 14. Load Transient Response, 10 mA to 550 mA  
10  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
TYPICAL CHARACTERISTICS (continued)  
1.2-V Linear Regulator Controller (1.2 VO)  
OUTPUT BASE DRIVE  
1.2VSENSE  
vs  
TEMPERATURE  
vs  
TEMPERATURE  
30  
1.203  
1.202  
1.201  
1.2  
28  
26  
24  
22  
20  
1.199  
1.198  
1.197  
1.196  
-40  
-10  
0
25  
Temperature (°C)  
50  
85  
100 125 150  
-40  
-10  
0
25  
Temperature (°C)  
50  
85  
100 125 150  
G010  
G011  
Figure 15.  
Figure 16.  
A004  
Figure 17. Load Transient Response, 10 mA to 350 mA  
Copyright © 2013, Texas Instruments Incorporated  
11  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
INTERNAL FUNCTIONAL BLOCKS  
24 PGND  
VIN_D  
VIN  
2
4
Buck Reg  
Control  
3
BOOT  
1
PH  
Wake  
Up  
COMP  
EN  
IGN_EN  
RT/CLK  
9
Network  
14  
22  
COMP  
VREG  
OR  
5
8
Error Amp  
Ref  
+
-
VSENSE  
15  
BG Ref  
SS 20  
-
+
3.3-V  
19  
18  
3.3VDRIVE  
3.3VSENSE  
Linear  
Regulator  
Control  
Internal  
Reg  
-
BOOT_LDO  
6
0.8 V  
+
10 5V  
Regulator  
Control  
-
0.8 V  
GND 12  
+
1.2-V  
Linear  
Regulator  
Control  
1.2VDRIVE  
17  
16  
1.2VSENSE  
-
0.8 V  
+
5-V Protected  
Sensor Supply  
Control  
-
0.8 V  
+
Reverse Protected  
5VS  
7
nRST  
23  
21  
DELAY  
1.2 V  
VREG  
3.3 V  
Voltage Supervisor  
with Reset Delay  
Figure 18. Internal Functional Blocks  
(pin numbers apply to TPS65301PWPRQ1)  
PIN FUNCTIONS  
Buck Supply, VIN_D  
This is an input power source for the internal high-side MOSFET of the switch-mode power supply.  
Phase Node for Buck Regulator, PH  
This terminal provides the floating voltage reference for the internal drive circuitry.  
Bootstrap, BOOT  
The ceramic capacitor on this pin acts a as a voltage supply for the internal high-side MOSFET gate-drive  
circuitry. The capacitor connects between the BOOT and PH terminals. Operating with a duty cycle of 100%  
automatically reduces the duty cycle to approximately 95% on every fifth cycle to allow this capacitor to recharge.  
Voltage-Sense Node, VSENSE  
An internal resistor between VREG and this pin and another internal resistor between this pin and ground form  
the voltage-sense network. This terminal is the inverting input for the error amplifier of the control loop. This input  
is compared to an internal reference of 2 V for the control circuitry.  
Error Amplifier Output, COMP  
The error amplifier output forms a compensation network for the voltage mode control topology. The amplifier  
changes state with increase in voltage output on this pin.  
12  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
Internal Regulated Boot Supply, BOOT_LDO  
The internally regulated supply acts as a refresh power source for the bootstrap capacitor every switching cycle.  
An external capacitor to ground is needed to stabilize the voltage source.  
Clock Pulse, RT/CLK  
A resistor to ground on this terminal sets the buck converter switching frequency. Alternatively, an external clock  
input on this pin overrides the internal free-running clock (default value) by detecting positive edges of  
consecutive pulses and synchronizing to the external input signal. If the external clock input is removed, the  
system synchronizes to the internal clock signal of 2.2 MHz.  
Output Voltage, VREG  
This terminal represents the buck (step-down) output voltage VREG of the converter. The output voltage of the  
buck-mode regulator is fixed at 5.45 V. This output requires a ceramic capacitor (4.7-µF to 10-µF range).  
Ignition Enable Input, IGN_EN  
The IGN_EN pin acts as an enable and disable input to activate the step-down power-supply output. The input is  
high-voltage tolerant up to 45 V. An internal resistor limits current into this terminal for such high input voltage.  
Logic Level Enable Input, EN  
The EN pin is a logic-level disable input to all outputs when IGN_EN is low and all outputs are active.  
Regulated Output, 5V  
This terminal is the regulated output and requires a low-ESR ceramic capacitor to ground for loop stabilization.  
This capacitor must be placed close to the pin of the IC. The output requires larger capacitance to compensate  
for wide load transient steps.  
Power-On Delay, DELAY  
A capacitor on this pin sets the desired delay time. The output of this pin provides a source current to charge the  
external capacitor once the VREG, 3.3-V and 1.2-V supplies have all exceeded the internally set threshold (0.9 ×  
their respective regulated supply values).  
3.3-V Drive Output, 3.3VDRIVE  
This pin provides an output to drive an external bipolar transistor (BJT) for the 3.3-V supply. The output is  
protected by current limiting of both the source and sink capabilities.  
3.3-V Voltage Sense, 3.3VSENSE  
This pin is the voltage node of 3.3-V supply. Voltage of approximately 1.65 V on this terminal initiates a current  
foldback during shorts on the regulated output.  
1.2-V Drive Output, 1.2VDRIVE  
This pin provides an output to drive an external bipolar transistor (BJT) for the 1.2-V supply. The output is  
protected by current limiting of both the source and sink capabilities.  
1.2-V Voltage Sense, 1.2VSENSE  
This pin is the voltage node of 1.2-V supply. Voltage of approximately 0.6 V on this terminal initiates a current  
foldback during shorts on the regulated output.  
Soft Start, SS  
A ceramic capacitor is connected from this terminal to ground to set a soft-start timer for the buck regulator  
supply. There is an internal pullup current source of 50 µA typical, which is activated on IGN_EN to charge the  
external capacitor on the SS pin.  
Copyright © 2013, Texas Instruments Incorporated  
13  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Input Voltage, VIN  
The VIN pin is the input power source for the device. This pin must be externally protected against voltage levels  
greater than 45 V and against a reversed battery. This input line requires a filter capacitor to minimize noise.  
Additionally, for EMI considerations, an input filter inductor may also be required.  
Protected 5-V supply, 5VS  
This terminal is the regulated protected sensor supply which requires a low ESR ceramic capacitor to ground for  
loop stabilization. This capacitor must be placed close to the pin of the IC. The output is protected for shorts to  
–1 V and VIN supply.  
Reset Indicator, nRST  
The nRST pin is an open-drain output. The power-on reset output is asserted low until the output voltages on the  
VREG, 3.3-V, and 1.2-V supplies exceed their set thresholds and the power-on delay timer has expired.  
Additionally, whenever the IGN_EN and EN_LIN_REG pins are low or open, nRST is immediately asserted low  
regardless of the output voltage. If a thermal shutdown occurs due to excessive thermal, conditions this pin is  
asserted low.  
Ignition Input Status, IGN_ST  
The IGN_ST pin is an open-drain output. This output indicates whether input signal IGN_EN is present.  
Additionally, whenever the IGN pin is low or open, IGN_ST is immediately asserted low.  
Power Ground, PGND  
Power ground terminal, which is internally connected to the exposed thermal pad.  
Ground, GND  
Signal ground terminal, which is internally connected to the exposed thermal pad.  
14  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
DEVICE INFORMATION  
Buck Converter  
PWM Operation  
The switch-mode power supply (SMPS) operates in a fixed-frequency pulse-width modulation (PWM) mode. The  
switching frequency is set by an external resistor or synchronized with an external clock input. The internal N-  
channel MOSFET is turned on (SET) at the beginning of each cycle. This MOSFET is turned off (RESET) when  
the PWM comparator resets the latch. Once the high external FET is turned OFF, the external Schottky diode  
recirculates the energy stored in the inductor for the remainder of the switching period.  
The external bootstrap capacitor acts as a voltage supply for the internal high side MOSFET. This capacitor is  
recharged on every recirculation cycle (when the internal high-side MOSFET is turned OFF). In the case of  
commanding 100% duty cycle for the internal high side MOSFET, the device automatically revert to 87% to allow  
the bootstrap capacitor to recharge.  
Voltage-Mode Control Loop  
The voltage-mode control monitors the set output voltage and processes the signal to control the internal  
MOSFET. A voltage feedback signal is compared to a constant ramp waveform, resulting in a PWM modulation  
pulse. An input line-voltage feedforward technique is incorporated to compensate for changes in the input voltage  
and ensures the output voltage is stable by adjusting the ramp waveform for the correct duty cycle. The internal  
MOSFET is protected from excess power dissipation with a current limit and frequency foldback circuitry during  
an output-to-ground short-circuit event.  
A combination of internal and external components forms a compensation network to ensure error-amplifier gain  
does not cause instability due to input voltage changes or load perturbations.  
Modes of Operation  
The converter operates in different modes based on load current, input voltage, and component selection.  
Continuous-Conduction Mode (CCM)  
This mode of operation is typically when the inductor current is non-zero and the load current is greater than  
IL CCM  
.
(1- D)´ VREG  
2´ fSW ´ L  
IIND _ CCM  
³
where  
IIND_CCM = Inductor current in continuous-conduction mode  
D = duty cycle  
VREG = output voltage  
L = Inductor  
fSW = switching frequency  
In this mode, the duty cycle should always be greater than the minimum tON or the converter may go into burst  
mode.  
Discontinuous Mode (DCM)  
(1- D)´ VREG  
IIND _DCM  
³
2´ fSW ´ L  
This mode of operation is typically when the inductor current goes to zero and the load current is less than  
IIND DCM  
.
Tracking Mode  
When the input voltage is low and the converter approaches approximately 100% duty cycle, the following  
equation determines the output voltage.  
Copyright © 2013, Texas Instruments Incorporated  
15  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
t
æ
ç
è
OFF _MIN ö  
VREG = 1-  
´(VIN -ILoad ´ RDS)  
ç
÷
÷
T
ø
where  
t = Period  
RDS = Internal FET resistance  
ILOAD = output load current  
Output Voltage 5.45 V (VREG)  
Output voltage VREG is generated by the converter supplied from the battery voltage VIN and the external  
components (L, C). The output is sensed through an internal resistor divider and compared with an internal  
reference voltage.  
This output requires larger output capacitors (4.7-µF to 10-µF range) to ensure that during load transients the  
output does not drop below the reset threshold for a period longer than the reset deglitch filter time.  
An internal load is enabled for a short period whenever  
a start-up condition occurs, that is, during power up or when IGN_EN or EN is toggled.  
an overvoltage condition exists on this output.  
Switching Frequency (RT/CLK)  
The oscillator frequency of the buck regulator is selectable by means of a resistor placed at the RT/CLK pin to  
ground. The switching frequency (fSW) can be set in the range 2 MHz to 3 MHz in this resistor mode.  
Alternatively, if there is an external clock input signal, the internal oscillator synchronizes to this signal within 10  
µs.  
The following equation determines the value of resistor (RT) for the required switching frequency fSW  
.
98.4´109  
RT =  
(Ohms)  
fSW  
Boost Capacitor (BOOT)  
This capacitor provides the gate-drive voltage for the internal MOSFET switch. X7R and X5R grade dielectrics  
are recommended due to their stable values over temperature. It may be necessary to select a lower value of  
boost capacitor for low-VREG and/or high-frequency applications, or to select a higher value for high-VREG  
and/or low-frequency applications (for example, 100 nF for 500 kHz / 5 V and 220 nF for 500 kHz / 8 V.) Usually,  
a 0.1-µF capacitor is used for the boot capacitor.  
Soft Start (SS)  
To limit the start-up inrush current for the switch-mode supply, an internal soft-start circuit is used to ramp up the  
reference voltage from 0 V to its final value of 0.8 V. The regulator uses the internal reference or the SS-pin  
voltage as the power-supply reference voltage to regulate the output accordingly. The following equation  
determines the soft-start timing.  
C´ 0.8 V  
50´10-6  
Time (tSS ) =  
where  
C = Capacitor on SS pin, usually 0.1 µF or lower  
Power-On Delay (DELAY)  
The power-on delay function delays the release of the nRST line. The method of operation is to detect when all  
VREG (5.45 V), 3.3-V and 1.2-V power-supply outputs are above 90% (typical) of the set value. This then  
triggers a current source to charge the external capacitor on the DELAY terminal. Once this capacitor is charged  
to approximately 2 V, the nRST line is asserted high. The delay time is calculated using the following equation:  
2 V ´ C  
tDELAY  
=
2 mA  
16  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
where  
C = capacitor on DELAY pin  
Example: For a 20-ms delay, C = 20 nf.  
Reset (nRST)  
The nRST pin is an open-drain output. The power-on reset signal is a voltage supervisor output to indicate the  
output voltages on VREG (5.45 V), 3.3 V, and 1.2 V are within the specified tolerance of their set regulated  
voltages. Additionally, whenever both the IGN_EN and EN pins are low or open, nRST is immediately asserted  
low regardless of the output voltage. If a thermal shutdown occurs due to excessive thermal conditions, this pin is  
asserted low.  
Conversely on power down, once the VREG or 3.3V or 1.2V output voltage falls below 90% of its respective set  
threshold, nRST is pulled low after a de-glitch filter delay of approximately 15 µs (max). This is implemented to  
prevent nRST from being invoked due to noise on the output supplies.  
Thermal Shutdown  
This device has independent two thermal sensing circuits for the VREG (5.45 V), 5-V regulators; if either one of  
these circuits detects the power FET junction temperature to be greater than the set threshold, that particular  
output-power switch is turned OFF. The appropriate FET turns back ON once it is allowed to cool sufficiently.  
Copyright © 2013, Texas Instruments Incorporated  
17  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Reset Function  
Vin  
SS  
Vin  
SS  
Approx 0.9 x 1.2 Vout  
1.2Vout  
Approx 0.9 x 1.2 Vout  
1.2Vout  
Approx 0.9 x 3.3 Vout  
3.3Vout  
VREG  
Approx 0.9 x 3.3 Vout  
3.3Vout  
5.45 V (typ)  
5.45 V (typ)  
Approx 4.91 V  
VREG  
2 V  
DELAY  
DELAY  
nRST  
tdelay  
nRST  
15µs(max- deglitch time)  
On power up, ALL three regulated supplies,  
VREG, 3.3 V and 1.2 V have to be more than  
90% of their respective value before the delay  
timer capacitor on delay pin can start charging  
On power down, if any one of the three regulated  
supplies, VREG, 3.3 V and 1.2 V drops below the  
90% RIꢀLW¶VꢀYDOXHꢀQ567ꢀLVꢀDVVHUWHGꢀORZꢀDIWHUꢀDꢀVPDOOꢀ  
deglitch filter time. Once nRST is asserted low, it can  
only go high again after ALL three supplies are above  
the 90% value and delay pin voltage higher than 2 V.  
Figure 19. Reset Function  
18  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
Linear Regulators  
Fixed Linear Regulator Output (5 V)  
This is a fixed, regulated output of 5 V ±2% over temperature and input supply using a precision voltage-sense  
resistor network. A low-ESR ceramic capacitor is required for loop stabilization; this capacitor must be placed  
close to the pin of the IC. This output is protected against shorts to ground by a foldback current limit for safe  
operating conditions, and a current limit for limiting inrush current due to depleted charge on the output capacitor.  
Initial IGN_EN or EN initiates power cycle of the soft-start circuit on this regulator. The soft-start takes typically  
13 ms. This output may require a larger output capacitor to ensure that during load transients the output does not  
drop below the required regulated specifications.  
Fixed Linear Regulator Controller (3.3 V)  
The linear regulator controller requires an external NPN bipolar pass transistor of sufficient gain stage to support  
the maximum load current required. The base-drive output current is protected by current limiting both the source  
and sink drive circuitry. The 3.3VSENSE pin is the remote sense input of the output of the REG3 supply and  
controls the 3.3VDRIVE output accordingly. This regulator is fixed 3.3 V with ±2% tolerance using a precision  
voltage-sense resistor network. A low-ESR ceramic output capacitor is used for loop compensation of the  
regulator. A voltage on this pin of less than approximately 50% of the regulated value initiates a current limit on  
the 3.3VDRIVE output.  
This output may require larger output capacitors to support load transients, so the output does not drop below  
90% of 3.3 V.  
Fixed Linear Regulator Controller (1.2 V)  
The linear regulator controller requires an external NPN bipolar pass transistor of sufficient gain stage to support  
the maximum load current required. The 1.2VSENSE pin is the remote sense input of the output of 1.2-V supply  
and controls the 1.2VDRIVE output accordingly. This regulator output is 1.2 V with ±2% tolerance using a  
precision voltage-sense resistor network. A low-ESR ceramic output capacitor is used for loop compensation of  
the regulator. A voltage on this pin of less than approximately 50% of the regulated value initiates a current limit  
on the 1.2VDRIVE output.  
This output may require larger output capacitors to support load transients, so the output does not drop below  
90% of 1.2 V.  
Protected Sensor Supply Output, (5VS)  
This is a fixed regulated output from of 5 V ±2% over temperature and input supply using precision voltage sense  
resistor network. A low ESR ceramic capacitor is required for loop stabilization; this capacitor must be placed  
close to the pin of the IC. This output is protected against shorts to ground by a fold back current limit for safe  
operation conditions, and a current limit for limiting in-rush current due to depleted charge on the output  
capacitance. This output is also protected against shorts to battery voltage by limiting the reverse current. This  
supply can thus be used to power a sensor outside the electrical control unit ECU. On initial IGN_EN or EN  
power cycle the soft start circuit on this regulator is initiated. The soft-start takes typically 10 ms. This output may  
require larger output capacitor to ensure that during load transients the output does NOT drop below the required  
regulated specifications.  
Modes of Operation  
Operational Mode  
The purpose of the EN input is to keep the regulated supplies ON for a period for the microprocessor to log  
information into the memory locations once the ignition input is disabled. The microprocessor disables the power  
supplies by pulling EN low after this activity is complete.  
Copyright © 2013, Texas Instruments Incorporated  
19  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
APPLICATION INFORMATION  
This is a starting point and theoretical representation of the values to be used for the application, further  
optimization of the components derived may be required to improve the performance of the device.  
Buck Converter  
Duty Cycle  
VO  
D =  
V
I
where  
VO = Output voltage  
VI = Input voltage  
Output Inductor Selection (L)  
The minimum inductor value is calculated using the coefficient KIND that represents the amount of inductor ripple  
current relative to the maximum output current. The inductor ripple current is filtered by the output capacitor, and  
so the typical range of this ripple current is in the range of KIND = 0.2 to 0.3, depending on the ESR and the  
ripple-current rating of the output capacitor.  
Inductor ripple current  
IRipple = KIND ´ IO  
where  
IO = Output current  
Benefits of Low Inductor Value  
Low inductor value gives high di/dt, which allows for fewer output capacitors for good load transient response.  
Gives higher saturation current for the core due to fewer turns  
Fewer turns yields low DCR and therefore less dc inductor losses in the windings.  
High di/dt provides faster response to load steps.  
Benefits of High Inductor Value  
Low ripple current leads to lower conduction losses in MOSFETs  
Low ripple; means lower RMS ripple current for capacitors  
Low ripple; yields low ac inductor losses in the core (flux) and windings (skin effect)  
Low ripple; gives continuous inductor current flow over a wide load range  
(VI-Max - V O )´ VO  
LMin  
=
fSW ´ IRipple ´ VI-Max  
where  
fSW = the regulator switching frequency  
IRipple = Allowable ripple current in the inductor, typically ±20% of maximum output load IO  
Inductor Peak Current  
IRipple  
IL-Peak = IO +  
2
Output Capacitor Selection (CO)  
The selection of the output capacitor determines several parameters in the operation of the converter, the  
modulator pole, the voltage droop on the out capacitor, and the output ripple.  
20  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
During a load step from no load to full load or changes in the input voltage, the output capacitor must hold up the  
output voltage above a certain level for a specified time and not issue a reset until the main regulator control loop  
responds to the change. The capacitance value determines the modulator pole and the rolloff frequency due to  
the LC output-filter double pole—the output ripple voltage is a product of the output capacitor ESR and ripple  
current.  
The minimum capacitance needed to maintain desired output voltage during a high-to-low load transition and  
prevent overshoot is  
2
L (IO-max )2 - (IO-min  
)
(
)
CO  
=
2
(VO-max )2 - (VO-min  
)
where  
Io-max is maximum output current  
Io-min is minimum output current  
The difference between the output current, maximum to minimum, is the worst-case load step in the  
system.  
Vo-max is maximum tolerance of regulated output voltage  
Vo-min is the minimum tolerance of regulated output voltage  
Output capacitor root-mean-square (RMS) ripple current IO_RMS. This is to prevent excess heating or failure due  
to high ripple currents.  
This parameter is sometimes specified by the manufacturer.  
VO ´(VI-max - VO )  
IO _RMS =  
12 ´ VI-max ´L ´ fSW  
External Schottky Diode (D)  
The TPS65301-Q1 requires an external ultrafast Schottky diode with fast reverse-recovery time connected  
between the PH and power ground terminals. The diode conducts the output current during the off-state of the  
internal power switch. This diode must have a reverse breakdown higher than the maximum input voltage of the  
application. A Schottky diode is selected for its lower forward voltage. The Schottky diode is selected based on  
the appropriate power rating, which factors in the dc conduction losses and the ac losses due to the high  
switching frequencies. The power dissipation PD is determined by  
(VI - VFD )2 ´ fSW ´CJ  
PD = IO ´ VFD ´(1- D) +  
2
where  
VFD = forward conducting voltage of Schottky diode  
CJ = junction capacitance of the Schottky diode  
Input Capacitor (CI)  
The TPS65301-Q1 requires an input ceramic decoupling capacitor type X5R or X7R and bulk capacitance to  
minimize input ripple voltage. The dc voltage rating of this input capacitance must be greater than the maximum  
input voltage. The capacitor must have an input ripple-current rating higher than the maximum input ripple  
current of the converter for the application. The input capacitors for power regulators are chosen to have  
reasonable capacitance-to-volume ratio and to be fairly stable over temperature. The value of the input  
capacitance is based on the input voltage desired (VI).  
I
O-max ´ 0.25  
CI =  
DVI ´ fSW  
Input capacitor root-mean-square (RMS) ripple current II_RMS is calculated using the following equation.  
æ
ç
ç
è
ö
÷
÷
ø
VI_min - VO  
VO  
II_RMS = IO  
´
´
VI_min  
VI_min  
Copyright © 2013, Texas Instruments Incorporated  
21  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Loop Compensation  
The double pole is due to the output-filter components inductor and capacitor. The calculations for the following  
equations use values taken from Figure 20.  
Loop-Control Frequency Compensation  
Internal  
compensation  
L
C2 = 20 pf  
C4 = 140 pf  
R3 = 8k  
VO = VREG  
C
C
ESR  
R4 = 163.36k  
R2  
C3  
C
O
VSENSE  
R5 = 94.7K  
COMP  
Vref = 2 V  
Internal Resistor  
Divider  
Type 3 Compensation  
Figure 20. Loop-Control Frequency Compensation  
Type III Compensation  
fCO = fSW × 0.1 (the cutoff frequency when the gain is 1 is called the unity-gain frequency).  
fCO is typically 1/5 to 1/10 of the switching frequency double-pole frequency response due to the LC output filter.  
The LC output filter gives a double pole, which has a –180° phase shift.  
½
Make the two zeroes close to the double pole (LC), for example, fZ1 fZ2 ½π(LCOUT) .  
1. Make the first zero below the filter double pole (approximately 50% to 75% of fLC  
2. Make the second zero at the filter double pole (fLC  
Make the two poles above the crossover frequency fCO  
3. Make the first pole at the ESR frequency (fESR  
4. Make the second pole at 0.5 the switching frequency  
)
)
.
)
The following compensation components are integrated in the device with the following typical values. Guidelines  
for compensation components:  
R3 = 8 kΩ, C4 = 140 pF, C2 = 20 pF  
The double pole to due to the output filter components LC,  
1
fLC  
=
2p LCO  
22  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
The ESR of the output capacitor C gives a zero that has a 90° phase shift. The ESR of the output capacitor  
should be in the range of 1 mΩ to 100 mΩ.  
1
fESR  
=
2p´ CO ´ESR  
PWM Modulator Gain K  
V
I
K =  
V
ramp  
where  
Vramp = VI / 10, VI = Input operating voltage  
Resistor Values  
Select R5 = 94.7 kΩ  
R5´(VO - V  
R4 =  
)
ref  
,
where V = 2 V  
ref  
V
ref  
f
CO ´ Vramp ´ R4  
LC ´ VI  
R2 =  
f
Calculate C3 based on placing a zero at 50% to 75% of the output-filter double-pole frequency (below set at  
50%).  
1
C3 =  
R2´ fLC  
Gain of Amplifier  
R2´(R4 + R3)  
=
(R4´R3)  
AV  
Poles and Zero Frequencies  
1
fP1  
=
2p´R2´ C2  
1
fP2  
=
2p´R3´ C4  
1
fZ1  
=
2p´R2´ C3  
1
fZ2  
=
2p´R4´ C4  
Copyright © 2013, Texas Instruments Incorporated  
23  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Open Loop Error  
Amp Gain  
fZ1 fZ2  
fP1 fP2  
Modulator Gain  
Compensation  
Gain  
Closed Loop Gain  
fLCo  
fESR  
Frequency  
Figure 21. Typical Gain vs Frequency  
Power Dissipation  
Switch-Mode Power-Supply Losses  
The power dissipation losses are applicable for continuous-conduction mode operation (CCM).  
A
P5.45V_CON = IO2 × Rds(on) × (VO/VI) (Conduction losses)  
A
P5.45V_SW = ½ × VI × IO × (tr + tf) × fSW (Switching losses)  
A
P5.45V_Gate = Vdrive × Qg × fsw (Gate drive losses)  
where typically Qg = 1 × 10–9 (nC)  
A
PIC = VI × Iq-normal (Supply losses)  
A
PTotal = PCON + PSW + PGate + P5V_Lin Reg + PIC  
where  
VO = VREG = Output voltage  
VI = Input voltage  
IO = Output current  
tr = FET switching rise time (tr max. = 20 ns)  
tf = FET switching fall time (tf max. = 20 ns)  
Vdrive = FET gate-drive voltage (typically Vdrive = 6 V and Vdrive max. = 8 V)  
fSW = Switching frequency  
Linear Regulator (5V) and Sensor Supply (5VS):  
P5V_Lin Reg = (VREG – 5 V) × IO_5V  
24  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
P5VS_Lin Reg = (VREG – 5 V) × IO_5VS  
Total Power Dissipation  
PIC = VI × Iq-normal (Supply losses)  
PTotal = PCON + PSW + PGate + P5V_Lin Reg + P5VS_Lin Reg + PIC  
For given operating ambient temperature TA  
TJ = TA + Rth × PTotal  
For a given max junction temperature TJ-Max = 150°C  
TA-Max = TJ-Max – Rth × PTotal  
where  
PTotal = Total power dissipation (watts)  
TA = Ambient temperature in °C  
TJ = Junction temperature in °C  
TA-Max = Maximum ambient temperature in °C  
TJ-Max = Maximum junction temperature in °C  
Rth = Thermal resistance of package in (°C/W)  
Other factors not included in the foregoing information which affect the overall efficiency and power losses are  
Inductor AC and DC losses  
Trace resistance and losses associated with the copper trace routing connection  
Schottky diode  
PCB Layout  
The following guidelines are recommended for PCB layout of the TPS65301-Q1 device.  
Inductor L  
Use a low-EMI inductor with a ferrite-type shielded core. Other types of inductors may be used; however, they  
must have low-EMI characteristics and be located away from the low-power traces and components in the circuit.  
Input Filter Capacitors CI  
Input ceramic filter capacitors should be located in close proximity to the VIN terminal. Surface-mount capacitors  
are recommended to minimize lead length and reduce noise coupling.  
Feedback  
Route the feedback trace such that there is minimum interaction with any noise sources associated with the  
switching components. Recommended practice is to ensure placing the inductor away from the feedback trace to  
prevent a source of EMI noise.  
Traces and Ground Plane  
All power (high-current) traces should be thick and as short as possible. The inductor and output capacitors  
should be as close to each other as possible. This reduces EMI radiated by the power traces due to high  
switching currents.  
In a two-sided PCB it is recommended to have ground planes on both sides of the PCB to help reduce noise and  
ground-loop errors. The ground connection for the input and output capacitors and IC ground should be  
connected to this ground plane.  
In a multi-layer PCB, the ground plane is used to separate the power plane (where high switching currents and  
components are placed) from the signal plane (where the feedback trace and components are) for improved  
performance.  
Copyright © 2013, Texas Instruments Incorporated  
25  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Also arrange the components such that the switching-current loops curl in the same direction. Place the high-  
current components such that during conduction the current path is in the same direction. This prevents magnetic  
field reversal caused by the traces between the two half-cycles, helping to reduce radiated EMI.  
Application Notes  
Design Guide – Step-by-Step Design Procedure  
Following are the details of a switching regulator design using the requirements of Table 1.  
Table 1. Switching Regulator Requirements  
Parameter  
Requirement  
Input voltage, VI  
6.5 V to 27 V, typical 14 V  
5.45 VO ±2% at 6.3 W  
1 A  
Output voltage, 5.45 V  
Maximum output current I5.45V_max  
Minimum output current I5.45V_min  
Transient response 0.01 A to 0.8 A  
Reset threshold  
0.01 A  
5%  
90% of output voltage  
5 VO at 1 W  
5 V  
3.3 V  
3.3 VO at 1 W  
1.2 VO at 0.5 W  
5 VO at 0.5 W  
2.5 MHz  
1.2 V  
5VS  
Switching frequency fSW  
Overvoltage threshold  
Undervoltage threshold  
106% of output voltage  
95% of output voltage  
VIN_D  
2
4
BOOT  
S1  
3
1
0.1 µF  
L
6.3W  
Supply  
PH  
VIN  
EN  
5.45 V  
10 µF  
10 µH  
R2  
10 µf  
S2  
9
14  
22  
30k  
COMP  
VREG  
IGN_EN  
RT/CLK  
5
8
Vign  
6k  
1 nF  
C3  
15  
R1  
C1  
VSENSE  
SS  
20  
TPS65301PWPR-Q1  
3k  
PSS302NZ  
2.2 µF  
11  
6
3.3VDRIVE  
IGN_ST  
1W  
19  
18  
BOOT_LDO  
3.3 V  
3.3VSENSE  
5 V  
1 µF  
1W  
GND  
5VS  
10  
23  
5V  
12  
7
2.2 µF  
3k  
0.5W  
5VS  
nRST  
2.2 µF  
C2  
1.2VDRIVE  
1.2VSENSE  
PSS302NZ  
2.2 µF  
0.48W  
DELAY  
17  
16  
21  
1.2 V  
L: B82462G4103MOOO (EPCOS) or XFL4020 472MEB (Coilcraft)  
S1: MBRS310T3 (ON Semiconductors) or SS3H10 (Vishay)  
S2: B240A, SS16 (Vishay)  
External BJT: PBSS302NZ (NXP)  
Figure 22. Application Schematic  
26  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
Duty Cycle  
VO  
D =  
5.45  
14  
=
= 0.389  
V
I
Output Inductor Selection (L)  
IRipple = KIND ´IO = 0.25 ´ 1 = 0.25 A  
(V  
- VO )´ VO  
(27 - 5.45)´5.45  
I-Max  
LMin  
=
=
= 7mH  
fSW ´IRipple ´ V  
2.5 MHz ´ 0.25´ 27  
I-Max  
Use 10 µH due to variations in temperature and manufacture.  
Inductor peak current:  
IRipple  
0.25  
2
IL-Peak = IO  
+
= 1+  
= 1.125 A  
2
Output Capacitor Selection (CO)  
2
2
é
ë
ù
û
L
I
- I  
(
)
(
)
O-max  
O-min  
ê
ú
CO  
=
2
2
V
-
V
(
)
(
)
O-max  
O-min  
10´10-6((1)2 - (0.01)2 )  
(5.60)2 - (5.30)2  
CO  
=
= 3.06mF  
Due to variations in temperature and manufacture, use a 10-µF capacitor with a voltage rating greater than the  
maximum 10-V output.  
VO ´(VI-max - VO )  
IO _RMS  
=
12 ´ VI-max ´L ´ fSW  
5.45´(27 - 5.45)  
12 ´ 27´10´10-6 ´ 2.5´106  
IO _RMS  
=
= 0.050A  
External Schottky Diode (D) Power Dissipation  
(VI - VFD )2 ´ fSW ´CJ  
PD = IO ´ VFD ´(1- D) +  
2
(14 - 0.55)2 ´ 2.5´106 ´30´10-12  
PD = 1´ 0.55´(1- 0.389) +  
= 0.34W  
2
Input Capacitor (CI)  
O _max ´ 0.25  
CI =  
I
1´ 0.25  
0.3´ 2.5´106  
=
= 0.33mF  
DV ´ fSW  
I
Due to variations in temperature and manufacture, use a 10-µF capacitor with a voltage rating greater than the  
maximum 45-V transient.  
Input-capacitor root-mean-square (RMS) ripple current II_RMS  
:
æ
ç
ç
è
ö
÷
÷
ø
V
- VO  
VO  
5.45  
6
6 - 5.45  
æ
ö
I_min  
I
= IO ´  
´
= 1´  
´
= 0.29A  
I_RMS  
ç
÷
V
V
6
è
ø
I_min  
I_min  
Copyright © 2013, Texas Instruments Incorporated  
27  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Loop Compensation  
The double pole is due to the output filter components LC, and the calculations in the formulas refer to Figure 20.  
1
1
fLC  
=
=
2p LCO 2p 10 mH´10mF  
= 15.9 kHz  
1
1
fESR  
R4 =  
R2 =  
=
=
2p´ CO ´ESR 2p´10 mF´ 0.005  
= 3.2 MHz  
R5´(VO - Vref)  
94.7 kΩ ´(5.45 - 2)  
=
= 163.36 kΩ  
Vref  
2
f
CO ´ Vramp ´R4  
250 kHz ´1.4´163.36 kΩ  
15.9 kHz ´14  
=
= 256.9 kΩ  
f
LC ´ V  
I
Calculate C3 based on placing a zero at 50% to 75% of the output-filter double-pole frequency.  
1
1
C3 =  
=
= 786 pF  
R2´ fLC p´ 256.9 kΩ ´15.9 kHz  
Poles and Zero Frequencies  
1
1
fP1  
fP2  
fZ1  
fZ2  
=
=
= 30.98 kHz  
2p´R2´ C2 2p´ 256.9 kΩ ´20 pF  
1
1
=
=
= 142.1 kHz  
2p´R3´ C4 2p´ 8 kΩ ´140 pF  
1
1
=
=
= 7.93 kHz  
= 6.77 kHz  
2p´R2´ C3 2p´ 264.2 kΩ ´76 pF  
1
1
=
=
2p´R4´ C4 2p´168 kΩ ´140 pF  
Power Dissipation  
P5.45V _ CON = IO ´RdsON ´(VO / V ) = 12 ´0.5´(5.45 / 14) = 0.195 W  
2
I
P5.45_SW = 1/ 2´ V ´IO ´(tr + tf)´ fSW  
I
= 1/ 2´14´1´(20 ns + 20 ns)´ 2.5 MHz = 0.7 W  
P5.45V_Gate = Vdrive ´Qg ´ fSW = 8´1 nC´ 2.5 MHz = 0.02 W  
P5V _Lin _Reg = (VREG - 5 V)´IO = (5.45 - 5)´0.2 = 0.09 W  
P5VS _Lin _Reg = (VREG - 5 V)´IO = (5.45 - 5)´0.1= 0.045 W  
P
= V ´I = 14´ 5.47 mA = 0.08 W  
I IC  
IC  
PTotal = P5.45V _ CON + P  
+ P  
+ P  
+ P  
+ P  
5.45V _ SW  
5.45V _ Gate  
5V _LinReg  
5VS _LinReg IC  
= 0.195 + 0.7 + 0.02 + 0.09 + 0.045 + 0.08 = 1.13 W  
28  
Copyright © 2013, Texas Instruments Incorporated  
TPS65301-Q1  
www.ti.com.cn  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
JESD51-5  
3.0  
2.0  
1.0  
45  
80  
115  
150  
Ambient Temperature (°C)  
Figure 23. Power Dissipation Derating Profile, 24-Pin PWP Package With Thermal Pad  
S2  
10 µf  
L
nRST  
TPS65301PWPRQ1  
PH  
PGND 24  
nRST 23  
5.45 V  
1
2
3
4
5
6
3k  
VIN_D  
0.1 µF  
BOOT  
VIN  
VREG 22  
S1  
C2  
DELAY 21  
SS 20  
Supply  
10 µF  
IGN_EN  
C1  
6k  
BOOT_LDO  
3.3VDRIVE 19  
3.3VSENSE 18  
30k  
1 nF  
1 µF  
2.2 µF  
3.3 V  
1.2 V  
T2  
Vign  
5VS  
7
8
9
5VS  
2.2 µF  
RT/CLK  
17  
1.2VDRIVE  
R1  
T1  
Enable  
EN  
1.2VSENSE 16  
2.2 µF  
C3  
2.2 µF  
15  
10  
11  
12  
5V  
VSENSE  
5V  
3k  
IGN_ST  
COMP 14  
IGN_ST  
R2  
Exposed PAD  
Connected to  
Ground Plane  
NC  
13  
GND  
Connection to backside of PCB through vias  
Connection to topside of PCB through vias  
Connection to ground plane of PCB through vias  
Power bus  
Voltage Output rails  
T1, T2 are PSS302NZ, sufficent heat sink may be required for  
power dissipation  
Figure 24. PCB Layout  
Copyright © 2013, Texas Instruments Incorporated  
29  
TPS65301-Q1  
ZHCSBV9B OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
修订历史记录  
Changes from Revision A (November 2013) to Revision B  
Page  
Changed 特性 列表中,将运行结温范围从 -40°C 150°C 改为最高 150°C .................................................................. 1  
Changed DC CHARACTERISTICS condition statement from TJ = –40°C to 150°C to TJ-Max = 150°C ................................ 3  
Changed DC CHARACTERISTICS condition statement from TJ = –40°C to 150°C to TJ-Max = 150°C ................................ 4  
Changed DC CHARACTERISTICS condition statement from TJ = –40°C to 150°C to TJ-Max = 150°C ................................ 5  
Changed Y-axis name from Current (mA) to Efficiency in the EFFICIENCY vs OUTPUT CURRENT ON VREG  
graph in the TYPICAL CHARACTERISTICS section ........................................................................................................... 8  
Added OUTPUT VOLTAGE vs OUTPUT CURRENT graph to TYPICAL CHARACTERISTICS section ............................. 8  
Changes from Original (October 2013) to Revision A  
Page  
Changed 文档状态从 产品预览 改为生成数据 ...................................................................................................................... 1  
Changed min value for VIL in the DC CHARACTERISTICS table from 2 to 2.2 .................................................................. 3  
Deleted the 5VS oft-start time, TSS, parameter from the DC CHARACTERISTICS table .................................................... 5  
Changed the min, typ, and max values for the nRST parameter for VREG output from 0.87, 0.9, and 0.93 to 0.845,  
0.875, and 0.905 respectively ............................................................................................................................................... 5  
30  
Copyright © 2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65301QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
24  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TPS65301  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65301QPWPRQ1 HTSSOP PWP  
24  
2000  
330.0  
16.4  
6.95  
8.3  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS65301QPWPRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC SMALL OUTLINE  
6.6  
6.2  
SEATING PLANE  
C
TYP  
PIN 1 ID  
A
0.1 C  
AREA  
22X 0.65  
24  
1
2X  
7.9  
7.7  
NOTE 3  
7.15  
12  
13  
0.30  
24X  
4.5  
4.3  
0.19  
B
0.1  
C A  
B
(0.15) TYP  
SEE DETAIL A  
4X (0.2) MAX  
NOTE 5  
2X (0.95) MAX  
NOTE 5  
EXPOSED  
THERMAL PAD  
0.25  
GAGE PLANE  
5.16  
4.12  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
2.40  
1.65  
4222709/A 02/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present and may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.4)  
24X (1.5)  
SYMM  
SEE DETAILS  
1
24  
24X (0.45)  
(R0.05)  
TYP  
(7.8)  
NOTE 9  
(1.1)  
TYP  
SYMM  
(5.16)  
22X (0.65)  
(
0.2) TYP  
VIA  
12  
13  
(1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-24  
4222709/A 02/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(2.4)  
BASED ON  
0.125 THICK  
STENCIL  
24X (1.5)  
(R0.05) TYP  
1
24  
24X (0.45)  
(5.16)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
22X (0.65)  
13  
12  
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.68 X 5.77  
2.4 X 5.16 (SHOWN)  
2.19 X 4.71  
0.125  
0.15  
0.175  
2.03 X 4.36  
4222709/A 02/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS65310A-Q1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC
TI

TPS65310AQRVJQ1

IC POWER SUPPLY MANAGEMENT CKT, Power Management Circuit
TI

TPS65310AQRVJRQ1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125
TI

TPS65311-Q1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC
TI

TPS65311QRVJRQ1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125
TI

TPS65313-Q1

适用于汽车应用的高压 PMIC
TI

TPS65320D-Q1

采用 280mA 自动拉电流 LDO 稳压器的汽车类 3.6V 至 36V、3.2A 降压转换器
TI

TPS65320DQPWPRQ1

采用 280mA 自动拉电流 LDO 稳压器的汽车类 3.6V 至 36V、3.2A 降压转换器 | PWP | 14 | -40 to 125
TI

TPS65320QPWPRQ1

40-V Step-Down Converter With Eco-mode™ Codec and LDO Regulator
TI

TPS65321A-Q1

采用宽输入电压范围、280mA LDO 稳压器的汽车类 3.6V 至 36V 3.2A 降压转换器
TI

TPS65321AQPWPRQ1

采用宽输入电压范围、280mA LDO 稳压器的汽车类 3.6V 至 36V 3.2A 降压转换器 | PWP | 14 | -40 to 125
TI

TPS65381-Q1

Multi-Rail Power Supply for Microcontrollers in Safety-Critical Applications
TI