TPS6565342RHDTQ1 [TI]

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125;
TPS6565342RHDTQ1
型号: TPS6565342RHDTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125

开关 转换器
文件: 总62页 (文件大小:4210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
TPS65653-Q1 双路 3A 降压转换器  
1 特性  
2 应用  
1
下列性能符合 AEC-Q100 标准:  
雷达系统 ECU  
汽车音响主机和仪表组  
汽车摄像头模块  
环视系统 ECU  
汽车显示屏  
器件温度 1 级:-40°C +125°C 的环境工作温  
度范围  
输入电压:2.8V 5.5V  
两个高效降压直流/直流转换器:  
输出电压:1V 3.36V  
最大输出电流为每相 3A  
3 说明  
TPS65653-Q1 设计用于为雷达等噪声敏感型 应用提供  
严格的电源规范。该器件包含两个降压直流/直流转换  
器以及通用数字输出信号。该器件由 I2C 兼容串行接口  
和使能信号进行控制。  
可编程输出电压压摆率范围:0.5mV/µs 至  
10mV/µs  
4MHz 开关频率  
用于降低 EMI 的扩频模式和相位交错  
可配置通用输出信号(GPOGPO2)  
自动 PWM/PFMAUTO 模式)操作可在较宽输出电  
流范围内最大限度地提高效率。TPS65653-Q1 支持远  
程电压检测,可补偿稳压器输出与负载点 (POL) 之间  
IR 压降,从而提高输出电压的精度。此外,可以强  
制开关时钟进入 PWM 模式以及将其与外部时钟同  
步,从而最大限度地降低干扰。  
I2C 兼容接口,支持标准 (100kHz)、快速  
(400kHz)、快速+ (1MHz) 和高速 (3.4MHz) 模式  
具有可编程屏蔽的中断功能  
可编程电源正常信号 (PGOOD)  
外部时钟输入以同步开关  
输出短路和过载保护  
TPS65653-Q1 器件支持可编程启动和关断延迟与排序  
(包括与使能信号同步的 GPO 信号)。在启动和电压  
变化期间,器件会对输出转换率进行控制,从而最大限  
度地减小输出电压过冲和浪涌电流。  
过热警告和保护  
过压保护 (OVP) 和欠压锁定 (UVLO)  
具有可湿性侧面的 28 引脚、5mm × 5mm VQFN  
封装  
简化原理图  
器件信息  
器件型号  
封装  
VQFN (28)  
封装尺寸(标称值)  
VIN  
VOUT_B0  
TPS65653-Q1  
5.00mm × 5.00mm  
VIN_B0  
VIN_B1  
SW_B0  
FB_B0  
LOAD  
LOAD  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
VIN  
VIN  
VANA  
VOUT_B1  
直流/直流效率与输出电流  
SW_B1  
FB_B1  
SDA  
SCL  
nINT  
EN  
DC/DC Efficiency vs Output Current  
100  
CLKIN (GPO2)  
GPO  
90  
80  
70  
PGOOD  
GNDs  
Copyright © 2018, Texas Instruments Incorporated  
60  
Vin = 3.3V, Vout = 1V, AUTO  
Vin = 3.3V, Vout = 1.8V, AUTO  
Vin = 3.3V, Vout = 2.5V, AUTO  
50  
0.001  
0.01  
0.1  
Load (A)  
1
3
Fron  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSF06  
 
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 29  
7.5 Programming........................................................... 30  
7.6 Register Maps......................................................... 33  
Application and Implementation ........................ 47  
8.1 Application Information............................................ 47  
8.2 Typical Application .................................................. 47  
Power Supply Recommendations...................... 53  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 I2C Serial Bus Timing Parameters.......................... 10  
6.7 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description ................................................ 14  
8
9
10 Layout................................................................... 53  
10.1 Layout Guidelines ................................................. 53  
10.2 Layout Example .................................................... 54  
11 器件和文档支持 ..................................................... 55  
11.1 器件支持................................................................ 55  
11.2 接收文档更新通知 ................................................. 55  
11.3 社区资源................................................................ 55  
11.4 ....................................................................... 55  
11.5 静电放电警告......................................................... 55  
11.6 术语表 ................................................................... 55  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 3 月  
*
初始发行版  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
5 Pin Configuration and Functions  
RHD Package  
28-Pin VQFN With Thermal Pad  
Top View  
21  
20  
19  
18  
17  
16  
15  
SW_B0  
SW_B0  
VIN_B0  
VIN_B0  
GPO  
SW_B1  
SW_B1  
VIN_B1  
VIN_B1  
CLKIN  
nINT  
22  
23  
24  
25  
26  
27  
28  
14  
13  
12  
11  
10  
9
THERMAL PAD  
PGOOD  
VIN  
VIN  
8
1
2
3
4
5
6
7
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
NAME  
NC  
1
2
3
4
5
O
A
Unused. Leave this pin floating.  
FB_B0  
FB_B1  
AGND  
VANA  
Output voltage feedback (positive) for Buck 0  
Output voltage feedback (positive) for Buck 1  
Ground  
A
G
P/I  
Supply voltage for analog and digital blocks. Must be connected to same node with VIN_Bx.  
Programmable enable signal for regulators and GPOs. If the pin is not used, leave the pin  
floating.  
6
EN  
D/I  
7
8
9
NC  
VIN  
O
I
Unused. Leave this pin floating.  
Unused. Connect this pin to VANA.  
nINT  
D/O  
Open-drain interrupt output. Active LOW. If the pin is not used, connect the pin to ground.  
External clock input. Alternative function is general-purpose digital output (GPO2). If the pin is not  
used, leave the pin floating.  
10  
CLKIN  
D/I/O  
P/I  
Input for Buck 1. The separate power pins VIN_Bx are not connected together internally -  
VIN_Bx pins must be connected together in the application and be locally bypassed.  
11, 12  
VIN_B1  
SW_B1  
13, 14  
15, 16  
P/O  
P/G  
Buck 1 switch node. If the Buck 1 is not used, leave the pin floating.  
Power ground for Buck 1  
PGND_B1  
Serial interface clock input for I2C access. Connect a pullup resistor. If the I2C interface is not  
used, connect the pin to Ground.  
17  
SCL  
D/I  
Serial interface data input and output for I2C access. Connect a pullup resistor. If the I2C  
interface is not used, connect the pin to Ground.  
18  
19  
SDA  
D/I/O  
G
SGND  
Ground  
(1) A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
Copyright © 2019, Texas Instruments Incorporated  
3
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
20, 21  
NAME  
PGND_B0  
SW_B0  
P/G  
P/O  
Power ground for Buck 0  
Buck 0 switch node. If the Buck 0 is not used, leave the pin floating.  
22, 23  
Input for Buck 0. The separate power pins VIN_Bx are not connected together internally -  
VIN_Bx pins must be connected together in the application and be locally bypassed.  
24, 25  
VIN_B0  
P/I  
26  
27  
28  
GPO  
PGOOD  
VIN  
D/O  
D/O  
I
General-purpose digital output. If the pin is not used, leave the pin floating.  
Power-good indication signal. If the pin is not used, leave the pin floating.  
Unused. Connect this pin to VANA.  
Thermal  
Pad  
Connect to PCB ground plane using multiple vias for good thermal performance.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
Voltage on power connections (must use the same  
VIN, VIN_Bx, VANA  
input supply)  
–0.3  
6
V
(VIN_Bx + 0.3 V) with 6-V  
maximum  
SW_Bx  
Voltage on buck switch nodes  
–0.3  
–0.3  
–0.3  
–0.3  
V
V
V
V
(VANA + 0.3 V) with 6-V  
maximum  
FB_Bx  
Voltage on buck voltage sense nodes  
Voltage on logic pins (input or output pins)  
Voltage on logic pins (input or output pins)  
(VANA + 0.3 V) with 6-V  
maximum  
SDA, SCL, nINT, EN  
PGOOD, GPO, CLKIN  
(GPO2)  
(VANA + 0.3 V) with 6-V  
maximum  
TJ-MAX  
Tstg  
Junction temperature  
Storage temperature  
40  
150  
150  
260  
–65  
°C  
Maximum lead temperature (soldering, 10 seconds)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 7, 8, 14,  
15, 21, 22, 28)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
Voltage on power connections (must use the same input  
supply)  
VIN, VIN_Bx, VANA  
2.8  
5.5  
V
EN, nINT  
Voltage on logic pins (input or output pins)  
Voltage on logic pins (input pin)  
Voltage on logic pins (output pins)  
0
0
0
5.5  
VANA  
VANA  
V
V
V
CLKIN  
PGOOD, GPO, GPO2  
Voltage on I2C interface, Standard (100 kHz), Fast (400  
kHz), Fast+ (1 MHz), and High-Speed (3.4 MHz) Modes  
0
0
1.95  
V
V
SCL, SDA  
Voltage on I2C interface, Standard (100 kHz), Fast (400  
kHz), and Fast+ (1 MHz) Modes  
VANA with 3.6-V  
maximum  
TEMPERATURE  
TJ  
Junction temperature  
Ambient temperature  
40  
40  
140  
125  
°C  
°C  
TA  
Copyright © 2019, Texas Instruments Incorporated  
5
 
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
6.4 Thermal Information  
TPS65653-Q1  
THERMAL METRIC(1)  
RHD (VQFN)  
28 PINS  
36.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.6  
8.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
8.8  
RθJCbot  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
note.  
6.5 Electrical Characteristics  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx,VVOUT_Bx, and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL COMPONENTS  
Input filtering  
CIN_VANA  
Effective capacitance, connected from VANA  
to AGND  
100  
10  
nF  
µF  
capacitance for VANA  
Input filtering  
Effective capacitance, connected from VIN_Bx  
to PGND_Bx  
CIN_BUCK  
capacitance for buck  
regulators  
1.9  
10  
Output filtering  
COUT_BUCK  
capacitance for buck  
regulators, local  
Effective capacitance  
POL capacitance  
22  
22  
µF  
µF  
Point-of-load (POL)  
capacitance for buck  
regulators  
CPOL_BUCK  
Total output capacitance, VIN_Bx 4 V and  
Slew rate 3.8 mV/µs  
150  
100  
100  
µF  
µF  
µF  
COUT-  
TOTAL_BUCK  
Buck output capacitance,  
total (local and POL)  
Total output capacitance, VIN_Bx > 4 V  
Total output capacitance, Slew rate > 3.8  
mV/µs  
Input and output  
capacitor ESR  
ESRC  
[1-10] MHz  
2
10  
mΩ  
0.47  
L
Inductor  
Inductance of the inductor  
µH  
–30%  
30%  
DCRL  
Inductor DCR  
25  
mΩ  
BUCK REGULATORS  
V(VIN_Bx)  
V(VANA)  
,
VIN_Bx and VANA pins must be connected to  
the same supply line  
Input voltage range  
2.8  
1
3.3  
5.5  
V
V
Programmable voltage range  
Step size, 1 V VOUT < 1.4 V  
Step size, 1.4 V VOUT 3.36 V  
Output current  
1
5
3.36  
VOUT_Bx  
Output voltage  
Output current  
mV  
20  
IOUT_Bx  
3(3)  
A
V
Input and Output voltage Minimum voltage between V(VIN_Bx) and  
difference VOUT to fulfill the electrical characteristics  
0.8  
(1) All voltage values are with respect to network ground.  
(2) Minimum (MIN) and Maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely norm.  
(3) The maximum output current can be limited by the forward current limit ILIM FWD. The power dissipation inside the die increases the  
junction temperature and limits the maximum current depending of the length of the current pulse, efficiency, board and ambient  
temperature.  
6
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx,VVOUT_Bx, and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
Force PWM mode  
MIN  
TYP  
MAX  
UNIT  
DC output voltage  
–2%  
2%  
accuracy, includes  
VOUT_Bx_DC  
voltage reference, DC  
load and line regulations,  
process and temperature  
PFM mode. Average output voltage level is  
increased by max. 20 mV  
2% + 20  
mV  
–2%  
PWM mode, L = 0.47 µH, IOUT = 500 mA,  
COUT = 22uF + 22uF  
4
(GCM31CR71A226KE02)  
Ripple voltage  
mVp-p  
PFM mode, L = 0.47 µH, IOUT = 10 mA,  
COUT = 22uF + 22uF  
25  
(GCM31CR71A226KE02)  
DCLNR  
DCLDR  
TLDSR  
DC line regulation  
IOUT = 1 A  
±0.05  
0.3%  
±60  
%/V  
mV  
DC load regulation in  
PWM mode  
VOUT_Bx = 1 V, IOUT from 0 to IOUT(max)  
Transient load step  
response  
IOUT = 0 A to 3 A, TR = TF = 1 µs, PWM  
mode, VVIN_Bx = 3.3 V, VOUT_Bx = 1 V, COUT  
44 µF, L = 0.47 µH, fSW = 4 MHz  
=
V(VIN_Bx) stepping 3 V 3.5 V, TR = TF = 10  
µs, IOUT = IOUT(max)  
TLNSR  
Transient line response  
±10  
mV  
A
Programmable range  
1.5  
4
Forward current limit per  
phase (peak for every  
switching cycle)  
Step size  
0.5  
7.5%  
7.5%  
2.0  
ILIM FWD  
Accuracy, V(VIN_Bx) 3 V, ILIM = 4 A  
Accuracy, 2.8 V V(VIN_Bx) < 3 V, ILIM = 4 A  
–5%  
–20%  
1.6  
20%  
20%  
3.0  
ILIM NEG  
Negative current limit  
A
On-resistance, high-side  
FET  
RDS(ON) HS FET  
Between VIN_Bx and SW_Bx pins (I = 1 A)  
50  
110  
mΩ  
On-resistance, low-side  
FET  
RDS(ON) LS FET  
ƒSW  
Between SW_Bx and PGND_Bx pins (I = 1 A)  
PWM mode  
45  
4
90  
mΩ  
MHz  
µs  
Switching frequency  
3.6  
4.4  
From ENx to VOUT_Bx = 0.35 V (slew-rate  
control begins)  
Start-up time (soft start)  
120  
SLEW_RATEx[2:0] = 010  
SLEW_RATEx[2:0] = 011  
SLEW_RATEx[2:0] = 100  
SLEW_RATEx[2:0] = 101  
SLEW_RATEx[2:0] = 110  
SLEW_RATEx[2:0] = 111  
10  
7.5  
3.8  
Output voltage slew-  
rate(4)  
–15%  
15% mV/µs  
1.9  
0.94  
0.47  
PFM-to-PWM - current  
threshold(5)  
IPFM-PWM  
IPWM-PFM  
RDIS_Bx  
550  
290  
250  
mA  
mA  
PWM-to-PFM - current  
threshold(5)  
Output pulldown  
resistance  
Regulator disabled  
150  
350  
Ω
(4) The slew-rate can be limited by the current limit (forward or negative current limit), output capacitance and load current.  
(5) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependent on the output voltage, input voltage and  
the inductor current level.  
Copyright © 2019, Texas Instruments Incorporated  
7
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx,VVOUT_Bx, and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
V(VIN_Bx) and V(VANA) fixed 3.7 V  
Overvoltage threshold (compared to DC  
MIN  
TYP  
MAX  
UNIT  
39  
–53  
4
50  
64  
–29  
15  
Output voltage  
output voltage level, VVOUT_Bx_DC  
Undervoltage threshold (compared to DC  
output voltage level, VVOUT_Bx_DC  
)
monitoring for PGOOD  
pin and for power-good  
Interrupt  
mV  
–40  
)
Deglitch time during operation and after  
voltage change  
µs  
µs  
Gating time for PGOOD  
signal after regulator  
enable or voltage  
change  
PGOOD_MODE = 0  
800  
EXTERNAL CLOCK AND PLL  
Nominal frequency  
1
24  
MHz  
µs  
fEXT_CLK  
External input clock(6)  
Nominal frequency step size  
1
Required accuracy from nominal frequency  
Delay for missing clock detection  
Delay and debounce for clock detection  
–10%  
10%  
1.8  
20  
External clock detection  
Clock change delay  
(internal to external)  
Delay from valid clock detection to use of  
external clock  
600  
300  
µs  
PLL output clock jitter  
Cycle to cycle  
ps, p-p  
PROTECTION FUNCTIONS  
Temperature rising, TDIE_WARN_LEVEL = 0  
115  
127  
125  
137  
20  
135  
147  
Thermal warning(7)  
Temperature rising, TDIE_WARN_LEVEL = 1  
Hysteresis  
°C  
°C  
Temperature rising  
Hysteresis  
140  
150  
20  
160  
Thermal shutdown(7)  
VANA overvoltage  
Voltage rising  
5.6  
5.45  
40  
5.8  
6.1  
V
mV  
V
VANAOVP  
Voltage falling  
5.73  
5.96  
Hysteresis  
Voltage rising  
2.51  
2.5  
2.63  
2.6  
2.75  
2.7  
VANA undervoltage  
lockout  
VANAUVLO  
Voltage falling  
Buck short-circuit  
detection  
Threshold  
280  
360  
440  
mV  
LOAD CURRENT MEASUREMENT FOR BUCK REGULATORS  
Current measurement  
Maximum code  
range  
10.22  
A
Resolution  
LSB  
20  
mA  
Measurement accuracy  
IOUT > 1 A  
<10%  
PFM mode (automatically changing to PWM  
mode for the measurement)  
45  
4
Measurement time  
µs  
PWM mode  
CURRENT CONSUMPTION  
Standby current  
consumption, regulators  
disabled  
9
µA  
(6) The external clock frequency must be selected so that buck switching frequency is above 1.7 MHz.  
(7) For a given device thermal warning will always happen at a lower temperature than thermal shutdown.  
8
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx,VVOUT_Bx, and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Active current  
consumption, one buck  
regulator enabled in auto  
mode, internal RC  
oscillator, PGOOD  
monitoring enabled  
IOUT_Bx = 0 mA, not switching  
58  
µA  
Active current  
consumption, two buck  
regulators enabled in  
auto mode, internal RC  
oscillator, PGOOD  
monitoring enabled  
IOUT_Bx = 0 mA, not switching  
100  
15  
µA  
Active current  
consumption during  
PWM operation, one  
buck regulator enabled  
IOUT_Bx = 0 mA  
mA  
Active current  
consumption during  
PWM operation, two  
buck regulators enabled  
IOUT_Bx = 0 mA  
30  
2
mA  
mA  
PLL and clock detector  
current consumption  
fEXT_CLK = 1 MHz, Additional current  
consumption when enabled  
DIGITAL INPUT SIGNALS EN, SCL, SDA, CLKIN  
VIL  
VIH  
Input low level  
Input high level  
0.4  
V
1.2  
10  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
80  
200  
mV  
EN/CLKIN pulldown  
resistance  
EN_PD/CLKIN_PD = 1  
500  
kΩ  
DIGITAL OUTPUT SIGNALS nINT, SDA  
nINT: ISOURCE = 2 mA  
SDA: ISOURCE = 20 mA  
0.4  
0.4  
V
V
VOL  
RP  
Output low level  
External pullup resistor  
for nINT  
To VIO Supply  
10  
kΩ  
DIGITAL OUTPUT SIGNALS PGOOD, GPO, GPO2  
VOL  
Output low level  
ISOURCE = 2 mA  
0.4  
V
V
Output high level,  
configured to push-pull  
VVANA  
VOH  
ISINK = 2 mA  
VVANA  
0.4  
Supply voltage for  
VPU  
external pullup resistor,  
configured to open-drain  
VVANA  
V
External pullup resistor,  
configured to open-drain  
RPU  
10  
kΩ  
ALL DIGITAL INPUTS  
ILEAK  
Input current  
All logic inputs over pin voltage range  
1  
1
µA  
Copyright © 2019, Texas Instruments Incorporated  
9
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
6.6 I2C Serial Bus Timing Parameters  
These specifications are ensured by design. Unless otherwise noted, VIN_Bx = 3.7 V. See (1) and Figure 1.  
MIN  
MAX  
UNIT  
Standard mode  
Fast mode  
100  
400  
1
kHz  
fSCL  
Serial clock frequency  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4  
1.7  
MHz  
µs  
4.7  
1.3  
0.5  
0.16  
0.32  
4
Fast mode  
tLOW  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
0.6  
0.26  
0.06  
0.12  
250  
100  
50  
tHIGH  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
µs  
ns  
ns  
µs  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
tSU;DAT  
tHD;DAT  
tSU;STA  
Fast mode+  
High-speed mode  
Standard mode  
10  
10  
3450  
900  
Fast mode  
10  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
70  
10  
150  
4.7  
0.6  
0.26  
0.16  
4
Setup time for a start or  
a repeated start  
condition  
Fast mode  
Fast mode+  
High-speed mode  
Standard mode  
Fast mode  
0.6  
0.26  
0.16  
4.7  
1.3  
0.5  
4
Hold time for a start or a  
repeated start condition  
tHD;STA  
µs  
µs  
µs  
Fast mode+  
High-speed mode  
Standard mode  
Bus free time between a  
stop and start condition  
tBUF  
Fast mode  
Fast mode +  
Standard mode  
Fast mode  
0.6  
0.26  
0.16  
Setup time for a stop  
condition  
tSU;STO  
Fast mode+  
High-speed mode  
Standard mode  
1000  
300  
120  
80  
Fast mode  
20  
trDA  
Rise time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
ns  
10  
20  
160  
(1) Cb refers to the capacitance of one bus line.  
10  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
I2C Serial Bus Timing Parameters (continued)  
These specifications are ensured by design. Unless otherwise noted, VIN_Bx = 3.7 V. See (1) and Figure 1.  
MIN  
MAX  
UNIT  
Standard mode  
300  
20 × (VDD / 5.5  
Fast mode  
300  
120  
V)  
tfDA  
Fall time of SDA signal  
20 × (VDD / 5.5  
V)  
ns  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
30  
80  
160  
1000  
300  
120  
40  
Fast mode  
20  
trCL  
Rise time of SCL signal Fast mode+  
High-speed mode, Cb = 100 pF  
ns  
ns  
10  
20  
10  
High-speed mode, Cb = 400 pF  
80  
Rise time of SCL signal High-speed mode, Cb = 100 pF  
after a repeated start  
80  
trCL1  
condition and after an  
acknowledge bit  
High-speed mode, Cb = 400 pF  
20  
160  
Standard mode  
Fast mode  
300  
300  
20 × (VDD / 5.5  
V)  
tfCL  
Fall time of a SCL signal  
20 × (VDD / 5.5  
V)  
ns  
Fast mode+  
120  
High-speed mode, Cb = 10 – 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
40  
80  
Capacitive load for each  
bus line (SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike  
suppressed (SCL and  
SDA spikes that are less  
then the indicated width  
are suppressed)  
Standard mode, fast mode, and fast mode+  
High-speed mode  
tSP  
10  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 1. I2C Timing  
Copyright © 2019, Texas Instruments Incorporated  
11  
 
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
Unless otherwise specified: V(VIN_Bx) = V(VANA) = 3.7 V, VOUT_Bx = 1 V, TA = 25°C, L = 0.47 µH (Murata DFE252012PD-R47M),  
COUT_BUCK = 22 µF, and CPOL_BUCK = 22 µF  
15  
14  
13  
12  
11  
10  
9
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
8
7
6
5
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D101  
D102  
Regulators disabled  
VOUT_Bx = 1 V  
Load = 0 mA  
Figure 2. Standby Current Consumption vs Input Voltage  
Figure 3. Active State Current Consumption vs Input  
Voltage, One Buck Regulator Enabled in PFM Mode  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
D103  
VOUT_Bx = 1 V  
Load = 0 mA  
Figure 4. Active State Current Consumption vs Input Voltage, One Buck Regulator Enabled in Forced PWM Mode  
12  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
7 Detailed Description  
7.1 Overview  
The TPS65653-Q1 is a high-efficiency, high-performance flexible power supply device with two step-down  
DC/DC converter cores (Buck0 and Buck1) for automotive applications. Table 1 lists the output characteristics of  
the regulators.  
Table 1. Supply Specification  
OUTPUT  
SUPPLY  
VOUT RANGE (V)  
RESOLUTION (mV)  
IMAX MAXIMUM OUTPUT CURRENT (mA)  
5 (1 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
Buck0  
Buck1  
1 to 3.36  
3000  
5 (1 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
1 to 3.36  
3000  
The TPS65653-Q1 also supports switching clock synchronization to an external clock (CLKIN pin). The nominal  
frequency of the external clock can be from 1 MHz to 24 MHz with 1-MHz steps.  
Additional features include:  
Soft-start  
Input voltage protection:  
Undervoltage lockout  
Overvoltage protection  
Output voltage monitoring and protection:  
Overvoltage monitoring  
Undervoltage monitoring  
Overload protection  
Thermal warning  
Thermal shutdown  
The TPS65653-Q1 has one dedicated general purpose digital output (GPO) signal. CLKIN pin can be  
programmed as a second GPO signal (GPO2) if external clock is not needed. The output type (open-drain or  
push-pull) is programmable for the GPOs.  
Copyright © 2019, Texas Instruments Incorporated  
13  
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
VANA  
nINT  
Interrupts  
Buck0  
ILIM Det  
Pwrgood Det  
Enable/  
Disable,  
Delay  
Control  
Slew-Rate  
Control  
Overload and  
SC Det  
EN  
Iload ADC  
GPO  
Buck1  
ILIM Det  
Pwrgood Det  
SDA  
SCL  
I2C  
Overload and  
SC Det  
Iload ADC  
OTP  
EPROM  
Registers  
PGOOD  
Digital  
Logic  
Thermal  
Monitor  
UVLO  
SW  
Reset  
Ref &  
Bias  
Oscillator  
CLKIN (GPO2)  
Copyright © 2018, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 DC/DC Converters  
7.3.1.1 Overview  
The TPS65653-Q1 includes two step-down DC/DC converter cores. The cores are designed for flexibility; most  
of the functions are programmable, thus giving a possibility to optimize the regulator operation for each  
application. The buck regulators deliver 1-V to 3.36-V regulated voltage rails from a 2.8-V to 5.5-V supply  
voltage.  
The TPS65653-Q1 has the following features:  
DVS support with programmable slew rate  
Automatic mode control based on the loading (PFM or PWM mode)  
Forced PWM mode option  
Optional external clock input to minimize crosstalk  
Optional spread-spectrum technique to reduce EMI  
Phase control for optimized EMI  
Synchronous rectification  
Current mode loop with PI compensator  
14  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
Feature Description (continued)  
Soft start  
Power Good flag with maskable interrupt  
Power Good signal (PGOOD) with selectable sources  
Average output current sensing (for PFM entry and load current measurement)  
The following parameters can be programmed via registers, the default values are set by OTP bits:  
Output voltage  
Forced PWM operation  
Switch current limit  
Output voltage slew rate  
Enable and disable delays  
There are two modes of operation for the buck converter, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 600 mA or higher. Lighter output current loads cause the converter to automatically  
switch into PFM mode for reduced current consumption when forced PWM mode is disabled. The forced PWM  
mode can be selected to maintain fixed switching frequency at all load current levels.  
A block diagram of a single core is shown in Figure 5.  
HS FET  
CURRENT  
SENSE  
VIN  
FB  
POS  
CURRENT  
LIMIT  
RAMP  
GENERATOR  
V
OUT  
-
GATE  
CONTROL  
ERROR  
AMP  
SW  
+
LOOP  
COMP  
VOLTAGE  
SETTING  
SLEW RATE  
CONTROL  
NEG  
CURRENT  
LIMIT  
POWER  
+
VDAC  
-
GOOD  
ZERO  
CROSS  
DETECT  
LS FET  
CURRENT  
SENSE  
MASTER  
INTERFACE  
PROGRAMMABLE  
PARAMETERS  
CONTROL  
BLOCK  
SLAVE  
INTERFACE  
IADC  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5. Detailed Block Diagram Showing One Core  
7.3.1.2 Transition Between PWM and PFM Modes  
PWM mode operation optimizes efficiency at mid to full load at the expense of light-load efficiency. The  
TPS65653-Q1 converter operates in PWM mode at load current of about 600 mA or higher. At lighter load  
current levels the device automatically switches into PFM mode for reduced current consumption when forced  
PWM mode is disabled (AUTO mode operation). By combining the PFM and the PWM modes a high efficiency is  
achieved over a wide output-load current range.  
7.3.1.3 Buck Converter Load Current Measurement  
Buck load current can be monitored via I2C registers. The monitored buck converter is selected with the  
LOAD_CURRENT_BUCK_SELECT bit in SEL_I_LOAD register. A write to this selection register starts a current  
measurement sequence. The regulator is automatically forced to PWM mode for the measurement period. The  
measurement sequence is 50 µs long, maximum.  
Copyright © 2019, Texas Instruments Incorporated  
15  
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Feature Description (continued)  
TPS65653-Q1 can be configured to give out an interrupt (I_MEAS_INT bit in INT_TOP_1 register) after the load  
current measurement sequence is finished. Load current measurement interrupt can be masked with  
I_MEAS_MASK bit (TOP_MASK_1 register). The measurement result can be read from registers I_LOAD_1 and  
I_LOAD_2. Register I_LOAD_1 bits BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2  
bit BUCK_LOAD_CURRENT[8] the MSB bit. The measurement result BUCK_LOAD_CURRENT[8:0] LSB is 20  
mA, and maximum code value of the measurement corresponds to 10.22 A.  
7.3.1.4 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add  
EMI-filters and shields to the boards. The TPS65653-Q1 has register selectable spread-spectrum mode which  
minimizes the need for output filters, ferrite beads, or chokes. In spread spectrum mode, the switching frequency  
varies around the center frequency, reducing the EMI emissions radiated by the converter and associated  
passive components and PCB traces (see Figure 6). This feature is available only when internal RC oscillator is  
used (EN_PLL bit is 0 in PLL_CTRL register), and it is enabled with the EN_SPREAD_SPEC bit in CONFIG  
register, and it affects both buck cores.  
Frequency  
Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread  
spectrum architecture of the TPS65653-Q1 spreads that energy over a large bandwidth.  
Figure 6. Spread-Spectrum Modulation  
7.3.2 Sync Clock Functionality  
The TPS65653-Q1 device contains a CLKIN input to synchronize the switching clock of the buck regulators with  
the external clock. The block diagram of the clocking and PLL module is shown in Figure 7. Depending on the  
EN_PLL bit in PLL_CTRL register and the external clock availability, the external clock is selected and interrupt  
is generated as shown in Table 2. The interrupt can be masked with SYNC_CLK_MASK bit in TOP_MASK_1  
register. The nominal frequency of the external input clock is set by EXT_CLK_FREQ[4:0] bits in PLL_CTRL  
register, and it can be from 1 MHz to 24 MHz with 1-MHz steps. The external clock must be inside accuracy  
limits (–10%/+10%) of the selected frequency for valid clock detection.  
The SYNC_CLK_INT interrupt in INT_TOP_1 register is also generated in cases where the external clock is  
expected but it is not available. These cases are start-up (read OTP-to-standby transition) when EN_PLL is 1  
and Buck regulator enable (standby-to-active transition) when EN_PLL is 1.  
16  
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
Feature Description (continued)  
24MHz  
RC  
Oscillator  
Internal  
24MHz  
clock  
CLKIN  
Detector  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
CLKIN  
1MHz  
24MHz  
PLL  
“EN_PLL“  
1MHz  
Divider  
24  
Figure 7. Clock and PLL Module  
Table 2. PLL Operation  
DEVICE  
OPERATION MODE  
PLL AND CLOCK  
DETECTOR STATE  
INTERRUPT FOR  
EXTERNAL CLOCK  
EN_PLL  
CLOCK  
STANDBY  
ACTIVE  
0
0
Disabled  
Disabled  
No  
No  
Internal RC  
Internal RC  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
ACTIVE  
1
1
Enabled  
Enabled  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
7.3.3 Power-Up  
The power-up sequence for the TPS65653-Q1 is as follows:  
VANA (and VIN_Bx) reach minimum recommended levels (VVANA > VANAUVLO). This initiates power-on-reset  
(POR), OTP reading, and enables the system I/O interface. The I2C host should allow at least 1.2 ms before  
writing or reading data to the TPS65653-Q1.  
Device enters standby mode.  
The host can change the default register setting by I2C if needed.  
The regulators can be enabled/disabled and the GPO signals can be controlled by EN pin and by I2C  
interface.  
Transitions between the operating modes are shown in Modes of Operation.  
7.3.4 Regulator Control  
7.3.4.1 Enabling and Disabling Regulators  
The regulators can be enabled when the device is in STANDBY or ACTIVE state. There are two ways for enable  
and disable the buck regulators:  
Using BUCKx_EN bit in BUCKx_CTRL_1 register (BUCKx_EN_PIN_CTRL bit is 0 in BUCKx_CTRL_1  
register)  
Using EN control pin (BUCKx_EN bit is 1 AND BUCKx_EN_PIN_CTRL bit is 1)  
If the EN control pin is used for enable and disable then the delay from the control signal rising edge to start-up  
is set by BUCKx_STARTUP_DELAY[3:0] bits in BUCKx_DELAY register and the delay from control signal falling  
edge to shutdown is set by BUCKx_SHUTDOWN_DELAY[3:0] bits in BUCKx_DELAY register. The delays are  
valid only for EN signal transitions and not for control with I2C writings to the BUCKx_EN bit.  
The control of the regulator (with 0-ms delays) is shown in Table 3.  
Copyright © 2019, Texas Instruments Incorporated  
17  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Table 3. Regulator Control  
BUCKx_EN  
BUCKx_EN_PIN_CTRL  
EN PIN  
Don't Care  
Don't Care  
Low  
BUCKx OUTPUT VOLTAGE  
Disabled  
Enable/disable control with  
BUCKx_EN bit  
0
1
1
1
Don't Care  
0
1
1
BUCKx_VSET[7:0]  
Disabled  
Enable/disable control with  
EN pin  
High  
BUCKx_VSET[7:0]  
The buck regulator is enabled by the EN pin or by I2C writing as shown in Figure 8. The soft-start circuit limits the  
in-rush current during start-up. When the output voltage rises to a 0.35-V level, the output voltage becomes slew-  
rate controlled. If there is a short circuit at the output, and the output voltage does not increase above the 0.35-V  
level in 1 ms or the output voltage drops below 0.35-V level during operation (for minimum of 1 ms), the regulator  
is disabled, and BUCKx_SC_INT interrupt in INT_BUCK register is set. When the output voltage reaches the  
Power-Good threshold level the BUCKx_PG_INT interrupt flag in INT_BUCK register is set. The Power-Good  
interrupt flag when reaching valid output voltage can be masked using BUCKx_PGR_MASK bit in BUCK_MASK  
register. The Power-Good interrupt flag can be also generated when the output voltage becomes invalid. The  
interrupt mask for invalid output voltage detection is set by BUCKx_PGF_MASK bit in BUCK_MASK register. A  
BUCKx_PG_STAT bit in BUCK_STAT register shows always the validity of the output voltage: 1 means valid and  
0 means invalid output voltage. A PGOOD_WINDOW_BUCK bit in PGOOD_CTRL_1 register sets the detection  
method for the valid buck output voltage, either undervoltage detection or undervoltage and overvoltage  
detection.  
Voltage decrease because of load  
Voltage  
BUCKx_VSET[7:0]  
Powergood  
Ramp  
BUCKx_CTRL_2(BUCKx_SLEW_RATE[2:0])  
0.6V  
0.35V  
Time  
Resistive pull-down  
(if enabled)  
Soft start  
Enable  
BUCK_STAT(BUCKx_STAT)  
BUCK_STAT(BUCKx_PG_STAT)  
INT_BUCK(BUCKx_PG_INT)  
nINT  
0
0
0
1
0
0
1
1
1
0
1
1
0
0 1  
0
0
Powergood  
interrupts  
Host clears  
interrupts  
BUCK_MASK(BUCKx_PGF_MASK) = 0  
BUCK_MASK(BUCKx_PGR_MASK) = 0  
Figure 8. Buck Regulator Enable and Disable  
The EN input pin has an integrated pulldown resistor. The pulldown resistor is controlled with EN_PD bit in  
CONFIG register.  
18  
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
7.3.4.2 Changing Output Voltage  
The output voltage of the regulator can be changed by writing to the BUCKx_VOUT register. The voltage change  
for buck regulator is always slew-rate controlled, and the slew-rate is defined by the BUCKx_SLEW_RATE[2:0]  
bits in BUCKx_CTRL_2 register. During voltage change the forced PWM mode is used automatically. When the  
programmed output voltage is achieved, the mode becomes the one defined by load current, and the  
BUCKx_FPWM bit in BUCKx_CTRL_1 register.  
The voltage change and Power-Good interrupts are shown in Figure 9.  
Ramp for Buck  
BUCKx_CTRL2(SLEW_RATEx[2:0])  
Voltage  
BUCKx_VSET  
Powergood  
Powergood  
Time  
BUCK_STAT(BUCKx_STAT)  
BUCK_STAT(BUCKx_PG_STAT)  
INT_BUCK(BUCKx_PG_INT)  
1
1
0
0
1
1
0
1
1
0
0
nINT  
Powergood  
interrupt  
Host clears  
interrupt  
Powergood  
interrupt  
Host clears  
interrupt  
BUCK_MASK(BUCKx_PGF_MASK)=0  
BUCK_MASK(BUCKx_PGR_MASK)=0  
Figure 9. Regulator Output Voltage Change  
7.3.5 Enable and Disable Sequences  
The TPS65653-Q1 device supports start-up and shutdown sequencing with programmable delays for different  
regulator outputs using single EN control signal. The Buck regulator is selected for delayed control with:  
BUCKx_EN = 1 in BUCKx_CTRL_1 register  
BUCKx_EN_PIN_CTRL = 1 in BUCKx_CTRL_1 register  
BUCKx_VSET[7:0] bits in BUCKx_VOUT register defines the voltage when EN pin is high  
The delay from rising edge of EN pin to the regulator enable is set by BUCKx_STARTUP_DELAY[3:0] bits in  
BUCKx_DELAY register and  
The delay from falling edge of EN pin to the regulator disable is set by BUCKx_SHUTDOWN_DELAY[3:0] bits  
in BUCKx_DELAY register.  
The GPO (and GPO2) digital output signals can be also controlled as a part of start-up and shutdown  
sequencing with the following settings:  
GPOx_EN = 1 in GPO_CTRL register  
GPOx_EN_PIN_CTRL = 1 in GPO_CTRL register  
The delay from rising edge of EN pin to the rising edge of GPO/GPO2 signal is set by  
Copyright © 2019, Texas Instruments Incorporated  
19  
 
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
GPOx_STARTUP_DELAY[3:0] bits in GPOx_DELAY register and  
The delay from falling edge of EN pin to the falling edge of GPO/GPO2 signal is set by  
GPOx_SHUTDOWN_DELAY[3:0] bits in GPOx_DELAY register.  
An example of the start-up and shutdown sequences for the buck regulators are shown in Figure 10. The start-up  
and shutdown delays for the Buck0 regulator are 1 ms and 4 ms; for the Buck1 regulator start-up and shutdown  
delays are 3 ms and 1 ms. The delay settings are used only for enable/disable control with EN signal.  
Typical sequence  
EN  
EN_BUCK0  
EN_BUCK1  
1ms  
4ms  
3ms  
1ms  
Sequence with short EN low and high periods  
EN  
Startup cntr  
0
0
0
1
0
1
2
3
4
5
6
0
Shutdown cntr  
EN_BUCK0  
EN_BUCK1  
0
1
0
1
2 0  
1
2
3
4
5
1ms  
4ms  
3ms  
1ms  
Figure 10. Start-Up and Shutdown Sequencing  
20  
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
7.3.6 Device Reset Scenarios  
There are two reset methods implemented on the TPS65653-Q1:  
Software reset with SW_RESET bit in RESET register  
Undervoltage lockout (UVLO) reset from VANA supply  
An SW reset occurs when SW_RESET bit is written 1. The bit is automatically cleared after writing. This event  
disables all the regulators immediately, drives GPO and GPO2 signals low, resets all the register bits to the  
default values and OTP bits are loaded (see Figure 15). I2C interface is not reset during software reset.  
If VANA supply voltage falls below the UVLO threshold level then all the regulators are disabled immediately,  
GPO and GPO2 signals are driven low, and all the register bits are reset to the default values. When the VANA  
supply voltage transition above UVLO threshold level an internal POR occurs. OTP bits are loaded to the  
registers and a startup is initiated according to the register settings.  
7.3.7 Diagnosis and Protection Features  
The TPS65653-Q1 is capable of providing four levels of protection features:  
Information of valid regulator output voltage which sets interrupt or PGOOD signal;  
Warnings for diagnosis which sets interrupt;  
Protection events which are disabling the regulators; and  
Faults which are causing the device to shutdown.  
The TPS65653-Q1 sets the flag bits indicating what protection or warning conditions have occurred, and the  
nINT pin is pulled low. nINT is released again after a clear of flags is complete. The nINT signal stays low until all  
the pending interrupts are cleared.  
When a fault is detected or software requested reset, it is indicated by a RESET_REG_INT interrupt flag in  
INT_TOP_2 register after next start-up. If the RESET_REG_MASK is set to masked in the OTP, the interrupt is  
not generated. The mask bit change with I2C does not affect, because the RESET_REG_MASK bit is loaded  
from OTP during reset sequence.  
Copyright © 2019, Texas Instruments Incorporated  
21  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Table 4. Summary of Interrupt Signals  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
OUTCOME  
INTERRUPT BIT  
INTERRUPT MASK BIT  
STATUS BIT  
Write 1 to BUCKx_ILIM_INT bit  
Interrupt is not cleared if current  
limit is active  
BUCK_INT  
BUCKx_ILIM_INT  
Buck current limit triggered  
No effect  
BUCKx_ILIM_MASK  
BUCKx_ILIM_STAT  
Buck short circuit (VOUT < 0.35  
V at 1 ms after enable) or  
overload (VOUT decreasing  
below 0.35 V during operation,  
1-ms debounce)  
BUCK_INT  
BUCKx_SC_INT  
Regulator disable  
No effect  
N/A  
N/A  
Write 1 to BUCKx_SC_INT bit  
Write 1 to TDIE_WARN_INT bit  
Interrupt is not cleared if  
temperature is above thermal  
warning level  
Thermal warning  
TDIE_WARN_INT  
TDIE_WARN_MASK  
TDIE_WARN_STAT  
Write 1 to TDIE_SD_INT bit  
Interrupt is not cleared if  
temperature is above thermal  
shutdown level  
All regulators disabled  
immediately and GPO  
and GPO2 are set to low  
Thermal shutdown  
TDIE_SD_INT  
OVP_INT  
N/A  
N/A  
TDIE_SD_STAT  
OVP_STAT  
All regulators disabled  
immediately and GPO  
and GPO2 are set to low  
Write 1 to OVP_INT bit  
Interrupt is not cleared if VANA  
voltage is above VANAOVP level  
VANA overvoltage (VANAOVP  
)
Buck power good, output  
voltage becomes valid  
BUCK_INT  
BUCKx_PG_INT  
No effect  
BUCKx_PGR_MASK  
BUCKx_PGF_MASK  
PGOOD_MASK  
BUCKx_PG_STAT  
BUCKx_PG_STAT  
PGOOD_STAT  
SYNC_CLK_STAT  
N/A  
Write 1 to BUCKx_PG_INT bit  
Write 1 to BUCKx_PG_INT bit  
Write 1 to PGOOD_INT bit  
Write 1 to SYNC_CLK_INT bit  
Write 1 to I_MEAS_INT bit  
Buck power good, output  
voltage becomes invalid  
BUCK_INT  
BUCKx_PG_INT  
No effect  
PGOOD pin changing from  
active to inactive state(1)  
No effect  
PGOOD_INT  
External clock appears or  
disappears  
No effect to regulators  
No effect  
SYNC_CLK_INT(2)  
I_MEAS_INT  
SYNC_CLK_MASK  
I_MEAS_MASK  
Load current measurement  
ready  
Immediate shutdown,  
registers reset to default  
values  
Supply voltage VANAUVLO  
triggered (VANA falling)  
N/A  
N/A  
N/A  
N/A  
N/A  
Startup, registers reset to  
default values and OTP  
bits loaded  
Supply voltage VANAUVLO  
triggered (VANA rising)  
RESET_REG_INT  
RESET_REG_MASK  
Write 1 to RESET_REG_INT bit  
Immediate shutdown  
followed by power up,  
registers reset to default  
values  
Software requested reset  
RESET_REG_INT  
RESET_REG_MASK  
N/A  
Write 1 to RESET_REG_INT bit  
(1) PGOOD_STAT bit is 1 when the PGOOD pin shows valid voltages. PGOOD_POL bit in PGOOD_CTRL_1 register affects only PGOOD  
pin polarity, not Power Good and PGOOD_INT interrupt polarity.  
(2) Interrupt is generated during clock-detector operation and if clock is not available when clock detector is enabled.  
7.3.7.1 Power-Good Information (PGOOD pin)  
In addition to the interrupt-based indication of the current limit and the Power-Good level the TPS65653-Q1  
device supports monitoring with PGOOD signal:  
Regulator output voltage,  
Input supply overvoltage,  
Thermal warning and  
Thermal shutdown.  
Regulator output voltage monitoring (not current limit monitoring) can be selected for PGOOD indication. This  
selection is individual for both buck regulators and is set by EN_PGOOD_BUCKx bits in PGOOD_CTRL_1  
register. When a regulator is disabled, the monitoring is automatically masked to prevent it forcing PGOOD  
inactive. A thermal warning can be also selected for PGOOD indication with EN_PGOOD_TWARN bit in  
PGOOD_CTRL_2 register. The monitoring from all the output rails, thermal warning (TDIE_WARN_STAT), input  
overvoltage interrupt (OVP_INT), and thermal shutdown interrupt (TDIE_SD_INT) are combined, and PGOOD  
pin is active only if all the selected sources shows a valid status.  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW_x bits in  
PGOOD_CTRL_1 register. If the bit is 0, only undervoltage is monitored; if the bit is 1, both undervoltage and  
overvoltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by the PGOOD_POL and PGOOD_OD  
bits in the PGOOD_CTRL_1 register.  
22  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
PGOOD is only active or asserted when all enabled power resource output voltages are within specified  
tolerance for each requested/programmed output voltage.  
PGOOD is inactive or de-asserted if any enabled power resource output voltages is outside specified tolerance  
for each requested/programmed output voltage.  
The device OTP setting selects either gated (that is, unusual) or continuous (that is, invalid) mode of operation.  
7.3.7.1.1 PGOOD Pin Gated mode  
The gated (or unusual) mode of operation is selected by setting PGOOD_MODE bit to 0 in PGOOD_CTRL_2  
register.  
For the gated mode of operation, PGOOD behaves as follows:  
PGOOD is set to active or asserted state upon exiting OTP configuration as an initial default state.  
PGOOD status is suspended or unchanged during an 800-µs gated time period, thereby gating-off the status  
indication.  
During normal power-up sequencing and requested voltage changes, PGOOD state is not changed during an  
800-µs gated time period. It typically remains active or asserted for normal conditions.  
During an abnormal power-up sequencing and requested voltage changes, PGOOD status could change to  
inactive or de-asserted after an 800-µs gated time period if any output voltage is outside of regulation range.  
Using the gated mode of operation could allow the PGOOD signal to initiate an immediate power shutdown  
sequence if the PGOOD signal is wired-OR with signal connected to EN input. This type of circuit  
configuration provides a smart PORz function for processor that eliminates the need for additional  
components to generate PORz upon start-up and to monitor voltage levels of key voltage domains.  
The fault sets corresponding fault bit 1 in PG_FAULT register. The detected fault must be cleared to continue the  
PGOOD monitoring. The overvoltage and thermal shutdown are cleared by writing 1 to the OVP_INT and  
TDIE_SD_INT interrupt bits in INT_TOP_1 register. The regulator fault is cleared by writing 1 to the  
corresponding register bit in PG_FAULT register. The interrupts can be also cleared with VANA UVLO by  
toggling the input supply. An example of PGOOD pin operation in gated mode is shown in Figure 11.  
V(VANA)  
VANA_UVLO  
Shut  
down  
Read  
OTP  
Standby  
Active  
State  
PGOOD pin  
Clear fault  
EN pin  
4ms  
Buck internal enable  
VOUT (Buck1)  
800us Timer  
Buck1 internal powergood  
Figure 11. PGOOD Pin Operation in Gated Mode  
7.3.7.1.2 PGOOD Pin Continuous Mode  
The continuous (or unvalid) mode of operation is selected by setting PGOOD_MODE bit to 1 in  
PGOOD_CTRL_2 register.  
For the continuous mode of operation, PGOOD behaves as follows:  
PGOOD is set to active or asserted state upon exiting OTP configuration.  
Copyright © 2019, Texas Instruments Incorporated  
23  
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
PGOOD is set to inactive or de-asserted as soon as regulator is enabled.  
PGOOD status begins indicating output voltage regulation status immediately and continuously.  
During power-up sequencing and requested voltage changes, PGOOD will toggle between inactive or de-  
asserted while output voltages are outside of regulation ranges and active or asserted when inside of  
regulation ranges.  
The PG_FAULT register bits are latched and maintain the fault information until host clears the fault bit by writing  
1 to the bit. The PGOOD signal indicates also a thermal shutdown and input overvoltage interrupts, which are  
cleared by clearing the interrupt bits.  
When regulator voltage is transitioning from one target voltage to another, the PGOOD signal is set inactive.  
When the PGOOD signal becomes inactive, the source for the fault can be read from PG_FAULT register. If the  
invalid output voltage becomes valid again the PGOOD signal becomes active. Thus the PGOOD signal shows  
all the time if the monitored output voltages are valid. The block diagram for this operation is shown in Figure 12  
and an example of operation is shown in Figure 13.  
The PGOOD signal can be also configured so that it maintains inactive state even when the monitored outputs  
are valid but there are PG_FAULT_x bits in PG_FAULT register pending clearance. This type of operation is  
selected by setting PGFAULT_GATES_PGOOD bit to 1 in PGOOD_CTRL_2 register.  
EN_PGOOD  
_BUCK0  
Power Good  
Buck0  
EN_PGOOD  
_BUCK1  
Power Good  
Buck1  
PGOOD  
Active high  
EN_PGOOD  
_TWARN  
TDIE_WARN_STAT  
TDIE_SD_INT  
OVP_INT  
Copyright © 2018, Texas Instruments Incorporated  
Figure 12. PGOOD Block Diagram (Continuous Mode)  
24  
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
V(VANA)  
VANA_UVLO  
State  
Shut  
down  
Read  
OTP  
Standby  
Active  
PGOOD pin  
EN pin  
4ms  
Buck1 internal enable  
VOUT (Buck1)  
Buck1 internal powergood  
Figure 13. PGOOD Pin Operation in Continuous Mode  
7.3.7.2 Warnings for Diagnosis (Interrupt)  
7.3.7.2.1 Output Power Limit  
The Buck regulators have programmable output peak current limits. The limits are individually programmed for  
both regulators with BUCKx_ILIM[2:0] bits in BUCKx_CTRL_2 register. If the load current is increased so that the  
current limit is triggered, the regulator continues to regulate to the limit current level (peak current regulation).  
The voltage may decrease if the load current is higher than limit current. If the current regulation continues for 20  
µs, the TPS65653-Q1 device sets the BUCKx_ILIM_INT bit in INT_BUCK register and pulls the nINT pin low.  
The host processor can read BUCKx_ILIM_STAT bits in BUCK_STAT register to see if the regulator is still in  
peak current regulation mode and the interrupt is cleared by writing 1 to BUCKx_ILIM_INT bit. The current limit  
interrupt can be masked by setting BUCKx_ILIM_MASK bit in BUCK_MASK register to 1. The Buck overload  
situation is shown in Figure 14.  
Copyright © 2019, Texas Instruments Incorporated  
25  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Regulator disabled  
by digital  
New startup if  
enable is valid  
Voltage  
VOUTx  
350mV  
Resistive  
pull-down  
1ms  
Time  
Time  
Current  
ILIMx  
20ms  
0
0
1
1
0
INT_BUCK(BUCKx_ILIM_INT)  
INT_BUCK(BUCKx_SC_INT)  
BUCK_STAT(BUCKx_STAT)  
nINT  
1
0
0
1
Host clearing the interrupt by writing to flags  
Figure 14. Buck Regulator Overload Situation  
7.3.7.2.2 Thermal Warning  
The TPS65653-Q1 device includes a protection feature against overtemperature by setting an interrupt for host  
processor. The threshold level of the thermal warning is selected with TDIE_WARN_LEVEL bit in CONFIG  
register.  
If the TPS65653-Q1 device temperature increases above thermal warning level the device sets  
TDIE_WARN_INT bit in INT_TOP_1 register and pulls the nINT pin low. The status of the thermal warning can  
be read from TDIE_WARN_STAT bit in TOP_STAT register, and the interrupt is cleared by writing 1 to  
TDIE_WARN_INT bit. The thermal warning interrupt can be masked by setting TDIE_WARN_MASK bit in  
TOP_MASK_1 register to 1.  
7.3.7.3 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, input overvoltage protection, or UVLO), the output power FETs are set to high-impedance mode, and  
the output pulldown resistor is enabled (if enabled with BUCKx_RDIS_EN bit in BUCKx_CTRL_1 register). The  
turnoff time of the output voltage is defined by the output capacitance, load current, and the resistance of the  
integrated pull-down resistor. The pulldown resistors are active as long as VANA voltage is above approximately  
a 1.2-V level.  
7.3.7.3.1 Short-Circuit and Overload Protection  
A short-circuit protection feature allows the TPS65653-Q1 to protect itself and external components against short  
circuit at the output or against overload during start-up. For buck regulators the fault thresholds are about 350  
mV, and the protection is triggered and the regulator is disabled if the output voltage is below the threshold level  
1 ms after the regulator is enabled.  
26  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
In a similar way the overload situation is protected during normal operation. If the output voltage falls below 0.35  
V and 0.3 V and remains below the threshold level for 1 ms the regulator is disabled.  
In buck regulator short-circuit and overload situations the BUCKx_SC_INT bit in INT_BUCK register and the  
INT_BUCKx bit in INT_TOP_1 register are set to 1, the BUCKx_STAT bit in BUCK_STAT register is set to 0, and  
the nINT signal is pulled low. The host processor clears the interrupt by writing 1 to the BUCKx_SC_INT bit.  
Upon clearing the interrupt the regulator makes a new start-up attempt if the regulator is in an enabled state.  
7.3.7.3.2 Overvoltage Protection  
The TPS65653-Q1 device monitors the input voltage from the VANA pin in standby and active operation modes.  
If the input voltage rises above VANAOVP voltage level, all the regulators are disabled immediately (without  
switching ramp, no shutdown delays), pulldown resistors discharge the output voltages if they are enabled  
(BUCKx_RDIS_EN = 1 in BUCKx_CTRL_1 register), GPOs are set to logic low level, nINT signal is pulled low,  
OVP_INT bit in INT_TOP_1 register is set to 1, and BUCKx_STAT bit in BUCK_STAT register is set to 0. The  
host processor clears the interrupt by writing 1 to the OVP_INT bit. If the input voltage is above overvoltage  
detection level the interrupt is not cleared. The host can read the status of the overvoltage from the OVP_STAT  
bit in TOP_STAT register. Regulators cannot be enabled as long as the input voltage is above overvoltage  
detection level or the overvoltage interrupt is pending.  
7.3.7.3.3 Thermal Shutdown  
The TPS65653-Q1 has an overtemperature protection function that operates to protect itself from short-term  
misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulators are  
disabled immediately (without switching ramp, no shutdown delays), the TDIE_SD_INT bit in INT_TOP_1 register  
is set to 1, the nINT signal is pulled low, and the device enters STANDBY. nINT is cleared by writing 1 to the  
TDIE_SD_INT bit. If the temperature is above thermal shutdown level the interrupt is not cleared. The host can  
read the status of the thermal shutdown from the TDIE_SD_STAT bit in TOP_STAT register. Regulators cannot  
be enabled as long as the junction temperature is above thermal shutdown level or the thermal shutdown  
interrupt is pending.  
7.3.7.4 Fault (Power Down)  
7.3.7.4.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the buck regulators are disabled immediately  
(without switching ramp, no shutdown delays), and the output capacitor is discharged using the pulldown resistor,  
and the TPS65653-Q1 device enters SHUTDOWN. When V(VANA) voltage is above VANAUVLO threshold level, the  
device powers up to STANDBY state.  
If the reset interrupt is unmasked by default (OTP bit for RESET_REG_MASK is 0 in TOP_MASK_2 register) the  
RESET_REG_INT interrupt bit in INT_TOP_2 register indicates that the device has been in SHUTDOWN. The  
host processor must clear the interrupt by writing 1 to the RESET_REG_INT bit. If the host processor reads the  
RESET_REG_INT interrupt bit after detecting an nINT low signal, it knows that the input supply voltage has been  
below VANAUVLO level (or the host has requested reset with SW_RESET bit in RESET register), and the  
registers are reset to default values.  
7.3.8 Operation of the GPO Signals  
The TPS65653-Q1 device supports up to 2 general purpose output signals, GPO and GPO2. The GPO2 signal is  
multiplexed with CLKIN signal. The selection between CLKIN and GPO2 pin function is set with CLKIN_PIN_SEL  
bit in CONFIG register.  
The GPO pins are configured with the following bits:  
GPOx_OD bit in GPO_CTRL register defines the type of the output, either push-pull with V(VANA) level or open  
drain  
The logic level of the GPOx pin is set by EN_GPOx bit in GPO_CTRL register.  
The control of the GPOs can be included to start-up and shutdown sequences. The GPO control for a sequence  
with EN pin is selected by GPOx_EN_PIN_CTRL bit in GPO_CTRL register. For start-up and shutdown  
sequence control see Enable and Disable Sequences.  
Copyright © 2019, Texas Instruments Incorporated  
27  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
7.3.9 Digital Signal Filtering  
The digital signals have a debounce filtering. The signal or supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
Table 5. Digital Signal Filtering  
RISING EDGE  
LENGTH  
FALLING EDGE  
LENGTH  
EVENT  
SIGNAL/SUPPLY  
Enable/disable for BUCKx or  
GPOx  
EN  
3 µs(1)  
3 µs(1)  
VANA UVLO  
VANA  
VANA  
3 µs(1) (VANA voltage rising)  
Immediate (VANA voltage falling)  
VANA overvoltage  
Thermal warning  
Thermal shutdown  
Current limit  
1 µs (VANA voltage rising)  
20 µs (VANA voltage falling)  
TDIE_WARN_INT  
TDIE_SD_INT  
VOUTx_ILIM  
FB_B0, FB_B1  
20 µs  
20 µs  
20 µs  
1 ms  
20 µs  
20 µs  
20 µs  
N/V  
Overload  
PGOOD pin and power-good  
interrupt  
PGOOD / FB_B0, FB_B1  
6 µs  
6 µs  
(1) No glitch filtering, only synchronization.  
28  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
SHUTDOWN: The V(VANA) voltage is below VANAUVLO threshold level. All switch, reference, control, and bias  
circuitry of the TPS65653-Q1 device are turned off.  
READ OTP: The main supply voltage V(VANA) is above VANAUVLO level. The regulators are disabled, and the  
reference and bias circuitry of the TPS65653-Q1 are enabled. The OTP bits are loaded to registers.  
STANDBY: The main supply voltage V(VANA) is above VANAUVLO level. The regulators are disabled, and the  
reference, control and bias circuitry of the TPS65653-Q1 are enabled. All registers can be read or  
written by the host processor via the system serial interface. The regulators can be enabled if  
needed.  
ACTIVE:  
The main supply voltage V(VANA) is above VANAUVLO level. At least one regulator is enabled. All  
registers can be read or written by the host processor via the system serial interface.  
The operating modes and transitions between the modes are shown in Figure 15.  
SHUTDOWN  
V(  
< VANAUVLO  
VANA)  
V(  
> VANAUVLO  
FROM ANY STATE  
VANA)  
EXCEPT SHUTDOWN  
READ  
OTP  
REG  
RESET  
STANDBY  
2
I C RESET  
REGULATOR  
ENABLED  
REGULATOR(S)  
DISABLED  
ACTIVE  
Figure 15. Device Operation Modes  
Copyright © 2019, Texas Instruments Incorporated  
29  
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected  
to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL). Every device on  
the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates  
or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor placed on the line and  
remain HIGH even when the bus is idle. The TPS65653-Q1 supports standard mode (100 kHz), fast mode (400  
kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).  
7.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 16. Data Validity Diagram  
7.5.1.2 Start and Stop Conditions  
The TPS65653-Q1 is controlled via an I2C-compatible interface. START and STOP conditions classify the  
beginning and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while  
SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C  
master always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 17. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 18 shows the  
SDA and SCL signal timing for the I2C-compatible bus. See the Figure 1 for timing values.  
30  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
Programming (continued)  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 18. I2C-Compatible Timing  
7.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The TPS65653-Q1  
pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The TPS65653-Q1 generates an  
acknowledge after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
NOTE  
If the V(VANA) voltage is below VANAUVLO threshold level during I2C communication the  
TPS65653-Q1 device does not drive SDA line. The ACK signal and data transfer to the  
master is disabled at that time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
Figure 19. Write Cycle (w = write; SDA = 0). Example Device Address = 0x60  
Copyright © 2019, Texas Instruments Incorporated  
31  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Programming (continued)  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
Figure 20. Read Cycle (r = read; SDA = 1). Example Device Address = 0x60  
7.5.1.4 I2C-Compatible Chip Address  
NOTE  
The device address for the TPS65653-Q1 is 0x61.  
After the START condition, the I2C master sends the 7-bit address followed by an eighth bit, read or write (R/W).  
R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The second byte following the device address  
selects the register address to which the data is written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Slave Address (chip address)  
Here in an example with device address of 1100000Bin = 60Hex.  
Figure 21. Device Address Example  
7.5.1.5 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-  
bit word is sent to the TPS65653-Q1, the internal address index counter is incremented by one and the next  
register is written. Table 6 shows writing sequence to two consecutive registers. Note that auto-increment feature  
does not work for read.  
Table 6. Auto-Increment Example  
DEVICE  
ADDRES WRITE  
S = 0x61  
MASTER  
ACTION  
REGISTER  
ADDRESS  
START  
DATA  
DATA  
STOP  
TPS6565  
3-Q1  
ACK  
ACK  
ACK  
ACK  
32  
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
7.6 Register Maps  
7.6.1 Register Descriptions  
The TPS65653-Q1 is controlled by a set of registers through the I2C-compatible interface. The device registers,  
their addresses and their abbreviations are listed in Table 7. A more detailed description is given in the  
DEV_REV to I_LOAD_1 sections.  
An "X" indicates register bits which are updated from OTP memory during READ OTP state.  
Table 7. Summary of TPS65653-Q1 Control Registers  
Read /  
Write  
Addr  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x00  
0x01  
DEV_REV  
OTP_REV  
R
DEVICE_ID[1:0]  
Reserved  
R
OTP_ID[7:0]  
BUCK0_  
EN_PIN_CT BUCK0_EN  
RL  
BUCK0_  
CTRL_1  
BUCK0_FP BUCK0_RDI  
0x02  
0x03  
0x04  
R/W  
R/W  
R/W  
Reserved  
Reserved  
WM  
S_EN  
BUCK0_  
CTRL_2  
Reserved  
Reserved  
BUCK0_ILIM[2:0]  
BUCK1_ILIM[2:0]  
BUCK0_SLEW_RATE[2:0]  
BUCK1_  
EN_PIN_CT BUCK1_EN  
RL  
BUCK1_  
CTRL_1  
BUCK1_FP BUCK1_RDI  
WM  
S_EN  
BUCK1_  
CTRL_2  
0x05  
0x06  
0x07  
0x0C  
0x0D  
0x10  
0x11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK1_SLEW_RATE[2:0]  
BUCK0_  
VOUT  
BUCK0_VSET[7:0]  
BUCK1_VSET[7:0]  
BUCK1_  
VOUT  
BUCK0_  
DELAY  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK1_SHUTDOWN_DELAY[3:0]  
GPO_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
GPO_STARTUP_DELAY[3:0]  
BUCK1_  
DELAY  
GPO_  
DELAY  
GPO2_  
DELAY  
GPO2_SHUTDOWN_DELAY[3:0]  
GPO2_  
GPO2_STARTUP_DELAY[3:0]  
GPO_  
GPO_  
CTRL  
0x12  
R/W  
Reserved  
GPO2_OD EN_PIN_CT GPO2_EN  
RL  
Reserved  
GPO_OD  
EN_PIN_CT  
RL  
GPO_EN  
STARTUP_ SHUTDOW  
CLKIN_PIN  
TDIE  
_WARN  
_LEVEL  
EN_  
SPREAD  
_SPEC  
0x13  
0x14  
0x15  
CONFIG  
R/W  
R/W  
R/W  
Reserved  
Reserved  
DELAY_SE N_DELAY_  
_SEL  
CLKIN_PD  
EN_PD  
L
SEL  
PLL_CTRL  
EN_PLL  
Reserved  
EXT_CLK_FREQ[4:0]  
PGOOD_WI  
NDOW_BU  
CK  
PGOOD_CT  
RL_1  
PGOOD_P  
OL  
PGOOD_O  
D
EN_PGOOD EN_PGOOD  
_BUCK1  
Reserved  
Reserved  
Reserved  
_BUCK0  
PG_FAULT  
_GATES_P  
GOOD  
PGOOD_CT  
RL_2  
EN_PGOOD  
_TWARN  
PGOOD_M  
ODE  
0x16  
R/W  
PG_FAULT PG_FAULT  
0x17  
0x18  
0x19  
0x1A  
0x1B  
PG_FAULT  
RESET  
R
Reserved  
_BUCK1  
_BUCK0  
SW_  
RESET  
R/W  
R/W  
R/W  
R/W  
Reserved  
PGOOD_  
INT  
INT_  
SYNC_  
TDIE_SD_I  
NT  
TDIE_  
WARN_INT  
I_MEAS_  
INT  
INT_TOP_1  
INT_TOP_2  
INT_BUCK  
Reserved  
OVP_INT  
BUCK  
CLK_INT  
RESET_  
REG_INT  
Reserved  
BUCK1_  
PG_INT  
BUCK1_  
SC_INT  
BUCK1_  
ILIM_INT  
BUCK0_  
PG_INT  
BUCK0_  
SC_INT  
BUCK0_  
ILIM_INT  
Reserved  
Reserved  
TDIE_  
WARN_  
STAT  
TOP_  
STAT  
PGOOD_ST  
AT  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
OVP_  
STAT  
0x1D  
0x1E  
R
R
Reserved  
Reserved  
BUCK_STA  
T
BUCK1_  
STAT  
BUCK1_  
BUCK1_  
ILIM_STAT  
BUCK0_  
STAT  
BUCK0_  
PG_STAT  
BUCK0_  
ILIM_STAT  
Reserved  
Reserved  
PG_STAT  
Copyright © 2019, Texas Instruments Incorporated  
33  
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Summary of TPS65653-Q1 Control Registers (continued)  
Read /  
Write  
Addr  
0x20  
0x21  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TOP_  
MASK_1  
PGOOD_  
INT_MASK  
SYNC_CLK  
_MASK  
TDIE_WAR  
N_MASK  
I_MEAS_  
MASK  
R/W  
R/W  
Reserved  
Reserved  
Reserved  
TOP_  
MASK_2  
RESET_  
REG_MASK  
Reserved  
BUCK1_  
ILIM_  
MASK  
BUCK0_  
ILIM_  
MASK  
BUCK_MAS  
K
BUCK1_PG BUCK1_PG  
F_MASK R_MASK  
BUCK0_PG BUCK0_PG  
F_MASK R_MASK  
0x22  
0x24  
R/W  
R/W  
Reserved  
Reserved  
LOAD_CUR  
RENT_  
BUCK_SEL  
ECT  
SEL_I_  
LOAD  
Reserved  
Reserved  
BUCK_LOA  
D_CURREN  
T[8]  
0x25  
0x26  
I_LOAD_2  
I_LOAD_1  
R
R
BUCK_LOAD_CURRENT[7:0]  
34  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
7.6.1.1 DEV_REV  
Address: 0x00  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVICE_ID[1:0]  
Reserved  
Bits  
7:6  
Field  
Type  
R
Default  
X
Description  
DEVICE_ID[1:0]  
Reserved  
Device specific ID code.  
5:0  
R
00 0010  
7.6.1.2 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
OTP_ID[7:0]  
R
X
Identification Code of the OTP EPROM Version.  
7.6.1.3 BUCK0_CTRL_1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_EN  
Reserved  
BUCK0_FPWM BUCK0_RDIS_ BUCK0_EN_PI  
EN  
N_CTRL  
Bits  
7:4  
3
Field  
Type  
R/W  
R/W  
Default  
0000  
X
Description  
Reserved  
BUCK0_FPWM  
Buck0 mode selection:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode)  
1 - Forced to PWM operation.  
2
1
0
BUCK0_RDIS_EN  
R/W  
R/W  
R/W  
1
X
X
Enable output discharge resistor (RDIS_Bx) when Buck0 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled.  
BUCK0_EN_PIN  
_CTRL  
Enable control for Buck0:  
0 - only BUCK0_EN bit controls Buck0  
1 - BUCK0_EN bit AND EN pin control Buck0.  
BUCK0_EN  
Enable Buck0 regulator:  
0 - Buck0 regulator is disabled  
1 - Buck0 regulator is enabled.  
7.6.1.4 BUCK0_CTRL_2  
Address: 0x03  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
BUCK0_SLEW_RATE[2:0]  
D0  
Reserved  
BUCK0_ILIM[2:0]  
Copyright © 2019, Texas Instruments Incorporated  
35  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
00  
X
5:3  
BUCK0_ILIM[2:0]  
Sets the switch current limit of Buck0. Can be programmed at any time during  
operation:  
0x0 - 1.5 A  
0x1 - 2.0 A  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - Reserved  
0x7 - Reserved  
2:0 BUCK0_SLEW_RA  
TE[2:0]  
R/W  
X
Sets the output voltage slew rate for Buck0 regulator (rising and falling edges):  
0x0 - Reserved  
0x1 - Reserved  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.47 mV/µs  
7.6.1.5 BUCK1_CTRL_1  
Address: 0x04  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_FPWM BUCK1_RDIS_ BUCK1_EN_PI  
BUCK1_EN  
EN  
N_CTRL  
Bits  
7:4  
3
Field  
Type  
R/W  
R/W  
Default  
0000  
X
Description  
Reserved  
BUCK1_FPWM  
Buck1 mode selection:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode)  
1 - Forced to PWM operation.  
2
1
0
BUCK1_RDIS_EN  
R/W  
R/W  
R/W  
1
X
X
Enable output discharge resistor (RDIS_Bx) when Buck1 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled.  
BUCK1_EN_PIN  
_CTRL  
Enable control for Buck1:  
0 - only BUCK1_EN bit controls Buck1  
1 - BUCK1_EN bit AND EN pin control Buck1.  
BUCK1_EN  
Enable Buck1 regulator:  
0 - Buck1 regulator is disabled  
1 - Buck1 regulator is enabled.  
7.6.1.6 BUCK1_CTRL_2  
Address: 0x05  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
BUCK1_SLEW_RATE[2:0]  
D0  
Reserved  
BUCK1_ILIM[2:0]  
36  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
Bits  
ZHCSJI6 MARCH 2019  
Field  
Type  
R/W  
R/W  
Default  
Description  
7:6  
5:3  
Reserved  
00  
X
BUCK1_ILIM[2:0]  
Sets the switch current limit of Buck1. Can be programmed at any time during  
operation:  
0x0 - 1.5 A  
0x1 - 2.0 A  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - Reserved  
0x7 - Reserved  
2:0 BUCK1_SLEW_RA  
TE[2:0]  
R/W  
X
Sets the output voltage slew rate for Buck1 regulator (rising and falling edges):  
0x0 - Reserved  
0x1 - Reserved  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.47 mV/µs  
7.6.1.7 BUCK0_VOUT  
Address: 0x06  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_VSET[7:0]  
R/W  
X
Sets the output voltage of Buck0 regulator  
Reserved, DO NOT USE  
0x00 ... 0x4C  
1 V - 1.4 V, 5 mV steps  
0x4C - 1 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.8 BUCK1_VOUT  
Address: 0x07  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK1_VSET[7:0]  
R/W  
X
Sets the output voltage of Buck1 regulator  
Reserved, DO NOT USE  
0x00 ... 0x4C  
1 V - 1.4 V, 5 mV steps  
0x4C - 1 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
Copyright © 2019, Texas Instruments Incorporated  
37  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
7.6.1.9 BUCK0_DELAY  
Address: 0x0C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK0_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
X
Shutdown delay of Buck0 from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
BUCK0_  
STARTUP_  
DELAY[3:0]  
R/W  
X
Startup delay of Buck0 from rising edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.10 BUCK1_DELAY  
Address: 0x0D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK1_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
X
Shutdown delay of Buck1 from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
BUCK1_  
STARTUP_  
DELAY[3:0]  
R/W  
X
Startup delay of Buck1 from rising edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.11 GPO_DELAY  
Address: 0x10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
GPO_SHUTDOWN_DELAY[3:0]  
GPO_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
GPO_  
R/W  
X
Delay for GPO falling edge from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
SHUTDOWN_  
DELAY[3:0]  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
GPO_  
STARTUP_  
DELAY[3:0]  
R/W  
X
Delay for GPO rising edge from rising edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.12 GPO2_DELAY  
Address: 0x11  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
GPO2_SHUTDOWN_DELAY[3:0]  
GPO2_STARTUP_DELAY[3:0]  
38  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
Bits  
ZHCSJI6 MARCH 2019  
Field  
Type  
Default  
Description  
7:4  
GPO2_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
X
Delay for GPO2 falling edge from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
GPO2_  
R/W  
X
Delay for GPO2 rising edge from rising edge of EN signal:  
STARTUP_  
DELAY[3:0]  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.13 GPO_CTRL  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPO2_OD  
GPO2_EN_PIN  
_CTRL  
GPO2_EN  
Reserved  
GPO_OD  
GPO_EN_PIN_  
CTRL  
GPO_EN  
Bits  
Field  
Type  
Default  
Description  
7
6
Reserved  
GP02_OD  
R
0
R/W  
X
GPO2 signal type when configured as General Purpose Output (CLKIN pin):  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
5
4
GPO2_EN_PIN_C  
TRL  
R/W  
R/W  
X
X
Control for GPO2:  
0 - Only GPO2_EN bit controls GPO2  
1 - GPO2_EN bit AND EN pin control GPO2.  
GPO2_EN  
Output level of GPO2 signal (when configured as General Purpose Output):  
0 - Logic low level  
1 - Logic high level  
3
2
Reserved  
GPO_OD  
R
0
R/W  
X
GPO signal type:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
1
0
GPO_EN_PIN_CT  
RL  
R/W  
R/W  
X
X
Control for GPO:  
0 - Only GPO_EN bit controls GPO  
1 - GPO_EN bit AND EN pin control GPO.  
GPO_EN  
Output level of GPO signal:  
0 - Logic low level  
1 - Logic high level  
7.6.1.14 CONFIG  
Address: 0x13  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
STARTUP_DE SHUTDOWN_ CLKIN_PIN_SE  
CLKIN_PD  
EN2_PD  
TDIE_WARN_  
LEVEL  
EN_SPREAD  
_SPEC  
LAY_SEL  
DELAY_SEL  
L
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
STARTUP_DELAY  
_SEL  
X
Startup delay range from EN signals.  
0 - 0 ms - 7.5 ms with 0.5 ms steps  
1 - 0 ms - 15 ms with 1 ms steps  
5
4
SHUTDOWN_DEL  
AY_SEL  
R/W  
R/W  
X
X
Shutdown delay range from EN signals.  
0 - 0 ms - 7.5 ms with 0.5 ms steps  
1 - 0 ms - 15 ms with 1 ms steps  
CLKIN_PIN_SEL  
CLKIN pin function:  
0 - GPO2  
1 - CLKIN  
Copyright © 2019, Texas Instruments Incorporated  
39  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
3
CLKIN_PD  
R/W  
X
Selects the pull down resistor on the CLKIN input pin. (valid also when selected as  
GPO2)  
0 - Pull-down resistor is disabled.  
1 - Pull-down resistor is enabled.  
2
1
0
EN_PD  
R/W  
R/W  
R/W  
X
X
X
Selects the pull down resistor on the EN input pin.  
0 - Pull-down resistor is disabled.  
1 - Pull-down resistor is enabled.  
TDIE_WARN_  
LEVEL  
Thermal warning threshold level.  
0 - 125°C  
1 - 137°C.  
EN_SPREAD  
_SPEC  
Enable spread spectrum feature:  
0 - Disabled  
1 - Enabled  
7.6.1.15 PLL_CTRL  
Address: 0x14  
D7  
D6  
EN_PLL  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
Reserved  
EXT_CLK_FREQ[4:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
EN_PLL  
0
X
Selection of external clock and PLL operation:  
0 - Forced to internal RC oscillator. PLL disabled.  
1 - PLL is enabled in STANDBY and ACTIVE modes. Automatic external clock use  
when available, interrupt generated if external clock appears or disappears.  
5
Reserved  
R/W  
R/W  
0
This bit must be set to '0'.  
4:0 EXT_CLK_FREQ[4  
:0]  
X
Frequency of the external clock (CLKIN):  
0x00 - 1 MHz  
0x01 - 2 MHz  
0x02 - 3 MHz  
...  
0x16 - 23 MHz  
0x17 - 24 MHz  
0x18...0x1F - Reserved  
See electrical specification for input clock frequency tolerance.  
7.6.1.16 PGOOD_CTRL_1  
Address: 0x15  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
EN_PGOOD_B EN_PGOOD_B  
UCK1 UCK0  
D0  
PGOOD_POL  
PGOOD_OD  
Reserved  
PGOOD_  
WINDOW_BUC  
K
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
PGOOD_POL  
PGOOD_OD  
Reserved  
R/W  
X
PGOOD signal polarity.  
0 - PGOOD signal high when monitored outputs are valid  
1 - PGOOD signal low when monitored outputs are valid  
6
R/W  
X
PGOOD signal type:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
5
4
R/W  
R/W  
0
PGOOD_  
WINDOW_BUCK  
X
Buck Output voltage monitoring method for PGOOD signal:  
0 - Only undervoltage monitoring  
1 - Overvoltage and undervoltage monitoring.  
3:2  
Reserved  
R/W  
00  
40  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
Bits  
ZHCSJI6 MARCH 2019  
Field  
Type  
Default  
Description  
PGOOD signal source control from Buck1  
0 - Buck1 is not monitored  
1
EN_PGOOD_BUC  
K1  
R/W  
X
1 - Buck1 Power-Good threshold voltage monitored  
0
EN_PGOOD_BUC  
K0  
R/W  
X
PGOOD signal source control from Buck0  
0 - Buck0 is not monitored  
1 - Buck0 Power-Good threshold voltage monitored  
7.6.1.17 PGOOD_CTRL_2  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
EN_PGOOD_T PG_FAULT_G PGOOD_MOD  
WARN  
ATES_PGOOD  
E
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
0 0000  
X
Description  
Reserved  
EN_PGOOD_TWA  
RN  
Thermal warning control for PGOOD signal:  
0 - Thermal warning not monitored  
1 - PGOOD inactive if thermal warning flag is active.  
1
0
PG_FAULT_GATE  
S_PGOOD  
R/W  
R/W  
X
X
Type of operation for PGOOD signal:  
0 - Indicates live status of monitored voltage outputs.  
1 - Indicates status of PG_FAULT register, inactive when at least one PG_FAULT_x  
bit is inactive.  
PGOOD_MODE  
Operating mode for PGOOD signal:  
0 - Gated mode  
1 - Continuous mode  
7.6.1.18 PG_FAULT  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PG_FAULT_BU PG_FAULT_BU  
CK1 CK0  
D0  
Reserved  
Bits  
7:2  
1
Field  
Type  
R/W  
R/W  
Default  
00 0000  
0
Description  
Reserved  
PG_FAULT_BUCK  
1
Source for PGOOD inactive signal:  
0 - Buck1 has not set PGOOD signal inactive.  
1 - Buck1 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit  
can be cleared by writing '1' to this bit when Buck1 output is valid.  
0
PG_FAULT_BUCK  
0
R/W  
0
Source for PGOOD inactive signal:  
0 - Buck0 has not set PGOOD signal inactive.  
1 - Buck0 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit  
can be cleared by writing '1' to this bit when Buck0 output is valid.  
7.6.1.19 RESET  
Address: 0x18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
Reserved  
SW_RESET  
Software commanded reset. When written to 1, the registers will be reset to default  
values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
Copyright © 2019, Texas Instruments Incorporated  
41  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
7.6.1.20 INT_TOP_1  
Address: 0x19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_INT  
Reserved  
BUCK_INT  
SYNC_CLK_IN TDIE_SD_INT TDIE_WARN_I  
OVP_INT  
I_MEAS_INT  
T
NT  
Bits  
Field  
Type  
Default  
Description  
7
PGOOD_INT  
R/W  
0
Latched status bit indicating that the PGOOD pin has changed from active to inactive.  
Write 1 to clear interrupt.  
6
5
Reserved  
R
R
0
0
BUCK_INT  
Interrupt indicating that Buck1 and/or Buck0 have a pending interrupt. The reason for  
the interrupt is indicated in INT_BUCK register.  
This bit is cleared automatically when INT_BUCK register is cleared to 0x00.  
4
3
SYNC_CLK_INT  
TDIE_SD_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the external clock has appeared or disappeared.  
Write 1 to clear interrupt.  
Latched status bit indicating that the die junction temperature has exceeded the  
thermal shutdown level. The regulators have been disabled if they were enabled and  
GPO and GPO2 signals are driven low. The regulators cannot be enabled if this bit is  
active. The actual status of the thermal shutdown is indicated by TDIE_SD_STAT bit in  
TOP_STAT register.  
Write 1 to clear interrupt.  
2
1
TDIE_WARN_INT  
OVP_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the die junction temperature has exceeded the  
thermal warning level. The actual status of the thermal warning is indicated by  
TDIE_WARN_STAT bit in TOP_STAT register.  
Write 1 to clear interrupt.  
Latched status bit indicating that the input voltage has exceeded the over-voltage  
detection level. The regulators have been disabled if they were enabled and GPO and  
GPO2 signals are driven low. The actual status of the over-voltage is indicated by  
OVP_STAT bit in TOP_STAT register.  
Write 1 to clear interrupt.  
0
I_MEAS_INT  
R/W  
0
Latched status bit indicating that the load current measurement result is available in  
I_LOAD_1 and I_LOAD_2 registers.  
Write 1 to clear interrupt.  
7.6.1.21 INT_TOP_2  
Address: 0x1A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG_I  
NT  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
Reserved  
RESET_REG_INT  
Latched status bit indicating that either VANA supply voltage has been below  
undervoltage threshold level or the host has requested a reset using SW_RESET bit in  
RESET register. The regulators have been disabled, and registers are reset to default  
values and the normal startup procedure is done.  
Write 1 to clear interrupt.  
7.6.1.22 INT_BUCK  
Address: 0x1B  
D7  
D6  
BUCK1_PG  
_INT  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_SC  
_INT  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
42  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
Bits  
ZHCSJI6 MARCH 2019  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK1_PG_INT  
Latched status bit indicating that Buck1 Power-Good event has been detected.  
Write 1 to clear.  
5
4
BUCK1_SC_INT  
BUCK1_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the Buck1 output voltage has been over 1 ms below  
short-circuit threshold level.  
Write 1 to clear.  
Latched status bit indicating that the Buck1 output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK0_PG_INT  
Latched status bit indicating that Buck0 Power-Good event has been detected.  
Write 1 to clear.  
1
0
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the Buck0 output voltage has been over 1 ms below  
short-circuit threshold level.  
Write 1 to clear.  
Latched status bit indicating that the Buck0 output current limit has been active.  
Write 1 to clear.  
7.6.1.23 TOP_STAT  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_STAT  
Reserved  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
OVP_STAT  
Reserved  
Bits  
Field  
PGOOD_STAT  
Type  
Default  
Description  
7
R
0
Status bit indicating the status of PGOOD pin:  
0 - PGOOD pin is inactive  
1 - PGOOD pin is active  
6:5  
4
Reserved  
R
R
00  
0
SYNC_CLK_STAT  
Status bit indicating the status of external clock (CLKIN):  
0 - External clock frequency is valid  
1 - External clock frequency is not valid.  
3
2
1
0
TDIE_SD_STAT  
R
R
R
R
0
0
0
0
Status bit indicating the status of thermal shutdown:  
0 - Die temperature below thermal shutdown level  
1 - Die temperature above thermal shutdown level.  
TDIE_WARN  
_STAT  
Status bit indicating the status of thermal warning:  
0 - Die temperature below thermal warning level  
1 - Die temperature above thermal warning level.  
OVP_STAT  
Reserved  
Status bit indicating the status of input overvoltage monitoring:  
0 - Input voltage below overvoltage threshold level  
1 - Input voltage above overvoltage threshold level.  
7.6.1.24 BUCK_STAT  
Address: 0x1E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_STAT  
BUCK1_PG  
_STAT  
Reserved  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK1_STAT  
R
0
Status bit indicating the enable/disable status of Buck1:  
0 - Buck1 regulator is disabled  
1 - Buck1 regulator is enabled.  
6
BUCK1_PG_STAT  
R
0
Status bit indicating Buck1 output voltage validity (raw status)  
0 - Buck1 output voltage is valid.  
1 - Buck1 output voltage is invalid.  
Copyright © 2019, Texas Instruments Incorporated  
43  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Bits  
5
Field  
Type  
R
Default  
Description  
Reserved  
0
0
4
BUCK1_ILIM  
_STAT  
R
Status bit indicating Buck1 current limit status (raw status)  
0 - Buck1 output current is below current limit level  
1 - Buck1 output current limit is active.  
3
2
BUCK0_STAT  
BUCK0_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable/disable status of Buck0:  
0 - Buck0 regulator is disabled  
1 - Buck0 regulator is enabled.  
Status bit indicating Buck0 output voltage validity (raw status)  
0 - Buck0 output voltage is valid.  
1 - Buck0 output voltage is invalid.  
1
0
R
R
0
0
BUCK0_ILIM  
_STAT  
Status bit indicating Buck0 current limit status (raw status)  
0 - Buck0 output current is below current limit level  
1 - Buck0 output current limit is active.  
7.6.1.25 TOP_MASK_1  
Address: 0x20  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_INT_  
MASK  
Reserved  
SYNC_CLK  
_MASK  
Reserved  
TDIE_WARN  
_MASK  
Reserved  
I_LOAD_  
READY_MASK  
Bits  
Field  
Type  
Default  
Description  
7
PGOOD_INT  
_MASK  
R/W  
X
Masking for Power-Good interrupt (PGOOD_INT in INT_TOP_1 register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect PGOOD_STAT status bit in TOP_STAT register.  
6:5  
4
Reserved  
R/W  
R/W  
00  
X
SYNC_CLK  
_MASK  
Masking for external clock detection interrupt (SYNC_CLK_INT in INT_TOP_1  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect SYNC_CLK_STAT status bit in TOP_STAT register.  
3
2
Reserved  
R/W  
R/W  
0
TDIE_WARN  
_MASK  
X
Masking for thermal warning interrupt (TDIE_WARN_INT in INT_TOP_1 register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect TDIE_WARN_STAT status bit in TOP_STAT register.  
1
0
Reserved  
R/W  
R/W  
0
I_MEAS  
_MASK  
X
Masking for load current measurement ready interrupt (MEAS_INT in INT_TOP_1  
register).  
0 - Interrupt generated  
1 - Interrupt not generated.  
7.6.1.26 TOP_MASK_2  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
_MASK  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
X
Description  
Reserved  
RESET_REG  
_MASK  
Masking for register reset interrupt (RESET_REG_INT in INT_TOP_2 register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This change of this bit by I2C writing has no effect because it will be read from OTP  
memory during reset.  
44  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
7.6.1.27 BUCK_MASK  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_PGF  
_MASK  
BUCK1_PGR  
_MASK  
Reserved  
BUCK1_ILIM  
_MASK  
BUCK0_PGF  
_MASK  
BUCK0_PGR  
_MASK  
Reserved  
BUCK0_ILIM  
_MASK  
Bits  
Field  
Type  
Default  
Description  
7
BUCK1_PGF_MAS  
K
R/W  
X
Masking of Power Good invalid detection for Buck1 power good interrupt  
(BUCK1_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK1_PG_STAT status bit in BUCK_STAT register.  
6
BUCK1_PGR_MAS  
K
R/W  
X
Masking of Power Good valid detection for Buck1 Power Good interrupt  
(BUCK1_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK1_PG_STAT status bit in BUCK_STAT register.  
5
4
Reserved  
R
0
BUCK1_ILIM  
_MASK  
R/W  
X
Masking for Buck1 current limit detection interrupt (BUCK1_ILIM_INT in INT_BUCK  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK1_ILIM_STAT status bit in BUCK_STAT register.  
3
2
BUCK0_PGF_MAS  
K
R/W  
R/W  
X
X
Masking of Power Good invalid detection for Buck0 power good interrupt  
(BUCK0_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK0_PG_STAT status bit in BUCK_STAT register.  
BUCK0_PGR_MAS  
K
Masking of Power Good valid detection for Buck0 power good interrupt  
(BUCK0_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK0_PG_STAT status bit in BUCK_STAT register.  
1
0
Reserved  
R
0
BUCK0_ILIM  
_MASK  
R/W  
X
Masking for Buck0 current limit detection interrupt (BUCK0_ILIM_INT in INT_BUCK  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK0_ILIM_STAT status bit in BUCK_STAT register.  
7.6.1.28 SEL_I_LOAD  
Address: 0x24  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRE  
NT_BUCK  
_SELECT  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
Reserved  
LOAD_CURRENT_  
BUCK_SELECT  
Start the current measurement on the selected regulator:  
0 - Buck0  
1 - Buck1  
The measurement is started when register is written.  
7.6.1.29 I_LOAD_2  
Address: 0x25  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_  
CURRENT[8]  
Copyright © 2019, Texas Instruments Incorporated  
45  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Bits  
7:1  
0
Field  
Type  
R
Default  
000 0000  
0
Description  
Reserved  
BUCK_LOAD_  
CURRENT[8]  
R
This register describes the MSB bit of the average load current on selected regulator  
with a resolution of 20 mA per LSB and maximum 10.22-A current.  
7.6.1.30 I_LOAD_1  
Address: 0x26  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK_LOAD_  
CURRENT[7:0]  
R
0000 0000 This register describes 8 LSB bits of the average load current on selected regulator  
with a resolution of 20 mA per LSB and maximum 10.22-A current.  
46  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS65653-Q1 is a power management unit including two step-down regulators and two general-purpose  
digital output signals.  
8.2 Typical Application  
L0  
VOUT_B0  
VIN  
LOAD  
VIN_B0  
VIN_B1  
SW_B0  
FB_B0  
CIN_BUCK0  
CIN_BUCK1  
COUT_BUCK0  
COUT_POL0  
VIN  
VIN  
L1  
VOUT_B1  
LOAD  
SW_B1  
FB_B1  
VANA  
CANA  
SDA  
SCL  
nINT  
EN  
COUT_BUCK1  
COUT_POL1  
CLKIN (GPO2)  
GPO  
PGOOD  
GNDs  
Copyright © 2019, Texas Instruments Incorporated  
Figure 22. TPS65653-Q1 Typical Application  
8.2.1 Design Requirements  
8.2.1.1 Inductor Selection  
The inductors L0 and L1 are shown in the Typical Application. The inductance and DCR of the inductor affects the  
control loop of the buck regulator. TI recommends using inductors similar to those listed in Table 8. Pay attention  
to the saturation current and temperature rise current of the inductor. Check that the saturation current is higher  
than the peak current limit and the temperature rise current is higher than the maximum expected rms output  
current. For the minimum effective inductance to ensure good performance at maximum peak output current over  
the operating temperature range refer to Electrical Characteristics. DC resistance of the inductor must be less  
than 0.05 Ω for good efficiency at high-current condition. The inductor AC loss also affects conversion efficiency.  
Higher Q factor at switching frequency usually gives better efficiency at light load to middle load. Shielded  
inductors are preferred as they radiate less noise.  
Copyright © 2019, Texas Instruments Incorporated  
47  
 
 
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Typical Application (continued)  
Table 8. Recommended Inductors  
RATED DC CURRENT  
ISAT maximum (typical) /  
ITEMP maximum (typical) (A)  
DCR  
MANUFACTURER  
Murata  
PART NUMBER  
VALUE  
DIMENSIONS L × W × H (mm)  
2.5 × 2 × 1.2  
typical / maximum (m)  
DFE252012PD-  
R47M  
0.47 µH (20%)  
5.2 (–) / 4 (–)(1)  
— / 27  
40 / 46  
Tayo Yuden  
MDMK2020TR47M 0.47 µH (20%)  
MV  
2 × 2 ×1.2  
4.2 (4.8) / 2.3 (2.45)  
(1) Operating temperature range is up to 125°C including self temperature rise.  
8.2.1.2 Buck Input Capacitor Selection  
The input capacitors CIN_BUCK0 and CIN_BUCK1 are shown in the Typical Application. A ceramic input bypass  
capacitor of 10 μF is required for each phase of the regulator. Place the input capacitor as close as possible to  
the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating improves the input  
voltage filtering. Use X7R type of capacitors, not Y5V or F. Also the DC bias characteristics capacitors must be  
considered. Minimum effective input capacitance to ensure good performance is 1.9 μF per buck input at  
maximum input voltage including tolerances, ambient temperature range and aging. This is assuming that there  
are at least 22 μF of additional capacitance common for all the power input pins on the system power rail. See  
Table 9.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic capacitor's low ESR provides the best noise filtering  
of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with sufficient  
ripple current rating. In addition ferrite can be used in front of the input capacitor to reduce the EMI.  
Table 9. Recommended Buck Input Capacitor (X7R Dielectric)  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE  
RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Murata  
GCM21BR71A106KE22  
10 µF (10%)  
0805  
2 × 1.25 × 1.25  
10 V  
8.2.1.3 Buck Output Capacitor Selection  
The output capacitor COUT_BUCK0 and COUT_BUCK1 are shown in Typical Application. A ceramic local output  
capacitor of 22 μF is required per buck. Use ceramic capacitors, X7R type; do not use Y5V or F. DC bias voltage  
characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out current flow  
from the inductor to the load, helps maintain a steady output voltage during transient load changes and reduces  
output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and  
ESL to perform these functions. Minimum effective output capacitance to ensure good performance is 10 μF per  
buck including the DC voltage rolloff, tolerances, aging, and temperature effects.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See Table 10.  
POL capacitors can be used to improve load transient performance and to decrease the ripple voltage. A higher  
output capacitance improves the load step behavior and reduces the output voltage ripple as well as decreases  
the PFM switching frequency. However, output capacitance higher than 100 μF per buck is not necessarily of any  
benefit. Note that the output capacitor may be the limiting factor in the output voltage ramp, see Specifications for  
maximum output capacitance for different slew-rate settings. For large output capacitors, the output voltage might  
be slower than the programmed ramp rate at voltage transitions, because of the higher energy stored on the  
output capacitance. Also at start-up, the time required to charge the output capacitor to target value might be  
longer. At shutdown the output voltage is discharged to 0.6 V level using forced-PWM operation. This can  
increase the input voltage if the load current is small and the output capacitor is large compared to input  
capacitor. Below 0.6 V level the output capacitor is discharged by the internal discharge resistor and with large  
capacitor more time is required to settle VOUT down as a consequence of the increased time constant.  
48  
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
Table 10. Recommended Buck Output Capacitors (X7R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE RATING  
Murata  
GCM31CR71A226KE02  
22 µF (10%)  
1206  
3.2 × 1.6 × 1.6  
10 V  
8.2.2 Detailed Design Procedure  
The performance of the TPS65653-Q1 device depends greatly on the care taken in designing the printed circuit  
board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended,  
while proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling  
capacitors must be connected close to the device and between the power and ground pins to support high peak  
currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and output  
traces as short as possible, because trace inductance, resistance, and capacitance can easily become the  
performance limiting items. The separate buck regulator power pins VIN_Bx are not connected together  
internally. Connect the VIN_Bx power connections together outside the package using power plane construction.  
Copyright © 2019, Texas Instruments Incorporated  
49  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
8.2.3 Application Curves  
Measurements are done using typical application set up with connections shown in Figure 22. Graphs may not  
reflect the OTP default settings. Unless otherwise specified: V(VIN_Bx) = V(VANA) = 3.7 V, VOUT_Bx = 1 V, TA = 25°C,  
L = 0.47 µH (Murata DFE252012PD-R47M), COUT_BUCK = 22 µF, and CPOL_BUCK = 22 µF.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
Vin = 5V, AUTO  
Vin = 3.3V, AUTO  
Vin = 5V, FPWM  
Vin = 3.3V, FPWM  
Vout=1V  
Vout=1.8V  
Vout=2.5V  
0.001  
0.01  
0.1  
1
3
0.001  
0.01  
0.1  
1
3
Output Current (A)  
Output Current (A)  
BUCK  
BUCK  
VOUT = 1.8 V  
VIN = 3.3 V  
Figure 24. Buck Efficiency in Forced PWM Mode  
Figure 23. Buck Efficiency in PFM/PWM and Forced PWM  
Mode  
100  
90  
80  
70  
60  
1.02  
1.015  
1.01  
1.005  
1
0.995  
0.99  
0.985  
0.98  
Vout=1V  
Vout=1.8V  
Vout=2.5V  
50  
Vin = 3.3V, FPWM  
Vin = 5.5V, FPWM  
40  
0.001  
0.01  
0.1  
1
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
BUCK  
BUCK  
VIN = 5 V  
Figure 25. Buck Efficiency in Forced PWM Mode  
VOUT = 1 V  
Figure 26. Buck Output Voltage vs Load Current in Forced  
PWM Mode  
1.02  
1.015  
1.01  
1.005  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.995  
0.99  
0.985  
0.98  
Vin = 3.3V, AUTO  
Vin = 3.3V, AUTO  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
BUCK  
BUCK  
VOUT = 1 V  
VOUT = 1 V  
Load = 1 A  
Figure 27. Buck Output Voltage vs Load Current in  
PFM/PWM Mode  
Figure 28. Buck Output Voltage vs Input Voltage in PWM  
Mode  
50  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
1.02  
ZHCSJI6 MARCH 2019  
1.014  
1.008  
1.002  
0.996  
0.99  
0.984  
PWM  
PFM  
0.978  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
4mhz  
Load = 1 A (PWM) and 0.1 A (PFM)  
Figure 29. Buck Output Voltage vs Temperature  
Slew-rate = 10 mV/µs  
ILOAD = 0 A  
VOUT = 1 V  
Figure 30. Buck Start-Up With EN1, Forced PWM Mode  
Slew-rate = 10 mV/µs  
RLOAD = 1 Ω  
VOUT = 1 V  
Slew-rate = 10 mV/µs  
RLOAD = 1 Ω  
VOUT = 1 V  
Figure 31. Buck Start-Up with EN1, Forced PWM Mode  
Figure 32. Buck Shutdown With EN1, Forced PWM Mode  
IOUT = 500 mA  
IOUT = 10 mA  
Figure 34. Buck Output Voltage Ripple,  
Forced PWM Mode  
Figure 33. Buck Output Voltage Ripple, PFM Mode  
Copyright © 2019, Texas Instruments Incorporated  
51  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Figure 36. Buck Transient From PWM-to-PFM Mode  
Figure 35. Buck Transient From PFM-to-PWM Mode  
IOUT = 0.1 A 2 A 0.1 A  
TR = TF = 400 ns  
IOUT = 0.1 A 2 A 0.1 A  
TR = TF = 400 ns  
Figure 38. Buck Transient Load Step Response, Forced  
PWM Mode  
Figure 37. Buck Transient Load Step Response, AUTO  
Mode  
VOUT(200mV/div)  
VOUT(200mV/div)  
Time (400 µs/div)  
Time (400 µs/div)  
Figure 39. Buck VOUT Transition from 0.6 V to 1.4 V With  
Different Slew Rate Settings  
Figure 40. Buck VOUT Transition from 1.4 V to 0.6 V With  
Different Slew Rate Settings  
52  
Copyright © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
Figure 41. Buck Start-up With Short on Output  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.8 V and 5.5 V. The VANA input  
and VIN_Bx buck inputs must be connected together, and they must use the same input supply. This input  
supply must be well regulated and able to withstand maximum input current and maintain stable voltage without  
voltage drop even at load transition condition. The resistance of the input supply rail must be low enough that the  
input current transient does not cause too high a drop in the TPS65653-Q1 supply voltage that can cause false  
UVLO fault triggering. If the input supply is located more than a few inches from the TPS65653-Q1 additional  
bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The high frequency and large switching currents of the TPS65653-Q1 make the choice of layout important. Good  
power supply results only occur when care is given to proper design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to several amps, good power supply layout is much more difficult than most general PCB  
design. Use the following steps as a reference to ensure the device is stable and maintains proper voltage and  
current regulation across its intended operating voltage and current range.  
1. Place CIN as close as possible to the VIN_Bx pin and the PGND_Bx pin. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the positive node of the input capacitor and the VIN_Bx pin(s) of  
TPS65653-Q1, as well as the trace between the negative node of the input capacitor and power PGND_Bx  
pin(s), must be kept as short as possible. The input capacitance provides a low-impedance voltage source  
for the switching converter. The inductance of the connection is the most important parameter of a local  
decoupling capacitor — parasitic inductance on these traces must be kept as small as possible for proper  
device operation. The parasitic inductance can be reduced by using a ground plane as close as possible to  
top layer by using thin dielectric layer between top layer and ground plane.  
2. The output filter, consisting of L and COUT, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Route the traces between the output capacitors of the TPS65653-Q1 and the input capacitors of  
the load direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close as possible to the VANA pin.  
4. If remote voltage sensing can be used for the load, connect the TPS65653-Q1 feedback pins FB_Bx to the  
respective sense pins on the load capacitor. The sense lines are susceptible to noise. They must be kept  
away from noisy signals such as PGND_Bx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as  
Copyright © 2019, Texas Instruments Incorporated  
53  
TPS65653-Q1  
ZHCSJI6 MARCH 2019  
www.ti.com.cn  
Layout Guidelines (continued)  
the I2C. Avoid both capacitive and inductive coupling by keeping the sense lines short and direct, and close  
to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if  
possible. If series resistors are used for load current measurement, place them after connection of the  
voltage feedback.  
5. PGND_Bx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers  
which are not able to withstand interference from noisy PGND_Bx, VIN_Bx and SW_Bx.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures.  
Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB  
designs with vias to different planes. This results in reduced junction-to-ambient (RθJA) and junction-to-board  
(RθJB) thermal resistances, thereby reducing the device junction temperature, TJ. TI strongly recommends  
performance of a careful system-level 2D or full 3D dynamic thermal analysis at the beginning product design  
process by using a thermal modeling analysis software.  
10.2 Layout Example  
VOUT0  
VOUT1  
COUT0  
COUT1  
GND  
L1  
L0  
21 20 19  
17  
16  
18  
15  
14  
SW_B0  
SW_B1  
SW_B1  
VIN_B1  
22  
23  
13  
12  
SW_B0  
VIN_B0  
VIN_B0  
CIN0  
CIN1  
29  
AGND  
24  
VIN  
25  
VIN  
GND  
GND  
11  
VIN_B1  
CLKIN  
nINT  
10  
9
GPO  
26  
27  
PGOOD  
8
VIN  
28  
VIN  
VIN  
VIN  
1
2
3
4
5
6
7
VIN  
CANA  
AGND  
Figure 42. TPS65653-Q1 Board Layout  
54  
版权 © 2019, Texas Instruments Incorporated  
TPS65653-Q1  
www.ti.com.cn  
ZHCSJI6 MARCH 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2019, Texas Instruments Incorporated  
55  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6565342RHDRQ1  
TPS6565342RHDTQ1  
ACTIVE  
VQFN  
VQFN  
RHD  
28  
28  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS6565  
342-Q1  
Samples  
Samples  
ACTIVE  
RHD  
NIPDAU | SN  
TPS6565  
342-Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
RHD0028W  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.05)  
A
-
A
2
5
.
0
0
0
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
3.4 0.1  
(0.2) TYP  
8
14  
EXPOSED  
THERMAL PAD  
24X 0.5  
7
15  
A
SYMM  
A
4X  
3
1
21  
0.3  
28X  
0.2  
0.1  
C A B  
28  
22  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.65  
0.45  
28X  
4222120/B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHD0028W  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.4)  
SYMM  
22  
28  
28X (0.75)  
1
21  
28X (0.25)  
(1.45)  
SYMM  
(4.65)  
(0.5) TYP  
15  
7
(R0.05) TYP  
(
0.2) TYP  
VIA  
8
14  
(1.45)  
(4.65)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222120/B 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHD0028W  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.84) TYP  
28  
22  
METAL  
TYP  
28X (0.75)  
1
21  
28X (0.25)  
(0.84)  
TYP  
SYMM  
(4.65)  
24X (0.5)  
7
15  
(R0.05) TYP  
8
14  
4X ( 1.47)  
(4.65)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4222120/B 02/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65680

用于 GOA/GIP 显示并具有 OCP 的 2 路输入、18 通道可配置电平转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65680RSNR

用于 GOA/GIP 显示并具有 OCP 的 2 路输入、18 通道可配置电平转换器 | RSN | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65680RSNT

用于 GOA/GIP 显示并具有 OCP 的 2 路输入、18 通道可配置电平转换器 | RSN | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657051

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657051YZHR

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657051YZHT

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657051_15

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657052

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657052YZHR

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657052YZHT

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS657052_1

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65708

PMU for Embedded Camera Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI