TPS657095YFFT [TI]

嵌入式摄像机模块 PMIC | YFF | 16 | -40 to 85;
TPS657095YFFT
型号: TPS657095YFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

嵌入式摄像机模块 PMIC | YFF | 16 | -40 to 85

摄像机 集成电源管理电路
文件: 总43页 (文件大小:1209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
TPS657095 用于嵌入式摄像头模块的电源管理单元 (PMU)  
1 特性  
3 说明  
1
2 100mA 低压降稳压器 (LDO)  
输出电压精度为 ±1.5%  
TPS657095 是面向嵌入式摄像头模块或其他便携式低  
功耗消费类终端设备的电源管理单元。 其包含两个由  
I2C™ 接口使能的 LDO、一个用于驱动单个发光二极  
(LED) 的脉宽调制 (PWM) 可调光电流阱、一个通用  
输出 (GPO)、一个可编程时钟发生器和 4KB 的用户  
OTP 存储器。 如果输入电压电源低于内部欠压锁定  
值,则该器件将被禁止运行。  
VIN 范围为 3.7V 6V  
具有 PWM 调光功能的 LED 驱动器  
1 GPO  
1 GPIO  
I2C™ 接口  
4KB 用户一次性可编程 (OTP) 存储器  
此器件采用 16 焊球芯片尺寸球栅阵列封装  
(DSBGA),焊球间距为 0.4mm。  
采用 16 焊球 0.4mm 间距芯片尺寸球栅阵列封装  
(DSBGA)  
器件信息(1)  
2 应用  
器件型号  
TPS657095  
封装  
封装尺寸(标称值)  
笔记本电脑  
DSBGA (16)  
1.70mm x 1.70mm  
可拆卸平板电脑  
平板电脑  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
空白  
监视器  
智能手机  
应用电路  
1.8V  
VCC  
LDO1  
100mA  
VLDO1  
1uF  
2.2uF  
VCC  
1.2V  
LDO2  
100mA  
VLDO2  
Image Sensor  
2.2uF  
AVCC  
REFSYS  
1uF  
General Purpose  
Input/Outputs  
GPIO  
GPO  
VCC  
LED  
Driver  
ISINK  
LED_EN  
SCL  
SDA  
I2C Interface  
4KByte OTP  
XO  
Programmable  
Clock  
Generator  
CLKOUT  
GND  
XI  
AGND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCW2  
 
 
 
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 18  
7.6 Register Map........................................................... 22  
Application and Implementation ........................ 32  
8.1 Application Information............................................ 32  
8.2 Typical Application .................................................. 32  
Power Supply Recommendations...................... 35  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 17  
8
9
10 Layout................................................................... 35  
10.1 Layout Guidelines ................................................. 35  
10.2 Layout Example .................................................... 35  
11 器件和文档支持 ..................................................... 36  
11.1 器件支持 ............................................................... 36  
11.2 社区资源................................................................ 36  
11.3 ....................................................................... 36  
11.4 静电放电警告......................................................... 36  
11.5 Glossary................................................................ 36  
12 机械、封装和可订购信息....................................... 36  
12.1 封装概要................................................................ 36  
12.2 芯片尺寸封装尺寸 ................................................. 37  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 9 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
5 Pin Configuration and Functions  
YFF Package  
16-Pin DSBGA  
Top View  
AVCC  
VCC  
GPO  
VLDO1  
D
AGND  
SDA  
SCL  
LED_EN  
GPIO  
VCC  
GND  
C
B
A
X0  
X1  
CLKOUT  
ISINK  
VLDO2  
4
3
2
1
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
VCC  
C1, D3  
I
Supply Input. Connect a 1uF cap close to the C1 pin. Connect pins C1 and D3 together  
externally.  
GND  
B1  
D4  
I
I
Ground connection (main device ground - connect to ground plane on PCB)  
AVCC  
Analog Supply Input. Connect a 1uF cap close to pin. The D4 pin must be connected externally  
to the D3 and C1 pins.  
AGND  
VLDO1  
VLDO2  
ISINK  
C4  
D1  
A1  
A2  
D2  
C2  
B2  
I
Analog Ground connection (device quiet ground - connect to ground plane on PCB)  
Output voltage from LDO1  
O
O
O
O
I
Output voltage from LDO2  
Open drain current sink; connect to the cathode of LED  
general purpose output  
GPO  
LED_EN  
GPIO  
LED enable pin ( 0 = disabled, 1 = enabled)  
I
General Purpose Input/Output (see GPIO_CTRL Register for details) As an input, it is used to  
enable LDO2  
SCL  
SDA  
XO  
B3  
C3  
B4  
A4  
A3  
I
I/O  
I
clock input for the I2C compatible interface  
data input for the I2C compatible interface  
connection for external crystal to clock generator (input of amplifier)  
connection for external crystal to clock generator (output of amplifier)  
clock output  
XI  
I
CLKOUT  
O
Copyright © 2015, Texas Instruments Incorporated  
3
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
-0.3  
–0.3  
MAX  
UNIT  
All pins except GND pin with respect to AGND  
7
V
Voltage  
Current  
GPIO and GPO pull-up voltage if configured as open drain output  
Pin VLDO1 and VLDO2 with respect to AGND  
VLDO1, VLDO2, VCC  
VCC + 0.3  
3.6  
V
V
200  
50  
mA  
mA  
mA  
°C  
°C  
°C  
GND, ISINK, GPIO, GPO  
All other pins  
3
Operating free-air temperature, TA  
Maximum junction temperature, TJ  
Storage temperature range, Tstg  
–40  
–65  
85  
125  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
2000  
500  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
V
VCC /AVCC Input voltage range  
3.7  
1
6
CVCC  
CAVCC  
VLDOx  
ILDO  
Input capacitor at VCC  
µF  
µF  
V
Input capacitor at AVCC  
1
Output voltage range for LDO1 and LDO2  
Output current at LDO1 or LDO2  
0.8  
3.3  
75  
mA  
µF  
V
COUTLDO1/2 Output capacitance at VLDO1, VLDO2  
2.2  
1.3  
6.8  
6
LED_EN  
GPIO  
TA  
Voltage range  
Voltage range (configured as an input)  
Operating ambient temperature  
Operating junction temperature  
1.3  
3.3  
85  
V
–40  
–40  
°C  
°C  
TJ  
125  
6.4 Thermal Information  
TPS657095  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
16 PINS  
78.2  
0.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
13.2  
2.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
13  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
6.5 Electrical Characteristics  
Unless otherwise noted: VCC = AVCC = 5V, CVCC = 1µF; COUTLDOx= 2.2µF, TA = –40°C to 85°C  
PARAMETER  
SUPPLY CURRENT  
VCC  
AVCC  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
During normal operation  
3.7  
6
V
V
,
Supply voltage  
During programming (writing) of OTP memory  
-5%  
5
+5%  
LDO1 disabled  
LDO2 disabled  
No I2C communications  
LED_EN = 0  
CLKout_EN = 0  
25  
30  
55  
μA  
uA  
μA  
μA  
μA  
24MHz crystal disabled  
LDO1 disabled  
LDO2 enabled, IOUT(LDO2) = 0 mA  
No I2C communications  
LED_EN = 0  
CLKout_EN = 0  
24MHz crystal disabled  
40  
40  
LDO1 enabled, IOUT(LDO1) = 0 mA  
LDO2 disabled  
No I2C communications  
LED_EN = 0  
55  
CLKout_EN = 0  
24MHz crystal disabled  
IQ  
Operating quiescent current  
LDO1 enabled, IOUT(LDO1) = 0 mA  
LDO2 enabled, IOUT(LDO2) = 0 mA  
No I2C communications  
LED_EN = 0  
CLKout_EN = 0  
24MHz crystal disabled  
60  
80  
LDO1 enabled, IOUT(LDO1) = 0 mA  
LDO2 enabled, IOUT(LDO2) = 0 mA  
No I2C communications  
LED_EN = 0  
2900  
3550  
CLKout_EN = 1  
24MHz crystal enabled  
LDO1 enabled, IOUT(LDO1) = 0 mA  
LDO2 enabled, IOUT(LDO2) = 0 mA  
No I2C communications  
LED_EN = 1, PWM Duty Cycle set to 99.9%, ISINK  
= 2mA  
CLKout_EN = 1  
3000  
45  
3600  
85  
μA  
μA  
24MHz crystal enabled  
Device disabled;  
VCC and AVCC < 1.8V  
ISD  
Shutdown current  
LED_ENABLE  
VIH  
High level input voltage  
1.1  
VCC  
0.4  
0.1  
V
V
VIL  
Low level input voltage  
Input Leakage Current  
I(in)lkg  
μA  
With a minimum pulse period of 500ns before  
another glitch is received  
Input Deglitch  
100  
ns  
GENERAL PURPOSE INPUT/OUTPUT (GPIO)  
VIH  
VIH  
VIL  
High level input voltage  
High level input voltage  
Low level input voltage  
Low level input voltage  
Input leakage current  
For VLDO1 = 1.8V  
1.1  
1.37  
0
VLDO1  
VLDO1  
0.4  
V
V
For VLDO1 = 3.3V  
For VLDO1 = 1.8V  
V
VIL  
For VLDO1 = 3.3V  
0
0.6  
V
I(in)lkg  
GPIO programmed as input and tied to GND or VCC  
0.01  
0.1  
μA  
Configured as a push-pull output, IOH = 1mA,  
VLDO1 1.8V  
VLDO1-  
0.2V  
VOH  
High level output voltage  
1.2  
VLDO1  
V
Copyright © 2015, Texas Instruments Incorporated  
5
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
Unless otherwise noted: VCC = AVCC = 5V, CVCC = 1µF; COUTLDOx= 2.2µF, TA = –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Configured as a push-pull output, IOH = 1mA, 1.3V  
VLDO1 1.8V  
VOH  
VOL  
High level output voltage  
1.0  
VLDO1  
0.25  
0.3  
V
V
Configured as a push-pull output, IOL= 2mA,  
VLDO1 1.8V  
Low level output voltage  
Low level output voltage  
Low level output voltage  
Low level output voltage  
Output leakage current  
Configured as a push-pull output, IOL= 2mA, 1.3V ≤  
VLDO1 1.8V  
VOL  
V
Configured as an open-drain output, IOL= 4mA,  
VLDO1 1.8V  
VOL  
0.6  
V
Configured as an open-drain output, IOL= 2mA,  
1.3V VLDO1 1.8V  
VOL  
0.6  
V
Configured as an open-drain output, GPIO  
connected to VLDO1  
I(out)lkg  
0.01  
0.1  
μA  
GENERAL PURPOSE OUTPUT (GPO)  
Configured as a push-pull output, IOH = 1mA,  
VLDO1 1.8V  
VLDO1-  
0.2V  
VOH  
VOH  
VOL  
High level output voltage  
High level output voltage  
Low level output voltage  
Low level output voltage  
Low level output voltage  
Low level output voltage  
Output leakage current  
1.2  
1.0  
VLDO1  
VLDO1  
0.25  
0.3  
V
V
Configured as a push-pull output, IOH = 1mA, 1.3V  
VLDO1 1.8V  
Configured as a push-pull output, IOL= 2mA,  
VLDO1 1.8V  
V
Configured as a push-pull output, IOL= 2mA, 1.3V ≤  
VLDO1 1.8V  
VOL  
V
Configured as an open-drain output, IOL= 4mA,  
VLDO1 1.8V  
VOL  
0.6  
V
Configured as an open-drain output, IOL= 2mA,  
1.3V VLDO1 1.8V  
VOL  
0.6  
V
Configured as an open-drain output, GPO  
connected to VLDO1  
I(out)lkg  
0.01  
0.1  
μA  
SCL, SDA  
VIH  
VIL  
High level input voltage on SCL, SDA  
1.2  
0
Vcc  
0.4  
V
V
Low level input voltage on SCL, SDA  
Pin leakage current on SCL, SDA  
Ilkg  
(includes leakage current for the open- Input at VIL or VIH  
drain output)  
100  
nA  
V
VOL  
Low level output voltage on SDA  
For IOL= 1mA  
0.25  
UNDERVOLTAGE LOCKOUT (UVLO), SENSED AT PIN AVCC  
Internal undervoltage lockout threshold AVCC rising  
3.4  
3.6  
3.7  
V
UVLO  
Internal undervoltage lockout threshold  
hysteresis  
AVCC falling  
130  
mV  
CLOCK GENERATOR  
fosc  
Frequency of external crystal  
24  
24  
12  
6
MHz  
MHz  
For OSC_FREQ[1,0] = 00  
For OSC_FREQ[1,0] = 01  
For OSC_FREQ[1,0] = 10  
For OSC_FREQ[1,0] = 11  
fCLKOUT Frequency on pin CLKOUT  
3
Measured period compared to the Average Period  
of 10,000 randomly selected cylces  
Period jitter; rms  
600  
ps  
ps  
Measured period compared to the Average Period  
of 10,000 randomly selected cylces  
Peak period to period jitter  
Duty cycle of CLKout  
600  
60%  
10  
40%  
50%  
10% to 90% of output voltage, 1.3V VLDO1 ≤  
3.3V  
Rise time / fall time for clock output  
ns  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
Electrical Characteristics (continued)  
Unless otherwise noted: VCC = AVCC = 5V, CVCC = 1µF; COUTLDOx= 2.2µF, TA = –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Defines the maximum capacitance that can be  
driven by the CLKOUT buffer and still meet the  
specified rise/fall times  
Load capacitance  
15  
pF  
Output impedance  
50  
Ω
V
V
Internally connected to VLDO11.8V: for COUT  
15pF, IOH = 1mA  
=
VLDO1  
- 0.2V  
VOH  
VOL  
High level output voltage  
Low level output voltage  
1.6  
VLDO1  
0.3  
For COUT = 15pF, IOL = 1mA  
0.2  
Time from CLKout_EN=1 to CLKout active for the  
NXTBD-24.000M crystal, not tested in production  
but based on simulations  
tstart  
Oscillator start-up time  
10  
ms  
THERMAL PROTECTION  
TSD  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
30  
°C  
°C  
Thermal shutdown hysteresis  
VLDO1, VLDO2 LOW DROPOUT REGULATORS  
Input voltage range for LDO1 and  
LDO2  
VCC  
3.7  
0.8  
0.8  
6
V
V
See LDO1_CTRL Register definition for all  
available voltage settings.  
VLDO1  
LDO1 output voltage  
1.8  
1.2  
3.3  
See LDO2_CTRL Register definition for all  
available voltage settings.  
VLDO2  
IO  
LDO2 output voltage  
3.3  
100  
220  
700  
V
Output current for LDO1 and LDO2  
mA  
mA  
mV  
LDO1 and LDO2 short circuit current  
limit  
ISC  
VLDOx = GND  
110  
Dropout voltage at LDO1 and LDO2  
IO = 75mA; VCC 3.7V  
VCC = VLDO + 0.6V (min 3.7V) to 6V,  
IO = 2mA through 75mA  
T = 0°C to 85°C  
Output voltage accuracy for LDO1 and  
LDO2  
–1.5%  
1.5%  
10%  
Load Transient  
VCC=AVCC=5V, IO(LDOx)= 0A to 75mA in 1us  
f = 10kHz, COUT 2.2μF VINLDOx = 5V, VOUT  
1.8V, IOUT = 75mA,  
=
PSRR  
Power supply rejection ratio  
56  
dB  
Voltage ripple and noise from 10kHz to 5MHz;  
Normal mode  
Output voltage rms noise  
VOUT ramp time  
4
200  
550  
mV  
µs  
Ω
tRamp  
RDIS  
Time to ramp from 5% to 95% of VOUT  
24  
50  
Internal discharge resistor at VLDO1  
and VLDO2  
VIN < UVLO  
200  
400  
MINIMUM ON TIME  
Minimum on time range  
0
11  
1
s
Accuracy based on the Minimum On Time Setting  
(1 LSB = 44ms)  
Minimum on time accuracy  
LED CURRENT SINK  
-1  
LSB  
Isink current (LED current for 99.9%  
duty cycle)  
ILED  
10  
mA  
Minimum voltage drop from ISINK to  
GND needed for proper regulation  
At ISINK = 10mA  
0.3  
V
V
ISINK accuracy  
ISINK = 10mA, Duty Cycle set to 99.9%  
For PWM_FREQ[1,0] = 00  
–10%  
5%  
23.5  
11.7  
5.8  
For PWM_FREQ[1,0] = 01  
PWM frequency seetings  
kHz  
ns  
For PWM_FREQ[1,0] = 10  
For PWM_FREQ[1,0] = 11  
2.9  
Limited by ISINK rise / fall time for  
PWM_FREQ[1:0] other than 2'b11 setting  
PWM duty cycle range  
ISINK rise / fall time  
0%  
99.9%  
V(ISINK) 0.6V for 2 mA ISINK 30mA  
400  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
6.6 Timing Requirements  
MIN  
MAX  
UNIT  
kHz  
ns  
fMAX  
t(HIGH)  
t(LOW)  
tr  
Clock frequency  
400  
Clock high time  
600  
Clock low time  
1300  
ns  
DATA and CLK rise time  
300  
300  
ns  
tf  
DATA and CLK fall time  
ns  
thd;STA  
tsu;STA  
thd;DAT  
tsu;DAT  
tsu;STO  
tBUF  
Hold time (repeated) START condition (after this period the first clock pulse is generated)  
600  
600  
10  
ns  
Setup time for repeated START condition  
Data input hold time  
ns  
ns  
Data input setup time  
100  
600  
1300  
ns  
STOP condition setup time  
Bus free time  
ns  
ns  
Cl  
load capacitance on SDA and SCL (with a 730 Ω or smaller pull-up resistor on SDA and SCL  
400  
pF  
pulled up to 1.8V)  
SDA  
SCL  
t
t
BUF  
f
t
t
t
t
f
LOW  
t
su;DAT  
r
t
t
hd;STA  
r
t
t
su;STO  
hd;STA  
t
su;STA  
hd;DAT  
HIGH  
S
Sr  
P
S
Figure 1. Serial I/f Timing Diagram  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
6.7 Typical Characteristics  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
40  
85C  
25C  
-40C  
85C  
25C  
-40C  
30  
20  
10  
100  
1000  
10000 100000 1000000 1E+7  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D001  
D001  
Figure 2. Power Supply Rejection Ratio (PSRR) for LDO1 at  
1mA  
Figure 3. Power Supply Rejection Ratio (PSRR) for LDO1 at  
75mA  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
40  
85C  
25C  
-40C  
85C  
25C  
-40C  
30  
20  
30  
20  
10  
100  
1000  
10000 100000 1000000 1E+7  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D001  
D001  
Figure 4. Power Supply Rejection Ratio (PSRR) for LDO2 at  
1mA  
Figure 5. Power Supply Rejection Ratio (PSRR) for LDO2 at  
75mA  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS657095 integrates two LDOs, a PWM-dimmable current sink for driving an LED, one GPIO for  
controlling an external device and one GPO for controlling an embedded camera module.  
7.2 Functional Block Diagram  
LDO1  
100mA  
VLDO1  
VLDO2  
VCC  
VCC  
LDO2  
100mA  
1.8V_REF  
VLDO1  
REFSYS  
AVCC  
GPIO  
VLDO1  
General Purpose  
Input/Outputs  
GPO  
1.8V_REF  
LED  
Driver  
ISINK  
LED_EN  
VCC  
SCL  
SDA  
I2C Interface  
4KByte User OTP  
VLDO1  
XO  
Programmable  
Clock  
Generator  
CLKOUT  
GND  
XI  
AGND  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
7.3 Feature Description  
7.3.1 State Diagram  
The state diagram below details the basic operation of this device.  
NO POWER  
ALL  
SUPPLIES  
OFF  
VCC = AVCC > UVLO  
User Registers loaded  
From OTP  
DEVICE  
IN UVLO  
MODE  
Device Ready  
I2C Bus is Active  
I2C Command  
EN_LDO1 = 1?  
No  
Control of LED_EN pin  
from LDO1 or from an  
external source  
Yes  
Control from an  
external source  
LED_EN  
Control  
LDO1 = 1.8V  
Note: If sequencing is not  
required, LDO1 and LDO2 can be  
enabled at the same time.  
LED_EN = high  
I2C Command  
EN_LDO2 = 1?  
LED = ”on‘  
No  
Yes  
LDO2 = 1.2V  
I2C Command  
CLKout_EN = 1?  
No  
Yes  
CLKOUT =  
OSC_FREQ [1:0]  
I2C Command  
GPO = 1?  
No  
Yes  
GPO = high  
Figure 6. State Diagram  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Power-up Timing  
The timing diagram below details the state of the input signals and output voltages in a power-up event.  
VCC/AVCC  
1V8_REF  
EN_LDO2  
GPO  
IDLE  
EN_LDO1  
IDLE  
CLKout_EN  
I2C  
LDO1  
LDO2  
CLKOUT  
GPO  
LED_EN  
ISINK  
LED ON  
LED OFF  
LED  
Figure 7. Power-up Timing  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
Feature Description (continued)  
7.3.3 GPO  
The TPS657095 has one general purpose output (GP0) that can be used to control a camera image sensor. Bit 0  
of the GPIO_CTRL Register can be used to set the output level and bit 1 of the GPIO_CTRL Register can be  
used to define whether the output is an open-drain or push-pull output. Internally, the GPO output buffer is  
connected to LDO1. Therefore, LDO1 has to be enabled in order for the GPO output to operate. In the open-  
drain configuration, the external pull-up resistor should be pulled up to a voltage that is equal to or less than VCC  
at all times. Connecting the pull-up resistor to a voltage source that is greater than VCC or present whenever  
VCC is not present may cause an unwanted leakage path.  
7.3.4 GPIO  
The TPS657095 has one general purpose input/output (GPIO) that can be used to control an external device  
when configured as an output. When configured as an input, the GPIO pin serves as a dedicated LDO2 enable.  
This discrete pin is 'ORed' with the software LDO2 enable. The functionality is shown in the following table.  
Table 1. LDO2 Output Control  
GPIO (configured as an input)  
EN_LDO2 (bit 1 of the LDO_CTRL REGISTER  
LDO2 OUTPUT  
0
0
1
1
0
1
0
1
Off  
On  
On  
On  
The GPIO_CTRL register contains the bits used to configure this GPIO. Bit 3 of the GPIO_CTRL Register can be  
used to set the output level, bit 4 can be used to configure the GPIO as an input or an output, and bit 5 of the  
GPIO_CTRL Register can be used to define whether the output is an open-drain or push-pull output. Internally,  
the GPIO output buffer is connected to LDO1. Therefore, LDO1 has to be enabled in order for the GPIO to  
operate. In the open-drain configuration, the external pull-up resistor should be pulled up to a voltage that is  
equal to or less than VCC at all times. Connecting the pull-up resistor to a voltage source that is greater than  
VCC or present whenever VCC is not present may cause an unwanted leakage path.  
7.3.5 LED_EN  
The TPS657095 has a pin, LED_EN, which is used to control a privacy LED. The privacy LED can only be  
turned on or off using the LED_EN pin. No other means to control the privacy LED exists in this device.  
Operation of the LED_EN pin as it relates to minimum on time is shown in the Minimum-On-Time feature section  
of this document. The LED driver circuit of this device is internally biased by an internal 1.8V reference which is  
automatically powered once a valid voltage is present on the VCC/AVCC pins of this device. The input leakage  
current specifed in the Electrical Characteristics section of this datasheet will not be exeeded even if a logic high  
voltage is applied to this pin while VCC/AVCC are not present.  
7.3.6 Minimum-On-Time Feature  
In order to ensure proper operation of a privacy LED, the TPS657095 device incorporates a Minimum-On-Time  
feature. The Minimum-On-Time for this device is programmed at the factory to a specified value which is shown  
in the MIN_ON_TIME_THR Register. The user programmable Minimum-On-Time Register can be used to set a  
minimum on time for the LED. .  
Once the Minimum-On-Time Register is loaded with a value and the internal PWM is enabled, the Minimum-On-  
Time timer will count to the value loaded. Writing a new value to the Minimum-On-Time Register prior to the  
timer expire will only take effect after the timer expires and the internal PWM is re-enabled.  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
Case #1:  
LED_ENABLE is in the active state for a time much greater than the ”MIN_ON_TIME‘ register settings  
VCC  
1V8_REF  
T1 < 10ms  
LED_ENABLE  
(Low to High transition starts  
the minimum on timer)  
ISINK  
LED ON  
LED OFF  
LED OFF  
LED  
Case #2:  
LED_ENABLE is in the active state for a time less than the ”MIN_ON_TIME‘ register setting.  
(MIN_ON_TIME register set to 3 sec)  
VCC  
1V8_REF  
T1 < 10ms  
LED_ENABLE  
(Low to High transition starts  
the minimum on timer)  
ISINK  
LED ON  
3 sec  
LED OFF  
LED OFF  
LED  
Case #3:  
LED_ENABLE is in the active state for a time less than the ”MIN_ON_TIME‘ register setting  
(MIN_ON_TIME register set to 3.507 sec)  
VCC  
T1 < 10ms  
1V8_REF  
LED_ENABLE  
(Low to High transition starts  
the minimum on timer)  
ISINK  
LED ON  
LED OFF  
LED OFF  
LED  
3.507 sec  
Figure 8. Minimum-On-Time Timing Diagrams  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
7.3.7 PWM Dimming  
LED_EN serves as the enable for the internal PWM.  
LED_EN = 0: LED is OFF  
LED_EN = 1: LED is ON / internal PWM is enabled  
Since the crystal oscillator is needed for the internal PWM dimming, it is automatically enabled based on the  
status of the LED_EN pin and on the CLKout_EN register bit.  
CRYSTAL OSCILLATOR  
CLKout_EN  
LED_EN  
ISINK  
CLKout  
ENABLED  
0
0
1
1
0
1
0
1
OFF  
OFF  
OFF  
OFF  
ON  
ON - internal PWM  
OFF  
ON  
ON  
ON - internal PWM  
ON  
ON  
7.3.8 Crystal Oscillator and CLKOUT  
The crystal oscilaltor is used to provide a clock signal to the camera image sensor via the CLKOUT pin. It is also  
used to control the internal PWM for dimming the LED and as the clock for the Minimum-On-Time counter. The  
crystal oscillator is enabled by either the CLKout_EN bit in the PWM_OSC_CNTRL register or by driving the  
LED_EN pin to a high state. Since the Minimum-On-Time counter is started when the LED_EN input is driven to  
a high state, the crystal oscillator will remain on if the LED_EN pin is driven to a low state and the Minimum-On-  
Time counter has yet to time out.  
The CLKOUT buffer is internally supplied by LDO1, hence LDO1 needs to be enabled for proper functionality of  
the clock output. the CLKOUT buffer is enabled only when bit 2 of the PWM_OSC_CNTRL Register is set to a  
logic one. If bit 2 of the PWM_OSC_CNTRL register is set to a logic one while LDO1 is disabled, the crystal  
oscillator will run but the clock output will not be present on the CLKOUT pin. The OSC_FREQ[1:0] bits in the  
PWM_OSC_CNTRL Register should be set prior to enabling the CLKOUT buffer.  
In addition, the crystal oscillator is driving the internal charge pump that generates the programming voltage for  
the 4kByte OTP memory. For programming the OTP, the oscillator has to be enabled by setting CLKout_EN to a  
logic '1' at least 10ms before the OTP is written to allow the crystal to stabilize.  
The oscillator circuit used does not require external components other than the crystal itself on pins XI and XO.  
Internally, the oscillator circuit contains two 16pF capacitors connected from XI to GND and from XO to GND. It  
is designed for an equivalent series resistance of the crystal to be less than 100Ω. Therefore, a crystal must be  
used with a series resistance of less than this value and no other resistors in series or in parallel to the crystal  
must be added.  
The signal on CLKOUT is delayed from the CLKout_EN bit enabling the output buffer until the oscillator is stable.  
Once it has stabilized, an additional internal wait time of 131072 clk cycles x 1/24MHz has been added internally  
to the design before the output is set active. Given the typical start-up time of the crystal oscillator, it is safe to  
assume the total start-up time which depends on the crystal used including the 131072 cycles of clk delay is less  
than 10ms.  
Table 2. Tested Crystals  
NOMINAL  
FREQUENCY  
EQUIVALENT SERIES  
RESISTANCE  
TYPE  
LOAD CAPACITANCE  
SUPPLIER  
8Q-24.000MEEV-T  
24MHz  
8pF (16pF on each pin)  
100Ω maximum  
TXC  
7.3.9 LDOs  
The low dropout voltage regulators are designed to operate with low value ceramic input and output capacitors.  
Both LDOs contain a current limit feature which is used at start up to control the voltage ramp time.  
LDO1 is enabled by bit 0 of the LDO_CTRL register. LDO2 can be enabled by either bit 1 of the LDO_CTRL  
register or by the GPIO if configured as an input. Since the input buffer for the GPIO is powered by LDO1, LDO1  
must be enabled before the GPIO pin can be used to enable LDO1. In the case of a thermal event, the register  
enable bits will be cleared with no auto-re-start feature so as to allow the application software to control the  
power sequencing of the LDOs.  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
7.3.10 Undervoltage Lockout  
The undervoltage lockout circuit prevents the device from malfunctioning at low input voltages and from  
excessive discharge of the battery. It disables the complete device at low input voltages.  
The supply voltage to the TPS657095 is internally sensed at pin AVCC. When the voltage at AVCC exceeds the  
UVLO limit, the internal enable signals turns HIGH and allows the device to operate. When the supply voltage  
drops below the UVLO limit, TPS657095 is forced OFF, all functions are disabled and the LDO output voltage  
discharge circuitry is forced ON to ramp down the output voltage. However, if the input voltage drops below 2V,  
the discharge circuit becomes inactive.  
7.3.11 Power Up/Power Down Default States  
The GPO, GPIO and CLKOUT pins contain internal buffers powered by LDO1. The following table shows their  
state during a power up (UVLO Rising) and power down (UVLO Falling) event.  
Table 3. Power Up/Power Down Events  
EVENT  
CIRCUIT  
VCC > UVLO, LDO1  
turn-off  
VCC rising > UVLO,  
LDO1 in an 'off' state  
VCC > UVLO, LDO1  
turn-on  
VCC falling < UVLO,  
LDO1 in an 'off' state  
GPO  
GPIO  
Off 1  
Off 1,2  
Off 1  
Off 1,2  
Push-Pull, Low Level  
Input 3  
Off 1  
Off 1  
Register Bits  
no change  
OTP Load State  
no change  
Reset State  
Low (CLKOUT_EN =  
low)  
CLKOUT  
Off 1  
Off 1  
Off 1  
Notes:  
1. Output is 'off' as a result of no power supply. The output follows LDO1 to within a diode drop.  
2. The GPIO_STATE bit (bit 3 in the GPIO_CTRL register) is forced to a logic low.  
3. The default setting is configured as an input. This can be modified by using the GPIO_CTRL register.  
7.3.12 Output Voltage Discharge for LDO1 and LDO2  
The LDOs contain an output capacitor discharge feature which makes sure that the capacitor is discharged to  
GND when the supply voltage drops below the undervoltage lockout threshold. The discharge function is enabled  
when voltage is applied at AVCC starting at about 2.1V until the LDOs are enabled.  
7.3.13 Power-Good Status Bits for LDO1 and LDO2  
Bits PGOOD_LDO1 and PGOOD_LDO2 in register LDO_CTRL are driven by an comparator inside the LDOs to  
indicate when the output voltage is in regulation. The Bits are set 'high' when the LDO is in regulation. When the  
LDO is enabled but the voltage is not above the power-good threshold, the bit is set to a 'low' state. The bit is  
also set to a 'low' state if the LDO is disabled.  
7.3.14 Short-Circuit Protection  
All outputs are short circuit protected with a maximum output current as defined in the electrical specifications.  
7.3.15 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 150°C (typically) for any of the LDOs, the LDO will go into  
thermal shutdown. In this case, the LDOs are turned-off. After the temperature has fallen below the threshold, the  
LDO remains off until it is enabled again by the I2C interface. There is no automatic power-on feature once the  
thermal event is past.  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
7.3.16 LED Driver  
The TPS657095 contains a LED driver for a current of up to 30mA. ISINK is an open drain current sink that  
regulates a current in a LED. The anode of the LED needs to be tied to a positive supply voltage e.g., VCC or any  
other voltage within the limits of the electrical spec of TPS657095, depending on the forward voltage of the LED.  
The cathode of the LED is connected to ISINK which sets a constant current to GND. ISINK is regulated  
internally based on the default current set internally. If the LED_EN pin is pulled LOW, the LED driver is disabled  
and its output ISINK is high resistive. If LED_EN is HIGH, the current sink regulates to the current defined by the  
setting in the ISINK_CURRENT Register.  
The internal PWM generator allows for internal dimming with a frequency of 3kHz, 6kHz, 12kHz or 24kHz. A  
10Bit duty cycle register allows to set the duty cycle in a range from 0% to 99.9% using 8Bits PWM resolution  
and another 2Bits of dithering.  
A signal applied at the LED_EN pin is used to synchronously enable and disable the internal PWM signal.  
7.3.17 4kByte OTP Memory  
The TPS657095 contains 4kBytes of one-time-programmable (OTP) memory to store user data. The memory  
has a linear address range from 0x0000 to 0x0FFF and uses two Byte addressing as described in the serial  
interface description. Reading beyond the specified linear address range will result in reading all zeros. Writes to  
an address space beyond the specified linear address range are inhibited.  
The 4kByte OTP memory requires a programming voltage higher than 5V. The program voltage is generated  
internally by a charge pump which uses the VCC voltage as its input. During programming, Vcc has to be kept at  
5V +/-5% (a voltage of 5.25V is recommended) and the internal oscillator has to be enabled 10ms before  
programming to allow the 24MHz crystal to stabilize. The 24MHz clock is needed for the internal charge pump to  
generate the programming voltage from Vcc.  
As an added security measure, programming the 4kByte OTP memory requires a two byte sequential password  
to be written to in the PMU register space at address 0x0F. The two bytes must be written back to back with no  
restriction on the delay between the writes. Any data written at address 0x0F that does not match the password  
and sequence will disable the ability to program the 4kByte OTP memory.  
7.3.17.1 Programming the 4KByte OTP Memory  
1. Apply 5V +/-5% to the VCC and AVCC pins.  
2. Enable the internal oscillator by driving the LED_EN pin to a high state or setting the CLKout_EN bit to a '1'.  
3. Wait at least 10ms for the crystal to stabilize.  
3. Using the PMU register I2C address, write the password to the 4K_OTP_PASSWORD register.  
4. Using the 4kByte OTP memory I2C address, write the desired value to a specific address using the protocol  
shown in Figure 6.  
5. Exit the programming of the 4KByte OTP memory by over writing the 4K_OTP_PASSWORD register with an  
incorrect password or by removing power to the device.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The TPS657095 is in a 'Shutdown' mode if the voltage on the AVCC pin is below 1.8V. In this mode, the device  
will not respond to I2C commands nor will the LED_EN pin be operational.  
7.4.2 Operational Mode  
The TPS657095 enters an 'Operational' mode mode once a voltage greater than the UVLO limit is present on  
both the VCC and AVCC pins. In this mode, the I2C is active, the operation of the LED is controllable via the  
LED_EN pin and the LDOs can be enabled.  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
NOTE  
The voltage on the AVCC and VCC pins should not be left in a state between the  
Shutdown Mode voltage and the Operational Mode voltage. Keeping the input voltage to  
the device in this indeterminate state will result in unwanted quiescent current  
consumption.  
7.5 Programming  
7.5.1 Serial Interface  
The serial interface is compatible with the standard and fast mode I2C specifications, allowing transfers at up to  
400kHz. The interface adds flexibility to the power supply solution, enabling most functions to be programmed to  
new values depending on the instantaneous application requirements and charger status to be monitored.  
Register contents remain intact as long as VCC remains above the UVLO threshold. The I2C interface is running  
from an internal oscillator that is automatically enabled when there is an access to the interface. Additional  
features supported by the I2C compatible interface are:  
multi-byte read/write capability  
clock stretching; specifically needed during OTP write  
The 7bit device address for TPS657095 is:  
"100 1000" for the PMU user registers  
"101 1000" for the 4kByte OTP memory  
For the PMU, at address "100 1000", the device address is followed by the 1Byte register address and 1Byte  
data (for a write instruction)  
For the 4kByte OTP memory, at address "101 1000", the device address is followed by the 1Byte register  
address [7:0] followed by the second address Byte [15:8] and 1Byte data (for a write instruction) giving a 4kByte  
linear address range for the memory. Please note that the supply voltage range at pins VCC and AVCC during  
programming (writing) of the OTP memory is limited to 5V ±5%.  
Attempting to read data from register addresses not listed in this section will result in 00h being read out.  
For normal data transfer, DATA is allowed to change only when CLK is low. Changes when CLK is high are  
reserved for indicating the start and stop conditions. During data transfer, the data line must remain stable  
whenever the clock line is high. There is one clock pulse per bit of data. Each data transfer is initiated with a start  
condition and terminated with a stop condition. When addressed, the TPS657095 generates an acknowledge bit  
after the reception of each byte. The master device (microprocessor) must generate an extra clock pulse that is  
associated with the acknowledge bit. The TPS657095 must pull down the DATA line during the acknowledge  
clock pulse so that the DATA line is a stable low during the high period of the acknowledge clock pulse. The  
DATA line is a stable low during the high period of the acknowledge–related clock pulse. Setup and hold times  
must be taken into account. During read operations, a master must signal the end of data to the slave by not  
generating an acknowledge bit on the last byte that was clocked out of the slave. In this case, the slave device  
TPS657095 must leave the data line high to enable the master to generate the stop condition.  
The interface is reset by the internal UVLO signal of TPS657095 or by a STOP condition. If the SCL and SDA  
signal is not stable at the time the UVLO threshold on pin Vcc is exceeded, the first communication may not be  
acknowledged and will have to be re-transmitted after a STOP condition.  
Upon the application of power on the VCC/AVCC pins, the internal I2C buffers may sequence up in a manner  
that produces a false START. If a false START is detected, an internal synchronization clock will be enabled until  
a STOP condition is received. During the time that the internal synchronization clock is active, the device will  
consume an additional 120uA of current.  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
Programming (continued)  
DATA  
CLK  
S
P
Start  
Stop  
Condition  
Condition  
Figure 9. START and STOP Conditions  
SCLK  
SDAT  
...  
...  
...  
...  
...  
...  
A6  
A5 A4  
A0 R/W ACK  
R7  
R6 R5  
R0 ACK  
0
D7  
D6 D5  
D0 ACK  
0
0
0
Start  
Slave Address  
Register Address  
Data  
Stop  
Note: Slave = This Device  
Figure 10. Serial Interface WRITE to TPS657095 User Registers  
SCLK  
SDAT  
...  
..  
...  
..  
...  
...  
..  
..  
A6  
A0 R/W ACK  
R7  
R0 ACK  
0
A6  
A0 R/W ACK D7  
D0 ACK  
0
0
1
0
Start  
Slave  
Drives  
the Data  
Stop  
Register  
Address  
Master  
Drives  
ACK and Stop  
Slave Address  
Note: Slave = This Device  
Slave Address  
Repeated  
Start  
Figure 11. Serial Interface READ from TPS657095 User Registers  
SCLK  
SDAT  
...  
...  
...  
...  
...  
...  
...  
...  
A6  
A5 A4  
A0 R/W ACK  
R7  
R6 R5  
R0 ACK  
0
R7  
R6 R5  
R0 ACK  
0
D7  
D6 D5  
D0 ACK  
0
0
0
Start  
Slave Address  
Address, MSB  
Data  
Stop  
Register  
Register Address, LSB  
Note: Slave = This Device OTP Memory  
Figure 12. Serial Interface WRITE to TPS657095 OTP Memory  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
Programming (continued)  
SCLK  
...  
...  
..  
...  
...  
..  
...  
..  
SDAT  
..  
..  
A6  
A0 R/W ACK  
R7  
R0 ACK  
0
A6  
A0 R/W ACK D7  
D0 ACK  
R7  
R0 ACK  
0
0
0
1
0
Start  
Slave  
Drives  
the Data  
Stop  
Register  
Address;  
LSB  
Register  
Address  
MSB  
Master  
Drives  
ACK and Stop  
Slave Address  
Note: Slave = This Device OTP Memory  
Slave Address  
Repeated  
Start  
Figure 13. Serial Interface READ from TPS657095 OTP Memory  
DATA  
CLK  
Data Line  
Change of Data Allowed  
Stable;  
Data Valid  
Figure 14. Bit Transfer on the Serial Interface  
Data Output  
by Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
SCL From  
Master  
1
2
8
9
S
Clock Pulse for  
Acknowledgement  
START  
Condition  
Figure 15. Acknowledge on the I2C Bus  
20  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
Programming (continued)  
Recognize START or  
REPEATED START  
Condition  
Recognize STOP or  
REPEATED START  
Condition  
Generate ACKNOWLEDGE  
Signal  
P
SDA  
MSB  
Acknowledgement  
Signal From Slave  
Sr  
Address  
R/W  
SCL  
1
2
7
8
9
1
2
3 − 8  
9
S
or  
Sr  
Sr  
or  
P
ACK  
ACK  
Clock Line Held Low While  
Interrupts are Serviced  
START or  
Repeated START  
Condition  
STOP or  
Repeated START  
Condition  
Figure 16. Bus Protocol  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
7.6 Register Map  
7.6.1 DEV_AND_REV_ID Register Address: 00h  
space  
Figure 17. DEV_AND_REV_ID Register  
DEV_AND_REV_ID  
Bit name and function  
Default  
B7  
B6  
B5  
B4  
DEV_ID[0]  
1
B3  
REV_ID[3]  
0
B2  
REV_ID[2]  
1
B1  
REV_ID[1]  
0
BO  
REV_ID[0]  
0
DEV_ID[3] DEV_ID[2] DEV_ID[1]  
0
OTP  
UVLO  
R
1
OTP  
UVLO  
R
0
OTP  
UVLO  
R
Default set by:  
OTP  
OTP  
OTP  
OTP  
OTP  
Default value loaded by:  
Read/write  
UVLO  
R
UVLO  
R
UVLO  
R
UVLO  
R
UVLO  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4. DEV_AND_REV_ID Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0101  
0100  
Description  
Bit 7:4  
Bit 3:0  
DEV_ID[3:0]  
REV_ID[3:0]  
Device ID: TPS657095 = 0101  
Die Revision ID: PG1.0 = 0100  
R
7.6.2 OTP_REV Register Address: 01h  
space  
Figure 18. OTP_REV Register Address: 01h Register  
OTP_REV  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
RSVD  
OTP_REV OTP_REV[ OTP_REV[ OTP_REV[ OTP_REV[2] OTP_REV[1] OTP_REV[  
[6]  
5]  
4]  
3]  
0]  
Default  
0
OTP  
UVLO  
R
1
0
0
0
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
Default set by:  
Default value loaded by:  
Read/write  
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 5. OTP_REV Register Address: 01h Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0
Description  
Bit 7  
RSVD  
Bit 6:0  
OTP_REV[6:0]  
R
1000000  
Reserved: 100_0000: Production PG1.0 programming  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
7.6.3 GPIO_CTRL Register Address: 02h  
space  
Figure 19. GPIO_CTRL Register  
GPIO_CTRL  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
SPARE  
SPARE  
GPIO_drive GPIO_DIR  
r
GPIO_STA  
TE  
SPARE  
GPO_driver  
GPO  
Default  
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
1
1
1
0
OTP  
UVLO  
R
0
0
Defualt set by:  
Default value loaded by:  
Read/write  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. GPIO_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00  
Description  
Bit 7:6  
Bit 5  
SPARE  
GPIO_driver  
R/W  
1
0 = GPIO is configured as push pull output; internally connected  
to LDO1  
1 = GPIO is configured as open drain output  
Bit 4  
Bit 3  
GPIO_DIR  
R/W  
R/W  
1
1
0 = GPIO is configured as an input and used to enable LDO2  
1 = GPIO is configured as an output  
GPIO_STATE  
0 = actively pulled low  
1 = high impedance output if the GPIO_driver bit is configured  
as an open-drain output / internally pulled up to the LDO1  
voltage setting if the GPIO_driver bit is configured as a push-pull  
output  
Bit 2  
Bit 1  
SPARE  
R
0
0
GPO_driver  
R/W  
0 = GPO is configured as push pull output; internally connected  
to LDO1  
1 = GPO is configured as open drain output  
Bit 0  
GPO  
R/W  
0
0 = actively pulled low  
1 = high impedance output if the GPO_driver bit is configured as  
an open-drain output / internally pulled up to the LDO1 voltage  
setting if the GPO_driver bit is configured as a push-pull output  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
7.6.4 PWM_OSC_CNTRL Register Address: 03h  
space  
Figure 20. PWM_OSC_CNTRL Register  
OSCILLATOR_CONTROL  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
SPARE SPARE  
SPARE  
PWM_  
FREQ[1] FREQ[0]  
PWM_  
CLKout_EN  
OSC_FREQ[1]  
OSC_FREQ[  
0]  
Default  
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
1
1
0
0
0
Default set by:  
Default value loaded by:  
Read/write  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
OTP  
UVLO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. PWM_OSC_CNTRL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000  
11  
Description  
Bit 7:5  
Bit 4:3  
SPARE  
PWM_FREQ[1:0]  
R/W  
Frequency divider for internally generated PWM signal:  
00 : f(PWM) = 23.5KHz  
01 : f(PWM) = 11.7KHz  
10 : f(PWM) = 5.8KHz  
11 : f(PWM) = 2.9KHz  
Bit 2  
CLKout_EN  
R/W  
R/W  
0
0 = CLKOUT is disabled and the output is held LOW  
1 = the crystal oscillator is forced ON; CLKOUT is enabled and  
is switching with the frequency defined by OSC_FREQ[1..0];  
LDO1 needs to be enabled for CLKout being active  
Please note that the crystal oscillator itself is active once the Bit  
is set high, independently of the status of LDO1.  
Bit 1:0  
OSC_FREQ[1:0]  
00  
Frequency divider for CLKOUT generated from 24MHz crystal)  
00 : f(CLKOUT) = f(OSC) = 24MHz  
01 : f(CLKOUT) = f(OSC) / 2 = 12MHz  
10 : f(CLKOUT) = f(OSC) / 4 = 6MHz  
11 : f(CLKOUT) = f(OSC) / 8 = 3MHz  
7.6.5 ISINK_CURRENT Register Address: 04h  
space  
Figure 21. ISINK_CURRENT Register  
ISINK_CURRENT  
Bit name and function  
Default  
B7  
SPARE  
0
B6  
SPARE  
0
B5  
SPARE  
0
B4  
ISINK[4]  
0
B3  
ISINK[3]  
1
B2  
ISINK[2]  
0
B1  
ISINK[1]  
0
BO  
ISINK[0]  
0
Default set by:  
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
Default value loaded by:  
Read/write  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. ISINK_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000  
Description  
Bit 7:5  
Bit 4:0  
SPARE  
ISINK[4:0]  
R
01000  
ISINK dc current setting  
TPS657095: Factory programmed to 5'b01000 (10mA)  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
7.6.6 LDO_CTRL Register Address: 05h  
space  
Figure 22. LDO_CTRL Register  
LDO_CTRL  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and  
function  
SPARE  
SPARE  
PGOOD_LDO2 PGOOD_LDO  
1
SPARE  
SPARE  
EN_LDO2  
EN_LDO1  
Default  
0
0
-
-
0
0
0
0
Default set by:  
OTP  
UVLO  
OTP  
UVLO  
OTP  
OTP  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
Default value  
loaded by:  
PGOOD of  
LDO2  
PGOOD of  
LDO1  
Read/write  
R
R
R
R
R
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. LDO_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00  
Description  
Bit 7:6  
Bit 5  
SPARE  
PGOOD LDO2  
R
Power good status Bit for LDO2  
0 = the output voltage of LDO2 is below the power good  
threshold or LDO2 is disabled; default value as LDO2 is disabled  
by default  
1 = the output voltage of LDO2 is above the power good  
threshold  
Bit 4  
PGOOD LDO1  
R
Power good status Bit for LDO1:  
0 = the output voltage of LDO1 is below the power good  
threshold or LDO1 is disabled; default value as LDO1 is disabled  
by default  
1 = the output voltage of LDO1 is above the power good  
threshold  
Bit 3  
Bit 2  
Bit 1  
NC:  
R
0
0
0
SPARE  
EN_LDO2  
R
R/W  
0 = LDO2 is disabled (Default: TPS657095)  
1 = LDO2 is enabled  
Bit 0  
EN_LDO1  
R/W  
0
0 = LDO1 is disabled (Default: TPS657095)  
1 = LDO1 is enabled  
Copyright © 2015, Texas Instruments Incorporated  
25  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
7.6.7 LDO1_VCTRL Register Address: 06h  
space  
Figure 23. LDO1_VCTRL Register  
LDO1_VCTRL  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and  
function  
SPARE  
SPARE  
LDO1[5]  
LDO1[4]  
LDO1[3]  
LDO1[2]  
LDO1[1]  
LDO1[0]  
Default  
0
0
1
0
0
1
0
0
Default set by:  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
Default value loaded  
by:  
Read/write  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. LDO1_VCTRL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00  
Description  
Bit 7:6  
Bit 5:0  
SPARE  
LDO1[5:0]  
R/W  
100100  
Output voltage setting for LDO1(1)(2)  
(1) A Voltage change during operation must not exceed 8% of the value set in the register for each I2C write access as this may trigger the  
internal power good comparator and will trigger the Reset of the device. This limitation is only for a voltage step to higher voltages.  
There is no limitation for programming lower voltages by I2C.  
(2) The output voltage setting cannot be changed if the LOCK_BIT in the OTP_REV_LOCK_BIT register is set to a logic '1'.  
7.6.8 LDO2_VCTRL Register Address: 07h  
space  
Figure 24. LDO2_VCTRL Register  
LDO2_VCTRL  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and  
function  
SPARE  
SPARE  
LDO2[5]  
LDO2[4]  
LDO2[3]  
LDO2[2]  
LDO2[1]  
LDO2[0]  
Default  
0
0
0
1
0
0
0
0
Default set by:  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
OTP  
UVLO  
Default value loaded  
by:  
Read/write  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. LDO2_VCTRL Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00  
Description  
Bit 7:6  
Bit 5:0  
SPARE  
LDO2[5:0]  
R/W  
010000  
Output voltage setting for LDO2(1)(2)  
(1) A Voltage change during operation must not exceed 8% of the value set in the register for each I2C write access as this may trigger the  
internal power good comparator and will trigger the Reset of the device. This limitation is only for a voltage step to higher voltages.  
There is no limitation for programming lower voltages by I2C.  
(2) The output voltage setting cannot be changed if the LOCK_BIT in the OTP_REV_LOCK_BIT register is set to a logic '1'.  
OUTPUT VOLTAGE [V]  
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
0
1
2
3
4
5
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
1
26  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
OUTPUT VOLTAGE [V]  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.100  
2.150  
2.200  
2.250  
2.300  
2.350  
2.400  
2.450  
2.500  
2.550  
2.600  
2.650  
2.700  
B5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
B4  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
B3  
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
B2  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
B1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
B0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
Copyright © 2015, Texas Instruments Incorporated  
27  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
OUTPUT VOLTAGE [V]  
B5  
1
B4  
1
B3  
0
B2  
1
B1  
1
B0  
1
55  
56  
57  
58  
59  
60  
61  
62  
63  
2.750  
2.800  
2.850  
2.900  
2.950  
3.000  
3.100  
3.200  
3.300  
1
1
1
0
0
0
1
1
1
0
0
1
1
1
1
0
1
0
1
1
1
0
1
1
1
1
1
1
0
0
1
1
1
1
0
1
1
1
1
1
1
0
1
1
1
1
1
1
7.6.9 PWM_DUTY_THR_L Register Address: 08h  
space  
Figure 25. PWM_DUTY_THR_L Register  
PWM_DUTY_THR_L  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
PWM_DC_ PWM_DC PWM_DC_ PWM_DC_ PWM_DC_ PWM_DC_T PWM_DC_T PWM_DC_  
TH[7]  
_TH[6]  
TH[5]  
TH[4]  
TH[3]  
H[2]  
H[1]  
TH[0]  
Default  
1
1
1
1
1
1
1
1
Default set by:  
Default value loaded by:  
Read/write  
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. PWM_DUTY_THR_L Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 7:0  
PWM_DC_TH[7:0]  
R
11111111 Lower 8 bits of PWM duty cycle threshold for internally  
generated PWM on ISINK(1)  
(1) The contents of the PWM_DUTY_THR_L register is factory programmed and read only.  
7.6.10 PWM_DUTY_THR_H Register Address: 09h  
space  
Figure 26. PWM_DUTY_THR_H Register  
PWM_DUTY_THR_H  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
PWM_DC_TH[9]  
PWM_DC_T  
H[8]  
Default  
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
0
OTP  
UVLO  
R
Default set by:  
Default value loaded by:  
Read/write  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. PWM_DUTY_THR_H Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 7:0  
PWM_DC_TH[7:0]  
R
00000000 Higher 2 Bits of PWM duty cycle  
threshold for internally generated  
PWM on ISINK  
Any attempt to write a  
lower value into  
PWM_DUTY than defined  
in PWM_DUTY_THR will  
be ignored.(1)  
PWM_DC_TH[9:0]  
R
00000000 000h = 0% duty cycle  
3FFh = 99.9% duty cycle  
(1) The contents of the PWM_DUTY_THR_H register is factory programmed and read only.  
28  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
7.6.11 MIN_ON_TIME_THR Register Address: 0Ah  
space  
Figure 27. MIN_ON_TIME_THR Register  
MIN_ON_TIME_THR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
MOT_THR[7 MOT_THR MOT_THR[5 MOT_THR[4 MOT_THR[3 MOT_THR[2 MOT_THR[1 MOT_THR[0  
]
0
[6]  
0
]
0
]
0
]
0
]
0
]
0
]
0
Default  
Default set by:  
Default value loaded by:  
Read/write  
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
OTP  
UVLO  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. MIN_ON_TIME_THR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 7:0  
MOT_THR[7:0]  
R
00000000 Minimum On Time Threshold Setting  
0x00: 0 seconds  
7.6.12 PWM_DUTY_L Register Address: 0Bh  
space  
Figure 28. PWM_DUTY_L Register  
PWM_DUTY_L  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
PWM  
_DC[7]  
PWM  
_DC[6]  
PWM  
_DC[5]  
PWM  
_DC[4]  
PWM  
_DC[3]  
PWM  
_DC[2]  
PWM  
_DC[1]  
PWM  
_DC[0];  
LSB  
Default  
see Note1 see Note1 see Note1  
see Note1  
UVLO  
see Note1  
UVLO  
see Note1  
UVLO  
see Note1  
UVLO  
see Note1  
UVLO  
Default value loaded by:  
Read/write  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. PWM_DUTY_L Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 7:0  
PWM_DC[7:0]  
R/W  
00000000 Lower 8 bits for duty cycle of internally generated PWM on  
ISINK(1)(2)(3)  
(1) The default value in the register is 0x00. Any value written to the PWM_DUTY_1 and PWM_DUTY_2 registers is internally compared to  
PWM_DUTY_THR_L and PWM_DUTY_THR_H. A value below <PWM_DUTY_THR_H><PWM_DUTY_THR_L> is latched to the  
register but is internally ignored for setting the duty cycle and will result in a PWM signal with the minimum duty cycle defined by  
<PWM_DUTY_THR_H><PWM_DUTY_THR_L>  
(2) A new value in PWM_DUTY_L and PWM_DUTY_H is internally valid after writing to PWM_DUTY_H AND the dithering cycle is  
completed, therefore PWM_DUTY_L should be written to first.  
(3) A Duty Cycle of 1% or less may not be visible when the PWM frequency is 3KHz. At 24KHz, a Duty Cycle of 8% or less may not be  
visible.  
Copyright © 2015, Texas Instruments Incorporated  
29  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
7.6.13 PWM_DUTY_H Register Address: 0Ch  
space  
Figure 29. PWM_DUTY_H Register  
PWM_DUTY_H  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
BO  
Bit name and function  
PWM  
PWM  
_DC[9]; MSB  
_DC[8]  
Default  
0
UVLO  
R
0
UVLO  
R
0
UVLO  
R
0
UVLO  
R
0
UVLO  
R
0
UVLO  
R
see Note1  
UVLO  
see Note1  
UVLO  
Default value loaded by:  
Read/write  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. PWM_DUTY_H Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000000  
00  
Description  
Bit 7:2  
Bit 1:0  
PWM_DC[9:8]  
PWM_DC[9:0]  
R/W  
Higher 2 Bits for duty cycle of internally generated PWM on  
ISINK(1)(2)(3)  
00h = 0% duty cycle  
3FFh = 99.9% duty cycle  
(1) The default value in the register is 0x00. Any value written to the PWM_DUTY_L and PWM_DUTY_H registers is internally compared to  
PWM_DUTY_THR_L and PWM_DUTY_THR_H. A value below <PWM_DUTY_THR_H><PWM_DUTY_THR_L> is latched to the  
register but is internally ignored for setting the duty cycle and will result in a PWM signal with the minimum duty cycle defined by  
<PWM_DUTY_THR_H><PWM_DUTY_THR_L>  
(2) A new value in PWM_DUTY_L and PWM_DUTY_H is internally valid after writing to PWM_DUTY_H AND the dithering cycle is  
completed, therefore PWM_DUTY_L should be written to first.  
(3) A Duty Cycle of 1% or less may not be visible when the PWM frequency is 3KHz. At 24KHz, a Duty Cycle of 8% or less may not be  
visible.  
7.6.14 MIN_ON_TIME Register Address: 0Dh  
space  
Figure 30. MIN_ON_TIME Register  
MIN_ON_TIME  
Bit name and function  
Default  
B7  
TIME[7]  
0
B6  
TIME[6]  
0
B5  
TIME[5]  
0
B4  
TIME[4]  
0
B3  
TIME[3]  
0
B2  
TIME[2]  
0
B1  
TIME[1]  
0
BO  
TIME[0]  
0
Default value loaded by:  
Read/write  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. MIN_ON_TIME Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 7:0  
TIME[7:0]  
R/W  
00000000 User register for setting the minimum-on-time for the LED.  
The LED will remain on for the time specified in the  
MIN_ON_TIME Register or the MIN_ON_TIME_THR Register  
whichever is greater provided the time is less the the duration of  
time for which the LED_EN pin remains asserted.  
30  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
7.6.15 SPARE Register Address: 0Eh  
space  
Figure 31. SPARE Register  
SPARE  
B7  
B6  
B5  
B4  
SPARE[4]  
0
B3  
SPARE[3]  
0
B2  
SPARE[2]  
0
B1  
SPARE[1]  
0
BO  
SPARE[0]  
0
Bit name and function  
Default  
SPARE[7] SPARE[6] SPARE[5]  
0
0
0
Default value loaded by:  
Read/write  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
UVLO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. SPARE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 7:0  
SPARE[7:0]  
R/W  
00000000 Spare Register Bits  
7.6.16 4K_OTP_PASSWORD Register Address: 0Fh  
space  
Figure 32. 4K_OTP_PASSWORD Register  
4K_OTP_PASSWORD  
Bit name and function  
Default  
B7  
PW[7]  
0
B6  
PW[6]  
0
B5  
PW[5]  
0
B4  
PW[4]  
0
B3  
PW[3]  
0
B2  
PW[2]  
0
B1  
PW[1]  
0
BO  
PW[0]  
0
Default value loaded by:  
Read/write  
UVLO  
W
UVLO  
W
UVLO  
W
UVLO  
W
UVLO  
W
UVLO  
W
UVLO  
W
UVLO  
W
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. 4K_OTP_PASSWORD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 7:0  
PW[7:0]  
W
00000000 User 4K OTP Password Register:  
The correct password enables the qualifier for writing to the User  
4K OTP.  
The password is Implemented as a 2 Byte sequential write  
which must be performed back to back with no restriction on the  
delay between the writes.  
If the correct password is not set, writing to the User 4K OTP  
memory is disabled.  
Copyright © 2015, Texas Instruments Incorporated  
31  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The target application for the TPS657095 device is powering an embedded camera module.  
8.2 Typical Application  
Figure 33. Application Schematic  
8.2.1 Design Requirements  
Table 20. Design Parameters  
DESIGN PARAMETER  
Typical Input Voltage  
LDO1 Output Voltage  
LDO2 Output Voltage  
VALUE  
5.0V  
1.8V (off by default)  
1.2V (off by default)  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Capacitor Selection  
The control loop of the LDOs is internally compensated such that they operate with small ceramic output  
capacitors of 2.2µF.  
8.2.2.2 Input Capacitor Selection  
A low ESR input capacitor is required for best input voltage filtering and minimizing the interference with other  
circuits. The LDOs need a ceramic input capacitor with a minimum capacitance of 1.0µF. The input capacitor can  
be increased without any limit for better input voltage filtering.  
32  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
Table 21. Tested Capacitors  
TYPE  
VALUE  
2.2 µF  
2.2 µF  
1 µF  
VOLTAGE RATING  
SIZE  
0402  
0603  
0603  
SUPPLIER  
Murata  
MATERIAL  
Ceramic X5R  
Ceramic X5R  
Ceramic X5R  
GRM155R60J225ME15D  
GRM185R60J225  
6.3 V  
6.3 V  
6.3 V  
Murata  
GRM185R60J105K  
Murata  
8.2.3 Application Curves  
The graphs below were taken using the TPS657095EVM with the passive components as listed below:  
CIN(VCC) = GRM185R60J105K (1 µF / 6.3V)  
COUT(LDO1) = COUT(LDO2) = GRM185R60J225 (2.2 µF / 6.3 V)  
VCC = 5 V unless otherwise noted  
Table 22. Table of Graphs  
DESCRIPTION  
FIGURE  
Figure 34  
Figure 35  
Line Transient Response LDO1  
Line Transient Response LDO2  
VCC = 3.6V to 5V to 3.6V; IOUT = 75mA; VOUT = 1.8V  
VCC = 3.6V to 5V to 3.6V; IOUT = 75mA; VOUT = 2.8V  
VCC = 5V; IOUT = 7.5mA to 68mA to 7.5mA;  
VOUT = 1.8V  
Load Transient Response LDO1  
Load Transient Response LDO2  
Figure 36  
Figure 37  
VCC = 5V; IOUT = 7.5mA to 68mA to 7.5mA; VOUT  
2.8V  
=
LDO1 and LDO2 Start-up Timing  
VCC = 5V; IOUT = 0mA  
Figure 38  
Figure 39  
Figure 40  
LDO1 and LDO2 Start-up Timing  
VCC = 5V; IOUT = 75mA  
Duty Cycle on CLKout vs Programmed Frequency  
VCC = 5V; f(crystal) = 24MHz; VLDO1 = 1.8V  
Period Jitter on CLKout vs Temperature and Output  
Frequency  
VCC = 5V; f(crystal) = 24MHz; VLDO1 = 1.8V  
Figure 41  
Figure 35. Line Transient Response LDO2  
Figure 34. Line Transient Response LDO1  
Copyright © 2015, Texas Instruments Incorporated  
33  
 
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
Figure 36. Load Transient Response LDO1  
Figure 37. Load Transient Response LDO2  
Figure 38. LDO1 Start-up Timing  
Figure 39. LDO2 Start-up Timing  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
85C  
25C  
-40C  
85C  
25C  
-40C  
10  
100  
1000  
10000 100000 1000000 1E+7  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D001  
D001  
VCC = 5 V, VLDO1 = 1.8 V, fCrystal = 24 MHz  
VCC = 5 V  
Figure 40. Duty Cycle  
Figure 41. Period Jitter  
34  
Copyright © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
9 Power Supply Recommendations  
The TPS657095 devices are designed to operate from an input voltage range of 3.7V to 6.0V. The input supply  
should be well regulated.  
10 Layout  
10.1 Layout Guidelines  
The VCC and AVCC terminals should be bypassed to gorund with a low ESR ceramic bypass capacitor. The  
typical recommended bypass capacitance is 1uF with a X5R or X7R dielectric.  
The optimum placement is closest to the AVCC terminal and the AGND terminal.  
The AGND and GND terminals should be tied to the pcb ground plane at the terminal of the IC  
10.2 Layout Example  
Cin  
AVCC  
1uF  
VLDO1  
GPO  
VCC  
AVCC  
PCB  
GND  
Plane  
LED_EN  
GPIO  
ISINK  
VCC  
GND  
SDA  
SCL  
AGND  
X0  
PCB GND  
Plane  
CLKOUT  
VLDO2  
X1  
Connect the GND and AGND pins  
directly to the PCB Ground  
Plane  
版权 © 2015, Texas Instruments Incorporated  
35  
TPS657095  
ZHCSE51 SEPTEMBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E, NanoFree are trademarks of Texas Instruments.  
I2C is a trademark of NXP B.V Corporation.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
12.1 封装概要  
A4  
B4  
C4  
D4  
A3  
B3  
C3  
D3  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
TIYMLLLLS  
TPS657095  
D
A1  
E
42. 芯片尺寸封装  
(底视图)  
43. 芯片尺寸封装  
(顶视图)  
代码:  
YM — 年月日代码  
36  
版权 © 2015, Texas Instruments Incorporated  
TPS657095  
www.ti.com.cn  
ZHCSE51 SEPTEMBER 2015  
封装概要 (接下页)  
LLLL — 批次追踪代码  
S — 组装地点代码  
12.2 芯片尺寸封装尺寸  
TPS657095 器件采用 16 焊锡凸块芯片尺寸封装(YFFNanoFree™)。 封装尺寸如下:  
D = ca. 1700 ± 25μm  
E = 大约 1700 ± 25μm  
版权 © 2015, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS657095YFFR  
TPS657095YFFT  
ACTIVE  
DSBGA  
DSBGA  
YFF  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TPS  
657095  
ACTIVE  
YFF  
SNAGCU  
TPS  
657095  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
YFF0016  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.625 MAX  
C
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
1.2 TYP  
D
C
B
SYMM  
1.2  
D: Max = 1.718 mm, Min =1.658 mm  
E: Max = 1.718 mm, Min =1.658 mm  
TYP  
0.4 TYP  
A
1
2
3
4
0.3  
0.2  
16X  
0.015  
SYMM  
C A B  
0.4 TYP  
4219386/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0016  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
16X ( 0.23)  
(0.4) TYP  
4
3
1
2
A
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219386/A 05/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0016  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
16X ( 0.25)  
1
2
3
4
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219386/A 05/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS657120

射频前端电源管理 IC (PMIC)
TI

TPS657120YFFR

射频前端电源管理 IC (PMIC) | YFF | 30 | -40 to 85
TI

TPS657120YFFT

RF frontend Power Management IC (PMIC) 30-DSBGA -40 to 85
TI

TPS65720

PMU for Bluetooth Headsets
TI

TPS657201YFFR

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS657201YFFT

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS657202YFFR

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS657202YFFT

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS65720YFFR

PMU for Bluetooth Headsets
TI

TPS65720YFFT

PMU for Bluetooth Headsets
TI

TPS65720_15

Integrated PMIC
TI

TPS65721

PMU for Bluetooth Headsets
TI