TPS657120YFFR [TI]

射频前端电源管理 IC (PMIC) | YFF | 30 | -40 to 85;
TPS657120YFFR
型号: TPS657120YFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

射频前端电源管理 IC (PMIC) | YFF | 30 | -40 to 85

射频 集成电源管理电路
文件: 总63页 (文件大小:2159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS657120  
针对基带和射频-功率放大器 (RF-PA) 电源的电源管理单元  
(PMU)  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: ZHCSBY8  
December 2013  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
内容  
1
2
介绍 ................................................................................................................................... 6  
1.1  
1.2  
1.3  
1.4  
特性 ........................................................................................................................... 6  
应用 ........................................................................................................................... 6  
说明 ........................................................................................................................... 6  
方框图 & 引脚功能 .......................................................................................................... 7  
1.4.1  
功能方框图 ........................................................................................................ 7  
引脚分配 ........................................................................................................... 8  
1.4.2  
器件特性 ............................................................................................................................ 10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
订购信息 .................................................................................................................... 10  
缺省设置 .................................................................................................................... 10  
ABSOLUTE MAXIMUM RATINGS ...................................................................................... 10  
THERMAL INFORMATION .............................................................................................. 11  
RECOMMENDED OPERATING CONDITIONS ....................................................................... 11  
Electrical Characteristics - general functions .......................................................................... 12  
Electrical Characteristics - DCDC1/2 ................................................................................... 12  
Electrical Characteristics - DCDC3 ..................................................................................... 14  
Electrical Characteristics - RF-LDOs ................................................................................... 15  
2.10 Electrical Characteristics – digital inputs, digital outputs ............................................................. 16  
2.11 Electrical Characteristics – Thermal Shutdown, undervoltage lockout ............................................. 18  
2.12 Electrical Characteristics – RFFE Timing parameters ................................................................ 19  
2.13 MIPI RFFE 已接收时钟信号限制 ........................................................................................ 19  
2.14 MIPI RFFE 总线激活数据传输时序技术规格 ........................................................................... 19  
2.15 MIPI RFFE 总线驻停周期时序 ........................................................................................... 20  
2.16 MIPI RFFE 数据设置和保持时序 ........................................................................................ 20  
2.17 典型特征 .................................................................................................................... 21  
2.17.1 参数测量信息 .................................................................................................... 21  
2.18 典型特征(继续) ......................................................................................................... 22  
详细说明 ............................................................................................................................ 29  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
线性稳压器 ................................................................................................................. 29  
降压转换器 DCDC1 DCDC2 .......................................................................................... 29  
省电模式 .................................................................................................................... 29  
动态电压定位(可选) .................................................................................................... 30  
软启动/使能 ................................................................................................................. 30  
针对 DCDC1DCDC2 DCDC3 的动态电压定位 (DVS) .......................................................... 31  
100% 占空比低压降运行 .................................................................................................. 31  
180°异相操作 .............................................................................................................. 31  
针对 DCDC1DCDC2DCDC3LDO1 LDO2 的欠压闭锁 .................................................... 31  
3.10 输出电压放电 ............................................................................................................... 32  
3.11 短路保护 .................................................................................................................... 32  
3.12 输出电压监控 ............................................................................................................... 32  
3.13 降压转换器和 LDO 启用;引脚 CLK_REQ1 CLK_REQ2 ......................................................... 32  
3.14 降压转换器 DCDC3 ....................................................................................................... 32  
3.15 DCDC3_SEL 控制 ......................................................................................................... 32  
3.15.1 DCDC3_SEL 控制 - 电压映射选项 ........................................................................... 32  
3.15.2 DCDC3_SEL 控制 - 针对 DCDC3 DCDC3_SEL 的负电流限制来映射使能信号;额外选项只用  
于修订版本 1.1 和更高版本 .................................................................................... 33  
3.16 旁路开关 .................................................................................................................... 33  
3.17 DCDC3 输出电压斜升支持。 ............................................................................................ 33  
3.18 VCON 解码器 .............................................................................................................. 33  
3.19 热监控和关断 ............................................................................................................... 34  
3.20 GPIO ........................................................................................................................ 34  
2
内容  
版权 © 2013, Texas Instruments Incorporated  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
3.21 nRESET 输入;ADR_SELECT 输入 .................................................................................... 35  
3.22 电源状态机 ................................................................................................................. 35  
3.23 内部加电和断电排序的执行 .............................................................................................. 35  
3.24 针对推挽输出级/接口的 VDDIO 电压 .................................................................................... 35  
3.25 TPS657120 接通关闭操作 ................................................................................................ 36  
3.25.1 TPS657120 加电 ................................................................................................ 36  
3.25.2 驱动 DCDC1DCDC2 LDO1 TPS657120 PWR_REQ ............................................ 36  
3.26 MIPI RFFE 接口 ........................................................................................................... 38  
3.26.1 MIPI RFFE 写入周期 ........................................................................................... 38  
3.26.2 MIPI RFFE 读取周期 ........................................................................................... 39  
内存映射 ............................................................................................................................ 40  
4
5
4.1  
寄存器说明 ................................................................................................................. 40  
应用范围 ............................................................................................................................ 56  
5.1  
直流到直流转换器 ......................................................................................................... 56  
5.1.1  
输出滤波器设计(电感器和输出电容器) .................................................................... 56  
5.1.1.1 电感器选择 .......................................................................................... 56  
5.1.1.2 输出电容器选择 ..................................................................................... 57  
5.1.1.3 输入电容器 / 输出电容器选择 ..................................................................... 57  
5.1.1.4 DCDC1DCDC2 DCDC3 上的电压变化 .................................................... 58  
5.2  
5.3  
布局布线注意事项 ......................................................................................................... 58  
应用电路原理图 ............................................................................................................ 58  
版权 © 2013, Texas Instruments Incorporated  
内容  
3
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
附图目录  
1-1  
2-1  
2-2  
2-3  
2-4  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
5-1  
TPS657120 方框图 ................................................................................................................  
8
已接收时钟信号限制.............................................................................................................. 19  
总线激活数据传输时序技术规格 ................................................................................................ 20  
总线驻停周期时序 ................................................................................................................ 20  
数据设置和保存计时.............................................................................................................. 20  
软启动.............................................................................................................................. 31  
GPIO ........................................................................................................................... 34  
TPS657120 加电 ................................................................................................................. 36  
TPS657120 断电 ................................................................................................................. 37  
RFFE 写入周期 ................................................................................................................... 39  
RFFE 读取周期 ................................................................................................................... 39  
针对 SP30 RF 电源管理集成电路 (PMIC) 的手机电池连接 ................................................................. 58  
4
附图目录  
版权 © 2013, Texas Instruments Incorporated  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
附表目录  
1-1  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
5-1  
5-2  
端子功能 ............................................................................................................................  
9
DCDCx TSTEP Settings......................................................................................................... 42  
VCON Gain Settings ............................................................................................................. 45  
VCON Offset Settings ........................................................................................................... 45  
DCDC1 and DCDC2 Voltage Settings ........................................................................................ 46  
DCDC3 Voltage Settings ....................................................................................................... 47  
LDO Voltage Settings............................................................................................................ 50  
经测试的电感................................................................................................................... 57  
已经测试电容................................................................................................................... 57  
版权 © 2013, Texas Instruments Incorporated  
附表目录  
5
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
针对基带和射频-功率放大器 (RF-PA) 电源的电源管理单元 (PMU)  
查询样片: TPS657120  
1
介绍  
1.1 特性  
1
– ECO 模式  
• 3 个降压转换器:  
– LDO VIN范围:  
– VIN 范围从 2.8V 5.5V  
LDO12.0V 5.5V  
LDO22.8V 5.5V  
轻负载电流状态下的省电模式  
– PWM 模式中的输出电压准确度为 ±2%  
• 2 个通用输入输出 (GPIO)  
过热保护  
每个 DCDC1 DCDC2 转换器的静态电流典型  
值为 16μA  
– DCDC3 转换器的静态电流典型值为 26μA  
动态电压调节  
最低压降占空比为 100%  
• 2 个低压降稳压器 (LDO):  
– 2 x 10mA 输出电流  
旁路开关  
与为 RF-PA 供电的 DCDC3 一同使用  
接口  
– 26MHz 移动行业处理器接口 (MIPI) 射频前端  
(RFFE) 接口  
欠压闭锁  
低噪音 RF-LDO  
灵活的加电和断电排序  
• 2.5mm x 2.3mm 晶圆级芯片封装 (WCSP) 封装,  
引线间距为 0.4mm  
输出电压范围 1.2V 3.4V  
– 32μA 静态电流  
独立的电源输入支持预调节  
1.2 应用  
数据卡  
智能手机  
1.3 说明  
TPS657120 提供 3 个输出电流高达 2A 的可配置降压转换器。 它还包含 2 LDO 稳压器。 LDO1 可直接  
由输入电压或者由诸如 DCDC1 DCDC2 的一个预稳压电源供电。 到 LDO2 的输入电压可被用作一个模  
拟电源输入,因此,需要将它连接至一个与 VINDCDC1/2 VINDCDC3 处于同一电压电平的输入电压上。  
内部加电/断电控制器是可配置的,并能够支持任何加电/断电序列(基于一次性可编程 (OTP))。 所有 LDO  
和直流到直流转换器由一个 MIPI RFFE 兼容接口和/或由引脚 PWRONCLK_REQ1 CLK_REQ2 进行控  
制。 此外,还有一个 nRESET 以及一个 RFFE 地址选择 (ADR_SELECT) 输入,这两个输入中任何一个可  
被用作具有 1mA 电流吸收能力的通用 I/OTPS657120 采用 6 焊球 x 5 焊球的 WCSP 封装 (2.5mm x  
2.3mm),引线间距 0.4mm。  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
版权 © 2013, Texas Instruments Incorporated  
English Data Sheet: SLVSBO3  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
1.4 方框图 & 引脚功能  
1.4.1 功能方框图  
10uF  
TPS657120  
VINDCDC1/2  
VIN  
C2V5  
2.2uH  
DCDC1  
300mA  
1.7V  
Q12  
Q13  
POWER  
CONTROL  
SW1  
RF transceiver  
low voltage supply  
1uF  
VDCDC1  
10uF  
SDATA  
SCLK  
PGND1/2  
MIPI RFFE  
i/f  
2.2uH  
Q22  
Q23  
DCDC2  
250mA  
2.65V  
SW2  
RF transceiver  
high voltage supply  
VCON_DCDC3  
DCDC3_SEL  
10uF  
VDCDC2  
22uF  
CLK_REQ1  
CLK_REQ2  
VINDCDC3  
VIN  
1.5uH  
Q22  
Q23  
DCDC3  
2A  
0.1V to 3.8V  
SW3  
RF-PA supply  
PWRON  
VDDIO  
4.7uF  
2.2uF  
VDCDC3  
2.2uF are placed at the  
input of the RF-PA  
PGND3  
BYPASS  
switch  
GPIO0 (nReset)  
GPIO1 (ADR_SELECT)  
GPIO  
VINLDO1  
VLDO1  
VIN  
LDO1  
1.8V  
1uF  
(1.2V-3.3V, 50mV  
step @10mA)  
Low noise  
4.7uF  
VIN_ANA / VINLDO2  
VIN  
1uF  
LDO2  
(1.2V-3.3V, 50mV  
step @10mA)  
Low noise  
100nF  
2.8V  
BIAS  
VLDO2  
VREF1V0  
AGND  
4.7uF  
Thermal  
shutdown  
1-1. TPS657120 方框图  
版权 © 2013, Texas Instruments Incorporated  
介绍  
7
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
1.4.2 引脚分配  
YFF 封装  
(底视图)  
TPS657120 (bottom view)  
PGND  
1/2  
SW3  
SW3  
VDCDC3  
VDCDC3  
SW2  
VINDCDC3  
F2  
F1  
F3  
F4  
F5  
VINDCDC  
1/2  
VDCDC2  
VINDCDC3  
E2  
E1  
D1  
E3  
E4  
D4  
C4  
E5  
D5  
C5  
VCON_  
DCDC3  
DCDC3  
_SEL  
nRESET  
(GPIO_0)  
SW1  
PGND3  
D2  
C2  
D3  
C2V5  
VDCDC1  
SCLK  
VDDIO  
PWRON  
VLDO1  
SDATA  
C1  
C3  
ADR_SEL  
(GPIO_1)  
CLK_REQ2  
AGND  
CLK_REQ1  
B5  
B1  
A1  
B2  
B3  
B4  
VIN_ANA  
VINLDO2  
VLDO2  
Vref1V0  
VINLDO1  
A2  
A3  
A4  
A5  
YFF 封装  
(顶视图)  
TPS657120 (top view)  
PGND  
1/2  
SW2  
VDCDC3  
VDCDC3  
SW3  
SW3  
VINDCDC3  
F2  
F5  
F4  
E4  
F3  
F1  
VINDCDC  
1/2  
VINDCDC3  
E2  
VDCDC2  
E5  
D5  
E3  
E1  
D1  
C1  
VCON_  
DCDC3  
nRESET  
(GPIO_0)  
DCDC3  
_SEL  
PGND3  
VDDIO  
SW1  
D4  
D3  
D2  
C2  
SDATA  
SCLK  
C2V5  
VDCDC1  
C5  
C4  
C3  
ADR_SEL  
(GPIO_1)  
AGND  
CLK_REQ2  
B4  
PWRON  
VLDO1  
CLK_REQ1  
B3  
B1  
B5  
A5  
B2  
VIN_ANA  
VINLDO2  
VLDO2  
VREF1V0  
VINLDO1  
A3  
A2  
A1  
A4  
8
介绍  
版权 © 2013, Texas Instruments Incorporated  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
1-1. 端子功能  
端子  
名称  
I/O  
说明  
编号  
TPS657120  
基准  
VIN_ANA /  
VINLDO2  
模拟电源电压输入;LDO2 的电源输入;连接至与 VINDCDC1/2 VINDCDC3 处于同一电压  
电平的电压  
A3  
I
VREF1V0  
C2V5  
A5  
C5  
B5  
O
O
-
LDO 基准旁路引脚;将一个 100nF 电容器接地 (GND)  
逻辑电路的内部电压;将一个 1uF 电容器接地  
模拟接地 (AGND)  
GPIO  
模拟接地连接;连接至印刷电路板 (PCB) 上的 PGND  
主要功能是低电平有效复位输入 (nRESET),为了实现启动,引脚需要根据缺省值被上拉到逻辑  
高电平。 在 OTP 内存的内部配置已经被读取后,它也可被指定为通用 I/O。它的推挽级以  
VDDIO (VIF) 为基准。  
nRESET (GPIO0  
)
D4  
B2  
I/O  
I/O  
GPIO1  
(ADR_SELECT)  
通用 I/O;推挽至 VDDIO (VIF);为 USID[0] 上的 RFFE 接口选择其它最低有效位 (LSB) 位地  
降压转换器  
VINDCDC1/2  
VDCDC1  
SW1  
E5  
C4  
I
I
DCDC1 DCDC2 转换器的电源输入;连接至 VINDCDC3  
针对 DCDC1 的电压感测(反馈)输入  
D5  
O
-
DCDC1 的开关节点;连接输出电感器  
PGND1/2  
VDCDC2  
SW2  
F4  
针对 DCDC1 DCDC2 转换器的电源接地 (GND) 连接  
针对 DCDC2 的电压感测(反馈)输入  
E4  
I
F5  
O
I
DCDC2 的开关节点;连接输出电感器  
VINDCDC3  
VDCDC3  
SW3  
E2F2  
E3F3  
E1F1  
D1  
DCDC3 转换器和旁路开关的电源输入;连接至 VINDCDC1VINDCDC2 Vcc  
针对 DCDC3 的电压感测(反馈)输入和旁路输出  
DCDC3 的开关节点;连接输出电感器  
I
O
-
PGND3  
针对 DCDC3 转换器的电源 GND 连接  
低压降稳压器  
VINLDO1  
VLDO1  
A2  
A1  
A4  
I
LDO1 的电源输入  
LDO1 输出  
O
O
VLDO2  
LDO2 输出  
接口  
SDATA  
C2  
C3  
I/O  
I
RFFE 数据引脚  
RFFE 时钟输入  
SCLK  
使能和控制  
CLK_REQ1  
CLK_REQ2  
DCDC3_SEL  
VCON_DCDC3  
PWRON  
B3  
B4  
D2  
D3  
B1  
I
I
I
I
I
被用来启用和禁用电源的时钟请求 signal1  
被用来启用和禁用电源的时钟请求 signal2  
改变设置之间输出电压的电压缩放输入  
针对 DCDC3 的模拟电压缩放  
使能输入;LOW = OFFHIGH = ON;输入电压范最高为 VINDCDCxVIN_ANA  
针对 GPIO 和输出级的电源电压输入将设定高电平电压(I/O 电压);如果 VDDIO 不在有效运  
行范围内,TPS657120 被保持在复位状态  
VDDIO  
C1  
I
版权 © 2013, Texas Instruments Incorporated  
介绍  
9
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
2
器件特性  
2.1 订购信息  
TA  
产品型号  
芯片尺寸  
选项  
封装代码  
封装  
封装标记(1)  
TPS657120YFF  
生产材料  
D = 2500µm ± 25µm  
E = 2300µm ± 25µm  
请见  
缺省设置表  
-40°C 85°C  
YFF  
WCSP  
TPS657120  
(1) YFF 封装可以以卷带形式供货。 添加后缀 R (TPS657120YFFR) 来订购每卷 3000 个部件。 添加后缀 T (TPS657120YFFT) 来订购每卷  
250 个部件  
2.2 缺省设置  
直流到直流转换器和 LDO 的缺省输出电压请见以下列表。 对于 DCDC1 DCDC3 LDO1 以及 LDO2,  
有两个定义输出电压的寄存器。 DCDC3_SEL 可实现两个输出电压(在 DCDC3 _OP _AVS 寄存器内  
定义)间的切换。 对于其它直流到直流转换器和 LDO,切换可由一个寄存器位实现。  
转换器 / LDO 寄存器  
DCDC1_OP / DCDC1_AVS  
DCDC2_OP / DCDC2_AVS  
DCDC3_OP / DCDC3_AVS  
LDO1_OP  
TPS657120 缺省输出电压设置  
1.7V / 1.7V  
2.65V / 2.65V  
3.6V / 3.6V  
1.8V  
LDO2_OP  
2.8V  
2.3 ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
UNIT  
MIN  
MAX  
all pins except A/PGND pins and pins listed  
below with respect to AGND  
–0.3  
6
V
VLDO1, VLDO2, VDDIO with respect to AGND  
–0.3  
–0.3  
3.6  
5.5  
V
V
Voltage  
Current  
pin VDCDC3 with respect to AGND  
pins SDATA, SCLK, DCDC3_SEL , GPIO_0,  
GPIO_1, CLK_REQ1, CLK_REQ2 , with  
respect to AGND  
–0.3  
VDDIO + 0.3  
V
all non power pins  
power pins  
5
2
mA  
A
Operating free-air temperature, TA  
Maximum junction temperature, TJ  
Storage temperature, TST  
–40  
–65  
85  
°C  
°C  
°C  
125  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
10  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
2.4 THERMAL INFORMATION  
TPS657120  
THERMAL METRIC  
YFF  
30 PINS  
58.8  
0.3  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
27  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ψJB  
26.9  
n/a  
θJCbot  
2.5 RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
DCDC CONVERTERS  
VINDCDC1, Input voltage range for step-down converter DCDC1, DCDC2, DCDC3  
2.8  
5.5  
V
VINDCDC2,  
VINDCDC3  
Output voltage range for step-down converter DCDC1, DCDC2  
Output voltage range for step-down converter DCDC3  
0.8  
0.1  
1
3.3  
3.6  
2.9  
2.2  
V
V
L1, L2  
L3  
Inductance at L1, L2  
Inductance at L3  
2.2  
1.5  
10  
22  
10  
6
μH  
μH  
μF  
μF  
μF  
μF  
1
(1)  
CVINDCDC1/2 Input Capacitance at VINDCDC1/2  
4.7  
10  
4.7  
2.0  
(1)  
CVINDCDC3  
Input Capacitance at VINDCDC3  
(1)  
COUTDCDC1,2 Output Capacitance at DCDC1 and DCDC2  
22  
12  
(1)  
COUTDCDC3 Output Capacitance at DCDC3  
LDOs; generic  
VINLDO1  
Input voltage range for LDO1  
2.0  
2.8  
5.5  
5.5  
V
V
VINLDO2 = Input voltage range for LDO2; as this pin is used as the analog suply voltage, it  
analog  
needs to be tied to VINDCDCx  
supply  
voltage  
VIN_ANA  
VLDO1  
VLDO2,  
,
Output voltage range for LDOs  
1.2  
0.5  
1
3.4  
V
(1)  
CINLDO1  
CINLDO2  
Input Capacitance on LDO supply pins  
μF  
μF  
(1)  
CoutLDO1,  
CoutLDO2  
Output Capacitance on LDO1, LDO2  
4.7  
VVDDIO  
CVDDIO  
C(C2V5)  
for RFFE interface at 1.2V or 1.8V  
Input Capacitance on VDDIO  
1.1  
100  
0.5  
47  
1.95  
V
nF  
μF  
nF  
capacitance at internal supply at pin C2V5  
1
10  
C(VREF1V0 bypass capacitance at internal reference VREF1V0  
)
100  
220  
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
–40  
–40  
85  
°C  
°C  
125  
(1) Ceramic capacitors show an effect called DC BIAS EFFECT. With a dc voltage applied to a ceramic capacitor , the effective capacitance  
is reduced. The table above therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance, the  
nominal value may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the LDOs of  
dcdc converters. Input capacitors need to be placed as close as possible to the pins of TPS657120.  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
11  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
2.6 Electrical Characteristics - general functions  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted), see parameter measurement information  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ISB  
IQ  
Standby Supply  
Current  
PWRON=LOW; total current in STANDBY state into pins  
VINDCDC1/2, VINDCDC3 and VIN_ANA  
55  
μA  
Quiescent Supply  
Current  
PWRON=HIGH, LDOs and DCDC converters =OFF  
60  
μA  
μA  
IQ  
Quiescent Supply  
Current  
PWRON=HIGH, LDO1 and LDO2 and DCDC1 and  
DCDC2 = enabled in normal mode  
170  
2.7 Electrical Characteristics - DCDC1/2  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted), see parameter measurement information  
PARAMETER  
Input Voltage Range  
TEST CONDITION  
MIN  
2.8  
TYP  
MAX  
5.5  
UNIT  
V
VIN  
VDCDC1  
VDCDC2  
VDCDC1  
VDCDC2  
IOUT(DCDCx)  
DCDCx Output  
Voltage Range  
25mV steps up to 2.2V; 50mV steps above 2.2V  
0.8  
3.3  
V
Default Output  
Voltage  
1.7  
V
2.65  
Continuous Output  
Current  
DCDC1 (VINDCDC1 2.8V)  
DCDC2 (VINDCDC2 2.8V)  
300  
250  
25  
mA  
IQ  
Quiescent Current  
Accuracy  
ILOAD = 0 mA, DCDCx_MODE = 0, Device not switching;  
for each DCDC1 and DCDC2  
16  
μA  
mA  
%
ILOAD = 0 mA, DCDCx_MODE = 1, Device switching; for  
each DCDC1 and DCDC2  
3.5  
VDCDC1/2  
DCDCx_MODE = 1, VIN = 3.0V to 5.5V, ILOAD = 0mA,  
tolerance is +/- 2% or +/-25mV whatever is larger  
–2  
-3  
2
DCDCx_MODE = 0, VIN = 3.0V to 5.5V, ILOAD = 0mA,  
+1% voltage scaling active  
1.25  
0.25  
2.4  
3.5  
%
Load Regulation  
DCDCx_MODE = 1, VIN = 3.0V to 5.5V; ILOAD = 25mA to  
225mA; for DCDC1 and DCDC2  
%/A  
MHz  
mΩ  
mΩ  
μA  
fSW  
Switching  
Frequency  
DCDCx_MODE = 1, VIN = 3.0V to 5.5V  
1.9  
2.6  
400  
350  
2
RDS(ON)  
RDS(ON)  
ILK_HS  
High Side FET On- for DCDC1 and DCDC2 with VINDCDCx = 3.6V, D =  
Resistance  
250  
220  
100%  
Low Side FET On-  
Resistance  
for DCDC1 and DCDC2 with VINDCDCx = 3.6V, D =  
100%  
High Side FET  
Leakage Current  
TJ = 85°C; DCDC1, DCDC2;  
VINDCDC1=VINDCDC2=5.5V  
ILK_LS  
Low Side FET  
Leakage Current  
TJ = 85°C; DCDC1, DCDC2;  
VINDCDC1=VINDCDC2=5.5V  
3
μA  
IHS_LIMF  
ILS_LIMF  
IHS_LIMF  
ILS_LIMF  
High Side Forward  
Current Limit  
2.9V VIN_DCDC1 5.5V; for DCDC1  
2.9V VIN_DCDC1 5.5V; for DCDC1  
2.9V VIN_DCDC2 5.5V; for DCDC2  
2.9V VIN_DCDC2 5.5V; for DCDC2  
VIN = 3.6V; VOUT = 1.7V to 2.65V; Io=10mA to 300mA;  
500  
500  
425  
425  
650  
650  
600  
600  
10  
800  
800  
775  
775  
25  
mA  
mA  
mA  
mA  
mVpp  
%
Low Side Forward  
Current Limit  
High Side Forward  
Current Limit  
Low Side Forward  
Current Limit  
DCDC1, DCDC2  
output voltage ripple L=1.5uH, RSL=50mR; Co=10uF  
efficiency  
VINDCDCx=3.7V, Vo=1.7V or Vo=2.65V; Io=80mA to  
150mA  
88  
80  
93  
efficiency  
efficiency  
VINDCDCx=3.7V, Vo=1.7V or Vo=2.65V; Io=300uA  
VINDCDCx=3.7V, Vo=1.7V or Vo=2.65V; Io=100uA  
%
%
45  
12  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
Electrical Characteristics - DCDC1/2 (continued)  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted), see parameter measurement information  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
pulse skipping  
threshold  
output current when device switches from PFM to PWM  
automatically; VIN = 3.6V, VOUT = 1.7V  
140  
mA  
output current when device switches from PFM to PWM  
automatically; VIN = 3.6V, VOUT = 2.65V  
60  
40  
PSRR  
power supply  
rejection ratio  
VIN = 3.6V, ILOAD = 150mA, 10Hz < f < 10kHz, Vo=1.7V  
and Vo=2.65V  
dB  
output noise  
VIN = 3.6V, ILOAD = 100mA, Vo=1.7V and Vo=2.65V  
1kHz < f < 100kHz  
μV/Hz  
2
100kHz < f < 1MHz  
0.2  
0.1  
1MHz < f < 10MHz; not including f(sw)  
VDCDCx falling  
VDCDCPG-falling  
VDCDCPG-rising  
tStart  
Power Good  
Threshold  
VDCDC  
x-15%  
VDCDC  
x-7%  
Power Good  
Threshold  
VDCDCx rising  
VDCDC  
x-3%  
Start-up time  
Time to start switching, measured from end of MIPI  
command enabling converter  
225  
μs  
tRamp  
VOUT Ramp UP time Time to ramp from 5% to 95% of VOUT  
Discharge resistor  
200  
600  
μs  
RDischarge  
250  
400  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
13  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
2.8 Electrical Characteristics - DCDC3  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted), see parameter measurement information  
PARAMETER  
TEST CONDITIONS  
MIN  
2.8  
TYP  
MAX  
5.5  
UNIT  
VIN  
Input Voltage Range  
V
output voltage defined by internal resistor divider;  
DCDC3_CTRL:VCON = 0  
0.8  
0.1  
3.60  
3.60  
DCDC3 Output  
Voltage Range  
VDCDC3  
V
output voltage defined by VCON input;  
DCDC3_CTRL:VCON = 1  
Continuous Output  
Current  
IOUT(DCDC3)  
IQ  
DCDC3  
2200  
46  
mA  
ILOAD = 0 mA, DCDC3_MODE = 0, Device not switching  
ILOAD = 0 mA, DCDC3_MODE = 1, Device switching  
26  
μA  
Quiescent Current  
6
mA  
DCDC3_MODE = 1, ILOAD = 0mA, TA = 25°C;  
COUT = 2 x 4.7uF + 2.2uF  
-2  
2
%
%
DCDC3_MODE = 1, ILOAD = 0mA, TA = –40 – 85°C;  
COUT = 2 x 4.7uF + 2.2uF  
-2.5  
2.5  
Accuracy; output  
voltage setting with  
register;  
DCDC3_CTRL:VCO  
N = 0  
DCDC3_MODE = 0, ILOAD = 0mA, TA = 25°C;  
COUT = 2 x 4.7uF + 2.2uF  
the output voltage tolerance is -3% / +3% or -45mV /  
+45mV whichever is larger  
-3  
-3  
3
3
5
%
%
%
VDCDC3  
DCDC3_MODE = 0, ILOAD = 0mA, TA = –40 – 85°C;  
COUT = 2 x 4.7uF + 2.2uF  
the output voltage tolerance is -3% / +3% or -45mV /  
+45mV whichever is larger  
Accuracy for VCON  
operation;  
DCDC3_CTRL:VCO  
N = 1  
Vo = 0.1V to 3.6V; COUT = 2 x 4.7uF + 2.2uF;  
PWM mode forced automatically; accuracy in VCON  
mode is +/- 5% or +/-25mV, whichever is larger  
-5  
Switching  
Frequency  
fSW  
DCDC3_MODE = 1 or DCDC3_CTRL:VCON = 1  
VIN_DCDC3 = 3.6V, 100% duty cycle  
VIN_DCDC3 = 3.6V, 0% duty cycle  
TJ = 85°C; VINDCDC3=4.2V  
2100  
2300  
75  
2700  
120  
180  
3
kHz  
mΩ  
mΩ  
μA  
High side MOSFET  
on-resistance  
RDS(ON)  
Low side MOSFET  
on-resistance  
110  
High side leakage  
current  
ILK_HS  
ILK_LS  
ILIM  
Low side leakage  
current  
TJ = 85°C; VINDCDC3=4.2V  
3
μA  
High side current  
limit  
2.9V VIN_DCDC3 5.5V  
2400  
2200  
1000  
3000  
2800  
1500  
200  
3600  
3400  
2000  
mA  
mA  
mA  
Low side current  
limit  
ILIM  
2.9V VIN_DCDC3 5.5V  
Low side negative  
current limit  
ILIM  
2.9V VIN_DCDC3 5.5V; EN_nILIM_xl=1  
Low side negative  
current limit  
ILIM  
2.9V VIN_DCDC3 5.5V; EN_nILIM_xl=0  
mA  
%
duty cycle range  
VIN = 3.6V  
2
100  
DCDC3 output  
voltage ripple  
VIN = 5V; VOUT = 3.4V; Io=2A; L=1.5uH, ESR=90mR;  
Co=10uF  
10  
50 mVpp  
mV  
DCDC3 load  
transient response  
VIN = 5V; VOUT = 3.4V; Io=200mA to 1.8A; L=1.5uH,  
ESR=90mR; Co=10uF; dt=10us  
100  
efficiency  
efficiency  
efficiency  
VINDCDCx=3.7V, Vo=3.4V; Io=1500mA  
VINDCDCx=3.7V, Vo=3.4V; Io=400mA  
VINDCDCx=3.7V, Vo=2.0V; Io=10mA  
80  
90  
80  
%
%
%
14  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
Electrical Characteristics - DCDC3 (continued)  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted), see parameter measurement information  
PARAMETER  
TEST CONDITIONS  
VIN = 3.6V, ILOAD = 100mA, Vo=2.65V  
1kHz < f < 100kHz  
MIN  
TYP  
MAX  
UNIT  
3
output noise  
μV/Hz  
100kHz < f < 1MHz  
0.2  
0.1  
1MHz < f < 10MHz  
Power Good  
Threshold  
VDCDC  
x-14%  
VDCDC  
x-7%  
VDCDCPG-falling  
VDCDCPG-rising  
tStart  
VDCDCx falling  
VDCDCx rising  
%
%
Power Good  
Threshold  
VDCDC  
x-5%  
Time to start switching, measured from end of RFFE  
command enabling converter  
Start-up time  
175  
μs  
Time to ramp from 5% to 95% of VOUT  
DCDC3_CTRL:IMMEDIATE = 1; VOUT = 3.4V  
;
tRamp  
VOUT Ramp UP time  
rise and fall time  
30  
30  
10  
μs  
μs  
μs  
dVo=+/-1V; Io=450mA; Co=10uF; DCDC3_SEL mode  
ramp time in VCON  
mode  
VCON input voltage  
range  
0.2  
2.1  
V
VCON slew rate  
300  
1
mV/μs  
MΩ  
VCON input  
resistance  
VCON gain  
typical adjustable range  
1.3  
-350  
250  
2.7  
0
VCON offset  
mV  
RDischarge  
Discharge resistor  
400  
500  
voltage between  
VINDCDC3 and  
VDCDC3  
5.5  
V
bypass switch  
current limit  
VINDCDCx= 2.8V to 5.5V; not tested in production  
2000  
2500  
10  
3000  
mA  
µs  
bypass switch  
current limit  
response time  
resistance from  
VINDCDC3 to  
VDCDC3  
bypass switch closed; not including the parallel path  
through high side switch and inductor  
100  
170  
10  
mΩ  
leakage current from  
VINDCDC3 to  
VDCDC3  
when bypass switch is open  
µA  
bypass switch over- sensed at VDCDC3; bypass enabled bit is cleared when  
voltage protection voltage is exceeded; rising edge  
4.0  
3.7  
V
V
bypass switch over- sensed at VDCDC3; bypass enabled bit is cleared when  
voltage protection voltage is exceeded; falling edge  
2.9 Electrical Characteristics - RF-LDOs  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted), see parameter measurement information  
PARAMETER  
TEST CONDITION  
LDO1  
MIN  
2.0  
TYP  
MAX  
5.5  
UNIT  
VIN  
Input Voltage  
V
LDO2, analog supply voltage input  
2.8  
5.5  
LDO Output Voltage  
range for RF-LDOs  
50mV steps  
1.2  
3.4  
V
VLDOx  
ECO = 0  
ECO = 1  
-2  
-5  
2
5
%
%
LDO Voltage  
Accuracy  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
15  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
Electrical Characteristics - RF-LDOs (continued)  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted), see parameter measurement information  
PARAMETER  
TEST CONDITION  
MIN  
10  
TYP  
MAX  
UNIT  
LDO1  
LDO Continuous  
Output Current  
IOUT(LDOx)  
ISHORT(LDOx)  
VDO(LDOx)  
mA  
LDO2  
10  
LDO1  
20  
80  
80  
LDO Current Limit  
mA  
mV  
LDO2  
20  
IOUT(LDO1) = 10mA; VINLDO1=2.0V  
IOUT(LDO2) = 10mA; VINLDO2=3.0V  
250  
250  
(1)  
Dropout Voltage  
Line Regulation  
VIN = VLDO + 0.5V & ILOAD = 10mA for LDO1 and for  
LDO2  
–1  
1
%
mV  
%
Load Regulation;  
ECO = 0  
LDO1 and LDO2: ILOAD = 50uA to 10mA  
LDO1 and LDO2: ILOAD = 0mA to 1mA  
dV/dt = ±0.5V/μs  
40  
5
Load Regulation;  
ECO = 1  
-5  
Line Transient  
Response  
-50  
50  
50  
mV  
mV  
dB  
Load Transient  
Response  
for LDO1 and LDO2: dI/dt = 100mA/μs; 1mA to 10mA load  
step  
Power Supply  
Rejection Ratio  
PSRR  
Iq  
f = 10Hz to 1kHz, VIN - VOUT 0.5V, ILOAD = 10mA  
63  
output voltage noise f = 10Hz to 100kHz, VIN - VOUT 0.5V , ILOAD = 10mA  
30  
µVrms  
µA  
ECO = 1; ILOAD 1mA for LDO1, LDO2  
Quiescent Current  
16  
40  
ECO = 0; ILOAD 10mA for LDO1, LDO2  
µA  
minimum wait time before the full current can be drawn  
after ECO is set 0  
ECO exit time  
50  
µs  
µs  
µs  
Time to ramp from 5% to 95% of VOUT ; IOUT = 10mA;  
tRamp  
VOUT Ramp Up time  
Co=4.7uF; Vo=1.8V  
850  
1000  
1200  
Time to ramp from 5% to 95% of VOUT ; IOUT = 10mA;  
tRamp  
VOUT Ramp Up time  
Co=4.7uF; Vo=2.8V  
1000  
VLDOPG-falling  
Power Good  
Threshold  
VDCDCx falling  
VLDOx-  
14%  
VLDOx-  
7%  
VLDOPG-rising  
Power Good  
Threshold  
VDCDCx rising  
VLDOx-  
5%  
Discharge  
RDischarge  
resistance at LDOx LDOx disabled  
output  
200  
325  
450  
(1) VDO = VIN - VOUT, where VOUT = VOUT(NOM) - 2%  
2.10 Electrical Characteristics – digital inputs, digital outputs  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)  
PARAMETER  
RFFE interface  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVDDIO  
VVDDIO  
IVIO-IN  
VDDIO voltage range  
VDDIO voltage range  
for VDDIO = 1.2V  
1.1  
1.2  
1.8  
1.3  
V
V
for VDDIO = 1.8V  
1.65  
1.95  
1.25  
I/O voltage average  
input current for SDATA,  
SCLK  
VDDIO=1.8V; average during a 26MHz write  
mA  
CL  
load capacitance  
half speed readback; not including TPS657120 pin  
capacitance  
50  
pF  
V
VOL  
Low Level Output  
Voltage for SDATA,  
SCLK  
IOL= 2mA  
0
0.2 x  
VDDIO  
16  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
Electrical Characteristics – digital inputs, digital outputs (continued)  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOH  
High Level Output  
Voltage for SDATA,  
SCLK  
IOH= -2mA  
0.8 x VDDIO  
VDDIO  
V
VTP  
VTN  
VTN  
VH  
INPUT: Positive Going  
Threshold Voltage  
for VDDIO = 1.2V or 1.8V  
0.4 x VDDIO  
0.7 x  
VDDIO  
V
V
INPUT: Negative Going for VDDIO = 1.2V  
Threshold Voltage  
0.28 x  
VDDIO  
0.6 x  
VDDIO  
INPUT: Negative Going for VDDIO = 1.8V  
Threshold Voltage  
0.3 x VDDIO  
0.6 x  
VDDIO  
V
INPUT: Hysteresis  
Voltage (VTP-VTN)  
for VDDIO = 1.2V or 1.8V  
0.1 x VDDIO  
0.4 x  
VDDIO  
V
VIORST  
IIH  
RFFE I/O voltage reset  
voltage level  
RFFE interface is in reset when VDDIO is below that  
voltage  
0.95  
V
SDATA = 0.8 x VDDIO  
SCLK = 0.8 x VDDIO  
SDATA = 0.2 x VDDIO  
SCLK = 0.2 x VDDIO  
-2  
-1  
-2  
-1  
10  
10  
5
uA  
IIL  
uA  
V
1
generic I/Os  
VIL  
VIL  
Low Level Input Voltage for PWRON  
0
0
0.4  
Low Level Input Voltage for GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 ,  
DCDC3_SEL; SDATA, SCLK  
0.3 x  
VDDIO  
VIH  
VIH  
High Level Input Voltage for PWRON pin  
1.1  
Vcc  
V
V
High Level Input Voltage for GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 ,  
DCDC3_SEL, SDATA, SCLK  
0.7 x VDDIO  
VDDIO  
VOL  
VOH  
VOH  
IOL  
Low Level Output  
Voltage  
IOL= 1mA for VDDIO=1.8V  
0
0.2  
VDDIO  
Vcc  
1
V
High Level Output  
Voltage  
for pins configured as push-pull ouput to VDDIO; IOH  
1mA for VDDIO=1.8V  
=
VDDIO-0.2V  
V
High Level Output  
Voltage  
for pins configured as open-drain ouput  
for VDDIO >/= 1.8V  
V
Low Level Output  
Current  
mA  
mA  
mA  
mA  
IOL  
Low Level Output  
Current  
for VDDIO = 1.2V  
0.1  
IOH  
IOH  
High Level Output  
Current  
for VDDIO >/= 1.8V  
1
High Level Output  
Current  
for VDDIO = 1.2V  
0.1  
ILKG  
Input Leakage Current  
input pins tied to VILor VIH  
0.2  
2
µA  
µs  
TdHL  
CLK_REQ1,  
CLK_REQ2,  
DCDC3_SEL delay for  
HIGH to LOW change  
TdLH  
TdLH  
CLK_REQ1,  
CLK_REQ2,  
DCDC3_SEL delay for  
LOW to HIGH change  
2
µs  
PWRON delay for LOW for TPS657120 in STANDBY mode going to ACTIVE  
to HIGH change  
4
+30%  
ms  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
17  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
2.11 Electrical Characteristics – Thermal Shutdown, undervoltage lockout  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Thermal Shutdown temperature rising  
threshold  
136  
148  
160  
°C  
Thermal Shutdown temperature  
hysteresis  
temperature falling  
20  
°C  
UVLO threshold  
UVLO threshold  
supply voltage rising  
supply voltage falling  
2.7  
2.6  
V
V
18  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
2.12 Electrical Characteristics – RFFE Timing parameters  
TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
for write access  
MIN  
TYP  
MAX  
26  
UNIT  
MHz  
MHz  
fCLK  
SCLK frequency  
0.032  
0.032  
fCLK_HALF  
SCLK half-speed  
frequency  
for read access  
13  
TSCLKIH  
TSCLKIL  
TS  
SCLK Input High Time  
SCLK Input Low Time  
Data Setup Time  
for full speed write access  
for full speed write access  
for VDDIO = 1.8V  
11.25  
ns  
ns  
ns  
ns  
ns  
ns  
11.25  
1
4
5
0
TS  
Data Setup Time  
for VDDIO = 1.2V  
TH  
Data Hold Time  
TD  
Time for Data Output  
Valid from SCLK rising  
edge  
TPS657120 is a half speed device for read operations  
22  
6.5  
10  
TSDATAOTRL  
SDATA Output  
Transition (Rise/Fall)  
Time  
2.1  
ns  
ns  
TSDATAZ  
Data drive release time  
2.13 MIPI RFFE 已接收时钟信号限制  
TSCLKIL  
TSCLKIH  
VTPmax  
VTNmin  
Figure 2-1. 已接收时钟信号限制  
2.14 MIPI RFFE 总线激活数据传输时序技术规格  
VTPmax  
SCLK  
VTNmin  
TD  
TD  
TSDATAOTR  
TSDATAOTR  
VOHmin  
SDATA  
VOLmax  
Figure 2-2. 总线激活数据传输时序技术规格  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
19  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
2.15 MIPI RFFE 总线驻停周期时序  
VOHmin  
(VTPmax  
)
SCLK  
VOLmax  
(VTNmin  
)
TSDATAZ  
VOHmin  
SDATA  
VOLmax  
Bus Park Cycle  
Signal driven  
Signal not driven; pull-down only  
TSDATAZ is measured from SCLK VOL level for the master device driving SCLK and SDATA line  
TSDATAZ is measured from SCLK VTN level for a device receiving SCLK and driving SDATA line  
Figure 2-3. 总线驻停周期时序  
2.16 MIPI RFFE 数据设置和保持时序  
VTPmax  
SCLK  
VTNmin  
TH  
TS  
TH  
TS  
VTPmax  
SDATA  
VTNmin  
Figure 2-4. 数据设置和保存计时  
20  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
2.17 典型特征  
2.17.1 参数测量信息  
如推荐运行条件中规定的那样(除 TA = 25°C 时的情况),已经使用具有无源组件的评估模块 (EVM) 生成  
这些图形,除非另外注明:  
L1 = L2 = DFE201610C-2R2  
L3 = DFE252010-1R5  
CoutDCDC12 = 10uF (GRM188R61A106ME69)  
CoutDCDC3 = 4.7uF + 2.2uF (GRM188R60J475KE19 + GRM185R60J225)  
CoutLDO12 = 4.7uF (GRM188R60J475KE19)  
图形的表格  
效率 DCDC1 与负载电流 / 脉宽调制 (PWM) 模式间的关系  
VO = 1.7VVI = 3.0V3.8V4.2V5.0V  
Figure 2-5  
Figure 2-6  
Figure 2-7  
Figure 2-8  
Figure 2-9  
Figure 2-10  
Figure 2-11  
Figure 2-12  
Figure 2-13  
Figure 2-14  
Figure 2-15  
Figure 2-16  
Figure 2-17  
Figure 2-18  
Figure 2-19  
Figure 2-20  
Figure 2-21  
Figure 2-22  
Figure 2-23  
效率 DCDC1 与负载电流 / 脉冲频率调制 (PFM) 模式间的关系 VO = 1.7VVI = 3.0V3.8V4.2V5.0V  
效率 DCDC2 与负载电流 / PWM 模式间的关系  
效率 DCDC2 与负载电流 / PFM 模式间的关系  
效率 DCDC3 与负载电流 / PWM 模式间的关系  
效率 DCDC3 与负载电流 / PFM 模式间的关系  
效率 DCDC3 与负载电流 / PWM 模式间的关系  
效率 DCDC3 与负载电流 / PFM 模式间的关系  
效率 DCDC3 与负载电流 / PWM 模式间的关系  
效率 DCDC3 与负载电流 / PFM 模式间的关系  
PWM 模式下的负载瞬态响应 DCDC1  
VO = 2.65VVI = 3.0V3.8V4.2V5.0V  
VO = 2.65VVI = 3.0V3.8V4.2V5.0V  
VO = 0.85VVI = 3.0V3.8V4.2V5.0V  
VO = 0.85VVI = 3.0V3.8V4.2V5.0V  
VO = 2.0VVI = 3.0V3.8V4.2V5.0V  
VO = 2.0VVI = 3.0V3.8V4.2V5.0V  
VO = 3.4VVI = 3.6V3.8V4.2V5.0V  
VO = 3.4VVI = 3.6V3.8V4.2V5.0V  
IO= 30mA 270 mAVO = 1.7VVI = 3.6V  
IO= 30mA 270 mAVO = 1.7VVI = 3.6V  
IO= 30mA 270 mAVO = 2.65VVI = 3.6V  
IO= 30mA 270 mAVO = 2.65VVI = 3.6V  
IO= 100mA 900 mAVO = 2.0VVI = 3.6V  
IO= 200mA 1800 mAVO = 3.4VVI = 3.8V  
VO= 1.7VVI = 3.6V 4.2VIO= 100mA  
VO= 1.7VVI = 3.6V 4.2VIO= 100mA  
PFM 模式下的负载瞬态响应 DCDC1  
PWM 模式下的负载瞬态响应 DCDC2  
PFM 模式下的负载瞬态响应 DCDC2  
PFM 模式下的负载瞬态响应 DCDC3  
PFM 模式下的负载瞬态响应 DCDC3  
PWM 模式下的线路瞬态响应 DCDC1  
PFM 模式下的线路瞬态响应 DCDC1  
PWM 模式下的线路瞬态响应 DCDC2  
VO= 2.65VVI = 3.6V 4.2V;电流 100mA 时的负载 =  
26.5Ω  
PFM 模式下的线路瞬态响应 DCDC2  
VO= 2.65VVI = 3.6V 4.2V;电流 100mA 时的负载 =  
26.5Ω  
Figure 2-24  
PFM 模式下的线路瞬态响应 DCDC3  
PFM 模式下的线路瞬态响应 DCDC3  
针对 DCDC1 的电源抑制比 (PSRR)  
针对 DCDC2 PSRR  
VO= 2.0VVI = 3.6V 4.2V;电流 1.25A 时的负载 = 1.6Ω Figure 2-25  
VO= 3.4VVI = 3.6V 4.2V;电流 1.1A 时的负载 = 3.1Ω  
VO = 1.7VVI= 3.6V;负载 = 80mA150mA  
VO = 2.65VVI= 3.6V;负载 = 80mA150mA  
VO = 2.0VVI= 3.6V;负载 = 80mA150mA  
VO = 3.4VVI= 3.6V;负载 = 80mA150mA  
IO= 1mA 9 mAVO = 1.8VVI = 3.6V  
Figure 2-26  
Figure 2-27  
Figure 2-28  
Figure 2-29  
Figure 2-30  
Figure 2-31  
Figure 2-32  
Figure 2-33  
针对 DCDC3 PSRR  
针对 DCDC3 PSRR  
PFM 模式下 LDO1 的负载瞬态响应  
PFM 模式下 LDO2 的负载瞬态响应  
线路瞬态响应 LDO1  
IO= 1mA 9 mAVO = 2.8VVI = 3.6V  
VO= 1.8VVI = 3.6V 4.2V;电流 10mA 时的负载 =  
180Ω  
线路瞬态响应 LDO2  
VO= 2.8VVI = 3.6V 4.2V;电流 10mA 时的负载 =  
280Ω  
Figure 2-34  
针对 LDO1 PSRR  
针对 LDO2 PSRR  
针对 LDO1 的外部噪声  
针对 LDO2 的外部噪声  
VO = 1.8V;负载 = 10mAVI = 2.7V3.3V  
VO = 2.8V;负载 = 10mAVI = 3.3V3.6V  
VO = 1.8V;电流 10mA 时的负载 = 180ΩVI= 3.6V  
VO = 2.8V;电流 10mA 时的负载 = 280ΩVI= 3.6V  
Figure 2-35  
Figure 2-36  
Figure 2-37  
Figure 2-38  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
21  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
图形的表格 (continued)  
启动 DCDC1DCDC2LDO1 LDO2  
VI= 3.6V;负载为开路  
Figure 2-39  
2.18 典型特征(继续)  
TA= 25°C 时测得的值,除非另外注明  
效率  
效率  
负载电流间的关系  
负载电流间的关系  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0 V  
90  
VIN = 3.8 V  
80  
VIN = 4.2 V  
70  
VIN = 5.0 V  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0 V  
VIN = 3.8 V  
VIN = 4.2 V  
VIN = 5.0 V  
ꢀꢁꢁ  
1m  
10m  
100m  
ꢀꢁꢁ  
1m  
10m  
100m  
C001  
C002  
Output Current (A)  
Output Current (A)  
Figure 2-5. PWM 模式,DCDC1VO = 1.7V  
Figure 2-6. PFM 模式,DCDC1VO = 1.7V  
效率  
效率  
负载电流间的关系  
100  
负载电流间的关系  
100  
VIN = 3.0 V  
90  
90  
80  
70  
60  
50  
VIN = 3.8 V  
80  
VIN = 4.2 V  
70  
VIN = 5.0 V  
60  
50  
40  
30  
20  
10  
0
40  
VIN = 3.0 V  
30  
VIN = 3.8 V  
20  
VIN = 4.2 V  
10  
VIN = 5.0 V  
100m  
0
ꢀꢁꢁ  
ꢀꢁꢁ  
1m  
10m  
100m  
1m  
10m  
C003  
C004  
Output Current (A)  
Output Current (A)  
Figure 2-7. PWM 模式,DCDC2VO = 2.65V  
Figure 2-8. PFM 模式,DCDC2VO = 2.65V  
22  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
TA= 25°C 时测得的值,除非另外注明  
效率  
效率  
负载电流间的关系  
负载电流间的关系  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0 V  
90  
VIN = 3.8 V  
80  
VIN = 4.2 V  
70  
VIN = 5.0 V  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0 V  
VIN = 3.8 V  
VIN = 4.2 V  
VIN = 5.0 V  
ꢀꢁꢁ  
1m  
10m  
100m  
1
ꢀꢁꢁ  
1m  
10m  
100m  
1
C005  
C007  
C009  
C006  
C008  
C010  
Output Current (A)  
Output Current (A)  
Figure 2-9. PWM 模式,DCDC3VO = 0.85V  
Figure 2-10. PFM 模式,DCDC3VO = 0.85V  
效率  
效率  
负载电流间的关系  
100  
负载电流间的关系  
100  
VIN = 3.0 V  
90  
90  
80  
70  
60  
50  
VIN = 3.8 V  
80  
VIN = 4.2 V  
70  
VIN = 5.0 V  
60  
50  
40  
30  
20  
10  
0
40  
VIN = 3.0 V  
30  
VIN = 3.8 V  
20  
VIN = 4.2 V  
10  
VIN = 5.0 V  
0
ꢀꢁꢁ  
ꢀꢁꢁ  
1m  
10m  
100m  
1
1m  
10m  
100m  
1
Output Current (A)  
Output Current (A)  
Figure 2-11. PWM 模式,DCDC3VO = 2.0V  
Figure 2-12. PFM 模式,DCDC3VO = 2.0V  
效率  
效率  
负载电流间的关系  
100  
负载电流间的关系  
100  
VIN = 3.6 V  
90  
90  
80  
70  
60  
50  
VIN = 3.8 V  
80  
VIN = 4.2 V  
70  
VIN = 5.0 V  
60  
50  
40  
30  
20  
10  
0
40  
VIN = 3.6 V  
30  
VIN = 3.8 V  
20  
VIN = 4.2 V  
10  
VIN = 5.0 V  
0
ꢀꢁꢁ  
ꢀꢁꢁ  
1m  
10m  
100m  
1
1m  
10m  
100m  
1
Output Current (A)  
Output Current (A)  
Figure 2-13. PWM 模式,DCDC3VO = 3.4V  
Figure 2-14. PFM 模式,DCDC3VO = 3.4V  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
23  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
TA= 25°C 时测得的值,除非另外注明  
PWM 模式下,DCDC1 的负载瞬态响应  
PFM 模式下,DCDC1 的负载瞬态响应  
Figure 2-15. IO= 30mA 270mA;  
VO = 1.7VVI = 3.6V  
Figure 2-16. IO= 30mA 270mA;  
VO = 1.7VVI = 3.6V  
PWM 模式下,DCDC2 的负载瞬态响应  
PFM 模式下,DCDC2 的负载瞬态响应  
Figure 2-17. IO= 30mA 270mA;  
VO = 2.65VVI = 3.6V  
Figure 2-18. IO= 30mA 270mA;  
VO = 2.65VVI = 3.6V  
PFM 模式下,DCDC3 的负载瞬态响应  
PFM 模式下,DCDC3 的负载瞬态响应  
Figure 2-19. IO= 100mA 900mA;  
VO = 2.0VVI = 3.6V  
Figure 2-20. IO= 200mA 1800mA;  
VO = 3.4VVI = 3.8V  
24  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
TA= 25°C 时测得的值,除非另外注明  
PWM 模式下,DCDC1 的线路瞬态响应  
PFM 模式下,DCDC1 的线路瞬态响应  
Figure 2-21. VO= 1.7VVI = 3.6V 4.2V;  
Figure 2-22. VO= 1.7VVI = 3.6V 4.2V;  
IO= 100mA  
IO= 100mA  
PWM 模式下,DCDC2 的线路瞬态响应  
PFM 模式下,DCDC2 的线路瞬态响应  
Figure 2-23. VO= 2.65VVI = 3.6V 4.2V;  
电流 100mA 时的负载 = 26.5Ω  
Figure 2-24. VO= 2.65VVI = 3.6V 4.2V;  
电流 100mA 时的负载 = 26.5Ω  
PFM 模式下,DCDC3 的线路瞬态响应  
PFM 模式下,DCDC3 的线路瞬态响应  
Figure 2-25. VO= 2.0VVI = 3.6V 4.2V;  
电流 1.25A 时的负载 = 1.6Ω  
Figure 2-26. VO= 3.4VVI = 3.6V 4.2V;  
电流 1.1A 时的负载 = 3.1Ω  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
25  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
TA= 25°C 时测得的值,除非另外注明  
针对 DCDC1 PSRR  
针对 DCDC2 PSRR  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
Load = 80 mA  
10  
Load = 150 mA  
0
Load = 80 mA  
Load = 150 mA  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
C011  
C012  
Frequency (Hz)  
Frequency (Hz)  
Figure 2-27. VO = 1.7VVI= 3.6V;  
负载 = 80mA150mA  
Figure 2-28. VO = 2.65VVI= 3.6V;  
负载 = 80mA150mA  
针对 DCDC3 PSRR  
针对 DCDC3 PSRR  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Load = 80 mA  
Load = 150 mA  
Load = 80 mA  
Load = 150 mA  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
C013  
C014  
Frequency (Hz)  
Frequency (Hz)  
Figure 2-29. VO = 2.0VVI= 3.6V;  
负载 = 80mA150mA  
Figure 2-30. VO = 3.4VVI= 3.6V;  
负载 = 80mA150mA  
PFM 模式下,LDO1 的负载瞬态响应  
PFM 模式下,LDO2 的负载瞬态响应  
Figure 2-31. IO= 1mA 9mA;  
VO = 1.8VVI = 3.6V  
Figure 2-32. IO= 1mA 9mA;  
VO = 2.8VVI = 3.6V  
26  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
TA= 25°C 时测得的值,除非另外注明  
线路瞬态响应  
线路瞬态响应  
LDO2  
LDO1  
Figure 2-33. VO= 1.8VVI = 3.6V 4.2V;  
电流 10mA 时的负载 = 180Ω  
Figure 2-34. VO= 2.8VVI = 3.6V 4.2V;  
电流 10mA 时的负载 = 280Ω  
针对 LDO1 PSRR  
针对 LDO2 PSRR  
100  
90  
90  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
20  
VIN = 2.7 V  
VIN = 2.7V  
10  
10  
V
= 3.3 V  
V
= 3.3 V  
IN
IN
0
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
C015  
C016  
Frequency (Hz)  
Frequency (Hz)  
Figure 2-35. VO = 1.8V;负载 = 10mA;  
VI = 2.7V3.3V  
Figure 2-36. VO = 2.8V;负载 = 10mA;  
VI = 3.3V3.6V  
针对 LDO1 的外部噪声  
针对 LDO2 的外部噪声  
1.4  
1.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
C017  
C018  
Frequency (Hz)  
Frequency (Hz)  
Figure 2-37. VO = 1.8V;电流 10mA 时的负载 =  
Figure 2-38. VO = 2.8V;电流 10mA 时的负载 =  
180Ω;  
280Ω;  
VI = 3.6V  
VI = 3.6V  
Copyright © 2013, Texas Instruments Incorporated  
器件特性  
27  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
TA= 25°C 时测得的值,除非另外注明  
启动  
DCDC1DCDC2,  
LDO1 LDO2  
Figure 2-39. VI= 3.6V;负载为开路  
28  
器件特性  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
3
详细说明  
3.1 线性稳压器  
此电源管理内核有 2 个具有不同输出电流能力的高 PSRR,低噪声 LDO。 可通过通信总线来单独设定每个  
LDO 的输出电压(请见 LDO 电压设置表),并且在 LDO 被启用时,转换立即发生。  
低静态电流(经济 (ECO))模式  
每个 LDO 配备有一个低静态电流模式,可通过将 ECO 为设定为 1 来分别启用或禁用此模式。  
输出放电  
每个 LDO 配备有一个输出放电位。 当这个位被设定为 1 时,如果 LDO 被禁用,LDO 的输出将被放电至接  
地电平(与一个 300Ω 的电阻器等效)。 如果 LDO 被启用,此放电位将被忽略。  
LDO 使能  
LDO 使能/禁用是灵活加电和断电状态机的部件。 每个 LDO 可被编程,这样的话,它在加电状态出现后的  
15 个时间槽中的任何一个中自动加电,或者由一个专用引脚控制加电。 引脚 CLK_REQ1 CLK_REQ2 可  
被映射到任一资源(LDO,直流到直流转换器)以启用或禁用 LDO。  
LDO 电压范围  
LDO 的输出电压范围介于 1.2V 3.3V 之间。  
LDO 电源正常比较器  
每个 LDO 的输出电压由一个内部电源正常比较器的监控。 其输出是设定和清零寄存器 PGOOD 内的  
PGOOD 位。 如果 LDO 被启用,但是 LDO 的输入电压低于 1V,那么电源正常位无效。  
3.2 降压转换器 DCDC1 DCDC2  
TPS657120 降压转换器在中等程度至重负载时以典型值为 2.25MHz 的定频脉宽调制 (PWM) 模式运行。 随  
DCDCx_MODE 位被设定为“0”,轻负载电流时,转换器可自动进入省电模式,并在 PFM 模式下运行。  
PWM 运行期间,此转换器使用一个独特的快速响应电压模式控制机制,此机制具有输入电压前馈以实现良  
好的线路和负载稳压,从而允许使用小型陶瓷输入和输出电容器。 在时钟信号发起的每个时钟周期开始时,  
高侧金属氧化物半导体场效应晶体管 (MOSFET) 开关被接通。 现在电流从输入电容,经由高侧 MOSFET  
开关,流经电感器,到达输出电容器和负载。 在这个阶段期间,在 PWM 比较器触发前,电流斜升,并且控  
制逻辑电路将关闭此开关。 电流限制比较器也可在超过高侧 MOSFET 开关的电流限值的情况下关闭此开  
关。 在一个防止击穿电流的关闭时间后,低侧 MOSFET 整流器被接通,并且电感器电流将斜降。 现在,电  
流从电感器流至输出电容器和负载。 它通过低侧 MOSFET 整流器返回电感器。  
下一个周期再次由关闭低侧 MOSFET 整流器,并且接通高侧 MOSFET 开关的时钟信号发起。 DCDC1 和  
DCDC2 间的 180°相移减少输入均方根 (RMS) 电流,并且将两个直流到直流转换器的运行同步。 反馈引脚  
(VDCDCx) 必须被直接接至直流到直流转换器的输出电压,并且一定不能连接外部电阻器网络。  
3.3 省电模式  
省电模式在 DCDCx_MODE 位被设定为“0”时启用。 如果负载电流减少,转换器将自动进入省电模式运行。  
省电模式期间,转换器跳过开关,并且以减少的频率在 PFM 模式中用尽可能小的静态电流运行,以保持高  
效率。 转换器通常将输出电压定位在比标称输出电压高出 +1%。 这个电压定位特性最大限度地减少由突然  
负载阶跃所导致的电压下降。 一旦的低侧 MOSFET 开关中的电感器电流变为零,这表示断续传导模  
式,PWM 模式转换为 PFM 模式。 省电模式期间,输出电压由一个 PFM 比较器进行监控。 当输出电压下  
降到 VOUT 标称值 +1% PFM 比较器阀值以下时,器件启动一个 PFM 电流脉冲。 高侧 MOSFET 开关  
将接通,并且电感器电流将斜升。 在接通时间终止后,在电感器电流变为零之前,此开关关闭,并且低侧  
MOSFET 开关打开。 此转换器实际上将一个电流传送至输出电容器和负载。 如果负载低于已传送的电流,  
输出电压将上升。 如果输出电压等于或高于 PFM 比较器阀值,此器件停止开关并进入一个典型流耗为  
25µA 的睡眠模式。  
Copyright © 2013, Texas Instruments Incorporated  
详细说明  
29  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
如果输出电压仍旧低于 PFM 比较器阀值,在达到 PFM 比较器阀值前,将进一步生成连续的 PFM 电流脉  
冲。 一旦输出电压下降到低于 PFM 比较器阀值,此转换器再次开始切换。 借助于快速信号阀值比较器,可  
以将 PFM 模式运行期间的输出电压纹波保持在较小的水平上。 PFM 脉冲受时间控制,这样可以通过电感  
器的值来更改被传递给输出电容器的电荷。 产生的 PFM 输出电压纹波和 PFM 频率直接取决于输出电容器  
的尺寸和电感器的值。 增加输出电容器值和电感器值将最大限度地减少输出纹波。 PFM 频率随着电感器值  
的减小和增大而下降和上升。 在 PFM 模式中不在支持输出电流的情况下,退出 PFM 模式并进入 PWM 模  
式。 通过将 Mode 引脚设定为高电平,可禁用省电模式。 然后,此转换器将运行在定频 PWM 模式中。  
3.4 动态电压定位(可选)  
这个特性在负载由轻到重以及由重到轻的负载阶跃发生时减少电压下冲/过冲。 它在省电模式中起作用,并  
且将输出电压稳定在比标称值高 1% 的水平上。 这为负载阶跃发生时的电压压降,以及抛负载时的电压增加  
提供了更多的净空。 动态电压定位是 TI 的一个可选特性集,并且可按照要求启用/禁用。  
3.5 软启动/使能  
降压转换器使能  
降压转换器使能/禁用是灵活加电和断电状态机的部件。 每个转换器可被编程,这样的话,它在加电状态出  
现后的 15 个时间槽中的任何一个中自动加电,或者由一个专用引脚控制加电。 引脚 CLK_REQ1  
CLK_REQ2 可被映射到任一资源(LDO,直流到直流转换器)以启用或禁用它。  
降压转换器软启动  
TPS657120 中的降压转换器有一个能够控制输出电压斜升的内部软启动电路。 在一个电气技术规格中定义  
的时间内,输出电压从其标称值的 5% 斜升至 95%。 这限制了启动期间转换器内的涌入电流,并且在使用  
电池或高阻抗电源时防止可能出现的输入电压压降。 此软启动电路在启动时间 tStart 终止后被启用。 对于  
DCDC3  
来说,有一个为启动和斜坡时间设定两个不同值的选项。  
对于要求快速响应的应用,设定  
DCDC3_CTRL:RAMP_TIME = 1。  
软启动期间,输出电压斜升的控制如 Figure 3-1 中所示。  
30  
详细说明  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
EN  
95%  
5%  
V
OUT  
t
t
RAMP  
Start  
Figure 3-1. 软启动  
3.6 针对 DCDC1DCDC2 DCDC3 的动态电压定位 (DVS)  
TPS657120 中的直流到直流转换器允许通过改变寄存器内容或者在 DCDCx_OP DCDCx_AVS 寄存器定  
义的设置之间切换来更改运行期间的输出电压。 DCDCx_OP DCDCx_AVS 寄存器之间的切换由引脚  
DCDC3_SEL 完成。 这个名称表示此引脚只用于 DCDC3,但是 DCDC1 DCDC2 可被映射至与 DCDC3  
一样的引脚,以便通过切换引脚来在两个不同输出电压间转换。 电压缩放功能的映射由针对每个转换器的  
DCDCx_CTRL  
寄存器位  
DCDCx_SEL_CTRL  
完成。  
当输出电压发生变化时,新的电压将在  
时,斜升至由  
DCDCx_CTRL:IMMEDIATE=1 时被立即斜升,或者在 IMMEDIATE 位被设定为  
0
DCDCx_CTRL:TSTEP 定义的转换率。执行转换率控制,这样的话,TSTEP 定义达到新的目标值前,从一  
个输出电压步进到下一个电压的时间,在,通过全部步长来步进。 当电压变化,此转换器被强制进入 PWM  
模式,以实现已定义的输出电压上升和下降时间。 对于 DCDC3 来说,当运行在 VCON 模式中时,DVS 未  
激活,但是转换器将按照 VCON 上的模拟信号运行。  
在设定时间内,将输出电压斜升至目标值的 DVS 状态机在转换器被禁用时自动被禁用。 因此,只有在转换  
器起作用时才处理电压变化。 如果转换器被禁用,现在寄存器内的目标电压值随着特定的 TSTEP 设置发生  
变化,转换器被启用时,DVS 将开始斜升至目标值。 对于两个最慢 TSSTEP 设置,转换器的 130us 初始  
使能延迟将不足以覆盖此斜升时间。 这将导致一个电压在加电期间仍旧斜升至新的目标值。  
3.7 100% 占空比低压降运行  
一旦输入电压接近标称输出电压,此器件开始进入 100% 占空比模式。 为了保持此输出电压,在一个或更  
多周期内,高侧 MOSFET 开关 100% 接通。 随着进一步的减少 VIN,高侧 MOSFET 开关完全接通。 在这  
个情况下,此转换器提供一个低输入到输出电压差异。 为了充分利用整个电池电压范围以实现最长的运行时  
间,这一特性在电池供电类应用中特别有用。 保持稳压的最小输入电压取决于负载电流和输出电压,计算方  
法如下:  
VINmin = VOmax + IOmax (RDS(on)max + RL)  
在这里,  
IOmax = 最大输出电流加上电感器纹波电流  
RDS(on)max = 最大高侧开关 RDS(on)  
RL = 电感器的直流电阻  
VOmax = 标称输出电压加上最大输出电压耐受值  
3.8 180°异相操作  
PWM 模式中,此转换器以 PMOS(高侧)晶体管的 180°接通相移运行。 这防止了两个转换器的高侧开  
关同时接通,并因此使输入电流变得平滑。 这一特性减少了汲取自电源的浪涌电流。  
3.9 针对 DCDC1DCDC2DCDC3LDO1 LDO2 的欠压闭锁  
欠压闭锁电路防止器件在低输入电压时出现故障,并且防止电池过度放电。 它在过低输入电压时禁用直流到  
直流转换器和 LDO。 请见欠压闭锁阀值电压电气特性。  
Copyright © 2013, Texas Instruments Incorporated  
详细说明  
31  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
3.10 输出电压放电  
直流到直流转换器和 LDO 包含一个输出电容器放电特性,此特性在直流到直流转换器或 LDO 被禁用时将电  
容器放电。  
3.11 短路保护  
所有输出受到电气技术规格中定义的最大输出电流的短路保护。  
3.12 输出电压监控  
内部电源正常比较器监视开关稳压器输出,并且检测输出电压何时低于目标值。 电源管理内核用这些信息来  
设置和清零寄存器集合内相应的电源正常位。 一个开关稳压器的单独电源正常比较器将在稳压器被禁用或者  
稳压器的电压从一个设定点转换为另外一个设定点时消隐。  
3.13 降压转换器和 LDO 启用;引脚 CLK_REQ1 CLK_REQ2  
降压转换器和 LDO 使能/禁用是灵活加电和断电状态机的部件。 可以对于每个转换器进行编程,这样的话,  
它在加电状态后 8 个时间槽的开头自动加电。 或者,可将一个资源映射至一个控制使能功能的专用引脚。  
引脚 CLK_REQ1 CLK_REQ2 为任一资源(LDO,直流到直流转换器)处理这个功能来启用或禁用它。  
只要一个资源未映射到一个引脚,此使能位定义此状态。 如果一个资源被映射到一个引脚,使能位的状态被  
忽略,并且此引脚控制此使能功能。  
一旦一个资源被映射到 CLK_REQ1 引脚,并且在那个引脚上有一个下降边沿,所有 _OP _AVS 寄存  
器(对于全部资源来说)被重新载入它们的 OTP 缺省设置。 对于芯片的修订版本 1.0,根据任何一个  
CLK_REQ 引脚的下降边沿来载入缺省设置。 在重新载入寄存器的 25us 时间内,RFFE 接口处于复位状  
态,并且不能进行通信。 RFFE 接口也在 CLK_REQx 引脚的一个上升边沿后的 2.5us 期间内被保持在复位  
状态。 CLK_REQ 映射应该在 2us 设置时间内完成 - 例如,CLK_REQ 引脚应该在引脚被映射到一个缺省情  
况下打开的转换器之前具有一个稳定的 2us 高电平。  
3.14 降压转换器 DCDC3  
DCDC3 被用作 RF 功率放大器 (RF_PA) 的电源。 它的高达 2.5A 的输出电流可实现与 2G/3G 4G 放大  
器的运行。 相对于输出电压的设定方式,有两个不同的运行模式:  
由 用于 3G/4G 的寄存器 DCDC3_OP DCDC3_AVS 设定;输出电压范围在 0.8V 3.8V 之间;允许  
PWM/PFM 模式运行  
由 可选择用于 2G 的引脚 VCON 上的模拟信号设定;输出电压范围在 0.1V 3.8V 之间;只适用于强  
PWM 模式;细节请见 VCON DECODER  
引脚 DCDC3_SEL 可被映射至 3 个降压转换器中的任何一个,但是通常只用于 DCDC3。 它可以根据  
DCDC3_OP DCDC3_AVS 在电压设置间切换。 对于每个电压设置,DCDC3_OP DCDC3_AVS 包含  
设定 DCDC3 输出电压、强制 PWM 模式,还有打开/闭合 BYPASS(旁路)开关的位。  
3.15 DCDC3_SEL 控制  
3.15.1 DCDC3_SEL 控制 - 电压映射选项  
DCDC3_SEL 引脚允许在定义 DCDC3 运行参数的两个不同寄存器之间进行选择,例如:  
DCDC3 输出电压  
DCDC3 PWM PFM 模式间的关系  
DCDC3 旁路开关的打开/闭合  
DCDC3_SEL 的状态定义两个寄存器中的哪个寄存器被用来定义运行参数,以及通过转换引脚来实现两个寄  
存器之间的切换。  
DCDC3_SEL = 低电平:参数由 DCDC3_OP 定义  
DCDC3_SEL = 高电平:参数由 DCDC3_AVS 定义  
除了 DCDC3DCDC1 /DCDC2 应该被映射至 DCDC3_SEL 引脚,以便根据引脚状态来改变它们的输  
出电压。  
32  
详细说明  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
3.15.2 DCDC3_SEL 控制 - 针对 DCDC3 DCDC3_SEL 的负电流限制来映射使能信号;额外选  
项只用于修订版本 1.1 和更高版本  
除了上面的功能,为了启用和禁用 DCDC3 的负电流限制,可映射 DCDC3_SEL 引脚。 这个选项也许在高  
斯最小频移键控 (GMSK) 斜升情况下有用。 在一个正斜坡期间,DCDC3 控制环路也许在具有斜升支持情况  
(DCDC3_EN_UP = 1) 反调节。 在这个情况下,禁用 DCDC3 的负电流限制将有助于获得一个平滑的斜  
升波形。 对于一个 GMSK 下降边沿,需要负电流限制来确保一个快速向下斜坡,所以需要将其启用。 为了  
快速启用和禁用负电流限制,此功能可被映射至引脚  
DCDC3_SEL。  
此映射由位  
SPARE0:nILIM_MAPPING 完成。 如果这个位被设定为 1,那么根据 DCDC3_SEL 引脚的状态来启用或禁  
用负电流限制,在一个 GMSK 周期内,应该驱动相应的 n。 这个映射不选通,也不由其它映射选项选通,  
所以要在不需要的情况下确保此电压映射被禁用。 位 SPARE0:EN_nILIM_x1 必须在映射完成前(通过将  
SPARE0:nILIM_MAPPING 设定为 1)至少 50us 内被设定为 1。 细节请见 SPARE0 的寄存器说明。  
3.16 旁路开关  
有一个用于 DCDC3 的旁路开关,此 DCDC3 具有降压转换器的旁路开关和功率级间共用的输入引脚。 根据  
寄存器 DCDC3_OP DCDC3_AVS 中定义的 EN_BYPASS 的设置来手工驱动此开关。  
有一个感测 DCDC3 输出的过压保护 (OVP)(阀值 4.0V),以便在旁路开关被闭合,并且来自一个未经调  
节充电器/电源路径的电源电压直接上升至 5V 时保护由 DCDC3 供电的 RF-PA。 在这个情况下,旁路开关  
被强制为打开状态,而与 EN_BYPASS 的设置无关。 位 DCDC_CONTROL:DCDC3_OVP 在一个 OVP  
事件发生时被设定为“1”,并且需要用软件清零,以便使用 EN_BYPASS 再次闭合旁路开关。  
当旁路开关被闭合时,DCDC3 PWM 模式被阻断,并且它的高侧开关被强制接通。  
3.17 DCDC3 输出电压斜升支持。  
有一个确保  
DCDC3  
上快速输出电压变化的电路。  
这通过自动禁用旁路开关来完成,以便在独立于  
EN_BYPASS 设置的情况下支持 DCDC3 斜升至较高的输出电压。 在一个 OVP 事件中,当 DCDC3_OVP  
被设定时,斜升支持被禁用,并且必须将 DCDC3_OVP 清零,以实现斜升支持电路的正确运行。 此外,可  
通过将 DCDC3_EN_UP 清零来禁用斜升支持。 此外,有一个确保 DCDC3 快速斜降的斜降支持。 此功能  
可在独立于 DCDC3_EN_DWN 斜升支持的情况下被禁用,并且不受 OVP 状态的影响。  
从芯片修订版本 1.1 开始,位 DCDC3_S2 DCDC3_S1 已经被添加到寄存器 DCDC_CONFIG1 中。 这  
些位可实现斜升支持电路的阀值更改,并因此实现 VCON 变换期间对输出电压上升边沿形状的调整。  
如下所示,有几个用来控制斜升支持功能的寄存器位。  
DCDC_CONFIG:DCDC3_EN_UP:启用针对上升 VCON / 输出电压的斜升支持  
DCDC_CONFIG:DCDC3_EN_DWN:启用针对下降 VCON / 输出电压的斜升支持  
DCDC_CONFIG:DCDC3_DWN_2X:将斜降电路中的电流加倍,以加速向下斜坡  
DCDC_CONFIG:DCDC3[S2:S1]:定义斜升支持停止时低于标称输出电压的阀值  
SPARE0:EN_nILIM_xl:启用或禁用 DCDC3 中的负电流限制;一个大电流限值加速 Vout 的下降边沿  
SPARE0:EN_FAST_RAMPVout 的上升边沿进一步加速;由于设置时会导致过冲,所以建议将这个位  
保持清零  
斜升和斜降支持电路在 GMSK 斜升期间使用,此时,VCON 输入被驱动,以定义 DCDC3 输出电压。 建议  
DCDC3 转换器未运行在 VCON 模式中时(此时 DCDC3_CTRL:VCON = 0)将斜升支持保持在禁用状  
态。  
3.18 VCON 解码器  
VCON 解码器可通过到引脚 VCON 的模拟信号来控制 DCDC3 的输出电压。 VCON 解码器的增益和偏移可  
由寄存器 VCON 调节。 通常情况下,它将由范围在 0mV(或 200mV)至 2100mV 之内的输入电压驱动。  
VCON 运行中,不论寄存器 DCDC3_OP DCDC3_AVS DCDC3_MODE 的设置如何,DCDC3 被  
强制以定频 PWM 模式运行。 此外,将 VCON 设定为 1 来将转换器强制启用,与是否映射 ENABLE 位的  
状态或 CLK_REQ 信号的状态无关。  
增益和偏移设置在针对 VCON 寄存器的寄存器说明中。 DCDC3 斜升支持也被用在 VCON 模式中,以确保  
输出电压的快速变换。  
Copyright © 2013, Texas Instruments Incorporated  
详细说明  
33  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
VCON 模式下的 DCDC3 输出电压被定义为:Vout = V(VCON) x 增益 + Voffset  
DCDC3 的典型输出电压范围介于 100mV 3.5V 之间时,缺省增益和偏移设置为:  
增益:1.8  
Voffset-250mV  
3.19 热监控和关断  
这是一个监控器件结温的热保护模块。  
当达到热关断温度阀值时,在复位情况下设置 TPS657120,并且发起到 STANDBY(待机)状态的变换。  
在芯片温度已经减少到低于热关断阀值之前,将不会考虑器件的 POWER ON(加电)使能条件。  
热保护在 ACTIVE(激活)状态下被启用。 在 STANDBY ACTIVE 状态变换期间,热保护被自动启用,  
并且将在由热关断事件导致的关闭序列之后的 STANDBY 状态中保持启用。 当芯片温度下降到低于热关断  
温度阀值时,将启动从 STANDBY 状态的恢复(接通序列)。 在过热事件发生时,所有资源同时断电。  
3.20 GPIO  
TPS657120 中有 2 GPIO。 如果输出级被设定为推挽方式,它拉至由 VDDIO 设定的高压。 当  
VDDIO VDDIO 欠压闭锁以下时,高侧驱动器被禁用,并且输出被设定为开漏。 GPIO 的缺省状态被定义  
为一个状态为低电平的输出。 此外,GPIO 允许选择添加一个内部 4.7kR 的下拉电阻器。  
或者,可设定一个 GPIO,这样的话,通过将 GPIO_CFG 设定为 1 来将其分配给加电排序。 在这个情况  
下,将根据 GPIOx:GPIO_SET 内的定义在内部加电排序定义的 8 个时间槽中的一个时间槽内设定 GPIO 输  
出。  
VDDIO  
output enable  
GPIO_CFG  
open drain enable  
GPIO_ODEN  
backgate  
switch  
GPIOx  
DATA IN  
4.7k  
DATA OUT  
pull-down enable  
GPIO_PDEN  
Figure 3-2. GPIO 块  
34  
详细说明  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
3.21 nRESET 输入;ADR_SELECT 输入  
可选择将 GPIO0 GPIO1 分配为 nRESET 输入或 ADR_SELECT 输入,按照寄存器说明来定义 USID[0]  
位。 如下所述,由 GPIOx 寄存器中的一个位来选择其他功能:  
GPIO0 (nRESET) 详细说明:  
GPIO0:nRESET=0: 此引脚根据 OTP 编程被用作一个 GPIO。 然而,在复位状态中,在内部 OTP 被读  
取前,此引脚缺省为一个 nRESET 输入,所以,为了退出复位并加载 OTP,需要按照缺省值将此引脚上  
拉至一个逻辑高电平,将其重新配置为 GPIO。  
GPIO0:nRESET=1(缺省 OTP 设置): 此引脚被用作一个低电平有效复位输入。 为了退出复位,并且  
允许 TPS657120 进入待机状态,需要从外部将此引脚上拉至逻辑高电平。 在 GPIO0:nRESET = 1 时,  
此引脚被自动配置为一个独立于 GPIO0:GPIO_CFG 设置的输入。  
GPIO1 (ADR_SELECT) 详细说明:  
GPIO1:ADR_SELECT=0:此引脚被用作 GPIO  
GPIO1:ADR_SELECT=1(缺省 OTP 设置): 此引脚缺省情况下为 GPIO,一旦在引导阶段读取内部  
OTP,此引脚被设定为一个地址选择位。 在 GPIO1:ADR_SEL = 1 时,此引脚被自动配置为独立于  
GPIO1:GPIO_CFG 设置的输入。 引脚 ADR_SELECT 上的一个状态变化将立即生效,所以可通过改变  
此引脚状态来随时更新 USID[0]。  
3.22 电源状态机  
此嵌入式电源控制器 (EPC) 管理器件的状态,并控制加电序列。  
EPC 将支持以下状态:  
无电源: 主电池电源电压不足以为内部 LDO 和带隙供电。 器件上的所有元件关闭。  
引导阶段(读取 OTP): 内部电源和带隙激活,并且器件正在从 OTP 内存中读取其配置数据。  
待机: 内部电源和带隙激活,寄存器缺省设置已被载入,并且器件正在等待 PWRON 变为高电平来启动  
加电序列  
激活: 符合器件 POWER ON(加电)使能条件,经稳压电源接通,或者可被启用为支持完全电流功  
能。 复位被释放;接口激活  
3.23 内部加电和断电排序的执行  
TPS657120 允许加电(从 STANDBY 变为 ACTIVE 状态)以及断电(从 ACTIVE 变为 STANDBY 状态)  
期间的资源内部使能。 在 TI 编辑的 OTP 内存中定义内部加电排序。 此排序可在加电和断电期间的 8 个时  
间槽内启用资源。 一个资源可以与这些 8 个时间槽中的任何一个时间槽相关联,这些时间槽将在断电期间  
以相反的方向进行处理。 时间槽间的延迟被固定为 500us。  
资源包括:  
降压转换器  
LDO  
GPIO  
可以配置非自动排序资源,这样的话,它们由外部引脚或它们寄存器集中的使能位启用。 请见降压转换器使  
3.24 针对推挽输出级/接口的 VDDIO 电压  
推挽输出级被上拉至高电平,此电压被施加在用于以下引脚的 VDDIO 引脚上:  
SDATA  
GPIO01:只适用于推挽方式  
接口引脚 SDATA SCLK 上的信号电平为 VDDIO 电平。 一定不能施加超过 VDDIO 上电压电平的电压。  
Copyright © 2013, Texas Instruments Incorporated  
详细说明  
35  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
3.25 TPS657120 接通关闭操作  
TPS657120 内的加电排序是灵活且可被设置的,这样的话,它可以在向下排序被反转时以任一顺序为转换  
器和 LDO 加电,或者所有转换器和 LDO 同时加电。  
3.25.1 TPS657120 加电  
如果 PWRON 被接至电源电压,这样的话,TPS65712 在输入电压高于 UVLO 阀值并且内部引导阶段完成  
时启动其加电排序。  
Vin /  
VIN_LDO2  
internal  
Reference  
System  
V(C2V5)  
internal supply  
RFFE interface is active in  
ACTIVE state only  
BOOT PHASE /  
READ OTP  
READ  
OTP  
REVERSE PWR_UP  
SEQUENCING  
STAND  
BY  
PWR_UP  
STAND  
BY  
NO  
ACTIVE  
STATE  
SEQUENCING  
PWR  
3ms  
PWRON  
START-UP sequencing is defined by register setting to be  
in any out of 8 time slots for each converter  
VLDO1  
VLDO2  
VDCDC1  
VDCDC2  
8 x 500us  
Iq  
30uA  
35uA  
VDCDC3  
DCDC3 disabled by device  
going to STANDBY  
DCDC3 enabled (or disabled) by register Bit  
Figure 3-3. TPS657120 加电  
3.25.2 驱动 DCDC1DCDC2 LDO1 TPS657120 PWR_REQ  
一旦 CLK_REQ1 CLK_REQ2 引脚被启用用来控制 DCDC1DCDC2 LDO1,这些转换器 / LDO 在这  
些引脚中任何一个被驱动为高电平时启用。  
36  
详细说明  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
Vin  
PWRON  
500us  
VDCDC1,  
VDCDC2,  
LDO1  
MIPI:  
enable CLK_REQ control  
CLK_REQ1  
or  
CLK_REQ2  
Figure 3-4. TPS657120 断电  
Copyright © 2013, Texas Instruments Incorporated  
详细说明  
37  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
3.26 MIPI RFFE 接口  
有一个基于修订版本 1.00.00 技术规格的 MIPI RFFE 兼容接口。 此接口只在 TPS657120 ACTIVE 状态  
中激活 - 请见加电时序图。 当 CLK_REQx 上的下降边沿触发 _OP _AVS 寄存器重新载入时,一旦任何  
直流到直流转换器或 LDO 被映射到那个引脚,就无法进行 RFFE 通信。 在将 OTP 内容重新载入寄存器的  
25us 时间内,RFFE 接口保持在复位状态。 RFFE 接口也在 CLK_REQx 引脚的一个上升边沿后的 2.5us  
期间内被保持在复位状态。 从地址位 SA3...SA0 MIPI RFFE 技术规格中定义的唯一从地址识别符  
(USID)”等效。 如 RFFE 技术规格中定义的那样,这些位位于寄存器 USID 中,以及其他位于 0x1C 0x1F  
地址区间内的 RFFE 预定义寄存器 PM_TRIGPRODUCT_ID MANUFACTURER_ID。  
3.26.1 MIPI RFFE 写入周期  
SCLK  
A
SDATA  
SA3  
SA2  
SA1  
SA0  
0
1
0
A4  
A3  
A2  
A1  
A0  
P
Register Write command frame  
SSC  
SCLK  
A
0
SDATA  
P
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
Data frame  
Bus  
park  
Signal driven by BOM or Request Capable Slave  
(SCLK always driven by BOM only)  
Signal not driven; pull-down only.  
For reference only  
Figure 3-5. RFFE 写入周期  
38  
详细说明  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
3.26.2 MIPI RFFE 读取周期  
SCLK  
A
SDATA  
SA3  
SA2  
SA1  
SA0  
0
1
1
A4  
A3  
A2  
A1  
A0  
P
SSC  
Register Read command frame  
SCLK  
A
SDATA  
P
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
0
Bus  
park  
Data frame  
Bus  
park  
Signal driven by BOM or Request Capable Slave  
(SCLK always driven by BOM only)  
Signal not driven; pull-down only.  
Signal driven by slave  
For reference only  
Figure 3-6. RFFE 读取周期  
Copyright © 2013, Texas Instruments Incorporated  
详细说明  
39  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
4
内存映射  
4.1 寄存器说明  
DCDC1_CTRL(1); Register Address: 00h  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ENABLE  
RSVD  
IMMEDIATE  
TSTEP[1]  
TSTEP[0]  
DCDC1_  
SEL_CTRL  
DCDC1_CLK_  
REQ2_CTRL  
DCDC1_CLK_  
REQ1_CTRL  
(1)  
OTP  
r/w  
0
1
0
0
0
0
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r
ENABLE  
0 DCDC1 Disabled  
1 DCDC1 Enabled  
(1) DCDC1 Enabled during automatic power-up sequence  
0 a voltage change of DCDC1 will be done based on the settings of TSTEP[1:0]  
IMMEDIATE  
1 a voltage change of DCDC1 will be done bypassing the voltage change state machine and therefore is limited by the response of the  
DCDC1 converter only. With IMMEDIATE=1, TSTEP[1,0] do not define the slope of the voltage change but the time PWM mode is forced  
to ensure a steep transition of the output voltage.  
TSTEP[1:0]  
RSVD  
Time step: when changing the output voltage, the new value is reached through successive voltage steps (if not bypassed). The equivalent  
programmable slew rate of the output voltage is shown in Table 4-1  
Unused bit, should be written to 0  
DCDC1_SEL_CT 0 DCDC1 output voltage / MODE settings are defined by DCDC1_OP register  
RL  
1 DCDC1 output voltage / MODE settings are defined by status of pin DCDC3_SEL  
DCDC3_SEL = LOW := voltage / MODE settings are defined by DCDC1_OP  
DCDC3_SEL = HIGH := voltage / MODE settings are defined by DCDC1_AVS  
DCDC1_CLK_RE 0 DCDC1 enable function not mapped to CLK_REQ1 pin; DCDC1 enabled by ENABLE Bit or internal power-up sequencing setting  
Q1_CTRL  
1 DCDC1 enable function mapped to pin CLK_REQ1; ENABLE bit is don´t care, CLK_REQ1= LOW := DCDC1 = off, CLK_REQ1= HIGH :=  
DCDC1 = on  
DCDC1_CLK_RE 0 DCDC1 enable function not mapped to CLK_REQ2 pin; DCDC1 enabled by ENABLE Bit or internal power-up sequencing setting  
Q2_CTRL  
1 DCDC1 enable function mapped to pin CLK_REQ2; ENABLE bit is don´t care, CLK_REQ2= LOW := DCDC1 = off, CLK_REQ2= HIGH :=  
DCDC1 = on  
Note: CLK_REQ1 and CLK_REQ2 are logically OR´d, as soon as either one is HIGH, DCDC1 is enabled  
(1) Register reset on Power On Reset (POR)  
40  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
DCDC2_CTRL(1); Register Address: 01h  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ENABLE  
RSVD  
IMMEDIATE  
TSTEP[1]  
TSTEP[0]  
DCDC2_  
SEL_CTRL  
DCDC2_CLK_  
REQ2_CTRL  
DCDC2_CLK_  
REQ1_CTRL  
(1)  
OTP  
r/w  
0
1
0
0
0
0
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r
ENABLE  
0 DCDC2 Disabled  
1 DCDC2 Enabled  
(1) DCDC2 Enabled during automatic power-up sequence  
0 a voltage change of DCDC2 will be done based on the settings of TSTEP[1:0]  
IMMEDIATE  
1 a voltage change of DCDC2 will be done bypassing the voltage change state machine and therefore is limited by the response of the  
DCDC2 converter only. With IMMEDIATE=1, TSTEP[1,0] do not define the slope of the voltage change but the time PWM mode is forced  
to ensure a steep transition of the output voltage.  
TSTEP[1:0]  
RSVD  
Time step: when changing the output voltage, the new value is reached through successive voltage steps (if not bypassed). The equivalent  
programmable slew rate of the output voltage is shown in Table 4-1  
Unused bit, should be written to 0  
DCDC2_SEL_CT 0 DCDC2 output voltage / MODE settings are defined by DCDC2_OP register  
RL  
1 DCDC2 output voltage / MODE settings are defined by status of pin DCDC3_SEL  
DCDC3_SEL = LOW := voltage / MODE settings are defined by DCDC2_OP  
DCDC3_SEL = HIGH := voltage / MODE settings are defined by DCDC2_AVS  
DCDC2_CLK_RE 0 DCDC2 enable function not mapped to CLK_REQ1 pin; DCDC2 enabled by ENABLE Bit or internal power-up sequencing setting  
Q1_CTRL  
1 DCDC2 enable function mapped to pin CLK_REQ1; ENABLE bit is don´t care, CLK_REQ1= LOW := DCDC2 = off, CLK_REQ1= HIGH :=  
DCDC2 = on  
DCDC2_CLK_RE 0 DCDC2 enable function not mapped to CLK_REQ2 pin; DCDC2 enabled by ENABLE Bit or internal power-up sequencing setting  
Q2_CTRL  
1 DCDC2 enable function mapped to pin CLK_REQ2; ENABLE bit is don´t care, CLK_REQ2= LOW := DCDC2 = off, CLK_REQ2= HIGH :=  
DCDC2 = on  
Note: CLK_REQ1 and CLK_REQ2 are logically OR´d, as soon as either one is HIGH, DCDC2 is enabled  
(1) Register reset on Power On Reset (POR)  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
41  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
DCDC3_CTRL(1); Register Address: 02h  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ENABLE  
VCON  
IMMEDIATE  
TSTEP[1]  
TSTEP[0]  
DCDC3_  
SEL_CTRL  
DCDC3_CLK_  
REQ2_CTRL  
DCDC3_CLK_  
REQ1_CTRL  
0
0
1
0
0
1
0
0
OTP  
r/w  
OTP  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
ENABLE  
0 DCDC3 Disabled  
1 DCDC3 Enabled  
(1) DCDC3 Enabled during automatic power-up sequence  
0 DCDC3 output voltage defined by _OP or _AVS  
1 DCDC3 output voltage defined by pin VCON  
VCON  
With VCON = 1, DCDC3 is enabled independently of the ENABLE bit and the converter is forced to PWM independently of DCDC3_MODE  
defined in either DCDC3_OP or DCDC3_AVS.  
IMMEDIATE  
TSTEP[1:0]  
0 a voltage change of DCDC3 will be done based on the settings of TSTEP[1:0]  
1 a voltage change of DCDC3 will be done bypassing the voltage change state machine and therefore is limited by the response of the  
DCDC3 converter only. With IMMEDIATE=1, TSTEP[1,0] do not define the slope of the voltage change but the time PWM mode is forced  
to ensure a a steep transition of the output voltage.  
Time step: when changing the output voltage, the new value is reached through successive voltage steps (if not bypassed). The equivalent  
programmable slew rate of the output voltage is shown in Table 4-1  
DCDC3_SEL_CT 0 DCDC3 output voltage / MODE settings are defined by DCDC3_OP register  
RL  
1 DCDC3 output voltage / MODE settings are defined by status of pin DCDC3_SEL  
DCDC3_SEL = LOW := voltage / MODE settings are defined by DCDC3_OP  
DCDC3_SEL = HIGH := voltage / MODE settings are defined by DCDC3_AVS  
DCDC3_CLK_RE 0 DCDC3 enable function not mapped to CLK_REQ1 pin; DCDC3 enabled by ENABLE Bit or internal power-up sequencing setting  
Q1_CTRL  
1 DCDC3 enable function mapped to pin CLK_REQ1; ENABLE bit is don´t care, CLK_REQ1= LOW := DCDC3 = off, CLK_REQ1= HIGH :=  
DCDC3 = on  
DCDC3_CLK_RE 0 DCDC3 enable function not mapped to CLK_REQ2 pin; DCDC3 enabled by ENABLE Bit or internal power-up sequencing setting  
Q2_CTRL  
1 DCDC3 enable function mapped to pin CLK_REQ2; ENABLE bit is don´t care, CLK_REQ2= LOW := DCDC3 = off, CLK_REQ2= HIGH :=  
DCDC3 = on  
Note: CLK_REQ1 and CLK_REQ2 are logically OR´d, as soon as either one is HIGH, DCDC3 is enabled  
(1) Register reset on Power On Reset (POR)  
Table 4-1. DCDCx TSTEP Settings  
TSTEP[1:0]  
Time per voltage step  
according to the DCDCx  
voltage table (µs)  
equivalent Slew Rate for a 25mV step  
size (mV/µs)  
00  
01  
10  
11  
0.9  
1.8  
3.5  
6.6  
30  
15  
7.5  
3.75  
42  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
 
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
DCDC1_OP(1); Register Address: 03h  
B7  
B6  
RSVD  
0
B5  
SEL[5]  
0
B4  
SEL[4]  
1
B3  
SEL[3]  
1
B2  
SEL[2]  
0
B1  
B0  
SEL[0]  
0
DCDC1_MODE  
SEL[1]  
0
0
OTP  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
r
DCDC1_MODE  
0 Enable Automatic PWM/PFM mode switching  
1 Force PWM  
RSVD  
Unused bit, should be written to 0  
SEL[5:0]  
DCDC1 Output Voltage Selection based on DCDC1 Voltage Settings Table.  
(1) Register reset on Power On Reset (POR)  
DCDC1_AVS(1); Register Address: 04h  
B7  
B6  
RSVD  
0
B5  
SEL[5]  
0
B4  
SEL[4]  
1
B3  
SEL[3]  
1
B2  
SEL[2]  
0
B1  
SEL[1]  
0
B0  
SEL[0]  
0
DCDC1_MODE  
0
OTP  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
r
DCDC1_MODE  
0 Enable Automatic PWM/PFM mode switching  
1 Force PWM  
RSVD  
Unused bit, should be written to 0  
SEL[5:0]  
DCDC1 Output Voltage Selection based on DCDC1Voltage Settings Table.  
(1) Register reset on Power On Reset (POR)  
DCDC2_OP(1); Register Address: 05h  
B7  
B6  
RSVD  
0
B5  
SEL[5]  
1
B4  
SEL[4]  
1
B3  
SEL[3]  
0
B2  
SEL[2]  
1
B1  
SEL[1]  
0
B0  
SEL[0]  
1
DCDC2_MODE  
0
OTP  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
r
DCDC2_MODE  
0 Enable Automatic PWM/PFM mode switching  
1 Force PWM  
RSVD  
Unused bit, should be written to 0  
SEL[5:0]  
DCDC2 Output Voltage Selection based on DCDC2 Voltage Settings Table.  
(1) Register reset on Power On Reset (POR)  
DCDC2_AVS(1); Register Address: 06h  
B7  
B6  
RSVD  
0
B5  
SEL[5]  
1
B4  
SEL[4]  
1
B3  
SEL[3]  
0
B2  
SEL[2]  
1
B1  
SEL[1]  
0
B0  
SEL[0]  
1
DCDC2_MODE  
0
OTP  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
r
DCDC2_MODE  
0 Enable Automatic PWM/PFM mode switching  
1 Force PWM  
RSVD  
Unused bit, should be written to 0  
SEL[5:0]  
DCDC2 Output Voltage Selection based on DCDC2 Voltage Settings Table.  
(1) Register reset on Power On Reset (POR)  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
43  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
DCDC3_OP(1); Register Address: 07h  
B7  
B6  
B5  
SEL[5]  
0
B4  
SEL[4]  
0
B3  
SEL[3]  
0
B2  
SEL[2]  
0
B1  
SEL[1]  
0
B0  
SEL[0]  
0
DCDC3_MODE  
EN_BYPASS  
0
OTP  
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
DCDC3_MODE  
0 Enable Automatic PWM/PFM mode switching  
1 Force PWM  
EN_BYPASS  
0 BYPASS switch is not forced ON  
1 BYPASS switch is forced ON; over voltage protection at VDCDC3 is active and will clear this bit once VDCDC3 exceeds 4.18V  
DCDC3 Output Voltage Selection shown in DCDC3 Voltage Settings Table.  
SEL[6:0]  
Note:  
DCDC3_OP register settings are active when DCDC3_SEL = LOW  
(1) Register reset on Power On Reset (POR)  
DCDC3_AVS(1); Register Address: 08h  
B7  
B6  
B5  
SEL[5]  
0
B4  
SEL[4]  
0
B3  
SEL[3]  
0
B2  
SEL[2]  
0
B1  
SEL[1]  
0
B0  
SEL[0]  
0
DCDC3_MODE  
EN_BYPASS  
0
OTP  
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
DCDC3_MODE  
0 Enable Automatic PWM/PFM mode switching  
1 Force PWM  
EN_BYPASS  
0 BYPASS switch is not forced ON  
1 BYPASS switch is forced ON; over voltage protection at VDCDC3 is active and will clear this bit once VDCDC3 exceeds 4.18V  
DCDC3 Output Voltage Selection shown in DCDC3 Voltage SettingsTable.  
SEL6:0]  
Note:  
DCDC3_AVS register settings are active when DCDC3_SEL = HIGH  
(1) Register reset on Power On Reset (POR)  
VCON(1); Register Address: 09h  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
VCON_  
VCON_  
VCON_  
VCON_GAIN[3]  
VCON_GAIN[2]  
VCON_GAIN[1]  
VCON_GAIN[0]  
OFFSET[2]  
OFFSET[1]  
OFFSET[0]  
0
1
0
1
0
1
1
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r
VCON_OFFSET[ VCON offset settings shown in table VCON OFFSET SETTINGS  
2:0]  
VCON_GAIN[3:0] VCON gain settings shown in table VCON GAIN SETTINGS  
RSVD  
Unused bit, should be written to 0  
(1) Register reset on Power On Reset (POR)  
44  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
Table 4-2. VCON Gain Settings  
VCON_GAIN[3:0]  
0000  
GAIN  
1.208  
1.292  
1.417  
1.500  
1.583  
1.708  
1.792  
1.917  
VCON_GAIN[3:0]  
1000  
GAIN  
2.000  
2.083  
2.208  
2.292  
2.417  
2.500  
2.583  
2.708  
0001  
1001  
0010  
1010  
0011  
1011  
0100  
1100  
0101  
1101  
0110  
1110  
0111  
1111  
Table 4-3. VCON Offset Settings  
VCON_OFFSET[2:0]  
000  
OFFSET (mV)  
0
001  
010  
011  
100  
101  
110  
111  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
45  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
Table 4-4. DCDC1 and DCDC2 Voltage Settings  
SEL(DCDCx)[5:0]  
VDCDCx (V)  
0.80  
SEL(DCDCx)[5:0]  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
VDCDCx (V)  
1.900  
1.925  
1.950  
1.975  
2.000  
2.025  
2.050  
2.075  
2.100  
2.125  
2.150  
2.175  
2.20  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.90  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.10  
3.20  
3.30  
46  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
Table 4-5. DCDC3 Voltage Settings  
SEL(DCDCx)[5:0]  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
VDCDCx (V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
SEL(DCDCx)[5:0]  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
VDCDCx (V)  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
3.60  
3.60  
3.60  
3.60  
3.60  
3.60  
3.60  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
47  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
B0  
LDO_CTRL(1); Register Address: 0Ah  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RSVD  
RSVD  
RSVD  
RSVD  
LDO2_CLK_  
REQ2_CTRL  
LDO2_CLK_  
REQ1_CTRL  
LDO1_CLK_  
REQ2_CTRL  
LDO1_CLK_  
REQ1_CTRL  
0
r
0
0
0
r
0
0
0
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r
r
RSVD  
Unused bit, should be written to 0  
LDO2_CLK_RE 0 LDO2 enable function not mapped to CLK_REQ2 pin; LDO2 enabled by ENABLE Bit or internal power-up sequencing setting  
Q2_CTRL  
1 LDO2 enable function mapped to pin CLK_REQ2 pin; ENABLE bit is don´t care, CLK_REQ2= LOW := LDO2 = off, CLK_REQ2= HIGH :=  
LDO2 = on  
LDO2_CLK_RE 0 LDO2 enable function not mapped to CLK_REQ1 pin; LDO2 enabled by ENABLE Bit or internal power-up sequencing setting  
Q1_CTRL  
1 LDO2 enable function mapped to pin CLK_REQ1 pin; ENABLE bit is don´t care, CLK_REQ1= LOW := LDO2 = off, CLK_REQ1= HIGH :=  
LDO2 = on  
LDO1_CLK_RE 0 LDO1 enable function not mapped to CLK_REQ2 pin; LDO1 enabled by ENABLE Bit or internal power-up sequencing setting  
Q2_CTRL  
1 LDO1 enable function mapped to pin CLK_REQ2 pin; ENABLE bit is don´t care, CLK_REQ2= LOW := LDO1 = off, CLK_REQ2= HIGH :=  
LDO1 = on  
LDO1_CLK_RE 0 LDO1 enable function not mapped to CLK_REQ1 pin; LDO1 enabled by ENABLE Bit or internal power-up sequencing setting  
Q1_CTRL  
1 LDO1 enable function mapped to pin CLK_REQ1 pin; ENABLE bit is don´t care, CLK_REQ1= LOW := LDO1 = off, CLK_REQ1= HIGH :=  
LDO1 = on  
Note: CLK_REQ1 and CLK_REQ2 are logically OR´d if both pins are assigned to the same LDO; as soon as either one is HIGH, LDOx is  
enabled  
(1) Register reset on Power On Reset (POR)  
LDO1_OP(1); Register Address: 0Bh  
B7  
ENABLE  
(1)  
B6  
ECO  
0
B5  
SEL[5]  
0
B4  
SEL[4]  
1
B3  
SEL[3]  
1
B2  
SEL[2]  
0
B1  
SEL[1]  
0
B0  
SEL[0]  
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
ENABLE  
0 LDO1 Disabled  
1 LDO1 Enabled  
(1) LDO1 Enabled during automatic power-up sequence  
0 LDO1 is in normal mode  
ECO  
1 LDO1 is in power save mode  
SELREG  
0 LDO1 Voltage selected by LDO1_OP register  
1 LDO1 Voltage selected by LDO1_AVS register  
Supply Voltage - setting shown in Table 4-6  
SEL[5:0]  
(1) Register reset on Power On Reset (POR)  
48  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
LDO2_OP(1); Register Address: 0Ch  
B7  
ENABLE  
(1)  
B6  
ECO  
0
B5  
SEL[5]  
1
B4  
SEL[4]  
1
B3  
SEL[3]  
0
B2  
SEL[2]  
0
B1  
B0  
SEL[0]  
0
SEL[1]  
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
ENABLE  
0 LDO2 Disabled  
1 LDO2 Enabled  
(1) LDO2 Enabled during automatic power-up sequence  
0 LDO2 is in normal mode  
ECO  
1 LDO2 is in power save mode  
SELREG  
0 LDO2 Voltage selected by LDO2_OP register  
1 LDO2 Voltage selected by LDO2_AVS register  
Supply Voltage - setting shown in Table 4-6  
SEL[5:0]  
(1) Register reset on Power On Reset (POR)  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
49  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
Table 4-6. LDO Voltage Settings  
SEL[5:0]  
LDOx Output  
(V)  
SEL[5:0]  
LDOx Output  
(V)  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
1.900  
1.925  
1.950  
1.975  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
2.000  
2.050  
2.100  
2.150  
2.200  
2.250  
2.300  
2.350  
2.400  
2.450  
2.500  
2.550  
2.600  
2.650  
2.700  
2.750  
2.800  
2.850  
2.900  
2.950  
3.000  
3.050  
3.100  
3.150  
3.200  
3.250  
3.300  
3.350  
3.400  
3.400  
3.400  
3.400  
50  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
DEVCTRL(1); Register Address: 0Dh  
B7  
B6  
RSVD  
0
B5  
RSVD  
0
B4  
RSVD  
0
B3  
RSVD  
0
B2  
RSVD  
0
B1  
B0  
RSVD  
0
PWR_OFF_SEQ  
RSVD  
0
0
OTP  
r/w  
r
r
r
r
r
r
r
PWR_OFF_SEQ 0 All resources disabled at the same time  
1 Power-off will be sequencial, reverse of power-on sequence (first resource to power on will be the last to power off)  
Note: each power-up / power-down time slot is 500us  
RSVD  
Unused bit read returns0  
(1) Register reset on Power On Reset (POR)  
DISCHARGE(1); Register Address: 0Eh  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
DCDC3_  
DCDC2_  
DCDC1_  
RSVD  
RSVD  
LDO2_  
LDO1_  
DISCHARGE  
DISCHARGE  
DISCHARGE  
DISCHARGE  
DISCHARGE  
0
r
0
0
0
0
r
0
r
0
0
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
RSVD  
Unused bit read returns0  
DCDC3_DISCHA 0 DCDC3 output is not discharged when disabled  
RGE  
1 DCDC3 output is discharged when disabled  
DCDC2_DISCHA 0 DCDC2 output is not discharged when disabled  
RGE  
1 DCDC2 output is discharged when disabled  
DCDC1_DISCHA 0 DCDC1 output is not discharged when disabled  
RGE  
1 DCDC1 output is discharged when disabled  
LDO2_DISCHAR 0 LDO2 output is not discharged when disabled  
GE  
1 LDO2 output is discharged when disabled  
LDO1_DISCHAR 0 LDO1 output is not discharged when disabled  
GE  
1 LDO1 output is discharged when disabled  
(1) Register reset on Power On Reset (POR)  
PGOOD(1); Register Address: 0Fh  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
PGOOD_DCDC3 PGOOD_DCDC2 PGOOD_DCDC1  
RSVD  
RSVD  
PGOOD_LDO2  
PGOOD_LDO1  
0
r
-
-
-
0
r
0
r
-
-
r
r
r
r
r
PGOOD_DCDCx the Bit is set or cleared by the power-good comparator in the DCDC converter block  
0 DCDCx output voltage is below its target regulation voltage or disabled  
1 DCDCx output voltage is in regulation  
PGOOD_LDOx  
the Bit is set or cleared by the power-good comparator in the LDO converter block  
0 LDOx output voltage is below its target regulation voltage or disabled  
1 LDOx output voltage is in regulation or in ECO mode  
Note: The PGOOD_LDOx Bit is not valid if the LDO is enabled but the supply voltage to the LDO is below 1V.  
(1) Register reset on Power On Reset (POR)  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
51  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
GPIO0(1); Register Address: 10h  
B7  
RSVD  
0
B6  
nRESET  
1
B5  
B4  
RSVD  
0
B3  
B2  
GPIO_CFG  
0
B1  
B0  
GPIO_SET  
0
GPIO_ODEN  
GPIO_PDEN  
GPIO_STS  
0
0
-
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
OTP  
r
r
r/w  
r
r/w  
RSVD  
Unused bit read returns 0  
nRESET  
0 pin is GPIO after OTP configuration has been read; connect external pull-up to a logic HIGH in order to exit reset state allowing to re-  
configure as GPIO  
1 pin is active low reset input per default as well as after OTP configuration has been read; pin is input per default independent of setting in  
GPIO_CFG  
GPIO_ODEN  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
0 Push-pull output mode  
1 Open drain output mode  
0 GPIO pad pull-down control - Pull-down is disabled  
1 GPIO pad pull-down control - Pull-down is enabled  
0 Configuration of the GPIO pad direction - the pad is configured as an input  
1 The GPIO pad is configured as an output, GPIO assigned to power-up sequence  
0 Status of the GPIO pad  
1 Status of the GPIO pad  
0 Value set to logic 1'b0 on the GPIO output when configured in output mode  
1 Value set to logic 1'b1 on the GPIO output when configured in output mode  
(1) Register reset on Power On Reset (POR)  
GPIO1(1); Register Address: 11h  
B7  
RSVD  
0
B6  
B5  
B4  
RSVD  
0
B3  
B2  
GPIO_CFG  
0
B1  
B0  
GPIO_SET  
0
ADR_SELECT  
GPIO_ODEN  
GPIO_PDEN  
GPIO_STS  
1
0
0
-
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
OTP  
r
r
r/w  
r
r/w  
RSVD  
Unused bit read returns 0  
0 pin is GPIO  
ADR_SELECT  
1 actual pin status defines the LSB of the MIPI device address defined in USID[0]; while the device is in reset state, the pin is  
ADR_SELECT input independent of setting in GPIO_CFG  
GPIO_ODEN  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
0 Push-pull output mode  
1 Open drain output mode  
0 GPIO pad pull-down control - Pull-down is disabled  
1 GPIO pad pull-down control - Pull-down is enabled  
0 Configuration of the GPIO pad direction - the pad is configured as an input  
1 The GPIO pad is configured as an output, GPIO assigned to power-up sequence  
0 Status of the GPIO pad  
1 Status of the GPIO pad  
0 Value set to logic 1'b0 on the GPIO output when configured in output mode  
1 Value set to logic 1'b1 on the GPIO output when configured in output mode  
(1) Register reset on Power On Reset (POR)  
52  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
DCDC_CONFIG1(1) ; Register Address: 12h  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DCDC3_OVP  
DCDC3_  
DWN_2X  
DCDC3_  
EN_DWN  
DCDC3_EN_UP  
DCDC3_FA2  
DCDC3_FA1  
DCDC3_S2  
DCDC3_S1  
0
0
0
0
0
0
1
1
OTP  
r/w  
OTP  
OTP  
r/w  
OTP  
r/w  
OTP  
OTP  
OTP  
OTP  
r/w (read only)  
Unused bit read returns0  
r/w (read only)  
r/w (read only)  
r/w (read only)  
r/w (read only)  
SPARE  
DCDC3_OVP  
0 DCDC3 overvoltage protection not triggered, bypass switch and ramp support status depend on DCDC3_EN_UP and EN_BYPASS bits  
in DCDC3_OP and DCDC3_AVS registers  
1 DCDC3 overvoltage protection triggered, bypass switch and ramp uspport bits are ignored and both features are disabled in OVP. Clear  
bit to clear OVP after an OVP event.  
DCDC3_DWN_2  
X
0 DCDC3 down ramp high speed disabled  
1 DCDC3 down ramp high speed enabled  
DCDC3_EN_DW 0 DCDC3 down ramp support disabled  
N
1 DCDC3 down ramp suport enabled  
It is recommended to keep the ramp-down support disabled when DCDC3 is not operated in VCON mode (DCDC3_CTRL:VCON=0)  
0 DCDC3 up ramp support disabled  
DCDC3_EN_UP  
DCDC3_FA2  
1 DCDC3 up ramp support enabled  
0 fast-on HSD not active for DCDC3  
1 fast-on HSD active for DCDC3  
0 slow-off HSD not active for DCDC3  
1 slow-off HSD active for DCDC3  
ramp-up support threshold voltage (available for Rev 1.1 only)  
00 threshold = -50mV  
DCDC3_FA1  
DCDC3_S2:S1  
01 threshold = -100mV  
10 threshold = -150mV  
11 threshold = -200mV  
Note:  
r/w (read only): r/w for engineering use; read only in production  
(1) Register reset on Power On Reset (POR)  
DCDC_CONFIG2(1) ; Register Address: 13h  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
DCDC3_  
SSC_DELTA  
DCDC3_  
EN_SSC  
DCDC3_  
EN_CP_OSC  
0
OTP  
r
0
0
OTP  
r
0
OTP  
r
0
OTP  
r
1
0
1
OTP  
OTP  
OTP  
OTP  
r
r/w (read only)  
r/w (read only)  
r/w (read only)  
SPARE  
Unused bit read returns0  
DCDC3_SSC_DE 0 SSC variation 200kHz  
LTA  
1 SSC variation 300kHz  
DCDC3_EN_SSC 0 spread spectrum clocking is off  
1 spread spectrum clocking is on  
DCDC3_EN_CP_ 0 oscillator source dcdc3-clk  
OSC  
1 oscillator source bypass-cp-clk  
Note:  
r/w (read only): r/w for engineering use; read only in production  
(1) Register reset on Power On Reset (POR)  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
53  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
SPARE0(1) ; Register Address: 14h  
B7  
SPARE  
0
B6  
SPARE  
0
B5  
B4  
B3  
B2  
B1  
B0  
EN_FAST_RAMP  
DCDC1/2_FA2  
DCDC1/2_FA1  
DCDC3_synch  
nILIM_MAPPING  
EN_nILIM_xl  
1
0
0
0
0
1
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
SPARE  
Note:  
Unused bit read returns 0  
for later use  
EN_FAST_RAMP available from rev 1.2 of silicon  
0 ramp speed of DCDC3 in VCON mode is as in previous versions  
1 fast ramp-up enabled, the rising edge in VCON mode is speed-up  
0 fast-on HSD not active for DCDC1 and DCDC2  
DCDC1/2_FA2  
DCDC1/2_FA1  
DCDC3_synch  
1 fast-on HSD active for DCDC1 and DCDC2  
0 slow-off HSD not active for DCDC1 and DCDC2  
1 slow-off HSD active for DCDC1 and DCDC2  
available from rev 1.1 of silicon  
0 DCDC3 not synchzronized to DCDC1 and DCDC2; SSC option allowed  
1 DCDC3 synchzronized to DCDC1 and DCDC2; SSC option not allowed  
nILIM_MAPPING available from rev 1.1 of silicon  
0 negative current limit for DCDC3 is defined by bit EN_nILIM_xl  
1 negative current limit for DCDC3 is mapped to pin DCDC3_SEL and defined as listed below:  
DCDC3_SEL = 0: negative current limit is disabled (for VCON up-ramping)  
DCDC3_SEL = 1: negative current limit is enabled (for VCON down-ramping)  
Note: nILIM_MAPPING is not gating DCDCx_SEL_CTRL bits in registers DCDCx_CTRL and vice versa  
EN_nILIM_xl  
available from rev 1.1 of silicon  
0 negative current limit for DCDC3 is disabled; the setting still allows a small negative inductor current needed to operate the converter in  
PWM mode at zero load current  
1 negative current limit for DCDC3 enabled; needed for a fast ramp down of the output voltage in VCON mode  
(1) Register reset on Power On Reset (POR)  
VERNUM(1) ; Register Address: 15h  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VERNUM  
VERNUM  
VERNUM  
VERNUM  
VERNUM  
VERNUM  
VERNUM  
VERNUM  
0
OTP  
r
0
OTP  
r
0
OTP  
r
1
OTP  
r
0
OTP  
r
0
OTP  
r
1
OTP  
r
1
OTP  
r
VERNUM  
Value depending on silicon revision  
0x00 - hardware revision 1.0  
0x01 - hardware revision 1.1  
0x11 - hardware revision 1.1 with programming "42"  
0x12 - hardware revision 1.2 with programming "42"  
0x13 - hardware revision 1.3 with programming "42"  
(1) Register reset on Power On Reset (POR)  
54  
内存映射  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
PM_TRIG(1) ; Register Address: 1Ch; function not supported by TPS657120  
B7  
PWR_MODE[1]  
0
B6  
B5  
B4  
B3  
B2  
B1  
B0  
PWR_MODE[0]  
PM_TRIG[5]  
PM_TRIG[4]  
PM_TRIG[3]  
PM_TRIG[2]  
PM_TRIG[1]  
PM_TRIG[0]  
0
0
0
0
0
0
0
OTP  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
OTP  
r/w  
r/w  
PM_TRIG[5:0]  
PWR_MODE[1:0]  
(1) Register reset on Power On Reset (POR)  
PRODUCT_ID(1) ; Register Address: 1Dh  
B7  
ID[7]  
1
B6  
B5  
ID[5]  
1
B4  
ID[4]  
0
B3  
ID[3]  
0
B2  
ID[2]  
0
B1  
ID[1]  
0
B0  
ID[0]  
0
ID[6]  
1
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
ID[7:0]  
Product Identification  
(1) Register reset on Power On Reset (POR)  
MANUFACTURER_ID(1) ; Register Address: 1Eh  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MID[7]  
MID[6]  
MID[5]  
MID[4]  
MID[3]  
MID[2]  
MID[1]  
MID[0]  
0
r
0
r
0
r
0
r
0
r
0
r
1
r
0
r
MID[7:0]  
Manufacturer Identification  
(1) Register reset on Power On Reset (POR)  
USID(1) ; Register Address: 1Fh  
B7  
SPARE  
0
B6  
SPARE  
0
B5  
B4  
B3  
USID[3]  
0
B2  
USID[2]  
1
B1  
USID[1]  
0
B0  
USID[0]  
x
MID[9]  
MID[8]  
0
-
1
-
OTP  
OTP  
OTP  
OTP  
OTP  
OTP /  
ADR_SELECT  
r/w  
r/w  
r
r
r/w (read only)  
r/w (read only)  
r/w (read only)  
r
USID[3:0]  
unique slave identifier; GPIO1 can optionally be used as the adress select input for USID[0], if the option is active, USID[0] is set "1" when  
ADR_SELECT is pulled to a HIGH level, USID[0] is set to "0" when ADR_SELECT is set LOW again. It is allowed to change the state of  
ADR_SELECT during operation. and USID[0] will update accordignly.  
MID[8,9]  
SPARE  
Note:  
manufacurer ID MSB  
for later use  
r/w (read only): r/w for engineering use; read only in production  
(1) Register reset on Power On Reset (POR)  
Copyright © 2013, Texas Instruments Incorporated  
内存映射  
55  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
5
应用范围  
5.1 直流到直流转换器  
5.1.1 输出滤波器设计(电感器和输出电容器)  
5.1.1.1 电感器选择  
这些转换器通常与一个 1.5µH 2.2µH 输出电感器一同运行。 所选择的电感器必须设定额定直流电阻和饱  
和电流。 电感的直流电阻将直接影响转换器的效率。 因此,为了实现最高效率,应该选择一个具有最低直  
流电阻的电感器。  
Equation 1 计算静态负载条件下的最大电感器电流。 电感器的饱和电流额定值应该高于 Equation 1 中计算  
出的最大电感器电流。 此建议的原因是,重负载瞬态期间,电感器电流将上升,直至高于计算出的值。  
Vout  
1 -  
ΔIL  
Vin  
ΔIL = Vout ´  
ILmax = Ioutmax +  
L ´ f  
2
(1)  
其中:  
f = 开关频率(典型值 2.25MHz)  
L = 电感器值  
ΔIL = 峰值到峰值电感器纹波电流  
ILmax = 最大电感器电流  
最高电感器电流将在最大 Vin 时出现。  
开核电感器具有一个软饱和特性,并且它们通常处理较高电感器电流与一个相似屏蔽电感器间的关系。  
一个更加保守的方法是为相应转换器的最大开关电流选择电感器电流额定值。 必须考虑在内的是,不同电感  
器间的核心材料会有所不同,这将影响效率,特别是在较高开关频率时更是如此。  
谨记,降压转换器具有内部环路补偿。 内部环路补偿被设计用来与下方计算得出的输出滤波器角频率一同工  
作:  
1
fc =  
with L = 1.5 mH, Cout = 10 mF  
2π L ´ Cout  
(2)  
实际情况是,外部 L-C 滤波器的选择必须考虑上述等式。 一般情况下,在选择较小电感器或增加输出电容  
器值的同时,L x COUT 的乘积应该恒定。  
56  
应用范围  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
 
TPS657120  
www.ti.com.cn  
ZHCSBY8 DECEMBER 2013  
对于可用的电感器,请参考 Table 5-1 和典型应用范围。  
Table 5-1. 经测试的电感器  
电感器类型  
电感器值  
供应商  
东光  
注释  
MDT1608-CH2R2M  
2.2µH  
用于 DCDC1 DCDC2(小尺  
寸)  
MDT2012-CH2R2N  
DFE201610C-2R2  
DFE252010-1R5N  
2.2µH  
2.2µH  
1.5µH  
东光  
东光  
东光  
用于 DCDC1 DCDC2(小尺  
寸,高效)  
用于 DCDC1 DCDC2(高  
效)  
用于 DCDC3  
5.1.1.2 输出电容器选择  
降压转换器的高级快速响应电压模式控制系统配置可使用典型值为 10µF 的小型陶瓷电容器,在重负载瞬态  
条件下没有大输出电压下冲和过冲。 具有低等效串联电阻 (ESR) 值的陶瓷电容器可获得最低输出电压纹  
波,因此建议使用此类电容器。 对于电感值为 1.5µH 2.2µH 的电感器,可使用电容值为 10µF 的电容  
器。 请见推荐组件  
如果使用陶瓷输出电容器,电容器 RMS 纹波电流额定值将始终符合应用要求。 只是为了实现完整性,RMS  
纹波电流可计算为:  
Vout  
1 -  
1
Vin  
IRMSCout = Vout ´  
´
L × f  
2 ´  
3
(3)  
在标称负载电流时,电感转换器运行在 PWM 模式下,并且总体输出电压纹波是电压尖峰(由输出电容器  
ESR 导致)加上电压纹波(由输出电容器充放电导致)的总和:  
Vout  
1 -  
æ
ç
è
1
ö
÷
ø
Vin  
ΔVout = Vout ´  
´
+ ESR  
L × f  
8 ´ Cout ´ f  
(4)  
其中,最高输出电压纹波在最高输入电压 Vin 时出现。  
轻负载电流时,转换器运行在省电模式,并且输出电压纹波取决于输出电容器值。 输出电压纹波由内部比较  
器延迟和外部电容器设定。 典型输出电压纹波少于标称输出电压的 1%。  
5.1.1.3 输入电容器 / 输出电容器选择  
由于降压转换器本身具有一个脉冲输入电流,为了实现最佳输入电压滤波,并且最大限度地减少由高输入电  
压尖峰导致的其它电路干扰,需要一个低 ESR 输入电容器。 这些转换器需要一个电容值为 10µF 的陶瓷输  
入电容器。 为了实现更好的输入电压滤波,可尽可能地增加输入电容器。 由于输出电容器影响环路稳定  
性,到所需输出电感值的任何偏差有可能导致直流到直流转换器或 LDO 变得不稳定。  
Table 5-2. 已经测试电容器  
类型  
电压额定值  
6.3V  
尺寸  
0402  
0402  
0603  
0603  
0603  
0805  
0805  
供应商  
牧田  
牧田  
牧田  
牧田  
牧田  
牧田  
牧田  
材料  
GRM155R60J475ME87  
GRM155R60J225ME15D  
GRM185R60J225  
4.7µF  
2.2µF  
2.2µF  
4.7µF  
10µF  
22μF  
47μF  
陶瓷 X5R  
陶瓷 X5R  
陶瓷 X5R  
陶瓷 X5R  
陶瓷 X5R  
陶瓷 X5R  
陶瓷 X5R  
6.3V  
6.3V  
GRM188R60J475KE19  
GRM188R61A106ME69  
GRM21BR60J226M  
GRM21BR60J476ME15  
6.3V  
10V  
6.3V  
6.3V  
Copyright © 2013, Texas Instruments Incorporated  
应用范围  
57  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
 
TPS657120  
ZHCSBY8 DECEMBER 2013  
www.ti.com.cn  
5.1.1.4 DCDC1DCDC2 DCDC3 上的电压变化  
运行期间,直流到直流转换器的输出电压可由数字接口更改。 此外,可以对直流到直流转换器进行配置,这  
样的话,转换 DCDC3_SEL 可以在寄存器 DCDCx_OP DCDCx_AVS 定义的两个不同输出电压集合间切  
换。  
5.2 布局布线注意事项  
对于所有开关电源,布局布线是设计中的重要一个步骤。 此器件的正确功能在很大程度上取决于印刷电路板  
(PCB) 布局布线。 电路板布局布线时必须小心,以获得指定的性能。 如果没有仔细完成布局布线,稳压器  
也许会出现糟糕的线路和/或负载调节,稳定性问题以及电磁干扰 (EMI) 问题。 提供一个低阻抗接地路径很  
关键。 因此,在主电流路径上使用宽且短的迹线。 输入电容必须被放置在尽可能靠近 IC 引脚以及电感器和  
输出电容器的位置上。  
为了避免接地噪声,应该将接至 GND 引脚(返回小信号分量)和输出电容器高电流的普通路径保持尽可能  
的短。 VDCDCx 迹线应该连接至输出电容器的右侧,并且远离嘈杂组件和迹线(例如,L1L2 L3 迹  
线)。 与 TPS657120 布局布线相关的详细信息请参见 EVM 使用指南。  
5.3 应用电路原理图  
10uF  
TPS657120  
ICE9245  
VINDCDC1/2  
VIN  
C2V5  
2.2uH  
RF transceiver  
low voltage supply  
DCDC1  
300mA  
1.7V  
Q12  
Q13  
POWER  
CONTROL  
SW1  
VDDL  
1uF  
VDCDC1  
10uF  
SDATA  
SCLK  
PGND1/2  
MIPI RFFE  
i/f  
2.2uH  
RF transceiver  
high voltage supply  
Q22  
Q23  
DCDC2  
250mA  
2.65V  
SW2  
VDDH  
VCON_DCDC3  
DCDC3_SEL  
10uF  
VDCDC2  
22uF  
CLK_REQ1  
CLK_REQ2  
VINDCDC3  
VIN  
1.5uH  
Q22  
Q23  
0.1V to 3.8V  
4.7uF  
DCDC3  
2A  
RF-PA supply  
SW3  
PWRON  
VDDIO  
VDCDC3  
PGND3  
BYPASS  
switch  
VDD_IF  
GPIO0 (nReset)  
GPIO1 (ADR_SELECT)  
GPIO  
VINLDO1  
VLDO1  
LDO1  
1.8V  
1uF  
(1.2V-3.3V, 50mV  
step @10mA)  
Low noise  
2.2uF  
VIN_ANA / VINLDO2  
4.7uF  
VIN  
1uF  
LDO2  
(1.2V-3.3V, 50mV  
step @10mA)  
Low noise  
2.8V  
VLDO2  
to antenna  
switch  
BIAS  
100nF  
VREF1V0  
from baseband  
PA  
4.7uF  
AGND  
Thermal  
shutdown  
Figure 5-1. 针对 SP30 RF 电源管理集成电路 (PMIC) 的手机电池连接  
58  
应用范围  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS657120  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS657120YFFR  
ACTIVE  
DSBGA  
YFF  
30  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
TPS  
657120  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YFF0030  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
F
E
D
C
SYMM  
2
TYP  
B
A
0.4 TYP  
1
2
4
5
3
0.3  
30X  
0.4 TYP  
0.2  
0.015  
C A B  
4219433/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
30X ( 0.23)  
(0.4) TYP  
2
4
5
1
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219433/A 03/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
30X ( 0.25)  
(R0.05) TYP  
1
3
2
4
5
A
B
(0.4)  
TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219433/A 03/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS657120YFFT

RF frontend Power Management IC (PMIC) 30-DSBGA -40 to 85
TI

TPS65720

PMU for Bluetooth Headsets
TI

TPS657201YFFR

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS657201YFFT

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS657202YFFR

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS657202YFFT

2 通道电源管理 IC (PMIC),包含电池充电器、一个降压转换器和一个 LDO | YFF | 25 | -40 to 85
TI

TPS65720YFFR

PMU for Bluetooth Headsets
TI

TPS65720YFFT

PMU for Bluetooth Headsets
TI

TPS65720_15

Integrated PMIC
TI

TPS65721

PMU for Bluetooth Headsets
TI

TPS65721RSNR

PMU for Bluetooth Headsets
TI

TPS65721RSNT

PMU for Bluetooth Headsets
TI