TPS65835_16 [TI]

Advanced PMU;
TPS65835_16
型号: TPS65835_16
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced PMU

文件: 总62页 (文件大小:1734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65835  
Advanced PMU With Integrated MSP430 For Active  
Shutter 3D Glasses  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SLVSAF6  
June 2011  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Contents  
1
2
INTRODUCTION .................................................................................................................. 7  
1.1  
1.2  
1.3  
1.4  
1.5  
Features ...................................................................................................................... 7  
Description ................................................................................................................... 7  
Block Diagram ............................................................................................................... 8  
Pin Descriptions ............................................................................................................. 9  
Package Pin Assignments ............................................................................................... 11  
POWER MANAGEMENT CORE ............................................................................................ 12  
2.1  
2.2  
2.3  
2.4  
Recommended Operating Conditions .................................................................................. 12  
Absolute Maximum Ratings .............................................................................................. 12  
Thermal Information ....................................................................................................... 13  
Quiescent Current ......................................................................................................... 13  
2.5  
2.6  
Electrical Characteristics ................................................................................................. 13  
System Operation ......................................................................................................... 17  
2.6.1  
2.6.2  
2.6.3  
System Power Up .............................................................................................. 17  
System Operation Using Push Button Switch .............................................................. 18  
System Operation Using Slider Switch ...................................................................... 19  
2.7  
Linear Charger Operation ................................................................................................ 20  
2.7.1  
Battery and TS Detection ...................................................................................... 20  
Battery Charging ................................................................................................ 20  
2.7.2  
2.7.2.1 Pre-charge .......................................................................................... 21  
2.7.2.2 Charge Termination ................................................................................ 21  
2.7.2.3 Recharge ............................................................................................ 21  
2.7.2.4 Charge Timers ...................................................................................... 21  
Charger Status (nCHG_STAT Pin) ........................................................................... 22  
2.7.3  
2.8  
2.9  
LDO Operation ............................................................................................................. 22  
LDO Internal Current Limit .................................................................................... 22  
Boost Converter Operation ............................................................................................... 23  
2.8.1  
2.9.1  
Boost Thermal Shutdown ...................................................................................... 23  
Boost Load Disconnect ........................................................................................ 24  
2.9.2  
2.10 Full H-Bridge Analog Switches .......................................................................................... 24  
2.10.1 H-Bridge Switch Control ....................................................................................... 24  
2.11 Power Management Core Control ....................................................................................... 26  
2.11.1 SLEEP / Power Control Pin Function ........................................................................ 26  
2.11.2 COMP Pin Functionality ....................................................................................... 26  
2.11.3 SW_SEL Pin Functionality .................................................................................... 27  
2.11.4 SWITCH Pin ..................................................................................................... 27  
2.11.5 Slider Switch Behavior ......................................................................................... 27  
2.11.6 Push-Button Switch Behavior ................................................................................. 28  
3
MSP430 CORE .................................................................................................................. 30  
3.1  
MSP430 Electrical Characteristics ...................................................................................... 30  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
MSP430 Recommended Operating Conditions ............................................................ 30  
Active Mode Supply Current Into VCC Excluding External Current ....................................... 30  
Typical Characteristics, Active Mode Supply Current (Into VCC) ......................................... 31  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current ............................. 31  
Typical Characteristics, Low-Power Mode Supply Currents .............................................. 32  
2
Contents  
Copyright © 2011, Texas Instruments Incorporated  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.6  
3.1.7  
3.1.8  
3.1.9  
Schmitt-Trigger Inputs, Ports Px .............................................................................. 32  
Leakage Current, Ports Px .................................................................................... 32  
Outputs, Ports Px ............................................................................................... 32  
Output Frequency, Ports Px ................................................................................... 33  
3.1.10 Typical Characteristics, Outputs .............................................................................. 33  
3.1.11 Pin-Oscillator Frequency Ports Px ......................................................................... 34  
3.1.12 Typical Characteristics, Pin-Oscillator Frequency .......................................................... 35  
3.1.13 POR/Brownout Reset (BOR) .................................................................................. 35  
3.1.14 Typical Characteristics, POR/Brownout Reset (BOR) ..................................................... 36  
3.1.15 DCO Frequency ................................................................................................. 37  
3.1.16 Calibrated DCO Frequencies, Tolerance .................................................................... 38  
3.1.17 Wake-Up From Lower-Power Modes (LPM3/4) ............................................................ 39  
3.1.18 Typical Characteristics, DCO Clock Wake-Up Time From LPM3/4 ...................................... 39  
3.1.19 Crystal Oscillator, XT1, Low-Frequency Mode ............................................................. 40  
3.1.20 Internal Very-Low-Power Low-Frequency Oscillator (VLO) ............................................... 40  
3.1.21 Timer_A .......................................................................................................... 41  
3.1.22 USCI (UART Mode) ............................................................................................ 41  
3.1.23 USCI (SPI Master Mode) ...................................................................................... 41  
3.1.24 USCI (SPI Slave Mode) ........................................................................................ 42  
3.1.25 USCI (I2C Mode) ............................................................................................... 43  
3.1.26 Comparator_A+ ................................................................................................. 44  
3.1.27 Typical Characteristics Comparator_A+ ................................................................... 44  
3.1.28 10-Bit ADC, Power Supply and Input Range Conditions .................................................. 45  
3.1.29 10-Bit ADC, Built-In Voltage Reference ..................................................................... 46  
3.1.30 10-Bit ADC, External Reference .............................................................................. 46  
3.1.31 10-Bit ADC, Timing Parameters .............................................................................. 47  
3.1.32 10-Bit ADC, Linearity Parameters ............................................................................ 47  
3.1.33 10-Bit ADC, Temperature Sensor and Built-In VMID ........................................................ 47  
3.1.34 Flash Memory ................................................................................................... 48  
3.1.35 RAM .............................................................................................................. 48  
3.1.36 JTAG and Spy-Bi-Wire Interface ............................................................................. 48  
3.1.37 JTAG Fuse ...................................................................................................... 48  
MSP430 Core Operation ................................................................................................. 49  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
Description ....................................................................................................... 49  
Accessible MSP430 Pins ...................................................................................... 50  
MSP430 Port Functions and Programming Options ....................................................... 52  
Operating Modes ............................................................................................... 55  
MSP430x2xx User's Guide .................................................................................... 55  
4
APPLICATION INFORMATION ............................................................................................. 56  
4.1  
Applications Schematic ................................................................................................... 56  
Boost Converter Application Information ............................................................................... 56  
4.2  
4.2.1  
4.2.2  
4.2.3  
Setting Boost Output Voltage ................................................................................. 56  
Boost Inductor Selection ....................................................................................... 57  
Boost Capacitor Selection ..................................................................................... 58  
4.3  
4.4  
Bypassing Default Push-Button SWITCH Functionality .............................................................. 58  
MSP430 Programming .................................................................................................... 60  
Copyright © 2011, Texas Instruments Incorporated  
Contents  
3
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
4.4.1  
Code To Setup Power Functions ............................................................................. 60  
4
Contents  
Copyright © 2011, Texas Instruments Incorporated  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
List of Figures  
1-1  
TPS65835 Simplified Functional Block Diagram ..............................................................................  
8
1-2  
TPS65835 Package Pin Assignments......................................................................................... 11  
System Power Up State Diagram .............................................................................................. 18  
Push Button State Diagram..................................................................................................... 19  
System Operation Using Slider Switch ........................................................................................ 19  
Thermistor Detection and Circuit .............................................................................................. 20  
Battery Charge Phases.......................................................................................................... 21  
Boost Load Disconnect.......................................................................................................... 24  
H-Bridge States................................................................................................................... 25  
H-Bridge States from Oscilloscope ............................................................................................ 26  
SLEEP Signal to Force System Power Off ................................................................................... 26  
COMP Pin Internal Connection................................................................................................. 26  
SWITCH, Slider Power On-Off Behavior...................................................................................... 28  
SWITCH, Push-button Power On Behavior................................................................................... 29  
SWITCH, Push-button Power Off Behavior................................................................................... 29  
Safe Operating Area ............................................................................................................. 30  
POR/Brownout Reset (BOR) vs Supply Voltage ............................................................................. 36  
SPI Master Mode, CKPH = 0 ................................................................................................... 42  
SPI Master Mode, CKPH = 1 ................................................................................................... 42  
SPI Slave Mode, CKPH = 0..................................................................................................... 43  
SPI Slave Mode, CKPH = 1..................................................................................................... 43  
I2C Mode Timing ................................................................................................................. 44  
MSP430 Functional Block Diagram............................................................................................ 50  
TPS65835 Applications Schematic ............................................................................................ 56  
Boost Feedback Network Schematic .......................................................................................... 57  
Bypassing Default TPS65835 Push Button SWITCH Timing............................................................... 58  
SWITCH Press and SLEEP Signal to Control System Power Off ......................................................... 59  
2-1  
2-2  
2-3  
2-4  
2-5  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
2-16  
2-17  
3-1  
3-12  
3-16  
3-17  
3-18  
3-19  
3-20  
3-24  
4-1  
4-2  
4-3  
4-4  
Copyright © 2011, Texas Instruments Incorporated  
List of Figures  
5
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
List of Tables  
1-1  
1-2  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
4-1  
Pin Descriptions ...................................................................................................................  
9
Pin Absolute Maximum Ratings ................................................................................................ 10  
nCHG_STAT Functionality ...................................................................................................... 22  
VLDO_SET Functionality........................................................................................................ 22  
H-Bridge States from Inputs .................................................................................................... 25  
Scaling Resistors for COMP Pin Function (VVLDO = 2.2 V) ................................................................. 27  
Scaling Resistors for COMP Pin Function (VVLDO = 3.0 V) ................................................................. 27  
SW_SEL Settings ................................................................................................................ 27  
Internally Connected Pins: MSP430 to Power Management Core ........................................................ 50  
Externally Available MSP430 Pins ............................................................................................. 51  
Internal MSP430 Pin Functions and Programming Options ................................................................ 52  
External MSP430 Port 1 Functions and Programming Options............................................................ 53  
External MSP430 Port 2 Functions and Programming Options............................................................ 54  
External MSP430 Port 3 Functions and Programming Options............................................................ 55  
Recommended RFB1 and RFB2 Values (for IQ(FB) = 5 µA) .................................................................... 57  
6
List of Tables  
Copyright © 2011, Texas Instruments Incorporated  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Advanced PMU With Integrated MSP430 For Active Shutter 3D Glasses  
Check for Samples: TPS65835  
1
INTRODUCTION  
16-Bit RISC Architecture  
16 kB Flash  
Two 16-Bit Timer_A Modules With Three  
Capture/Compare Registers  
10-Bit 200-ksps A/D Converter With Internal  
1.1 Features  
12  
Power Management Core  
Linear Charger  
Three Charger Phases: Pre-charge, Fast  
Charge, and Charge Termination  
Reference, Sample-and-Hold, and Autoscan  
LED Current Sinks for Power Good and  
Charger Status Indication  
Universal Serial Communications Interface,  
Supports IrDA Encode/Decode and  
Synchronous SPI  
LDO Supply for External Modules &  
Integrated MSP430 Power  
Boost Converter  
Enhanced UART Supporting Auto  
Baudrate Detection (LIN)  
Adjustable Output Voltage: 8 V to 16 V  
IrDA Encoder and Decoder  
Synchronous SPI  
I2C™  
Full H-Bridge Analog Switches  
Internally Controlled by MSP430 Core for  
System Functions  
Serial Onboard Programming  
MSP430 Core  
No External Programming Voltage  
Needed  
Ultralow Power Consumption  
Active Mode: 280 µA at 1 MHz, 2.2 V  
Standby Mode: 0.5 µA  
Off Mode (RAM Retention): 0.1 µA  
Programmable Code Protection by  
Security Fuse  
For Complete Module Descriptions, See the  
MSP430x2xx Family User's Guide (SLAU144)  
Five Power-Saving Modes  
1.2 Description  
The TPS65835 is a PMU for active shutter 3D glasses consisting of a power management core and an  
MSP430 microcontroller. The power management core has an integrated power path, linear charger, LDO,  
boost converter, and full H-bridge analog switches for left and right shutter operation in a pair of active  
shutter 3D glasses. The MSP430 core supports the synchronization and communications from an IR, RF,  
or other communications module through the integrated universal serial communications and timer  
interfaces for operation of the H-bridge switches on the power management core.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
I2C is a trademark of Phillips.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
1.3 Block Diagram  
Figure 1-1. TPS65835 Simplified Functional Block Diagram  
8
INTRODUCTION  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
1.4 Pin Descriptions  
Table 1-1. Pin Descriptions  
PIN NAME  
I/O  
PIN NO.  
DESCRIPTION  
POWER MANAGEMENT CORE (PMIC)  
VIN  
I
26  
18  
AC or USB Adapter Input  
ISET  
I/O  
Fast-Charge Current Setting Resistor  
Pin for 10 kΩ NTC Thermistor Connection  
FLOAT IF THERMISTOR / TS FUNCTION IS NOT USED  
TS  
I
19  
38  
Open-drain Output, Charger Status Indication  
CONNECT TO GROUND IF FUNCTION IS NOT USED  
nCHG_STAT  
O
BAT  
I/O  
O
O
I
22  
23  
27  
28  
33  
35  
12  
15  
11  
8
Charger Power Stage Output and Battery Voltage Sense Input  
Output Terminal to System  
SYS  
VLDO  
LDO Output  
VLDO_SET  
SWITCH  
SW_SEL  
BST_SW  
BST_FB  
BST_OUT  
LCRN  
Sets LDO Output Voltage (see Table 2-2)  
Switch Input for Device Power On/Off  
Selects Type of Switch Connected to SWITCH Pin (see Table 2-6)  
Boost Switch Node  
I
I
I
I
Boost Feedback Node  
O
O
O
O
O
Boost Output  
H-Bridge Output for Right LC Shutter, "Negative" Terminal  
H-Bridge Output for Right LC Shutter, "Positive" Terminal  
H-Bridge Output for Left LC Shutter, "Negative" Terminal  
H-Bridge Output for Left LC Shutter, "Positive" Terminal  
LCRP  
7
LCLN  
6
LCLP  
5
I2C Clock Pin (only used for TI debug and test)  
GROUND PIN IN APPLICATION  
PSCL  
PSDA  
I/O  
I/O  
37  
36  
I2C Data Pin (only used for TI debug and test)  
GROUND PIN IN APPLICATION  
PGNDBST  
-
-
-
14  
29  
4
PMIC Boost Power Ground(1)  
PMIC Analog Ground(1)  
PMIC Digital Ground(1)  
AGND  
DGND  
MSP430 Microcontroller  
P1.1/  
General-purpose digital I/O pin  
TA0.0/  
UCA0RXD/  
UCA0SOMI/  
A1/  
Timer0_A, capture: CCI0A input, compare: Out0 output  
USCI_A0 receive data input in UART mode  
USCI_A0 slave data out/master in SPI mode  
ADC10 analog input A1  
I/O  
I/O  
I/O  
30  
31  
32  
CA1  
Comparator_A+, CA1 input  
P1.2/  
General-purpose digital I/O pin  
TA0.1/  
UCA0TXD/  
UCA0SIMO/  
A2/  
Timer0_A, capture: CCI1A input, compare: Out1 output  
USCI_A0 transmit data output in UART mode  
USCI_A0 slave data in/master out in SPI mode  
ADC10 analog input A2  
CA2  
Comparator_A+, CA2 input  
P1.3/  
ADC10CLK/  
A3  
VREF-/VEREF-/  
CA3/  
CAOUT  
General-purpose digital I/O pin  
ADC10, conversion clock output  
ADC10 analog input A3  
ADC10 negative reference voltage  
Comparator_A+, CA3 input  
Comparator_A+, output  
P1.4/  
General-purpose digital I/O pin  
SMCLK signal output  
USCI_B0 slave transmit enable  
USCI_A0 clock input/output  
SMCLK/  
UCB0STE  
UCA0CLK/  
A4  
I/O  
34  
ADC10 analog input A4  
VREF+/VEREF+/  
CA4  
ADC10 positive reference voltage  
Comparator_A+, CA4 input  
TCK  
JTAG test clock, input terminal for device programming and test  
(1) MSP430 ground and grounds for PMIC (Power Management Core) are connected internally.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
INTRODUCTION  
9
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Table 1-1. Pin Descriptions (continued)  
PIN NAME  
I/O  
PIN NO.  
DESCRIPTION  
P1.5/  
General-purpose digital I/O pin  
TA0.0/  
UCB0CLK/  
UCA0STE/  
A5/  
Timer0_A, compare: Out0 output  
USCI_B0 clock input/output  
USCI_A0 slave transmit enable  
I/O  
39  
ADC10 analog input A5  
CA5/  
Comparator_A+, CA5 input  
TMS  
JTAG test mode select, input terminal for device programming and test  
P1.6/  
General-purpose digital I/O pin  
TA0.1/  
Timer0_A, compare: Out1 output  
A6/  
ADC10 analog input A6  
CA6/  
I/O  
I/O  
13  
16  
Comparator_A+, CA6 input  
UCB0SOMI/  
UCB0SCL/  
TDI/TCLK  
USCI_B0 slave out/master in SPI mode  
USCI_B0 SCL I2C clock in I2C mode  
JTAG test data input or test clock input during programming and test  
P1.7/  
A7/  
CA7/  
CAOUT/  
UCB0SIMO/  
UCB0SDA/  
TDO/TDI  
General-purpose digital I/O pin  
ADC10 analog input A7  
Comparator_A+, CA7 input  
Comparator_A+, output  
USCI_B0 slave in/master out in SPI mode  
USCI_B0 SDA I2C data in I2C mode  
JTAG test data output terminal or test data input during programming and test(2)  
P2.1/  
TA1.1  
General-purpose digital I/O pin  
Timer1_A, capture: CCI1A input, compare: Out1 output  
I/O  
I/O  
1
2
P2.2/  
TA1.1  
General-purpose digital I/O pin  
Timer1_A, capture: CCI1B input, compare: Out1 output  
P2.6/  
XIN/  
TA0.1  
General-purpose digital I/O pin  
XIN, Input terminal of crystal oscillator  
TA0.1, Timer0_A, compare: Out1 output  
I/O  
24  
P2.7/  
XOUT  
General-purpose digital I/O pin  
I/O  
I/O  
I/O  
21  
3
Output terminal of crystal oscillator(3)  
)
P3.3/  
TA1.2  
General-purpose digital I/O pin  
Timer1_A, compare: Out2 output  
P3.5/  
TA0.1  
General-purpose digital I/O pin  
Timer0_A, compare: Out0 output  
9
nRST/  
Reset  
NMI/  
I/O  
17  
Nonmaskable interrupt input  
SBWTDIO  
Spy-Bi-Wire test data input/output during programming and test  
TEST/  
SBWTCK  
Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
MSP430 Ground reference(4)  
I
20  
25  
DVSS  
-
MISC. AND PACKAGE  
There is an internal electrical connection between the exposed thermal pad and the AGND ground  
pin of the device. The thermal pad must be connected to the same potential as the AGND pin on  
the printed circuit board. Do not use the thermal pad as the primary ground input for the device.  
AGND pin must be connected to ground at all times.  
Thermal PAD  
N/C  
-
-
41  
All N/C pins are not connected internally (package to die). They should be connected to the main  
system ground.  
10, 40  
(2) TDO or TDI is selected via JTAG instruction.  
(3) If P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this  
pad after reset.  
(4) MSP430 ground and grounds for PMIC (Power Management Core) are connected internally.  
Table 1-2. Pin Absolute Maximum Ratings  
PIN  
VALUE / UNIT  
Input voltage range on all pins (except for VIN, BST_OUT, BST_SW, BST_FB, VLDO, LCLP, LCLN, LCRP,  
LCRN, AGND, DGND, PGNDBST, and MSP430 Core pins) with respect to AGND  
-0.3 V to 7.0 V  
VIN with respect to AGND  
-0.3 V to 28.0 V  
-0.3 V to 18.0 V  
-0.3 V to 3.6 V  
-0.3 V to 4.1 V  
BST_OUT, BST_SW with respect to PGNDBST  
BST_FB with respect to PGNDBST, VLDO with respect to DGND  
MSP430 Core Pins  
10  
INTRODUCTION  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
1.5 Package Pin Assignments  
Figure 1-2. TPS65835 Package Pin Assignments  
Copyright © 2011, Texas Instruments Incorporated  
INTRODUCTION  
11  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
2
POWER MANAGEMENT CORE  
2.1 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
SUBSYSTEM AND PARAMETER  
MIN  
NOM  
2.2  
MAX  
UNIT  
CHARGER / POWER PATH  
VVIN  
Voltage range at charger input pin  
Input current at VIN pin  
Capacitor on VIN pin  
3.7  
28(1)  
200  
10  
V
mA  
µF  
µH  
V
IVIN  
CVIN  
0.1  
0
LVIN  
Inductance at VIN pin  
2
VSYS  
Voltage range at SYS pin  
Output current at SYS pin  
Capacitor on SYS pin  
2.5  
6.4  
100  
10  
ISYS(OUT)  
CSYS  
mA  
µF  
V
0.1  
2.5  
4.7  
320  
4.7  
VBAT  
Voltage range at BAT pin  
Capacitor on BAT pin  
6.4  
10  
CBAT  
µF  
Ω
REXT(nCHG_STAT)  
Resistor connected to nCHG_STAT pin to limit  
current into pin  
BOOST CONVERTER / H-BRIDGE SWITCHES  
VIN(BST_SW)  
VBST_OUT  
CBST_OUT  
Input voltage range for boost converter  
2.5  
8
6.5  
16  
V
V
Output voltage range for boost converter  
Boost output capacitor  
3.3  
4.7  
4.7  
10  
10(3)  
µF  
µH  
(2)  
LBST_SW  
Inductor connected between SYS and BST_SW pins  
LDO  
CVLDO  
External decoupling cap on pin VLDO  
1
10  
µF  
POWER MANAGEMENT CORE CONTROL (LOGIC LEVELS FOR GPIOs)  
VIL(PMIC)  
GPIO low level (BST_EN, CHG_EN, SW_SEL,  
VLDO_SET and to switch H-Bridge inputs to a low, 0,  
level)  
0.4  
V
VIH(PMIC)  
GPIO high level (BST_EN, CHG_EN, SW_SEL,  
VLDO_SET and to switch H-Bridge inputs to a high,  
1, level)  
1.2  
V
(1) VIN pin has 28 V ESD protection  
(2) See Section 2.9 for information on boost converter inductor selection.  
(3) Design optimized for boost operation with 10 µH inductor  
2.2 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MINIMUM  
MAXIMUM  
UNITS  
°C  
Operating free-air temperature, TA  
0
0
0
60  
Max Junction Temperature, TJ, Electrical Characteristics Guaranteed  
Max Junction temperature, TJ, Functionality Guaranteed(1)  
85  
°C  
105  
°C  
(1) Device has a thermal shutdown feature implemented that shuts down at 105 °C  
12  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
2.3 Thermal Information  
TPS65835  
RKP  
40 PINS  
31.9  
THERMAL METRIC  
UNITS  
θJA  
Junction-to-ambient thermal resistance(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
Junction-to-top characterization parameter(4)  
Junction-to-board characterization parameter(5)  
Junction-to-case (bottom) thermal resistance(6)  
θJCtop  
θJB  
22.7  
6.2  
°C/W  
ψJT  
0.3  
ψJB  
6.1  
θJCbot  
1.4  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific  
JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(4) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(5) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
2.4 Quiescent Current  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IQ(SLEEP)  
Power management core quiescent @ 25° C  
8.6  
10.5  
µA  
current in sleep mode  
VBAT = 3.6 V  
VVIN = 0 V  
No load on LDO  
CHG_EN, BST_EN grounded  
BST_FB = 300 mV  
Power management core in sleep  
mode / device 'off'  
IQ(ACTIVE)  
Power management core quiescent @ 25° C  
current in active mode VBAT = 3.6 V  
39  
53.5  
µA  
VVIN = 0 V  
Boost enabled but not switching,  
H-bridge in grounded state  
No load on LDO  
Power management core in active  
mode  
2.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BATTERY CHARGER POWER PATH  
VUVLO(VIN) Undervoltage lockout at power path VVIN: 0 V 4 V  
3.2  
200  
40  
3.3  
3.45  
300  
140  
V
input, VIN pin  
VHYS-  
UVLO(VIN)  
Hysteresis on UVLO at power path  
input, VIN pin  
VVIN: 4 V 0 V  
mV  
mV  
VIN-DT  
Input power detection threshold  
Input power detected if: (VVIN > VBAT  
+ VIN-DT);  
VBAT = 3.6 V  
VVIN: 3.5 V 4 V  
VHYS-INDT  
Hysteresis on VIN-DT  
VBAT = 3.6 V  
20  
mV  
VVIN: 4 V 3.5 V  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
13  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOVP  
Input over-voltage protection  
threshold  
VVIN: 5 V 7 V  
6.4  
6.6  
6.8  
V
VHYS-OVP  
Hysteresis on OVP  
VVIN: 11 V 5 V  
105  
mV  
mV  
VDO(VIN-  
SYS)  
VIN pin to SYS pin dropout voltage  
ISYS = 150 mA (including IBAT  
VVIN = 4.35 V  
VBAT = 3.6 V  
)
350  
150  
VVIN VSYS  
VDO(BAT-  
SYS)  
BAT pin to SYS pin dropout voltage ISYS = 100 mA  
BAT VSYS VVIN = 0 V  
BAT > 3 V  
mV  
V
V
IVIN(MAX)  
Maximum power path input current  
at pin VIN  
VVIN = 5 V  
200  
mA  
V
VSUP(ENT)  
Enter battery supplement mode  
VSYS  
(VBAT - 40  
mV)  
VSUP(EXIT) Exit battery supplement mode  
VSYS  
V
(VBAT - 20  
mV)  
VSUP(SC)  
VO(SC)  
Output short-circuit limit in  
supplement mode  
250  
mV  
V
Output short-circuit detection  
threshold, power-on  
0.9  
BATTERY CHARGER  
ICC  
Active supply current into VIN pin  
VVIN = 5 V  
2
mA  
No load on SYS pin  
VBAT > VBAT(REG)  
IBAT(SC)  
Source current for BAT pin  
short-circuit detection  
1
mA  
V
VBAT(SC)  
BAT pin short-circuit detection  
threshold  
1.6  
1.8  
2.0  
VBAT(REG) Battery charger output voltage  
1%  
4.20  
3.0  
1%  
3.1  
V
V
VLOWV  
Pre-charge to fast-charge transition  
threshold  
2.9  
ICHG  
Charger fast charge current range  
ICHG = KISET / RISET  
VVIN = 5 V  
BAT(REG) > VBAT > VLOWV  
5
100  
mA  
V
KISET  
Battery fast charge current set factor VVIN = 5 V  
20%  
450  
20%  
AΩ  
ICHG = KISET / RISET  
IVIN(MAX) > ICHG  
ICHG = 100 mA  
No load on SYS pin, thermal loop  
not active.  
IPRECHG  
ITERM  
Pre-charge current  
0.07 ×  
ICHG  
0.10 ×  
ICHG  
0.15 ×  
ICHG  
mA  
mA  
mV  
Charge current value for termination ICHG = 100 mA  
detection threshold  
7
10  
15  
VRCH  
Recharge detection threshold  
VBAT below nominal charger voltage,  
55  
100  
170  
VBAT(REG)  
IBAT(DET)  
tCHG  
Sink current for battery detection  
1
mA  
s
Charge safety timer  
18000  
(18000 seconds = 5 hours)  
tPRECHG  
VDPPM  
Pre-charge timer  
(1800 seconds = 30 minutes)  
1800  
s
V
DPPM threshold  
VBAT +  
100 mV  
ILEAK(nCHG) Leakage current for nCHG_STAT  
pin  
VnCHG_STAT = 4.2 V  
CHG_EN = LOW (Charger disabled)  
100  
60  
nA  
Ω
RDSON(nCH On resistance for nCHG_STAT  
20  
MOSFET switch  
G)  
14  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IMAX(nCHG) Maximum input current to  
nCHG_STAT pin  
50  
mA  
BATTERY CHARGER NTC MONITOR  
ITSBIAS  
VCOLD  
TS pin bias current  
75  
µA  
0°C charge threshold for 10kΩ NTC  
(β = 3490)  
2100  
mV  
VHYS(COLD) Low temperature threshold  
hysteresis  
Battery charging and battery / NTC  
temperature increasing  
300  
300  
mV  
mV  
VHOT  
50°C charge threshold for 10kΩ  
NTC  
(β = 3490)  
VHYS(HOT) High temperature threshold  
hysteresis  
Battery charging and battery / NTC  
temperature decreasing  
30  
mV  
BATTERY CHARGER THERMAL REGULATION  
TJ(REG_LO Charger lower thermal regulation  
75  
95  
°C  
°C  
°C  
°C  
limit  
WER)  
TJ(REG_UPP Charger upper thermal regulation  
limit  
ER)  
TJ(OFF)  
Charger thermal shutdown  
temperature  
105  
20  
TJ(OFF-HYS) Charger thermal shutdown  
hysteresis  
LDO  
IMAX(LDO)  
Maximum LDO output current,  
VVLDO = 2.2 V  
VSYS = 4.2 V  
VVIN = 0 V  
VLDO_SET = 0 V  
30  
30  
mA  
Maximum LDO output current,  
VVLDO = 3.0 V  
VSYS = 4.2 V  
VVIN = 0 V  
mA  
VLDO_SET = VSYS  
ISC(LDO)  
VVLDO  
Short circuit current limit  
LDO output voltage  
30  
100  
mA  
V
VLDO_SET = LOW  
(VLDO_SET pin connected to  
DGND)  
3.7 V VVIN 6.5 V  
ILOAD(LDO) = -10 mA  
2.13  
2.2  
3.0  
2.27  
VVLDO  
LDO output voltage  
VLDO_SET = HIGH  
2.91  
3.09  
V
(VVLDO_SET = VSYS  
)
3.7 V VVIN 6.5 V  
ILOAD(LDO) = -10 mA  
VDO(LDO)  
LDO Dropout voltage  
Line regulation  
VVIN - VLDO when in dropout  
ILOAD(LDO) = -10 mA  
200  
1
mV  
%
3.7 V VVIN 6.5 V  
ILOAD(LDO) = -10 mA  
-1  
-2  
Load regulation  
VVIN = 3.5 V  
2
%
0.1 mA ILOAD(LDO) -10 mA  
PSRR  
Power supply rejection ratio  
@20 KHz, ILOAD(LDO) = 10 mA  
VDO(LDO) = 0.5 V  
45  
dB  
CVLDO = 10 µF  
BOOST CONVERTER  
IQ(BST) Boost operating quiescent current  
Boost Enabled, BST_EN = High  
IOUT(BST) = 0 mA  
(boost is not switching)  
VBAT = 3.6 V  
2
4.5  
1.2  
µA  
RDSON(BST) Boost MOSFET switch on-resistance VIN(BST) = 2.5 V  
ISW(MAIN) = 200 mA  
0.8  
Ω
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
15  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ILKG(BST_S Leakage into BST_SW pin  
BST_EN signal = LOW (Boost  
disabled)  
90  
nA  
(includes leakage into analog  
W)  
h-bridge switches)  
VBST_SW = 4.2 V  
No load on BST_OUT pin  
ISWLIM(BST) Boost MOSFET switch current limit  
VDIODE(BST Voltage across integrated boost  
100  
150  
200  
1.0  
mA  
V
BST_EN signal = HIGH  
VBST_SW = 16.0 V  
diode during normal operation  
)
IBST_OUT = - 2 mA  
VREF(BST)  
Boost reference voltage on BST_FB  
pin  
1.17  
2
1.2  
2.5  
6.5  
1.23  
3.2  
8
V
%
µs  
VREFHYS(BS Boost reference voltage hysteresis  
T)  
on BST_FB pin  
TON(BST)  
Maximum on time detection  
threshold  
5
TOFF(BST)  
Minimum off time detection threshold  
1.4  
1.75  
105  
20  
2.1  
µs  
°C  
°C  
TSHUT(BST) Boost thermal shutdown threshold  
TSHUT-  
HYS(BST)  
Boost thermal shutdown threshold  
hysteresis  
FULL H-BRIDGE ANALOG SWITCHES  
IQ(HSW)  
Operating quiescent current for  
h-bridge switches  
5
µA  
Ω
RDSON(HSW H-bridge switches on resistance  
20  
40  
)
TDELAY(HS H-bridge switch propagation delay,  
VHBxy = 0 V VVLDO  
100  
ns  
input switched from low to high  
W-H)  
state.  
TDELAY(HS H-bridge switch propagation delay,  
VHBxy = VVLDO 0 V  
100  
ns  
input switched from high to low  
W-L)  
state.  
POWER MANAGEMENT CORE CONTROLLER  
VIL(PMIC)  
Low logic level for logic signals on  
power management core  
(BST_EN, CHG_EN, SLEEP, HBR1, IIN = 1 mA  
HBR2, HBL1, HBL2)  
IO logic level decreasing:  
0.4  
V
V
VSYS 0 V  
VIH(PMIC)  
High logic level for signals on power IO logic level increasing:  
1.2  
management core  
0 V VSYS  
(BST_EN, CHG_EN, SLEEP, HBR1, IIN = 1 mA  
HBR2, HBL1, HBL2)  
VGOOD(LDO Power fault detection threshold  
)
VVLDO decreasing  
1.96  
V
mV  
V
VGOOD_HYS Power fault detection hysteresis  
(LDO)  
VVLDO increasing  
50  
1.85  
1.10  
VBATCOMP COMP pin voltage (scaled down  
battery voltage)  
VBAT = 4.2 V  
VVLDO = 2.2 V  
VBAT = 2.5 V  
VVLDO = 2.2 V  
V
V
V
VBAT = 4.2 V  
VVLDO = 3.0 V  
1.90  
1.50  
VBAT = 3.3 V  
VVLDO = 3.0 V  
16  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
2.6 System Operation  
The system must complete the power up routine before it enters normal operating mode. The specific  
system operation depends on the setting defined by the state of the SW_SEL pin. The details of the  
system operation for each configuration of the SW_SEL pin are contained in this section.  
2.6.1 System Power Up  
Figure 2-1. System Power Up State Diagram  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
17  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
2.6.2 System Operation Using Push Button Switch  
Figure 2-2. Push Button State Diagram  
18  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
2.6.3 System Operation Using Slider Switch  
Figure 2-3. System Operation Using Slider Switch  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
19  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
2.7 Linear Charger Operation  
This device has an integrated Li-Ion battery charger and system power path management feature targeted  
at space-limited portable applications. The architecture powers the system while simultaneously and  
independently charging the battery. This feature reduces the number of charge and discharge cycles on  
the battery, allows for proper charge termination, and enables the system to run with a defective or absent  
battery pack. It also allows instant system turn-on even with a totally discharged battery.  
The input power source for charging the battery and running the system can be an AC adapter or USB  
port connected to the VIN pin as long as the input meets the device operating conditions outlined in this  
datasheet. The power-path management feature automatically reduces the charging current if the system  
load increases. Note that the charger input, VIN, has voltage protection up to 28 V.  
2.7.1 Battery and TS Detection  
To detect and determine between a good or damaged battery, the device checks for a short circuit on the  
BAT pin by sourcing IBAT(SC) to the battery and monitoring the voltage on the BAT pin. While sourcing this  
current if the BAT pin voltage exceeds VBAT(SC), a battery has been detected. If the voltage stays below  
the VBAT(SC) level, the battery is presumed to be damaged and not safe to charge.  
The device will also check for the presence of a 10 kΩ NTC thermistor attached to the TS pin of the  
device. The check for the NTC thermistor on the TS pin is done much like the battery detection feature  
described previously. The voltage on the TS pin is compared against a defined level and if it is found to be  
above the threshold, the NTC thermistor is assumed to be disconnected or not used in the system. To  
reduce the system quiescent current, the NTC thermistor temperature sensing function is only enabled  
when the device is charging and when the thermistor has been detected.  
Figure 2-4. Thermistor Detection and Circuit  
2.7.2 Battery Charging  
The battery is charged in three phases: conditioning pre-charge, constant-current fast charge (current  
regulation), and a constant-voltage tapering (voltage regulation). In all charge phases, an internal control  
loop monitors the IC junction temperature and reduces the charge current if an internal temperature  
threshold is exceeded. Figure 2-5 shows what happens in each of the three charge phases:  
20  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Figure 2-5. Battery Charge Phases  
In the pre-charge phase, the battery is charged with the pre-charge current that is scaled to be 10% of the  
fast-charge current set by the resistor connected to the ISET pin. Once the battery voltage crosses the  
VLOWV threshold, the battery is charged with the fast-charge current (ICHG). As the battery voltage reaches  
VBAT(REG), the battery is held at a constant voltage of VBAT(REG) and the charge current tapers off as the  
battery approaches full charge. When the battery current reaches ITERM, the charger indicates charging is  
done by making the nCHG_STAT pin high impedance. Note that termination detection is disabled  
whenever the charge rate is reduced from the set point because of the actions of the thermal loop, the  
DPM loop, or the VIN(LOWV) loop.  
2.7.2.1 Pre-charge  
The value for the pre-charge current is set to be 10% of the charge current that is set by the external  
resistor, RISET. Pre-charge current is scaled to lower currents when the charger is in thermal regulation.  
2.7.2.2 Charge Termination  
In the fast charge state, once VBAT VBAT(REG), the charger enters constant voltage mode. In constant  
voltage mode, the charge current will taper until termination when the charge current falls below the I(TERM)  
threshold (typically 10% of the programmed fast charge current). Termination current is not scaled when  
the charger is in thermal regulation. When the charging is terminated, the nCHG_STAT pin will be high  
impedance (effectively turning off any LED that is connected to this pin).  
2.7.2.3 Recharge  
Once a charge cycle is complete and termination is reached, the battery voltage is monitored. If VBAT  
VBAT(REG) - VRCH, the device determines if the battery has been removed. If the battery is still present, then  
the recharge cycle begins and will end when VBAT VBAT(REG)  
<
.
2.7.2.4 Charge Timers  
The charger in this device has internal safety timers for the pre-charge and fast charge phases to prevent  
potential damage to either the battery or the system. The default values for these timers are found as  
follows: Pre-charge timer = 0.5 hours (30 minutes) and Fast charge timer = 5 hours (300 minutes).  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
21  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
During the fast charge phase, the following events may increase the timer durations:  
1. The system load current activates the DPM loop which reduces the available charging current  
2. The input current is reduced because the input voltage has fallen to VIN(LOW)  
3. The device has entered thermal regulation because the IC junction temperature has exceeded TJ(REG)  
During each of these events, the internal timers are slowed down proportionately to the reduction in  
charging current.  
If the pre-charge timer expires before the battery voltage reaches VLOWV, the charger indicates a fault  
condition.  
2.7.3 Charger Status (nCHG_STAT Pin)  
The nCHG_STAT pin is used to indicate the charger status by an externally connected resistor and LED  
circuit. The pin is an open drain input and the internal switch is controlled by the logic inside of the  
charger. This pin may also be connected to a GPIO of the system MCU to indicate charging status. The  
table below details the status of the nCHG_STAT pin for various operating states of the charger.  
Table 2-1. nCHG_STAT Functionality  
Charging Status  
nCHG_STAT FET / LED  
Pre-charge / Fast Charge / Charge Termination  
ON  
Recharge  
OVP  
OFF  
OFF  
OFF  
SLEEP  
2.8 LDO Operation  
The power management core has a low dropout linear regulator (LDO) with variable output voltage  
capability. This LDO is used for supplying the microcontroller and may be used to supply either an  
external IR or RF module, depending on system requirements. The LDO can supply a continuous current  
of up to 30 mA.  
The output voltage (VVLDO) of the LDO is set by the state of the VLDO_SET pin. See Table 2-2 for details  
on setting the LDO output voltage.  
Table 2-2. VLDO_SET Functionality  
VLDO_SET State  
VLDO Output Voltage (VVLDO)  
Low (VLDO_SET < VIL(PMIC)  
)
2.2 V  
3.0 V  
High (VLDO_SET > VIH(PMIC)  
)
2.8.1 LDO Internal Current Limit  
The internal current limit feature helps to protect the LDO regulator during fault conditions. During current  
limit, the output sources a fixed amount of current that is defined in the electrical specification table. The  
voltage on the output in this stage can not be regulated and will be VOUT = ILIMIT × RLOAD. The pass  
transistor integrated into the LDO will dissipate power, (VIN - VOUT) × ILIMIT, until the device enters thermal  
shutdown. In thermal shutdown the device will enter the "SLEEP / POWER OFF" state which means that  
the LDO will then be disabled and shut off.  
22  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
2.9 Boost Converter Operation  
The boost converter in this device is designed for the load of active shutter 3D glasses. This load is  
typically a light load where the average current is 2 mA or lower and the peak current out of a battery is  
limited in operation. This asynchronous boost converter operates with a minimum off time / maximum on  
time for the integrated low side switch, these values are specified in the electrical characteristics table of  
this datasheet.  
The peak output voltage from the boost converter is adjustable and set by using an external resistor  
divider connected between BST_OUT, the BST_FB pin, and ground. The peak output voltage is set by  
choosing resistors for the feedback network such that the voltage on the BST_FB pin is VREF(BST) = 1.2 V.  
See Section 4.2 for more information on calculating resistance values for this feedback network.  
The efficiency curves for various input voltages over the typical 3D glasses load range (2 mA and lower)  
are shown below. All curves are for a target VOUT of 16 V. For output voltages less than 16 V, a higher  
efficiency at each operating input voltage should be expected. Note that efficiency is dependent upon the  
external boost feedback network resistances, the inductor used, and the type of load connected.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0 V  
0.01  
VOUT = 16.0 V  
1
VIN = 3.7 V  
0.01  
VOUT = 16.0 V  
1 2  
0.1  
2
0.1  
Output Current (mA)  
Output Current (mA)  
G000  
G000  
Figure 2-6. Boost Efficiency vs. IOUT, VIN = 3.0 V,  
Figure 2-7. Boost Efficiency vs. IOUT, VIN = 3.7 V,  
VOUT = 16 V  
VOUT = 16 V  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 4.2 V  
0.01  
VOUT = 16.0 V  
1
VIN = 5.5 V  
0.01  
VOUT = 16.0 V  
1 2  
0
0
0.1  
2
0.1  
Output Current (mA)  
Output Current (mA)  
G000  
G000  
Figure 2-8. Boost Efficiency vs. IOUT, VIN = 4.2 V,  
VOUT = 16 V  
Figure 2-9. Boost Efficiency vs. IOUT, VIN = 5.5 V,  
VOUT = 16 V  
2.9.1 Boost Thermal Shutdown  
An internal thermal shutdown mode is implemented in the boost converter that shuts down the device if  
the typical junction temperature of 105°C is exceeded. If the device is in thermal shutdown mode, the  
main switch of the boost is open and the device enters the "SLEEP / POWER OFF" state.  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
23  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
2.9.2 Boost Load Disconnect  
When the boost is disabled (BST_EN = LOW), the H-bridge is automatically placed into the OFF state. In  
the OFF state the high side H-bridge switches are open and the low side switches of the H-bridge are  
closed. The OFF state grounds and discharges the load, potentially prolonging the life of the LC shutters  
by eliminating any DC content (see Section 2.10.1 for more information regarding the H-bridge states).  
The disconnection of the load is done with the H-Bridge and can be seen in the next figure (Figure 2-10).  
Figure 2-10. Boost Load Disconnect  
An advantage to this topology for disconnecting the load is that the boost output capacitor is charged to  
approximately the SYS voltage level, specifically VSYS - VDIODE(BST), when the boost is disabled. This  
design ensures that there is not a large in-rush current into the boost output capacitor when the boost is  
enabled. The boost operation efficiency is also increased because there is no load disconnect switch in  
the boost output path, such a switch would decrease efficiency because of the resistance that it would  
introduce.  
2.10 Full H-Bridge Analog Switches  
The TPS65835 has two integrated full H-bridge analog switches that are connected to GPIO ports on the  
MSP430 and can be controlled by the MSP430 core for various system functions. There is an internal  
level shifter that takes care of the input signals to the H-Bridge switches.  
2.10.1 H-Bridge Switch Control  
The H-Bridge switches are controlled by the MSP430 core for system operation - specifically to control  
charge polarity on the LCD shutters. Depending on the state of the signals from the MSP430 core, the  
H-Bridge will be put into 4 different states. These states are:  
OPEN: All Switches Opened  
CHARGE+: Boost Output Voltage Present on Pins LCLP or LCRP  
CHARGE-: Boost Output Voltage Present on Pins LCLN or LCRN  
GROUNDED: High side switches are opened and low side switches are closed  
24  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
If CHARGE+ state is followed by the CHARGE- state, the voltage across the capacitor connected to the  
H-Bridge output terminals will be reversed. The system is automatically put into the GROUNDED state  
when the boost is disabled by the BST_EN pin - for more details see Section 2.6.  
Table 2-3. H-Bridge States from Inputs  
HBx2 [HBL2 & HBR2]  
HBx1 [HBL1 & HBR1]  
H-Bridge State  
OPEN  
0
0
1
1
0
1
0
1
CHARGE +  
CHARGE -  
GROUNDED  
Figure 2-11. H-Bridge States  
Figure 2-12. H-Bridge States from Oscilloscope  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
25  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
2.11 Power Management Core Control  
The power management core is controlled with external pins that can set system behavior by their status  
along with internal connections to GPIOs from the MSP430 that can be modified depending on the code  
implemented in the MSP430.  
2.11.1 SLEEP / Power Control Pin Function  
The internal SLEEP signal between the power management device and the MSP430 can be used to  
control the power down behavior of the device. This has multiple practical applications such as a  
watchdog implementation for the communication between the sender (TV) and the 3D glasses (receiver)  
or different required system on and off times; typically when the push-button press timing for an off event  
is a few seconds in length, programmable by software in the system MCU.  
If there is a requirement that the push-button press for system on and off events are different, the SLEEP  
signal must be set to a logic high value (VSLEEP > VIH(PMIC)) upon system startup. This implementation  
allows the device to power down the system on the falling edge of the SLEEP signal  
(when: VSLEEP < VIL(PMIC)).  
Figure 2-13. SLEEP Signal to Force System Power Off  
2.11.2 COMP Pin Functionality  
The COMP pin is used to output a scaled down voltage level related to the battery voltage for input to the  
comparator of the MSP430. Applications for this COMP feature could be to generate an interrupt on the  
MSP430 when the battery voltage drops under a threshold and the device can then be shut down or  
indicate to the end user with an LED that the battery requires charging.  
Figure 2-14. COMP Pin Internal Connection  
26  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Table 2-4. Scaling Resistors for COMP Pin Function  
(VVLDO = 2.2 V)  
Scaling Resistors for COMP Pin  
Value  
Function  
RBSCL1  
RBSCL2  
3.0 MΩ  
2.36 MΩ  
Table 2-5. Scaling Resistors for COMP Pin Function  
(VVLDO = 3.0 V)  
Scaling Resistors for COMP Pin  
Value  
Function  
RBSCL1  
RBSCL2  
3.0 MΩ  
2.48 MΩ  
Using the designed values in Table 2-4 or Table 2-5, the voltage on the COMP pin will be: VCOMP = 0.5 ×  
VVLDO + 300 mV. This assures that the COMP pin voltage will be close to half of the LDO output voltage  
plus the LDO dropout voltage of the device. The COMP pin can also be used as an input to ADC channel  
A0 of the integrated MSP430 microcontroller. This is useful if greater measurement accuracy or increased  
functionality is desired from this function.  
2.11.3 SW_SEL Pin Functionality  
The SW_SEL pin is used to select what type of switch is connected to the SWITCH pin of the device.  
Selection between a push-button and a slider switch can be made based on the state of this pin.  
Table 2-6. SW_SEL Settings  
SW_SEL State  
Type of Switch Selected  
Low  
Slider Switch  
(VSW_SEL < VIL(PMIC)  
)
High  
Push-button  
(VSW_SEL > VIH(PMIC)  
)
When the push button switch type is selected, the device will debounce the SWITCH input with a 32 ms  
timer for both the ON and OFF events and either power on or off the device. Using the push-button switch  
function, the ON and OFF timings are equal; tON = tOFF. If the system requirements are such that the on  
and off timings should be different, tON tOFF, then refer to the following section for the correct system  
setup: Section 4.3. When the slider switch operation is selected, the SWITCH pin must be externally  
pulled up to the SYS voltage with a resistor and the output connected to the slider switch. When the  
SWITCH pin is pulled to ground, the device will turn on and enter the power up sequence.  
2.11.4 SWITCH Pin  
The SWITCH pin behavior is defined by the SW_SEL pin (Section 2.11.3) which defines the type of switch  
that is connected to the system; either a slider switch or push-button.  
2.11.5 Slider Switch Behavior  
If a slider switch is connected in the system then the system power state and VLDO output (which powers  
the internal MSP430) is defined by the state of the slider switch. If the slider is in the "off" position than the  
SWITCH pin should be connected to the SYS pin. If the slider is in the "on" position than the SWITCH pin  
should be connected to ground. Figure 2-15 details the system operation using the slider switch  
configuration.  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
27  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
 
 
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Figure 2-15. SWITCH, Slider Power On-Off Behavior  
2.11.6 Push-Button Switch Behavior  
The system is powered on or off by a push-button press after a press that is greater than 32 ms. The  
following figures (Figure 2-16 and Figure 2-17) show the system behavior and the expected VLDO output  
during the normal push-button operation where the ON and OFF press timings are the same value,  
tON = tOFF  
.
Figure 2-16. SWITCH, Push-button Power On Behavior  
28  
POWER MANAGEMENT CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Figure 2-17. SWITCH, Push-button Power Off Behavior  
Copyright © 2011, Texas Instruments Incorporated  
POWER MANAGEMENT CORE  
29  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
3
MSP430 CORE  
3.1 MSP430 Electrical Characteristics  
3.1.1 MSP430 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
During program execution  
1.8  
3.6  
VCC  
VSS  
Supply voltage  
Supply voltage  
V
During flash  
programming/erase  
2.2  
3.6  
0
V
VCC = 1.8 V,  
Duty cycle = 50% ± 10%  
dc  
6
Processor frequency (maximum MCLK frequency using the VCC = 2.7 V,  
USART module)(1)(2)  
Duty cycle = 50% ± 10%  
fSYSTEM  
dc  
dc  
12 MHz  
16  
VCC = 3.3 V,  
Duty cycle = 50% ± 10%  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
6 MHz  
3.3 V 3.6 V  
2.7 V  
Supply Voltage - V  
1.8 V  
2.2 V  
Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 3-1. Safe Operating Area  
3.1.2 Active Mode Supply Current Into VCC Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)(4)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 0 Hz,  
2.2 V  
230  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current at 1 MHz  
IAM,1MHz  
µA  
3 V  
330  
420  
(3) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(4) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
30  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.3 Typical Characteristics, Active Mode Supply Current (Into VCC)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
= 16 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
= 3 V  
CC  
f
= 12 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
f
= 8 MHz  
DCO  
f
= 1 MHz  
V
CC  
= 2.2 V  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 3-2. Active Mode Current vs VCC, TA = 25°C Figure 3-3. Active Mode Current vs DCO Frequency  
3.1.4 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fMCLK = 0 MHz,  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Low-power mode 0  
(LPM0) current(1)  
ILPM0,1MHz  
25°C  
2.2 V  
56  
µA  
fMCLK = fSMCLK = 0 MHz,  
fDCO = 1 MHz,  
fACLK = 32768 Hz,  
Low-power mode 2  
(LPM2) current(2)  
ILPM2  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
25°C  
2.2 V  
22  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 32768 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
(LPM3) current(2)  
ILPM3,LFXT1  
ILPM3,VLO  
ILPM4  
25°C  
25°C  
2.2 V  
2.2 V  
2.2 V  
0.7  
0.5  
1.5  
0.7  
µA  
µA  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator (VLO),  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
current, (LPM3)(2)  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
25°C  
85°C  
0.1  
0.8  
0.5  
1.7  
Low-power mode 4  
(LPM4) current(3)  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
(1) Current for brownout and WDT clocked by SMCLK included.  
(2) Current for brownout and WDT clocked by ACLK included.  
(3) Current for brownout included.  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
31  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
3.1.5 Typical Characteristics, Low-Power Mode Supply Currents  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
Vcc = 3.6 V  
Vcc = 3 V  
Vcc = 3.6 V  
Vcc = 3 V  
Vcc = 2.2 V  
Vcc = 2.2 V  
Vcc = 1.8 V  
Vcc = 1.8 V  
60 80  
-40  
-20  
0
20  
40  
-40  
-20  
0
20  
40  
60  
80  
TA – Temperature – °C  
TA – Temperature – °C  
Figure 3-4. LPM3 Current vs Temperature  
Figure 3-5. LPM4 Current vs Temperature  
3.1.6 Schmitt-Trigger Inputs, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1.35  
TYP  
MAX UNIT  
0.75 VCC  
VIT+  
Positive-going input threshold voltage  
V
V
3 V  
2.25  
0.55 VCC  
1.65  
0.25 VCC  
0.75  
VIT–  
Negative-going input threshold voltage  
3 V  
3 V  
Vhys  
RPull  
CI  
Input voltage hysteresis (VIT+ VIT–  
Pullup/pulldown resistor  
Input capacitance  
)
0.3  
1
V
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
3 V  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
3.1.7 Leakage Current, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
±50 nA  
(1) (2)  
Ilkg(Px.y)  
High-impedance leakage current  
3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
3.1.8 Outputs, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 6 mA(1)  
I(OLmax) = 6 mA(1)  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
CC 0.3  
V
V
VSS + 0.3  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
32  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.9 Output Frequency, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 20 pF, RL = 1 kΩ(1) (2)  
Px.y, CL = 20 pF(2)  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
MHz  
Port output frequency  
(with load)  
fPx.y  
12  
16  
fPort_CLK  
Clock output frequency  
MHz  
(1) A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
3.1.10 Typical Characteristics, Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
V
= 2.2 V  
V
= 3 V  
CC  
CC  
T
= 25°C  
= 85°C  
A
T
= 25°C  
= 85°C  
P1.7  
A
P1.7  
T
A
T
A
0
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 3-6.  
Figure 3-7.  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
33  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−5  
0
−10  
−20  
−30  
−40  
−50  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P1.7  
P1.7  
−10  
−15  
−20  
−25  
T
= 85°C  
A
T
A
= 85°C  
T
= 25°C  
0.5  
A
T
A
= 25°C  
0.5  
0
1
1.5  
2
2.5  
0
1
1.5  
2
2.5  
3
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 3-8.  
Figure 3-9.  
3.1.11 Pin-Oscillator Frequency Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1400  
900  
MAX UNIT  
P1.y, CL = 10 pF, RL = 100 kΩ(1)(2)  
P1.y, CL = 20 pF, RL = 100 kΩ(1)(2)  
P2.0 to P2.5, CL = 10 pF, RL = 100 kΩ(1)(2)  
P2.0 to P2.5, CL = 20 pF, RL = 100 kΩ(1)(2)  
foP1.x  
Port output oscillation frequency  
3 V  
kHz  
1800  
1000  
foP2.x  
foP2.6/7  
foP3.x  
Port output oscillation frequency  
Port output oscillation frequency  
Port output oscillation frequency  
kHz  
kHz  
kHz  
3 V  
3 V  
P2.6 and P2.7, CL = 20 pF, RL = 100  
700  
kΩ(1)(2)  
P3.y, CL = 10 pF, RL = 100 kΩ(1)(2)  
P3.y, CL = 20 pF, RL = 100 kΩ(1)(2)  
1800  
1000  
(1) A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
34  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.12 Typical Characteristics, Pin-Oscillator Frequency  
TYPICAL OSCILLATING FREQUENCY  
TYPICAL OSCILLATING FREQUENCY  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
V
CC  
= 3.0 V  
V
CC  
= 2.2 V  
P1.y  
P1.y  
P2.0 ... P2.5  
P2.6, P2.7  
P2.0 ... P2.5  
P2.6, P2.7  
10  
50  
100  
10  
50  
100  
C
LOAD  
− External Capacitance − pF  
C
LOAD  
− External Capacitance − pF  
A. One output active at a time.  
B. One output active at a time.  
Figure 3-10.  
Figure 3-11.  
3.1.13 POR/Brownout Reset (BOR)(3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
0.7 ×  
V(B_IT--)  
VCC(start)  
See Figure 3-12  
dVCC/dt 3 V/s  
V
V(B_IT)  
Vhys(B_IT)  
td(BOR)  
See Figure 3-12 through Figure 3-14  
See Figure 3-12  
dVCC/dt 3 V/s  
dVCC/dt 3 V/s  
1.35  
140  
V
mV  
µs  
See Figure 3-12  
2000  
Pulse length needed at RST/NMI pin to  
accepted reset internally  
t(reset)  
2.2 V  
2
µs  
(3) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT)  
+
Vhys(B_IT)is 1.8 V.  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
35  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 3-12. POR/Brownout Reset (BOR) vs Supply Voltage  
3.1.14 Typical Characteristics, POR/Brownout Reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 3-13. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 3-14. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
36  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.15 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.8  
2.2  
3
TYP  
MAX UNIT  
RSELx < 14  
RSELx = 14  
RSELx = 15  
3.6  
VCC  
Supply voltage  
3.6  
3.6  
V
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
0.06  
0.07  
0.14 MHz  
0.17 MHz  
MHz  
0.15  
0.21  
0.30  
0.41  
0.58  
MHz  
MHz  
MHz  
MHz  
0.54  
0.80  
1.06 MHz  
1.50 MHz  
MHz  
1.6  
2.3  
MHz  
3.4  
MHz  
4.25  
MHz  
4.30  
6.00  
8.60  
12.0  
16.0  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
7.8  
Frequency step between  
range RSEL and RSEL+1  
SRSEL  
SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)  
3 V  
1.35  
ratio  
Frequency step between  
tap DCO and DCO+1  
SDCO  
SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)  
Measured at SMCLK output  
3 V  
3 V  
1.08  
50  
ratio  
%
Duty cycle  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
37  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
MAX UNIT  
3.1.16 Calibrated DCO Frequencies, Tolerance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over  
temperature(1)  
0°C to 85°C  
3 V  
-3  
±0.5  
3
3
6
3
3
6
3
3
6
3
3
6
%
%
%
%
%
%
%
%
%
%
%
%
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over VCC  
1-MHz tolerance overall  
30°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
-3  
-6  
-3  
-3  
-6  
-3  
-3  
-6  
-3  
-3  
-6  
±2  
±3  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over VCC  
8-MHz tolerance overall  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
3 V  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
±3  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
12-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
12-MHz tolerance over VCC  
12-MHz tolerance overall  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
3 V  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
±3  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
16-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
16-MHz tolerance over VCC  
16-MHz tolerance overall  
3.3 V to 3.6 V  
3.3 V to 3.6 V  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
±3  
(1) This is the frequency change from the measured frequency at 30°C over temperature.  
38  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.17 Wake-Up From Lower-Power Modes (LPM3/4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DCO clock wake-up time from  
LPM3/4(1)  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz  
tDCO,LPM3/4  
tCPU,LPM3/4  
3 V  
1.5  
µs  
1/fMCLK  
+
CPU wake-up time from LPM3/4(2)  
tClock,LPM3/4  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
3.1.18 Typical Characteristics, DCO Clock Wake-Up Time From LPM3/4  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
DCO Frequency − MHz  
10.00  
Figure 3-15. DCO Wake-Up Time From LPM3 vs DCO Frequency  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
39  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
3.1.19 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
fLFXT1,LF  
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32768  
Hz  
LFXT1 oscillator logic level  
fLFXT1,LF,logic  
square wave input frequency, XTS = 0, XCAPx = 0, LFXT1Sx = 3  
LF mode  
1.8 V to 3.6 V 10000  
32768 50000  
Hz  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF  
500  
200  
Oscillation allowance for  
LF crystals  
OALF  
kΩ  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode(2)  
CL,eff  
pF  
XTS = 0, Measured at P2.0/ACLK,  
fLFXT1,LF = 32768 Hz  
Duty cycle  
fFault,LF  
LF mode  
2.2 V  
2.2 V  
30  
10  
50  
70  
%
Oscillator fault frequency,  
LF mode(3)  
XTS = 0, XCAPx = 0, LFXT1Sx = 3(4)  
10000  
Hz  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should  
always match the specification of the used crystal.  
(3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(4) Measured with logic-level input frequency but also applies to operation with crystals.  
3.1.20 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TA  
VCC  
3 V  
MIN  
TYP  
12  
MAX UNIT  
20 kHz  
%/°C  
fVLO  
-40°C to 85°C  
-40°C to 85°C  
25°C  
4
dfVLO/dT  
3 V  
0.5  
4
dfVLO/dVCC VLO frequency supply voltage drift  
1.8 V to 3.6 V  
%/V  
40  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.21 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SMCLK, duty cycle = 50% ± 10%  
TA0, TA1  
VCC  
MIN  
TYP  
fSYSTEM  
MAX UNIT  
fTA  
Timer_A input clock frequency  
Timer_A capture timing  
MHz  
ns  
tTA,cap  
3 V  
20  
3.1.22 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fUSCI  
USCI input clock frequency  
SMCLK, duty cycle = 50% ± 10%  
fSYSTEM  
MHz  
Maximum BITCLK clock frequency  
(equals baudrate in MBaud)(1)  
UART receive deglitch time(2)  
fmax,BITCLK  
tτ  
3 V  
3 V  
2
MHz  
50  
100  
600  
ns  
(1) The DCO wake-up time must be considered in LPM3/4 for baud rates above 1 MHz.  
(2) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their width should exceed the maximum specification of the deglitch time.  
3.1.23 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 3-16  
and Figure 3-17)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fUSCI  
USCI input clock frequency  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time  
SMCLK, duty cycle = 50% ± 10%  
fSYSTEM MHz  
tSU,MI  
3 V  
3 V  
3 V  
75  
0
ns  
ns  
tHD,MI  
tVALID,MO  
UCLK edge to SIMO valid, CL = 20 pF  
20  
ns  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 3-16. SPI Master Mode, CKPH = 0  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
41  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 3-17. SPI Master Mode, CKPH = 1  
3.1.24 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 3-18  
and Figure 3-19)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
STE lead time, STE low to clock  
STE lag time, Last clock to STE high  
STE access time, STE low to SOMI data out  
50  
ns  
ns  
ns  
10  
50  
50  
STE disable time, STE high to SOMI high  
impedance  
tSTE,DIS  
3 V  
ns  
tSU,SI  
tHD,SI  
SIMO input data setup time  
SIMO input data hold time  
3 V  
3 V  
15  
10  
ns  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
SOMI output data valid time  
3 V  
50  
75  
ns  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 3-18. SPI Slave Mode, CKPH = 0  
42  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 3-19. SPI Slave Mode, CKPH = 1  
3.1.25 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 3-20)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fSYSTEM MHz  
400 kHz  
fUSCI  
fSCL  
USCI input clock frequency  
SCL clock frequency  
SMCLK, duty cycle = 50% ± 10%  
3 V  
3 V  
0
4.0  
0.6  
4.7  
0.6  
0
f
f
f
f
SCL 100 kHz  
SCL > 100 kHz  
SCL 100 kHz  
SCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
µs  
µs  
tSU,STA  
Setup time for a repeated START  
3 V  
tHD,DAT  
tSU,DAT  
tSU,STO  
Data hold time  
3 V  
3 V  
3 V  
ns  
ns  
µs  
Data setup time  
Setup time for STOP  
250  
4.0  
Pulse width of spikes suppressed by  
input filter  
tSP  
3 V  
50  
100  
600  
ns  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 3-20. I2C Mode Timing  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
43  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
3.1.26 Comparator_A+  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
(1)  
I(DD)  
CAON = 1, CARSEL = 0, CAREF = 0  
3 V  
45  
µA  
I(Refladder/  
RefDiode)  
V(IC)  
CAON = 1, CARSEL = 0, CAREF = 1/2/3,  
No load at CA0 and CA1  
3 V  
3 V  
3 V  
45  
µA  
Commonmode input voltage  
CAON = 1  
0
VCC-1  
V
PCA0 = 1, CARSEL = 1, CAREF = 1,  
No load at CA0 and CA1  
V(Ref025)  
V(Ref050)  
V(RefVT)  
(Voltage at 0.25 VCC node) / VCC  
0.24  
0.48  
490  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
No load at CA0 and CA1  
(Voltage at 0.5 VCC node) / VCC  
See Figure 3-21 and Figure 3-22  
3 V  
3 V  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
No load at CA0 and CA1, TA = 85°C  
mV  
V(offset)  
Vhys  
Offset voltage(2)  
Input hysteresis  
3 V  
3 V  
±10  
mV  
mV  
CAON = 1  
0.7  
TA = 25°C, Overdrive 10 mV,  
Without filter: CAF = 0  
120  
1.5  
ns  
Response time  
(low-high and high-low)  
t(response)  
3 V  
TA = 25°C, Overdrive 10 mV,  
With filter: CAF = 1  
µs  
(1) The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.y) specification.  
(2) The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The  
two successive measurements are then summed together.  
3.1.27 Typical Characteristics Comparator_A+  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
VCC = 3 V  
VCC = 2.2 V  
Typical  
Typical  
-45  
-25  
-5  
15  
35  
55  
75  
95  
115  
-45  
-25  
-5  
15  
35  
55  
75  
95  
115  
TA – Free-Air Temperature – °C  
TA – Free-Air Temperature – °C  
Figure 3-21. V(RefVT) vs Temperature, VCC = 3 V  
Figure 3-22. V(RefVT) vs Temperature, VCC = 2.2 V  
44  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
100  
10  
1
VCC = 1.8 V  
VCC = 2.2 V  
VCC = 3 V  
VCC = 3.6 V  
0
0.4  
0.6  
0.8  
1
0.2  
VIN/VCC – Normalized Input Voltage – V/V  
Figure 3-23. Short Resistance vs VIN/VCC  
3.1.28 10-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)  
PARAMETER  
TEST CONDITIONS  
VSS = 0 V  
TA  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VCC  
VAx  
Analog supply voltage  
2.2  
3.6  
V
All Ax terminals, Analog inputs  
selected in ADC10AE register  
Analog input voltage(1)  
ADC10 supply current(2)  
0
VCC  
V
fADC10CLK = 5.0 MHz,  
ADC10ON = 1, REFON = 0,  
ADC10SHT0 = 1, ADC10SHT1 = 0,  
ADC10DIV = 0  
IADC10  
25°C  
25°C  
0.6  
mA  
mA  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
0.25  
0.25  
Reference supply current,  
reference buffer disabled(3)  
IREF+  
3 V  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
fADC10CLK = 5.0 MHz,  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
IREFB,0  
25°C  
25°C  
3 V  
3 V  
1.1  
0.5  
mA  
mA  
current with ADC10SR = 0(3) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 0  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REFON = 1,  
Reference buffer supply  
IREFB,1  
current with ADC10SR = 1(3) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 1  
Only one terminal Ax can be selected  
CI  
RI  
Input capacitance  
at one time  
25°C  
25°C  
3 V  
3 V  
27  
pF  
Input MUX ON resistance  
0 V VAx VCC  
1000  
(3) The leakage current is defined in the leakage current table with Px.y/Ax parameter.  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VRfor valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter IADC10  
.
(3) The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
45  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
3.1.29 10-Bit ADC, Built-In Voltage Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VREF+ 1 mA, REF2_5V = 0  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
I
I
I
I
Positive built-in reference  
analog supply voltage range  
VCC,REF+  
V
VREF+ 1 mA, REF2_5V = 1  
2.9  
VREF+ IVREF+max, REF2_5V = 0  
VREF+ IVREF+max, REF2_5V = 1  
1.41  
2.35  
1.5  
2.5  
1.59  
V
Positive built-in reference  
voltage  
VREF+  
3 V  
3 V  
2.65  
Maximum VREF+ load  
current  
ILD,VREF+  
±1  
±2  
mA  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 0.75 V,  
REF2_5V = 0  
VREF+ load regulation  
3 V  
3 V  
LSB  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 1.25 V,  
REF2_5V = 1  
±2  
IVREF+ = 100 µA900 µA,  
VAx 0.5 × VREF+,  
Error of conversion result 1 LSB,  
VREF+ load regulation  
response time  
400  
ns  
ADC10SR = 0  
Maximum capacitance at  
pin VREF+  
CVREF+  
TCREF+  
I
VREF+ ≤ ±1 mA, REFON = 1, REFOUT = 1  
3 V  
3 V  
100  
pF  
ppm/  
°C  
Temperature coefficient  
IVREF+ = const with 0 mA IVREF+ 1 mA  
±100  
Settling time of internal  
reference voltage to 99.9%  
VREF  
IVREF+ = 0.5 mA, REF2_5V = 0,  
REFON = 0 1  
tREFON  
3.6 V  
3 V  
30  
2
µs  
µs  
IVREF+ = 0.5 mA,  
REF2_5V = 1, REFON = 1,  
REFBURST = 1, ADC10SR = 0  
Settling time of reference  
buffer to 99.9% VREF  
tREFBURST  
3.1.30 10-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VEREF+ > VEREF,  
SREF1 = 1, SREF0 = 0  
1.4  
VCC  
Positive external reference input  
voltage range  
VEREF+  
V
(1)  
VEREF– ≤ VEREF+ VCC 0.15 V,  
SREF1 = 1, SREF0 = 1  
1.4  
0
3
(2)  
Negative external reference input  
VEREF–  
ΔVEREF  
VEREF+ > VEREF–  
1.2  
V
V
(3)  
voltage range  
Differential external reference  
input voltage range,  
(4)  
VEREF+ > VEREF–  
1.4  
VCC  
ΔVEREF = VEREF+ VEREF–  
0 V VEREF+ VCC  
SREF1 = 1, SREF0 = 0  
,
3 V  
±1  
IVEREF+  
Static input current into VEREF+  
µA  
µA  
0 V VEREF+ VCC 0.15 V 3 V,  
3 V  
3 V  
0
SREF1 = 1, SREF0 = 1(2)  
IVEREF–  
Static input current into VEREF–  
0 V VEREF– ≤ VCC  
±1  
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the  
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(1) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(2) Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply  
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
46  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
3.1.31 10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
0.45  
TYP  
MAX  
6.3  
UNIT  
ADC10SR = 0  
ADC10SR = 1  
ADC10 input clock  
frequency  
For specified performance of  
ADC10 linearity parameters  
fADC10CLK  
fADC10OSC  
3 V  
MHz  
1.5  
ADC10 built-in oscillator ADC10DIVx = 0, ADC10SSELx = 0,  
3 V  
3 V  
3.7  
6.3  
MHz  
µs  
frequency  
fADC10CLK = fADC10OSC  
ADC10 built-in oscillator, ADC10SSELx = 0,  
fADC10CLK = fADC10OSC  
2.06  
3.51  
tCONVERT  
Conversion time  
13 ×  
fADC10CLK from ACLK, MCLK, or SMCLK:  
ADC10DIV ×  
1/fADC10CLK  
ADC10SSELx 0  
Turn-on settling time of  
the ADC  
(1)  
tADC10ON  
100  
ns  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
3.1.32 10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±5 LSB  
EI  
ED  
EO  
EG  
ET  
Source impedance RS < 100 Ω  
Gain error  
±1.1  
±2  
Total unadjusted error  
3.1.33 10-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
60  
MAX UNIT  
Temperature sensor supply  
current(1)  
REFON = 0, INCHx = 0Ah,  
TA = 25°C  
ISENSOR  
TCSENSOR  
tSensor(sample)  
IVMID  
µA  
mV/°C  
µs  
(2)  
ADC10ON = 1, INCHx = 0Ah  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
3.55  
Sample time required if channel  
30  
(3)  
10 is selected  
(4)  
Current into divider at channel 11 ADC10ON = 1, INCHx = 0Bh  
µA  
ADC10ON = 1, INCHx = 0Bh,  
VCC divider at channel 11  
VMID  
1.5  
V
V
MID 0.5 × VCC  
Sample time required if channel  
11 is selected  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
3 V  
1220  
ns  
(5)  
(1) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor  
input (INCH = 0Ah).  
(2) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor (273 + T [°C] ) + VOffset,sensor [mV] or  
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]  
(3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
(4) No additional current is needed. The VMID is used during sampling.  
.
(5) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
47  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
3.1.34 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST  
CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
VCC(PGM/ERASE) Program and erase supply voltage  
2.2  
3.6  
476  
5
V
kHz  
mA  
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
IPGM  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
IERASE  
tCPT  
7
mA  
10  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
100  
ms  
Program/erase endurance  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
Data retention duration  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional byte or  
word  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).  
3.1.35 RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX  
UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
3.1.36 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0
TYP  
MAX  
20  
UNIT  
MHz  
µs  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V  
2.2 V  
tSBW,Low Spy-Bi-Wire low clock pulse length  
0.025  
15  
Spy-Bi-Wire enable time  
tSBW,En  
2.2 V  
1
µs  
(TEST high to acceptance of first clock edge(1)  
)
tSBW,Ret  
fTCK  
Spy-Bi-Wire return to normal operation time  
TCK input frequency(2)  
2.2 V  
2.2 V  
2.2 V  
15  
0
100  
5
µs  
MHz  
kΩ  
RInternal  
Internal pulldown resistance on TEST  
25  
60  
90  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
3.1.37 JTAG Fuse(3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C  
MIN  
2.5  
6
MAX  
UNIT  
V
VCC(FB)  
VFB  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
7
V
IFB  
100  
mA  
(3) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to  
bypass mode.  
48  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Time to blow fuse  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tFB  
1
ms  
3.2 MSP430 Core Operation  
NOTE  
For support and specific questions related to the MSP430 in the TPS65835 device, please  
refer to TI's E2E PMU forum and post relevant questions to the forum at the following link:  
TI E2E PMU Forum.  
Please format your posting as follows:  
Title: TPS65835 "specific topic"  
Body: Question, with supporting code and oscilloscope screen captures if applicable.  
3.2.1 Description  
The MSP430 integrated into the TPS65835 is from the MSP430x2xx family of ultralow-power  
microcontrollers. The architecture, combined with five low-power modes is optimized to achieve extended  
battery life in portable applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and  
constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO)  
allows wake-up from low-power modes to active mode in less than 1s. The list of the peripherals and  
modules included in this MSP430 are as follows:  
Up to 16 MHz CPU  
16 kB Flash Memory  
512 B RAM  
Timer0_A3 and Timer1_A3  
Up to Two 16-Bit Timer_A with Three  
Capture/Compare Registers  
Watchdog WDT+  
Basic Clock Module  
USCI A0, Universal Serial Communication  
Interface  
Internal Frequencies up to 16 MHz with  
one Calibrated Frequency  
Enhanced UART Supporting Auto  
baudrate Detection (LIN)  
Internal  
Very-Low-Power  
Low-Frequency (LF) Oscillator  
IrDA Encoder and Decoder  
Synchronous SPI  
I2C  
32 kHz Crystal Support  
External Digital Clock Source  
10-Bit ADC  
200-ksps  
USCI B0, Universal Serial Communication  
Interface  
Analog-to-Digital  
Converter with Internal Reference,  
Sample-and-Hold, and Autoscan  
(A/D)  
Synchronous SPI  
I2C  
Comparator A+ (Comp_A+)  
For Analog Signal Compare Function or  
JTAG / Spy-By-Wire  
Slope  
Analog-to-Digital  
(A/D)  
Conversion  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
49  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Figure 3-24. MSP430 Functional Block Diagram  
3.2.2 Accessible MSP430 Pins  
There are a number of internal pins connected between the MSP430 core and the power management  
core as well as external pins on the MSP430. Internal pins are not available externally but can be  
controlled by the MSP430 core in various ways. A table describing all available MSP430 pin functions  
(Table 3-1) along with a block diagram detailing the MSP430 core and the pin connectivity (see  
Figure 3-24) has been made available.  
Table 3-1. Internally Connected Pins: MSP430 to Power Management Core  
Power Management  
Core Pin  
MSP430 Core Pin  
Functionality  
Voltage supplied by LDO on power management core, connected to MSP430 power  
management module  
VLDO  
AVCC / DVCC  
Enabled by SWITCH pin input  
Scaled down voltage of the BAT pin. Connected to Comparator_A+ channel CA0 or  
ADC channel A0 of the MSP430  
To use "COMP" and Comp_A+ module function of the MSP430, the pin must be  
configured properly  
COMP  
P1.0 / A0 / CA0  
DO NOT CONFIGURE THIS PIN AS A GPIO AND PULL THIS PIN UP OR DOWN,  
THIS WILL INCREASE THE OPERATING CURRENT OF THE DEVICE  
BST_EN  
CHG_EN  
P3.2  
P3.1  
Enable pin for the boost on the power management core, ACTIVE HIGH  
Enable pin for the charger on the power management core, ACTIVE HIGH  
Can put entire device into SLEEP state dependent upon system events, e.g.,  
SLEEP  
P3.0  
(1)  
extended loss of IR or RF synchronization  
HBL1  
HBL2  
HBR1  
HBR2  
P2.0  
P2.3  
P2.4  
P2.5  
Control pin 1 for left frame of active shutter glasses  
Control pin 2 for left frame of active shutter glasses  
Control pin 1 for right frame of active shutter glasses  
Control pin 2 for right frame of active shutter glasses  
(1) Note that the SLEEP signal can not be used to wake the system if it is already in the SLEEP state since the LDO used to power the  
MSP430 would be disabled in this state.  
50  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Table 3-2. Externally Available MSP430 Pins  
Pin Name  
I/O  
Functionality  
P1.1/  
General-purpose digital I/O pin  
TA0.0/  
UCA0RXD/  
UCA0SOMI/  
A1/  
Timer0_A, capture: CCI0A input, compare: Out0 output  
USCI_A0 receive data input in UART mode  
USCI_A0 slave data out/master in SPI mode  
ADC10 analog input A1  
I/O  
CA1  
Comparator_A+, CA1 input  
P1.2/  
General-purpose digital I/O pin  
TA0.1/  
UCA0TXD/  
UCA0SIMO/  
A2/  
Timer0_A, capture: CCI1A input, compare: Out1 output  
USCI_A0 transmit data output in UART mode  
USCI_A0 slave data in/master out in SPI mode  
ADC10 analog input A2  
I/O  
I/O  
CA2  
Comparator_A+, CA2 input  
P1.3/  
ADC10CLK/  
A3  
VREF-/VEREF-/  
CA3/  
CAOUT  
General-purpose digital I/O pin  
ADC10, conversion clock output  
ADC10 analog input A3  
ADC10 negative reference voltage  
Comparator_A+, CA3 input  
Comparator_A+, output  
P1.4/  
General-purpose digital I/O pin  
SMCLK signal output  
USCI_B0 slave transmit enable  
USCI_A0 clock input/output  
SMCLK/  
UCB0STE  
UCA0CLK/  
A4  
I/O  
ADC10 analog input A4  
VREF+/VEREF+/  
CA4  
ADC10 positive reference voltage  
Comparator_A+, CA4 input  
TCK  
JTAG test clock, input terminal for device programming and test  
P1.5/  
General-purpose digital I/O pin  
TA0.0/  
UCB0CLK/  
UCA0STE/  
A5/  
CA5/  
TMS  
Timer0_A, compare: Out0 output  
USCI_B0 clock input/output  
USCI_A0 slave transmit enable  
ADC10 analog input A5  
Comparator_A+, CA5 input  
I/O  
I/O  
I/O  
JTAG test mode select, input terminal for device programming and test  
P1.6/  
TA0.1/  
A6/  
CA6/  
UCB0SOMI/  
UCB0SCL/  
TDI/TCLK  
General-purpose digital I/O pin  
Timer0_A, compare: Out1 output  
ADC10 analog input A6  
Comparator_A+, CA6 input  
USCI_B0 slave out/master in SPI mode  
USCI_B0 SCL I2C clock in I2C mode  
JTAG test data input or test clock input during programming and test  
P1.7/  
A7/  
CA7/  
CAOUT/  
UCB0SIMO/  
UCB0SDA/  
TDO/TDI  
General-purpose digital I/O pin  
ADC10 analog input A7  
Comparator_A+, CA7 input  
Comparator_A+, output  
USCI_B0 slave in/master out in SPI mode  
USCI_B0 SDA I2C data in I2C mode  
JTAG test data output terminal or test data input during programming and test(1)  
P2.1/  
TA1.1  
General-purpose digital I/O pin  
Timer1_A, capture: CCI1A input, compare: Out1 output  
I/O  
I/O  
P2.2/  
TA1.1  
General-purpose digital I/O pin  
Timer1_A, capture: CCI1B input, compare: Out1 output  
P2.6/  
XIN/  
TA0.1  
General-purpose digital I/O pin  
XIN, Input terminal of crystal oscillator  
TA0.1, Timer0_A, compare: Out1 output  
I/O  
P2.7/  
XOUT  
General-purpose digital I/O pin  
I/O  
I/O  
I/O  
Output terminal of crystal oscillator(2)  
)
P3.3/  
TA1.2  
General-purpose digital I/O pin  
Timer1_A, compare: Out2 output  
P3.5/  
TA0.1  
General-purpose digital I/O pin  
Timer0_A, compare: Out0 output  
(1) TDO or TDI is selected via JTAG instruction.  
(2) If P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this  
pad after reset.  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
51  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Table 3-2. Externally Available MSP430 Pins (continued)  
Pin Name  
I/O  
Functionality  
nRST/  
Reset  
NMI/  
I
Nonmaskable interrupt input  
SBWTDIO  
Spy-Bi-Wire test data input/output during programming and test  
TEST/  
SBWTCK  
Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
I
DVSS  
N/A  
MSP430 ground reference  
3.2.3 MSP430 Port Functions and Programming Options  
This section details the programming options that are available for each of the pins that are accessible on  
the MSP430.  
Table 3-3. Internal MSP430 Pin Functions and Programming Options  
(2)  
MSP430 CONTROL BITS / SIGNALS  
PIN NAME  
x
FUNCTION  
P1.x (I/O)  
(P_.x)(1)  
ADC10AE.x  
INCH.x=1  
P_DIR.x  
P_SEL.x  
P_SEL2.x  
CAPD.y  
P1.0/  
I: 0; O: 1  
0
X
X
0
X
X
0
1 (y = 0)  
0
0
0
A0/  
0
A0  
X
X
CA0  
CA0  
1 (y = 0)  
P2.x (I/O), HBL1 internal  
signal  
P2.0/  
TA1.0  
P2.3/  
TA1.0  
P2.4/  
TA1.2  
P2.5/  
I: 0; O: 1  
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
3
4
Timer1_A3.TA0  
1
P2.x (I/O), HBL2 internal  
signal  
I: 0; O: 1  
1
Timer1_A3.TA0  
P2.x (I/O), HBR1 internal  
signal  
I: 0; O: 1  
1
Timer1_A3.TA2  
P2.x (I/O), HBR2 internal  
signal  
I: 0; O: 1  
5
0
1
TA1.2  
P3.0/  
TA0.2  
Timer1_A3.TA2  
1
I: 0; O: 1  
1
1
0
1
0
0
0
P3.x (I/O), SLEEP signal  
Timer0_A3.TA2  
P3.x (I/O), CHG_EN signal,  
ACTIVE HIGH  
P3.1/  
TA1.2  
P3.2/  
TA1.2  
I: 0; O: 1  
0
1
0
1
0
0
0
0
Timer1_A3.TA2  
1
I: 0; O: 1  
1
P3.x (I/O), BST_EN signal,  
ACTIVE HIGH  
2
Timer1_A3.TA2  
(1) Example: To program port P2.0, the appropriate control bits and MSP430 signals would need to be referenced as "P2DIR.0",  
"P2SEL.0", and "P2SEL2.0".  
(2) X = don't care, = not applicable  
52  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
 
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Table 3-4. External MSP430 Port 1 Functions and Programming Options  
(2)  
MSP430 CONTROL BITS / SIGNALS  
PIN NAME  
(P1.x)(1)  
x
FUNCTION  
P1.x (I/O)  
ADC10AE.x  
INCH.x=1  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
CAPD.y  
P1.1/  
I: 0; O: 1  
0
1
1
1
1
X
X
0
0
1
1
1
1
X
X
0
0
1
X
X
X
X
0
0
1
1
1
X
X
X
X
X
0
0
1
1
1
X
X
X
0
0
0
0
1
1
X
X
1
0
0
0
1
1
X
X
1
0
0
X
X
X
X
1
0
0
1
1
X
X
X
X
X
1
0
0
1
1
X
X
X
1
0
0
TA0.0/  
TA0.0  
1
0
0
TA0.CCI0A  
UCA0RXD  
UCA0SOMI  
A1  
0
0
0
UCA0RXD/  
UCA0SOMI/  
A1/  
from USCI  
0
0
1
from USCI  
0
0
X
1 (y = 1)  
0
CA1/  
CA1  
X
0
1 (y = 1)  
Pin Osc  
P1.2/  
Capacitive sensing  
P1.x (I/O)  
TA0.1  
X
0
0
I: 0; O: 1  
0
0
TA0.1/  
1
0
0
TA0.CCI1A  
UCA0TXD  
UCA0SIMO  
A2  
0
0
0
UCA0TXD/  
UCA0SIMO/  
A2/  
from USCI  
0
0
2
from USCI  
0
0
X
1 (y = 2)  
0
CA2/  
CA2  
X
0
1 (y = 2)  
Pin Osc  
P1.3/  
Capacitive sensing  
P1.x (I/O)  
ADC10CLK  
A3  
X
0
0
I: 0; O: 1  
0
0
ADC10CLK/  
A3/  
1
0
0
X
1 (y = 3)  
0
VREF-/  
VEREF-/  
CA3  
3
VREF-  
X
1
0
VEREF-  
X
1
0
CA3  
X
0
1 (y = 3)  
Pin Osc  
P1.4/  
Capacitive sensing  
P1.x (I/O)  
SMCLK  
X
0
0
I: 0; O: 1  
0
0
SMCLK/  
UCB0STE/  
UCA0CLK/  
VREF+/  
VEREF+/  
A4/  
1
0
0
UCB0STE  
UCA0CLK  
VREF+  
from USCI  
1 (y = 4)  
0
from USCI  
1 (y = 4)  
0
X
1
0
4
VEREF+  
X
1
0
A4  
X
1 (y = 4)  
0
CA4/  
CA4  
X
0
1 (y = 4)  
TCK/  
TCK (JTAG Mode = 1)  
Capacitive sensing  
P1.x (I/O)  
TA0.0  
X
0
0
Pin Osc  
P1.5/  
X
0
0
I: 0; O: 1  
0
0
TA0.0/  
1
0
0
UCB0CLK/  
UCA0STE/  
A5/  
UCB0CLK  
UCA0STE  
A5  
from USCI  
0
0
from USCI  
0
0
5
X
X
X
X
1 (y = 5)  
0
CA5/  
CA5  
0
0
0
1 (y = 5)  
TMS/  
TMS (JTAG Mode = 1)  
Capacitive sensing  
0
0
Pin Osc  
(1) Example: To program port P1.1, the appropriate control bits and MSP430 signals would need to be referenced as "P1DIR.1",  
"P1SEL.1", and "P1SEL2.1".  
(2) X = don't care  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
53  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
Table 3-4. External MSP430 Port 1 Functions and Programming Options (continued)  
(2)  
MSP430 CONTROL BITS / SIGNALS  
PIN NAME  
(P1.x)(1)  
x
FUNCTION  
ADC10AE.x  
INCH.x=1  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
CAPD.y  
P1.6/  
P1.x (I/O)  
I: 0; O: 1  
0
1
1
1
X
X
X
0
0
1
1
X
X
1
X
0
0
0
1
1
X
X
X
1
0
1
1
X
X
0
X
1
0
0
TA0.1/  
TA0.1  
1
0
0
UCB0SOMI/  
UCB0SCL/  
A6/  
UCB0SOMI  
from USCI  
0
0
UCB0SCL  
from USCI  
0
0
6
A6  
X
1 (y = 6)  
0
CA6/  
CA6  
X
0
1 (y = 6)  
TDI/TCLK/  
Pin Osc  
P1.7/  
TDI/TCLK (JTAG Mode = 1)  
Capacitive sensing  
P1.x (I/O)  
X
0
0
X
0
0
I: 0; O: 1  
0
0
UCB0SIMO/  
UCB0SDA/  
A7/  
UCB0SIMO  
from USCI  
0
0
UCB0SDA  
from USCI  
0
0
A7  
X
X
1
1 (y = 7)  
0
7
CA7/  
CA7  
0
0
0
0
1 (y = 7)  
CAOUT/  
TDO/TDI/  
Pin Osc  
CAOUT  
0
0
0
TDO/TDI (JTAG Mode = 1)  
Capacitive sensing  
X
X
Table 3-5. External MSP430 Port 2 Functions and Programming Options  
(2)  
MSP430 CONTROL BITS / SIGNALS  
PIN NAME  
(P2.x)(1)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2SEL2.x  
P2.1/  
P2.x (I/O)  
I: 0; O: 1  
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
TA1.1/  
Timer1_A3.CCI1A  
Timer1_A3.TA1  
Capacitive sensing  
P2.x (I/O)  
0
1
1
Pin Osc  
P2.2/  
X
I: 0; O: 1  
TA1.1/  
Timer1_A3.CCI1B  
Timer1_A3.TA1  
Capacitive sensing  
P2.x (I/O)  
0
2
1
Pin Osc  
P2.6/  
X
I: 0; O: 1  
XIN/  
XIN, LFXT1 Oscillator Input  
Timer0_A3.TA1  
Capacitive sensing  
P2.x (I/O)  
0
6
7
TA0.1/  
Pin Osc  
P2.7/  
1
X
I: 0; O: 1  
XOUT, LFXT1 Oscillator  
Output  
XOUT/  
1
1
0
0
1
Pin Osc  
Capacitive sensing  
X
(1) Example: To program port P2.1, the appropriate control bits and MSP430 signals would need to be referenced as "P2DIR.1",  
"P2SEL.1", and "P2SEL2.1".  
(2) X = don't care  
54  
MSP430 CORE  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Table 3-6. External MSP430 Port 3 Functions and Programming Options  
(2)  
MSP430 CONTROL BITS / SIGNALS  
FUNCTION  
PIN NAME  
(P3.x)(1)  
x
P3DIR.x  
P3SEL.x  
P3SEL2.x  
P3.3/  
P3.x (I/O)  
I: 0; O: 1  
0
1
0
0
1
0
0
0
1
0
0
1
TA1.1/  
Pin Osc  
P3.5/  
3
Timer1_A3.TA2  
Capacitive sensing  
P3.x (I/O)  
1
X
I: 0; O: 1  
TA1.1/  
Pin Osc  
5
Timer0_A3.TA2  
Capacitive sensing  
1
X
(1) Example: To program port P3.3, the appropriate control bits and MSP430 signals would need to be referenced as "P3DIR.3",  
"P3SEL.3", and "P3SEL2.3".  
(2) X = don't care  
3.2.4 Operating Modes  
The MSP430 has one active mode and five software-selectable low-power modes of operation. An  
interrupt event can wake up the device from any of the five low-power modes, service the request, and  
restore back to the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc-generator remains enabled  
ACLK remains active  
CPU is disabled  
ACLK and SMCLK remain active, MCLK  
is disabled  
Low-power mode 3 (LPM3)  
Low-power mode 1 (LPM1)  
CPU is disabled  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc-generator is disabled  
ACLK remains active  
ACLK and SMCLK remain active, MCLK  
is disabled  
DCO's dc-generator is disabled if DCO  
not used in active mode  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO's dc-generator is disabled  
Crystal oscillator is stopped  
3.2.5 MSP430x2xx User's Guide  
To view the user's guide for the MSP430 integrated into this device, see MSP430x2xx Family User's  
Guide. The list of peripherals found in this MSP430 is listed in the section: Section 3.2.1.  
Copyright © 2011, Texas Instruments Incorporated  
MSP430 CORE  
55  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
4
APPLICATION INFORMATION  
4.1 Applications Schematic  
Figure 4-1. TPS65835 Applications Schematic  
4.2 Boost Converter Application Information  
4.2.1 Setting Boost Output Voltage  
To set the boost converter output voltage of this device, two external resistors that form a feedback  
network are required. The values recommended below (in Table 4-1) are given for a desired quiescent  
current of 5 µA when the boost is enabled and switching. See Figure 4-2 for the detail of the applications  
schematic that shows the boost feedback network and the resistor names used in the table below.  
56  
APPLICATION INFORMATION  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Figure 4-2. Boost Feedback Network Schematic  
Table 4-1. Recommended RFB1 and RFB2 Values (for IQ(FB) = 5 µA)  
(1)  
(1)  
Targeted VBST_OUT  
RFB1  
RFB2  
8 V  
1.3 MΩ  
1.8 MΩ  
2.2 MΩ  
2.4 MΩ  
3.0 MΩ  
240 kΩ  
240 kΩ  
240 kΩ  
240 kΩ  
240 kΩ  
10 V  
12 V  
14 V  
16 V  
(1) Resistance values given in closest standard value (5% tolerance, E24 grouping).  
These resistance values can also be calculated using the following information. To start, it is helpful to  
target a quiescent current through the boost feedback network while the device is operating (IQ(FB)). When  
the boost output voltage and this targeted quiescent current is known, the total feedback network  
resistance can be found.  
The value for RFB2 can be found by using the boost feedback pin voltage (VFB = 1.2 V, see "Electrical  
Characteristics" in Section 2) and IQ(FB) in the following equation:  
RFB1 + RFB2 = VBST_OUT / IQ(FB)  
RFB2 = (1.2 V) / IQ(FB)  
To find RFB1, simply subtract the RFB2 from RFB(TOT)  
RFB1 = RFB(TOT) - RFB2  
:
4.2.2 Boost Inductor Selection  
The selection of the boost inductor and output capacitor is very important to the performance of the boost  
converter. The boost has been designed for optimized operation when a 10 µH inductor is used. Smaller  
inductors, down to 4.7 µH, may be used but there will be a slight loss in overall operating efficiency. A few  
inductors that have been tested and found to give good performance can be found in the list below:  
Recommended 10 µH inductors  
TDK VLS201612ET-100M (10 µH, IMAX = 0.53 A, RDC = 0.85 Ω)  
Taiyo Yuden CBC2016B100M (10 µH, IMAX = 0.41 A, RDC = 0.82 Ω)  
Copyright © 2011, Texas Instruments Incorporated  
APPLICATION INFORMATION  
57  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
4.2.3 Boost Capacitor Selection  
The recommended minimum value for the capacitor on the boost output, BST_OUT pin, is 4.7 µF. Values  
that are larger can be used with the measurable impact being a slight reduction in the boost converter  
output voltage ripple while values smaller than this will result in an increased boost output voltage ripple.  
Note that the voltage rating of the capacitor should be sized for the maximum expected voltage at the  
BST_OUT pin.  
4.3 Bypassing Default Push-Button SWITCH Functionality  
If the SWITCH pin functionality is not required to power on and off the device because of different system  
requirements (SWITCH timing requirements of system will be controlled by the internal MSP430), then the  
feature can be bypassed. The following diagram shows the connections required for this configuration.  
Figure 4-3. Bypassing Default TPS65835 Push Button SWITCH Timing  
In a system where a different push-button SWITCH off timing is required, the SLEEP pin is used to control  
the power off of the device. After system power up, the MCU must force the SLEEP pin to a high state  
(VSLEEP > VIH(PMIC)). Once the SWITCH push-button is pressed to shut the system down, a timer in the  
MCU should be active and counting the desired tOFF time of the device. Once this tOFF time is detected,  
the MCU can assert the SLEEP signal to a logic low level (VSLEEP < VIL(PMIC)). It is on the falling edge of  
the SLEEP signal where the system will be powered off (see Figure 4-4)  
58  
APPLICATION INFORMATION  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
www.ti.com  
SLVSAF6JUNE 2011  
Figure 4-4. SWITCH Press and SLEEP Signal to Control System Power Off  
Copyright © 2011, Texas Instruments Incorporated  
APPLICATION INFORMATION  
59  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
TPS65835  
SLVSAF6JUNE 2011  
www.ti.com  
4.4 MSP430 Programming  
In order to program the integrated MSP430 in the TPS65835 device, ensure that the programming  
environment supports the TPS65835 device.  
4.4.1 Code To Setup Power Functions  
This section will detail a basic code to control the MSP430 in the TPS65835 and how to configure the  
power functions and control the power die. Please reference Table 3-3 for the details on configuring the  
MSP430 pins. Note that "//" is a comment and this code was written using Code Composer Studio in C.  
// SETUP H-BRIDGE PINS  
P2DIR |= (BIT5 + BIT4 + BIT3 + BIT0); // Set PxDIR to 1 for outputs  
P2REN |= (BIT5 + BIT4 + BIT3 + BIT0); // Enable pullup/pulldown resistors on outputs  
// SETUP SLEEP, CHG_EN, AND BST_EN  
P3DIR |= (BIT2 + BIT1 + BIT0);  
P3REN |= (BIT2 + BIT1 + BIT0);  
// Set PxDIR to 1 for outputs  
// Enable pullup/pulldown resistors on outputs  
The previous code setup the power pins for outputs, now they must be controlled with MSP430 code.  
Refer to the following code to perform initial setup and to control the power functions (SLEEP, CHG_EN,  
and BST_EN):  
P3OUT &= ~BIT0;  
// P3OUT |= BIT0;  
// Set SLEEP mode signal low; SLEEP Function is disabled  
// Set SLEEP mode signal high (sleep control via MSP430)  
// P3OUT &= ~BIT1;  
P3OUT |= BIT1;  
// Set CHG_EN signal low (disable charger)  
// Set CHG_EN signal high (enable charger)  
// P3OUT &= ~BIT2;  
P3OUT |= BIT2;  
// Set BST_EN low (disable boost)  
// Set BST_EN high (enable boost)  
The H-Bridge pins can be controlled in a similar manner (see Section 2.10.1). The following code is only  
meant to cover each H-Bridge mode of operation and the appropriate code needed to put it in that state:  
// BOTH SIDES IN OPEN STATE  
P2OUT &= ~(BIT3 + BIT0);  
P2OUT &= ~(BIT5 + BIT4);  
// HBL2 = 0, HBL1 = 0  
// HBR2 = 0, HBR1 = 0  
// BOTH SIDES IN GROUNDED STATE  
P2OUT |= BIT3 + BIT0;  
P2OUT |= BIT5 + BIT4;  
// HBL2 = 1, HBL1 = 1  
// HBR2 = 1, HBR1 = 1  
// LEFT SIDE IN CHARGE+ STATE  
P2OUT &= ~BIT3; P2OUT |= BIT0;  
// HBL2 = 0, HBL1 = 1  
// HBL2 = 1, HBL1 = 0  
// HBR2 = 0, HBR1 = 1  
// HBR2 = 1, HBR1 = 0  
// LEFT SIDE IN CHARGE- STATE  
P2OUT |= BIT3; P2OUT &= ~BIT0;  
// RIGHT SIDE IN CHARGE+ STATE  
P2OUT &= ~BIT5; P2OUT |= BIT4;  
// RIGHT SIDE IN CHARGE- STATE  
P2OUT |= BIT5; P2OUT &= ~BIT4;  
60  
APPLICATION INFORMATION  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS65835  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Aug-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TPS65835RKPR  
TPS65835RKPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RKP  
RKP  
40  
40  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TPS658600

Advanced Power Management Unit
TI

TPS658600A

Advanced Power Management Unit
TI

TPS658600AZQZR

Advanced Power Management Unit
TI

TPS658600AZQZT

Advanced Power Management Unit
TI

TPS658600ZQZR

Advanced Power Management Unit
TI

TPS658600ZQZT

Advanced Power Management Unit
TI

TPS658610

Advanced Power Management Unit
TI

TPS658610A

Advanced Power Management Unit
TI

TPS658610AZQZR

Advanced Power Management Unit
TI

TPS658610AZQZT

Multi-Channel Power Management IC (PMIC) with Li-Ion Battery Charger 120-BGA MICROSTAR JUNIOR -40 to 85
TI

TPS658610ZQZR

Advanced Power Management Unit
TI

TPS658610ZQZT

Advanced Power Management Unit
TI