TPS659110A2NMAR [TI]

TPS65911 Integrated Power Management Unit Top Specification;
TPS659110A2NMAR
型号: TPS659110A2NMAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS65911 Integrated Power Management Unit Top Specification

文件: 总142页 (文件大小:2253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
TPS65911 Integrated Power Management Unit Top Specification  
1 Device Overview  
1.1 Features  
1
• Embedded Power Controller (EPC) With EEPROM  
Programmability  
• Nine Configurable GPIOs With Multiplexed Feature  
Support:  
• Two Efficient Step-Down DC-DC Converters for  
Processor Cores (VDD1, VDD2)  
• One Efficient Step-Down DC-DC Converter for I/O  
Power (VIO)  
• One Controller for External FETs (VDDCtrl)  
• Dynamic Voltage Scaling (DVS) for Processor  
Cores  
– Four can be Used as Enable for External  
Resources, Included in Power-Up Sequence  
and Controlled by State Machine  
– As GPI, GPIOs Support Logic-Level Detection  
and can Generate Maskable Interrupt for  
Wakeup  
– Two of the GPIOs Have 10-mA Current Sink  
Capability for Driving LEDs  
– DC-DC Converters Switching Synchronization  
Through an External 3-MHz Clock  
• Eight LDO Voltage Regulators and One RTC LDO  
(Supply for Internal RTC)  
• One High-Speed I2C Interface for General-Purpose  
Control Commands (CTL-I2C)  
• Two Reset Inputs:  
– Cold Reset (HDRST)  
– Power Initialization Reset (PWRDN) for Thermal  
Reset Input  
• Two Independent Enable Signals for Controlling  
Power Resources (EN1, EN2)  
– Alternatively, the EN1 and EN2 Pins can be  
Used as a High-Speed I2C Interface Dedicated  
for Voltage Scaling for VDD1 and VDD2  
• 32-kHz Clock and Reset (NRESPWRON) for  
System and an Additional Output for Reset Signal  
• Thermal Shutdown Protection and Hot-Die  
Detection  
• A Real-Time Clock (RTC) Resource With:  
• Watchdog  
• Two ON and OFF LED Pulse Generators and One  
PWM Generator  
– Oscillator for 32.768-kHz Crystal or 32-kHz  
Built-in RC Oscillator  
• Two Comparators for System Control, Connected  
to VCCS Pin  
– Date, Time, and Calendar  
– Alarm Capability  
• A JTAG and Boundary Scan (Not Accessible in  
Functional Mode [Test Purpose])  
1.2 Applications  
Portable and Hand-Held Systems  
1.3 Description  
The TPS65911 device is an integrated power management IC (PMIC) available in a 98-pin 0.65-mm pitch  
BGA package. The TPS65911 device is dedicated to applications powered by one Li-Ion or Li-Ion polymer  
battery cell, 3-series Ni-MH cells, or a 5-V input, and applications that require multiple power rails. The  
device provides three step-down converters, one controller for external FETs to support high current rail,  
eight LDOs, and the device is designed to be a flexible PMIC for supporting different processors and  
applications.  
Two of the step-down converters provide power for dual processor cores and support dynamic voltage  
scaling by a dedicated I2C interface for optimum power savings. The third converter provides power for the  
I/Os and memory in the system.  
The device includes eight general-purpose LDO regulators that provide a wide range of voltage and  
current capabilities. Five of the LDO regulators support 1 to 3.3 V with a 100-mV step and three (LDO1,  
LDO2, LDO4) support 1.0 to 3.3 V with a 50-mV step. All LDO regulators are fully controllable by the I2C  
interface.  
In addition to the power resources, the device contains an EPC to manage the power sequencing  
requirements of systems and an RTC. Power sequencing is programmable by EEPROM.  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Device Information(1)  
PACKAGE  
PART NUMBER  
BODY SIZE (NOM)  
TPS65911(2)  
BGA MicroStar Junior™ (98)  
9.00 mm × 6.00 mm  
(1) For more information, see Section 9, Mechanical, Packaging, and Orderable Information.  
(2) Refer to the corresponding user's guide for the complete EEPROM setting before ordering.  
1.4 Functional Block Diagram  
Figure 1-1 shows the top-level diagram of the device.  
CBB  
VBACKUP  
VCC7  
1.5 A at 0.6 to 2.2 V(1)  
VDD1  
VCC1  
SW1  
BACKUP  
VRTC  
Management  
VRTC (LDO)  
and POR  
AGND  
AGND  
OSC32KIN  
GND1  
VFB1  
Oscillator  
32 kHz  
OSC32KOUT  
Real-Time Clock  
(RTC)  
0.6 V to 3.3 V  
REFGND  
CLK32KOUT  
1.5 A at 0.6 to 1.5 V(1)  
VDD2  
VDDIO  
SDA_SDI  
SCL_SCK  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
I2C  
VCC2  
SW2  
Bus Control  
GND2  
0.6 V to 3.3 V  
VFB2  
VBST  
Cboost  
DRVH  
SW  
DRVL  
I2C  
EN1  
EN2  
VOUT  
VFB  
Controller  
C1  
INT1  
V5IN  
SLEEP  
Power-Control  
State Machine  
Rtrip  
CV5IN  
TRIP  
GNDC  
PWRON  
0.6 V to 1.4 V  
VIO  
BOOT1  
PWRHOLD  
PWRDN  
VCCIO  
HDRST  
SWIO  
NRESPWRON  
NRESPWRON2  
GNDIO  
1.3 A at 1.5 V  
1.2 A at 1.8 V  
1.1 A at 2.5 and 3.3 V  
VREF  
TESTV  
VFBIO  
VDDIO  
Analog  
References  
Connect to system  
1.8V/3.3 V supply  
Watchdog  
REFGND  
LDO1  
320 mA  
LDO1  
VCC6  
LDO2  
1 to 3.3 V,  
50-mV step  
LDO3  
200 mA  
Test Interface  
1 to 3.3 V,  
100-mV step  
LDO3  
VCC5  
LDO4  
1 to 3.3 V,  
50-mV step  
LDO2  
320 mA  
1 to 3.3 V,  
50-mV step  
LDO4  
1 to 3.3 V,  
100-mV step  
LDO7  
300 mA  
LDO7  
VCC3  
LDO8  
50 mA  
LDO5  
300 mA  
1 to 3.3 V,  
100-mV step  
LDO5  
VCC4  
VCCS  
1 to 3.3 V,  
100-mV step  
LDO8  
300 mA  
COMP  
1
1 to 3.3 V,  
100-mV step  
LDO6  
COMP  
2
LDO6  
300 mA  
(1) For details on supported levels, see the electrical characteristics for VDD1 SMPS and VDD2 SMPS, and the Power Sources table.  
Figure 1-1. Top-Level Functional Block Diagram  
2
Device Overview  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
 
 
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table of Contents  
1
Device Overview ......................................... 1  
6
Detailed Description ................................... 45  
6.1 Overview ............................................ 45  
6.2 Functional Block Diagram........................... 46  
6.3 Power Reference.................................... 47  
6.4 Power Resources ................................... 47  
6.5 Embedded Power Controller (EPC)................. 47  
6.6 PWM and LED Generators ......................... 58  
1.1 Features .............................................. 1  
1.2 Applications........................................... 1  
1.3 Description............................................ 1  
1.4 Functional Block Diagram ............................ 2  
Revision History ......................................... 3  
Device Comparison Table.............................. 8  
Pin Configuration and Functions..................... 9  
4.1 Pin Attributes ........................................ 10  
Specifications ........................................... 12  
5.1 Absolute Maximum Ratings......................... 12  
5.2 ESD Ratings ........................................ 12  
5.3 Recommended Operating Conditions............... 13  
5.4 Thermal Information................................. 13  
2
3
4
6.7  
Dynamic Voltage Frequency Scaling and Adaptive  
Voltage Scaling Operation .......................... 58  
6.8 32-kHz RTC Clock .................................. 58  
6.9 Real Time Clock (RTC) ............................. 59  
6.10 Backup Battery Management ....................... 62  
6.11 Backup Registers ................................... 62  
6.12 I2C Interface ......................................... 62  
6.13 Thermal Monitoring and Shutdown ................. 64  
6.14 Interrupts ............................................ 64  
6.15 Register Maps....................................... 65  
Applications, Implementation, and Layout ...... 120  
7.1 Application Information ............................ 120  
7.2 Typical Application ................................ 120  
7.3 Power Supply Recommendations ................. 131  
Device and Documentation Support.............. 132  
8.1 Device Support..................................... 132  
8.2 Documentation Support............................ 133  
5
5.5  
5.6  
5.7  
5.8  
Electrical Characteristics: I/O Pullup and Pulldown. 14  
Electrical Characteristics: Digital I/O Voltage ....... 14  
Electrical Characteristics: Power Consumption..... 16  
Electrical Characteristics: Power References and  
Thresholds .......................................... 17  
Electrical Characteristics: Thermal Monitoring and  
Shutdown............................................ 18  
7
8
5.9  
5.10 Electrical Characteristics: 32-kHz RTC Clock....... 18  
5.11 Electrical Characteristics: Backup Battery Charger. 19  
5.12 Electrical Characteristics: VRTC LDO .............. 19  
5.13 Electrical Characteristics: VIO SMPS............... 20  
5.14 Electrical Characteristics: VDD1 SMPS............. 21  
5.15 Electrical Characteristics: VDD2 SMPS............. 23  
5.16 Electrical Characteristics: VDDCtrl SMPS .......... 25  
5.17 Electrical Characteristics: LDO1 and LDO2......... 27  
5.18 Electrical Characteristics: LDO3 and LDO4......... 29  
5.19 Electrical Characteristics: LDO5 .................... 31  
5.20 Electrical Characteristics: LDO6, LDO7, and LDO8 32  
5.21 Timing and Switching Characteristics............... 35  
8.3  
Receiving Notification of Documentation Updates. 133  
8.4 Community Resources............................. 133  
8.5 Trademarks ........................................ 133  
8.6 Electrostatic Discharge Caution ................... 133  
8.7 Glossary............................................ 134  
9
Mechanical, Packaging, and Orderable  
Information............................................. 134  
9.1 Package Description ............................... 134  
2 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision R (May 2018) to Revision S  
Page  
Added TPS65911A to the device comparison table ............................................................................. 8  
Changes from Revision Q (March 2016) to Revision R  
Page  
Changed Device Information table to a single row reflecting all orderable devices ......................................... 2  
Changed the Functional Block Diagram ........................................................................................... 2  
Deleted lead temperature from the Recommended Operating Conditions table ........................................... 13  
Corrected VIO output voltage from 2.2 V to 2.5 V .............................................................................. 20  
Changed the VDDCtrl slew rate from 100 mV/20µs to 5 mV/µs for clarity ................................................. 25  
Added SEL options for VOUT < 1 V ............................................................................................... 30  
Added the Overview section ...................................................................................................... 45  
Corrected VIO voltage from 2.2 V to 2.5 V ...................................................................................... 47  
Corrected the SEL bits for 1 V selection for LDO1_REG and LDO2_REG ................................................. 87  
Corrected the SEL bits for 0.8 V to 0.9 V options. Added the SEL bits for 0.95 V. ........................................ 90  
Copyright © 2010–2018, Texas Instruments Incorporated  
Revision History  
3
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Added the Applications, Implementation, and Layout section .............................................................. 120  
Added specific layout recommendations, and added layout diagrams which show the routing around the device .. 129  
Changes from Revision P (August 2015) to Revision Q  
Page  
Added TPS659118 device .......................................................................................................... 1  
Deleted TPS659116 device ......................................................................................................... 1  
Deleted "Ordering" column from Device Comparison table ..................................................................... 8  
Corrected wording in Thermal Metric column of Section 5.4 and added table note 1 ..................................... 13  
Added disclaimer note to Applications, Implementation, and Layout section ............................................. 120  
Changes from Revision O (March 2015) to Revision P  
Page  
Added TPS659114A2ZRCR device ................................................................................................ 1  
Changes from Revision N (November 2014) to Revision O  
Page  
Corrected orderable part number for TPS65911062 in the Device Comparison Table ..................................... 8  
Corrected column heading from "MAX" to "UNIT" ............................................................................. 35  
Changes from Revision M (May 2014) to Revision N  
Page  
Added TPS6591133 device ........................................................................................................ 1  
Changed data sheet to TI standard format. ....................................................................................... 1  
4
Revision History  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Detailed Revision History  
Version  
Literature Number  
Date  
Notes  
(1)  
*
SWCS049  
SWCS049A  
SWCS049B  
SWCS049C  
June 2010  
See  
See  
See  
See  
.
.
.
.
(2)  
(3)  
(4)  
A
B
C
February 2011  
February 2011  
May 2011  
(1) TPS65911 Data Manual, SWCS049 - Initial release.  
(2) TPS65911 Data Manual, SWCS049A - Version A:  
Update Figure 1-1: LDO1, LDO2, LDO3, LDO6, and LDO7.  
Remove table, SUPPORTED PROCESSORS AND CORRESPONDING PART NUMBERS  
Update Section 5.3: Adjust pin names and add exception.  
Update Table 7-2: VDDCtrl SMPS, update FET part number.  
Update: Section 5.6: Add updated BOOT1 characteristics.  
Update: Section 5.17: Update LDO1 and LDO2 characteristics.  
Update Section 5.19: Update LDO5.  
Update Section 5.20: Update LDO6, LOD7, and LDO8.  
Update Table 6-1: Update LDO1, LDO2, LDO3, LOD7, and LDO8  
Update Table 6-2: Remove SEL [6:0] selection bits.  
Update Section 6.5.3.6: Add more explanation and reorganize section.  
Add explanation to: Section 6.5.3.6, Section 6.5.3.9, Section 6.5.3.10, and Section 6.5.3.11.  
Update Section 6.12: Add Section 6.12.1.  
Update Table 6-6, Register Rest values.  
Update Register Table: Table 6-43, Table 6-44, Table 6-53, and Table 6-55.  
Update : BGA Pin column.  
Update Packaging Information.  
(3) TPS65911 Data Manual, SWCS049B - Version B:  
Update VCC6 in Section 5.1.  
(4) TPS65911 Data Manual, SWCS049C - Version C:  
Update , BGA Pins: NRESPWRON, VCC1, GND1, VCCIO, GNDIO, AGND, and AGND2.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Revision History  
5
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Detailed Revision History (continued)  
Version  
Literature Number  
Date  
Notes  
(5)  
D
E
F
SWCS049D  
SWCS049E  
SWCS049F  
July 2011  
July 2011  
August 2011  
See  
.
.
.
(6)  
See  
(7)  
See  
(5) TPS65911 Data Manual, SWCS049D - Version D:  
Update Section 5.1:  
Add VBACKUP  
Voltage range on balls HDRST - Replace "VRTCMAX + 0.32 by "7"  
Update Section 5.3:  
Add VCC4 and VBACKUP  
Input voltage range on pins or balls - Remove VCC4  
Update Section 5.5: Change "HDRST programmable.." to "HDREST, PWRDN programmable.."  
Update Section 5.12: Specify Input voltage range of VCC7  
Update Section 5.13: Add discharge resistance  
Update Section 5.14:  
Add DC output voltage maximum value  
Add discharge resistance  
Update VGAIN_SEL test conditions and typ value  
Update Section 5.15:  
Add DC output voltage maximum value  
Add discharge resistance  
Update VGAIN_SEL test conditions  
Update Section 5.16: Add tablenote to Rated output current 6000 mA  
Update Section 5.21.2:  
Update introductory statement  
Add note to Figure 5-1  
Align Parameters in Table 5-3 with Figure 5-1  
Update Section 5.21.3: Add note toFigure 5-2  
Update Section 4: Add J3 to AGND in  
Update Section 6:  
Update Table 6-1: VDD1 and VDD2 voltages  
Device POWER ON enable conditions: Add additional device power enable condition  
Device SLEEP enable conditions: Replace "... keeping the SLEEP signal floating, or ..." with "... keeping the SLEEP signal in the  
active polarity state, or..."  
Device reset scenarios: Replace "VCC7 < VBNPR" with " VDD7 < VBNPR and BB < VBNPR"  
Update introduction for Table 6-2  
Update Table 6-2: Remove all values in EEPROM Boot column  
Update Table 6-3:  
Remove all values in EEPROM Boot column  
Update INT_MSK_REG.VMBHI_MSK description  
Update Package Thermal Characteristics: Pin count from 96 to 98  
Update Section 6.15.1:  
Update Table 6-37, Table 6-38, Table 6-40, and Table 6-41: SEL bit description  
Update Table 6-67: Update VMBHI_IT_MSK bit description  
Update Table 6-80: Update GPIO_SEL bit description - Replace LED1 out with PWM out  
(6) TPS65911 Data Manual, SWCS049E - Version E: Update Packaging Information.  
(7) TPS65911 Data Manual, SWCS049F - Version F:  
Add Section 7.2.4.1.  
Update Table 6-67: Update bit 1, VMBHI_IT_MSK description.  
Update Section 6.5.1: Device reset scenarios: Replace "VDD7 < VBNPR" with " VCC7 < VBNPR"  
Add Ordering Information.  
6
Revision History  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Detailed Revision History (continued)  
Version  
Literature Number  
SWCS049G  
SWCS049H  
SWCS049I  
Date  
Notes  
(8)  
G
H
I
October 2011  
May 2012  
See  
See  
See  
See  
See  
See  
See  
.
(9)  
(10)  
(11)  
(12)  
(13)  
(14)  
June 2012  
J
SWCS049J  
September 2012  
December 2012  
February 2014  
May 2014  
K
L
SWCS049K  
SWCS049L  
SWCS049M  
M
(8) TPS65911 Data Manual, SWCS049G - Version G:  
Update Section 5.17, Section 5.18, Section 5.19, Section 5.20:  
Update turn-on time  
Update DC line regulation  
Update Section 5.13  
Update rated output current IOUTmax  
Update Section 5.14 and Section 5.15  
.
.
Update rated output current IOUTmax  
Update DC line regulation  
Update DC load regulation  
Update Section 5.6  
Update Related Open-Drain I/Os: GPIO2, GPIO7  
Update Section 5.16  
Add Supply Current, Internal Reference Voltage, Output discharge, Output drivers, Boot strap switch, Duty and frequency control,  
softstart, current sense protection, UVLO, and thermal shutdown.  
Remove DC line regulation, DC load regulation, Transient load regulation, Overshoot/undershoot, Rated output IOUTmax, and  
Conversion efficiency.  
Section 5.13 and Section 5.15 - Remove Iout = 1500 mA value  
Table 6-1 - Update VIO, VDD1, VDD2, and VDDCtrl  
Figure 1-1 - Update VIO, VDD1, and VDD2  
(9) TPS65911 Data Manual, SWCS049H - Version H:  
Update Section 5.13  
Update Rated output current description- add ILMAX bit configuration  
Update PMOS current limit (high-side) description  
Update NMOS current limit (high-side) description  
Update Figure 5-2 - CLK32KOUT out pin name (fixed typo)  
Update Figure 6-1  
Update Table 6-35, VIO_REG - Update ILMAX description  
Update Table 6-36, VDD1_REG - Update ILMAX and and TSTEP field numbers and VGAIN_SEL description  
Update Table 6-39, VDD2_REG - Update VGAIN_SEL description; align bit field numbering  
Update Table 6-43, VDDCRTL_OP_REG - Update SEL description  
Update Table 6-44, VDDCRTL_SR_REG - Update SEL description  
Update Table 5-4 - tdbPWRONF: PWRON falling-edge debouncing delay - Update unit of measure  
Update Table 5-5 - Replace tACT2SLP by tACT2SLPCK32K  
Update Figure 5-5 - Replace tdONVMBHI by tdONPWHOLD  
Update Table 5-6 - Replace tdONVMBHI by tdONPWHOLD  
Update Section 6.5.3.6 - Replace 100 µs by 100 ms  
Update Table 6-56 - Add Bit 0,1, and 3 : TURN OFF RESET to the description  
Update Table 6-57 - Add TSLOT_LENGTH: TURN OFF RESET to the description  
Update Table 6-72 - Add footnote  
(10) TPS65911 Data Manual, SWCS049I - Version I:  
Update Section 5.1 - Add VDDIO  
Update Section 5.3 - Add VDDIO  
Update Section 5.5 - Remove PWRDN  
Update - Remove PD from PWRDN  
(11) TPS65911 Data Manual, SWCS049J - Version J:  
Update Section 5.3: Fix typo on HDRST pin  
Update Section 6.15.1: Update full reset:  
Full reset: All digital logic of device is reset.  
Caused by POR (power on reset) when VCC7 < VBNPR and BB < VBNPR  
(12) TPS65911 Data Manual, SWCS049K - Version K  
Update Table 6-3 - Changed VMBCH_REG to EEPROM  
(13) TPS65911 Data Manual, SWCS049L - Version L  
Update Device Comparison Table - Added TPS659116  
(14) TPS65911 Data Manual, SWCS049M - Version M  
Update Device Comparison Table - Added TPS65911062  
Copyright © 2010–2018, Texas Instruments Incorporated  
Revision History  
7
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
3 Device Comparison Table  
MEMORY SUPPORT  
(DDR3 or DDR2)  
DEVICE OPTION  
PROCESSORS  
DDR2  
DDR3  
NVIDIA T30  
NVIDIA T30  
TPS659110(1)  
DM8168, DM8167, C6A8168, C6A8167, AM3894,  
AM3892  
TPS659112(1)  
TPS659113(1)  
TPS6591133(1)  
N/A  
N/A  
N/A  
DM8148, DM8147, DM8146, C6A8148, C6A8147,  
C6A8143, AM3874, AM3872, AM3871  
DM8148, DM8147, DM8146, C6A8148, C6A8147,  
C6A8143, AM3874, AM3872, AM3871  
TPS659114(1)  
TPS659118(1)  
TPS65911A(1)  
DDR3  
DDR3L  
DDR3L  
Freescale i.MX6  
66AK2G02  
66AK2G12  
(1) Refer to the corresponding user's guide for the complete EEPROM setting before ordering.  
8
Device Comparison Table  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
4 Pin Configuration and Functions  
Figure 4-1 (top view) and Figure 4-2 (bottom view) show the 98-pin ZRC Plastic Ball-Grid Array (BGA).  
Bottom view  
Top view  
VDD  
IO  
PWRD  
N
VDD  
IO  
PWRHO  
LD  
PWRD  
N
PWRHO  
LD  
AGND2  
LDO1  
VCC6  
LDO2  
VCC3  
LDO7  
INT1  
N
LDO2  
VCC6  
LDO1  
EN2  
AGND2  
AGND2  
VCC3  
LDO7  
N
M
L
SCL_S  
CK  
SDA_S  
DI  
M
SCL_S  
CK  
SDA_S  
DI  
AGND2  
LDO6  
LDO8  
VCC4  
EN1  
EN2  
LDO8  
VCC4  
LDO6  
EN1  
VCC  
IO  
VCC  
IO  
L
VCC  
IO  
VCC  
IO  
HDRST  
GPIO7  
GPIO2  
GPIO0  
GPIO8  
GPIO2  
INT1  
GPIO7  
GPIO0  
GPIO8  
HDRST  
SWIO  
SWIO  
AGND  
AGND  
VFB2  
K
LDO5  
VFB2  
AGND  
SWIO  
SWIO  
LDO5  
K
GND  
IO  
GND  
IO  
BOOT1  
AGND  
AGND  
J
H
G
F
AGND  
AGND  
GND2  
SW2  
GND2  
SW2  
GND  
IO  
GND  
IO  
AGND  
BOOT1  
AGND  
GND2  
SW2  
GND2  
SW2  
AGND  
AGND  
AGND  
J
H
G
F
VFB  
IO  
NRESP  
WRON  
GPIO4  
NRESP  
WRON  
VFB  
IO  
GPIO4  
REFGN  
D
AGND  
VREF  
GPIO5  
GPIO1  
AGND  
AGND  
GPIO6  
VCC1  
VCC2  
VCC2  
REFGN  
D
AGND  
VCC2  
VCC2  
GPIO6  
VCC1  
GPIO5  
GPIO1  
AGND  
AGND  
VREF  
CLK32  
KOUT  
OSC32  
KOUT  
OSC32  
KIN  
AGND  
AGND  
EN  
VCC1  
SW1  
SLEEP  
VCC1  
CLK32  
KOUT  
OSC32  
KOUT  
OSC32  
KIN  
SLEEP  
VCC1  
VCC1  
SW1  
AGND  
AGND  
EN  
PWRO  
N
VCCS  
VCC5  
LDO3  
E
PWRO  
N
LDO3  
VCCS  
VCC5  
E
D
VBACK  
UP  
GND1  
SW1  
SW1  
VFB1  
D
C
B
A
VBACK  
UP  
SW1  
SW1  
GND1  
VFB1  
NRESP  
WRON2  
LDO4  
VFB  
PGOOD  
GND1  
GND1  
DGND  
DGND  
TRAN  
NRESP  
WRON2  
GND1  
DGND  
GND1  
DGND  
PGOOD  
VFB  
LDO4  
TESTV  
GNDC  
TRAN  
VCC7  
C
B
A
TESTV  
GNDC  
8
VCC7  
DRVL  
6
VRTC  
V5IN  
5
TRIP  
DRVH  
3
DGND  
VBST  
2
GPIO3  
GNDC  
7
VOUT  
SW  
4
TRIP  
VRTC  
GPIO3  
GNDC  
7
VOUT  
SW  
4
DGND  
VBST  
DRVH  
V5IN  
DRVL  
1
SWCS049-002  
1
2
3
5
6
8
SWCS049-003  
Figure 4-1. 98-Pin ZRC BGA MicroStar™ Junior  
(Top View)  
Figure 4-2. 98-Pin ZRC BGA MicroStar™ Junior  
(Bottom View)  
Copyright © 2010–2018, Texas Instruments Incorporated  
Pin Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
4.1 Pin Attributes  
Pin Attributes  
PIN  
PULLUP  
PULLDOWN  
I/O  
TYPE  
SUPPLIES  
DESCRIPTION  
NAME  
NO.  
D6, E5, E6,  
F5, G4, H5,  
H6, J3, J4,  
J6, K3  
AGND  
I/O  
Power  
AGND  
Analog ground  
No  
AGND2  
BOOT1  
M8, N8  
J5  
I/O  
I
Power  
Digital  
AGND  
Analog ground  
No  
No  
VRTC, DGND  
Power-up sequence selection  
PD disable in  
ACTIVE or SLEEP  
state  
CLK32KOUT  
F4  
O
Digital  
VDDIO, DGND  
32-kHz clock output  
DGND  
DRVH  
DRVL  
EN  
A1, B1, B2  
I/O  
O
O
I
Power  
Analog  
Analog  
Analog  
DGND  
Digital ground  
No  
A3  
A6  
D5  
VBST, GNDC  
V5IN, GNDC  
VCC7, GNDC  
VDDCtrl, High-side FET driver output  
VDDCtrl, FET driver output  
Internal functional pin, leave floating  
Enable for supplies or  
EN1  
EN2  
M7  
M6  
I/O  
I/O  
Digital  
Digital  
VDDIO, DGND  
VDDIO, DGND  
External PU  
External PU  
voltage scaling dedicated I2C clock  
Enable for supplies or  
voltage scaling dedicated I2C data  
GNDC  
GNDIO  
GND1  
GND2  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
HDRST  
INT1  
A7, A8  
J7, J8  
C1, C2, D3  
J1, J2  
L5  
I/O  
Power  
Power  
Power  
Power  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
GNDC  
VDDCtrl, Controller ground  
VIO DCDC Power ground  
VDD1 DCDC Power ground  
VDD2 DCDC Power ground  
GPIO, push-pull or OD as output  
GPIO or LED1 output  
GPIO or DCDC clock synchronization  
GPIO or LED2 output  
GPIO  
I/O  
VCCIO, GNDIO  
VCC1, GND1  
VCC2, GND2  
VCC7, DGND  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
VDDIO, DGND  
No  
No  
I/O  
I/O  
No  
I/O  
OD: External PU  
OD: External PU  
OD: External PU  
OD: External PU  
OD: External PU  
OD: external PU  
OD: External PU  
OD: External PU  
OD: External PU  
PD  
F6  
I/O, OD  
L2  
I/O, OD  
B7  
I/O, OD  
H7  
I/O, OD  
G6  
I/O, OD  
GPIO  
G3  
I/O; OD  
GPIO  
L4  
I/O, OD  
GPIO  
K5  
I/O, OD  
GPIO  
L6  
I
Cold reset  
L3  
O
O
O
O
O
O
O
O
O
Interrupt flag  
No  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
LDO8  
N6  
VCC6, REFGND LDO Regulator output  
VCC6, REFGND LDO Regulator output  
VCC5, REFGND LDO Regulator output  
VCC5, REFGND LDO Regulator output  
VCC4, REFGND LDO Regulator output  
VCC3, REFGND LDO Regulator output  
VCC3, REFGND LDO Regulator output  
VCC3, REFGND LDO Regulator output  
No  
N4  
No  
E7  
PD 5 µA  
C8  
PD 5 µA  
K1  
PD 5 µA  
M2  
PD 5 µA  
M3  
PD 5 µA  
M1  
PD 5 µA  
NRESPWRO  
N
PD active during  
device OFF state  
H4  
C7  
O
Digital  
VDDIO, DGND  
Power off reset  
PD active during  
device OFF state.  
External pullup in  
ACTIVE state.  
NRESPWRO  
N2  
O, OD  
Digital  
VRTC, DGND  
Second NRESPWRON output  
OSC32KIN  
F8  
F7  
I
I
Analog  
Analog  
VRTC, REFGND 32-kHz crystal oscillator  
VRTC, REFGND 32-kHz crystal oscillator  
No  
No  
OSC32KOUT  
10  
Pin Configuration and Functions  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Pin Attributes (continued)  
PIN  
PULLUP  
PULLDOWN  
I/O  
TYPE  
SUPPLIES  
DESCRIPTION  
NAME  
NO.  
VDDCtrl, internal signal, leave floating  
(controller trimming only)  
PGOOD  
C4  
O, OD  
Analog  
Analog  
Digital  
VCC7, GNDC  
VRTC, DGND  
VRTC, DGND  
Reset input (for example, thermal  
reset)  
PWRDN  
N2  
N1  
I
I
Switch-on, switch off control signal or  
GPI  
Programmable PD  
(default active)  
PWRHOLD  
Programmable PU  
(default active)  
PWRON  
E4  
G7  
I
Digital  
VCC7, DGND  
REFGND  
External switch-on control (ON button)  
Reference ground  
REFGND  
I/O  
Analog  
No  
I2C bidirectional clock signal or serial  
peripheral interface clock input  
(multiplexed)  
SCL_SCK  
M4  
I/O  
Digital  
VDDIO, DGND  
External PU  
I2C bidirectional data signal or serial  
peripheral interface data input  
(multiplexed)  
SDA_SDI  
SLEEP  
M5  
F1  
I/O  
I
Digital  
Digital  
VDDIO, DGND  
VDDIO, DGND  
External PU  
ACTIVE-SLEEP state transition control  
signal  
Programmable PD  
(default active)  
SW  
A4  
K7, K8  
D1, D2, E2  
H1, H2  
B8  
I
Analog  
Power  
Power  
Power  
Analog  
VBST, GNDC  
VCCIO, GNDIO  
VCC1, GND1  
VCC2, GND2  
VCC7, AGND  
VDDCtrl, Switch node  
SWIO  
SW1  
SW2  
TESTV  
O
O
O
O
VIO DCDC switched output  
VDD1 DCDC switched output  
VDD2 DCDC switched output  
Analog test output (DFT)  
No  
No  
No  
No  
Internal functional pin, leave floating  
(controller trimming only)  
TRAN  
C6  
I
Analog  
VCC7, GNDC  
V5IN, GNDC  
TRIP  
B3  
D7  
I
I
Analog  
Power  
VDDCtrl, OCL detection threshold pin  
VBACKUP  
VBACKUP, AGND Backup battery input  
No  
No  
VDDCtrl, supply for high-side FET  
driver  
VBST  
A2  
I
Analog  
VBST, GNDC  
VCCIO  
VCCS  
VCC1  
VCC2  
VCC3  
VCC4  
VCC5  
VCC6  
L7, L8  
E8  
I
Power  
Analog  
Power  
Power  
Power  
Power  
Power  
Power  
VCCIO, GNDIO  
VCC7, DGND  
VCC1, GND1  
VCC2, GND2  
VCC3, AGND2  
VCC4, AGND2  
VCC5, AGND  
VCC6, AGND2  
VIO DCDC power Input  
Input for two comparators  
VDD1 DCDC power Input  
VDD2 DCDC power Input  
LDO6, LDO7, LDO8 power Input  
LDO5 power Input  
I/O  
E1, F2, F3  
G1, G2  
N3  
I
I
I
I
I
I
No  
No  
No  
No  
No  
No  
L1  
D8  
LDO3, LDO4 power Input  
LDO1, LDO2 power Input  
N5  
VRTC power input and analog  
references supply  
VCC7  
B6  
I
Power  
VCC7, REFGND  
No  
No  
VDDIO  
VFB  
N7  
C5  
H8  
D4  
K2  
B4  
G8  
B5  
A5  
I
I
Power  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Power  
Power  
VDDIO, DGND  
VOUT, GNDC  
VCC7, DGND  
VCC7, DGND  
VCC7, DGND  
VOUT, GNDC  
Digital Ios supply  
VDDCtrl, slew rate control capacitance  
VIO feedback voltage  
VFBIO  
VFB1  
VFB2  
VOUT  
VREF  
VRTC  
V5IN  
I
PD 5 µA  
PD 5 µA  
PD 5 µA  
I
VDD1 feedback voltage  
I
VDD2 DCDC feedback voltage  
VDDCtrl, Feedback input  
I
O
O
I
VCC7, REFGND Band-gap voltage  
No  
VCC7, REFGND LDO Regulator output  
PD 5 µA  
V5IN, GNDC  
VDDCtrl, 5-V input  
Copyright © 2010–2018, Texas Instruments Incorporated  
Pin Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5 Specifications  
5.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCC1, VCC2, VCCIO, VCC3, VCC4, VCC5, VCC7, VBACKUP,  
V5IN, TRIP  
–0.3  
7
VCC6  
VDDIO  
VBST  
SW  
–0.3  
–0.3  
–0.3  
–5  
3.6  
3.6  
37  
30  
SW1, SW2, SWIO  
–0.3  
–0.3  
–0.3  
–0.3  
7
Voltage range on  
pins  
V
VFB1, VFB2, VFBIO  
VOUT, VFB  
3.6  
7
OSC32KIN, OSC32KOUT, BOOT1  
VRTCMAX + 0.3  
SDA_SDI, SCL_SCK, EN2, EN1, SLEEP, INT1, CLK32KOUT,  
NRESPWRON  
–0.3  
VDDIOMAX + 0.3  
PWRON  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
7
7
PWRHOLD, GPIO0  
GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, GPIO7, GPIO8(2)  
7
HDRST  
7
Voltage range on  
pins  
NRESPWRON2(2)  
PWRDN(3)  
VCCS  
7
V
7
7
Peak output current on all other pins than power resources  
Functional junction temperature  
5.0  
150  
150  
mA  
°C  
–45  
–65  
Storage temperature, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) I/O supplied from VRTC, but can be driven from VCC7 or to VCC7 voltage level.  
(3) Input supplied from VRTC, but can be driven from VCC7 voltage level.  
5.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged device model (CDM), per JESD22-C101(2)  
Electrostatic  
discharge  
VESD  
V
(1) JEDEC document JEP155 statues that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP155 statues that 250-V HBM allows safe manufacturing with a standard ESD control process.  
12  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
VCC1, VCC2, VCCIO, VCC5, VCC7, VCCS, VCC4,  
VBACKUP  
2.7  
3.8  
5.5  
VCC3  
1.7  
1.65  
1.4  
4.5  
–0.1  
–1  
3.8  
1.8/3.3  
3.3  
5.5  
3.45  
3.6  
VDDIO  
VCC6  
V5IN  
6.5  
Input voltage range VBST  
SW (<30% of repetitive period)  
TRIP, VFB  
3.45  
28  
V
–0.1  
0
6.5  
PWRON  
3.8  
VDDIO  
VRTC  
VRTC  
5.5  
SDA_SDI, SCL_SCK, EN2, EN1, SLEEP, INT1,  
CLK32KOUT  
1.65  
1.65  
1.65  
3.45  
5.5  
PWRHOLD, HDRST  
GPIO0, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6,  
GPIO7, GPIO8, PWRDN  
5.5  
Input voltage range  
Ambient temperature  
V
VCCS  
0
–40  
–40  
5.5  
85  
27  
27  
°C  
Junction temperature, TJ  
125  
(1) VCC7 should be connected to highest supply that is connected to device VCCx pin.  
Exception: VCC4, VCC5, and V5IN inputs can be higher than VCC7. VCCS can be higher than VCC7 if VMBBUF_BYPASS = 0 (buffer  
is enabled).  
5.4 Thermal Information  
TPS65911x  
THERMAL METRIC(1) (2)  
ZRC (BGA)  
UNIT  
98 PINS  
32  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
18  
16  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
12  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics application report.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
13  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.5 Electrical Characteristics: I/O Pullup and Pulldown  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SDA_SDI, SCL_SCK, SDASR_EN2,  
SCLSR_EN1 external pullup resistor  
Connected to VDDIO  
1.2  
kΩ  
SDA_SDI, SCL_SCK, SDASR_EN2,  
SCLSR_EN1 programmable pullup (DFT,  
default inactive)  
Grounded, VDDIO = 1.8 V  
–45%  
8
45%  
kΩ  
SLEEP, PWRHOLD, programmable  
pulldown (default active)  
At 1.8 V, VRTC = 1.8 V  
2
2
2
4.5  
4.5  
4.5  
10  
10  
10  
µA  
µA  
µA  
NRESPWRON, NRESPWRON2 pulldown  
At 1.8 V, VCC7 = 5.5 V, OFF state  
At 1.8 V, VRTC = 1.8 V, OFF state  
32KCLKOUT pulldown (disabled in  
ACTIVE-SLEEP state)  
PWRON programmable pullup (default  
active)  
Grounded, VCC7 = 5.5 V  
–40  
–31  
–15  
µA  
GPIO0-8 programmable pulldown (default  
active except GPIO0)  
At 1.8 V, VRTC = 1.8 V, OFF state  
Connected to VDDIO  
2
–20%  
2
4.5  
120  
4.5  
10  
20%  
10  
µA  
kΩ  
µA  
GPIO0-8 external pullup resistor  
HDRST programmable pulldown (default  
active)  
At 1.8 V, VRTC = 1.8 V  
(1) The internal pullups on the CTL-I2C and SR-I2C pins are used for test purposes or when the SR-I2C interface is not used. Discrete  
pullups to the VIO supply must be mounted on the board in order to use the I2C interfaces. The internal I2C pullups must not be used for  
functional applications.  
5.6 Electrical Characteristics: Digital I/O Voltage  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
RELATED I/Os: PWRON  
TEST CONDITIONS  
MIN  
0.7 × VBAT  
1.3  
TYP  
MAX  
UNIT  
Low-level input voltage (VIL)  
High-level input voltage (VIH  
0.3 × VBAT  
V
V
)
RELATED I/Os: PWRHOLD, GPIO0-8, PWRDN  
Low-level input voltage (VIL)  
0.45  
V
V
High-level input voltage (VIH  
)
VBAT  
RELATED I/Os: BOOT1  
Low level input – Impedance between  
BOOT1 and GND  
10  
10  
kΩ  
kΩ  
kΩ  
High level input – Impedance between  
BOOT1 and VRTC  
HiZ level input – Impedance between  
BOOT1 and GND  
500  
RELATED I/Os: SLEEP  
0.35 ×  
VDDIO  
Low-level input voltage (VIL)  
V
V
0.65 ×  
VDDIO  
High-level input voltage (VIH  
RELATED I/Os: HDRST  
Low-level input voltage (VIL)  
)
0.35 ×  
VRTC  
V
V
0.65 ×  
VRTC  
High-level input voltage (VIH  
)
RELATED I/Os: NRESPWRON, INT1, 32KCLKOUT  
IOL = 100 µA  
IOL = 2 mA  
0.2  
Low-level output voltage (VOL  
)
V
0.45  
14  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Electrical Characteristics: Digital I/O Voltage (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDDIO –  
0.2  
IOH = 100 µA  
High-level output voltage (VOH  
)
V
VDDIO –  
0.45  
IOH = 2 mA  
RELATED I/Os: GPIO0 (PUSH-PULL MODE)  
IOL = 100 µA  
IOL = 2 mA  
0.2  
Low-level output voltage (VOL  
)
V
V
0.45  
IOH = 100 µA  
VCC7 – 0.2  
High-level output voltage (VOH  
)
VCC7 –  
0.45  
IOH = 2 mA  
RELATED OPEN-DRAIN I/Os: GPIO0, GPIO4, GPIO5, GPIO6, GPIO8, NRESPWRON2  
IOL = 100 µA  
0.2  
Low-level output voltage (VOL  
)
V
V
V
IOL = 2 mA  
RELATED OPEN-DRAIN I/Os: GPIO2, GPIO7  
0.45  
IOL = 100 µA  
IOL = 1.9 mA  
0.2  
Low-level output voltage (VOL  
)
0.45  
RELATED OPEN-DRAIN I/Os: GPIO1, GPIO3  
IOL = 100 µA  
IOL = 2 mA  
0.2  
0.4  
Low-level output voltage (VOL  
)
I2C-SPECIFIC RELATED I/Os: SCL, SDA, EN1, EN2  
0.3 ×  
VDDIO  
Low-level input voltage (VIL)  
–0.5  
V
V
V
V
V
0.7 ×  
VDDIO  
High-level input voltage (VIH  
)
0.1 ×  
VDDIO  
Hysteresis  
Low-level output voltage (VOL) at 3 mA  
(sink current), VDDIO = 1.8 V  
0.2 ×  
VDDIO  
Low-level output voltage (VOL) at 3 mA  
(sink current), VDDIO = 3.3 V  
0.4 ×  
VDDIO  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.7 Electrical Characteristics: Power Consumption  
Over operating free-air temperature range (unless otherwise noted)  
All current consumption measurements are relative to the FULL chip, all VCC inputs set to VBAT voltage, COMP2 is off.  
PARAMETER  
TEST CONDITIONS  
VBAT = 2.4 V, VBACKUP = 0 V,  
MIN  
TYP  
MAX  
UNIT  
13  
18  
CK32K clock and RTC  
digital running  
(RTC_PWDN = 0)  
Device BACKUP state  
µA  
VBAT = 0 V, VBACKUP = 3.2 V,  
V5IN = 0 V  
7
10  
VBAT = 3.8 V  
VBAT = 5 V  
13  
17  
18  
23  
VBAT = 3.8 V, RTC digital running  
(RTC_PWDN = 0)  
CK32K clock running,  
V5IN = 0  
16  
22  
Device OFF state  
µA  
VBAT = 3.8 V, digital running  
(RTC_PWDN = 0), backup battery  
charger on, VBACKUP = 3.2 V  
26  
32  
3 DCDCs on, 5 LDOs and VRTC on,  
no load  
292  
279  
VBAT = 3.8 V,  
CK32K clock running:  
3 DCDCs on, 3 LDOs and VRTC on,  
no load  
Device SLEEP state  
µA  
VBAT = 3.8 V, CK32K clock  
and RTC digital running  
(RTC_PWDN = 0)  
3 DCDCs on, 5 LDOs and VRTC on,  
no load  
295  
Additional current from V5IN = 5 V, if VDDCtrl is on, no load  
320  
1.2  
500  
3 DCDCs on, 5 LDOs and VRTC on,  
no load  
3 DCDCs on, 3 LDOs and VRTC on,  
VBAT = 3.8 V, CK32K clock no load  
1.05  
running:  
Device ACTIVE state  
mA  
3 DCDCs on PWM mode  
(VDD1_PSKIP = VDD2_PSKIP =  
VIO_PSKIP = 0),  
5 LDOs and VRTC on, no load  
23.6  
0.32  
Additional current from V5IN = 5 V, if VDDCtrl is on, no load  
0.5  
16  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.8 Electrical Characteristics: Power References and Thresholds  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output reference  
voltage (VREF pin)  
Device in active or low-  
power mode  
–1%  
0.85  
1%  
V
VMBCH_SEL = 11000 to  
11111  
3.5  
VMBCH_SEL = 10111  
3.45  
...  
...  
Main battery charged  
threshold, VMBCH  
(programmable)  
Measured on VCCS pin  
Triggering monitored  
through NRESPRWON  
VMBCH_SEL = 01110  
...  
–2%  
3
2%  
V
V
V
...  
VMBCH_SEL = 00101  
2.55  
VMBCH_SEL = 00001 to  
00100  
2.5  
VMBCH_SEL = 00000  
Bypassed  
Main battery charged  
hysteresis threshold,  
VMBDCH  
VMBCH –  
100 mV  
Measured on VCCS pin  
VMBDCH2_SEL = 11000 to  
11111  
3.5  
VMBDCH2_SEL = 10111  
3.45  
...  
...  
Measured on VCC7 pin  
(MTL)  
Triggering monitored  
through INT1  
Main battery discharged  
threshold, VMBDCH2  
(programmable)  
VMBDCH2_SEL = 01110  
...  
–2%  
3
2%  
...  
VMBDCH2_SEL = 00101  
2.55  
VMBDCH2_SEL = 00001 to  
00100  
2.5  
VMBDCH2_SEL = 00000  
Bypassed  
Main battery discharged  
hysteresis threshold,  
VMBCH2  
VMBDCH2  
– 100 mV  
Measured on VCCS pin  
V
V
Main battery low  
threshold, VMBLO  
measured on VCC7 pin (monitored on pin  
NRESPWRON)  
2.5  
2.4  
2.6  
2.6  
2.5  
2.7  
2.6  
3
MB comparator  
MTL  
VBACKUP = 0 V, Measured on pin VCC7 (MB  
comparator)  
2.75  
Main battery high  
threshold, VMBHI  
V
V
VBACKUP = 3.2 V, Measured on pin VCC7 (trigger  
monitored though VCCS Idd, UPR comparator)  
2.5  
1.9  
2.55  
3
Main battery not present Measured on pin VCC7 (Triggering monitored on pin  
threshold, VBNPR  
2.1  
8
2.2  
VRTC)  
Device in OFF state  
Device in ACTIVE or SLEEP  
state  
15  
Ground current (analog  
references +  
comparators + backup  
battery switch)  
VCCx = VBAT = 3.8 V  
except VCC6 = 3.6 V  
COMP2 consumption when  
enabled  
µA  
5
8
Buffer consumption if  
COMP1 or COMP2 is active  
and buffer enabled  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.9 Electrical Characteristics: Thermal Monitoring and Shutdown  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Hot-die temperature rising threshold  
Hot-die temperature hysteresis  
TEST CONDITIONS  
THERM_HDSEL[1:0] = 00  
THERM_HDSEL[1:0] = 01  
THERM_HDSEL[1:0] = 10  
THERM_HDSEL[1:0] = 11  
MIN  
TYP  
117  
121  
125  
130  
10  
MAX  
UNIT  
°C  
113  
136  
°C  
°C  
°C  
µA  
Thermal shutdown temperature rising  
threshold  
136  
148  
10  
6
160  
Thermal shutdown temperature hysteresis  
Device in ACTIVE state, Temperature  
= 27°C, VCC7 = 3.8 V  
Ground current  
5.10 Electrical Characteristics: 32-kHz RTC Clock  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CL = 35 pF  
MIN  
TYP  
MAX  
UNIT  
CLK32KOUT rise and fall time  
10  
ns  
BYPASS CLOCK (OSC32KIN: INPUT, OSC32KOUT FLOATING)  
Input bypass clock frequency  
Input bypass clock duty cycle  
Input bypass clock rise and fall time  
CLK32KOUT duty cycle  
OSCKIN input  
32  
10  
kHz  
ns  
OSCKIN input  
40%  
40%  
60%  
20  
10%–90%, OSC32KIN input  
Logic output signal  
32KCLKOUT output  
Bypass mode  
60%  
1
Bypass clock setup time  
Ground current  
ms  
µA  
1.5  
CRYSTAL OSCILLATOR (CONNECTED FROM OSC32KIN TO OSC32KOUT)  
Crystal frequency  
Crystal tolerance  
At specified load capacitor value  
At 27°C  
32.768  
0
kHz  
–20  
20  
ppm  
Oscillator contribution (not including  
crystal variation)  
Frequency temperature coefficient  
–0.5  
0.5  
ppm/°C  
Secondary temperature coefficient  
Voltage coefficient  
–0.04  
–2  
–0.035  
–0.03  
2
ppm/°C2  
ppm/V  
kΩ  
Max crystal series resistor  
Crystal load capacitor  
At fundamental frequency  
90  
According to crystal data sheet  
6
12  
12.5  
pF  
Parallel mode including parasitic PCB  
capacitor  
Load crystal oscillator (COSCIN, COSCOUT  
)
25  
pF  
Quality factor  
8000  
80000  
2
Oscillator start-up time  
Ground current  
On power on  
s
1.5  
µA  
RC OSCILLATOR (OSC32KIN: GROUNDED, OSC32KOUT FLOATING)  
Output frequency  
Output frequency accuracy  
Cycle jitter (RMS)  
Output duty cycle  
Settling time  
CK32KOUT output  
At 25°C  
32  
kHz  
–15%  
40%  
0%  
15%  
10%  
60%  
150  
Oscillator contribution  
50%  
4
µs  
Ground current  
Active at fundamental frequency  
µA  
18  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.11 Electrical Characteristics: Backup Battery Charger  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Backup battery charging current  
VBACKUP = 0 to 2.8 V, BBCHEN = 1  
350  
650  
900  
µA  
VCC5 = 3.6 V, IVBACKUP = –10 µA,  
BBSEL = 10  
–3%  
–3%  
–3%  
3.15  
3
3%  
3%  
VCC5 = 3.6 V, IVBACKUP = –10 µA,  
BBSEL = 00  
VCC5 = 3.6 V, IVBACKUP = –10 µA,  
BBSEL = 01  
End-of-charge backup battery voltage  
2.52  
3%  
V
VCC5 = 3.6 V, IVBACKUP = –10 µA,  
BBSEL = 11  
VBAT – 0.3  
V
VBAT  
VBAT  
VCC5 = 3.0 V, IVBACKUP = –10 µA,  
BBSEL = 10  
VBAT – 0.2  
V
Ground current  
On mode  
10  
µA  
5.12 Electrical Characteristics: VRTC LDO  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
On mode  
2.5  
1.9  
5.5  
3
Input voltage on VCC7 (VIN  
)
V
Backup mode  
On mode, 3.0 V < VIN < 5.5 V  
Backup mode, 2.3 V VIN 2.6 V  
On mode  
1.78  
1.72  
20  
1.83  
1.78  
1.88  
1.84  
DC output voltage (VOUT  
)
V
Rated output current (IOUTmax  
DC load regulation  
)
mA  
mV  
Backup mode  
0.1  
On mode, IOUT = IOUTmax to 0  
Backup mode, IOUT = IOUTmax to 0  
100  
100  
On mode, VIN = 3.0 V to VINmax at IOUT  
IOUTmax  
=
2.5  
DC line regulation  
mV  
mV  
Backup mode, VIN = 2.3 V to 5.5 V at IOUT  
IOUTmax  
=
100  
On mode, VIN = VINmin + 0.2 V to VINmax  
IOUT = IOUTmax / 2 to IOUTmax in 5 µs  
and IOUT = IOUTmax to IOUTmax / 2 in 5 µs  
Transient load regulation  
50(1)  
On mode, VIN = VINmin + 0.5 V to VINmin in 30  
µs  
Transient line regulation  
Turnon time  
25(1)  
mV  
ms  
and VIN = VINmin to VINmin + 0.5 V in 30 µs,  
IOUT = IOUTmax / 2  
IOUT = 0, VIN rising from 0 up to 3.6 V, at VOUT  
= 0.1 V up to VOUTmin  
2.2  
55  
35  
ƒ = 217  
VIN = VINDC + 100 mVpp tone,  
Hz  
Ripple rejection  
VINDC+ = VINmin + 0.1 V to VINmax  
dB  
µA  
ƒ = 50  
kHz  
at IOUT = IOUTmax / 2  
Device in ACTIVE state  
23  
3
Ground current  
Device in BACKUP or OFF state  
(1) These parameters are not tested. They are used for design specification only.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
19  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.13 Electrical Characteristics: VIO SMPS  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VOUT = 1.5 V, 1.8 V, or 2.5 V  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
Input voltage on VCCIO  
V
and VCC7 (VIN  
)
VOUT = 3.3 V  
VOUT  
–3%  
–3%  
–3%  
–3%  
5.5  
VSEL= 00  
VSEL = 01  
VSEL = 10  
VSEL = 11  
1.5  
1.8  
2.5  
3.3  
0
3%  
3%  
3%  
3%  
PWM mode (VIO_PSKIP =  
0)  
DC output voltage  
(VOUT  
or pulse skip mode IOUT  
0 to IMAX  
=
V
)
Power down  
VIO output voltage = 1.5 V  
VIO output voltage = 1.8 V  
VIO output voltage = 2.5 V  
VIO output voltage = 3.3 V  
1300  
1200  
1100  
1100  
Rated output current  
(IOUTmax  
ILMAX[1:0] =11  
mA  
)
P-channel MOSFET  
On-resistance  
VIN = VINmin  
VIN = 3.8 V  
300  
250  
mΩ  
400  
2
(RDS(ON)_PMOS  
P-channel leakage  
current (ILK_PMOS  
)
VIN = VINMAX, SWIO = 0 V  
µA  
mΩ  
µA  
)
N-channel MOSFET  
On-resistance  
VIN = VMIN  
VIN = 3.8 V  
300  
250  
400  
2
(RDS(ON)_NMOS  
N-channel leakage  
current (ILK_NMOS  
)
VIN = VINmax, SWIO = VINmax  
)
ILMAX[1:0] = 00  
ILMAX[1:0] = 01  
ILMAX[1:0] = 10  
ILMAX[1:0] = 00  
ILMAX[1:0] = 01  
ILMAX[1:0] = 10  
ILMAX[1:0] = 00  
ILMAX[1:0] = 01  
ILMAX[1:0] = 10  
650  
1200  
1700  
650  
PMOS current limit  
(high-side)  
Source current load,  
VIN = VINmin to VINmax  
mA  
Source current load  
VIN = VINmin to VINmax  
1200  
1700  
800  
NMOS current limit (low-  
side)  
mA  
Sink current load  
VIN = VINmin to VINmax  
1200  
1700  
DC load regulation  
DC line regulation  
On mode, IOUT = 0 to IOUTmax  
20  
20  
mV  
mV  
On mode, VIN = VINmin to VINmax  
at IOUT = IOUTmax  
VIN = 3.8 V, VOUT = 1.8 V  
IOUT = 0 to 500 mA, maximum slew = 100 mA/µs  
IOUT = 700 to 1200 mA, maximum slew = 100 mA/µs  
Transient load  
regulation  
50  
mV  
µs  
Turnon time, ton  
Overshoot  
IOUT = 200 mA  
350  
3%  
SMPS turned on  
Power-save mode ripple  
voltage  
0.025 ×  
VOUT  
PFM (Pulse skip mode) mode, IOUT = 1 mA  
VPP  
Switching frequency  
Duty cycle  
2.7  
3
3.3  
MHz  
100%  
Minimum on time  
P-channel MOSFET  
35  
30  
1
ns  
Ω
(TON(MIN)  
)
Discharge resistor for  
power-down sequence  
50  
(RDIS  
)
VFBIO internal  
resistance  
0.5  
MΩ  
20  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Electrical Characteristics: VIO SMPS (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Off  
1
PWM mode, IOUT = 0 mA, VIN = 3.8 V, VIO_PSKIP = 0  
7500  
250  
PFM (pulse skipping) mode, no switching, 3-MHz clock  
on  
Ground current (IQ)  
µA  
Low-power (pulse skipping) mode,  
no switching ST[1:0] = 11  
63  
IOUT = 10 mA  
40%  
83%  
85%  
80%  
75%  
68%  
80%  
85%  
IOUT = 100 mA  
PWM mode, DCRL < 50  
mΩ,  
VOUT = 1.8 V, VIN = 3.6 V:  
IOUT = 400 mA  
IOUT = 800 mA  
IOUT = 1200 mA  
IOUT = 1 mA  
Conversion efficiency  
PFM mode, DCRL < 50  
mΩ,  
VOUT = 1.8 V, VIN = 3.6 V  
IOUT = 10 mA  
IOUT = 400 mA  
5.14 Electrical Characteristics: VDD1 SMPS  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
V
OUT 2.7 V  
Input voltage on VCC1  
V
and VCC7 (VIN  
)
VOUT > 2.7 V  
VOUT  
5.5  
Max programmable voltage,  
SEL[6:0] = 1001011  
1.5  
1.2  
0.6  
SEL[6:0] = 0110011  
–3%  
3%  
VGAIN_SEL = 00,  
IOUT = 0 to IOUTmax  
Min programmable voltage,  
SEL[6:0] = 0000011  
DC output voltage  
(VOUT  
V
SEL[6:0] = 000000: power  
down  
)
0
2.2  
3.3  
3.3  
VGAIN_SEL = 10, SEL = 0101011 = 43, IOUT = 0 to  
IOUTmax  
–3%  
–3%  
3%  
3%  
VGAIN_SEL = 11, SEL = 0101011 = 43, IOUT = 0 to  
IOUTmax  
DC output maximum  
voltage maximum value  
V
DC output voltage  
programmable step  
VGAIN_SEL = 00, 72 steps  
12.5  
mV  
(VOUTSTEP  
)
VDD1 output voltage = (0.6 to 2.2 V)  
VDD1 output voltage = 3.2 V  
1500  
1200  
Rated output current  
(IOUTmax  
mA  
)
VDD1 output voltage = (1.2 V, 1.35 V, 1.5 V)  
VINmin = 3 V  
2000  
P-channel MOSFET  
On-resistance  
VIN = VINmin  
VIN = 3.8 V  
300  
250  
mΩ  
µA  
400  
2
(RDS(ON)_PMOS  
)
P-channel leakage  
current  
VIN = VINmax, SW1 = 0 V  
(ILK_PMOS  
)
N-channel MOSFET  
On-resistance  
VIN = VMIN  
VIN = 3.8 V  
300  
250  
mΩ  
µA  
400  
2
(RDS(ON)_NMOS  
)
N-channel leakage  
current  
VIN = VINmax, SW1 = VINmax  
(ILK_NMOS  
)
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Electrical Characteristics: VDD1 SMPS (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PMOS current limit  
(high-side)  
VIN = VINmin to VINmax  
1800  
mA  
VIN = VINmin to VINmax, source current load  
VIN = VINmin to VINmax, sink current load  
1800  
1800  
NMOS current limit (low-  
side)  
mA  
On mode, VIN = VINmin to VINmax  
at IOUT = 1500 mA  
VDD1 output voltage = (0.6 to 1.5 V)  
20  
30  
On mode, VIN = VINmin to VINmax  
at IOUT = 2000 mA  
VDD1 output voltage = (1.2 V, 1.35 V, 1.5 V)  
VINmin = 3 V  
DC load regulation  
mV  
On mode, VIN = VINmin to VINmax  
at IOUT = 1500 mA  
VDD1 output voltage = 2.2 V  
30  
30  
20  
On mode, VIN = VINmin to VINmax  
at IOUT = 1200 mA  
VDD1 output voltage = 3.2 V  
On mode, VIN = VINmin to VINmax  
at IOUT = 1500 mA  
VDD1 output voltage = (0.6 to 1.5 V)  
On mode, VIN = VINmin to VINmax  
at IOUT = 2000 mA  
VDD1 output voltage = (1.2 V, 1.35 V, 1.5 V)  
VINmin = 3 V  
30  
DC line regulation  
mV  
On mode, VIN = VINmin to VINmax  
at IOUT = 1500 mA  
VDD1 output voltage = 2.2 V  
30  
30  
50  
On mode, VIN = VINmin to VINmax  
at IOUT = 1200 mA  
VDD1 output voltage = 3.2 V  
VIN = 3.8 V, VOUT = 1.2 V  
IOUT = 0 to 500 mA , Maximum slew = 100 mA/µs  
IOUT = 700 mA to 1.2 A , Maximum slew = 100 mA/µs  
Transient load  
regulation  
mV  
µs  
Turnon time (ton) off to  
on  
IOUT = 200 mA  
350  
TSTEP[2:0] = 001  
12.5  
7.5  
From VOUT = 0.6 V to 1.5 V  
Output voltage transition  
rate  
and VOUT = 1.5 V to 0.6 V TSTEP[2:0] = 011 (default)  
mV/µs  
IOUT = 500 mA  
TSTEP[2:0] = 111  
2.5  
Overshoot  
SMPS turned on  
3%  
Power-save mode ripple  
voltage  
0.025 ×  
VOUT  
PFM (pulse skip mode), IOUT = 1 mA  
VPP  
Switching frequency  
Duty cycle  
2.7  
3
3.3  
MHz  
100%  
Minimum on time  
(tON(MIN)  
)
35  
ns  
P-channel MOSFET  
Discharge resistor for  
power-down sequence  
RDIS  
30  
1
50  
1
Ω
VFB1 internal resistance  
0.5  
MΩ  
Off  
PWM mode, IOUT = 0 mA, VIN = 3.8 V, VDD1_PSKIP = 0  
Pulse skipping mode, no switching  
7500  
78  
Ground current (IQ)  
µA  
Low-power (pulse skipping) mode, no switching  
ST[1:0] = 11  
63  
22  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Electrical Characteristics: VDD1 SMPS (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOUT = 10 mA  
MIN  
TYP  
35%  
78%  
80%  
74%  
62%  
59%  
70%  
80%  
MAX  
UNIT  
IOUT = 100 mA  
PWM mode, DCRL < 0.1  
Ω, VOUT = 1.2 V, VIN = 3.6 IOUT = 400 mA  
V
IOUT = 800 mA  
Conversion efficiency  
IOUT = 1500 mA  
IOUT = 1 mA  
PFM mode, DCRL < 0.1 Ω,  
IOUT = 10 mA  
VOUT = 1.2 V, VIN = 3.6 V  
IOUT = 400 mA  
5.15 Electrical Characteristics: VDD2 SMPS  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
V
OUT 2.7 V  
Input voltage on VCC2  
V
and VCC7 (VIN  
)
VOUT > 2.7 V  
VOUT  
5.5  
Max programmable voltage,  
SEL[6:0] = 1001011  
1.5  
1.2  
0.6  
SEL[6:0] = 0110011  
–3%  
3%  
Min programmable voltage,  
SEL[6:0] = 0000011  
DC output voltage  
(VOUT  
VGAIN_SEL = 00,  
IOUT = 0 to IOUTmax  
V
SEL[6:0] = 000000: power  
down  
)
0
2.2  
3.3  
3.3  
VGAIN_SEL = 10,  
SEL = 0101011 = 43  
–3%  
–3%  
3%  
3%  
VGAIN_SEL = 11, SEL =  
0101011 = 43  
DC output maximum  
voltage maximum value  
V
DC output voltage  
programmable step  
VGAIN_SEL = 00, 72 steps  
12.5  
mV  
(VOUTSTEP  
)
VDD2 output voltage = 0.6 to 1.5 V  
VDD2 output voltage = 2.2 V  
VDD2 output voltage = 3.2 V  
VIN = VINmin  
1500  
1200  
1200  
Rated output current  
IOUTmax  
mA  
P-channel MOSFET  
On-resistance  
300  
250  
mΩ  
mΩ  
VIN = 3.8 V  
400  
2
(RDS(ON)_PMOS  
P-channel leakage  
current (ILK_PMOS  
)
VIN = VINmax, SW2 = 0 V  
VIN = VMIN  
µA  
mΩ  
mΩ  
)
N-channel MOSFET  
On-resistance  
300  
250  
VIN = 3.8 V  
400  
2
(RDS(ON)_NMOS  
N-channel leakage  
current (ILK_NMOS  
)
VIN = VINmax, SW2 = VINmax  
µA  
)
PMOS current limit  
(high-side)  
VIN = VINmin to VINmax, source current load  
1800  
mA  
VIN = VINmin to VINmax, source current load  
VIN = VINmin to VINmax, sink current load  
1800  
1800  
NMOS current limit (low-  
side)  
mA  
mV  
On mode, VIN = VINmin to VINmax at IOUT = 1500 mA  
VDD2 output voltage = 0.6 to 1.5V  
20  
30  
DC load regulation  
On mode, VIN = VINmin to VINmax at IOUT = 1200 mA  
VDD2 output voltage = 2.2 to 3.3 V  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Electrical Characteristics: VDD2 SMPS (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
On mode, VIN = VINmin to VINmax at IOUT = 1500 mA  
VDD2 output voltage = 0.6 to 1.5V  
20  
DC line regulation  
mV  
On mode, VIN = VINmin to VINmax at IOUT = 1200 mA  
VDD2 output voltage = 2.2 to 3.3 V  
30  
50  
VIN = 3.8 V, VOUT = 1.2 V  
IOUT = 0 to 500 mA , Maximum slew = 100 mA/µs  
IOUT = 700 mA to 1.2 A , Maximum slew = 100 mA/µs  
Transient load  
regulation  
mV  
µs  
Turnon time (ton) Off to  
on  
IOUT = 200 mA  
350  
TSTEP[2:0] = 001  
12.5  
7.5  
From VOUT = 0.6 V to 1.5 V  
Output voltage transition  
rate  
and VOUT = 1.5 V to 0.6 V TSTEP[2:0] = 011 (default)  
mV/µs  
IOUT = 500 mA  
TSTEP[2:0] = 111  
2.5  
Overshoot  
SMPS turned on  
3%  
Power-save mode ripple  
voltage  
0.025 ×  
VOUT  
PFM (pulse skip mode), IOUT = 1 mA  
VPP  
Switching frequency  
Duty cycle  
2.7  
0.5  
3
3.3  
MHz  
100%  
Minimum on time  
P-Channel MOSFET  
35  
ns  
Discharge resistor for  
power-down sequence  
30  
1
50  
1
Ω
(RDIS  
)
VFB2 internal resistance  
MΩ  
Off  
PWM mode, IOUT = 0 mA, VIN = 3.8 V, VDD2_PSKIP = 0  
PFM (pulse skipping) mode, no switching  
7500  
78  
Ground current (IQ)  
µA  
Low-power (pulse skipping) mode, no switching ST[1:0] =  
11  
63  
IOUT = 10 mA  
35%  
78%  
80%  
74%  
66%  
62%  
59%  
70%  
80%  
39%  
85%  
91%  
90%  
86%  
80%  
82%  
92%  
IOUT = 100 mA  
PWM mode, DCRL < 50  
IOUT = 400 mA  
mΩ, VOUT = 1.2 V, VIN  
3.6 V  
=
IOUT = 800 mA  
IOUT = 1200 mA  
IOUT = 1500 mA  
IOUT = 1 mA  
PFM mode, DCRL < 50  
mΩ, VOUT = 1.2 V, VIN  
3.6 V  
=
IOUT = 10 mA  
IOUT = 400 mA  
IOUT = 10 mA  
IOUT = 100 mA  
Conversion efficiency  
PWM mode, DCRL < 50  
mΩ, VOUT = 3.3 V, VIN = 5 IOUT = 400 mA  
V
IOUT = 800 mA  
IOUT = 1200 mA  
IOUT = 1 mA  
PFM mode, DCRL < 50  
mΩ, VOUT = 3.3 V, VIN = 5 IOUT = 10 mA  
V
IOUT = 400 mA  
24  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.16 Electrical Characteristics: VDDCtrl SMPS  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
3
TYP  
MAX  
25  
UNIT  
V
Input voltage for external  
FETs  
VIN  
Input voltage V5IN  
DC output voltage  
4.5  
5.5  
V
SEL[6:0] = 1000011 to  
1111111  
1.4  
1.2  
IOUT = 0 to IOUTmax: maximum  
programmable voltage  
...  
SEL[6:0] = 0110001  
...  
VOUT  
V
SEL[6:0] = 0000001 to  
0000011  
0.6  
0
IOUT = 0 to IOUTmax: minimum  
programmable voltage  
SEL[6:0] = 000000: power  
down  
DC output voltage  
programmable step  
VOUTSTEP  
ton  
12.5  
900  
5
mV  
µs  
Turnon time, off to on  
From EN high to Vout = 95%  
Output voltage transition  
rate  
From VOUT = 0.6 V to 1.4 V and VOUT = 1.4 V to 0.6 V IOUT  
500 mA  
=
(1)mV/µs  
IOUT = 100 mA  
IOUT = 1 A  
10  
100  
340  
Switching frequency  
kHz  
µA  
IOUT = 5 A  
Ground current, off  
1
IQ  
Ground current, no load  
400  
320  
500  
SUPPLY CURRENT  
V5IN current, TA = 25°C,  
No load  
V(EN) = 5 V,  
I(V5IN)  
V5IN supply current  
500  
1
µA  
µA  
V
V(VOUT) = 0.63 V  
V5IN current,  
TA = 25°C,  
No load,  
ISD(V5IN)  
V5IN shutdown current  
V(EN) = 0 V  
INTERNAL REFERENCE VOLTAGE  
Reference  
0.5974  
0.603  
0.6086  
(–0.0063 ×  
VOUT +  
0.0035)%  
0.001 ×  
VOUT –  
0.0003%  
Mismatch of resistive  
divider  
Specified by design. Not production tested.  
VOUT = 0.6 V  
VOUT%  
1.25  
...  
Specified by design. Not  
production tested.  
I(VOUT) = 10–4 × VOUT – 6 ×  
10–5  
...  
I(VOUT)  
Output current  
VOUT = 1 V  
...  
40  
µA  
...  
VOUT = 1.3875 V  
78.75  
OUTPUT DISCHARGE  
Output discharge current  
IDischg  
V(EN) = 0 V, V(SW) = 0.5 V  
5
13  
mA  
from SW pin  
OUTPUT DRIVERS  
Source, I(DRVH) = –50 mA  
Sink, I(DRVH) = 50 mA  
Source, I(DRVL) = –50 mA  
Sink, I(DRVL) = 50 mA  
DRVH-off to DRVL-on  
DRVH-off to DRVL-on  
1.5  
0.7  
1
3
1.8  
2.2  
1.2  
30  
R(DRVH)  
DRVH resistance  
Ω
R(DRVL) DRVL resistance  
0.5  
17  
22  
7
tD  
Dead time  
ns  
10  
35  
BOOT STRAP SWITCH  
V(FBST)  
Ilkg  
Forward voltage  
V(V5IN-VBST), IF = 10 mA, TA = 25°C  
0.1  
0.2  
1.5  
V
VBST leakage current  
V(VBST) = 34.5 V, V(SW) = 28 V, TA = 25°C  
0.01  
µA  
(1) The output voltage is changed with 50 mV/10 µs steps  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Electrical Characteristics: VDDCtrl SMPS (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DUTY AND FREQUENCY CONTROL  
tOFF(min)  
tON(min)  
fSW  
Minimum off-time  
Minimum on-time  
Switching frequency  
TA = 25°C  
150  
260  
86  
400  
ns  
VIN = 28 V, VOUT = 0.6 V, TA = 25°C  
Specified by design. Not production tested.  
TA = 25°C  
312  
340  
368  
kHz  
SOFTSTART  
tss  
Internal SS time  
From V(EN) = high to VOUT = 95%  
0.9  
ms  
PROTECTION: CURRENT SENSE  
TRIP source current  
V(TRIP) = 1 V, TA = 25°C  
On the basis of 25°C  
9
10  
11  
3
µA  
V(TRIP)  
TRIP current temperature  
coefficient  
4700  
ppm/°C  
Current limit threshold  
setting range  
V(TRIP)  
V(TRIP-GND) Voltage  
0.2  
V
V(TRIP) = 3 V  
V(TRIP) = 1.6 V  
V(TRIP) = 0.2 V  
V(TRIP) = 3 V  
V(TRIP) = 1.6 V  
V(TRIP) = 0.2 V  
Positive  
355  
185  
17  
375  
200  
25  
395  
215  
VOCL  
Current limit threshold  
mV  
33  
–395  
–215  
–33  
3
–375  
–200  
–25  
15  
–355  
–185  
–17  
Negative current limit  
threshold  
VOCLN  
mV  
mV  
Auto zero cross adjustable  
range  
Negative  
–15  
–3  
UVLO  
Wake up  
4.2  
3.7  
4.38  
3.93  
4.5  
4.1  
V5IN UVLO threshold  
V
Shutdown  
THERMAL SHUTDOWN  
Shutdown temperature  
Specified by design. Not production tested.  
145  
10  
Thermal shutdown  
threshold  
TSDN  
°C  
Hysteresis  
Specified by design. Not production tested.  
26  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.17 Electrical Characteristics: LDO1 and LDO2  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Input voltage on VCC6 (VIN  
LDO1  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT (LDO1) = 1.05 V at 320 mA  
and VOUT (LDO2) = 1.05 V at 160 mA  
1.4  
3.6  
VOUT (LDO1) = 1.2 V or 1.5 V at 100 mA  
and VOUT (LDO2) = 1.2 V or 1.1 V or 1.0 V  
1.7  
2.1  
3.6  
3.6  
VOUT (LDO1) = 1.5 V and VOUT (LDO1, LDO2)  
= 1.8 V at 200 mA  
)
V
VOUT (LDO1) = 1.8 V and VOUT (LDO2) = 1.8 V  
VOUT (LDO1) = 2.7 V  
2.7  
3.2  
3.5  
3.6  
3.6  
3.6  
VOUT (LDO1) = VOUT (LDO2) = 3.3 V  
SEL[7:2] =  
000100  
1
SEL[7:2] =  
000101  
1.05  
...  
ON and Low-power mode, VIN  
DC output voltage (VOUT  
)
= VINmin to VINmax (VINmax 3.6 ...  
–3%  
3%  
V
V)  
SEL[7:2] =  
110001  
3.25  
SEL[7:2] =  
110010  
3.3  
On mode  
320  
1
Rated output current IOUTmax  
mA  
mA  
Low-power mode  
Load current limitation (short-circuit  
protection)  
On mode, VOUT = VOUTmin – 100 mV  
450  
600  
1000  
ON mode, VDO = VIN – VOUT  
VIN = 1.4 V, IOUT = IOUTmax  
,
Dropout voltage VDO  
DC load regulation  
DC line regulation  
350  
12  
4
mV  
mV  
mV  
On mode, IOUT = IOUTmax to 0  
On mode, VIN = VINmin to VINmax at IOUT  
IOUTmax  
=
ON mode, VIN = 1.5 V, VOUT = 1.05 V  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5  
µs  
Transient load regulation  
Transient line regulation  
20  
5
40  
mV  
mV  
On mode, VIN = 2.7 + 0.5 V to 2.7 in 30 µs,  
and VIN = 2.7 to 2.7 + 0.5 V in 30 µs, IOUT  
IOUTmax  
=
10  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
30  
50  
150  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
230  
600  
Turnon inrush current  
Ripple rejection  
300  
70  
mA  
dB  
Ω
VIN = VINDC + 100 mVpp tone, ƒ = 217 Hz  
VINDC+ = 1.8 V,  
ƒ = 20 kHz  
40  
IOUT = IOUTmax / 2  
LDO1 internal resistance  
LDO off  
600  
63  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode (max 85°C)  
75  
2000  
20  
Ground current  
µA  
22  
2.7  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Electrical Characteristics: LDO1 and LDO2 (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LDO2  
SEL[7:2] =  
000100  
1
SEL[7:2] =  
000101  
1.05  
...  
On and low-power mode, VIN  
= VINmin to VINmax  
DC output voltage VOUT  
...  
–3%  
3%  
V
(VINmax = 3.6 V)  
SEL[7:2] =  
110001  
3.25  
SEL[7:2] =  
110010  
3.3  
On mode  
320  
1
Rated output current IOUTmax  
mA  
mA  
Low-power mode  
Load current limitation (short-circuit  
protection)  
On mode, VOUT = VOUTmin – 100 mV  
450  
600  
1000  
ON mode, VDO = VIN – VOUT  
VIN = 1.4 V, IOUT = IOUTmax  
,
Dropout voltage VDO  
DC load regulation  
DC line regulation  
350  
12  
4
mV  
mV  
mV  
On mode, IOUT = IOUTmax to 0  
On mode, VIN = VINmin to VINmax at IOUT  
IOUTmax  
=
ON mode, VIN = 1.5 V, VOUT = 1.05 V  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5  
µs  
Transient load regulation  
Transient line regulation  
20  
5
40  
mV  
mV  
On mode, VIN = 2.7 + 0.5 V to 2.7 in 30 µs,  
and VIN = 2.7 to 2.7 + 0.5 V in 30 µs, IOUT  
IOUTmax  
=
10  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
30  
50  
150  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
230  
600  
Turnon inrush current  
Ripple rejection  
300  
70  
mA  
dB  
Ω
VIN = VINDC + 100 mVpp tone, ƒ = 217 Hz  
VINDC+= 1.8 V,  
ƒ = 20 kHz  
40  
IOUT = IOUTmax / 2  
LDO2 internal resistance  
LDO off  
600  
63  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
75  
2000  
20  
Ground current  
µA  
22  
Off mode (maximum 85°C)  
2.7  
28  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.18 Electrical Characteristics: LDO3 and LDO4  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Input voltage on VCC5 (VIN  
LDO3  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT (LDO3) = 1.8 V and VOUT (LDO4) = 1.8 V  
or 1.1 V or 1.0 V  
2.7  
5.5  
)
V
VOUT (LDO3) = 2.6 V and VOUT (LDO4) = 2.5 V  
VOUT (LDO3) = 2.8 V  
3.0  
3.2  
5.5  
5.5  
SEL[6:2] =  
00010  
1
SEL[6:2] =  
00011  
1.1  
...  
On and low-power mode,  
DC output voltage (VOUT  
)
VOUT = 1.0 to 3.3 V,  
VIN = VINmin to VINmax  
...  
–3%  
3%  
V
SEL[6:2] =  
11000  
3.2  
SEL[6:2] =  
11001  
3.3  
On mode  
200  
1
Rated output current (IOUTmax  
)
mA  
mA  
Low-power mode  
Load current limitation (short-circuit  
protection)  
On mode, VOUT = VOUTmin – 100 mV  
400  
550  
150  
650  
On mode, VOUTtyp = 3.3 V, VDO = VIN – VOUT  
VIN = 3.6 V, IOUT = IOUTmax  
,
Dropout voltage (VDO  
DC load regulation  
DC line regulation  
)
250  
10  
4
mV  
mV  
mV  
On mode, IOUT = IOUTmax to 0  
On mode, VIN = VINmin to VINmax at IOUT  
IOUTmax  
=
On mode, VIN = 2.7 V, VOUTtyp = 1.8 V  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and  
IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
Transient load regulation  
Transient line regulation  
15  
22  
mV  
mV  
On mode, VOUTtyp = 1.8V, IOUT = IOUTmax  
VIN = VINmin + 0.5 V to VINmin in 30 µs  
,
0.5  
1
and VIN = VINmin to VINmin + 0.5 V in 30 µs,  
IOUT = IOUTmax  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
30  
50  
150  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
200  
450  
Turnon inrush current  
Ripple rejection  
200  
70  
mA  
dB  
kΩ  
VIN = VINDC + 100 mVpp tone, ƒ = 217 Hz  
VINDC+ = 3.8 V,  
ƒ = 50 Hz  
40  
IOUT = IOUTmax / 2  
LDO3 internal resistance  
LDO off  
500  
65  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
76  
2000  
22  
Ground current  
µA  
14  
1
LDO4  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Electrical Characteristics: LDO3 and LDO4 (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SEL[7:2] =  
000000  
0.8  
SEL[7:2] =  
000001  
0.85  
0.9  
0.95  
1
SEL[7:2] =  
000010  
SEL[7:2] =  
000011  
On and low-power mode, VIN  
= VINmin to VINmax  
DC output voltage (VOUT  
)
SEL[7:2] =  
000100  
(1)  
SEL[7:2] =  
000101  
1.05  
...  
...  
–3%  
3%  
V
SEL[7:2] =  
110001  
3.25  
SEL[7:2] =  
110010  
3.3  
On mode  
50  
1
Rated output current (IOUTmax  
)
mA  
mA  
Low-power mode  
Load current limitation (short-circuit  
protection)  
On mode, VOUT = VOUTmin – 100 mV  
200  
400  
100  
500  
On mode, VOUTtyp = 2.5 V, VDO = VIN – VOUT  
VIN = 3.6 V, IOUT = IOUTmax  
Dropout voltage (VDO  
DC load regulation  
DC line regulation  
)
160  
5
mV  
mV  
mV  
On mode, IOUT = IOUTmax to 0  
On mode, VIN = VINmin to VINmax at IOUT  
IOUTmax  
=
4
On mode, VIN = 2.7 V, VOUTtyp = 1.8 V  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5  
µs  
Transient load regulation  
Transient line regulation  
6
10  
1
mV  
mV  
On mode, VIN = VINmin + 0.5 V to VINmin in 30  
µs  
and VIN = VINmin to VINmin + 0.5 V in 30 µs,  
IOUT = IOUTmax / 2  
0.2  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
30  
50  
150  
200  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of  
VOUT  
VIN = VINDC + 100 mVpp tone, ƒ = 217 Hz  
VINDC+= 3.8 V,  
IOUT = IOUTmax / 2  
70  
40  
Ripple rejection  
dB  
ƒ = 50 kHz  
LDO4 internal resistance  
LDO off  
500  
55  
kΩ  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
65  
900  
17  
Ground current  
µA  
14  
1
(1) Set DCDCCTRL_REG.TRACK=1 and disable VDD1 to achieve VOUT < 1 V.  
30  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.19 Electrical Characteristics: LDO5  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VOUT (LDO5) = 1.8 V  
MIN  
2.7  
3.2  
3.2  
3.2  
TYP  
MAX  
5.5  
UNIT  
VOUT (LDO5) = 2.5 V  
5.5  
Input voltage on VCC4  
V
(VIN  
)
VOUT (LDO5) = 2.8 V at Iload = 200 mA  
VOUT (VAUX2) = 2.8 V at 300 mA  
5.5  
5.5  
LDO5  
SEL[6:2] = 00010  
SEL[6:2] = 00011  
...  
1
1.1  
...  
On and low-power mode, VOUT  
1.0 V to 3.3 V,  
VIN = VINmin to VINmax  
=
DC output voltage  
–3%  
3%  
V
(VOUT  
)
SEL[6:2] = 11000  
SEL[6:2] = 11001  
3.2  
3.3  
On mode  
300  
1
Rated output current  
(IOUTmax  
mA  
mA  
)
Low-power mode  
Load current limitation  
(short-circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
450  
550  
650  
500  
400  
300  
VIN = 2.7 V, IOUT  
IOUTmax  
=
VIN = 2.7 V, IOUT  
250 mA  
=
=
Dropout voltage (VDO  
)
On mode, VDO = VIN – VOUT  
mV  
VIN = 2.7 V, IOUT  
200 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax to 0  
15  
4
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUTmax  
On mode, VIN = 3.2 V, VOUTtyp = 2.8 V  
Transient load regulation IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
16  
4
30  
mV  
mV  
On mode, VIN = VINmin + 0.5 V to VINmin in 30 µs  
Transient line regulation and VIN = VINmin to VINmin + 0.5 V in 30 µs,  
IOUT = IOUTmax  
12  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
30  
50  
150  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
200  
450  
Turnon inrush current  
200  
70  
mA  
dB  
Ω
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V,  
IOUT = IOUTmax / 2  
ƒ = 217 Hz  
ƒ = 20 kHz  
Ripple rejection  
40  
LDO5 internal resistance LDO Off  
On mode, IOUT = 0  
60  
65  
76  
2000  
22  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
Ground current  
µA  
14  
1
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.20 Electrical Characteristics: LDO6, LDO7, and LDO8  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT (LDO6) = 1.2 V at 150 mA, VOUT (LDO7) = 1.1 V at  
150 mA  
1.7  
5.5  
and (VLDO8) = 1 V at 180 mA  
VOUT (LDO7) = 1.8 V or 2 V and VOUT (LDO6) = 1.8 V  
VOUT (LDO7) = 2.8 V  
2.7  
3.2  
3.6  
3.2  
3.6  
3.6  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
Input voltage on VCC3  
V
(VIN  
)
VOUT (LDO7) = 3.3 V  
VOUT (LDO7) = 2.8 V at 250 mA  
VOUT (LDO7) = 3.0 V  
VOUT (LDO7) = 3.3 V at 250 mA  
LDO6  
SEL[6:2] = 00010  
SEL[6:2] = 00011  
1
1.1  
...  
DC Output voltage  
On and low-power mode, VIN  
VINmin to VINmax  
=
...  
–3%  
3%  
V
(VOUT  
)
SEL[6:2] = 11000  
SEL[6:2] = 11001  
3.2  
3.3  
On mode  
300  
1
Rated output current  
(IOUTmax  
mA  
mA  
)
Low-power mode  
Load current limitation  
(short-circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
450  
550  
650  
500  
400  
300  
700  
500  
300  
VIN = 2.7 V, IOUT  
IOUTmax  
=
VIN = 2.7 V, IOUT  
250 mA  
=
=
=
=
=
VIN = 2.7 V, IOUT  
200 mA  
Dropout voltage (VDO  
)
On mode, VDO = VIN – VOUT  
mV  
VIN = 1.7 V, IOUT  
180 mA  
VIN = 1.7 V, IOUT  
150 mA  
VIN = 1.7 V, IOUT  
100 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmin to 0  
15  
4
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
On mode, VIN = 3.2 V, VOUTtyp = 2.8 V  
Transient load regulation IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
20  
5
32  
mV  
mV  
On mode, VIN = 2.7 V + 0.5 V to 2.7 V in 30 µs  
Transient line regulation  
15  
and VIN = 2.7 V to 2.7 V + 0.5 V in 30 µs, IOUT = IOUTmax  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
30  
50  
150  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
200  
450  
Turnon inrush current  
Ripple rejection  
200  
70  
mA  
dB  
Ω
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V,  
IOUT = IOUTmax / 2  
ƒ = 217 Hz  
ƒ = 20 kHz  
40  
LDO6 internal resistance LDO off  
On mode, IOUT = 0  
60  
65  
76  
2000  
22  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
Ground current  
µA  
14  
1
32  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Electrical Characteristics: LDO6, LDO7, and LDO8 (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
LDO7  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SEL[6:2] = 00010  
1
1.1  
...  
SEL[6:2] = 00011  
...  
DC output voltage  
(VOUT  
On and low-power mode, VIN  
VINmin to VINmax  
=
–3%  
3%  
V
)
SEL[6:2] = 11000  
SEL[6:2] = 11001  
3.2  
3.3  
On mode  
300  
1
Rated output current  
(IOUTmax  
mA  
mA  
)
Low-power mode  
Load current limitation  
(short-circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
450  
550  
650  
500  
400  
300  
700  
500  
300  
VIN = 2.7 V, IOUT  
IOUTmax  
=
VIN = 2.7 V, IOUT  
250 mA  
=
=
=
=
=
VIN = 2.7 V, IOUT  
200 mA  
Dropout voltage (VDO  
)
On mode, VDO = VIN – VOUT  
mV  
VIN = 1.7 V, IOUT  
180 mA  
VIN = 1.7 V, IOUT  
150 mA  
VIN = 1.7 V, IOUT  
100 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax to 0  
15  
4
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
On mode, VIN = 3.6 V, VOUTtyp = 3.3 V  
Transient load regulation IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
16  
5
25  
mV  
mV  
On mode, IOUT = IOUTmax / 2, VIN = 2.7 + 0.5 V to 2.7 in 30  
Transient line regulation µs  
15  
and VIN = 2.7 V + 0.5 V in 30 µs, IOUT = IOUTmax / 2  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
30  
50  
150  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
200  
450  
Turnon inrush current  
Ripple rejection  
200  
70  
mA  
dB  
Ω
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V,  
IOUT = IOUTmax / 2  
ƒ = 217 Hz  
ƒ = 20 kHz  
40  
LDO7 internal resistance LDO off  
On mode, IOUT = 0  
60  
65  
76  
2000  
22  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
Ground current  
µA  
14  
1
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Electrical Characteristics: LDO6, LDO7, and LDO8 (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
LDO8  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SEL[6:2] = 00010  
1
1.1  
...  
SEL[6:2] = 00011  
...  
DC output voltage  
(VOUT  
On and low-power mode, VIN  
VINmin to VINmax  
=
–3%  
3%  
V
)
SEL[6:2] = 11000  
SEL[6:2] = 11001  
3.2  
3.3  
On mode  
300  
1
Rated output current  
(IOUTmax  
mA  
mA  
)
Low-power mode  
Load current limitation  
(short-circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
450  
550  
650  
500  
400  
300  
700  
500  
300  
VIN = 2.7 V, IOUT  
IOUTmax  
=
VIN = 2.7 V, IOUT  
250 mA  
=
=
=
=
=
VIN = 2.7 V, IOUT  
200 mA  
Dropout voltage (VDO  
)
On mode, VDO = VIN – VOUT  
,
mV  
VIN = 1.7 V, IOUT  
180 mA  
VIN = 1.7 V, IOUT  
150 mA  
VIN = 1.7 V, IOUT  
100 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax to 0  
15  
4
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
On mode, VIN = 1.7 V, VOUTtyp = 1.2 V  
Transient load regulation IOUT = 10 mA to 90 mA in 5 µs and IOUT = 90 mA to 10 mA  
in 5 µs  
7
5
30  
mV  
mV  
On mode, IOUT = 100 mA, VIN = 2.7 V + 0.2 V to 2.7 V in  
Transient line regulation 30 µs  
15  
and VIN = 2.7 V to 2.7 v + 0.2 V in 30 µs, IOUT = 100 mA  
VOUT = (1 to 1.8 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
30  
50  
150  
Turnon time  
µs  
VOUT = (1.9 to 3.3 V), at IOUT = 0  
measured from VOUT = 0.1 V up to 97% of VOUT  
200  
450  
Turnon inrush current  
200  
70  
mA  
dB  
Ω
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V,  
IOUT = IOUTmax / 2  
ƒ = 217 Hz  
ƒ = 20 kHz  
Ripple rejection  
40  
LDO8 internal resistance LDO off  
On mode, IOUT = 0  
60  
65  
76  
2000  
22  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
Ground current  
µA  
14  
1
34  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.21 Timing and Switching Characteristics  
5.21.1 I2C Timing and Switching  
In Table 5-1, SDA is the SDA_SDI or EN2 signal and SCL is the SCL_SCK or EN1 signal. The input  
timing requirements are given by considering a rising or falling time of 80 ns in high–speed mode (3.4  
Mbps), 300 ns in fast–speed mode (400 kbps), 1000 ns in standard mode (100 kbps). Values are over the  
operating free-air temperature range unless otherwise noted.  
Table 5-1. Timing Requirements: I2C Interface and Control Signals  
NO.  
MIN  
5
NOM  
10  
MAX UNIT  
INT1 rise and fall times  
CL = 5 to 35 pF  
CL = 5 to 35 pF  
ns  
ns  
NRESPWRON rise and fall times  
5
10  
SLAVE HIGH–SPEED MODE  
SCL/EN1 and SDA/EN2 rise and  
CL = 10 to 100 pF  
CL = 10 to 400 pF  
CL = 10 to 400 pF  
10  
80  
ns  
fall time  
Data rate  
3.4  
Mbps  
ns  
I3  
I4  
I7  
I8  
I9  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
10  
0
70  
ns  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tsu(SDAH-SCLH)  
160  
160  
160  
ns  
ns  
ns  
SLAVE FAST MODE  
20 +  
0.1 ×  
CL  
SCL/EN1 and SDA/EN2 rise and  
fall time  
250  
400  
ns  
Data rate  
Kbps  
ns  
I3  
I4  
I7  
I8  
I9  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
100  
0
0.9  
µs  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tsu(SDAH-SCLH)  
0.6  
0.6  
0.6  
µs  
µs  
µs  
SLAVE STANDARD MODE  
SCL/EN1 and SDA/EN2 rise and  
fall time  
250  
100  
ns  
Data rate  
Kbps  
ns  
I3  
I4  
I7  
I8  
I9  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
250  
0
µs  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tsu(SDAH-SCLH)  
4.7  
4
µs  
µs  
4
µs  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
In Table 5-2, SCL is the SCL_SCK or EN1 signal. The input timing requirements are given by considering  
a rising or falling time of 80 ns in high–speed mode (3.4 Mbps), 300 ns in fast–speed mode (400 kbps),  
1000 ns in standard mode (100 kbps). Values are over the operating free-air temperature range unless  
otherwise noted.  
Table 5-2. Switching Characteristics: I2C Interface and Control Signals  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SLAVE HIGH–SPEED MODE  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
160  
60  
ns  
ns  
SLAVE FAST MODE  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
1.3  
0.6  
µs  
µs  
SLAVE STANDARD MODE  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
µs  
µs  
36  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.21.2 Switch-ON and Switch-OFF Sequences and Timing  
This section describes an example boot sequence. Each TPS65911x device supports a dedicated  
EEPROM boot sequence to match specific processor requirements. Fixed boot mode is the same in all  
TPS65911x devices. Boot mode selection is described in Section 6.5.2.  
tpd2  
PWRHOLD  
tdsON1  
VIO  
LDO5  
tdsON2  
VDD2  
tdsON3  
VDD1  
tdsON4  
LDO4  
tdsON5  
LDO3  
LDO8  
tdsON6  
LDO6  
tdsON15  
i
CLK32KOUT  
NRESPWRON  
NRESPWRON2  
tpd1  
tdsON16  
tond: Switch-on sequence  
NOTE: Figure 5-1 is for illustrative purposes only and does not describe any actual TPS65911x part number.  
Switch-off sequence  
SWCS049-004  
Figure 5-1. Boot Sequence Example With 2-ms Time Slot and Simultaneous Switch-Off of Resources  
Table 5-3. Switching Characteristics for Boot Sequence Example  
PARAMETER  
TEST CONDITIONS  
LDO5 enable delay  
MIN  
TYP  
MAX  
UNIT  
66 × tCK32k  
=
tdsON1  
tdsON2  
tdsON3  
tdsON4  
tdsON5  
tdsON6  
PWRHOLD rising edge to VIO  
µs  
2060  
64 × tCK32k  
=
VIO to VDD2 enable delay  
µs  
µs  
µs  
µs  
µs  
2000  
64 × tCK32k  
=
VDD2 to VDD1 enable delay  
VDD1 to LDO4 enable delay  
LDO4 to LDO3, LDO8 enable delay  
LDO3 to LDO6 enable delay  
2000  
64 × tCK32k  
=
2000  
64 × tCK32k  
=
2000  
64 × tCK32k  
=
2000  
9 × 64 ×  
LDO6 to CLK32KOUT rising-edge  
delay  
tdsON7  
tCK32k  
=
µs  
18000  
64 × tCK32k  
=
tdsON16  
tdsONT  
tpd1  
CLK32KOUT to NRESPWON  
Total switch-on delay  
NRESPWON2 rising-edge delay  
NRESPWON2 falling-edge delay  
µs  
ms  
µs  
2000  
32  
PWRHOLD falling edge to  
NRESPWON  
2 × tCK32k  
=
62.5  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 5-3. Switching Characteristics for Boot Sequence Example (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
NRESPWON falling edge to  
CLK32KOUT low delay  
3 × tCK32k  
=
tpd1b  
tpd2  
µs  
92  
PWRHOLD falling edge to supplies  
and reference disable delay  
5 × tCK32k  
=
µs  
154  
5.21.3 Power Control Timing  
5.21.3.1 Device State Control Through PWRON Signal  
Figure 5-2 shows the device state control through PWRON signal.  
PWRON  
VIO  
1.8 V  
CLK32KOUT  
NRESPWRON  
Interrupt acknowledge  
PWRON_IT=1  
Interrupt acknowledge  
INT1  
PWRON_IT=1  
Internal pulse t  
dOINT1  
PWRHOLD  
tdbPWRHOLDF  
Switch-off  
sequence  
tdbPWRONF  
tdONPWHOLD  
tdSONT  
Switch On sequence  
tdbPWRONF  
SWCS049-005  
A. The DEV_ON or AUTODEV_ON control bits can be used instead of the PWRHOLD signal to maintain supplies  
on after a switch-on sequence.  
B. The internal POWER ON enable condition pulse, tdOINT1, keeps device active until a PWRHOLD acknowledge.  
C. Switch-off from PWRHOLD removal.  
Figure 5-2. Device State Control Through PWRON Signal  
PWRON  
VIO  
NRESPWRON  
PWRON_IT=1  
INT1  
PWRON_IT=1  
PWRON_LP_IT=1  
PWRHOLD  
Switch-off  
sequence  
tdPWRONLP  
tdPWRONLPTO  
tdbPWRONF  
SWCS049-006  
Figure 5-3. PWRON Long-Press Turnoff  
38  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
 
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 5-4 lists the power control timing characteristics.  
Table 5-4. Power Control Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PWRON falling-edge debouncing  
delay  
tdbPWRONF  
tdbPWRONR  
tdbPWRHOLD  
100  
ms  
PWRON rising-edge debouncing  
delay  
3 × tCK32k  
=
µs  
µs  
94  
PWRHOLD rising-edge debouncing  
delay  
2 × tCK32k  
=
63  
INT1 (internal) power-on pulse  
duration after PWRON low-level  
(debounced) event  
tdOINT1  
1
s
Delay to set high PWRHOLD signal  
tdONPWHOL or DEV_ON control bit after  
tdOINT1  
=
tDSONT  
ms  
NRESPWON released to keep on  
the supplies  
970(1)  
D
PWRON falling-edge to  
PWRON_LP_IT  
tdPWRONLP PWRON long-press delay  
4
s
s
PWROW long-press interrupt  
tdPWRONLPT  
PWRON_LP_IT to NRESPWRON  
falling-edge  
(PWRON_LP_IT) to supplies switch-  
off  
1
O
(1) TdSONT = 30 ms, as in example boot sequence.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.21.3.2 Device SLEEP State Control  
tACT2SLP  
tSLP2ACT  
SLEEP  
1.8 V  
Low Power mode  
1.8 V  
PWM mode  
1.8 V  
PWM mode  
VIO/VFBIO  
SWIO  
LDO5  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
Low-power mode  
3.3 V  
Pulse skip mode  
3.3 V  
Pulse skip mode  
3.3 V  
Low-power mode  
VDD2/VFB2  
SW2  
tdONDCDCSLP  
1.2 V  
PWM mode  
1.2 V  
PWM mode  
Off  
VDD1/VFB1  
SW1  
Off  
Off  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
LDO4  
LDO3  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
LDO8  
LDO6  
3.3 V  
ACTIVE mode  
3.3 V  
ACTIVE mode  
3.3V  
Low-power mode  
tSLP2ACTCK32K  
CLK32KOUT  
tACT2SLPCK32K  
t dSLPONST  
tdSLPONST  
0, VDD1_SETOFF 1, LDO3_SETOFF = 1,  
tdSLPON1  
SWCS049-007  
NOTE: Register programming: VIO_PSKIP  
=
0, VDD1_PSKIP  
=
=
LDO4_SETOFF = 1, LDO8_KEEPON = 1.  
Figure 5-4. Device SLEEP State Control  
Table 5-5. Device SLEEP State Control Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2 ×  
3 ×  
Low-power mode (SLEEP resynchronization  
delay)  
tACT2SLP SLEEP falling-edge to supply  
tACT2SLPC SLEEP falling-edge to  
tCK32k  
=
tCK32k  
=
µs  
62  
94  
tACT2SLP + 3  
× tCK32k  
156  
8 ×  
188  
9 ×  
µs  
µs  
µs  
µs  
CLK32KOUT low  
K32K  
tSLP2ACT SLEEP rising edge to supply  
High-power mode  
tCK32k  
=
tCK32k  
=
250  
281  
tSLP2ACTC SLEEP rising edge to  
tSLP2ACT + 3  
× tCK32k  
344  
375  
CLK32KOUT running  
K32K  
SLEEP rising edge to time step 1  
tdSLPON1 of the turnon sequence from  
SLEEP state  
tSLP2ACT + 1  
× tCK32k  
281  
312  
40  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 5-5. Device SLEEP State Control Timing Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TSLOT_LENGTH[1:0]  
= 00  
0
TSLOT_LENGTH[1:0]  
= 01  
200  
500  
tdSLPONST Turnon sequence step duration  
From SLEEP state  
µs  
TSLOT_LENGTH[1:0]  
= 10  
TSLOT_LENGTH[1:0]  
= 11  
2000  
tdSLPONDC VDD1, VDD2, or VIO turnon  
2 × tCK32k  
=
From turnon sequence time step  
µs  
delay  
62  
DC  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.21.3.3 Device Turnon and Turnoff With Rising and Falling Input Voltage  
VMBCH threshold  
VMBHI threshold  
VMBDCH2 threshold  
VMBLO threshold  
VBNPR threshold  
VCC7  
VRTC  
1.8 V  
VBACKUP > VBNPR  
VIO  
CLK32KOUT  
NRESPWRON  
1.8 V  
t
dbVMBLO  
Interrupt acknowledge  
VMBHI_IT=1  
t
INT1  
dbVMBDCH  
PWRHOLD  
Switch-off  
sequence  
t
d32KON  
t
t
t
dONPWHOLD  
dbVMBHI  
dSONT  
Switch On sequence  
SWCS049-008  
A. To allow power-up from first supply insertion as shown here, VMBHI_IT_MSK is set to 0.  
B. Power-up to active state is enabled when VMBHI interrupt is not masked (VMBHI_IT_MSK in boot configuration).  
C. The DEV_ON or AUTODEV_ON control bits can be used instead of the PWRHOLD signal to maintain supplies on  
after a switch-on sequence.  
Figure 5-5. Device Turnon and Turnoff With Rising and Falling Input Voltage  
Table 5-6. Device Turnon Voltage With Rising Input Voltage, Timing Characteristics  
MIN  
NOM  
0.1  
MAX  
UNIT  
RC oscillator  
td32KON  
32-kHz oscillator turnon time  
Quartz oscillator  
Bypass clock  
200  
0.1  
ms  
4 × tCK32k  
=
tdbVMBHI  
VMBHI rising-edge debouncing delay  
3 × tCK32k = 94  
µs  
s
125  
INT1 power on pulse duration after VMBHI high level  
(debounced) event  
tdOINT1  
1
Delay to set high PWRHOLD signal or DEV_ON control bit  
after NRESPWRON released in order to keep on the supplies  
tdOINT1  
tDSONT = 970  
tdONPWHOLD  
tdbVMBDCH  
tdbVMBLO  
ms  
s
Main battery voltage = VMBDCH threshold to INT1 falling-  
edge delay  
4 × tCK32k  
=
3 × tCK32k = 94  
3 × tCK32k = 94  
125  
Main battery voltage = VMBLO threshold to NRESPWRON  
falling-edge delay  
4 × tCK32k  
=
s
125  
42  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
5.21.3.4 Power Supplies State Control Through EN1 and EN2 Signals  
Switch-on sequence  
Switch-off sequence  
Device on  
NRESPWRON  
t
dEN  
EN1  
t
dVEN  
t
dEN  
LDO1  
EN2  
t
1.2 V  
dSOFF2  
t
dEN  
t
dEN  
Low-power mode  
1.8 V  
LDO4  
SWCS046-009  
NOTE: Register setting: LDO1_EN1 = 1, LDO4_EN2 = 1, and LDO4_KEEPON = 1.  
Figure 5-6. LDO Type Supplies State Control Through EN1 and EN2  
Switch-off sequence  
Switch-on sequence  
Device on  
NRESPWRON  
t
dEN  
EN2  
t
t
dVDDEN  
dVDDEN  
t
dOEN  
VDD2/VFB2  
0 V  
3.3 V  
t
dSOFF2  
EN1  
t
dEN  
VDD1/VFB1  
t
1.2 V  
PWM mode  
dEN  
Low-power mode  
PFM (pulse skipping) mode  
SW1  
SWCS049-010  
NOTE: Register setting: VDD2_EN2 = 1, VDD1_EN1 = 1, VDD1_KEEPON = 1, VDD1_PSKIP = 0, and SEL[6:0] = hex00 in  
VDD2_SR_REG.  
Figure 5-7. VDD1 and VDD2 Supplies State Control Through EN1 and EN2  
Table 5-7. Supplies State Control Through EN1 and EN2 Timing Characteristics  
MIN  
NOM  
MAX  
UNIT  
tdEN  
NRESPWRON to supply state change delay, EN1 or EN2 driven  
EN1 or EN2 edge to supply state change delay  
0
ms  
1 × tCK32k  
=
31  
tdOEN  
µs  
µs  
3 × tCK32k  
=
63  
tdVDDEN  
EN1 or EN2 edge to VDD1 or VDD2 DCDC turnon delay  
Copyright © 2010–2018, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
5.21.3.5 VDD1, VDD2 Voltage Control Through EN1 and EN2 Signals  
EN1  
tdDVSEN  
tdDVSENL  
tdDVSEN  
tdDVSENL  
1.2 V  
0.8 V  
VDD1/VFB1  
SW1  
TSTEP[2:0]=001  
TSTEP[2:0]=011  
PFM (pulse skipping) mode  
PFM (pulse  
skipping) mode  
PFM (pulse  
skipping) mode  
SWCS049-011  
PWM mode  
PWM mode  
NOTE: Register setting: VDD1_EN1 = 1, SEL[6:0] = hex13 in VDD1_SR_REG  
Figure 5-8. VDD1 Supply Voltage Control Through EN1  
Table 5-8. VDD1 Supply Voltage Control Through EN1 Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN1 (or EN2) edge to VDD1 (or  
VDD2) voltage change delay  
2 × tCK32k  
=
tdDVSEN  
µs  
62  
TSTEP[2:0] = 001  
32  
0.4 / 7.5 = 53  
160  
VDD1 (or VDD2) voltage settling  
delay  
tdDVSENL  
TSTEP[2:0] = 011 (default)  
TSTEP[2:0] = 111  
µs  
44  
Specifications  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
6 Detailed Description  
6.1 Overview  
The TPS65911 device is an integrated power management IC (PMIC) available in a 98-pin 0.65-mm pitch  
BGA package. It is designed for applications powered by powered by one Li-Ion or Li-Ion polymer battery  
cell, 3-series Ni-MH cells, or a 5-V input supply. It provides three step-down converters, one step-down  
controller with external FETs to support high current rails, eight LDOs, nine GPIOs, and EERPOM-  
programmable power sequencing to support a variety of processors and system sequencing requirements.  
Two of the step-down converters, VDD1 and VDD2, provide power for processor cores and support  
dynamic voltage scaling using I2C interface. VDD1 and VDD2 have an output voltage range of 0.6 V to  
3.3V. The converters have a 12.5-mV step size from 0.6 V to 1.5 V, and a VGAIN_SEL option to multiply  
this voltage by 2 or 3, with 3.3 V maximum output voltage. The third converter, VIO, provides power for I/O  
and memory. VIO has four selectable voltage outputs, 1.5 V, 1.8 V, 2.5 V, and 3.3 V.  
The device includes 8 general-purpose LDOs with an output voltage range from 1 V to 3.3 V. Three of the  
LDOs (LDO1, LDO2, and LDO4) support 50-mV output voltage steps, and the remaining five LDOs  
(LDO3, LDO5, LDO6, LDO7, and LDO8) support 100-mV output voltage steps. The LDO voltages and  
other configuration are controlled by the I2C interface.  
The power-up and power-down sequences are controlled by the embedded power controller and is pre-  
programmed using EEPROM. The power-up and power-down sequences assign each output rail to a  
sequence slot, and the delay time between slots is either 0.5 ms or 2 ms.  
The device offers nine GPIOs. Four of the GPIOs (GPIO0, GPIO2, GPIO6, and GPIO7) can be configured  
to enable external resources, and can be included in the power sequences. The device also includes  
dedicated input and reset pins used to enable and disable the PMIC including PWRON, PWRHOLD,  
HDRST, and PWRDN. The NRESPWRON pin is a dedicated power-on reset output for a processor  
powered by the PMIC.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
6.2 Functional Block Diagram  
CBB  
VBACKUP  
VCC7  
1.5 A at 0.6 to 2.2 V(1)  
VDD1  
VCC1  
SW1  
BACKUP  
VRTC  
Management  
VRTC (LDO)  
and POR  
AGND  
AGND  
OSC32KIN  
GND1  
VFB1  
Oscillator  
32 kHz  
OSC32KOUT  
Real-Time Clock  
(RTC)  
0.6 V to 3.3 V  
REFGND  
CLK32KOUT  
1.5 A at 0.6 to 1.5 V(1)  
VDD2  
VDDIO  
SDA_SDI  
SCL_SCK  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
I2C  
VCC2  
SW2  
Bus Control  
GND2  
0.6 V to 3.3 V  
VFB2  
VBST  
Cboost  
DRVH  
SW  
DRVL  
I2C  
EN1  
EN2  
VOUT  
VFB  
Controller  
C1  
INT1  
V5IN  
SLEEP  
Power-Control  
State Machine  
Rtrip  
CV5IN  
TRIP  
GNDC  
PWRON  
0.6 V to 1.4 V  
VIO  
BOOT1  
PWRHOLD  
PWRDN  
VCCIO  
HDRST  
SWIO  
NRESPWRON  
NRESPWRON2  
GNDIO  
1.3 A at 1.5 V  
1.2 A at 1.8 V  
1.1 A at 2.5 and 3.3 V  
VREF  
TESTV  
VFBIO  
VDDIO  
Analog  
References  
Connect to system  
1.8V/3.3 V supply  
Watchdog  
REFGND  
LDO1  
320 mA  
LDO1  
VCC6  
LDO2  
1 to 3.3 V,  
50-mV step  
LDO3  
200 mA  
Test Interface  
1 to 3.3 V,  
100-mV step  
LDO3  
VCC5  
LDO4  
1 to 3.3 V,  
50-mV step  
LDO2  
320 mA  
1 to 3.3 V,  
50-mV step  
LDO4  
1 to 3.3 V,  
100-mV step  
LDO7  
300 mA  
LDO7  
VCC3  
LDO8  
50 mA  
LDO5  
300 mA  
1 to 3.3 V,  
100-mV step  
LDO5  
VCC4  
VCCS  
1 to 3.3 V,  
100-mV step  
LDO8  
300 mA  
COMP  
1
1 to 3.3 V,  
100-mV step  
LDO6  
COMP  
2
LDO6  
300 mA  
(1) For details on supported levels, see Section 5.14, Section 5.15, and Table 6-1.  
46  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
6.3 Power Reference  
The band-gap voltage reference is filtered by using an external capacitor connected across the VREF  
output and the analog ground REFGND (see Section 5.3). The VREF voltage is distributed and buffered  
inside the device.  
6.4 Power Resources  
The power resources provided by the TPS65911 device include inductor based switched mode power  
supplies (SMPSs) and linear low-dropout voltage regulators (LDOs). These supply resources provide the  
required power to the external processor cores and external components, and to modules embedded in  
the TPS65911 device.  
Two of the integrated SMPSs and the external FET SMPS have voltage scaling capability. These SMPSs  
provide independent core voltage domains to the host processor. When changing the output voltage,  
VDD1 and VDD2 reach the new value through successive steps of 2.5 to 12.5 mV. The size of the voltage  
step is selected by the TSTEP bit. VDDCtrl has a target slew rate of 100 mV/20 µs. New output values are  
reached in successive smaller steps of N × LSB, LSB = 12.5 mV, N = 1 to 4. A suitable combination of  
steps is calculated internally based on current and new target value for output voltage.  
The VIO SMPS provides supply voltage for the host processor I/Os.  
Table 6-1 lists the power sources provided by the TPS65911 device.  
Table 6-1. Power Sources  
RESOURCE  
TYPE  
VOLTAGES  
POWER  
1300 mA  
1200 mA  
1100 mA  
1500 mA  
1200 mA  
2000 mA  
1.5 V  
VIO  
SMPS  
1.8 V  
2.5 or 3.3 V  
0.6 to 2.2 V  
3.2 V  
VDD1  
SMPS  
1.2 or 1.35 or 1.5 V (VINmin = 3 V)  
0.6 ... 1.5 V in 12.5-mV steps  
Programmable multiplication factor: ×2, ×3. Maximum output 3.3 V  
0.6 to 1.5 V  
2.2 / 3.2 V  
1500 mA  
1200 mA  
VDD2  
SMPS  
SMPS  
0.6 ... 1.5 V in 12.5-mV steps  
Programmable multiplication factor: ×2, ×3. Maximum output 3.3 V  
External component  
dependent  
VDDCtrl  
0.6 … 1.4 V in 12.5-mV steps  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
LDO8  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
1.0–3.3 V, 0.05-V step  
1.0–3.3 V, 0.05-V step  
1.0–3.3 V, 0.1-V step  
1.0–3.3 V, 0.05-V step  
1.0–3.3 V, 0.1-V step  
1.0–3.3 V, 0.1-V step  
1.0–3.3 V, 0.1-V step  
1.0–3.3 V, 0.1-V step  
320 mA  
320 mA  
200 mA  
50 mA  
300 mA  
300 mA  
300 mA  
300 mA  
6.5 Embedded Power Controller (EPC)  
The EPC manages the state of the device and controls the power-up sequence.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Detailed Description  
47  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
6.5.1 State Machine  
The EPC supports the following states:  
NO SUPPLY: The primary battery supply voltage is not high enough to power the VRTC regulator. A  
global reset is asserted in this case. Everything on the device is off.  
BACKUP: The primary battery supply voltage is high enough to enable the VRTC domain but not  
enough to switch on all the resources. In this state, the VRTC regulator is in backup mode and only the  
32K oscillator and RTC module are operating (if enabled). All other resources are off or under reset.  
OFF: The primary battery supply voltage is high enough to start the power-up sequence, but device  
power on is not enabled. All power supplies are in the OFF state except VRTC.  
ACTIVE: Device POWER ON enable conditions are met and regulated power supplies are on or can  
be enabled with full current capability.  
SLEEP: Device SLEEP enable conditions are met and some selected regulated power supplies are in  
low-power mode.  
Figure 6-1 shows the transitions for the state machine.  
AUTODEV_ON  
DEV_ON  
PWRHOLD  
HDRST  
INT1  
Pulse  
generator  
NRESPWRON  
TDOINT1  
PWRON  
POWER ON  
ENABLE  
THERM_TS  
TD  
NO SUPPLY  
PWRON_LP_IT  
DEV_OFF  
DEV_OFF_RST  
HDRST  
VCC7 and BB < VBNPR  
PWRDN_POL  
PWRDN  
VCC7 > VMBHI  
OFF  
VCC7 < VMBLO  
VCC7 and BB < VBNPR  
VCC7 and BB < VBNPR  
SLEEPSIG_POL  
VCC7 > VMBHI  
POWER ON  
Enabled  
And VCCS > VMBCH  
SLEEP  
INT1  
SLEEP  
ENABLE  
DEV_SLP  
POWER ON  
disabled  
BACKUP  
VCC7 or BB >  
VBNPR  
and  
VCC7 < VMBLO  
ACTIVE  
POWER ON  
disabled  
VCC7 < VMBLO  
SLEEP  
enabled  
SLEEP  
disabled  
VCC7 < VMBLO  
BB: Backup battery voltage  
SLEEP  
SWCS049-024  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: PWRHOLD enables power-on unless the pin is programmed as GPI.  
Figure 6-1. Embedded Power Control State Machine  
48  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
6.5.1.1 Device POWER ON Enable Conditions  
The device POWER ON enable conditions are as follows:  
None of the device POWER ON disable conditions are met.  
PWRON signal low level  
Or PWRHOLD signal high level  
Or DEV_ON control bit set to 1 (default inactive)  
Or interrupt flag active (default INT1 low) generates a POWER ON enable condition during a fixed  
delay (tDOINT1 pulse duration defined in Section 5.21.3). Interrupt sources expected (if enabled), when  
the device is off:  
RTC alarm interrupt  
First-time input voltage rising above the VMBHI threshold (depending on the boot mode used) and  
input voltage > VMBCH threshold. The interrupt corresponding to this last condition is VMBCH_IT  
in the INT_STS_REG register.  
Or HDRST reset release generates a POWER ON enable condition during a fixed delay tDOINT1  
Interrupt flag active generates a POWER ON enable condition pulse of length tDOINT1 only when the device  
is in the OFF state (when the NRESPWRON signal is low). The POWER ON enable condition pulse  
occurs only if the interrupt status bit is initially low (no previous interrupt pending in the status register).  
The interrupt status register must first be cleared to let the device power off during the tDOINT1 pulse  
duration.  
GPIO2 cannot be used to turn on the device, even if its associated interrupt is not masked. The GPIO0,  
GPIO1, GPIO3, GPIO4, or GPIO5 signals can be used to turn on the device, if its associated interrupt is  
not masked.  
NOTE  
The watchdog interrupt is not a power-on event, but can wake up the device from sleep  
mode.  
6.5.1.2 Device POWER ON Disable Conditions  
Device POWER ON disable conditions are as follows:  
PWRON signal low level during more than the long-press delay: PWON_LP_DELAY (can be disabled  
though register programming). The interrupt corresponding to this condition is PWRON_LP_IT in the  
INT_STS_REG register.  
Or die temperature has reached the thermal shutdown threshold (THERM_TS = 1).  
Or DEV_OFF or DEV_OFF_RST control bit is set to 1 (DEV_OFF value is cleared when the device is  
in OFF state).  
NOTE  
If the DEV_ON bit is set to 1, after switch-off, the device switches back on. To keep the  
device off, DEV_ON must be cleared first.  
6.5.1.3 Device SLEEP Enable Conditions  
Device SLEEP enable conditions are as follows:  
SLEEP signal low level (default, or high level depending on the programmed polarity)  
And DEV_SLP control bit is set to 1.  
And interrupt flag inactive (default INT1 high): no nonmasked interrupt is pending.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
The SLEEP state can be controlled by programming DEV_SLP bit and keeping the SLEEP signal in the  
active polarity state, or it can be controlled through the SLEEP signal setting the DEV_SLP bit to 1 after  
device turnon.  
6.5.1.4 Device Reset Scenarios  
The device has three reset scenarios:  
Full reset: All digital logic of device is reset.  
Caused by POR (power on reset) when VCC7 < VBNPR and BB < VBNPR  
General reset: No impact on the RTC, backup registers, or interrupt status.  
Caused by PWON_LP_RST bit set high  
Or DEV_OFF_RST bit set high  
Or HDRST input set high  
Turnoff: Power reinitialization in off/backup mode.  
A mapping of digital registers to these reset scenarios is described in Table 6-6.  
6.5.2 BOOT Configuration, Switch-ON, and Switch-OFF Sequences  
The power sequence is the automated switch-on of the devices resources when an OFF-to-ACTIVE  
transition occurs. The power-on sequence has 15 sequential time slots to which resources (DC-DC  
converters, LDOs, 32-kHz clock, GPIO0, GPIO2, GPIO6, GPIO7) can be assigned. The time slot length  
can be selected to be 0.5 ms or 2 ms. If a resource is not assigned to any time slot, it will be in off mode  
after the power-on sequence and the voltage level can be changed through the register SEL bits before  
enabling the resource.  
Power off disables all power resources at the same time by default. By setting the PWR_OFF_SEQ  
control bit to 1, power off will follow the power-up sequence in reverse order (the first resource to be  
powered on will be last to power off).  
The values of VDD1, VDD2, and VDDCtrl set in the boot sequence can be selected from 16 steps. For the  
whole range, 100-mV steps are available: 0.6/0.7...1.4/1.5 V. From 0.8 to 1.4 V, additional values with  
50-mV step resolution can be set: 0.85/1.05...1.35 V.  
For LDO1, LDO2, and LDO4 all levels from 1.0 to 3.3 V are selectable in the boot sequence with 50-mV  
steps. For other LDOs, the level is selectable with 100-mV steps, from 1.0 to 3.3 V.  
The device supports three boot configurations, which define the power sequence and several device  
control bits. The boot configuration is selectable by the device BOOT1 pin.  
BOOT1  
BOOT CONFIGURATION  
Floating  
Test boot mode  
0
1
Fixed boot mode  
EEPROM boot mode  
The BOOT1 input pad is disabled after the boot mode is read at power up, to save power.  
Table 6-2 and Table 6-3 describe the power sequence and general control bits defined in the boot  
sequence, respectively.  
Fixed boot mode is the same in all devices, while EEPROM boot mode is different in each device. For a  
description of EEPROM boot mode, refer to the user's guide for the selected device. For a list of user's  
guides, see Section 8.2.1 or the device product folder on ti.com.  
50  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-2. Boot Configuration: Power Sequence Control Bits  
TPS65911  
REGISTER  
BIT  
DESCRIPTION  
EEPROM  
BOOT  
FIXED BOOT  
VDD1 voltage level selection for boot.  
Levels available:  
VDD1_OP_REG/  
VDD1_SR_REG  
1.2 V  
x
0.6/0.7/0.8/0.85/0.9/0.95/.../1.35/1.4/1.5 V  
VDD1 gain selection, ×1 or ×2  
VDD1 time slot selection  
VDD1_REG  
EEPROM  
VGAIN_SEL  
×1  
3
x
x
x
DCDCCTRL_REG  
VDD1_PSKIP  
VDD1 pulse skip mode enable  
Enable skip  
VDD2 voltage level selection for boot.  
Levels available:  
VDD2_OP_REG/  
VDD2_SR_REG  
1.5 V  
x
0.6/0.7/0.8/0.85/0.9/0.95/.../1.35/1.4/1.5 V  
VDD2 gain selection, ×1 or ×3  
VDD2 time slot selection  
VDD2_REG  
EEPROM  
VGAIN_SEL  
×1  
x
x
x
x
x
x
6
DCDCCTRL_REG  
VIO_REG  
VDD2_PSKIP  
SEL[3:2]  
VDD2 pulse skip mode enable  
VIO voltage selection  
Enable skip  
1.8 V  
EEPROM  
VIO time slot selection  
4
DCDCCTRL_REG  
VIO_PSKIP  
VIO pulse skip mode enable  
Enable skip  
VDDCtrl voltage level selection for boot.  
Levels available:  
VDDCtrl_OP_REG/  
VDDCtrl_SR_REG  
Off  
x
0.6/0.7/0.8/0.85/0.9/0.95/../1.35/1.4 V  
VDDCtrl time slot selection  
LDO1 voltage selection  
LDO1 time slot  
EEPROM  
LDO1_REG  
EEPROM  
Off  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SEL[7:2]  
SEL[7:2]  
SEL[6:2]  
SEL[7:2]  
SEL[6:2]  
SEL[6:2]  
SEL[6:2]  
SEL[6:2]  
1.05 V  
Off  
LDO2_REG  
EEPROM  
LDO2 voltage selection  
LDO2 time slot  
1.2 V  
7
LDO3_REG  
EEPROM  
LDO3 voltage selection  
LDO3 time slot  
LDO3 voltage: 1 V  
Off  
LDO4_REG  
EEPROM  
LDO4 voltage selection  
LDO4 time slot  
1.2 V  
2
LDO5_REG  
EEPROM  
LDO5 voltage selection  
LDO5 time slot  
LDO5 voltage: 1 V  
Off  
LDO6_REG  
EEPROM  
LDO6 voltage selection  
LDO6 time slot  
LDO6 voltage: 1 V  
Off  
1.2 V  
5
LDO7_REG  
EEPROM  
LDO7 voltage selection  
LDO7 time slot  
LDO8_REG  
EEPROM  
LDO8 voltage selection  
LDO8 time slot  
1 V  
7
CLK32KOUT pin  
CLK32KOUT time slot  
5
NRESPWRON, NRESPWRON2  
pin  
NRESPWRON time slot  
10  
x
GPIO0 pin  
GPIO2 pin  
GPIO6 pin  
GPIO7 pin  
GPIO0 time slot  
GPIO2 time slot  
GPIO6 time slot  
GPIO7 time slot  
1
Off  
6
x
x
x
x
5
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-3. Boot Configuration: General Control Bits  
TPS65911  
REGISTER  
BIT  
DESCRIPTION  
FIXED BOOT  
EEPROM BOOT  
0: VRTC LDO will be in low-power mode during  
OFF state.  
VRTC_REG  
VRTC_OFFMASK  
0
x
1: VRTC LDO will be in full-power mode during  
OFF state.  
0: Clock source is crystal/external clock.  
1: Clock source is internal RC oscillator.  
0: No impact  
DEVCTRL_REG  
DEVCTRL_REG  
CK32K_CTRL  
DEV_ON  
Crystal  
0
x
x
1: Will keep device on, in ACTIVE or SLEEP  
state  
Boot sequence time slot duration:  
DEVCTRL2_REG  
DEVCTRL2_REG  
TSLOTD  
0: 0.5 ms  
1: 2 ms  
2 ms  
1
x
x
0: Turn off device after PWRON long-press not  
allowed.  
PWON_LP_OFF  
1: Turn off device after PWRON long-press.  
0: No impact  
DEVCTRL2_REG  
DEVCTRL2_REG  
PWON_LP_RST  
IT_POL  
1
0
x
x
1: Reset digital core when device is off  
0: INT1 signal will be active-low.  
1: INT1 signal will be active-high.  
0: Device will automatically switch-on at NO  
SUPPLY-to-OFF or BACKUP-to-OFF transition  
(device will switch-on when supply is inserted)  
INT_MSK_REG  
VMBHI_IT_MSK  
1
x
1: Start-up reason required before switch-on  
(VMBHI event interrupt masked)  
0: GPIO5 falling-edge detection interrupt not  
masked  
INT_MSK3_REG  
INT_MSK3_REG  
INT_MSK3_REG  
INT_MSK3_REG  
GPIO5_F_IT_MSK  
GPIO5_R_IT_MSK  
GPIO4_F_IT_MSK  
GPIO4_R_IT_MSK  
1
0
1
0
x
x
x
x
1: GPIO5 falling-edge detection interrupt  
masked  
0: GPIO5 rising-edge detection interrupt not  
masked  
1: GPIO5 rising-edge detection interrupt  
masked  
0: GPIO4 falling-edge detection interrupt not  
masked  
1: GPIO4 falling-edge detection interrupt  
masked  
0: GPIO4 rising-edge detection interrupt not  
masked  
1: GPIO4 rising-edge detection interrupt  
masked  
0: GPIO0 configured as push-pull output  
1: GPIO0 configured as open-drain output  
0: Watchdog disabled  
GPIO0_REG  
GPIO_ODEN  
Push-pull  
1
x
x
WATCHDOG_REG  
WATCHDOG_EN  
1: Watchdog enabled, periodic operation with  
100 s  
0: Enable input buffer for external resistive  
divider  
EEPROM  
VMBBUF_BYPASS  
VMBCH_SEL[5:1]  
Disable buffer  
3.1 V  
x
x
1: In single-cell system, disable buffer for low  
power  
Select threshold for boot gating comparator  
COMP1, 2.5–3.5 V.  
VMBCH_REG  
52  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-3. Boot Configuration: General Control Bits (continued)  
TPS65911  
REGISTER  
BIT  
DESCRIPTION  
FIXED BOOT  
EEPROM BOOT  
0: PWRHOLD pin is used as PWRHOLD  
feature.  
1, PWRHOLD  
pin is GPI  
EEPROM  
EEPROM  
AUTODEV_ON  
PWRDN_POL  
x
1: PWRHOLD pin is GPI. After power on,  
DEV_ON set high internally, no processor  
action required to keep supplies.  
0: PWRDN signal will be active-low.  
1: PWRDN signal will be active-high.  
Active-low  
x
6.5.3 Control Signals  
6.5.3.1 SLEEP  
When none of the device SLEEP-disable conditions are met, a falling edge (default, or rising edge,  
depending on the programmed polarity) of this signal causes an ACTIVE-to-SLEEP state transition of the  
device. A rising edge (default, or falling edge, depending on the programmed polarity) causes a transition  
back to the ACTIVE state. This input signal is level-sensitive and no debouncing is applied.  
While the device is in the SLEEP state, predefined resources are automatically set in their low-power  
mode or off. Resources can be kept in their active mode (full-load capability) by programming the  
SLEEP_KEEP_LDO_ON and the SLEEP_KEEP_RES_ON registers. These registers contain 1 bit per  
power resource. If the bit is set to 1, then that resource stays in active mode when the device is in the  
SLEEP state.  
32KCLKOUT is also included in the SLEEP_KEEP_RES_ON register and the 32-kHz clock output is  
maintained in the SLEEP state if the corresponding mask bit is set.  
The status (low or high) of GPO0, GPO6, GPO7, and GPO8 are also controlled by the SLEEP signal, to  
allow enabling and disabling of external resources during sleep.  
6.5.3.2 PWRHOLD  
The PWRHOLD pin can be used as a PWRHOLD signal input or as a general purpose input (GPI). The  
mode is selected by the AUTODEV_ON bit, which is part of the boot configuration. When  
AUTODEV_MODE = 0, the PWRHOLD feature is selected.  
Configured as PWRHOLD, when none of the device POWER ON disable conditions are met, a high level  
of this signal causes an OFF-to-ACTIVE state transition of the device and a low level causes a transition  
back to the OFF state.  
This input signal is level-sensitive and no debouncing is applied. The rising and/or falling edge of  
PWRHOLD is highlighted through an associated interrupt if interrupt is unmasked.  
When AUTODEV_ON = 1, the pin is used as a GPI. As a GPI, this input can generate a maskable  
interrupt from a rising or falling edge of the input. When AUTODEV_ON = 1, a rising edge of  
NRESPWRON also automatically sets the DEV_ON bit to 1 to keep supplies after the switch-on  
sequence, thus removing the need for the processor to set the PWRHOLD signal or the DEV_ON bit.  
6.5.3.3 BOOT1  
This signal determines with which processor the device is working and, hence, which power-up sequence  
is needed. For more details, see Section 5.21.2. No debouncing is present on this input signal.  
6.5.3.4 NRESPWRON, NRESPWRON2  
The NRESPWRON signal is used as the reset to the processor and is in the VDDIO domain. It is held low  
until the ACTIVE state is reached. For detailed timing, see Section 5.21.2.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
The NRESPWRON2 signal is a second reset output. It follows the state of NRESPWRON but has an  
open-drain output with external pullup. The supply for the external pullup must not be activated before the  
TPS65911 device is in control of the output state (that is, not earlier than during first power-up sequence  
slot). In off mode, the NRESPWRON2 output has weak internal pulldown.  
6.5.3.5 CLK32KOUT  
This signal is the output of the 32K oscillator, which can be enabled or not during the power-on sequence,  
depending on the boot mode. It can be enabled and disabled by register bit, during the ACTIVE state of  
the device. The CLK32KOUT output can also be enabled or not during the SLEEP state of the device  
depending on the programming of the SLEEPMASK register.  
6.5.3.6 PWRON  
The PWRON input is connected to an external button. If the device is in the OFF or SLEEP state, a  
debounced falling edge (PWRON input low for minimum of 100 ms) causes an OFF-to-ACTIVE state or a  
SLEEP-to-ACTIVE state transition of the device. If the device is in active mode, then a low level on this  
signal generates an interrupt. If the PWRON signal is low for more than the PWON_TO_OFF_DELAY  
delay and the corresponding interrupt is not acknowledged by the processor within 1 second, the device  
goes into the OFF state. For PWRON behavior, see Figure 5-2 and Figure 5-3.  
6.5.3.7 INT1  
The INT1 signal (default active low) warns the host processor of any event that has occurred on the  
TPS65911 device. The host processor can then poll the interrupt from the interrupt status register through  
I2C to identify the interrupt source. A low level (default setting) indicates an active interrupt, highlighted in  
the INT_STS_REG register. The polarity of INT1 can be set programming the IT_POL control bit. INT1  
flag active is a POWER ON enable condition during a fixed delay, tDOINT1 (only), when the device is in the  
OFF state (when NRESPWRON is low).  
Any of the interrupt sources can be masked programming the INT_MSK_REG register. When an interrupt  
is masked its corresponding interrupt status bit is still updated, but the INT1 flag is not activated. Interrupt  
source masking can be used to mask a device switch-on event. Because interrupt flag active is a POWER  
ON enable condition, during tDOINT1 delay, any interrupt not masked must be cleared to allow immediate  
turn off of the device.  
For a description of interrupt sources, see Table 6-5.  
6.5.3.8 EN2 and EN1  
EN2 and EN1 are the data and clock signals of the serial control interface dedicated to voltage scaling  
applications.  
These signals can also be programmed to be used as enable signals of one or several supplies, when the  
device is on (NRESPWRON high). A resource assigned to EN2 or EN1 control automatically disables the  
serial control interface.  
Programming EN1_LDO_ASS_REG, EN2_LDO_REG, and SLEEP_KEEP_LDO_ON_REG registers: EN1  
and EN2 signals can be used to control the turn on/off or SLEEP state of any LDO-type supplies.  
Programming EN1_SMPS_ASS_REG, EN2_SMPS_ASS_REG, and SLEEP_KEEP_RES_ON registers:  
EN1 and EN2 signals can be used to control the turn on/off or LOW-POWER state (PFM mode) of SMPS-  
type supplies.  
The EN2 and EN1 signals can be used to set the output voltage of VDD1 and VDD2 SMPS from a roof to  
a
floor value, preprogrammed in the VDD1_OP_REG, VDD2_OP_REG and VDD1_SR_REG,  
VDD2_SR_REG registers.  
When a supply is controlled through the EN1 or EN2 signals, its state is no longer driven by the device  
SLEEP state.  
54  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
6.5.3.9 GPIO0 to GPIO8  
GPIO0, GPIO2, GPIO6, and GPIO7 can be programmed to be part of the power-up sequence and used  
as enable signals for external resources.  
GPIO0 is a configurable I/O in the VCC7 domain. By default, its output is push-pull, driving low. GPIO0  
can also be configured as an open-drain output with external pullup.  
GPIO1 through GPIO8 are configurable open-drain digital I/Os in the VRTC domain. GPIO directivity,  
debouncing delay, and internal pullup can be programmed. By default, all are inputs with weak internal  
pulldown; as open-drain output an external pullup is required.  
GPIO0, GPIO1, and GPIO3 through GPIO5 can be used to turn on the device if the corresponding  
interrupt is not masked. When configured as an input, GPIO2 cannot be used to turn on the device, even if  
its associated interrupt is not masked. The GPIO interrupt is level sensitive. When an interrupt is detected,  
before clearing the interrupt, it should first be disabled by masking it.  
GPIO1 and GPIO3, which have current sink capability of 10 mA, can also be used to drive LEDs  
connected to a 5-V supply.  
GPIO2 can be used for synchronizing DC-DC converters to an external clock. Programming DCDCCKEXT  
= 1, VDD1, VDD2, and VIO DCDC switching can be synchronized using a 3-MHz clock set though the  
GPIO2 pin. VDD1 and VDD2 will be in-phase and VIO will be phase shifted by 180 degrees.  
It is recommended not to connect noisy switching signals to GPIO4 and GPIO5.  
6.5.3.10 HDRST Input  
HDRST is a cold reset input for the PMIC. High level at input forces the TPS65911 device into off mode,  
causing a general reset of device to the default settings. The default state is defined by the register reset  
state and boot configuration. HDRST high level keeps the device in off mode. When reset is released and  
HDRST input goes low, the device automatically transitions to active mode. The device is kept in active  
mode for the period tDONIT1, after which another power-on enable reason is required to keep the device on.  
The HDRST input is in the VRTC domain and has a weak internal pulldown, which is active by default.  
6.5.3.11 PWRDN  
The PWRDN input is a reset input with selectable polarity (PWRDN_POL). High(low) level at input forces  
the TPS65911 device into off mode, causing a power-off reset. Off mode is maintained until PWRDN is  
released and a start-up reason (for example, PWRON button press or DEV_ON = 1) is detected. An  
interrupt is generated to indicate the cause for shutdown. The PWRDN input is in the VRTC domain but  
can tolerate a 5-V input.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
6.5.3.12 Comparators: COMP1 and COMP2  
The TPS65911 device has three comparators for system status detection/control. One comparator detects  
the voltage at pin VCC7. When VCC7 > VMBHI, the comparator initiates a NO SUPPLY-to-OFF transition  
and the VMBHI_IT interrupt is generated. When VCC7 < VMBLO, the comparator initiates an  
ACTIVE/SLEEP/OFF-to-BACKUP transition. When both VCC7 and backup battery are below VBPNR, the  
device goes to the NO SUPPLY state.  
Comparators COMP1 and COMP2 detect the voltage of VCCS. Programmable comparator COMP1 is  
intended for detecting if battery voltage is high enough for an OFF-to-ACTIVE transition of the TPS65911  
device. For an OFF-to-ACTIVE transition VCCS must be > VMBCH (primary battery charged) and a level  
below the comparator threshold prevents the power-up sequence. The threshold can be set from 2.5 to  
3.5 V with 50-mV steps through VMBCH_SEL. The comparator has debouncing so that VCCS must stay  
above VMBDCH (VMBCH – 0.1 V) for a debouncing period of 61 µs. The comparator can be bypassed if  
the threshold selection is set to 0. The default threshold is set in the boot configuration.  
In a system with a multiple-cell battery, the battery level is sensed through an external resistor divider. The  
TPS65911 device has an internal buffer at the VCCS input, which must be used with the external resistive  
divider.  
In a single-cell system, VCCS and VCC7 are connected directly to the battery. The VCCS input buffer can  
be bypassed to minimize power consumption. The buffer bypass is controlled with the VMBBUF_BYPASS  
bit in the boot configuration.  
COMP2 is disabled by default and can be enabled by software. The comparator trigger generates an  
interrupt which is programmable on the rising (VMBCH2_H_IT) or falling edge (VMBCH2_L_IT), hence the  
comparator can be used for detecting high or low battery scenarios. COMP2 generates an interrupt for the  
host. In sleep mode, this creates a wake-up interrupt for the host. In off mode, the comparator trigger  
generates a turnon event. In backup or no supply modes, the comparator is not active.  
The COMP2 threshold can be set from 2.5 to 3.5 V with 50-mV steps. Enabling the comparator is done  
through the voltage threshold selection bit VMBDCH2_SEL, which is set to 0 by default.  
56  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
6.5.3.13 Watchdog  
The watchdog has two modes of operation.  
In periodic operation, an interrupt is generated with a regular period defined by the WTCHDG_TIME  
setting. The IC initiates WTCHDOG shutdown if the interrupt is not cleared within the period. The  
watchdog interrupt WTCHDOG counter is reinitialized when NRESPWRON is low.  
In interrupt mode the IC initiates WTCHDOG counter when interrupt is set pending and is cleared when  
interrupt is cleared. If no interrupt is cleared before watchdog expiration within WTCHDG_TIME, the  
device goes to off mode.  
By default, periodic watchdog functionality is enabled with the maximum WTCHDG_TIME period.  
Periodic mode:  
WTCHDG_CNT  
0
1
N
0
1
N
WTCHDG_IT  
WTCHDG_OFF  
WTCHDG_IT clearing  
interrupt clearing  
Interrupt mode:  
WTCHDG_CNT  
WTCHDG_OFF  
0
1
i
0
1
N
SWCS049-013  
Figure 6-2. Watchdog Signals  
6.5.3.14 Tracking LDO  
LDO4 has an optional mode where its output level follows that of VDD1, from 0.6 to 1.5 V, when VDD1 is  
active. When VDD1 is set to off, the LDO4 output is defined by the SEL[7:2] bits in LDO4_REG, and can  
be set from 0.8 to 1.5 V.  
Tracking mode is enabled by setting TRACK = 1 in DCDCCTRL_REG. In initial activation, VDD1 must be  
enabled and allowed to settle before enabling tracking mode. After initial activation, tracking mode can be  
kept enabled while VDD1 is turned off. The value of TRACK is set to default (0) after any turnoff event.  
TRACK bit  
Setting  
time tON  
VDD1 enable  
LDO4 MODE  
LDO4  
LDO4  
LDO4  
LDO4  
No Tracking 1 to 3.3 V  
Tracking 0.6 to 1.5 V  
Tracking 0.8 V to 1.5 V  
Tracking 0.6 V  
(LDO4 has same  
level as VDD1)  
(LDO4 has same  
level as VDD1)  
SWCS049-019  
Figure 6-3. Tracking LDO  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
6.6 PWM and LED Generators  
The TPS65911 device has two LED ON/OFF signal generators, LED1 and LED2. LED1 and LED2 have  
independently controllable periods from 125 ms to 8 s and ON time from 62.5 to 500 ms. Within the  
period, one or two ON pulses can be generated (control bit LED1(2)_SEQ). The user must take care to  
program period and ON time correctly, because no limitation on selected values is imposed. LED1 and  
LED2 signals can be routed to GPIO1 and GPO3 open-drain outputs, respectively. These GPIOs have a  
current sink capability of 10 mA.  
The PWM generator frequency and duty cycle are set by the PWM_FREQ and PWM_DUTY_CYCLE bits,  
respectively. The PWM generator signal can be connected to the GPIO3 or GPIO8 output. The PWM  
generator uses the 3-MHz clock, which is not available in off mode. To enable the PWM in sleep mode,  
the I2CHS_KEEPON bit must be set to 1.  
6.7 Dynamic Voltage Frequency Scaling and Adaptive Voltage Scaling Operation  
Dynamic voltage frequency scaling (DVFS) operation: A supply voltage value corresponding to a targeted  
frequency of the digital core supplied is programmed in VDD1_OP_REG or VDD2_OP_REG registers.  
The slew rate of the voltage supply reaching a new VDD1_OP_REG or VDD2_OP_REG programmed  
value is limited to 12.5 mV/µs, fixed value.  
Adaptative voltage scaling (AVS) operation: A supply voltage value corresponding to a supply voltage  
adjustment is programmed in VDD1_SR_REG or VDD2_SR_REG registers. The supply voltage is then  
intended to be tuned by the digital core supplied, based its performance self-evaluation. The slew rate of  
VDD1 or VDD2 voltage supply reaching a new programmed value is programmable though the  
VDD1_REG or VDD2_REG register, respectively.  
A serial control interface (optional mode for EN1 and EN2 pins) can be dedicated to voltage scaling  
applications, to give dedicated access to the VDD1_OP_REG, VDD1_SR_REG and VDD2_OP_REG,  
VDD2_SR_REG registers.  
A general-purpose serial control interface (CTL-I2C) also gives access to these registers, if the  
SR_CTL_I2C_SEL control bit is set to 1 in the DEVCTRL_REG register (default inactive).  
Both control interfaces are compliant with HS-I2C specification (100 Kbps, 400 Kbps, or 3.4 Mbps).  
6.8 32-kHz RTC Clock  
The TPS65911 device can provide a 32-kHz clock to the platform through the CLK32KOUT output, when  
a crystal is connected.  
Alternatively, the device can accept a square-wave 32-kHz clock signal applied to OSC32IN input  
(OSC32KOUT kept floating) and gate the clock to CLK32OUT. This clock must be present for any state of  
the EPC except the NO SUPPLY state. The TPS65911 device also has an internal 32-kHz RC oscillator to  
decrease the BOM if an accurate clock is not needed by the system.  
Default selection of a 32-kHz RC oscillator versus 32-kHz crystal oscillator or external square-wave  
32-kHz clock depends on the boot configuration setting for the CK32K_CTRL bit.  
Switching from the 32-kHz RC oscillator to the 32-kHz crystal oscillator or external square-wave 32-kHz  
clock can also be programmed though the DEVCTRL_REG register.  
58  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
VRTC  
32 kHz to  
Digital Block  
Biasing  
and  
Amplitude  
Control  
OSC32KIN  
REFGND OSC32KOUT  
Q
COSCIN  
COSCOUT  
SWCS049-014  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-4. Crystal Oscillator 32-kHz Clock  
6.9 Real Time Clock (RTC)  
The RTC, which is driven by the 32-kHz clock, provides the alarm and timekeeping functions. The RTC is  
kept supplied when the device is in the OFF state or the BACKUP state.  
The primary functions of the RTC block are:  
Time information (seconds/minutes/hours) directly in binary-coded decimal (BCD) format  
Calendar information (Day/Month/Year/Day of the week) directly in BCD code up to year 2099  
Programmable interrupts generation: The RTC can generate two interrupts: a timer interrupt  
RTC_PERIOD_IT periodically (1s/1m/1h/1d period) and an alarm interrupt RTC_ALARM_IT at a  
precise time of the day (alarm function). These interrupts are enabled using IT_ALARM and IT_TIMER  
control bits. Periodically interrupts can be masked during the SLEEP period to avoid host interruption  
and are automatically unmasked after SLEEP wakeup (using the IT_SLEEP_MASK_EN control bit).  
Oscillator frequency calibration and time correction  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
32-kHz Clock  
Input  
Frequency  
Compensation  
Week  
Days  
32-kHz  
Counter  
Control  
Years  
Days  
Months  
Seconds  
Minutes  
Hours  
Interrupt  
Alarm  
INT_ALARM  
INT_TIMER  
SWCS049-015  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-5. RTC Digital Section Block Diagram  
6.9.1 Time Calendar Registers  
All the time and calendar information is available in these dedicated registers, called TC registers. Values  
of the TC registers are written in BCD format.  
1. Years data ranges from 00 to 99  
Leap year = Year divisible by four (2000, 2004, 2008, 2012...)  
Common year = other years  
2. Months data ranges from 01 to 12  
3. Days value ranges from:  
1 to 31 when months are 1, 3, 5, 7, 8, 10, 12  
1 to 30 when months are 4, 6, 9, 11  
1 to 29 when month is 2 and year is a leap year  
1 to 28 when month is 2 and year is a common year  
4. Weeks value ranges from 0 to 6  
5. Hours value ranges from 00 to 23 in 24-hour mode and ranges from 1 to 12 in AM/PM mode  
6. Minutes value ranges from 0 to 59  
7. Seconds value ranges from 0 to 59  
To modify the current time, software writes the new time into TC registers to fix the time/calendar  
information. The processor can write into the TC registers without stopping the RTC. In addition, software  
can stop the RTC by clearing the STOP_RTC bit of the control register and check the RUN bit of the  
status to be sure that the RTC is frozen, then update the TC values, and then restart the RTC by setting  
STOP_RTC bit.  
Example: Time is 10H54M36S PM (PM_AM mode set), 2008 September 5, previous register values are:  
Table 6-4. RTC Registers Example  
Register  
Value  
0x36  
0x54  
SECONDS_REG  
MINUTES_REG  
60  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-4. RTC Registers Example (continued)  
Register  
Value  
0x90  
0x05  
0x09  
0x08  
HOURS_REG  
DAYS_REG  
MONTHS_REG  
YEARS_REG  
The user can round to the nearest minute, by setting the ROUND_30S register bit. TC values are set to  
the nearest minute value at the next second. The ROUND_30S bit is automatically cleared when the  
rounding time is performed.  
Example:  
If current time is 10H59M45S, a round operation changes time to 11H00M00S.  
If current time is 10H59M29S, a round operation changes time to 10H59M00S.  
6.9.2 General Registers  
Software can access the RTC_STATUS_REG and RTC_CTRL_REG registers at any time (except for the  
RTC_CTRL_REG[5] bit, which must be changed only when the RTC is stopped).  
6.9.3 Compensation Registers  
The RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers must respect the available access  
period. These registers must be updated before each compensation process. For example, software can  
load the compensation value into these registers after each hour event, during an available access period.  
Hours  
3
4
6
Seconds  
58 59  
0
1
2
58 59  
0
1
2
Compensation event  
Hours  
3
4
59  
0
1
Seconds  
Compensation event  
SWCS046-016  
Figure 6-6. RTC Compensation Scheduling  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
This drift can be balanced to compensate for any inaccuracy of the 32-kHz oscillator. Software must  
calibrate the oscillator frequency, calculate the drift compensation versus 1-hour time period; and then  
load the compensation registers with the drift compensation value. Indeed, if the AUTO_COMP_EN bit in  
the RTC_CTRL_REG is enabled, the value of COMP_REG (in twos-complement) is added to the RTC  
32-kHz counter at each hour and 1 second. When COMP_REG is added to the RTC 32-kHz counter, the  
duration of the current second becomes (32768 – COMP_REG)/32768s; so, the RTC can be  
compensated with a 1/32768 s/hour time unit accuracy.  
NOTE  
The compensation is considered once written into the registers.  
6.10 Backup Battery Management  
The device includes a backup battery switch connecting the VRTC regulator input to a primary battery  
(VCC7) or to a backup battery (VBACKUP), depending on the voltage value of the battery.  
The VRTC supply can then be maintained during a BACKUP state as long as the input voltage is high  
enough (> VBNPR threshold). Below the VBNPR voltage threshold, the digital core of the device is set  
under reset by internal signal Power-on Reset (POR).  
The backup domain functions which are always supplied from VRTC are:  
The internal 32-kHz oscillator  
Backup registers  
The backup battery can be charged from the primary battery through an embedded charger. The backup  
battery charge voltage and enable is controlled through BBCH_REG register programming. This register  
content is maintained during the device BACKUP state.  
Hence, when enabled, the backup battery charge is maintained as long as the primary battery voltage is  
higher than the VMBLO threshold and the backup battery voltage.  
6.11 Backup Registers  
As part of the RTC, the device contains five 8-bit registers that can be used for storage by the application  
firmware when the external host is powered down. These registers retain their content as long as the  
VRTC is active.  
6.12 I2C Interface  
A general-purpose serial control interface (CTL-I2C) allows read and write access to the configuration  
registers of all resources of the system.  
A second serial control interface (optional mode for EN1 and EN2 pins) can be dedicated to DVFS.  
Both control interfaces are compliant with the HS-I2C specification.  
These interfaces support the standard slave mode (100 Kbps), fast mode (400 Kbps), and high-speed  
mode (3.4 Mbps). The general-purpose I2C module using one slave hard-coded address (ID1 = 2Dh). The  
voltage scaling dedicated I2C module uses one slave hard-coded address (ID0 = 12h). The master mode  
is not supported.  
Addressing:  
The device supports seven-bit mode addressing.  
It does not support the following features:  
10-bit addressing  
General call  
62  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
6.12.1 Access Protocols  
For compatibility, the I2C interfaces in the TPS65911 device use the same read/write protocol as other TI  
power ICs, based on an internal register size of 8 bits. Supported transactions are described in the  
following sections.  
6.12.1.1 Single Byte Access  
A write access is initiated by a first byte including the address of the device (7 MSBs) and a write  
command (LSB), a second byte provides the address (8 bits) of the internal register, and the third byte  
represents the data to be written in the internal register, see Figure 6-7.  
A read access is initiated by:  
A first byte, including the address of the device (7 MSBs) and a write command (LSB)  
A second byte, providing the address (8 bits) of the internal register  
A third byte, including again the device address (7 MSBs) and the read command (LSB)  
The device replies by sending a fourth byte representing the content of the internal register (see  
Figure 6-8).  
DAD: Device address  
S
W
R
I
T
E
D
A
D
6
D
A
D
5
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
A
D
0
R
A
D
7
R
A
D
6
R
A
D
5
R
A
D
4
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
T
7
D
A
T
6
D
A
T
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
S
T
O
P
A
C
K
A
C
K
A
C
K
T
A
R
T
RAD: Register address  
DAT: Data  
SCL  
SDA  
Master drives SDA  
Slave drives SDA  
SWCS049-020  
Figure 6-7. I2C Write Access Single Byte  
S
T
A
R
T
W
R
I
S
D
D
D
A
D
4
D
A
D
3
D
D
D
A
D
0
R
A
D
7
R
A
D
6
R
A
D
5
R
A
D
4
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
D
7
D
A
D
6
D
A
D
5
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
A
D
0
R
E
A
D
D
A
T
7
D
D
A
T
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
S
T
A
A
C
K
A
C
K
A
C
K
T
A
R
T
A
D
6
A
D
5
A
D
2
A
D
1
A
T
6
C
O
P
T
E
K
SCL  
SDA  
SWCS049-021  
Figure 6-8. I2C Read Access Single Byte  
6.12.1.2 Multiple Byte Access to Several Adjacent Registers  
A write access is initiated by:  
A first byte, including the address of the device (7 MSBs) and a write command (LSB)  
A second byte, providing the base address (8 bits) of the internal registers  
The following N bytes represent the data to be written in the internal register starting at the base address  
and incremented by one at each data byte (see Figure 6-9).  
A read access is initiated by:  
A first byte, including the address of the device (7 MSBs) and a write command (LSB)  
A second byte, providing the base address (8 bits) of the internal register  
A third byte, including again the device address (7 MSBs) and the read command (LSB)  
The device replies by sending a fourth byte, representing the content of the internal registers, starting at  
the base address and next consecutive ones (see Figure 6-10).  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
S
T
A
R
T
W
R
I
D
A
D
6
D
A
D
5
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
A
D
0
R
A
D
7
R
A
D
6
R
A
D
5
R
A
D
4
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
T
7
D
A
T
6
D
A
D
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
D
A
T
7
D
A
T
6
D
A
T
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
S
A
C
K
A
C
K
A
C
K
A
T
O
P
C
T
E
K
SCL  
SDA  
SWCS049-022  
Figure 6-9. I2C Write Access Multiple Bytes  
S
T
A
R
T
W
S
D
A
D
6
D
D
A
D
4
D
D
D
A
D
1
D
R
R
A
D
6
R
A
D
5
R
A
D
4
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
D
7
D
A
D
6
D
A
D
5
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
A
D
0
R
E
A
D
D
A
T
7
D
A
T
6
D
A
T
5
D
A
T
4
D
D
A
T
2
D
A
T
1
D
D
D
D
A
T
5
D
D
D
A
T
2
D
A
T
1
D
A
T
0
S
T
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
R
I
T
A
R
T
A
D
5
A
D
3
A
D
2
A
D
0
A
D
7
A
T
3
A
T
0
A
T
7
A
T
6
A
T
4
A
T
3
O
P
T
E
SCL  
SDA  
SWCS049-023  
Figure 6-10. I2C Read Access Multiple Bytes  
6.13 Thermal Monitoring and Shutdown  
A thermal protection module monitors the junction temperature of the device versus two thresholds:  
Hot-die temperature threshold  
Thermal shutdown temperature threshold  
When the hot-die temperature threshold is reached, an interrupt is sent to software to close the noncritical  
running tasks.  
When the thermal shutdown temperature threshold is reached, the TPS65911 device is set under reset  
and a transition to OFF state is initiated. Then the POWER ON enable conditions of the device are not  
considered until the die temperature has decreased below the hot-die threshold. Hysteresis is applied to  
the hot-die and shutdown thresholds, when detecting a falling edge of temperature, and both detections  
are debounced to avoid any parasitic detection.  
The TPS65911 device allows programming of four hot-die temperature thresholds to increase the flexibility  
of the system.  
By default, the thermal protection is enabled in ACTIVE state, but can be disabled through programming  
the THERM_REG register. The thermal protection can be enabled in SLEEP state programming the  
SLEEP_KEEP_RES_ON register. The thermal protection is automatically enabled during an OFF-to-  
ACTIVE state transition and is kept enabled in OFF state after a switch-off sequence caused by a thermal  
shutdown event. Transition to OFF state sequence caused by a thermal shutdown event is highlighted in  
the INT_STS_REG status register. Recovery from this OFF state is initiated (switch-on sequence) when  
the die temperature falls below the hot-die temperature threshold.  
Hot-die and thermal shutdown temperature threshold detection states can be monitored or masked by  
reading or programming the THERM_REG register. The hot-die interrupt can be masked by programming  
the INT_MSK_REG register.  
6.14 Interrupts  
Table 6-5 lists the interrupt sources.  
Table 6-5. Interrupt Sources  
INTERRUPT  
DESCRIPTION  
RTC alarm event: Occurs at programmed determinate date and time  
(running in ACTIVE, OFF, and SLEEP state, default inactive)  
RTC_ALARM_IT  
RTC_PERIOD_IT  
RTC periodic event: Occurs at programmed regular period of time (each second or minute)  
(running in ACTIVE, OFF, and SLEEP state, default inactive)  
64  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-5. Interrupt Sources (continued)  
INTERRUPT  
DESCRIPTION  
The embedded thermal monitoring module has detected a die temperature above the hot-die  
detection threshold (running in ACTIVE and SLEEP state).  
Level sensitive interrupt.  
HOT_DIE_IT  
PWRHOLD_R_IT  
PWRHOLD_F_IT  
PWRHOLD signal rising edge  
PWRHOLD signal falling-edge  
PWRON is low during more than the long-press delay: PWON_TO_OFF_DELAY (can be  
disabled though register programming).  
PWRON_LP_IT  
PWRON_IT  
VMBHI_IT  
PWRON is low while the device is on (running in ACTIVE and SLEEP state). Level-sensitive  
interrupt.  
The battery voltage rise above the VMBHI threshold: NO SUPPLY-to-OFF or BACKUP-to-  
OFF device states transition (first battery plug or battery voltage bounce detection)  
The battery voltage fall down below the VMBDCH threshold: the minimum operating voltage  
of power supplies.  
VMBDCH_IT  
GPIO0_R_IT  
GPIO0_F_IT  
VMBCH2_H_IT  
VMBCH2_L_IT  
GPIO1_R_IT  
GPIO1_F_IT  
GPIO2_R_IT  
GPIO2_F_IT  
GPIO3_R_IT  
GPIO3_F_IT  
GPIO4_R_IT  
GPIO4_F_IT  
GPIO5_R_IT  
GPIO5_F_IT  
WTCHDG_IT  
PWRDN_IT  
GPIO_CKSYNC rising-edge detection  
GPIO_CKSYNC falling-edge detection  
Comparator 2 input above threshold detection  
Comparator 2 input below threshold detection  
GPIO1 rising-edge detection  
GPIO1 falling-edge detection  
GPIO2 rising-edge detection  
GPIO2 falling-edge detection  
GPIO3 rising-edge detection  
GPIO3 falling-edge detection  
GPIO4 rising-edge detection  
GPIO4 falling-edge detection  
GPIO5 rising-edge detection  
GPIO5 falling-edge detection  
Watchdog interrupt  
PWRDN reset interrupt  
6.15 Register Maps  
6.15.1 Functional Registers  
The possible device reset domains are:  
Full reset: All digital logic of device is reset.  
Caused by POR (power on reset) when VCC7 < VBNPR and BB < VBNPR  
General reset: No impact on RTC, backup registers or interrupt status.  
Caused by PWON_LP_RST bit set high or  
DEV_OFF_RST bit set high or  
HDRST input set high  
Turnoff OFF: Power reinitialization in off/backup mode.  
In the following register description, the reset domain for each register is defined in the register table  
heading.  
NOTE  
DCDCCTRL_REG and DEVCTRL2_REG have bits in two reset domains.  
The comment Default value: See boot configuration indicates that bit default value is set in  
boot configuration and not by the register reset value.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
6.15.1.1 TPS65911_FUNC_REG Registers Mapping Summary  
Table 6-6. TPS65911_FUNC_REG Register Summary(1)  
Register Name  
SECONDS_REG  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
Register Width (Bits)  
Register Reset  
0x00  
0x00  
0x00  
0x01  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x00  
0x00  
0x80  
0x00  
0x00  
0x00  
0x27  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x1F  
0x01  
0x01  
0x05  
0x0D  
0x33  
0x33  
0x0D  
0x4B  
0x4B  
0x00  
0x03  
0x03  
0x15  
0x15  
0x00  
0x09  
0x0D  
0x21  
0x00  
Address Offset  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
MINUTES_REG  
HOURS_REG  
DAYS_REG  
MONTHS_REG  
YEARS_REG  
WEEKS_REG  
ALARM_SECONDS_REG  
ALARM_MINUTES_REG  
ALARM_HOURS_REG  
ALARM_DAYS_REG  
ALARM_MONTHS_REG  
ALARM_YEARS_REG  
RTC_CTRL_REG  
RTC_STATUS_REG  
RTC_INTERRUPTS_REG  
RTC_COMP_LSB_REG  
RTC_COMP_MSB_REG  
RTC_RES_PROG_REG  
RTC_RESET_STATUS_REG  
BCK1_REG  
BCK2_REG  
BCK3_REG  
BCK4_REG  
BCK5_REG  
PUADEN_REG  
REF_REG  
VRTC_REG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VIO_REG  
VDD1_REG  
VDD1_OP_REG  
VDD1_SR_REG  
VDD2_REG  
VDD2_OP_REG  
VDD2_SR_REG  
VDDCRTL_REG  
VDDCRTL_OP_REG  
VDDCRTL_SR_REG  
LDO1_REG  
LDO2_REG  
LDO5_REG  
LDO8_REG  
LDO7_REG  
LDO6_REG  
LDO4_REG  
(1) Register reset values are for fixed boot mode.  
66 Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-6. TPS65911_FUNC_REG Register Summary(1) (continued)  
Register Name  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
Register Width (Bits)  
Register Reset  
0x00  
Address Offset  
0x37  
0x38  
0x39  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x80  
LD03_REG  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
THERM_REG  
0x0D  
0x00  
BBCH_REG  
DCDCCTRL_REG  
DEVCTRL_REG  
DEVCTRL2_REG  
SLEEP_KEEP_LDO_ON_REG  
SLEEP_KEEP_RES_ON_REG  
SLEEP_SET_LDO_OFF_REG  
SLEEP_SET_RES_OFF_REG  
EN1_LDO_ASS_REG  
EN1_SMPS_ASS_REG  
EN2_LDO_ASS_REG  
EN2_SMPS_ASS_REG  
INT_STS_REG  
0x39  
0x0000 0014  
0x0000 0036  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x06  
INT_MSK_REG  
0xFF  
0xA8  
0xFF  
0x5A  
0xFF  
0x07  
INT_STS2_REG  
INT_MSK2_REG  
INT_STS3_REG  
INT_MSK3_REG  
GPIO0_REG  
GPIO1_REG  
0x08  
GPIO2_REG  
0x08  
GPIO3_REG  
0x08  
GPIO4_REG  
0x08  
GPIO5_REG  
0x08  
GPIO6_REG  
0x05  
GPIO7_REG  
0x05  
GPIO8_REG  
0x08  
WATCHDOG_REG  
VMBCH_REG  
0x07  
0x1E  
0x00  
VMBCH2_REG  
LED_CTRL1_REG  
LED_CTRL2_REG1  
PWM_CTRL1_REG  
PWM_CTRL2_REG  
SPARE_REG  
0x00  
0x00  
0x00  
0x00  
0x00  
VERNUM_REG  
0x00  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
6.15.1.2 TPS65911_FUNC_REG Register Descriptions  
Table 6-7. SECONDS_REG  
Address Offset  
Instance  
0x00  
Reset Domain: FULL RESET  
RTC register for seconds  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
SEC1  
SEC0  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:4  
3:0  
SEC1  
SEC0  
Second digit of seconds (range is 0 up to 5)  
First digit of seconds (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
Table 6-8. MINUTES_REG  
Address Offset  
Instance  
0x01  
Reset Domain: FULL RESET  
RTC register for minutes  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
MIN1  
MIN0  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:4  
3:0  
MIN1  
MIN0  
Second digit of minutes (range is 0 up to 5)  
First digit of minutes (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
68  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-9. HOURS_REG  
Address Offset  
Instance  
0x02  
Reset Domain: FULL RESET  
RTC register for hours  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
PM_NAM  
Reserved  
HOUR1  
HOUR0  
Bits  
Field Name  
Description  
Type  
Reset  
7
PM_NAM  
Only used in PM_AM mode (otherwise it is set to 0)  
RW  
0
0 is AM  
1 is PM  
6
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
5:4  
3:0  
HOUR1  
HOUR0  
Second digit of hours(range is 0 up to 2)  
First digit of hours (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
Table 6-10. DAYS_REG  
Address Offset  
Instance  
0x03  
Reset Domain: FULL RESET  
Description  
Type  
RTC register for days  
RW  
7
6
5
4
3
2
1
0
Reserved  
DAY1  
DAY0  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
5:4  
3:0  
DAY1  
DAY0  
Second digit of days (range is 0 up to 3)  
First digit of days (range is 0 up to 9)  
RW  
RW  
0x0  
0x1  
Table 6-11. MONTHS_REG  
Address Offset  
Instance  
0x04  
Reset Domain: FULL RESET  
RTC register for months  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
MONTH1  
MONTH0  
Bits  
Field Name  
Description  
Type  
Reset  
7:5  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
4
MONTH1  
MONTH0  
Second digit of months (range is 0 up to 1)  
First digit of months (range is 0 up to 9)  
RW  
RW  
0
3:0  
0x1  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-12. YEARS_REG  
Address Offset  
Instance  
0x05  
Reset Domain: FULL RESET  
RTC register for day of the week  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
YEAR1  
YEAR0  
Bits  
7:4  
Field Name  
Description  
Type  
RW  
Reset  
0x0  
YEAR1  
YEAR0  
Second digit of years (range is 0 up to 9)  
First digit of years (range is 0 up to 9)  
3:0  
RW  
0x0  
Table 6-13. WEEKS_REG  
Address Offset  
Instance  
0x06  
Reset Domain: FULL RESET  
RTC register for day of the week  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
WEEK  
Bits  
Field Name  
Description  
Type  
Reset  
7:3  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
2:0  
WEEK  
First digit of day of the week (range is 0 up to 6)  
RW  
0
Table 6-14. ALARM_SECONDS_REG  
Address Offset  
Instance  
0x08  
Reset Domain: FULL RESET  
Description  
Type  
RTC register for alarm programmation for seconds  
RW  
7
6
5
4
3
2
1
0
Reserved  
ALARM_SEC1  
ALARM_SEC0  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7
Reserved bit  
RO  
0
R returns  
0s  
6:4  
3:0  
ALARM_SEC1  
ALARM_SEC0  
Second digit of alarm programmation for seconds (range is 0 up to 5)  
First digit of alarm programmation for seconds (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
70  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-15. ALARM_MINUTES_REG  
Address Offset  
Instance  
0x09  
Reset Domain: FULL RESET  
Description  
Type  
RTC register for alarm programmation for minutes  
RW  
7
6
5
4
3
2
1
0
Reserved  
ALARM_MIN1  
ALARM_MIN0  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7
Reserved bit  
RO  
0
R returns  
0s  
6:4  
3:0  
ALARM_MIN1  
ALARM_MIN0  
Second digit of alarm programmation for minutes (range is 0 up to 5)  
First digit of alarm programmation for minutes (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
Table 6-16. ALARM_HOURS_REG  
Address Offset  
Instance  
0x0A  
Reset Domain: FULL RESET  
Description  
Type  
RTC register for alarm programmation for hours  
RW  
7
6
5
4
3
2
1
0
ALARM_PM_N  
AM  
Reserved  
ALARM_HOUR1  
ALARM_HOUR0  
Bits  
Field Name  
ALARM_PM_  
Description  
Type  
Reset  
7
Only used in PM_AM mode for alarm programmation (otherwise it is set  
RW  
0
NAM  
to 0)  
0 is AM  
1 is PM  
6
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
5:4  
3:0  
ALARM_HOUR1  
ALARM_HOUR0  
Second digit of alarm programmation for hours(range is 0 up to 2)  
First digit of alarm programmation for hours (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
Table 6-17. ALARM_DAYS_REG  
Address Offset  
Instance  
0x0B  
Reset Domain: FULL RESET  
Description  
Type  
RTC register for alarm programmation for days  
RW  
7
6
5
4
3
2
1
0
Reserved  
ALARM_DAY1  
ALARM_DAY0  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
Reserved bit  
RO  
0x0  
R Special  
5:4  
3:0  
ALARM_DAY1  
ALARM_DAY0  
Second digit of alarm programmation for days (range is 0 up to 3)  
First digit of alarm programmation for days (range is 0 up to 9)  
RW  
RW  
0x0  
0x1  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
71  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-18. ALARM_MONTHS_REG  
Address Offset  
Instance  
0x0C  
Reset Domain: FULL RESET  
Description  
Type  
RTC register for alarm programmation for months  
RW  
7
6
5
4
3
2
1
0
ALARM_  
MONTH1  
Reserved  
ALARM_MONTH0  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7:5  
Reserved bit  
RO  
R returns  
0s  
0x0  
4
ALARM_MONTH1  
ALARM_MONTH0  
Second digit of alarm programmation for months (range is 0 up to 1)  
First digit of alarm programmation for months (range is 0 up to 9)  
RW  
RW  
0
3:0  
0x1  
Table 6-19. ALARM_YEARS_REG  
Address Offset  
Instance  
0x0D  
Reset Domain: FULL RESET  
Description  
Type  
RTC register for alarm programmation for years  
RW  
7
6
5
4
3
2
1
0
ALARM_YEAR1  
ALARM_YEAR0  
Bits  
7:4  
Field Name  
Description  
Type  
RW  
Reset  
0x0  
ALARM_YEAR1  
ALARM_YEAR0  
Second digit of alarm programmation for years (range is 0 up to 9)  
First digit of alarm programmation for years (range is 0 up to 9)  
3:0  
RW  
0x0  
72  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-20. RTC_CTRL_REG  
Address Offset  
Instance  
0x10  
Reset Domain: FULL RESET  
RTC control register:  
Description  
NOTES: A dummy read of this register is necessary before each I2C read in order to update the ROUND_30S bit  
value.  
Type  
RW  
7
6
5
4
3
2
1
0
SET_32_  
COUNTER  
RTC_V_OPT  
GET_TIME  
TEST_MODE  
MODE_12_24  
AUTO_COMP  
ROUND_30S  
STOP_RTC  
Bits  
Field Name  
RTC_V_OPT  
Description  
Type  
Reset  
7
RTC date/time register selection:  
RW  
0
0: Read access directly to dynamic registers (SECONDS_REG,  
MINUTES_REG, HOURS_REG, DAYS_REG, MONTHS_REG,  
YEAR_REG, WEEKS_REG)  
1: Read access to static shadowed registers: (see GET_TIME bit).  
6
GET_TIME  
When writing a 1 into this register, the content of the dynamic registers  
(SECONDS_REG, MINUTES_REG, HOURS_REG, DAYS_REG,  
MONTHS_REG, YEAR_REG and WEEKS_REG) is transferred into  
RW  
0
static shadowed registers. Each update of the shadowed registers needs  
to be done by re-asserting GET_TIME bit to 1 (that is: reset it to 0 and  
then rewrite it to 1)  
5
4
3
SET_32_COUNTER  
TEST_MODE  
0: No action  
RW  
RW  
RW  
0
0
0
1: set the 32-kHz counter with COMP_REG value.  
It must only be used when the RTC is frozen.  
0: functional mode  
1: test mode (Auto compensation is enable when the 32-kHz counter  
reaches at its end)  
MODE_12_24  
0: 24 hours mode  
1: 12 hours mode (PM-AM mode)  
It is possible to switch between the two modes at any time without  
disturbed the RTC, read or write are always performed with the current  
mode.  
2
1
AUTO_COMP  
ROUND_30S  
0: No auto compensation  
1: Auto compensation enabled  
RW  
RW  
0
0
0: No update  
1: When a one is written, the time is rounded to the nearest minute.  
This bit is a toggle bit, the microcontroller can only write one and RTC  
clears it. If the microcontroller sets the ROUND_30S bit and then reads  
it, the microcontroller will read one until rounded to the nearest value.  
0
STOP_RTC  
0: RTC is frozen  
1: RTC is running  
RW  
0
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
73  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-21. RTC_STATUS_REG  
Address Offset  
Instance  
0x11  
Reset Domain: FULL RESET  
RTC status register:  
Description  
NOTES: A dummy read of this register is necessary before each I2C read in order to update the status register  
value.  
Type  
RW  
7
6
5
4
3
2
1
0
POWER_UP  
ALARM  
EVENT_1D  
EVENT_1H  
EVENT_1M  
EVENT_1S  
RUN  
Reserved  
Bits  
Field Name  
POWER_UP  
Description  
Type  
Reset  
7
Indicates that a reset occurred (bit cleared to 0 by writing 1).  
POWER_UP is set by a reset, is cleared by writing one in this bit.  
RW  
1
6
ALARM  
Indicates that an alarm interrupt has been generated (bit clear by writing  
1).  
RW  
0
The alarm interrupt keeps its low level, until the microcontroller write 1 in  
the ALARM bit of the RTC_STATUS_REG register.  
The timer interrupt is a low-level pulse (15 µs duration).  
5
4
3
2
1
EVENT_1D  
EVENT_1H  
EVENT_1M  
EVENT_1S  
RUN  
One day has occurred  
One hour has occurred  
One minute has occurred  
One second has occurred  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0: RTC is frozen  
1: RTC is running  
This bit shows the real state of the RTC, indeed because of STOP_RTC  
signal was resynchronized on 32-kHz clock, the action of this bit is  
delayed.  
0
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
74  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-22. RTC_INTERRUPTS_REG  
Address Offset  
Instance  
0x12  
Reset Domain: FULL RESET  
RTC interrupt control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
IT_SLEEP_  
MASK_EN  
Reserved  
IT_ALARM  
IT_TIMER  
EVERY  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7:5  
Reserved bit  
RO  
0x0  
R returns  
0s  
4
IT_SLEEP_MASK_E 1: Mask periodic interrupt while the TPS65911 device is in SLEEP mode.  
RW  
0
N
Interrupt event is back up in a register and occurred as soon as the  
TPS65911 device is no more in SLEEP mode.  
0: Normal mode, no interrupt masked  
3
2
IT_ALARM  
IT_TIMER  
Enable one interrupt when the alarm value is reached (TC ALARM  
registers) by the TC registers  
RW  
RW  
0
0
Enable periodic interrupt  
0: interrupt disabled  
1: interrupt enabled  
1:0  
EVERY  
Interrupt period  
00: each second  
01: each minute  
10: each hour  
11: each day  
RW  
0x0  
Table 6-23. RTC_COMP_LSB_REG  
Address Offset  
Instance  
0x13  
Reset Domain: FULL RESET  
Description  
RTC compensation register (LSB)  
Notes: This register must be written in 2-complement.  
This means that to add one 32-kHz oscillator period each hour, microcontroller needs to write FFFF into  
RTC_COMP_MSB_REG and RTC_COMP_LSB_REG.  
To remove one 32-kHz oscillator period each hour, microcontroller needs to write 0001 into  
RTC_COMP_MSB_REG and RTC_COMP_LSB_REG.  
The 7FFF value is forbidden.  
Type  
RW  
7
6
5
4
3
2
1
0
RTC_COMP_LSB  
Bits  
Field Name  
Description  
Type  
Reset  
7:0  
RTC_COMP_LSB  
This register contains the number of 32-kHz periods to be added into the  
32-kHz counter each hour [LSB]  
RW  
0x00  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
75  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-24. RTC_COMP_MSB_REG  
Address Offset  
Instance  
0x14  
Reset Domain: FULL RESET  
Description  
RTC compensation register (MSB)  
Notes: See RTC_COMP_LSB_REG Notes.  
Type  
RW  
7
6
5
4
3
2
1
0
RTC_COMP_MSB  
Bits  
Field Name  
Description  
Type  
Reset  
7:0  
RTC_COMP_MSB  
This register contains the number of 32-kHz periods to be added into the  
32-kHz counter each hour [MSB]  
RW  
0x00  
Table 6-25. RTC_RES_PROG_REG  
Address Offset  
Instance  
0x15  
Reset Domain: FULL RESET  
Description  
Type  
RTC register containing oscillator resistance value  
RW  
7
6
5
4
3
2
1
0
Reserved  
SW_RES_PROG  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
5:0  
SW_RES_PROG  
Value of the oscillator resistance  
RW  
0x27  
Table 6-26. RTC_RESET_STATUS_REG  
Address Offset  
Instance  
0x16  
Reset Domain: FULL RESET  
RTC register for reset status  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
RESET_  
STATUS  
Reserved  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7:1  
Reserved bit  
RO  
R returns  
0s  
0x0  
0
RESET_STATUS  
This bit can only be set to one and is cleared when a manual reset or a  
POR (VBAT < 2.1) occurs. If this bit is reset it means that the RTC has  
lost its configuration.  
RW  
0
76  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-27. BCK1_REG  
Address Offset  
Instance  
0x17  
Reset Domain: FULL RESET  
Description  
Backup register which can be used for storage by the application firmware when the external host is powered down.  
These registers will retain their content as long as the VRTC is active.  
Type  
RW  
7
6
5
4
3
2
1
0
BCKUP  
Bits  
Field Name  
BCKUP  
Description  
Type  
Reset  
7:0  
Backup bit  
RW  
0x00  
Table 6-28. BCK2_REG  
Address Offset  
Instance  
0x18  
Reset Domain: FULL RESET  
Description  
Backup register which can be used for storage by the application firmware when the external host is powered down.  
These registers will retain their content as long as the VRTC is active.  
Type  
RW  
7
6
5
4
3
2
1
0
BCKUP  
Bits  
Field Name  
BCKUP  
Description  
Type  
Reset  
7:0  
Backup bit  
RW  
0x00  
Table 6-29. BCK3_REG  
Address Offset  
Instance  
0x19  
Reset Domain: FULL RESET  
Description  
Backup register which can be used for storage by the application firmware when the external host is powered down.  
These registers will retain their content as long as the VRTC is active.  
Type  
RW  
7
6
5
4
3
2
1
0
BCKUP  
Bits  
Field Name  
BCKUP  
Description  
Type  
Reset  
7:0  
Backup bit  
RW  
0x00  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
77  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-30. BCK4_REG  
Address Offset  
Instance  
0x1A  
Reset Domain: FULL RESET  
Description  
Backup register which can be used for storage by the application firmware when the external host is powered down.  
These registers will retain their content as long as the VRTC is active.  
Type  
RW  
7
6
5
4
3
2
1
0
BCKUP  
Bits  
Field Name  
BCKUP  
Description  
Type  
Reset  
7:0  
Backup bit  
RW  
0x00  
Table 6-31. BCK5_REG  
Address Offset  
Instance  
0x1B  
Reset Domain: FULL RESET  
Description  
Backup register which can be used for storage by the application firmware when the external host is powered down.  
These registers will retain their content as long as the VRTC is active.  
Type  
RW  
7
6
5
4
3
2
1
0
BCKUP  
Bits  
Field Name  
BCKUP  
Description  
Type  
Reset  
7:0  
Backup bit  
RW  
0x00  
78  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-32. PUADEN_REG  
Address Offset  
Instance  
0x1C  
Reset Domain: GENERAL RESET  
Pullup/pulldown control register.  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
NRESPWRON  
2P  
Reserved  
I2CCTLP  
I2CSRP  
PWRONP  
SLEEPP  
PWRHOLDP  
HDRSTP  
Bits  
7
Field Name  
Description  
Type  
RO  
Reset  
Reserved  
I2CCTLP  
0
0
6
SDACTL and SCLCTL pullup control:  
1: Pullup is enabled  
RW  
0: Pullup is disabled  
5
4
3
2
1
0
I2CSRP  
SDASR and SCLSR pullup control:  
1: Pullup is enabled  
0: Pullup is disabled  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
1
1
1
1
PWRONP  
SLEEPP  
PWRON pad pullup control:  
1: Pullup is enabled  
0: Pullup is disabled  
SLEEP pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
PWRHOLDP  
HDRSTP  
PWRHOLD pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
HDRST pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
NRESPWRON2P  
NRESPWRON2 pad control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Table 6-33. REF_REG  
Address Offset  
Instance  
0x1D  
Reset Domain: TURNOFF OFF RESET  
Description  
Type  
Reference control register  
RO  
7
6
5
4
3
2
1
0
Reserved  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7:2  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
1:0  
ST  
Reference state:  
ST[1:0] = 00: Off  
RO  
0x1  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Reserved  
ST[1:0] = 11: On low power (SLEEP)  
(Write access available in test mode only)  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
79  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-34. VRTC_REG  
Address Offset  
Instance  
0x1E  
Reset Domain: GENERAL RESET  
Description  
Type  
VRTC internal regulator control register  
RW  
7
6
5
4
3
2
1
0
VRTC_  
OFFMASK  
Reserved  
Reserved  
ST  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7:4  
Reserved bit  
RO  
R returns  
0s  
0x0  
3
VRTC_OFFMASK  
VRTC internal regulator off mask signal:  
RW  
0
when 1, the regulator keeps its full-load capability during device OFF  
state.  
when 0, the regulator will go to low-power mode during device OFF  
state.  
Note that VRTC is put in low-power mode when the device is on backup  
even if this bit is set to 1  
(Default value: See boot configuration)  
2
Reserved  
ST  
Reserved bit  
RO  
R returns  
0s  
0
1:0  
Reference state:  
RO  
0x1  
ST[1:0] = 00: Reserved  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Reserved  
ST[1:0] = 11: On low power (SLEEP)  
(Write access available in test mode only)  
80  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-35. VIO_REG  
Address Offset  
Instance  
0x20  
Reset Domain: TURNOFF OFF RESET  
Description  
Type  
VIO control register  
RW  
7
6
5
4
3
2
1
0
ILMAX  
Reserved  
SEL  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
ILMAX  
Select maximum load current:  
when 00: 0.6 A  
RW  
0x0  
when 01: 1.0 A  
when 10: 1.3 A  
when 11: 1.3 A  
5:4  
3:2  
Reserved  
SEL  
Reserved bit  
RO  
R returns  
0s  
0x0  
0x0  
Output voltage selection (EEPROM bits):  
SEL[1:0] = 00: 1.5 V  
RW  
SEL[1:0] = 01: 1.8 V  
SEL[1:0] = 10: 2.5 V  
SEL[1:0] = 11: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
81  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-36. VDD1_REG  
Address Offset  
Instance  
0x21  
Reset Domain: TURNOFF OFF RESET  
Description  
Type  
VDD1 control register  
RW  
7
6
5
4
3
2
1
0
VGAIN_SEL  
ILMAX  
TSTEP  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
VGAIN_SEL  
Select output voltage multiplication factor: G (EEPROM bits):  
RW  
0x0  
when 00: ×1  
when 01: ×1  
when 10: ×2  
when 11: ×3  
(Default value: See boot configuration)  
5
ILMAX  
TSTEP  
Select maximum load current:  
when 0: 1.0 A  
when 1: > 1.5 A  
RW  
RW  
0
4:2  
Time step: when changing the output voltage, the new value is reached  
through successive 12.5-mV voltage steps (if not bypassed). The  
equivalent programmable slew rate of the output voltage is then:  
TSTEP[2:0] = 000: step duration is 0, step function is bypassed  
TSTEP[2:0] = 001: 12.5 mV/µs (sampling 3 MHz)  
0x3  
TSTEP[2:0] = 010: 9.4 mV/µs (sampling 3 MHz × 3/4)  
TSTEP[2:0] = 011: 7.5 mV/µs (sampling 3 MHz × 3/5) (default)  
TSTEP[2:0] = 100: 6.25 mV/µs(sampling 3 MHz/2)  
TSTEP[2:0] = 101: 4.7 mV/µs(sampling 3 MHz/3)  
TSTEP[2:0] = 110: 3.12 mV/µs(sampling 3 MHz/4)  
TSTEP[2:0] = 111: 2.5 mV/µs(sampling 3 MHz/5)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On, high-power mode  
ST[1:0] = 10: Off  
ST[1:0] = 11: On, low-power mode  
82  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-37. VDD1_OP_REG  
Address Offset  
Instance  
0x22  
Reset Domain: TURNOFF OFF RESET  
VDD1 voltage selection register.  
Description  
This register can be accessed by both control and voltage scaling I2C interfaces depending on SR_CTL_I2C_SEL  
register bit value.  
Type  
RW  
7
6
5
4
3
2
1
0
CMD  
SEL  
Bits  
Field Name  
Description  
Type  
Reset  
7
CMD  
when 0: VDD1_OP_REG voltage is applied  
when 1: VDD1_SR_REG voltage is applied  
RW  
0
6:0  
SEL  
Output voltage (4 EEPROM bits) selection with GAIN_SEL = 00 (G = 1,  
12.5 mV per LSB):  
RW  
0x00  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
Vout = (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
(Default value: See boot configuration)  
Note: Vout maximum value is 3.3 V  
Table 6-38. VDD1_SR_REG  
Address Offset  
Instance  
0x23  
Reset Domain: TURNOFF OFF RESET  
VDD1 voltage selection register.  
Description  
This register can be accessed by both control and voltage scaling dedicated I2C interfaces depending on  
SR_CTL_I2C_SEL register bit value.  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:0  
SEL  
Output voltage selection with GAIN_SEL = 00 (G = 1, 12.5 mV per LSB):  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
RW  
0x00  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
Vout = (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
(Default value: See boot configuration)  
Note: Vout maximum value is 3.3 V  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
83  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-39. VDD2_REG  
Address Offset  
Instance  
0x24  
Reset Domain: TURNOFF OFF RESET  
Description  
Type  
VDD2 control register  
RW  
7
6
5
4
3
2
1
0
VGAIN_SEL  
ILMAX  
TSTEP  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
VGAIN_SEL  
Select output voltage multiplication factor (×1, ×3 included in EEPROM  
RW  
0x0  
bits): G  
when 00: ×1  
when 01: ×1  
when 10: ×2  
when 11: ×3  
5
ILMAX  
TSTEP  
Select maximum load current:  
when 0: 1.0 A  
when 1: > 1.5 A  
RW  
RW  
0
4:2  
Time step: when changing the output voltage, the new value is reached  
through successive 12.5-mV voltage steps (if not bypassed). The  
equivalent programmable slew rate of the output voltage is then:  
TSTEP[2:0] = 000: step duration is 0, step function is bypassed  
TSTEP[2:0] = 001: 12.5 mV/µs (sampling 3 MHz)  
0x1  
TSTEP[2:0] = 010: 9.4 mV/µs (sampling 3 MHz × 3/4)  
TSTEP[2:0] = 011: 7.5 mV/µs (sampling 3 MHz × 3/5) (default)  
TSTEP[2:0] = 100: 6.25 mV/µs(sampling 3 MHz/2)  
TSTEP[2:0] = 101: 4.7 mV/µs(sampling 3 MHz/3)  
TSTEP[2:0] = 110: 3.12 mV/µs(sampling 3 MHz/4)  
TSTEP[2:0] = 111: 2.5 mV/µs(sampling 3 MHz/5)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On, high-power mode  
ST[1:0] = 10: Off  
ST[1:0] = 11: On, low-power mode  
84  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-40. VDD2_OP_REG  
Address Offset  
Instance  
0x25  
Reset Domain: TURNOFF OFF RESET  
VDD2 voltage selection register.  
Description  
This register can be accessed by both control and voltage scaling dedicated I2C interfaces depending on  
SR_CTL_I2C_SEL register bit value.  
Type  
RW  
7
6
5
4
3
2
1
0
CMD  
SEL  
Bits  
Field Name  
Description  
Type  
Reset  
7
CMD  
Command:  
RW  
0
when 0: VDD2_OP_REG voltage is applied  
when 1: VDD2_SR_REG voltage is applied  
6:0  
SEL  
Output voltage (4 EEPROM bits) selection with GAIN_SEL = 00 (G = 1,  
RW  
0x00  
12.5 mV per LSB):  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
Vout = (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
Note: Vout maximum value is 3.3 V  
Table 6-41. VDD2_SR_REG  
Address Offset  
Instance  
0x26  
Reset Domain: TURNOFF OFF RESET  
VDD2 voltage selection register.  
Description  
This register can be accessed by both control and voltage scaling dedicated I2C interfaces depending on  
SR_CTL_I2C_SEL register bit value.  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:0  
SEL  
Output voltage (EEPROM bits) selection with GAIN_SEL = 00 (G = 1,  
12.5 mV per LSB):  
RW  
0x00  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
Vout = (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
Note: Vout maximum value is 3.3 V  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
85  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-42. VDDCRTL_REG  
Address Offset  
Instance  
0x27  
Reset Domain: TURNOFF OFF RESET  
VDDCtrl, external FET controller  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7:2  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
1:0  
ST  
Supply state (EEPROM dependent):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On  
ST[1:0] = 10: Off  
ST[1:0] = 11: On  
Table 6-43. VDDCRTL_OP_REG  
Address Offset  
Instance  
0x28  
Reset Domain: TURN OFF RESET  
VDDCtrl voltage selection register.  
Description  
This register can be accessed by both control and voltage scaling dedicated I2C interfaces depending on  
SR_CTL_I2C_SEL register bit value.  
Type  
RW  
7
6
5
4
3
2
1
0
CMD  
SEL  
Bits  
Field Name  
Description  
Type  
Reset  
7
CMD  
Command:  
RW  
0
when 0: VDDctrl_OP_REG voltage is applied  
when 1: VDDctrl_SR_REG voltage is applied  
6:0  
SEL  
Output voltage (4 EEPROM bits) selection:  
SEL[6:0] = 1000011 to 1111111: 1.4 V  
...  
RW  
0x00  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0010011: 0.8 V  
...  
SEL[6:0] = 0000001: 0000011 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 64 (dec)  
Vout = (SEL[6:0] × 12.5 mV + 0.5625 V)  
(Default value: See boot configuration)  
86  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-44. VDDCRTL_SR_REG  
Address Offset  
Instance  
0x29  
Reset Domain: TURN OFF RESET  
VDDCtrl voltage selection register.  
Description  
This register can be accessed by both control and voltage scaling dedicated I2C interfaces depending on  
SR_CTL_I2C_SEL register bit value.  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
Bits  
7
Field Name  
Description  
Type  
RO  
Reset  
0
Reserved  
SEL  
6:0  
Output voltage (4 EEPROM bits) selection:  
SEL[6:0] = 1000011 to 1111111: 1.4 V  
...  
RW  
0x03  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0010011: 0.8 V  
...  
SEL[6:0] = 0000001: 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 64 (dec)  
Vout = (SEL[6:0] × 12.5 mV + 0.5625 V)  
(Default value: See boot configuration)  
Table 6-45. LDO1_REG  
Address Offset  
Instance  
0x30  
Reset Domain: TURNOFF OFF RESET  
LDO1 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
SEL  
ST  
Bits  
Field Name  
SEL  
Description  
Type  
Reset  
7:2  
Supply voltage (EEPROM bits):  
RW  
0x0  
SEL[7:2] = 000000 to 000011: 1 V  
SEL[7:2] = 000100: 1 V  
SEL[7:2] = 000101: 1.05 V  
...  
SEL[7:2] = 110001: 3.25 V  
SEL[7:2] = 110010: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
87  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-46. LDO2_REG  
Address Offset  
Instance  
0x31  
Reset Domain: TURNOFF OFF RESET  
LDO2 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
SEL  
ST  
Bits  
Field Name  
SEL  
Description  
Type  
Reset  
7:2  
Supply voltage (EEPROM bits):  
SEL[7:2] = 000000 to 000011: 1 V  
SEL[7:2] = 000100: 1 V  
RW  
0x0  
SEL[7:2] = 000101: 1.05 V  
...  
SEL[7:2] = 110001: 3.25 V  
SEL[7:2] = 110010: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
Table 6-47. LDO5_REG  
Address Offset  
Instance  
0x32  
Reset Domain: TUROFF RESET  
LDO5 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000 to 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
88  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-48. LDO8_REG  
Address Offset  
Instance  
0x33  
Reset Domain: TURNOFF OFF RESET  
LDO8 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000 to 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
Table 6-49. LDO7_REG  
Address Offset  
Instance  
0x34  
Reset Domain: TURNOFF OFF RESET  
LDO7 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000 to 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
89  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-50. LDO6_REG  
Address Offset  
Instance  
0x35  
Reset Domain: TURNOFF OFF RESET  
LDO6 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000 to 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
Table 6-51. LDO4_REG  
Address Offset  
Instance  
0x36  
Reset Domain: TURNOFF OFF RESET  
LDO4 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
SEL  
ST  
Bits  
Field Name  
SEL  
Description  
Type  
Reset  
7:2  
Supply voltage (EEPROM bits):  
RW  
0x00  
SEL[7:2] = 000000: 0.8 V  
SEL[7:2] = 000001: 0.85 V  
SEL[7:2] = 000010: 0.9 V  
SEL[7:2] = 000011: 0.95 V  
SEL[7:2] = 000100: 1 V  
SEL[7:2] = 000101: 1.05 V  
...  
SEL[7:2] = 110001: 3.25 V  
SEL[7:2] = 110010: 3.3 V  
Applicable voltage selection  
TRACK LDO 0: 1 V to 3.3 V  
TRACK LDO 1: 0.8 V to 1.5 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
90  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-52. LDO3_REG  
Address Offset  
Instance  
0x37  
Reset Domain: TURNOFF OFF RESET  
LDO3 regulator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000: 1 V  
SEL[6:2] = 00001: 1 V  
SEL[6:2] = 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
91  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-53. Therm_REG  
Address Offset  
Instance  
0x38  
Reset Domain:  
bits[5:2]: GENERAL RESET  
bit[0]: TURNOFF OFF RESET  
Description  
Type  
Thermal control register  
RW  
7
6
5
4
3
2
1
0
THERM_  
STATE  
Reserved  
THERM_HD  
THERM_TS  
THERM_HDSEL  
Reserved  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
5
4
THERM_HD  
THERM_TS  
Hot die detector output:  
when 0: the hot die threshold is not reached  
when 1: the hot die threshold is reached  
RO  
RO  
RW  
0
0
Thermal shutdown detector output:  
when 0: the thermal shutdown threshold is not reached  
when 1: the thermal shutdown threshold is reached  
3:2  
THERM_HDSEL  
Temperature selection for hot die detector:  
when 00: Low temperature threshold  
0x3  
when 11: High temperature threshold  
1
0
Reserved  
RO  
R returns  
0s  
0
1
THERM_STATE  
Thermal shutdown module enable signal:  
when 0: thermal shutdown module is disable  
when 1: thermal shutdown module is enable  
RW  
Table 6-54. BBCH_REG  
Address Offset  
Instance  
0x39  
Reset Domain: GENERAL RESET  
Backup battery charger control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
BBSEL  
BBCHEN  
Bits  
Field Name  
Description  
Type  
Reset  
7:3  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
2:1  
0
BBSEL  
Back up battery charge voltage selection:  
BBSEL[1:0] = 00: 3.0 V  
BBSEL[1:0] = 01: 2.52 V  
BBSEL[1:0] = 10: 3.15 V  
BBSEL[1:0] = 11: VBAT  
RW  
0x0  
0
BBCHEN  
Back up battery charge enable  
RW  
92  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-55. DCDCCTRL_REG  
Address Offset  
Instance  
0x3E  
RESET DOMAIN:  
bits [7:3]: TURNOFF OFF RESET  
bits [2:0]: GENERAL RESET  
Description  
Type  
DCDC control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
TRACK  
VDD2_PSKIP  
VDD1_PSKIP  
VIO_PSKIP  
DCDCCKEXT  
DCDCCKSYNC  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6
TRACK  
0 = Normal LDO operation without tracking  
RW  
0
1 = Tracking mode: LDO4 output follows VDD1 setting when VDD1  
active. See Section 6.5.3.14 for more information.  
5
4
3
2
VDD2_PSKIP  
VDD1_PSKIP  
VIO_PSKIP  
VDD2 pulse skip mode enable (EEPROM bit)  
Default value: See boot configuration  
RW  
RW  
RW  
RW  
1
1
1
0
VDD1 pulse skip mode enable (EEPROM bit)  
Default value: See boot configuration  
VIO pulse skip mode enable (EEPROM bit)  
Default value: See boot configuration  
DCDCCKEXT  
This signal control the muxing of the GPIO2 pad:  
When 0: this pad is a GPIO  
When 1: this pad is used as input for an external clock used for the  
synchronisation of the DCDCs  
1:0  
DCDCCKSYNC  
DCDC clock configuration:  
RW  
0x1  
DCDCCKSYNC[1:0] = 00: no synchronization of DCDC clocks  
DCDCCKSYNC[1:0] = 01: DCDC synchronous clock with phase shift  
DCDCCKSYNC[1:0] = 10: no synchronization of DCDC clocks  
DCDCCKSYNC[1:0] = 11: DCDC synchronous clock  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
93  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-56. DEVCTRL_REG  
Address Offset  
Instance  
0x3F  
Reset Domain: GENERAL RESET  
Bit 0,1, and 3: TURN OFF RESET  
Description  
Type  
Device control register  
RW  
7
6
5
4
3
2
1
0
PWR_OFF_  
SEQ  
SR_CTL_I2C_  
SEL  
DEV_OFF_  
RST  
RTC_PWDN  
CK32K_CTRL  
DEV_ON  
DEV_SLP  
DEV_OFF  
Bits  
Field Name  
PWR_OFF_SEQ  
Description  
Type  
Reset  
7
When 1, power-off will be sequential, reverse of power-on sequence (first  
resource to power on will be the last to power off).  
RW  
0
When 0, all resources disabled at the same time  
6
5
RTC_PWDN  
When 1, disable the RTC digital domain (clock gating and reset of RTC  
registers and logic).  
This register bit is not reset in BACKUP state.  
RW  
RW  
0
0
CK32K_CTRL  
Internal 32-kHz clock source control bit (EEPROM bit):  
when 0, the internal 32-kHz clock source is the crystal oscillator or an  
external 32-kHz clock in case the crystal oscillator is used in bypass  
mode  
when 1, the internal 32-kHz clock source is the RC oscillator.  
4
SR_CTL_I2C_SEL  
Voltage scaling registers access control bit:  
RW  
1
when 0: access to registers by voltage scaling I2C  
when 1: access to registers by control I2C. The voltage scaling registers  
are: VDD1_OP_REG, VDD1_SR_REG, VDD2_OP_REG,  
VDD2_SR_REG, VDDCtrl_OP_REG, and VDDCtrl_SR_REG.  
3
2
DEV_OFF_RST  
DEV_ON  
Write 1 will start an ACTIVE-to-OFF or SLEEP-to-OFF device state  
transition (switch-off event) and activate reset of the digital core.  
This bit is cleared in OFF state.  
RW  
RW  
0
0
Write 1 will keep the device on (ACTIVE or SLEEP device state) (if  
DEV_OFF = 0 and DEV_OFF_RST = 0).  
EEPROM bit  
(Default value: See boot configuration)  
1
0
DEV_SLP  
DEV_OFF  
Write 1 allows SLEEP device state (if DEV_OFF = 0 and  
DEV_OFF_RST = 0).  
Write 0 will start an SLEEP-to-ACTIVE device state transition (wake-up  
event) (if DEV_OFF = 0 and DEV_OFF_RST = 0). This bit is cleared in  
OFF state.  
RW  
RW  
0
0
Write 1 will start an ACTIVE-to-OFF or SLEEP-to-OFF device state  
transition (switch-off event). This bit is cleared in OFF state.  
94  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-57. DEVCTRL2_REG  
Address Offset  
Instance  
0x40  
Reset Domain: GENERAL RESET  
TSLOT_LENGTH: TURN OFF RESET  
Description  
Type  
Device control register  
RW  
7
6
5
4
3
2
1
0
DCDC_SLEEP  
_LVL  
SLEEPSIG_  
POL  
PWON_LP_  
OFF  
PWON_LP_  
RST  
Reserved  
TSLOT_LENGTH  
IT_POL  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7
RO  
R returns  
0s  
0
6
DCDC_SLEEP_LVL  
TSLOT_LENGTH  
When 1, DCDC output level in SLEEP mode is VDDx_SR_REG, to be  
other than 0 V.  
When 0, no effect  
RW  
0
5:4  
Time slot duration programming (EEPROM bit):  
When 00: 0 µs  
RW  
0x3  
When 01: 200 µs  
When 10: 500 µs  
When 11: 2 ms  
(Default value: See boot configuration)  
3
2
SLEEPSIG_POL  
PWON_LP_OFF  
When 1, SLEEP signal active-high  
When 0, SLEEP signal active-low  
RW  
RW  
0
1
When 1, allows device turnoff after a PWON Long Press (signal low)  
(EEPROM bits).  
(Default value: See boot configuration)  
1
0
PWON_LP_RST  
IT_POL  
When 1, allows digital core reset when the device is OFF (EEPROM bit).  
(Default value: See boot configuration)  
RW  
RW  
0
0
INT1 interrupt pad polarity control signal (EEPROM bit):  
When 0, active low  
When 1, active high  
(Default value: See boot configuration)  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
95  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-58. SLEEP_KEEP_LDO_ON_REG  
Address Offset  
Instance  
0x41  
Reset Domain: GENERAL RESET  
Description  
When corresponding control bit = 0 in EN1_ LDO_ASS register (default setting): Configuration Register keeping the  
full load capability of LDO regulator (ACTIVE mode) during the SLEEP state of the device.  
When control bit = 1, LDO regulator full load capability (ACTIVE mode) is maintained during device SLEEP state.  
When control bit = 0, the LDO regulator is set or stay in low-power mode during device SLEEP state(but then  
supply state can be overwritten programming ST[1:0]). Control bit value has no effect if the LDO regulator is off.  
When corresponding control bit = 1 in EN1_ LDO_ASS register: Configuration Register setting the LDO regulator  
state driven by SCLSR_EN1 signal low level (when SCLSR_EN1 is high the regulator is on, full power):  
- the regulator is set off if its corresponding Control bit = 0 in SLEEP_KEEP_LDO_ON register (default)  
- the regulator is set in low-power mode if its corresponding control bit = 1 in SLEEP_KEEP_LDO_ON register  
Type  
RW  
7
6
5
4
3
2
1
0
LDO3_  
KEEPON  
LDO4_  
KEEPON  
LDO7_KEEPO  
N
LDO8_  
KEEPON  
LDO5_KEEPO  
N
LDO2_  
KEEPON  
LDO1_  
KEEPON  
LDO6_  
KEEPON  
Bits  
Field Name  
LDO3_KEEPON  
Description  
Type  
Reset  
7
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
RW  
0
6
5
4
3
2
1
0
LDO4_KEEPON  
LDO7_KEEPON  
LDO8_KEEPON  
LDO5_KEEPON  
LDO2_KEEPON  
LDO1_KEEPON  
LDO6_KEEPON  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
96  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-59. SLEEP_KEEP_RES_ON_REG  
Address Offset  
Instance  
0x42  
Description  
Configuration Register keeping, during the SLEEP state of the device (but then supply state can be overwritten  
programming ST[1:0]):  
- the full load capability of LDO regulator (ACTIVE mode),  
- The PWM mode of DCDC converter  
- 32-kHz clock output  
- Register access though I2C interface (keeping the internal high speed clock on)  
- Die Thermal monitoring on  
Control bit value has no effect if the resource is off.  
Type  
RW  
7
6
5
4
3
2
1
0
THERM_  
KEEPON  
CLKOUT32K_  
KEEPON  
VRTC_  
KEEPON  
I2CHS_  
KEEPON  
VDD2_  
KEEPON  
VDD1_  
KEEPON  
VIO_  
KEEPON  
Reserved  
Bits  
Field Name  
Description  
Type  
Reset  
7
THERM_KEEPON  
When 1, thermal monitoring is maintained during device SLEEP state.  
When 0, thermal monitoring is turned off during device SLEEP state.  
RW  
0
6
5
CLKOUT32K_KEEPO When 1, CLK32KOUT output is maintained during device SLEEP state.  
RW  
RW  
0
0
N
When 0, CLK32KOUT output is set low during device SLEEP state.  
VRTC_KEEPON  
When 1, LDO regulator full load capability (ACTIVE mode) is maintained  
during device SLEEP state.  
When 0, the LDO regulator is set or stays in low-power mode during  
device SLEEP state.  
4
I2CHS_KEEPON  
When 1, high speed internal clock is maintained during device SLEEP  
RW  
0
state.  
When 0, high speed internal clock is turned off during device SLEEP  
state.  
3
2
Reserved  
RO  
0
0
VDD2_KEEPON  
When 1, VDD2 SMPS PWM mode is maintained during device SLEEP  
state. No effect if VDD2 working mode is PFM.  
RW  
When 0, VDD2 SMPS PFM mode is set during device SLEEP state.  
1
0
VDD1_KEEPON  
VIO_KEEPON  
When 1, VDD1 SMPS PWM mode is maintained during device SLEEP  
state. No effect if VDD1 working mode is PFM.  
When 0, VDD1 SMPS PFM mode is set during device SLEEP state.  
RW  
RW  
0
0
When 1, VIO SMPS PWM mode is maintained during device SLEEP  
state. No effect if VIO working mode is PFM.  
When 0, VIO SMPS PFM mode is set during device SLEEP state.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
97  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-60. SLEEP_SET_LDO_OFF_REG  
Address Offset  
Instance  
0x43  
Reset Domain: GENERAL RESET  
Description  
Configuration Register turning-off LDO regulator during the SLEEP state of the device.  
Corresponding *_KEEP_ON control bit in SLEEP_KEEP_RES_ON register should be 0 to make this *_SET_OFF  
control bit effective  
Type  
RW  
7
6
5
4
3
2
1
0
LDO3_SETOFF LDO4_SETOFF LDO7_SETOFF LDO8_SETOFF LDO5_SETOFF LDO2_SETOFF LDO1_SETOFF LDO6_SETOFF  
Bits  
Field Name  
Description  
Type  
Reset  
7
LDO3_SETOFF  
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
RW  
0
6
5
4
3
2
1
0
LDO4_SETOFF  
LDO7_SETOFF  
LDO8_SETOFF  
LDO5_SETOFF  
LDO2_SETOFF  
LDO1_SETOFF  
LDO6_SETOFF  
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
When 1, LDO regulator is turned off during device SLEEP state.  
When 0, No effect  
98  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-61. SLEEP_SET_RES_OFF_REG  
Address Offset  
Instance  
0x44  
Reset Domain: GENERAL RESET  
Description  
Configuration Register turning-off SMPS regulator during the SLEEP state of the device.  
Corresponding *_KEEP_ON control bit in SLEEP_KEEP_RES_ON2 register should be 0 to make this *_SET_OFF  
control bit effective. Supplies voltage expected after their wake-up (SLEEP-to-ACTIVE state transition) can also be  
programmed.  
Type  
RW  
7
6
5
4
3
2
1
0
DEFAULT_  
VOLT  
SPARE_  
SETOFF  
VDDCTRL_  
SETOFF  
VDD2_  
SETOFF  
VDD1_  
SETOFF  
VIO_  
SETOFF  
Reserved  
Bits  
Field Name  
Description  
Type  
Reset  
7
DEFAULT_VOLT  
When 1, default voltages (register value after switch-on) will be applied  
to all resources during SLEEP-to-ACTIVE transition.  
When 0, voltages programmed before the ACTIVE-to-SLEEP state  
transition will be used to turned-on supplies during SLEEP-to-ACTIVE  
state transition.  
RW  
0
6:5  
Reserved  
RO  
R returns  
0s  
0x0  
4
3
SPARE_SETOFF  
Spare bit  
RW  
RW  
0
0
VDDCTRL_SETOFF When 1, SMPS is turned off during device SLEEP state.  
When 0, No effect.  
2
1
0
VDD2_SETOFF  
VDD1_SETOFF  
VIO_SETOFF  
When 1, SMPS is turned off during device SLEEP state.  
When 0, No effect.  
RW  
RW  
RW  
0
0
0
When 1, SMPS is turned off during device SLEEP state.  
When 0, No effect.  
When 1, SMPS is turned off during device SLEEP state.  
When 0, No effect.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
99  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-62. EN1_LDO_ASS_REG  
Address Offset  
Instance  
0x45  
Reset Domain: TURNOFF RESET  
Description  
Configuration Register setting the LDO regulators, driven by the multiplexed SCLSR_EN1 signal.  
When control bit = 1, LDO regulator state is driven by the SCLSR_EN1 control signal and is also defined though  
SLEEP_KEEP_LDO_ON register setting:  
When SCLSR_EN1 is high the regulator is on,  
When SCLSR_EN1 is low:  
- the regulator is off if its corresponding Control bit = 0 in SLEEP_KEEP_LDO_ON register  
- the regulator is working in low-power mode if its corresponding control bit = 1 in  
SLEEP_KEEP_LDO_ON register  
When control bit = 0 no effect: LDO regulator state is driven though registers programming and the device state  
Any control bit of this register set to 1 will disable the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
LDO3_EN1  
LDO4_EN1  
LDO7_EN1  
LDO8_EN1  
LDO5_EN1  
LDO2_EN1  
LDO1_EN1  
LDO6_EN1  
Bits  
7
Field Name  
LDO3_EN1  
Description  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
Setting supply state control though SCLSR_EN1 signal  
Setting supply state control though SCLSR_EN1 signal  
Setting supply state control though SCLSR_EN1 signal  
Setting supply state control though SCLSR_EN1 signal  
Setting supply state control though SCLSR_EN1 signal  
Setting supply state control though SCLSR_EN1 signal  
Setting supply state control though SCLSR_EN1 signal  
Setting supply state control though SCLSR_EN1 signal  
0
0
0
0
0
0
0
0
6
LDO4_EN1  
LDO7_EN1  
LDO8_EN1  
LDO5_EN1  
LDO2_EN1  
LDO1_EN1  
LDO6_EN1  
5
4
3
2
1
0
100  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-63. EN1_SMPS_ASS_REG  
Address Offset  
Instance  
0x46  
Reset Domain: TURNOFF RESET  
Description  
Configuration Register setting the SMPS Supplies driven by the multiplexed SCLSR_EN1 signal.  
When control bit = 1, SMPS Supply state and voltage is driven by the SCLSR_EN1 control signal and is also  
defined though SLEEP_KEEP_RES_ON register setting.  
When control bit = 0 no effect: SMPS Supply state is driven though registers programming and the device state.  
Any control bit of this register set to 1 will disable the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
VDDCTRL_  
EN1  
Reserved  
SPARE_EN1  
VDD2_EN1  
VDD1_EN1  
VIO_EN1  
Bits  
Field Name  
Reserved  
Description  
Spare bit  
Type  
Reset  
7:5  
RO  
R returns  
0s  
0x0  
4
3
SPARE_EN1  
RW  
RW  
0
0
VDDCTRL_EN1  
When control bit = 1:  
When EN1 is high the supply voltage is programmed though  
VDDCtrl_OP_REG register, and it can also be programmed off.  
When EN1 is low the supply voltage is programmed though  
VDDCtrl_SR_REG register, and it can also be programmed off.  
When control bit = 0: No effect: Supply state is driven though registers  
programming and the device state  
2
1
0
VDD2_EN1  
VDD1_EN1  
VIO_EN1  
When control bit = 1:  
RW  
RW  
RW  
0
0
0
When SCLSR_EN1 is high the supply voltage is programmed though  
VDD2_OP_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low the supply voltage is programmed though  
VDD2_SR_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is  
working in low-power mode, if not tuned off through VDD2_SR_REG  
register.  
When control bit = 0 No effect: Supply state is driven though registers  
programming and the device state  
When 1:  
When SCLSR_EN1 is high the supply voltage is programmed though  
VDD1_OP_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low the supply voltage is programmed though  
VDD1_SR_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is  
working in low-power mode, if not tuned off though VDD1_SR_REG  
register.  
When control bit = 0 no effect: supply state is driven though registers  
programming and the device state  
When control bit = 1, supply state is driven by the SCLSR_EN1 control  
signal and is also defined though SLEEP_KEEP_RES_ON register  
setting:  
When SCLSR_EN1 is high the supply is on,  
When SCLSR_EN1 is low:  
- the supply is off (default) or the SMPS is working in low-power mode if  
its corresponding control bit = 1 in SLEEP_KEEP_RES_ON register  
When control bit = 0 No effect: SMPS state is driven though registers  
programming and the device state  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
101  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-64. EN2_LDO_ASS_REG  
Address Offset  
Instance  
0x47  
Reset Domain: TURNOFF RESET  
Description  
Configuration Register setting the LDO regulators, driven by the multiplexed SDASR_EN2 signal.  
When control bit = 1, LDO regulator state is driven by the SDASR_EN2 control signal and is also defined though  
SLEEP_KEEP_LDO_ON register setting:  
When SDASR_EN2 is high the regulator is on,  
When SCLSR_EN2 is low:  
- the regulator is off if its corresponding Control bit = 0 in SLEEP_KEEP_LDO_ON register  
- the regulator is working in low-power mode if its corresponding control bit = 1 in SLEEP_KEEP_LDO_ON register  
When control bit = 0 no effect: LDO regulator state is driven though registers programming and the device state  
Any control bit of this register set to 1 will disable the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
LDO3_EN2  
LDO4_EN2  
LDO7_EN2  
LDO8_EN2  
LDO5_EN2  
LDO2_EN2  
LDO1_EN2  
LDO6_EN2  
Bits  
7
Field Name  
LDO3_EN2  
Description  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
Setting supply state control though SDASR_EN2 signal  
Setting supply state control though SDASR_EN2 signal  
Setting supply state control though SDASR_EN2 signal  
Setting supply state control though SDASR_EN2 signal  
Setting supply state control though SDASR_EN2 signal  
Setting supply state control though SDASR_EN2 signal  
Setting supply state control though SDASR_EN2 signal  
Setting supply state control though SDASR_EN2 signal  
0
0
0
0
0
0
0
0
6
LDO4_EN2  
LDO7_EN2  
LDO8_EN2  
LDO5_EN2  
LDO2_EN2  
LDO1_EN2  
LDO6_EN2  
5
4
3
2
1
0
102  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-65. EN2_SMPS_ASS_REG  
Address Offset  
Instance  
0x48  
Reset Domain: TURNOFF RESET  
Description  
Configuration Register setting the SMPS Supplies driven by the multiplexed SDASR_EN2 signal.  
When control bit = 1, SMPS Supply state and voltage is driven by the SDASR_EN2 control signal and is also  
defined though SLEEP_KEEP_RES_ON register setting.  
When control bit = 0 no effect: SMPS Supply state is driven though registers programming and the device state  
Any control bit of this register set to 1 will disable the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
VDDCTRL_  
EN2  
Reserved  
SPARE_EN2  
VDD2_EN2  
VDD1_EN2  
VIO_EN2  
Bits  
Field Name  
Reserved  
Description  
Spare bit  
Type  
Reset  
7:5  
RO  
R returns  
0s  
0x0  
4
3
SPARE_EN2  
RW  
RW  
0
0
VDDCTRL_EN2  
When control bit = 1:  
When EN2 is high the supply voltage is programmed though  
VDDCtrl_OP_REG register, and it can also be programmed off..  
When EN2 is low the supply voltage is programmed though  
VDDCtrl_SR_REG register, and it can also be programmed off.  
When EN2 is low and VDDCtrl_KEEPON = 1 the SMPS is working in  
low-power mode, if not tuned off though VDDCtrl_SR_REG register.  
When control bit = 0 no effect: Supply state is driven though registers  
programming and the device state  
2
1
0
VDD2_EN2  
VDD1_EN2  
VIO_EN2  
When control bit = 1:  
RW  
RW  
RW  
0
0
0
When SDASR_EN2 is high the supply voltage is programmed though  
VDD2_OP_REG register, and it can also be programmed off.  
When SDASR_EN2 is low the supply voltage is programmed though  
VDD2_SR_REG register, and it can also be programmed off.  
When SDASR_EN2 is low and SLEEP_KEEP_RES_ON = 1 the SMPS  
is working in low-power mode, if not tuned off though VDD2_SR_REG  
register.  
When control bit = 0 no effect: Supply state is driven though registers  
programming and the device state  
When control bit = 1:  
When SDASR_EN2 is high the supply voltage is programmed though  
VDD1_OP_REG register, and it can also be programmed off.  
When SDASR_EN2 is low the supply voltage is programmed though  
VDD1_SR_REG register, and it can also be programmed off.  
When SDASR_EN2 is low and SLEEP_KEEP_RES_ON = 1 the SMPS  
is working in low-power mode, if not tuned off though VDD1_SR_REG  
register.  
When control bit = 0 no effect: supply state is driven though registers  
programming and the device state  
When control bit = 1,  
supply state is driven by the SCLSR_EN2 control signal and is also  
defined though SLEEP_KEEP_RES_ON register setting:  
When SDASR _EN2 is high the supply is on,  
When SDASR _EN2 is low :  
- the supply is off (default) or the SMPS is working in low-power mode if  
its corresponding control bit = 1 in SLEEP_KEEP_RES_ON register  
When control bit = 0 no effect: SMPS state is driven though registers  
programming and the device state  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
103  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-66. INT_STS_REG  
Address Offset  
Instance  
0x50  
Reset Domain: FULL RESET  
Interrupt status register:  
Description  
The interrupt status bit is set to 1 when the associated interrupt event is detected. Interrupt status bit is cleared by  
writing 1.  
Type  
RW  
7
6
5
4
3
2
1
0
RTC_PERIOD_ RTC_ALARM_  
IT IT  
PWRHOLD_R_  
IT  
PWRHOLD_F_  
IT  
HOTDIE_IT  
PWRON_LP_IT  
PWRON_IT  
VMBHI_IT  
Bits  
Field Name  
Description  
Type  
Reset  
7
RTC_PERIOD_IT  
RTC_ALARM_IT  
HOTDIE_IT  
RTC period event interrupt status.  
RTC alarm event interrupt status.  
Hot-die event interrupt status.  
RW  
W1 to Clr  
0
6
5
4
3
2
1
0
RW  
W1 to Clr  
0
0
0
0
0
0
0
RW  
W1 to Clr  
PWRHOLD_R_IT  
PWRON_LP_IT  
PWRON_IT  
Rising PWRHOLD event interrupt status.  
PWRON Long Press event interrupt status.  
PWRON event interrupt status.  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
VMBHI_IT  
VBAT > VMHI event interrupt status  
Falling PWRHOLD event interrupt status.  
RW  
W1 to Clr  
PWRHOLD_F_IT  
RW  
W1 to Clr  
104  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-67. INT_MSK_REG  
Address Offset  
Instance  
0x51  
Reset Domain: GENERAL RESET  
Interrupt mask register:  
Description  
When *_IT_MSK is set to 1, the associated interrupt is masked: INT1 signal is not activated, but *_IT interrupt  
status bit is updated.  
When *_IT_MSK is set to 0, the associated interrupt is enabled: INT1 signal is activated, *_IT is updated.  
Type  
RW  
7
6
5
4
3
2
1
0
RTC_PERIOD_ RTC_ALARM_  
IT_MSK IT_MSK  
HOTDIE_  
IT_MSK  
PWRHOLD_R_ PWRON_LP_  
IT_MSK IT_MSK  
PWRON_  
IT_MSK  
VMBHI_  
IT_MSK  
PWRHOLD_F_  
IT_MSK  
Bits  
Field Name  
Description  
Type  
Reset  
7
RTC_PERIOD_IT_MS RTC period event interrupt mask.  
K
RW  
1
6
RTC_ALARM_IT_MS RTC alarm event interrupt mask.  
K
RW  
1
5
4
HOTDIE_IT_MSK  
Hot die event interrupt mask.  
RW  
RW  
1
1
PWRHOLD_R_IT_MS PWRHOLD rising-edge event interrupt mask.  
K
3
2
1
PWRON_LP_IT_MSK PWRON Long Press event interrupt mask.  
RW  
RW  
RW  
1
1
1
PWRON_IT_MSK  
VMBHI_IT_MSK  
PWRON event interrupt mask.  
VBAT > VMBHI interrupt event mask bit  
When 0, interrupt not masked. Device automatically switches on at NO  
SUPPLY-to-OFF BACKUP-to-OFF transition  
When 1, interrupt is masked. Device does not switch on until a start  
reason is received.  
(EEPROM bit. Default value: See boot configuration)  
0
PWRHOLD_F_IT_MS PWRHOLD falling-edge event interrupt mask.  
K
RW  
1
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
105  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-68. INT_STS2_REG  
Address Offset  
Instance  
0x52  
Reset Domain: FULL RESET  
Interrupt status register:  
Description  
The interrupt status bit is set to 1 when the associated interrupt event is detected. Interrupt status bit is cleared by  
writing 1.  
Type  
RW  
7
6
5
4
3
2
1
0
GPIO3_F_IT  
GPIO3_R_IT  
GPIO2_F_IT  
GPIO2_R_IT  
GPIO1_F_IT  
GPIO1_R_IT  
GPIO0_F_IT  
GPIO0_R_IT  
Bits  
Field Name  
GPIO3_F_IT  
Description  
Type  
Reset  
7
GPIO3 falling-edge detection interrupt status  
GPIO3 rising-edge detection interrupt status  
GPIO2 falling-edge detection interrupt status  
GPIO2 rising-edge detection interrupt status  
GPIO1 falling-edge detection interrupt status  
GPIO1 rising-edge detection interrupt status  
GPIO0 falling-edge detection interrupt status  
GPIO0 rising-edge detection interrupt status  
RW  
W1 to Clr  
0
6
5
4
3
2
1
0
GPIO3_R_IT  
GPIO2_F_IT  
GPIO2_R_IT  
GPIO1_F_IT  
GPIO1_R_IT  
GPIO0_F_IT  
GPIO0_R_IT  
RW  
W1 to Clr  
0
0
0
0
0
0
0
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
Table 6-69. INT_MSK2_REG  
Address Offset  
Instance  
0x53  
Reset Domain: GENERAL RESET  
Interrupt mask register:  
Description  
When *_IT_MSK is set to 1, the associated interrupt is masked: INT1 signal is not activated, but *_IT interrupt  
status bit is updated.  
When *_IT_MSK is set to 0, the associated interrupt is enabled: INT1 signal is activated, *_IT is updated.  
Type  
RW  
7
6
5
4
3
2
1
0
GPIO3_F_  
IT_MSK  
GPIO3_R_  
IT_MSK  
GPIO2_F_  
IT_MSK  
GPIO2_R_  
IT_MSK  
GPIO1_F_  
IT_MSK  
GPIO1_R_  
IT_MSK  
GPIO0_F_  
IT_MSK  
GPIO0_R_  
IT_MSK  
Bits  
7
Field Name  
Description  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
GPIO3_F_IT_MSK  
GPIO3_R_IT_MSK  
GPIO2_F_IT_MSK  
GPIO2_R_IT_MSK  
GPIO1_F_IT_MSK  
GPIO1_R_IT_MSK  
GPIO0_F_IT_MSK  
GPIO0_R_IT _MSK  
GPIO3 falling-edge detection interrupt mask.  
GPIO3 rising-edge detection interrupt mask.  
GPIO2 falling-edge detection interrupt mask.  
GPIO2 rising-edge detection interrupt mask.  
GPIO1 falling-edge detection interrupt mask.  
GPIO1 rising-edge detection interrupt mask.  
GPIO0 falling-edge detection interrupt mask.  
GPIO0 rising-edge detection interrupt mask.  
1
1
1
1
1
1
1
1
6
5
4
3
2
1
0
106  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-70. INT_STS3_REG  
Address Offset  
Instance  
0x54  
Reset Domain: FULL RESET  
Interrupt status register:  
Description  
The interrupt status bit is set to 1 when the associated interrupt event is detected. Interrupt status bit is cleared by  
writing 1.  
Type  
RW  
7
6
5
4
3
2
1
0
PWRDN_IT  
VMBCH2_L_IT VMBCH2_H_IT WTCHDG_IT  
GPIO5_F_IT  
GPIO5_R_IT  
GPIO4_F_IT  
GPIO4_R_IT  
Bits  
Field Name  
PWRDN_IT  
Description  
Type  
Reset  
7
PWRDN reset input high detected  
RW  
0
W1 to Clr  
6
5
4
3
2
1
0
VMBCH2_L_IT  
VMBCH2_H_IT  
WTCHDG_IT  
GPIO5_F_IT  
GPIO5_R_IT  
GPIO4_F_IT  
GPIO4_R_IT  
Comparator2 input below threshold detection interrupt status  
Comparator2 input above threshold detection interrupt status  
Watchdog interrupt status  
RW  
W1 to Clr  
0
0
0
0
0
0
0
RW  
W1 to Clr  
RW  
W1 to Clr  
GPIO5 falling-edge detection interrupt status  
GPIO5 rising-edge detection interrupt status  
GPIO4 falling-edge detection interrupt status  
GPIO4 rising-edge detection interrupt status  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
Table 6-71. INT_MSK3_REG  
Address Offset  
Instance  
0x55  
Reset Domain: GENERAL RESET  
Interrupt mask register:  
Description  
When *_IT_MSK is set to 1, the associated interrupt is masked: INT1 signal is not activated, but *_IT interrupt  
status bit is updated.  
When *_IT_MSK is set to 0, the associated interrupt is enabled: INT1 signal is activated, *_IT is updated.  
Type  
RW  
7
6
5
4
3
2
1
0
PWRDN_  
IT_MSK  
VMBCH2_L_  
IT_MSK  
VMBCH2_H_  
IT_MSK  
WTCHDG_  
IT_MSK  
GPIO5_F_  
IT_MSK  
GPIO5_R_  
IT_MSK  
GPIO4_F_  
IT_MSK  
GPIO4_R_  
IT_MSK  
Bits  
7
Field Name  
Description  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
PWRDN_IT_MSK  
PWRDN interrupt mask  
1
1
1
1
1
1
1
1
6
VMBCH2_L_IT_MSK Comparator2 input below threshold detection interrupt mask  
VMBCH2_H_IT_MSK Comparator2 input above threshold detection interrupt mask  
5
4
WTCHDG_IT_MSK  
GPIO5_F_IT_MSK  
GPIO5_R_IT_MSK  
GPIO4_F_IT_MSK  
GPIO4_R_IT_MSK  
Watchdog interrupt mask.  
3
GPIO5 falling-edge detection interrupt mask.  
GPIO5 rising-edge detection interrupt mask.  
GPIO4 falling-edge detection interrupt mask.  
GPIO4 rising-edge detection interrupt mask.  
2
1
0
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
107  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-72. GPIO0_REG  
Address Offset  
Instance  
0x60  
Reset Domain: GENERAL RESET  
GPIO0 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_ODEN  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
GPIO_SLEEP(1)  
Description  
Type  
Reset  
7
1: as GPO, force low  
RW  
0
0: No impact, keep as in active mode  
6
5
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
0
GPIO_ODEN  
Selection of output mode, EEPROM bit  
0: Push-pull output  
RW  
1: Open-drain output  
(Default value: See boot configuration)  
GPIO assigned to power-up sequence, this bit will be set to 1 by a  
TURNOFF reset  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
RW  
RW  
RW  
0
0
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
(Default value: See boot configuration)  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
GPIO assigned to power-up sequence, this bit will be in TURNOFF reset  
(1) The GPIO_SLEEP bit is a bit available only for GPIO_0/2/6/7.This bit will be take into account and be effective only if the GPIO_0/2/6/7  
is associated to a TIME_SLOT. It means that this bit is useful only if the GPIO is part of the POWER UP SEQUENCE. Note that in this  
case the associated GPIO will be set as GPO. GPIO_SLEEP bit is a bit related to the PMU sleep mode only, No action in ACTIVE  
mode. It is used to define SLEEP mode state for GPIO 0/2/6/7.  
108  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-73. GPIO1_REG  
Address Offset  
Instance  
0x61  
Reset Domain: GENERAL RESET  
GPIO1 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5
4
3
2
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
Select signal to be available at GPIO when configured as output:  
0: GPIO_SET  
1: LED1 out  
RW  
RW  
RW  
RW  
0
0
1
0
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
109  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-74. GPIO2_REG  
Address Offset  
Instance  
0x62  
Reset Domain: GENERAL RESET  
GPIO2 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
GPIO_SLEEP  
Description  
Type  
Reset  
7
1: as GPO, force low  
RW  
0
0: no impact, keep as in active mode  
6:5  
4
Reserved  
RO  
R returns  
0s  
0x0  
0
GPIO_DEB  
GPIO_PDEN  
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
RW  
3
GPIO pad pulldown control:  
RW  
1
1: Pulldown is enabled  
0: Pulldown is disabled  
GPIO assigned to power-up sequence, this bit will be set to 0 by a  
TURNOFF reset  
2
GPIO_CFG  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
(Default value: See boot configuration)  
GPIO assigned to power-up sequence, this bit will be set to 1 by a  
TURNOFF reset  
RW  
0
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
GPIO assigned to power-up sequence, this bit will be in TURNOFF reset  
110  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-75. GPIO3_REG  
Address Offset  
Instance  
0x63  
Reset Domain: GENERAL RESET  
GPIO3 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
Description  
Type  
Reset  
7
Reserved  
RO  
R returns  
0s  
0
6:5  
GPIO_SEL  
Select signal to be available at GPIO when configured as output:  
RW  
0x0  
00: GPIO_SET  
01: LED2 out  
10: PWM out  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
RW  
RW  
RW  
0
1
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
Table 6-76. GPIO4_REG  
Address Offset  
Instance  
0x64  
Reset Domain: GENERAL RESET  
GPIO4 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7:5  
RO  
R returns  
0s  
0x0  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
RW  
RW  
RW  
0
1
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
111  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-77. GPIO5_REG  
Address Offset  
Instance  
0x65  
Reset Domain: GENERAL RESET  
GPIO5 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7:5  
RO  
R returns  
0s  
0x0  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
RW  
RW  
RW  
0
1
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
112  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-78. GPIO6_REG  
Address Offset  
Instance  
0x66  
Reset Domain: GENERAL RESET  
GPIO6 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
GPIO_SLEEP  
Description  
Type  
Reset  
7
1: as GPO, force low  
RW  
0
0: no impact, keep as in active mode  
6:5  
4
Reserved  
RO  
R returns  
0s  
0x0  
0
GPIO_DEB  
GPIO_PDEN  
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
RW  
3
GPIO pad pulldown control:  
RW  
1
1: Pulldown is enabled  
0: Pulldown is disabled  
GPIO assigned to power-up sequence, this bit will be set to 0 by a  
TURNOFF reset  
2
GPIO_CFG  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
(Default value: See boot configuration)  
GPIO assigned to power-up sequence, this bit will be set to 1 by a  
TURNOFF reset  
RW  
0
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
GPIO assigned to power-up sequence, this bit will be in TURNOFF reset  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
113  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-79. GPIO7_REG  
Address Offset  
Instance  
0x67  
Reset Domain: GENERAL RESET  
GPIO7 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
GPIO_SLEEP  
Description  
Type  
Reset  
7
1: as GPO, force low  
RW  
0
0: no impact, keep as in active mode  
6:5  
4
Reserved  
RO  
R returns  
0s  
0x0  
0
GPIO_DEB  
GPIO_PDEN  
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
RW  
3
GPIO pad pulldown control:  
RW  
1
1: Pulldown is enabled  
0: Pulldown is disabled  
GPIO assigned to power-up sequence, this bit will be set to 0 by a  
TURNOFF reset  
2
GPIO_CFG  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
(Default value: See boot configuration)  
GPIO assigned to power-up sequence, this bit will be set to 1 by a  
TURNOFF reset  
RW  
0
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
GPIO assigned to power-up sequence, this bit will be in TURNOFF reset  
114  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-80. GPIO8_REG  
Address Offset  
Instance  
0x68  
Reset Domain: GENERAL RESET  
GPIO8 configuration register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5
4
3
2
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
Select signal to be available at GPIO when configured as output:  
0: GPIO_SET  
1: PWM out  
RW  
RW  
RW  
RW  
0
0
1
0
GPIO input debouncing time configuration:  
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When 0, the pad is configured as an input  
When 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
115  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-81. WATCHDOG_REG  
Address Offset  
Instance  
0x69  
Reset Domain: GENERAL RESET  
Description  
Type  
Watchdog  
RW  
7
6
5
4
3
2
1
0
WTCHDG_  
MODE  
Reserved  
WTCHDG_TIME  
Bits  
Field Name  
Reserved  
Description  
Type  
Reset  
7:4  
RO  
R returns  
0s  
0x0  
3
WTCHDG_MODE  
0: Periodic operation:  
RW  
0
A periodical interrupt is generated based on WTCHDG_TIME setting. IC  
will generate WTCHDOG shutdown if interrupt is not cleared during the  
period.  
1: Interrupt mode:  
IC will generate WTCHDOG shutdown if an interrupt is pending (no  
cleared) more than WTCHDG_TIME s.  
2:0  
WTCHDG_TIME  
000: Watchdog disabled  
001: 5 seconds  
RW  
0x0  
010: 10 seconds  
011: 20 Seconds  
100: 40 seconds  
101: 60 seconds  
110: 80 seconds  
111: 100 seconds (EEPROM bit)  
(Default value: See boot configuration)  
Table 6-82. VMBCH_REG  
Address Offset  
Instance  
0x6A  
Reset Domain: GENERAL RESET  
Comparator control register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
VMBCH_SEL  
Reserved  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5:1  
VMBCH_SEL  
Battery voltage comparator threshold (EEPROM)  
RW  
0x00  
11000 to 11111: 3.5 V  
10111: 3.45 V  
...  
01110: 3 V (default)  
...  
00101: 2.55 V  
00001 to 00100: 2.5 V  
00000: Bypass  
(Default value: See boot configuration)  
0
Reserved  
RO  
R returns  
0s  
0
116  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-83. VMBCH2_REG  
Address Offset  
Instance  
0x6B  
Reset Domain: GENERAL RESET  
Description  
Type  
Comparator for detecting battery discharge below threshold level  
RW  
7
6
5
4
3
2
1
0
VMBDCH2_  
DEB  
Reserved  
VMBDCH2_SEL  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5:1  
VMBDCH2_SEL  
Battery voltage comparator threshold  
11000 to 11111: 3.5 V  
10111: 3.45 V  
RW  
0x00  
...  
00101: 2.55 V  
00001 to 00100: 2.5 V  
00000: Bypass  
0
VMBDCH2_DEB  
Comp2 input debouncing time configuration:  
RW  
0
When 0, the debouncing is 91.5 µs using a 30.5 µs clock rate  
When 1, the debouncing is 150 ms using a 50 ms clock rate  
Table 6-84. LED_CTRL1_REG  
Address Offset  
Instance  
0x6C  
Reset Domain: GENERAL RESET  
LED ON/OFF control register.  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
LED2_PERIOD  
LED1_PERIOD  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5:3  
LED2_PERIOD  
Period of LED2 signal:  
000: LED2 OFF  
001: 0.125 s  
010: 0.25 s  
...  
RW  
0x0  
110: 4 s  
111: 8 s  
2:0  
LED1_PERIOD  
Period of LED1 signal:  
000: LED1 OFF  
001: 0.125 s  
010: 0.25 s  
...  
RW  
0x0  
10: 2 s  
110: 4 s  
111: 8 s  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
117  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 6-85. LED_CTRL2_REG1  
Address Offset  
Instance  
0x6D  
Reset Domain: GENERAL RESET  
LED ON/OFF control register.  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
Reserved  
LED2_SEQ  
LED1_SEQ  
LED2_ON_TIME  
LED1_ON_TIME  
Bits  
Field Name  
Description  
Type  
Reset  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5
4
LED2_SEQ  
LED1_SEQ  
When 1, LED2 will repeat 2 pulse sequence: ON (ON_TIME) - OFF (ON  
TIME) - ON (ON TIME) - OFF remainder of the period  
When 0, LED2 will generate 1 pulse: ON (ON_TIME) - OFF (ON TIME))  
RW  
RW  
RW  
0
0
When 1, LED1 will repeat 2 pulse sequence: ON (ON_TIME) - OFF (ON  
TIME) - ON (ON TIME) - OFF remainder of the period.  
When 0, LED1 will generate 1 pulse: ON (ON_TIME) - OFF (ON TIME))  
3:2  
LED2_ON_TIME  
LED1_ON_TIME  
LED2 ON time:  
00: 62.5 ms  
01: 125 ms  
10: 250 ms  
11: 500 ms  
0x0  
1:0  
LED1 ON time:  
00: 62.5 ms  
01: 125 ms  
10: 250 ms  
11: 500 ms  
RW  
0x0  
Table 6-86. PWM_CTRL1_REG  
Address Offset  
Instance  
0x6E  
Reset Domain: GENERAL RESET  
Description  
Type  
PWM frequency  
RW  
7
6
5
4
3
2
1
0
Reserved  
PWM_FREQ  
Bits  
Field Name  
Description  
Type  
Reset  
7:2  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
1:0  
PWM_FREQ  
Frequency of PWM:  
00: 500 Hz  
RW  
0x0  
01: 250 Hz  
10: 125 Hz  
11: 62.5 Hz  
118  
Detailed Description  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 6-87. PWM_CTRL2_REG  
Address Offset  
Instance  
0x6F  
Reset Domain: GENERAL RESET  
Description  
Type  
PWM duty cycle.  
RW  
7
6
5
4
3
2
1
0
FREQ_DUTY_CYCLE  
Bits  
Field Name  
Description  
Type  
Reset  
7:0  
FREQ_DUTY_CYCLE Duty cycle of PWM:  
RW  
0x00  
00000000: 0/256  
...  
11111111: 255/256  
Table 6-88. SPARE_REG  
Address Offset  
Instance  
0x70  
Reset Domain: FULL RESET  
Spare functional register  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
SPARE  
Bits  
Field Name  
SPARE  
Description  
Type  
Reset  
7:0  
Spare bits  
RW  
0x00  
Table 6-89. VERNUM_REG  
Address Offset  
Instance  
0x80  
Reset Domain: FULL RESET  
Silicon version number  
RW  
Description  
Type  
7
6
5
4
3
2
1
0
READ_BOOT  
Reserved  
VERNUM  
Bits  
Field Name  
READ_BOOT  
Description  
Type  
Reset  
7
To enable the read of the BOOT mode if you want to go to JTAG mode,  
this be must set to 1.  
RW  
0
6:4  
3:0  
Reserved  
VERNUM  
Reserved bit  
RO  
R returns  
0s  
0x0  
0x0  
Value depending on silicon version number 0000 - Revision 1.0  
RO  
Copyright © 2010–2018, Texas Instruments Incorporated  
Detailed Description  
119  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Application Information  
The TPS65911 device is an integrated power management IC (PMIC) available in a 98-pin 0.65-mm pitch  
BGA MicroStar Junior package. The device is designed for applications powered by one Li-Ion or Li-Ion  
polymer battery cell, 3-series Ni-MH cells, or a 5-V input supply. The device has three step-down  
converters, one step-down controller with external FETs to support high current rails, eight LDO  
regulators, nine GPIOs, and EERPOM-programmable power sequencing to support a variety of  
processors and system sequencing requirements.  
The following sections include a typical application diagram, description of the recommended external  
components, and PCB layout guidelines. The TPS65911x Schematic Checklist is available and provides  
recommended connections for each pin.  
7.2 Typical Application  
The default voltages in Figure 7-1 reflect the TPS65911A configuration. Other TPS65911 device options  
may have different default voltages.  
120  
Applications, Implementation, and Layout  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
< 12V  
GNDC  
VBST  
DRVH  
SW  
TPS65911A  
GND  
66AK2G12  
V5IN  
GND  
1 F  
Default 1.0 V, DVS  
CVDD  
GND  
VREF  
DRVL  
VOUT  
GND  
100 nF  
GND  
GND  
REFGND  
VFB  
To V5IN  
+5 V  
VDDCtrl  
TRIP  
VCC1  
VCC2  
10 F  
GND  
GND  
Default 1.0 V  
Default 1.35 V  
Default 3.3 V  
SW1  
CVDD1  
VDD1  
1500 mA  
DVS  
2.2 H  
2.2 H  
2.2 H  
10 F  
10 F  
VFB1  
GND  
VCCIO  
VCC3  
GND1  
SW2  
GND  
10 F  
DVDD_DDR  
DVDD33  
VDD2  
1500 mA  
DVS  
GND  
10 F  
VFB2  
4.7 F  
GND2  
SWIO  
GND  
GND  
VCC4  
VIO  
1100 mA  
4.7 F  
10 F  
VFBIO  
GND  
GNDIO  
VDDIO  
VCC5  
GND  
4.7 F  
Connects to system 1.8V/3.3V IO supply  
VCC6  
2.7V < Vin < 3.6V  
If LDO1 or LDO2 used  
GND  
LDO1  
320 mA  
Default 1.8 V  
VCC6  
DVDD18  
AVDDA_XPLL  
4.7 F  
2.2 F  
GND  
GND  
LDO2  
320 mA  
Default 1.8 V  
VCC7  
4.7 F  
2.2 F  
VCC5  
GND  
GND  
LDO3  
200 mA  
Default 1.8 V  
VCCS  
VBACKUP  
2.2 F  
GND  
LDO4  
50 mA  
Default 1.8 V  
5-2000 mF  
GND  
2.2 F  
GND  
12 pF  
LDO5  
VCC4  
300 mA  
VCC3  
Default 3.3 V  
OSC32KIN  
OSC32KOUT  
BOOT1  
GND  
2.2 F  
(crystal is optional)  
GND  
12 pF  
LDO6  
300 mA  
Default 3.3 V  
GND  
2.2 F  
GND  
LDO7  
300 mA  
Default 3.3 V  
VRTC  
2.2 F  
GND  
LDO8  
300 mA  
Default 3.3 V  
5V  
10 k  
(leave GPIO floating if not used)  
GPIO1/3/4/5/8  
2.2 F  
VDDIO  
GND  
VRTC  
20 mA  
1.8 V (Always-ON)  
VCC7  
VRTC  
PWRON  
GND  
2.2 F  
1.2 kꢀ  
1.2 kꢀ  
GND  
(If not used, connect to VRTC)  
(leave floating if not used)  
(leave floating)  
PWRDN  
HDRST  
EN  
SDA_SDI  
SCL_SCK  
INT1  
I2CSDA  
I2CSCL  
GPIO  
(leave floating)  
(leave floating)  
(leave floating)  
(leave floating)  
(leave floating)  
TRAN  
EN2  
PGOOD  
TESTV  
EN1  
SLEEP  
PWRHOLD  
GPIO  
(leave floating)  
PORZ  
NRESPWRON2  
CLK32KOUT  
Figure 7-1. TPS65911A Typical Application  
Copyright © 2010–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
121  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
7.2.1 Design Requirements  
For a typical application shown in Figure 7-1, Table 7-1 lists the primary design parameters of the power  
resources.  
Table 7-1. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
VDD1 voltage  
VDD1 current  
VDD2 voltage  
VDD2 current  
VDDCtrl voltage  
VDDCtrl current  
VIO voltage  
VALUE  
2.7 V to 5.5 V  
1 V  
Up to 1.5 A  
1.35 V  
Up to 1.5 A  
1 V  
(1)  
See  
3.3 V  
Up to 1.1 A  
1.8 V  
VIO current  
LDO1 voltage  
LDO1 current  
LDO2 voltage  
LDO2 current  
LDO3 voltage  
LDO3 current  
LDO4 voltage  
LDO4 current  
LDO5 voltage  
LDO5 current  
LDO6 voltage  
LDO6 current  
LDO7 voltage  
LDO7 current  
LDO8 voltage  
LDO8 current  
Up to 320 mA  
1.8 V  
Up to 320 mA  
1.8 V  
Up to 200 mA  
1.8 V  
Up to 50 mA  
3.3 V  
Up to 300 mA  
3.3 V  
Up to 300 mA  
3.3 V  
Up to 300 mA  
3.3 V  
Up to 300 mA  
(1) Value is dependent on external FETs.  
7.2.2 Detailed Design Procedure  
7.2.2.1 External Component Recommendation  
For crystal oscillator components, see Section 5.10. If RTC domain is expected to be maintained after  
shutdown, VCC7 must have enough capacitance to make sure that when supply is switched off, voltage  
does not fall at a rate faster than 10 mV/ms. This makes sure that RTC domain data is maintained.  
Table 7-2. External Component Recommendation  
PARAMETER  
POWER REFERENCES  
VREF filtering capacitor (CO(VREF)  
VDD1 SMPS  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
)
Connected from VREF to REFGND  
100  
nF  
Input capacitor (CI(VCC1)  
)
X5R or X7R dielectric  
X5R or X7R dielectric  
ƒ = 3 MHz  
10  
10  
10  
µF  
µF  
Output filter capacitor (CO(VDD1)  
)
4
12  
CO filter capacitor ESR  
300  
mΩ  
122  
Applications, Implementation, and Layout  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 7-2. External Component Recommendation (continued)  
PARAMETER  
Inductor (LO(VDD1)  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
µH  
)
2.2  
LO inductor DC resistor (DCRL)  
125  
mΩ  
VDD2 SMPS  
Input capacitor (CI(VCC2)  
)
X5R or X7R dielectric  
10  
10  
µF  
µF  
Output filter capacitor (CO(VDD2)  
)
X5R or X7R dielectric  
ƒ = 3 MHz  
4
12  
CO filter capacitor ESR  
10  
300  
mΩ  
µH  
mΩ  
Inductor (LO(VDD2)  
)
2.2  
LO inductor DC resistor (DCRL)  
125  
VIO SMPS  
Input capacitor (CI(VCCIO)  
)
X5R or X7R dielectric  
X5R or X7R dielectric  
ƒ = 3 MHz  
10  
10  
µF  
µF  
Output filter capacitor (CO(VIO)  
CO filter capacitor ESR  
)
4
12  
10  
300  
mΩ  
µH  
mΩ  
Inductor (LO(VIO)  
)
2.2  
LO inductor DC resistor (DCRL)  
125  
VDDCtrl SMPS  
Input capacitor (CVIN  
High-side drive boost capacitor  
(Cboost  
Input capacitor for V5IN supply  
(CV5IN  
)
4 × 10  
0.1  
µF  
µF  
)
1
µF  
)
Output filter capacitor (CO(VDDCtrl)  
)
330  
9
µF  
mΩ  
µH  
mΩ  
kΩ  
CO filter capacitor ESR  
15  
Inductor (LO(VDDCtrl)  
LO Inductor DC resistor (DCRL)  
Trip resistance (Rtrip  
)
2.7  
20  
)
40  
Feed forward capacitor (C1)  
FET FDMC7660  
LDO1  
330  
pF  
Input capacitor (CI(VCC6)  
)
X5R or X7R dielectric  
4.7  
2.2  
µF  
µF  
Output filtering capacitor (CO(LDO1)  
CO filtering capacitor ESR  
LDO2  
)
0.8  
0
2.64  
500  
mΩ  
Output filtering capacitor (CO(LDO2)  
CO filtering capacitor ESR  
LDO3  
)
0.8  
0
2.2  
2.64  
500  
µF  
mΩ  
Input capacitor (CI(VCC5)  
)
X5R or X7R dielectric  
4.7  
2.2  
µF  
µF  
Output filtering capacitor (CO(LDO3)  
CO filtering capacitor ESR  
LDO4  
)
0.8  
0
2.64  
500  
mΩ  
Output filtering capacitor (CO(LDO4)  
CO filtering capacitor ESR  
LDO5  
)
0.8  
0
2.2  
2.64  
500  
µF  
mΩ  
Input capacitor (CI(VCC4)  
)
X5R or X7R dielectric  
X5R or X7R dielectric  
4.7  
2.2  
µF  
µF  
Output filtering capacitor (CO(LDO5)  
CO filtering capacitor ESR  
LDO6  
)
0.8  
0
2.64  
500  
mΩ  
Input capacitor (CI(VCC3)  
)
4.7  
2.2  
µF  
µF  
Output filtering capacitor (CO(LDO6)  
)
0.8  
2.64  
Copyright © 2010–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
123  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Table 7-2. External Component Recommendation (continued)  
PARAMETER  
CO filtering capacitor ESR  
LDO7  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
0
500  
mΩ  
Output filtering capacitor (CO(LDO7)  
CO filtering capacitor ESR  
LDO8  
)
0.8  
0
2.2  
2.64  
500  
µF  
mΩ  
Output filtering capacitor (CO(LDO8)  
CO filtering capacitor ESR  
VRTC LDO  
)
0.8  
0
2.2  
2.64  
500  
µF  
mΩ  
Input capacitor (CI(VCC7)  
)
X5R or X7R dielectric  
4.7  
2.2  
µF  
µF  
Output filtering capacitor (CO(VRTC)  
CO filtering capacitor ESR  
BACKUP BATTERY  
)
0.8  
0
2.64  
500  
mΩ  
Backup battery capacitor (CBB  
)
5
10  
2000  
1500  
mF  
Series resistors  
CBB = 5 mF to 15 mF  
10  
Ω
7.2.2.2 Controller Design Procedure  
Follow these steps to design the controller:  
1. Design the output filter  
2. Select the FETs  
3. Select the bootstrap capacitor  
4. Select the input capacitors  
5. Set the current limits  
VDDCtrl requires a 5-V supply at the V5IN pin with an input capacitor. For most applications, a 1-μF, X5R,  
20%, 10-V, or similar capacitor must be used for decoupling.  
7.2.2.2.1 Inductor Selection  
An inductor must be placed between the external FETs and the output capacitors. Together, the inductor  
and output capacitors make the double-pole that contributes to stability. In addition, the inductor is directly  
responsible for the output ripple, efficiency, and transient performance. As the inductance increases, the  
ripple current decreases, which typically results in an increased efficiency. However, with an increase in  
inductance, the transient performance decreases. Finally, the selected inductor must be rated for the  
appropriate saturation current, core losses, and DC resistance (DCR). Use Equation 1 to calculate the  
recommended inductance for the controller (L).  
VOUT ì VIN - VOUT  
(
)
L =  
V
IN ì fSW ì IOUTmax ì KIND  
where  
VOUT is the typical output voltage.  
VIN is the typical input voltage.  
fSW is the typical switching frequency.  
IOUTmax is the maximum load current.  
KIND is the ratio of ILripple to the IOUTmax. For this application, TI recommends that KIND is set to a value  
from 0.2 to 0.4.  
(1)  
After selecting the value of the inductor, use Equation 2 to calculate the peak current for the inductor in  
steady state operation, ILmax. The rated saturation current of the inductor must be greater than the ILmax  
current.  
124  
Applications, Implementation, and Layout  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
VOUT ì VIN - VOUT  
(
)
ILmax  
=
V
ì fSW ì IOUTmax ì KIND  
IN  
(2)  
Following Equation 1 and Equation 2, the preferred inductor for VDDCtrl is 2.7 µH, with a DCR of  
approximately 20 mΩ.  
7.2.2.2.2 Selecting the RTRIP Resistor  
The TRIP pin is used to set the VDDCtrl current limit. The load current is sensed by measuring the voltage  
over the low-side FET and comparing it to the voltage at the TRIP pin, VTRIP, with an 8:1 ratio. If the low-  
side FET is greater than an eighth of VTRIP, the VDDCtrl rail shuts down.  
The TRIP resistor then adjusts the range of the VDDCtrl load current monitoring. Use Equation 3 to  
calculate the value of the TRIP resistor (RTRIP) for the application and selected external FETs.  
8 ì IOUTmax ì RDS(on)  
RTRIP  
=
ITRIP  
where  
IOUTmax is the maximum load current.  
ITRIP is the current through the TRIP pin, estimated at 10 µA.  
RDS(on) is the on resistance from the external FETs.  
(3)  
7.2.2.2.3 Selecting the Output Capacitors  
Texas Instruments recommends using ceramic capacitors with low ESR values to provide the lowest  
output voltage ripple. The output capacitor requires an X7R or an X5R dielectric. Y5V and Z5U dielectric  
capacitors, aside from their wide variation in capacitance over temperature, become resistive at high  
frequencies. At light load currents, the controller operates in PFM mode, and the output voltage ripple is  
dependent on the output-capacitor value and the PFM peak inductor current. Higher output-capacitor  
values minimize the voltage ripple in PFM mode. To achieve specified regulation performance and low  
output voltage ripple, the DC-bias characteristic of ceramic capacitors must be considered. The effective  
capacitance of ceramic capacitors drops with increasing DC bias voltage. TI recommends the use of small  
ceramic capacitors placed between the inductor and load with many vias to the power-ground (PGND)  
plane for the output capacitors of the controller. This solution typically provides the smallest and lowest  
cost solution available for DCAP controllers. The selection of the output capacitor is typically driven by the  
output transient response. Equation 4 provides a rough estimate of the minimum required capacitance to  
make sure the transient response is correct.  
2
ITRAN(max) ì L  
COUT  
>
V
IN - VOUT ì V  
(
)
OVER  
where  
ITRAN(max) is the maximum load current step.  
L is the selected inductance.  
VOUT is the minimum programmed output voltage.  
VIN is the maximum input voltage.  
VOVER is the maximum allowable overshoot from programmed voltage.  
(4)  
Because the transient response is affected significantly by the board layout, some experimentation is  
expected to confirm that values derived in this section are applicable to any particular use case.  
Equation 4 is not provided as an absolute requirement, but as a starting point. Alternatively, lists  
recommended capacitor values.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
125  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
 
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
7.2.2.2.4 Selecting FETs  
This controller is designed to drive two n-channel MOSFETs. Typically, lower RDS(on) values are better for  
improving the overall efficiency of the controller, however higher gate-charge thresholds result in lower  
efficiency so these two values must be balanced for optimal performance. As the RDS(on) for the low-side  
FET decreases, the minimum current limit increases. Therefore, make sure the appropriate values are  
selected for the FETs, inductor, output capacitors, and current limit resistor. The Texas Instruments'  
CSD87330Q3D device is a recommended for the controller, depending on the required maximum current.  
7.2.2.2.5 Bootstrap Capacitor  
To make sure the internal high-side gate drivers are supplied with a stable low-noise supply voltage, a  
capacitor must be connected between the SW pin and the VBST pin. TI recommends placing ceramic  
capacitors with a value of 0.1 μF for the controller. TI recommends reserving a small resistor in series with  
the bootstrap capacitor in case the turnon and turnoff of the FETs must be slowed to decrease voltage  
ringing on the switch node, which is a common practice for controller design.  
7.2.2.2.6 Selecting Input Capacitors  
Because of the nature of the switching controller with a pulsating input current, a low ESR input capacitor  
is required for the best input-voltage filtering and also to minimize the interference with other circuits  
caused by high input-voltage spikes. For the controller, a typical 1-μF capacitor can be used for the V5IN  
pin to support the transients on the driver. For the FET input, 40 μF of input capacitance is recommended  
for most applications. To achieve the low ESR requirement, a ceramic capacitor is recommended.  
However, the voltage rating and DC-bias characteristic of ceramic capacitors must be considered. For  
better input-voltage filtering, the input capacitor can be increased without any limit. TI recommends placing  
a ceramic capacitor as near as possible to the FET across the respective VSYS and PGND pins of the  
FETs.  
NOTE  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
7.2.2.3 Converter Design Procedure  
7.2.2.3.1 Selecting the Inductor  
An inductor must be placed between the external FETs and the output capacitors. Together, the inductor  
and output capacitors form a double pole in the control loop that contributes to stability. In addition, the  
inductor is directly responsible for the output ripple, efficiency, and transient performance. As the  
inductance increases, the ripple current decreases, which typically results in an increase in efficiency.  
However, with an increase in inductance, the transient performance decreases. Finally, the selected  
inductor must be rated for the appropriate saturation current, core losses, and DC resistance (DCR).  
NOTE  
The internal parameters for the converters are optimized for a 2.2-µH inductor, however  
using other inductor values is possible as long as they are carefully selected and thoroughly  
tested.  
Use Equation 5 to calculate the recommended inductance for the converter.  
VOUT ì VIN - VOUT  
(
)
L =  
V
IN ì fSW ì IOUTmax ì KIND  
where  
VOUT is the typical output voltage.  
126  
Applications, Implementation, and Layout  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
VIN is the typical input voltage.  
fSW is the typical switching frequency.  
IOUTmax is the maximum load current.  
KIND is the ratio of ILripple to the IOUTmax. For this application, TI recommends that KIND is set to a value  
from 0.2 to 0.4.  
(5)  
After selecting the value of the inductor, use Equation 6 to calculate the peak current for the inductor in  
steady state operation, ILmax. The rated current of the inductor must be greater than the ILmax current.  
VOUT ì VIN - VOUT  
(
)
ILmax  
=
2 ì V ì fSW ì L  
IN  
(6)  
7.2.2.3.2 Selecting Output Capacitors  
TI recommends ceramic capacitors with low ESR values because they provide the lowest output voltage  
ripple. The output capacitor requires either an X7R or X5R rating. Y5V and Z5U capacitors, aside from the  
wide variation in capacitance over temperature, become resistive at high frequencies. At light load  
currents, the converter operates in PFM mode and the output voltage ripple is dependent on the output-  
capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize the voltage  
ripple in PFM mode. To achieve specified regulation performance and low output voltage ripple, the DC-  
bias characteristic of ceramic capacitors must be considered. The effective capacitance of ceramic  
capacitors drops with increasing DC-bias voltage. For the output capacitors of the BUCK converters, TI  
recommends placing small ceramic capacitors between the inductor and load with many vias to the PGND  
plane. This solution typically provides the smallest and lowest-cost solution available for the converters.  
The output capacitance must equal to or greater than the minimum capacitance listed for VDD1, VDD2,  
and VIO (assuming quality layout techniques are followed). The recommended value is 10 µF.  
7.2.2.3.3 Selecting Input Capacitors  
Because of the nature of the switching converter with a pulsating input current, a low ESR input capacitor  
is required for the best input-voltage filtering and to minimize the interference with other circuits caused by  
high input-voltage spikes. For the VCC1, VCC2, and VCCIO pins, 10 μF of input capacitance (after  
derating) is required for most applications. A ceramic capacitor is recommended to achieve the low ESR  
requirement. However, the voltage rating and DC-bias characteristic of ceramic capacitors must be  
considered. The input capacitor can be increased without any limit for better input-voltage filtering.  
NOTE  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
127  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
7.2.3 Application Curves  
VCC1 = 3.8 V  
Vout = 1.2 V  
PWM Mode  
VCC1 = 3.8 V  
Vout = 1.2 V  
PWM Mode  
Figure 7-2. VDD1 Falling Load Transient Response  
Figure 7-3. VDD1 Rising Load Transient Response  
VCC2 = 3.8 V  
Vout = 1.2 V  
PWM Mode  
VCC2 = 3.8 V  
Vout = 1.2 V  
PWM Mode  
Figure 7-4. VDD2 Falling Load Transient Response  
Figure 7-5. VDD2 Rising Load Transient Response  
VCCIO = 3.8 V  
Vout = 1.8 V  
PWM Mode  
VCCIO = 3.8 V  
Vout = 1.8 V  
PWM Mode  
Figure 7-7. VDDIO Rising Load Transient Response  
Figure 7-6. VDDIO Falling Load Transient Response  
128  
Applications, Implementation, and Layout  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
7.2.4 Layout Guidelines  
7.2.4.1 PCB Layout  
As with all switching power supplies, the layout is an important step in the design. Proper layout is  
important for stability, EMI, as well as achieve higher efficiency and load transient response.  
Place the input capacitors as close as possible to the input pins on the IC, and on the same side of the  
board as the IC.  
Place the inductor and output capacitor close to the switch node of the IC.  
Use a solid ground plane for the GND of the buck converters and controller, and use plenty of vias.  
Keep the loop area formed by switch node, inductor, output capacitor, and ground as small as  
possible.  
Route the analog grounds separately from the power grounds, and connect them at the ground plane.  
Use short, wide traces for any trace which carries high current like regulator input, output, and ground  
traces.  
For more detailed guidelines, refer to the TPS65911 Layout Guidelines.  
7.2.5 Layout Example  
Figure 7-8. VDD1 Layout  
Copyright © 2010–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
129  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
Figure 7-9. VDD2 Layout  
Figure 7-10. VDDIO Layout  
130  
Applications, Implementation, and Layout  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Figure 7-11. VDDCtrl Layout  
7.3 Power Supply Recommendations  
The TPS65911 device uses a supply voltage from 2.7 V to 5.5 V. The input supply should be well  
regulated and connected to the VCC input pins. Add external capacitors at each of the device supply pins  
as described in Table 7-2.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
131  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
8 Device and Documentation Support  
8.1 Device Support  
8.1.1 Development Support  
For development support, see the following:  
66AK2G02 DSP + ARM Processor Audio Processing Reference Design  
66AK2G02 DSP + ARM Processor Power Solution Reference Design  
DDR ECC Reference Design to Improve Memory Reliability in 66AK2G02-based Systems  
Freescale i.MX6 Dual&Quad Power Reference Design with TPS65911  
Freescale i.MX6 Power Reference Design for Electronic Point of Sale Applications  
8.1.2 Device Nomenclature  
Table 8-1 lists the acronyms and abbreviations used in this document.  
Table 8-1. Acronyms, Abbreviations, and Definitions  
ACRONYM OR  
DEFINITION  
ABBREVIATION  
DDR  
ES  
Dual-Data Rate (memory)  
Engineering Sample  
ESD  
FET  
Electrostatic Discharge  
Field Effect Transistor  
Embedded Power Controller  
Finite State Machine  
EPC  
FSM  
GND  
GPIO  
HBM  
HD  
Ground  
General-Purpose I/O  
Human Body Model  
Hot-Die  
HS-I2C  
I2C  
High-Speed I2C  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
ID  
Identification  
IDDQ  
IEEE  
IR  
Quiescent supply current  
Institute of Electrical and Electronics Engineers  
Instruction Register  
I/O  
Input/Output  
JEDEC  
JTAG  
LBC7  
LDO  
LP  
Joint Electron Device Engineering Council  
Joint Test Action Group  
Lin Bi-CMOS 7 (360 nm)  
Low Drop Output voltage linear regulator  
Low-Power application mode  
Least Significant Bit  
LSB  
MMC  
MOSFET  
NVM  
OD  
Multimedia Card  
Metal Oxide Semiconductor Field Effect Transistor  
Nonvolatile Memory  
Open Drain  
OMAP™  
RTC  
Open Multimedia Application Platform™  
Real-Time Clock  
132  
Device and Documentation Support  
Copyright © 2010–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
 
TPS65911  
www.ti.com  
SWCS049S JUNE 2010REVISED AUGUST 2018  
Table 8-1. Acronyms, Abbreviations, and Definitions (continued)  
ACRONYM OR  
ABBREVIATION  
DEFINITION  
SMPS  
SPI  
Switched Mode Power Supply  
Serial Peripheral Interface  
Power-On Reset  
POR  
8.2 Documentation Support  
8.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, CSD87330Q3D Synchronous Buck NexFET™ Power Block data sheet  
Texas Instruments, Empowering Designs With Power Management IC (PMIC) for Processor  
Applications application report  
Texas Instruments, Basic Calculation of a Buck Converter's Power Stage application report  
Texas Instruments, TPS65911x Schematic Checklist  
Texas Instruments, TPS65911 Layout Guidelines  
Texas Instruments, TPS65911A User's Guide for 66AK2G12 Processor  
Texas Instruments, TPS659114 for Freescale i.MX6 Dual/Quad User's Guide  
Texas Instruments, TPS659118 User’s Guide for 66AK2G02 Processor  
Texas Instruments, TPS6591133 Centaurus User Guide  
Texas Instruments, TPS659113 Centaurus User Guide  
Texas Instruments, TPS659112 Netra User Guide  
8.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the  
upper right corner, click on Alert me to register and receive a weekly digest of any product information that  
has changed. For change details, review the revision history included in any revised document.  
8.4 Community Resources  
8.4.1 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools  
and contact information for technical support.  
8.5 Trademarks  
MicroStar Junior, OMAP, NexFET, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Copyright © 2010–2018, Texas Instruments Incorporated  
Device and Documentation Support  
133  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
TPS65911  
SWCS049S JUNE 2010REVISED AUGUST 2018  
www.ti.com  
8.7 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
9 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
9.1 Package Description  
The following table lists the package descriptions for the TPS65911 PMU devices:  
PACKAGE  
TPS65911  
Type  
ZRC98 BGA MicroStar Junior™  
Size (mm)  
6 × 9  
1 layer  
0.65 mm  
98  
Substrate layers  
Pitch ball array (mm)  
Number of balls  
Thickness (mm) (maximum height including balls)  
1 mm  
134  
Mechanical, Packaging, and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: TPS65911  
Copyright © 2010–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Nov-2020  
PACKAGING INFORMATION  
Orderable Device  
TPS6591102A2ZRCR  
TPS6591102AA2ZRCR  
TPS6591103A2ZRCR  
TPS6591104A2ZRC  
TPS6591104A2ZRCR  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LIFEBUY  
BGA  
MICROSTAR  
JUNIOR  
ZRC  
98  
98  
98  
98  
98  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
TPS6591102A2  
LIFEBUY  
LIFEBUY  
LIFEBUY  
LIFEBUY  
BGA  
MICROSTAR  
JUNIOR  
ZRC  
ZRC  
ZRC  
ZRC  
2500  
2500  
240  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
-40 to 85  
TPS6591102AA2  
TPS6591103A2  
TPS6591104A2  
TPS6591104A2  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
BGA  
2500  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
MICROSTAR  
JUNIOR  
TPS6591104DA2NMA  
TPS6591104DA2ZRC  
PREVIEW  
ACTIVE  
NFBGA  
NMA  
ZRC  
98  
98  
240  
240  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
6591104DA2NMA  
TPS6591104DA2  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
TPS6591104EA2ZRCR  
LIFEBUY  
BGA  
MICROSTAR  
JUNIOR  
ZRC  
98  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
T6591104EA2  
TPS65911062A2NMARP  
TPS6591106A2ZRCR  
PREVIEW  
LIFEBUY  
NFBGA  
NMA  
ZRC  
98  
98  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
65911062A2NMA  
T6591106A2  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
TPS6591109A2ZRCR  
TPS659110A2NMAR  
LIFEBUY  
BGA  
MICROSTAR  
JUNIOR  
ZRC  
NMA  
98  
98  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
TPS6591109A2  
659110A2NMA  
PREVIEW  
NFBGA  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Nov-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS659110A2ZRCR  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZRC  
98  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
TPS659110A2  
TPS659112A2NMAR  
TPS659112A2ZRCR  
PREVIEW  
ACTIVE  
NFBGA  
NMA  
ZRC  
98  
98  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
659112A2NMA  
TPS659112A2  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
TPS6591133A2NMAR  
TPS6591133A2ZRC  
PREVIEW  
ACTIVE  
NFBGA  
NMA  
ZRC  
98  
98  
240  
240  
TBD  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
TPS6591133A2  
TPS6591133A2  
TPS659113A2  
TPS659113A2  
TPS6591133A2ZRCR  
TPS659113A2ZRC  
TPS659113A2ZRCR  
LIFEBUY  
LIFEBUY  
LIFEBUY  
BGA  
MICROSTAR  
JUNIOR  
ZRC  
ZRC  
ZRC  
98  
98  
98  
2500  
240  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
TPS659114A2NMAR  
TPS659114A2ZRCR  
PREVIEW  
ACTIVE  
NFBGA  
NMA  
ZRC  
98  
98  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
659114A2NMA  
659114A2  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
TPS65911AA2NMAR  
TPS65911AA2NMAT  
TPS65911AA2ZRCR  
PREVIEW  
PREVIEW  
LIFEBUY  
NFBGA  
NMA  
NMA  
ZRC  
98  
98  
98  
2500  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
65911AA2NMA  
65911AA2NMA  
65911AA2  
NFBGA  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
TPS65911AA2ZRCT  
LIFEBUY  
BGA  
MICROSTAR  
JUNIOR  
ZRC  
98  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
65911AA2  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Nov-2020  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jan-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6591102A2ZRCR  
BGA MI  
CROSTA  
R JUNI  
OR  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
98  
98  
98  
98  
98  
98  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TPS6591104A2ZRCR  
BGA MI  
CROSTA  
R JUNI  
OR  
2500  
2500  
2500  
2500  
2500  
TPS6591104EA2ZRCR BGA MI  
CROSTA  
R JUNI  
OR  
TPS6591106A2ZRCR  
TPS6591109A2ZRCR  
TPS659110A2ZRCR  
BGA MI  
CROSTA  
R JUNI  
OR  
BGA MI  
CROSTA  
R JUNI  
OR  
BGA MI  
CROSTA  
R JUNI  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jan-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OR  
TPS659112A2ZRCR  
TPS6591133A2ZRCR  
TPS659113A2ZRCR  
TPS659114A2ZRCR  
TPS65911AA2ZRCR  
TPS65911AA2ZRCT  
BGA MI  
CROSTA  
R JUNI  
OR  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
98  
98  
98  
98  
98  
98  
2500  
2500  
2500  
2500  
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
BGA MI  
CROSTA  
R JUNI  
OR  
BGA MI  
CROSTA  
R JUNI  
OR  
BGA MI  
CROSTA  
R JUNI  
OR  
BGA MI  
CROSTA  
R JUNI  
OR  
BGA MI  
CROSTA  
R JUNI  
OR  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jan-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6591102A2ZRCR  
BGA MICROSTAR  
JUNIOR  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
ZRC  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
2500  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
31.8  
31.8  
31.8  
31.8  
31.8  
31.8  
31.8  
31.8  
31.8  
31.8  
31.8  
31.8  
TPS6591104A2ZRCR  
BGA MICROSTAR  
JUNIOR  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
250  
TPS6591104EA2ZRCR BGA MICROSTAR  
JUNIOR  
TPS6591106A2ZRCR  
TPS6591109A2ZRCR  
TPS659110A2ZRCR  
TPS659112A2ZRCR  
TPS6591133A2ZRCR  
TPS659113A2ZRCR  
TPS659114A2ZRCR  
TPS65911AA2ZRCR  
TPS65911AA2ZRCT  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
BGA MICROSTAR  
JUNIOR  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS659110A2ZRC

具有 4 个直流/直流转换器、9 个 LDO 和 RTC 的集成电源管理 IC (PMIC) | ZRC | 98
TI

TPS659112A2NMAR

TPS65911 Integrated Power Management Unit Top Specification
TI

TPS659112A2ZRC

具有 4 个直流/直流转换器、9 个 LDO 和 RTC 的集成电源管理 IC (PMIC) | ZRC | 98
TI

TPS6591131A2ZRCR

具有 4 个直流/直流转换器、9 个 LDO 和 RTC 的集成电源管理 IC (PMIC) | ZRC | 98
TI

TPS6591133A2NMA

TPS65911 Integrated Power Management Unit Top Specification
TI

TPS6591133A2NMAR

TPS65911 Integrated Power Management Unit Top Specification
TI

TPS659114A2NMAR

TPS65911 Integrated Power Management Unit Top Specification
TI

TPS659114A2ZRCT

具有 4 个直流/直流转换器、9 个 LDO 和 RTC 的集成电源管理 IC (PMIC) | ZRC | 98
TI

TPS659116A2ZRC

具有 4 个直流/直流转换器、9 个 LDO 和 RTC 的集成电源管理 IC (PMIC) | ZRC | 98
TI

TPS659116A2ZRCR

具有 4 个直流/直流转换器、9 个 LDO 和 RTC 的集成电源管理 IC (PMIC) | ZRC | 98
TI

TPS659118A2ZRCT

具有 4 个直流/直流转换器、9 个 LDO 和 RTC 的集成电源管理 IC (PMIC) | ZRC | 98
TI

TPS659119-Q1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC
TI