TPS659119-Q1 [TI]

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC;
TPS659119-Q1
型号: TPS659119-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC

转换器
文件: 总133页 (文件大小:1700K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
TPS659119-Q1 汽车类集成电源管理单元顶层规范  
1 特性  
(CLK32KOUT) 和系统复位 (NRESPWRON)  
安全装置  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
两个开关状态 LED 脉冲发生器和一个脉宽调制  
(PWM) 发生器  
器件温度 3 级:-40°C 85°C 的环境运行温度  
范围  
2 应用范围  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
汽车  
信息娱乐  
器件充电器件模型 (CDM) ESD 分类等级 C4B  
自动数据采集 (ADA)  
组合仪表  
支持 EEPROM 可编程性的嵌入式电源控制器  
(EPC)  
两个用于处理器内核(VDD1VDD2)且支持动态  
电压调节的高效降压直流到直流 (DC-DC) 转换器  
3 说明  
TPS659119-Q1 器件是一款集成型电源管理 IC,专用  
于所搭载应用处理器需要多个电源轨的系统。 此器件  
提供三个降压转换器、一个用于控制外部转换器的接口  
以及 8 LDO,可灵活用于支持不同的处理器和应  
用。  
一个用于 I/O 电源 (VIO) 的高效降压 DC-DC 转换  
一个控制外部 DCDC 转换器 (EXTCTRL) 的接口  
8 个低压降 (LDO) 电压稳压器和 1 个实时时钟  
(RTC) LDO(为内部 RTC 供电)  
一个高速 I2C 通用控制命令接口 (CTL-I2C)  
其中两个降压转换器为双处理器内核供电,并支持通过  
专用的 I2C 接口动态调节电压,从而实现最优节能。  
3 个转换器为系统中的输入和输出 (I/O) 以及存储器  
供电。 通过控制外部转换器可以针对系统中的高电流  
轨对外部转换器电压进行排序和调节。  
两个用于控制电源的独立使能信号 (EN1EN2),  
此信号可被用作一个高速 I2C 接口,专门用于  
VDD1 VDD2 电压调节。  
热关断保护和热模检测  
一个具有以下资源的实时时钟 (RTC):  
快速启动 16.384MHz 晶体振荡器  
器件信息(1)  
由晶体振荡器、外部 32kHz 时钟或内部 32kHz  
RC 振荡器供源的可配置时钟源  
部件号  
封装  
封装尺寸(标称值)  
TPS659119-Q1  
HTQFP (80)  
12.00mm x 12.00mm  
日期、时间和日历  
闹铃功能  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
LDO1  
320 mA  
9 个支持复用特性的可配置通用输入输出 (GPIO)  
接口:  
VDD1  
0.6 to 1.5  
12.5-mV Step  
1.5  
V
A
LDO2  
320 mA  
其中 4 个可针对外部资源启用,包括在加电序  
列之中并由状态机控制  
VDD2  
0.6 to 1.5  
Power Control State  
Machine  
LDO3  
200 mA  
V
12.5-mV Step  
1.5  
A
LDO4  
50 mA  
作为 GPIGPIO 支持逻辑电平检测并可针对唤  
醒生成可屏蔽中断  
EEPROM  
Watchdog  
VIO  
1.5V, 1.8 V, 2.5 V, 3.3  
V
1.5  
A
LDO5  
300 mA  
其中的 2 GPIO 具有驱动 LED 所需的 10mA  
电流吸收能力  
LDO6  
300 mA  
EXTCTRL  
V/V to 3/7 V/V  
65 steps  
1
Thermal Monitoring and  
Shutdown  
通过一个外部 3MHz 时钟实现的 DCDC 开关同  
LDO7  
300 mA  
Analog  
References  
PLL  
LDO8  
300 mA  
LDOVRTC  
and POR  
两个用于冷复位 (HDRST) 的复位输入和一个用于  
热复位输入的电源初始化复位 (PWRDN)  
2
2x  
I
C
2x LED Pulse Generator  
Real-time  
Clock  
16-MHz  
XTAL  
9x GPIO  
PWM Generator  
包括在电源序列衷的 32kHz 时钟输出  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SWCS106  
 
 
 
 
 
 
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
7.23 LDO8..................................................................... 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(继续) ........................................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 Handling Ratings....................................................... 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Characteristics ............................................ 8  
7.5 External Component Recommendation .................... 8  
7.6 I/O Pullup and Pulldown Characteristics................. 10  
7.7 Digital I/O Voltage Electrical Characteristics........... 10  
7.8 I2C Interface and Control Signals ........................... 12  
7.24 Timing Requirements for Boot Sequence  
Example ................................................................... 28  
7.25 Power Control Timing Requirements.................... 28  
7.26 Device SLEEP State Control Timing  
Requirements........................................................... 29  
7.27 Supplies State Control Through EN1 and EN2  
Timing Characteristics.............................................. 29  
7.28 VDD1 Supply Voltage Control Through EN1 Timing  
Requirements........................................................... 29  
7.29 Typical Characteristics.......................................... 34  
Detailed Description ............................................ 36  
8.1 Overview ................................................................. 36  
8.2 Functional Block Diagram ....................................... 37  
8.3 Feature Description................................................. 38  
8.4 Device Functional Modes........................................ 42  
8.5 Programming........................................................... 54  
8.6 Register Maps......................................................... 58  
Application and Implementation ...................... 117  
9.1 Application Information.......................................... 117  
9.2 Typical Application ................................................ 117  
8
9
7.9 Switching Characteristics—I2C Interface and Control  
Signals ..................................................................... 12  
7.10 Power Consumption.............................................. 13  
7.11 Power References and Thresholds....................... 13  
7.12 Thermal Monitoring and Shutdown....................... 13  
7.13 32-kHz RTC Clock ................................................ 14  
7.14 VRTC LDO............................................................ 15  
7.15 VIO SMPS............................................................. 15  
7.16 VDD1 SMPS ......................................................... 16  
7.17 VDD2 SMPS ......................................................... 17  
7.18 EXTCTRL.............................................................. 19  
7.19 LDO1 AND LDO2.................................................. 20  
7.20 LDO3 and LDO4 ................................................... 22  
7.21 LDO5..................................................................... 24  
7.22 LDO6 and LDO7 ................................................... 25  
10 Power Supply Recommendations ................... 121  
11 Layout................................................................. 121  
11.1 Layout Guidelines ............................................... 121  
11.2 Layout Example .................................................. 122  
12 器件和文档支持 ................................................... 123  
12.1 器件支持.............................................................. 123  
12.2 ..................................................................... 123  
12.3 静电放电警告....................................................... 123  
12.4 术语表 ................................................................. 124  
13 机械封装和可订购信息 ........................................ 124  
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (July 2014) to Revision E  
Page  
Updated the PSKIP rows for the TPS659119KBIPFPRQ1 in the EEPROM Configuration table ........................................ 49  
已添加 column for TPS659119LBIPFP to and removed the TOP-SIDE MARKING row from the EEPROM  
CONFIGURATION table in the BOOT CONFIGURATION AND SWITCH-ON AND SWITCH-OFF SEQUENCES  
section .................................................................................................................................................................................. 49  
Changes from Revision C (August 2013) to Revision D  
Page  
已更改 CDM 分类等级从 C4A 更改为 C4B,且更新了 CDM ESD 额定值以包含边角引脚值以及其它引脚值 ....................... 1  
更新了数据表格式以包含新文档流程和以下新增条目: 器件信息表、概述部分、应用和实施部分、电源相关建议部  
分、布局部分、器件和文档支持部分(目前包含词汇表)以及机械、封装和可订购信息部分。 另外还删除了附录 A:  
功能寄存器并将寄存器映射和说明移动到了详细说明...................................................................................................... 1  
Deleted the PARAMETER and TEST CONDITION column headings from the Absolute Maximum Ratings,  
Recommended Operating Conditions, and External Component Recommendation tables ................................................. 7  
Moved storage temperature range and ESD ratings from the Absolute Maximum Ratings table into the new  
Handling Ratings table .......................................................................................................................................................... 7  
Changed the TYP column to NOM in the Recommended Operating Conditions table.......................................................... 7  
Replaced Characteristics with Requirements in all timing table titles ................................................................................... 7  
2
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Split the DC output parameter for each LDO into output voltage, step size, and output accuracy and removed  
multiple TYP values ............................................................................................................................................................... 7  
已添加 column for TPS659119KBIPFP (top-side marking) to the EEPROM CONFIGURATION table in the BOOT  
CONFIGURATION AND SWITCH-ON AND SWITCH-OFF SEQUENCES section............................................................. 49  
已添加 pullup resistors to VDDIO on the I2C pins in the Application Schematic image..................................................... 118  
已添加 在文档末尾的封装选项附录以及封装材料信息页面................................................................................................. 123  
Changes from Revision B (April 2013) to Revision C  
Page  
Added Storage Temperature range to ABSOLUTE MAXIMUM RATINGS table................................................................... 7  
Changes from Revision A (April 2013) to Revision B  
Page  
Changed 0x20 to 0x22 for TPS659119HAIPFPRQ1 column in EEPROM Configuration table. .......................................... 49  
版权 © 2013–2014, Texas Instruments Incorporated  
3
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
5 说明(继续)  
此器件还包含 8 个通用 LDO,能够提供大范围的电压和电流能力。 其中 5 LDO 支持 1 3.3V(步长  
100mV),而其它 3 LED 支持 1 3.3V(步长 50mV)。 所有 LDO 均可由 I2C 接口完全控制。  
除了电源稳压器,此器件还包含九个具有复用功能的可配置 GPIO,用于支持广泛的功能。 此器件中还包含一个嵌  
入式电源控制器,用于管理系统的上电排序要求。 电源排序由 EEPROM 设定。  
6 Pin Configuration and Functions  
PFP Package, 0.5-mm Pitch  
80-Pin HTQFP With Thermal Pad  
Top View  
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
40  
39  
38  
37  
36  
61  
62  
63  
64  
65  
VCC1  
SLEEP  
VCC5  
VCCS  
GPIO8  
LDO3  
CLK32KOUT  
OSCEXT32K  
OSC16MOUT  
OSC16MIN  
GPIO1  
GPIO6  
NRESPWRON  
VCC2  
35  
34  
33  
32  
31  
66  
67  
68  
69  
70  
VCC2  
BOOT1  
GPIO5  
SW2  
VREF  
SW2  
Thermal pad  
REFGND  
HDRST  
VFBIO  
30  
29  
28  
27  
26  
GND2  
71  
72  
73  
74  
75  
GND2  
GPIO7  
VFB2  
GPIO4  
INT1  
GNDIO  
GNDIO  
SWIO  
GPIO2  
LDO5  
25  
24  
23  
22  
21  
76  
77  
78  
79  
80  
LDO5  
SWIO  
VCC4  
VCCIO  
VCCIO  
VCC8  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Pin Functions  
PIN  
NAME  
TYPE  
I/O  
DESCRIPTION  
SUPPLIES  
PU / PD  
NO.  
LDO8  
1
Power  
Digital  
Analog  
O
I
LDO regulator output  
VCC3, REFGND  
VRTC, DGND  
VRTC, DGND  
PD 5 µA  
Programmable PD  
(default active)  
PWRHOLD  
PWRDN  
2
Switch-on, switch off control signal and GPI  
Reset input, for example, thermal reset  
3
4
I
PD  
LDO6  
Power  
O
LDO regulator output  
VCC3, REFGND  
PD 5 µA  
5
VCC3  
LDO7  
GPIO0  
6
Power  
Power  
Digital  
I
LDO6 and LDO7 power Input  
LDO regulator output  
VCC3, AGND2  
VCC3, REFGND  
VCC7, DGND  
No  
7
O
PD 5 µA  
OD: external PU  
8
I/O  
GPIO, push pull and OD as output  
9
LDO2  
VCC6  
LDO1  
Power  
Power  
Power  
O
I
LDO regulator output  
LDO1, LDO2 power Input  
LDO regulator output  
VCC6, REFGND  
VCC6, AGND2  
VCC6, REFGND  
No  
No  
No  
10  
11  
12  
13  
14  
O
I2C bidirectional-data signal and serial-peripheral-  
interface data input (multiplexed)  
SDA_SDI  
SCL_SCK  
EN2  
15  
16  
17  
18  
Digital  
Digital  
Digital  
Digital  
I/O  
I/O  
I/O  
I/O  
VDDIO, DGND  
VDDIO, DGND  
VDDIO, DGND  
VDDIO, DGND  
External PU  
External PU  
External PU  
External PU  
I2C bidirectional-clock signal and serial-peripheral-  
interface clock input (multiplexed)  
Enable for supplies and voltage scaling dedicated to  
I2C data  
Enable for supplies and voltage scaling dedicated to  
I2C clock  
EN1  
VDDIO  
AGND2  
19  
20  
21  
22  
23  
24  
25  
26  
Power  
Power  
I
Digital I/O supply  
Analog ground  
VDDIO, DGND  
AGND2  
No  
No  
I/O  
VCCIO  
SWIO  
Power  
Power  
Power  
Digital  
I
VIO DC-DC power Input  
VIO DC-DC switched output  
VIO DC-DC power ground  
GPIO  
VCCIO, GNDIO  
VCCIO, GNDIO  
VCCIO, GNDIO  
VRTC, DGND  
No  
O
No  
GNDIO  
GPIO4  
I/O  
No  
I/O  
OD  
I
27  
OD: External PU  
VFBIO  
28  
29  
30  
31  
Analog  
Digital  
Analog  
Analog  
VIO feedback voltage  
Cold reset  
VCC7, DGND  
VRTC, DGND  
REFGND  
PD 5 µA  
PD  
HDRST  
REFGND  
VREF  
I
I/O  
O
Reference ground  
Bandgap voltage  
No  
VCC7, REFGND  
No  
I/O  
OD  
I
GPIO5  
BOOT1  
GPIO1  
32  
33  
34  
Digital  
Digital  
Digital  
GPIO  
VRTC, DGND  
VRTC, DGND  
VRTC, DGND  
OD: external PU  
No  
Power-up sequence selection  
GPIO and LED1 output  
I/O  
OD  
OD: External PU  
External PD if not in  
use  
OSC16MIN  
35  
36  
37  
Analog  
Analog  
Digital  
I
O
I
16.384-MHz crystal oscillator input  
16.384-MHz crystal oscillator output  
External 32-kHz clock input  
VCC7, DGND  
VCC7, DGND  
VRTC, DGND  
OSC16MOUT  
OSCEXT32K  
No  
External PD if not in  
use  
LDO3  
VCCS  
VCC5  
LDO4  
TESTV  
38  
39  
40  
41  
42  
Power  
Analog  
Power  
Power  
Analog  
O
I/O  
I
LDO regulator output  
VCC5, REFGND  
VCC7, DGND  
VCC5, AGND  
VCC5, REFGND  
VCC7, AGND  
PD 5 µA  
No  
VCC7 voltage sense input  
LDO3 and LDO4 power Input  
LDO regulator output  
No  
O
O
PD 5 µA  
No  
Analog test output (DFT)  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
I/O  
DESCRIPTION  
SUPPLIES  
PU / PD  
NAME  
NO.  
I/O  
OD  
O
GPIO3  
43  
Digital  
GPIO and LED2 output  
VRTC, DGND  
OD: External PU  
PD active during  
device OFF  
state.External pullup  
when ACTIVE  
NRESPWRON2  
44  
Digital  
Second NRESPWRON output  
VRTC, DGND  
OD  
VBACKUP  
AGND  
VCC7  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
Power  
Power  
Power  
Power  
Power  
Analog  
Digital  
Analog  
Power  
Analog  
I
I/O  
I
Tie this pin to AGND  
VBACKUP, AGND  
AGND  
No  
Analog ground  
No  
VRTC power input and analog references supply  
LDO regulator output  
VCC7, REFGND  
VCC7, REFGND  
AGNDEX  
No  
VRTC  
O
I/O  
I
PD 5 µA  
No  
AGNDEX  
VSENSE  
EN  
EXTCTRL resistive divider ground  
EXTCTRL resistive divider output  
EXTCTRL enable signal for external converter  
EXTCTRL resistive divider input  
Digital ground  
VOUT, AGNDEX  
VCC7, DGND  
VOUT, AGNDEX  
DGND  
No  
O
I
No  
VOUT  
No  
DGND  
VFB1  
I/O  
I
No  
VDD1 feedback voltage  
VCC7, DGND  
PD 5 µA  
Programmable PU  
(default active)  
PWRON  
GND1  
55  
Digital  
Power  
I
External switch-on control (ON button)  
VDD1 DC-DC power ground  
VCC7, DGND  
VCC1, GND1  
56  
57  
58  
59  
60  
61  
I/O  
No  
No  
No  
SW1  
Power  
Power  
O
VDD1 DC-DC switched output  
VDD1 DC-DC power Input  
VCC1, GND1  
VCC1, GND1  
VCC1  
I
I
Programmable PD  
(default active)  
SLEEP  
GPIO8  
62  
63  
Digital  
Digital  
ACTIVE-SLEEP state transition control signal  
GPIO  
VDDIO, DGND  
VRTC, DGND  
I/O,  
OD  
OD: External PU  
PD, disabled in  
ACTIVE or SLEEP  
state  
CLK32KOUT  
64  
Digital  
O
32-kHz clock output  
VDDIO, DGND  
I/O,  
OD  
GPIO6  
65  
66  
Digital  
Digital  
GPIO  
VRTC, DGND  
VDDIO, DGND  
OD: External PU  
PD active during  
device OFF state  
NRESPWRON  
O
I
Power off reset  
67  
68  
69  
70  
71  
72  
VCC2  
SW2  
Power  
Power  
VDD2 DC-DC power input  
VCC2, GND2  
VCC2, GND2  
No  
No  
O
VDD2 DC-DC switched output  
GND2  
GPIO7  
Power  
Digital  
I/O  
VDD2 DC-DC power ground  
GPIO  
VCC2, GND2  
VRTC, DGND  
No  
I/O,  
OD  
73  
OD: External PU  
VFB2  
INT1  
74  
75  
Analog  
Digital  
I
VDD2 DC-DC feedback voltage  
Interrupt flag  
VCC7, DGND  
VDDIO, DGND  
PD 5 µA  
No  
O
I/O,  
OD  
GPIO2  
LDO5  
76  
Digital  
Power  
GPIO and DC-DC clock synchronization  
LDO regulator output  
VRTC, DGND  
OD: External PU  
PD 5 µA  
77  
78  
79  
80  
O
VCC4, REFGND  
VCC4  
VCC8  
Power  
Power  
I
I
LDO5 power input  
LDO8 power input  
VCC4, AGND2  
VCC8, AGND2  
No  
No  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–2  
MAX  
UNIT  
V
VCC1, VCC2, VCCIO, VCC3, VCC4, VCC5, VCC7, VCC8  
VCC6, VDDIO  
7
3.6  
V
7
V
SW1, SW2, SWIO  
10 ns Transient  
7
V
VFB1,VFB2,VFBIO  
VOUT, VSENSE  
BOOT1  
–0.3  
–0.3  
–0.3  
3.6  
V
7
V
VRTCMAX + 0.3  
V
SDA_SDI, SCL_SCK, EN2, EN1, SLEEP, INT1, CLK32KOUT,  
NRESPWRON  
–0.3  
VDDIOMAX + 0.3  
V
Voltage range  
PWRON  
–0.3  
–0.3  
7
7
V
V
PWRHOLD, GPIO0  
OSCEXT32K, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6,  
GPIO7, GPIO8(2)  
–0.3  
7
V
HDRST  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
VRTCMAX + 0.3  
V
V
OSC16MIN, OSC16MOUT  
NRESPWRON2(2)  
PWRDN(3)  
5.7  
7
V
7
V
VCCS  
7
V
Peak output current range All other pins than power resources  
Functional junction temperature range  
5
mA  
°C  
–45  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VRTC supplies the I/O but the I/O can also be driven from VCC7 or to VCC7 voltage level.  
(3) VRTC supplies the input supplied but can also be driven from VCC7 voltage level.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
Human body model (HBM), per AEC-Q100-002(1)  
–55  
150  
°C  
–2000 2000  
V
V
Electrostatic  
discharge  
Corner pins (1, 20, 21,  
40, 41, 60, 61, and 80)  
V(ESD)  
–750  
–500  
750  
500  
Charged device model (CDM), per AEC Q100-011  
Other pins  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
Note: VCC7 should be connected to highest supply that is connected to device VCCx pin.  
Exception: The VCC4, VCC5, VIN, and AVIN inputs can be higher than VCC7. VCCS can be higher than VCC7 if  
VMBBUF_BYPASS = 0 (buffer is enabled).  
MIN  
2.7  
1.7  
4
NOM  
MAX UNIT  
VCC5, VCCS  
5.5  
5.5  
V
V
V
V
V
V
V
V
VCC3, VCC4, VCC8  
VCC1, VCC2, VCCIO, VCC7  
5
5.5  
VCC6, VDDIO  
1.4  
–0.1  
0
3.3  
3.6  
VSENSE  
6.5  
PWRON  
3.8  
VDDIO  
VRTC  
5.5  
Input voltage range  
SDA_SDI, SCL_SCK, EN2, EN1, SLEEP, INT1, CLK32KOUT  
PWRHOLD, HDRTS  
1.65  
1.65  
3.45  
5.5  
GPIO0, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, GPIO7,  
GPIO8, PWRDN  
1.65  
VRTC  
5.5  
V
VCCS  
0
0
5.5  
5.5  
V
V
OSCEXT32K  
7.4 Thermal Characteristics  
over operating free-air temperature range (unless otherwise noted)  
TPS659119-Q1  
PFP (80 PINS)  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
34.1  
9.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
10.1  
0.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
9.9  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 External Component Recommendation  
For crystal oscillator components, see the 32-kHz RTC Clock section. Note: The VCC7 supply must have enough  
capacitance to specify that when the supply is switched off, voltage does not fall at a rate faster than 10 mV/ms. This ensures  
that RTC domain data is maintained.  
MIN  
NOM  
MAX  
UNIT  
POWER REFERENCES  
CO(VREF)  
VREF filtering capacitor  
Connected from VREF to REFGND  
100  
nF  
VDD1 SMPS  
CI(VCC1)  
Input capacitor  
X5R or X7R dielectric  
X5R or X7R dielectric  
f = 3 MHz  
10  
10  
µF  
µF  
CO(VDD1)  
Output filter capacitor  
CO filter capacitor ESR  
Inductor  
4
12  
10  
300  
mΩ  
µH  
mΩ  
LO(VDD1)  
DCRL  
2.2  
LO inductor dc resistor  
125  
VDD2 SMPS  
CI(VCC2)  
Input capacitor  
X5R or X7R dielectric  
X5R or X7R dielectric  
f = 3 MHz  
10  
10  
µF  
µF  
CO(VDD2)  
Output filter capacitor  
CO filter capacitor ESR  
Inductor  
4
12  
10  
300  
mΩ  
µH  
mΩ  
LO(VDD2)  
DCRL  
2.2  
LO inductor dc resistor  
125  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
External Component Recommendation (continued)  
For crystal oscillator components, see the 32-kHz RTC Clock section. Note: The VCC7 supply must have enough  
capacitance to specify that when the supply is switched off, voltage does not fall at a rate faster than 10 mV/ms. This ensures  
that RTC domain data is maintained.  
MIN  
NOM  
MAX  
UNIT  
VIO SMPS  
CI(VCCIO)  
CO(VIO)  
Input capacitor  
X5R or X7R dielectric  
X5R or X7R dielectric  
f = 3 MHz  
10  
10  
µF  
µF  
Output filter capacitor  
CO filter capacitor ESR  
Inductor  
4
12  
10  
300  
mΩ  
µH  
mΩ  
LO(VIO)  
DCRL  
2.2  
LO inductor dc resistor  
125  
LDO1  
CI(VCC6)  
CO(LDO1)  
Input capacitor  
X5R or X7R dielectric  
4.7  
2.2  
µF  
µF  
Output filtering capacitor  
CO filtering capacitor ESR  
0.8  
0
2.64  
500  
mΩ  
LDO2  
CO(LDO2)  
Output filtering capacitor  
CO filtering capacitor ESR  
0.8  
0
2.2  
2.64  
500  
µF  
mΩ  
LDO3  
CI(VCC5)  
CO(LDO3)  
Input capacitor  
X5R or X7R dielectric  
4.7  
2.2  
µF  
µF  
Output filtering capacitor  
CO filtering capacitor ESR  
0.8  
0
2.64  
500  
mΩ  
LDO4  
CO(LDO4)  
Output filtering capacitor  
CO filtering capacitor ESR  
0.8  
0
2.2  
2.64  
500  
µF  
mΩ  
LDO5  
CI(VCC4)  
Input capacitor  
X5R or X7R dielectric  
VOUT(LDOx) > 1.2 V  
VOUT(LDOx) 1.2 V  
4.7  
2.2  
2
µF  
µF  
0.8  
0.8  
0
2.64  
2.2  
CO(LDO5)  
Output filtering capacitor  
CO filtering capacitor ESR  
500  
mΩ  
LDO6  
CI(VCC3)  
Input capacitor  
X5R or X7R dielectric  
VOUT(LDOx) > 1.2 V  
VOUT(LDOx) 1.2 V  
4.7  
2.2  
2
µF  
µF  
0.8  
0.8  
0
2.64  
2.2  
CO(LDO6)  
Output filtering capacitor  
CO filtering capacitor ESR  
500  
mΩ  
LDO7  
VOUT(LDOx) > 1.2 V  
0.8  
0.8  
0
2.2  
2
2.64  
2.2  
CO(LDO7)  
Output filtering capacitor  
CO filtering capacitor ESR  
µF  
VOUT(LDOx) 1.2 V  
500  
mΩ  
LDO8  
CI(VCC8)  
Input capacitor  
X5R or X7R dielectric  
VOUT(LDOx) > 1.2 V  
VOUT(LDOx) 1.2 V  
4.7  
2.2  
2
µF  
µF  
0.8  
0.8  
0
2.64  
2.2  
CO(LDO8)  
Output filtering capacitor  
CO filtering capacitor ESR  
500  
mΩ  
VRTC LDO  
CI(VCC7)  
Input capacitor  
X5R or X7R dielectric  
4.7  
2.2  
µF  
µF  
CO(VRTC)  
Output filtering capacitor  
CO filtering capacitor ESR  
0.8  
0
2.64  
500  
mΩ  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.6 I/O Pullup and Pulldown Characteristics  
over operating free-air temperature range (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
–20%  
2
TYP  
120  
4.5  
MAX  
UNIT  
kΩ  
GPIO0-8 external pullup resistor  
Connected to VDDIO  
20%  
15  
GPIO0-8 programmable pulldown (default active except GPIO0)  
at 1.8 V, VRTC = 1.8 V, OFF state  
Connected to VDDIO  
µA  
SDA_SDI, SCL_SCK, SDASR_EN2, SCLSR_EN1 external pullup  
resistor  
1.2  
8
kΩ  
kΩ  
µA  
SDA_SDI, SCL_SCK, SDASR_EN2, SCLSR_EN1 programmable  
pullup (DFT, default inactive)  
Grounded, VDDIO = 1.8 V  
–45%  
2
45%  
10  
at 1.8 V, VRTC = 1.8 V; TA = 25°C  
for PWRHOLD  
SLEEP, PWRHOLD, programmable pulldown (default active)  
4.5  
NRESPWRON, NRESPWRON2 pulldown  
at 1.8 V, VCC7 = 5.5 V, OFF state  
at 1.8 V, VRTC = 1.8 V, OFF state  
Grounded, VCC7 = 5.5 V  
2
2
4.5  
4.5  
–31  
4.5  
10  
10  
µA  
µA  
µA  
µA  
32KCLKOUT pulldown (disabled in ACTIVE-SLEEP state)  
PWRON programmable pullup (default active)  
HDRST programmable pulldown (default active)  
–43  
2
–15  
10  
at 1.8 V, VRTC = 1.8 V  
(1) The internal pullups on the CTL-I2C and SR-I2C pins are used for test purposes or when the SR-I2C interface is not used. Discrete  
pullups to the VIO supply must be mounted on the board in order to use the I2C interfaces. The internal I2C pullups must not be used for  
functional applications  
7.7 Digital I/O Voltage Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
0.7 x VBAT  
1.3  
TYP  
MAX  
UNIT  
RELATED I/O:  
PWRON  
VIL  
VIH  
Low-level input voltage  
High-level input voltage  
0.3 x VBAT  
V
V
RELATED I/O:  
PWRHOLD, GPIO0-8, PWRDN  
VIL  
VIH  
Low-level input voltage  
High-level input voltage  
0.45  
V
V
VBAT  
RELATED I/O:  
BOOT1  
Low level input – Impedance between BOOT1 and GND  
High level input – Impedance between BOOT1 and VRTC  
Hi-Z level input – Impedance between BOOT1 and GND  
10  
10  
kΩ  
kΩ  
kΩ  
500  
RELATED I/O:  
SLEEP  
0.35 x  
VDDIO  
VIL  
Low-level input voltage  
High-level input voltage  
V
V
VIH  
0.65 x VDDIO  
0.65 x VRTC  
RELATED I/O:  
HDRST  
VIL  
VIH  
Low-level input voltage  
High-level input voltage  
0.35 x VRTC  
V
V
RELATED I/O:  
NRESPWRON, INT1, 32KCLKOUT  
IOL = 100 µA  
IOL = 2 mA  
0.2  
V
V
V
V
VOL  
Low-level output voltage  
High-level output voltage  
0.45  
IOH = 100 µA  
IOH = 2 mA  
VDDIO – 0.2  
VDDIO – 0.45  
VOH  
Related I/O:  
EN  
IOL = 100 µA  
IOL = 2 mA  
0.2  
0.9  
V
V
VOL  
Low-level output voltage  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Digital I/O Voltage Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
VCC7– 0.2  
TYP  
MAX  
UNIT  
V
IOH = 100 µA  
VOH  
High-level output voltage  
IOH = 2 mA  
VCC7 – 0.45  
V
RELATED I/O:  
GPIO0 (PUSH-PULL MODE)  
IOL = 100 µA  
IOL = 2 mA  
0.2  
V
V
V
V
VOL  
Low-level output voltage  
High-level output voltage  
0.45  
IOH = 100 µA  
IOH = 2 mA  
VCC7 – 0.2  
VOH  
VCC7 – 0.45  
RELATED OPEN-DRAIN I/O:  
GPIO0, GPIO2, GPIO4-8, NRESPWRON2  
IOL = 100 µA  
IOL = 2 mA  
0.2  
V
V
VOL  
Low-level output voltage  
0.45  
RELATED OPEN-DRAIN I/O:  
GPIO1, GPIO3  
IOL = 100 µA  
IOL = 2 mA  
0.2  
0.4  
V
V
VOL  
Low-level output voltage  
I
VIL  
VIH  
Low-level input voltage  
High-level input voltage  
Hysteresis  
–0.5  
0.7 x VDDIO  
0.1 x VDDIO  
0.3 x VDDIO  
V
V
V
V
V
VOL  
VOL  
Low-level output voltage at 3 mA (sink current), VDDIO = 1.8 V  
Low-level output voltage at 3 mA (sink current), VDDIO = 3.3 V  
0.2 × VDDIO  
0.4 x VDDIO  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.8 I2C Interface and Control Signals  
over operating free-air temperature range (unless otherwise noted)  
(2)  
NO.  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
GENERAL REQUIREMENTS  
INT1 rise and fall times  
CL = 5 to 35 pF  
CL = 5 to 35 pF  
5
5
10  
10  
ns  
ns  
NRESPWRON rise and fall times  
SLAVE HIGH-SPEED MODE  
SCL/EN1 and SDA/EN2 rise and fall time CL = 10 to 100 pF  
Data rate  
10  
80  
ns  
Mbps  
ns  
3.4  
I3 tsu(SDA-SCLH)  
I4 th(SCLL-SDA)  
I7 tsu(SCLH-SDAL)  
I8 th(SDAL-SCLL)  
I9 tsu(SDAH-SCLH)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
10  
0
70  
ns  
160  
160  
160  
ns  
ns  
ns  
SLAVE  
FAST MODE  
20 +  
0.1 × CL  
SCL/EN1 and SDA/EN2 rise and fall time CL = 10 to 400 pF  
250  
400  
ns  
Data rate  
Kbps  
ns  
I3 tsu(SDA-SCLH)  
I4 th(SCLL-SDA)  
I7 tsu(SCLH-SDAL)  
I8 th(SDAL-SCLL)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
100  
0
0.9  
µs  
0.6  
0.6  
0.6  
µs  
µs  
I9 tsu(SDAH-SCLH)  
SLAVE STANDARD MODE  
µs  
SCL/EN1 and SDA/EN2 rise and fall time CL = 10 to 400 pF  
Data rate  
250  
100  
ns  
Kbps  
ns  
I3 tsu(SDA-SCLH)  
I4 th(SCLL-SDA)  
I7 tsu(SCLH-SDAL)  
I8 th(SDAL-SCLL)  
I9 tsu(SDAH-SCLH)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
250  
0
µs  
4.7  
4
µs  
µs  
4
µs  
(1) The input timing requirements are given by considering a rising or falling time of: 80 ns in high–speed mode (3.4 Mbps) 300 ns in  
fast–speed mode (400 kbps) 1000 ns in Standard mode (100 kbps)  
(2) SDA is SDA_SDI or EN2 signal, SCL is SCL_SCK or EN1 signal  
7.9 Switching Characteristics—I2C Interface and Control Signals  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SLAVE HIGH-SPEED MODE  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
160  
60  
ns  
ns  
SLAVE FAST MODE  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
1.3  
0.6  
µs  
µs  
SLAVE STANDARD MODE  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
µs  
µs  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
7.10 Power Consumption  
over operating free-air temperature range (unless otherwise noted)  
All current consumption measurements are relative to the FULL chip, all VCC inputs set to VBAT voltage, COMP2 is off.  
PARAMETER  
TEST CONDITIONS  
VBAT = 5 V, XTAL oscillator running  
MIN  
TYP MAX  
UNIT  
mA  
2.5  
22  
Device OFF state  
VBAT = 5 V, Bypass clock used  
µA  
VBAT = 5 V, 3 DCDCs on in PFM mode, 5 LDOs on, no load,  
XTAL oscillator running  
Device SLEEP state  
Device ACTIVE state  
2.8  
mA  
mA  
VBAT = 5 V, 3 DCDCs on in PWM mode, 5 LDOs on, no load,  
XTAL oscillator running  
26.6  
7.11 Power References and Thresholds  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output reference voltage (VREF pin)  
Device in active or low-power mode  
–1%  
0.85  
1%  
V
Measured on pin VCC7, falling  
(Triggering monitored on pin VRTC)  
Main battery not present falling threshold  
VBNPR  
1.8  
3.58  
2.1  
2.3  
3.96  
3.87  
200  
V
V
The POR threshold for rising VCC7  
voltages  
3.77  
3.68  
The POR threshold for falling VCC7  
voltages  
PORXTAL  
3.50  
V
Difference between rising and falling  
thresholds  
62.55  
89.35  
mV  
7.12 Thermal Monitoring and Shutdown  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
113  
150  
TYP  
117  
121  
125  
130  
10  
MAX  
136  
UNIT  
THERM_HDSEL[1:0] = 00  
THERM_HDSEL[1:0] = 01  
THERM_HDSEL[1:0] = 10  
THERM_HDSEL[1:0] = 11  
Hot-die temperature rising threshold  
°C  
Hot-die temperature hysteresis  
°C  
°C  
Thermal shutdown temperature rising threshold  
165  
107  
111  
115  
120  
180  
THERM_HDSEL[1:0] = 00  
THERM_HDSEL[1:0] = 01  
THERM_HDSEL[1:0] = 10  
THERM_HDSEL[1:0] = 11  
Thermal shutdown temperature recovery  
threshold  
°C  
Device in ACTIVE state, Temp = 27°C,  
VCC7 = 3.8 V  
Ground current  
6
µA  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.13 32-kHz RTC Clock  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL CLK32KOUT  
REQUIREMENTS  
CLK32KOUT rise and fall time  
EXTERNAL CLOCK  
CL = 35 pF  
10  
ns  
(OSC16MIN GROUNDED, OSC16MOUT FLOATING, AND OSCEXT32K INPUT)  
Input bypass clock frequency  
Input bypass clock duty cycle  
Input bypass clock rise and fall time  
CLK32KOUT duty cycle  
OSCKIN input  
32  
10  
kHz  
ns  
OSCKIN input  
40%  
40%  
60%  
20  
10% – 90%, OSCEXT32K input  
Logic output signal  
32KCLKOUT output  
Bypass mode  
60%  
1
Bypass clock setup time  
Ground current  
ms  
µA  
1.5  
CRYSTAL  
OSCILLATOR (CRYSTAL BETWEEN OSC16MIN AND OSC16MOUT, OSCEXT32K GROUNDED)  
Crystal frequency  
Crystal tolerance  
at specified load cap value  
at 27°C  
16.384  
0
MHz  
ppm  
–20  
–50  
20  
50  
TJ from –40°C to 125°C, VCC7 from 4 V to 5.5 V;  
excluding crystal drift  
Oscillator frequency drift  
ppm  
Max crystal series resistor  
Oscillator startup time  
Drive level power  
at fundamental frequency  
Power on until first time slot  
Steady state operation  
90  
13.2  
120  
Ω
ms  
µW  
mA  
15  
Ground current  
2.5  
Overall frequency tolerance  
Output frequency  
CLK32KOUT output  
–1%  
1%  
CLK32KOUT output  
32.768  
33  
kHz  
µH  
pF  
Crystal motional inductance  
Crystal shunt capacitance  
According to crystal data sheet  
According to crystal data sheet  
23  
43  
4
0.5  
According to crystal data sheet;  
including PCB parasitic capacitance  
Crystal load capacitance  
9
10  
11  
pF  
RC OSCILLATOR  
(OSC16MIN AND OSCEXT32K GROUNDED, OSC16MOUT FLOATING)  
Output frequency  
Output frequency accuracy  
Cycle jitter (RMS)  
Output duty cycle  
Settling time  
CK32KOUT output  
at 25°C  
32  
0
kHz  
–15%  
40%  
15%  
10%  
60%  
150  
Oscillator contribution  
50%  
4
µs  
Ground current  
Active at fundamental frequency  
µA  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
7.14 VRTC LDO  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.5  
TYP  
MAX  
5.5  
3
UNIT  
On mode  
Input voltage VIN  
V
Backup mode  
1.9  
On mode, 3 V < VIN < 5.5 V  
1.78  
1.72  
20  
1.83  
1.78  
1.9  
1.9  
DC output voltage VOUT  
Rated output current IOUTmax  
DC load regulation  
V
Backup mode, 2.3 V VIN 2.6 V  
On mode  
mA  
mV  
mV  
Backup mode  
0.1  
On mode, IOUT = IOUTmax to 0  
Backup mode, IOUT = IOUTmax to 0  
On mode, VIN = 3 V to VINmax at IOUT = IOUTmax  
Backup mode, VIN = 2.3 V to 5.5 V at IOUT = IOUTmax  
100  
100  
2.5  
DC line regulation  
100  
On mode, VIN = VINmin + 0.2 V to VINmax  
IOUT = IOUTmax/2 to IOUTmax in 5 µs  
and IOUT = IOUTmax to IOUTmax / 2 in 5 µs  
(1)  
Transient load regulation  
Transient line regulation  
50  
mV  
mV  
On mode, VIN = VINmin + 0.5 V to VINmin in 30 µs  
and VIN = VINmin to VINmin + 0.5 V in 30 µs,  
IOUT = IOUTmax / 2  
(1)  
25  
IOUT = 0, VIN rising from 0 up to 3.6 V, at VOUT = 0.1 V up to  
VOUTmin  
Turn-on time  
2.2  
ms  
dB  
f = 217 Hz  
f = 50 kHz  
55  
35  
23  
3
VIN = VINDC + 100 mVpp tone, VINDC+ = VINmin  
0.1 V to VINmax at IOUT = IOUTmax / 2  
+
Ripple rejection  
Device in ACTIVE state  
Ground current  
µA  
Device in BACKUP or OFF state  
(1) These parameters are not tested. They are used for design specification only.  
7.15 VIO SMPS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage (VCCIO and VCC7)  
VIN  
VOUT = 1.5 V, 1.8 V, 2.5 or 3.3 V  
4
5.5  
V
VSEL = 00  
VSEL = 01  
–1.5%  
–1.5%  
–1.5%  
–1.5%  
1.5  
1.8  
2.5  
3.3  
0
3%  
3%  
3%  
3%  
DC output voltage (VOUT  
)
PWM mode (VIO_PSKIP = 0) IOUT = 0 VSEL = 10  
V
VSEL = 11  
Power down  
Rated output current IOUTmax  
P-channel MOSFET  
TPS659119xAIPFPRQ1  
VIN = VINmin  
1500  
mA  
300  
250  
mΩ  
On-resistance RDS(ON)_PMOS  
VIN = 4 V  
400  
2
P-channel leakage current  
ILK_PMOS  
VIN = VINMAX, SWIO = 0 V  
µA  
N-channel MOSFET  
VIN = VMIN  
VIN = 4 V  
300  
250  
mΩ  
On-resistance RDS(ON)_NMOS  
400  
2
N-channel leakage current  
ILK_NMOS  
VIN = VINmax, SWIO = VINmax  
µA  
VIN = VINmin to VINmax source current load; when ILIM[1:0]  
= 00  
700  
mA  
PMOS and NMOS current limit  
(high side and low side)  
TPS659119xAIPFPRQ1  
when ILIM[1:0] = 01  
1200  
1700  
mA  
mA  
when ILIM[1:0] = 10  
when ILIM[1:0] = 11  
> 1700  
mA  
DC load regulation  
On mode, IOUT = 0 to IOUTmax  
60  
mV/A  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
VIO SMPS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
On mode, VIN = VINmin to VINmax  
at IOUT = 0  
DC line regulation  
30  
mV  
VOUT = 1.8 V  
Transient load regulation  
IOUT = 0 to 500 mA , Max slew = 100 mA/µs  
IOUT = 700 to 1200 mA , Max slew = 100 mA/µs  
50  
mV  
µs  
ton, off to on  
Overshoot  
IOUT = 200 mA  
350  
3%  
SMPS turned on  
0.025 ×  
VOUT  
Power-save mode ripple voltage PFM (pulse skip mode) mode, IOUT = 1 mA  
VPP  
Switching frequency  
Duty cycle  
2.7  
0.5  
3
3.3  
MHz  
100%  
Minimum on time TON(MIN) P-  
channel MOSFET  
35  
1
ns  
VFBIO internal resistance  
MΩ  
Off  
1
PWM mode, IOUT = 0 mA, VIN = 3.8 V, VIO_PSKIP = 0  
7500  
250  
PFM (pulse skipping) mode, no switching, 3-MHz clock  
Ground current (IQ)  
µA  
on  
Low-power (pulse skipping) mode, no  
ST[1:0] = 11  
63  
switching  
IOUT = 10 mA  
40%  
83%  
85%  
80%  
68%  
80%  
85%  
IOUT = 100 mA  
IOUT = 400 mA  
IOUT = 600 mA  
IOUT = 1 mA  
PWM mode, DCRL < 50 mΩ, VOUT  
=
1.8 V, VIN = 3.6 V:  
Conversion efficiency  
PFM mode, DCRL < 50 mΩ, VOUT  
=
IOUT = 10 mA  
IOUT = 400 mA  
1.8 V, VIN = 3.6 V:  
7.16 VDD1 SMPS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX  
5.5  
UNIT  
V
OUT 2.7 V  
Input voltage (VCC1 and VCC7)  
VIN  
V
VOUT > 2.7 V  
4
5.5  
IOUT = 0 mA, PWM; VIN = 4 V to 5.5 V; VOUT > 1 V; ON  
MODE:  
DC output voltage (VOUT  
)
–1.5%  
3%  
V
DC output voltage programmable  
step (VOUTSTEP  
VGAIN_SEL = 00, 72 steps  
12.5  
250  
mV  
mA  
mΩ  
)
Rated output current IOUTmax  
1500  
P-channel MOSFET on-resistance  
RDS(ON)_PMOS  
VIN = 4 V  
400  
2
P-channel leakage current  
ILK_PMOS  
VIN = VINmax, SW1 = 0 V  
VIN = 4 V  
µA  
N-channel MOSFET on-resistance  
RDS(ON)_NMOS  
250  
400  
2
mΩ  
N-channel leakage current  
ILK_NMOS  
VIN = VINmax, SW1 = VINmax  
µA  
PMOS current limit (high side)  
NMOS current limit (low side)  
DC load regulation  
VIN = VINmin to VINmax  
1700  
1700  
1700  
mA  
VIN = VINmin to VINmax, source current load  
VIN = VINmin to VINmax, sink current load  
On mode, IOUT = 0 to IOUTmax  
mA  
60  
mV/A  
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
VDD1 SMPS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
On mode, VIN = VINmin to VINmax  
at IOUT = 0  
DC line regulation  
30  
mV  
VOUT = 1.2 V  
Transient load regulation  
ton, off to on  
IOUT = 0 to 500 mA , Max slew = 100 mA/µs  
IOUT = 700 mA to 1.2 A , Max slew = 100 mA/µs  
50  
mV  
µs  
IOUT = 200 mA  
350  
TSTEP[2:0] =  
001  
12.5  
From VOUT = 0.6 V to 1.5 V and VOUT  
1.5 V to 0.6 V IOUT = 500 mA  
=
TSTEP[2:0] =  
011 (default)  
Output voltage transition rate  
7.5  
mV/µs  
TSTEP[2:0] =  
111  
2.5  
3%  
Overshoot  
SMPS turned on  
0.025 ×  
VOUT  
Power-save mode ripple voltage  
PFM (pulse skip mode), IOUT = 1 mA  
VPP  
Switching frequency  
Duty cycle  
2.7  
0.5  
3
3.3  
MHz  
100%  
Minimum on time tON(MIN) P-  
channel MOSFET  
35  
1
ns  
VFB1 internal resistance  
Ground current (IQ)  
MΩ  
Off  
1
PWM mode, IOUT = 0 mA, VIN = 3.8 V, VDD1_PSKIP = 0  
Pulse skipping mode, no switching  
7500  
78  
µA  
Low-power (pulse skipping) mode, no  
ST[1:0] = 11  
63  
35%  
78%  
switching  
IOUT = 10 mA  
IOUT = 100  
mA  
IOUT = 400  
mA  
PWM mode, DCRL < 0.1 Ω, VOUT = 1.2  
V, VIN = 4 V:  
80%  
74%  
62%  
IOUT = 800  
mA  
Conversion efficiency  
IOUT = 1500  
mA  
IOUT = 1 mA  
59%  
70%  
PFM mode, DCRL < 0.1 Ω, VOUT = 1.2 V, IOUT = 10 mA  
VIN = 4 V:  
IOUT = 400  
mA  
80%  
7.17 VDD2 SMPS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX  
5.5  
UNIT  
V
OUT 2.7 V  
Input voltage (VCC2 and VCC7)  
VIN  
V
VOUT > 2.7 V  
4
5.5  
VOUT = 0 mA, PWM; VIN = 4 V to 5.5 V; VOUT > 1 V; ON  
MODE:  
DC output voltage (VOUT  
)
–1.5%  
3%  
V
DC output voltage programmable  
VGAIN_SEL = 00, 72 steps  
12.5  
250  
mV  
mA  
mΩ  
step (VOUTSTEP  
)
Rated output current IOUTmax  
1500  
P-channel MOSFET on-  
resistance RDS(ON)_PMOS  
VIN = 4 V  
400  
Copyright © 2013–2014, Texas Instruments Incorporated  
17  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
VDD2 SMPS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
P-channel leakage current  
ILK_PMOS  
VIN = VINmax, SW2 = 0 V  
2
400  
2
µA  
N-channel MOSFET on-  
resistance RDS(ON)_NMOS  
VIN = 4 V  
250  
mΩ  
N-channel leakage current  
ILK_NMOS  
VIN = VINmax, SW2 = VINmax  
µA  
PMOS current limit (high side)  
VIN = VINmin to VINmax, source current load  
VIN = VINmin to VINmax, source current load  
VIN = VINmin to VINmax, sink current load  
On mode, IOUT = 0 to IOUTmax  
1700  
1700  
1700  
mA  
NMOS current limit (low side)  
mA  
DC load regulation  
DC line regulation  
60  
30  
mV/A  
mV  
On mode, VIN = VINmin to VINmax at IOUT = 0  
VOUT = 1.2 V  
Transient load regulation  
ton, Off to on  
IOUT = 0 to 500 mA , Max slew = 100 mA/µs  
IOUT = 700 mA to 1.2 A , Max slew = 100 mA/µs  
50  
mV  
µs  
IOUT = 200 mA  
350  
TSTEP[2:0] = 001  
12.5  
From VOUT = 0.6 V to 1.5 V and  
VOUT = 1.5 V to 0.6 V IOUT = 500  
mA  
TSTEP[2:0] = 011  
(default)  
Output voltage transition rate  
7.5  
mV/µs  
TSTEP[2:0] = 111  
2.5  
3%  
Overshoot  
SMPS turned on  
0.025 ×  
VOUT  
Power-save mode ripple voltage PFM (pulse skip mode), IOUT = 1 mA  
VPP  
Switching frequency  
Duty cycle  
2.7  
0.5  
3
35  
1
3.3  
MHz  
100%  
Minimum on time  
P-Channel MOSFET  
VFB2 internal resistance  
Off  
ns  
MΩ  
1
PWM mode, IOUT = 0 mA, VIN = 3.8 V, VDD2_PSKIP = 0  
PFM (pulse skipping) mode, no switching  
7500  
78  
Ground current (IQ)  
µA  
Low-power (pulse skipping) mode,  
ST[1:0] = 11  
63  
no switching  
18  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
VDD2 SMPS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOUT = 10 mA  
MIN  
TYP  
35%  
78%  
80%  
74%  
66%  
62%  
59%  
70%  
80%  
39%  
85%  
91%  
90%  
86%  
84%  
80%  
82%  
92%  
MAX  
UNIT  
IOUT = 100 mA  
IOUT = 400 mA  
IOUT = 800 mA  
IOUT = 1200 mA  
IOUT = 1500 mA  
IOUT = 1 mA  
PWM mode, DCRL < 50 mΩ, VOUT  
= 1.2 V, VIN = 4 V:  
PFM mode, DCRL < 50 mΩ, VOUT  
IOUT = 10 mA  
IOUT = 400 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 400 mA  
IOUT = 800 mA  
IOUT = 1200 mA  
IOUT = 1500 mA  
IOUT = 1 mA  
= 1.2 V, VIN = 4 V:  
Conversion efficiency  
PWM mode, DCRL < 50 mΩ, VOUT  
= 3.3 V, VIN = 5 V:  
PFM mode, DCRL < 50 mΩ, VOUT  
IOUT = 10 mA  
IOUT = 400 mA  
= 3.3 V, VIN = 5 V:  
7.18 EXTCTRL  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SEL[6:0] = 0 (EN signal low)  
MIN  
TYP  
MAX  
UNIT  
1
1
SEL[6:0] = 1 to 3  
For SEL[6:0] = 3 to 67  
Ratio = 48 / (45 + SEL[6:0])  
SEL[6:0] = 4  
–0.7%  
–0.7%  
48:49  
24:25  
0.7%  
0.7%  
Ratio of VSENSE to VOUT  
(Selectable voltage divider)  
SEL[6:0] = 5  
V/V  
...  
SEL[6:0] = 35  
...  
–0.7%  
3:5  
0.7%  
SEL[6:0] = 66  
SEL[6:0] = 67 to 127  
–0.7%  
–0.7%  
16:37  
3:7  
0.7%  
0.7%  
Programmable voltage step size  
(with a 0.8 V reference)  
16.7  
mV  
Output voltage transition rate  
(with 0.8 V reference)  
From VOUT = 0.8 V to 1.87 V and VOUT = 1.87 V to  
0.8 V  
100(1)  
mV / 20 µs  
(1) 100 mV / 20 µs reached with 50 mV / 10 µs steps  
Copyright © 2013–2014, Texas Instruments Incorporated  
19  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
MAX UNIT  
7.19 LDO1 AND LDO2  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
GENERAL  
LDO1 AND LDO2 CHARACTERISTICS  
VOUT(LDO1) = 1.05 V at 320 mA and VOUT(LDO2) = 1.05  
V at 160 mA  
1.4  
1.7  
2.1  
3.6  
3.6  
VOUT(LDO1) = 1.2 V / 1.5 V at 100 mA and VOUT(LDO2) =  
1.2 V / 1.1 V / 1 V  
VOUT(LDO1) = 1.5 V and VOUT (LDO1, LDO2) = 1.8 V at  
200 mA  
VIN  
Input voltage (VCC6)  
V
3.6  
VOUT(LDO1) = 1.8 V and VOUT(LDO2) = 1.8 V  
VOUT(LDO1) = 2.7 V  
2.7  
3.2  
3.5  
3.6  
3.6  
3.6  
VOUT (LDO1) = VOUT(LDO2) = 3.3 V  
LDO1  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
1
3.3  
3%  
V
VOUT  
DC output voltage  
Step size  
50  
mV  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
DC output voltage accuracy  
Rated output current  
–2.5%  
On mode  
320  
1
IOUTmax  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
330  
600  
1000  
350  
mA  
mV  
ON mode, VDO = VIN – VOUT  
,
VDO  
Dropout voltage  
VIN = 1.4 V, IOUT = IOUTmax  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax  
17  
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
ON mode, VIN = 1.5 V, VOUT = 1.05 V  
Transient load regulation  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
20  
5
mV  
On mode, VIN = 2.7 + 0.5 V to 2.7 in 30 µs,  
and VIN = 2.7 to 2.7 + 0.5 V in 30 µs, IOUT = IOUTmax  
Transient line regulation  
Turn-on time  
mV  
µs  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
50  
75  
100  
420  
200  
300  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
Turn-on inrush current  
300  
600  
mA  
f = 217 Hz  
f = 20 kHz  
70  
40  
VIN = VINDC + 100 mVpp tone,  
VINDC+= 1.8 V, IOUT = IOUTmax / 2  
Ripple rejection  
dB  
LDO1 internal resistance  
LDO off  
600  
63  
Ω
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode (max 85°C)  
75  
2000  
20  
Ground current  
µA  
22  
50  
2.7  
LDO2  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
1
3.3  
3%  
V
VOUT  
DC output voltage  
Step size  
mV  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
DC output voltage accuracy  
Rated output current  
–2.5%  
On mode  
320  
1
IOUTmax  
mA  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
330  
600  
1000  
20  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
LDO1 AND LDO2 (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ON mode, VDO = VIN – VOUT  
VIN = 1.4 V, IOUT = IOUTmax  
,
VDO  
Dropout voltage  
350  
mV  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax  
17  
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
ON mode, VIN = 1.5 V, VOUT = 1.05 V  
Transient load regulation  
Transient line regulation  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
20  
5
mV  
mV  
On mode, VIN = 2.7 + 0.5 V to 2.7 in 30 µs,  
and VIN = 2.7 to 2.7 + 0.5 V in 30 µs, IOUT = IOUTmax  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
40  
75  
300  
300  
70  
100  
420  
600  
Turn-on time  
µs  
mA  
dB  
Ω
200  
Turn-on inrush current  
Ripple rejection  
f = 217 Hz  
f = 20 kHz  
VIN = VINDC + 100 mVpp tone,  
VINDC+= 1.8 V, IOUT = IOUTmax / 2  
40  
LDO2 internal resistance  
LDO off  
600  
63  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode (max 85°C)  
75  
2000  
20  
Ground current  
µA  
22  
2.7  
Copyright © 2013–2014, Texas Instruments Incorporated  
21  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.20 LDO3 and LDO4  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GENERAL LDO3 AND LDO4 CHARACTERISTICS  
VOUT (LDO3) = 1.8 V and VOUT (LDO4) = 1.8 V / 1.1 V / 1  
V
2.7  
5.5  
VIN  
Input voltage (VCC5)  
V
VOUT (LDO3) = 2.6 V and VOUT (LDO4) = 2.5 V  
VOUT (LDO3) = 2.8 V  
3
5.5  
3.2  
5.5  
LDO3  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
1
3.3  
3%  
V
VOUT  
DC output voltage  
Step size  
100  
mV  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
DC output voltage accuracy  
Rated output current  
–2.5%  
On mode  
200  
1
IOUTmax  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
330  
550  
150  
650  
270  
mA  
mV  
On mode, VOUTtyp = 3.3 V, VDO = VIN – VOUT  
VIN = 3.3 V, IOUT = IOUTmax  
,
VDO  
Dropout voltage  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax  
28  
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
On mode, VIN = 2.7 V, VOUTtyp = 1.8 V  
Transient load regulation  
Transient line regulation  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
15  
mV  
mV  
On mode, VOUTtyp = 1.8 V, IOUT = IOUTmax,VIN = VINmin  
0.5 V to VINmin in 30 µs  
+
0.5  
and VIN = VINmin to VINmin + 0.5 V in 30 µs, IOUT = IOUTmax  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
25  
50  
180  
200  
70  
70  
230  
450  
Turn-on time  
µs  
mA  
dB  
kΩ  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
120  
Turn-on inrush current  
Ripple rejection  
f = 217 Hz  
f = 50 kHz  
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V, IOUT = IOUTmax / 2  
40  
LDO3 internal resistance  
LDO off  
500  
65  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
76  
2000  
22  
Ground current  
µA  
14  
1
LDO4  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
Step size  
1
3.3  
3%  
V
VOUT  
DC output voltage  
100  
mV  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0  
mA,  
DC output voltage accuracy  
Rated output current  
–2.5%  
On mode  
50  
1
IOUTmax  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
200  
400  
100  
500  
160  
mA  
mV  
On mode, VOUTtyp = 3.3 V, VDO = VIN – VOUT  
VIN = 3.3 V, IOUT = IOUTmax  
VDO  
Dropout voltage  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax  
6
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
22  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
LDO3 and LDO4 (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
On mode, VIN = 2.7 V, VOUTtyp = 1.8 V  
Transient load regulation  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
6
mV  
On mode, VIN = VINmin + 0.5 V to VINmin in 30 µs  
Transient line regulation  
Turn-on time  
0.2  
mV  
and VIN = VINmin to VINmin + 0.5 V in 30 µs, IOUT = IOUTmax  
/ 2  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
25  
50  
180  
70  
70  
µs  
120  
230  
f = 217 Hz  
f = 50 kHz  
VIN = VINDC + 100 mVpp tone,  
VINDC+= 3.8 V, IOUT = IOUTmax / 2  
Ripple rejection  
dB  
40  
LDO4 internal resistance  
LDO Off  
500  
55  
kΩ  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
65  
900  
µA  
17  
Ground current  
14  
1
Copyright © 2013–2014, Texas Instruments Incorporated  
23  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.21 LDO5  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GENERAL CHARACTERISTICS  
VOUT (LDO5) 1.2 V  
1.7  
1.7  
1.9  
VOUT (LDO5) > 1.2 V (See Dropout Voltage parameter for  
additional constraints)  
5.5  
V
VIN  
Input voltage (VCC4)  
VOUT (LDO5) = 2.5 V  
3.2  
3.2  
5.5  
5.5  
VOUT (LDO5) = 2.8 V at Iload = 200 mA  
LDO5  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
1
3.3  
3%  
V
VOUT  
DC output voltage  
Step size  
100  
550  
mV  
DC output voltage accuracy  
Rated output current  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
–2.5%  
300  
1
On mode  
IOUTmax  
mA  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
330  
650  
500  
400  
300  
700  
500  
300  
VIN = 2.7 V,  
IOUT = IOUTmax  
VIN = 2.7 V,  
IOUT = 250 mA  
VIN = 2.7 V,  
IOUT = 200 mA  
On mode, VDO = VIN – VOUT  
VIN = 1.7 V,  
VDO  
Dropout voltage  
mV  
IOUT = 180 mA  
VIN = 1.7 V,  
IOUT = 150 mA  
VIN = 1.7 V,  
IOUT = 100 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax  
16  
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUTmax  
On mode, VIN = 3.2 V, VOUTtyp = 2.8 V  
Transient load regulation  
Transient line regulation  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
16  
4
mV  
mV  
On mode, VIN = VINmin + 0.5 V to VINmin in 30 µs  
and VIN = VINmin to VINmin + 0.5 V in 30 µs, IOUT = IOUTmax  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
20  
50  
180  
200  
70  
70  
250  
450  
Turn-on time  
µs  
mA  
dB  
Ω
120  
Turn-on inrush current  
Ripple rejection  
f = 217 Hz  
f = 20 kHz  
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V, IOUT = IOUTmax / 2  
40  
LDO5 internal resistance  
LDO Off  
60  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
65  
76  
2000  
22  
Ground current  
µA  
14  
1
24  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
7.22 LDO6 and LDO7  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GENERAL LDO6 AND LDO7 CHARACTERISTICS  
VOUT (LDO6/7) 1.2 V  
1.7  
1.7  
1.9  
5.5  
5.5  
VOUT (LDO6/7) > 1.2 V (See Dropout Voltage parameter for  
additional constraints)  
VOUT(LDO7) = 2.8 V  
3.2  
3.6  
3.2  
3.6  
3.6  
Input voltage (VCC3 for LDO6  
& LDO7)  
VIN  
V
VOUT(LDO7) = 3.3 V  
5.5  
VOUT(LDO7) = 2.8 V at 250 mA  
VOUT(LDO7) = 3 V  
5.5  
5.5  
5.5  
VOUT(LDO7) = 3.3 V at 250 mA  
LDO6  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
1
3.3  
3%  
V
VOUT  
DC output voltage  
Step size  
100  
550  
mV  
DC output voltage accuracy  
Rated output current  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
–2.5%  
300  
1
On mode  
IOUTmax  
mA  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
330  
650  
500  
400  
300  
700  
500  
300  
VIN = 2.7 V,  
IOUT = IOUTmax  
VIN = 2.7 V,  
IOUT = 250 mA  
VIN = 2.7 V,  
IOUT = 200 mA  
VDO  
Dropout voltage  
On mode, VDO = VIN – VOUT  
,
mV  
VIN = 1.7 V,  
IOUT = 180 mA  
VIN = 1.7 V,  
IOUT = 150 mA  
VIN = 1.7 V,  
IOUT = 100 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmin  
16  
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
On mode, VIN = 3.2 V, VOUTtyp = 2.8 V  
Transient load regulation  
Transient line regulation  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
20  
5
mV  
mV  
On mode, VIN = 2.7 V + 0.5 V to 2.7 V in 30 µs  
and VIN = 2.7 V to 2.7 V + 0.5 V in 30 µs, IOUT = IOUTmax  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
20  
50  
180  
200  
70  
70  
250  
450  
Turn-on time  
µs  
mA  
dB  
Ω
120  
Turn-on inrush current  
Ripple rejection  
f = 217 Hz  
f = 20 kHz  
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V, IOUT = IOUTmax / 2  
40  
LDO6 internal resistance  
LDO off  
60  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
65  
76  
2000  
22  
Ground current  
µA  
14  
1
LDO7  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
Step size  
1
3.3  
3%  
V
VOUT  
DC output voltage  
100  
mV  
DC output voltage accuracy  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
–2.5%  
Copyright © 2013–2014, Texas Instruments Incorporated  
25  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
LDO6 and LDO7 (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
300  
1
TYP  
MAX UNIT  
On mode  
IOUTmax  
Rated output current  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
330  
550  
650  
500  
400  
300  
700  
500  
300  
mA  
VIN = 2.7 V,  
IOUT = IOUTmax  
VIN = 2.7 V,  
IOUT = 250 mA  
VIN = 2.7 V,  
IOUT = 200 mA  
VDO  
Dropout voltage  
On mode, VDO = VIN – VOUT,  
mV  
VIN = 1.7 V,  
IOUT = 180 mA  
VIN = 1.7 V,  
IOUT = 150 mA  
VIN = 1.7 V,  
IOUT = 100 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax  
24  
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
On mode, VIN = 3.6 V, VOUTtyp = 3.3 V  
Transient load regulation  
Transient line regulation  
IOUT = 0.1 × IOUTmax to 0.9 × IOUTmax in 5 µs  
and IOUT = 0.9 × IOUTmax to 0.1 × IOUTmax in 5 µs  
16  
5
mV  
mV  
On mode, IOUT = IOUTmax / 2, VIN = 2.7 + 0.5 V to 2.7 in 30  
µs  
and VIN = 2.7 V + 0.5 V in 30 µs, IOUT = IOUTmax / 2  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
20  
50  
180  
200  
70  
70  
250  
450  
Turn-on time  
µs  
mA  
dB  
Ω
120  
Turn-on inrush current  
Ripple rejection  
f = 217 Hz  
f = 20 kHz  
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V, IOUT = IOUTmax / 2  
40  
LDO7 internal resistance  
LDO off  
60  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
65  
76  
2000  
22  
Ground current  
µA  
14  
1
26  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
7.23 LDO8  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOUT(VLDO8) 1.2 V  
1.7  
1.9  
VIN  
Input voltage (VCC8)  
V
VOUT(VLDO8) > 1.2 V (See Dropout Voltage parameter for  
additional constraints)  
1.7  
1
5.5  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
3.3  
3%  
V
VOUT  
DC output voltage  
Step size  
100  
550  
mV  
DC output voltage accuracy  
Rated output current  
ON and low-power mode, VOUT < VIN – VDO , IOUT = 0 mA  
–2.5%  
300  
1
On mode  
IOUTmax  
mA  
mA  
Low-power mode  
Load current limitation (short-  
circuit protection)  
On mode, VOUT = VOUTmin – 100 mV  
330  
650  
100  
25  
VIN = 3.3 V,  
IOUT = 70 mA  
VIN = 3.3 V,  
IOUT = 10 mA  
VIN = 2.7 V,  
IOUT = IOUTmax  
500  
400  
300  
700  
500  
300  
VIN = 2.7 V,  
IOUT = 250 mA  
On mode, VDO = VIN – VOUT  
VIN = 2.7 V,  
VDO  
Dropout voltage  
mV  
IOUT = 200 mA  
VIN = 1.7 V,  
IOUT = 180 mA  
VIN = 1.7 V,  
IOUT = 150 mA  
VIN = 1.7 V,  
IOUT = 100 mA  
DC load regulation  
DC line regulation  
On mode, IOUT = IOUTmax  
26  
1
mV  
mV  
On mode, VIN = VINmin to VINmax at IOUT = IOUTmax  
On mode, VIN = 1.7 V, VOUTtyp = 1.2 V  
IOUT = 10 mA to 90 mA in 5 µs and IOUT = 90 mA to 10  
mA in 5 µs  
Transient load regulation  
Transient line regulation  
7
5
mV  
mV  
On mode, IOUT = 100 mA, VIN = 2.7 V + 0.2 V to 2.7 V in  
30 µs  
and VIN = 2.7 V to 2.7 V + 0.2 V in 30 µs, IOUT = 100 mA  
IOUT = 0, at VOUT = 0.1 V up to VOUTmin  
IOUT = 0, at VOUT = 0.1 V up to VOUTmax  
20  
50  
180  
200  
70  
70  
250  
450  
Turn-on time  
µs  
mA  
dB  
Ω
120  
Turn-on inrush current  
Ripple rejection  
f = 217 Hz  
f = 20 kHz  
VIN = VINDC + 100 mVpp tone,  
VINDC+ = 3.8 V, IOUT = IOUTmax / 2  
40  
LDO8 internal resistance  
LDO off  
60  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode  
Off mode  
65  
76  
2000  
22  
Ground current  
µA  
14  
1
Copyright © 2013–2014, Texas Instruments Incorporated  
27  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.24 Timing Requirements for Boot Sequence Example  
See 1.  
PARAMETER  
MIN  
NOM  
66 × tCK32k = 2060  
64 × tCK32k = 2000  
64 × tCK32k = 2000  
64 × tCK32k = 2000  
64 × tCK32k = 2000  
64 × tCK32k = 2000  
MAX  
UNIT  
µs  
tdsON1  
tdsON2  
tdsON3  
tdsON4  
tdsON5  
tdsON6  
PWRHOLD rising edge to VIO, LDO5 enable delay  
VIO to VDD2 enable delay  
µs  
VDD2 to VDD1 enable delay  
µs  
VDD1 to LDO4 enable delay  
µs  
LDO4 to LDO3, LDO8 enable delay  
LDO3 to LDO6 enable delay  
µs  
µs  
9 × 64 × tCK32k  
=
tdsON7  
LDO6 to CLK32KOUT rising-edge delay  
µs  
18000  
64 × tCK32k = 2000  
32  
tdsON8  
tdsONT  
CLK32KOUT to NRESPWON, NRESPWON2 rising-edge delay  
Total switch-on delay  
µs  
ms  
PWRHOLD falling-edge to NRESPWON, NRESPWON2 falling-  
edge delay  
tdsOFF1  
2 × tCK32k = 62.5  
µs  
tdsOFF1B  
tdsOFF2  
NRESPWON falling-edge to CLK32KOUT low delay  
3 × tCK32k = 92  
5 × tCK32k = 154  
µs  
µs  
PWRHOLD falling-edge to supplies and reference disable delay  
7.25 Power Control Timing Requirements  
See 2.  
PARAMETER  
MIN  
NOM  
100  
MAX UNIT  
tdbPWRONF  
tdbPWRONR  
PWRON falling-edge debouncing delay  
PWRON rising-edge debouncing delay  
µs  
µs  
µs  
3 × tCK32k = 94  
2 × tCK32k = 63  
tdbPWRHOLD PWRON rising-edge debouncing delay  
INT1 (internal) power-on pulse duration after PWRON low-level  
(debounced) event  
tdOINT1  
1
s
ms  
s
delay to set high PWRHOLD signal or DEV_ON control bit after  
NRESPWON released to keep on the supplies  
tdOINT1 – tDSONT  
=
tdONPWHOLD  
tdPWRONLP  
tdPWRONLPTO  
970(1)  
PWRON falling-edge to  
PWRON long-press delay  
4
PWRON_LP_IT  
PWROW long-press interrupt  
PWRON_LP_IT to  
1
s
(PWRON_LP_IT) to supplies switch-off  
NRESPWRON falling-edge  
(1) TdSONT = 30 ms, as in example boot sequence.  
28  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
7.26 Device SLEEP State Control Timing Requirements  
See 4.  
PARAMETER  
MIN  
NOM  
MAX UNIT  
SLEEP falling-edge to supply n low-power mode (SLEEP  
resynchronization delay)  
2 × tCK32k  
=
3 × tCK32k  
=
tACT2SLP  
µs  
µs  
µs  
µs  
µs  
62  
94  
tACT2SLP + 3 ×  
tCK32k  
tACT2SLP  
SLEEP falling-edge to CLK32KOUT low  
156  
188  
8 × tCK32k  
=
9 × tCK32k  
=
tSLP2ACT  
SLEEP rising edge to supply in high-power mode  
SLEEP rising edge to CLK32KOUT running  
250  
281  
tSLP2ACT + 3 ×  
tCK32k  
tSLP2ACTCK32K  
tdSLPON1  
344  
281  
375  
312  
SLEEP rising edge to time step 1 of the turn-on sequence  
from SLEEP state  
tSLP2ACT + 1 ×  
tCK32k  
TSLOT_LENGTH[1:0] = 00  
0
200  
TSLOT_LENGTH[1:0] = 01  
TSLOT_LENGTH[1:0] = 10  
TSLOT_LENGTH[1:0] = 11  
turn-on sequence step  
duration, from SLEEP state  
tdSLPONST  
µs  
µs  
500  
2000  
VDD1, VDD2, or VIO turn-on delay from turn-on sequence  
time step  
tdSLPONDCDC  
2 × tCK32k = 62  
7.27 Supplies State Control Through EN1 and EN2 Timing Characteristics  
See 5 and 6  
PARAMETER  
MIN  
NOM  
MAX UNIT  
NRESPWRON to to supply state change delay, EN1 or EN2  
driven  
tdEN  
0
ms  
tdOEN  
EN1 or EN2 edge to supply state change delay  
1 × tCK32k = 31  
3 × tCK32k = 63  
µs  
µs  
tdVDDEN  
EN1 or EN2 edge to VDD1 or VDD2 DCDC turn on delay  
7.28 VDD1 Supply Voltage Control Through EN1 Timing Requirements  
See 7  
PARAMETER  
MIN  
NOM  
2 × tCK32k = 62  
32  
MAX UNIT  
tdDVSEN  
EN1 (or EN2) edge to VDD1 (or VDD2) voltage change delay  
µs  
TSTEP[2:0] = 001  
tdDVSENL  
VDD1 (or VDD2) voltage settling delay  
TSTEP[2:0] = 011 (default)  
TSTEP[2:0] = 111  
0.4 / 7.5 = 53  
160  
µs  
版权 © 2013–2014, Texas Instruments Incorporated  
29  
 
 
 
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
The TPS659119-Q1 device supports one fixed boot sequence and one EEPROM-programmable boot sequence.  
The Timing Requirements for Boot Sequence Example section lists and 1 shows an example boot sequence.  
See the Boot Configuration and Switch-On and Switch-Off Sequences section for additional information on boot-  
mode selection.  
tpd2  
PWRHOLD  
tdsON1  
VIO  
LDO5  
VDD2  
tdsON2  
tdsON3  
VDD1  
tdsON4  
LDO4  
tdsON5  
LDO3  
LDO8  
tdsON6  
LDO6  
tdsON15  
i
CLK32KOUT  
NRESPWRON  
NRESPWRON2  
tpd1  
tdsON16  
tond: Switch-on sequence  
Switch-off sequence  
SWCS049-004  
1. Boot Sequence Example With 2-ms Time Slot and Simultaneous Switch-Off of Resources  
2 shows the device-state control through the PWRON signal (see the Power Control Timing Requirements  
section).  
30  
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
PWRON  
VIO  
CLK32KOUT  
NRESPWRON  
1.8 V  
Interrupt acknowledge  
PWRON_IT=1  
Interrupt acknowledge  
PWRON_IT=1  
INT1  
Internal pulse t  
dOINT1  
PWRHOLD  
tdbPWRHOLDF  
Switch-off  
sequence  
tdbPWRONF  
tdONPWHOLD  
tdSONT  
Switch On sequence  
tdbPWRONF  
SWCS049-005  
NOTE: DEV_ON or AUTODEV_ON control bits can be used instead of PWRHOLD signal to maintain supplies on after  
switch-on sequence.  
NOTE: Internal POWER ON enable condition pulse TdOINT1 keeps device active until PWRHOLD acknowledge.  
2. Device State Control Through PWRON Signal  
PWRON  
VIO  
NRESPWRON  
PWRON_IT=1  
PWRON_LP_IT=1  
INT1  
PWRON_IT=1  
PWRHOLD  
Switch-off  
sequence  
tdPWRONLP  
tdPWRONLPTO  
tdbPWRONF  
SWCS049-006  
3. PWRON Long-Press Turn-Off  
The Power Control Timing Requirements Section Lists the Power Control Timing Characteristics  
版权 © 2013–2014, Texas Instruments Incorporated  
31  
 
 
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
tACT2SLP  
tSLP2ACT  
SLEEP  
1.8 V  
Low Power mode  
1.8 V  
PWM mode  
1.8 V  
PWM mode  
VIO/VFBIO  
SWIO  
LDO5  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
Low-power mode  
3.3 V  
Pulse skip mode  
3.3 V  
Pulse skip mode  
3.3 V  
Low-power mode  
VDD2/VFB2  
SW2  
tdONDCDCSLP  
1.2 V  
PWM mode  
1.2 V  
PWM mode  
Off  
VDD1/VFB1  
SW1  
Off  
Off  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
LDO4  
LDO3  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
1.8 V  
ACTIVE mode  
LDO8  
LDO6  
3.3 V  
ACTIVE mode  
3.3 V  
ACTIVE mode  
3.3V  
Low-power mode  
tSLP2ACTCK32K  
CLK32KOUT  
tACT2SLPCK32K  
t dSLPONST  
tdSLPONST  
0, VDD1_SETOFF 1, LDO3_SETOFF = 1,  
tdSLPON1  
SWCS049-007  
NOTE: Registers programming: VIO_PSKIP  
=
0, VDD1_PSKIP  
=
=
LDO4_SETOFF = 1, LDO8_KEEPON = 1.  
4. Device SLEEP State Control  
See the Device SLEEP State Control Timing Requirements Section  
5 and 6 show the state control of the power supplies through the EN1 and EN2 signals (see the Supplies  
State Control Through EN1 and EN2 Timing Characteristics section).  
Switch-on sequence  
Switch-off sequence  
Device on  
NRESPWRON  
t
dEN  
EN1  
t
dVEN  
t
dEN  
LDO1  
EN2  
t
dSOFF2  
1.2 V  
t
dEN  
t
dEN  
Low-power mode  
1.8 V  
LDO4  
SWCS046-009  
NOTE: Register setting: LDO1_EN1 = 1, LDO4_EN2 = 1, and LDO4_KEEPON = 1.  
5. LDO Type Supplies State Control Through EN1 and EN2  
32  
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Switch-off sequence  
Switch-on sequence  
Device on  
NRESPWRON  
EN2  
t
dEN  
t
t
dVDDEN  
dVDDEN  
t
dOEN  
VDD2/VFB2  
0 V  
3.3 V  
t
dSOFF2  
EN1  
t
VDD1/VFB1  
t
dEN  
1.2 V  
PWM mode  
dEN  
Low-power mode  
PFM (pulse skipping) mode  
SW1  
SWCS049-010  
NOTE: Register setting: VDD2_EN2 = 1, VDD1_EN1 = 1, VDD1_KEEPON = 1, VDD1_PSKIP = 0, and SEL[6:0] = hex00 in  
VDD2_SR_REG.  
6. VDD1 and VDD2 Supplies State Control Through EN1 and EN2  
EN1  
tdDVSEN  
tdDVSENL  
tdDVSEN  
tdDVSENL  
1.2 V  
0.8 V  
VDD1/VFB1  
SW1  
TSTEP[2:0]=001  
TSTEP[2:0]=011  
PFM (pulse skipping) mode  
PFM (pulse  
skipping) mode  
PFM (pulse  
skipping) mode  
SWCS049-011  
PWM mode  
PWM mode  
NOTE: Register setting: VDD1_EN1 = 1, SEL[6:0] = hex13 in VDD1_SR_REG  
7. VDD1 Supply Voltage Control Through EN1  
See the VDD1 Supply Voltage Control Through EN1 Timing Requirements Section  
版权 © 2013–2014, Texas Instruments Incorporated  
33  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.29 Typical Characteristics  
7.29.1 VIO SMPS Curves  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
VIO, PFM  
VIO, PWM  
Vout = 2.5 V  
Vout = 2.5 V  
Vout = 1.8 V  
Vout = 1.5 V  
Vout = 1.8 V  
Vout = 1.5 V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
C005  
C006  
Load Current (A)  
Load Current (A)  
8. VIO Efficiency vs Load Current,  
9. VIO Efficiency vs Load Current,  
25°C VIN = 4 V, PFM  
25°C, VOUT = 2.5 V, VIN = 4 V, PWM  
7.29.2 VDD1 SMPS Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD1, PFM  
VDD1 PWM  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
C001  
C002  
Load Current (A)  
Load Current (A)  
10. VDD1 Efficiency vs Load Current,  
11. VDD1 Efficiency vs Load Current,  
25°C, VIN = 4 V, PFM  
25°C, VIN = 4 V, PWM  
34  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
7.29.3 VDD2 SMPS Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD2, PFM  
VDD2 PWM  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
C003  
C004  
Load Current (A)  
Load Current (A)  
12. VDD2 Efficiency vs Load Current,  
13. VDD2 Efficiency vs Load Current,  
25°C, VIN = 4 V, PFM  
25°C, VIN = 4 V, PWM  
版权 © 2013–2014, Texas Instruments Incorporated  
35  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS659119-Q1 device is an integrated power-management integrated-circuit (PMIC) available in an 80-pin,  
0,5-mm pitch HTQFP package with thermal pad. This device is designed for automotive applications. The device  
provides three step-down converters and an interface to control an external converter. The device also provides  
eight LDOs, nine configurable GPIOs, two LED pulse generators, one PWM generator, and programmability for  
supporting different processors and applications.  
The three step-down converters in this device are high-frequency switch-mode converters with integrated FETs.  
The converters are capable of synchronizing to an external clock input and support switching frequency between  
2.7 MHz and 3.3 MHz. Two of the step-down converters support dynamic voltage scaling by a dedicated I2C  
interface for optimum power savings. The third converter can provide power for system I/Os, memory modules,  
or both which provides four programmable output-voltage settings.  
The device includes eight general-purpose LDOs providing a wide range of voltage and current capabilities. Five  
of the LDOs support 1 to 3.3 V with 100-mV step and three (LDO1, LDO2, LDO4) of the LDOs support 1 to 3.3 V  
with 50-mV step. All LDOs are fully controllable by the I2C interface and are supplied from either a system supply  
or a pre-regulated supply.  
The power-up and power-down controller is configurable and programmable through EEPROM. The TPS659119-  
Q1 devices include a 32-kHz RC oscillator to sequence all resources during power up and power down. In cases  
where a fast start up is needed, a 16-MHz crystal oscillator is also included to quickly generate a stable 32-kHz  
for the system. The device also includes an RTC module that provides date, time, calendar, and alarm capability.  
The RTC module is best used when a 16-MHz crystal or an external and high accuracy 32-kHz clock is present.  
The TPS659119-Q1 device also includes nine configurable GPIOs with a multiplexed feature. Four of the GPIOs  
can be configured and used as enable signals for external resources, which can be included in the power-up and  
power-down sequence. Two of the GPIOs have a 10-mA current-sink capability for driving external LEDs. The  
device also includes two on and two off LED-pulse generators and one PWM generator with programmable  
frequency and duty cycle.  
36  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
8.2 Functional Block Diagram  
AGND  
VCCS  
VCC7  
VCC1  
VDD1  
Sw1  
VRTC  
(LDO)  
VRTC  
and POR  
GND1  
0.6 to 1.5 V,  
12.5-mV step,  
1.5 A  
AGND  
VFB1  
OSC16MIN  
VCC2  
VDD2  
16M XTAL  
Real  
time  
clock  
SW2  
OSC16MOUT  
OSCEXT32K  
GND2  
DGND  
0.6 to 1.5 V,  
12.5-mV step,  
1.5 A  
CLK32KOUT  
VDDIO  
VFB2  
VDDIO  
VDDIO  
TPS57114  
I2C  
SDA_SDI  
EN  
PH  
VSENSE  
SCL_SCK  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
EN  
EXTCTRL  
Bus  
control  
Selectable  
Divider  
VOUT  
VSENSE  
AGNDEX  
1 V/V to  
3/7 V/V  
VDDIO  
65 steps  
GPIO6  
GPIO7  
GPIO8  
I2C  
VDDIO  
VDDIO  
VCCIO  
SWIO  
VIO  
EN1  
EN2  
Power  
control  
state  
GNDIO  
INT1  
SLEEP  
1.5, 1.8, 2.5, 3.3 V  
PWRON  
VFBIO  
VDDIO  
1.5 A  
machine  
BOOT1  
PWRHOLD  
PWRDN  
LDO1  
320 mA  
HDRST  
NRESPWRON  
NRESPWRON2  
LDO1  
1 to 3.3 V,  
50-mV step  
VREF  
Analog  
references  
TESTV  
VCC6  
LDO2  
REFGND  
Watchdog  
1 to 3.3 V,  
50-mV step  
LDO3  
200 mA  
LDO3  
1 to 3.3 V,  
100-mV step  
Test interface  
LDO2  
320 mA  
VCC5  
LDO4  
LDO7  
300 mA  
1 to 3.3 V,  
100-mV step  
LDO7  
1 to 3.3 V,  
50-mV step  
LDO4  
50 mA  
VCC3  
LDO6  
LDO5  
300 mA  
LDO5  
VCC4  
1 to 3.3 V,  
100-mV step  
1 to 3.3 V,  
100-mV step  
LDO6  
300 mA  
VCC8  
LDO8  
1 to 3.3 V,  
100-mV step  
LDO8  
300 mA  
14. Top-Level Diagram  
版权 © 2013–2014, Texas Instruments Incorporated  
37  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Power Reference  
The bandgap voltage reference is filtered by using an external capacitor connected across the VREF output and  
the analog ground, REFGND (see the Recommended Operating Conditions section). The VREF voltage is  
distributed and buffered inside the device.  
8.3.2 Power Resources  
The power resources provided by the TPS659119-Q1 device include inductor-based switched-mode power  
supplies (SMPSs) and linear low-dropout voltage regulators (LDOs). These supply resources provide the  
required power to the external processor cores and external components, and to modules embedded in the  
TPS659119-Q1 device.  
Two of the integrated SMPSs and the external SMPS controller (EXTCTRL) have voltage scaling capability.  
These SMPSs provide independent core-voltage domains to the host processor. When changing the output  
voltage, VDD1 and VDD2 reach the new value through successive steps of 2.5 to 12.5 mV. The size of the  
voltage step is selected by the TSTEP bit. With a 0.8-V reference, EXTCTRL has a target slew rate of 100 mV /  
20 μs. Use 公式 1 to calculate new output values which are reached in successive smaller steps.  
N × LSB  
where  
LSB = 16.7 mV  
N = 1 to 4  
(1)  
A suitable combination of steps is calculated internally based on the current and new target values for the output  
voltage.  
The VIO SMPS provides a supply voltage for the host processor I/Os.  
1 lists the power sources provided by the TPS659119-Q1 device.  
1. Power Sources  
RESOURCE  
VIO  
TYPE  
SMPS  
SMPS  
VOLTAGES  
POWER  
1500 mA  
1500 mA  
1.5, 1.8, 2.5, and 3.3 V  
VDD1  
0.6 to 1.5 V in 12.5-mV steps  
Programmable-multiplication factor: x2, x3  
0.6 to 1.5 V in 12.5-mV steps  
Programmable-multiplication factor: x2, x3  
1 to 3.3 V, 0.05-V step  
VDD2  
SMPS  
1500 mA  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
LDO8  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
320 mA  
320 mA  
200 mA  
50 mA  
1 to 3.3 V, 0.05-V step  
1 to 3.3 V, 0.1-V step  
1 to 3.3 V, 0.05-V step  
1 to 3.3 V, 0.1-V step  
300 mA  
300 mA  
300 mA  
300 mA  
1 to 3.3 V, 0.1-V step  
1 to 3.3 V, 0.1-V step  
1 to 3.3 V, 0.1-V step  
8.3.3 PWM and LED Generators  
The TPS659119-Q1 device has two LED ON and OFF signal generators, LED1 and LED2. The LED1 and LED2  
signals have independently controllable periods from 125 ms to 8 s and an ON time from 62.5 to 500 ms. Within  
the period, one or two ON pulses can be generated (control bit LED1(2)_SEQ). The user must take care to  
program the period and ON time correctly because no limitation on selected values is imposed. The LED1 and  
LED2 signals can be routed to GPIO1 and GPO3 open-drain outputs, respectively. These GPIOs have a current-  
sink capability of 10 mA.  
38  
版权 © 2013–2014, Texas Instruments Incorporated  
 
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
The PWM generator frequency and duty cycle are set by the PWM_FREQ and PWM_DUTY_CYCLE bits,  
respectively. The PWM generator signal can be connected to the GPIO3 or GPIO8 output. The PWM generator  
uses the 3-MHz clock, which is not available in off mode. To enable the PWM in sleep mode, the  
I2CHS_KEEPON bit must be set to 1.  
8.3.4 Dynamic-Voltage Frequency Scaling and Adaptive-Voltage Scaling Operation  
Dynamic-voltage frequency scaling (DVFS) operation A supply voltage value corresponding to a targeted  
frequency of the digital core supplied is programmed in VDD1_OP_REG or VDD2_OP_REG  
registers. The slew rate of the voltage supply reaching a new VDD1_OP_REG or VDD2_OP_REG  
programmed value is limited to 12.5 mV/µs, fixed value.  
Adaptative-voltage scaling (AVS) operation A supply voltage value corresponding to a supply voltage  
adjustment is programmed in VDD1_SR_REG or VDD2_SR_REG registers. The supply voltage is  
then tuned by the digital core supplied, based its performance self-evaluation. The slew rate of  
VDD1 or VDD2 voltage supply reaching a new programmed value is programmable though the  
VDD1_REG or VDD2_REG register, respectively.  
A serial control interface (optional mode for EN1 and EN2 pins) can be dedicated to voltage scaling applications  
in order to provide dedicated access to the VDD1_OP_REG, VDD1_SR_REG and VDD2_OP_REG,  
VDD2_SR_REG registers.  
A general-purpose serial-control interface (CTL-I2C) also gives access to these registers if the SR_CTL_I2C_SEL  
control bit is set to 1 in the DEVCTRL_REG register (default inactive).  
Both control interfaces are compliant with HS-I2C specification (100 Kbps, 400 Kbps, or 3.4 Mbps).  
8.3.5 32-kHz RTC Clock  
The TPS659119-Q1 device can provide a 32-kHz clock to the platform through the CLK32KOUT output.  
Selection of the default RTC clock source is controlled by the EEPROM bit CK32K_CTRL in the DEVCTRL_REG  
register. This clock must be present for any state of the EPC except the NO SUPPLY state. The following lists  
the three possible sources for this clock.  
Crystal Oscillator To use the crystal oscillator, a 16.384-MHz crystal should be placed between the OSC16MIN  
and OSC16MOUT pins. The OSCEXT32K pin should be grounded. The 32-kHz clock is produced  
by dividing the crystal oscillator output by 500. A higher-frequency crystal is used to accelerate the  
start-up time of the device. 15 shows an essential schematic of the oscillator .  
External Clock Source An external 32-kHz clock source may be used by grounding the OSC16MIN pin,  
floating the OSC16MOUT pin, and applying the clock to the OSCEXT32K pin. When four clock  
edges are counted on the OSCEXT32K pin, an internal clock-selection MUX selects the external  
clock source rather than the crystal oscillator. A means of switching between the crystal oscillator  
and the external clock source is not included in the design. Either one or the other can be used in a  
given application, but not both.  
Internal RC Oscillator Depending on the state of the CK32K_CTRL bit, an internal 32-kHz RC oscillator can  
also be used as the clock source for the RTC if an accurate time-base is not required.  
版权 © 2013–2014, Texas Instruments Incorporated  
39  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
VCC7  
500:1  
Divider  
32.768 kHz  
Clock  
OSC16MIN  
OSC16MOUT  
DGND  
16.384 MHz  
C
C
OSC,IN  
OSC,OUT  
15. 16-MHz Crystal Oscillator  
8.3.6 Real-Time Clock (RTC)  
The RTC, which is driven by the 32-kHz clock, provides the alarm and timekeeping functions. The RTC remains  
supplied when the device is in the OFF or the BACKUP state.  
The main functions of the RTC block are:  
Time information (seconds, minutes, and hours) directly in binary-coded decimal (BCD) format  
Calendar information (day, month, year, and day of the week) directly in BCD code up to year 2099  
Programmable interrupts generation  
The RTC can generate two interrupts: a timer interrupt RTC_PERIOD_IT periodically (1-s, 1-m, 1-h, and  
1-d period) and an alarm interrupt RTC_ALARM_IT at a precise time of the day (alarm function). These  
interrupts are enabled using IT_ALARM and IT_TIMER control bits. Periodically, interrupts can be masked  
during the SLEEP period to avoid host interruption and are automatically unmasked after SLEEP wakeup  
(using the IT_SLEEP_MASK_EN control bit).  
Oscillator frequency calibration and time correction  
40  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
32-kHz clock  
input  
Frequency  
compensation  
Week  
Days  
32-kHz  
counter  
Control  
Days  
Months  
Years  
Seconds  
Minutes  
Hours  
Interrupt  
Alarm  
INT_ALARM  
INT_TIMER  
SWCS049-015  
16. RTC Digital Section Block Diagram  
8.3.7 Thermal Monitoring and Shutdown  
A thermal-protection module monitors the junction temperature of the device versus two thresholds:  
Hot-die temperature threshold  
Thermal-shutdown temperature threshold  
When the hot-die temperature threshold is reached, an interrupt is sent to software to close the noncritical  
running tasks.  
When the thermal-shutdown temperature threshold is reached, the TPS659119-Q1 device is set under reset and  
a transition to the OFF state initiates. Then the POWER-ON enable conditions of the device are not considered  
until the die temperature has decreased below the hot-die threshold. Hysteresis is applied to the hot-die and  
shutdown thresholds when detecting a falling edge of temperature and both detections are debounced to avoid  
any parasitic detection.  
The TPS659119-Q1 device allows programming of four hot-die temperature thresholds to increase the flexibility  
of the system.  
By default, the thermal protection is enabled in ACTIVE state, but can be disabled through programming the  
THERM_REG register. The thermal protection can be enabled in the SLEEP state programming the  
SLEEP_KEEP_RES_ON register. The thermal protection is automatically enabled during an OFF-to-ACTIVE  
state transition and is kept enabled in the OFF state after a switch-off sequence caused by a thermal shutdown  
event. A transition to the OFF-state sequence caused by thermal shutdown event is highlighted in 67 (the  
INT_STS_REG status register). Recovery from this OFF state is initiated (switch-on sequence) when the die  
temperature falls below the hot-die temperature threshold.  
Hot-die and thermal shutdown temperature threshold detection states can be monitored or masked by reading or  
programming the THERM_REG register. Programming the INT_MSK_REG register can mask the hot-die  
interrupt.  
8.3.8 Crystal Oscillator Power-On Reset  
The crystal oscillator uses a local independent power-on-reset (POR) circuit. If the crystal oscillator or external  
clock input are used, then VCC7 must be higher than the rising threshold of this POR circuit (3.96 V max). If  
VCC7 is not higher than the rising POR threshold, a clock is not delivered to the digital core inside the PMIC and  
the device does not power up.  
版权 © 2013–2014, Texas Instruments Incorporated  
41  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Embedded Power Controller  
The embedded power controller (EPC) manages the state of the device and controls the power-up sequence.  
8.4.1.1 State-Machine  
The EPC supports the following states:  
NO SUPPLY: The main battery-supply voltage is not high enough to power the VRTC regulator. A global  
reset is asserted in this case. The device is turned off completely.  
OFF: The main battery-supply voltage is high enough to start the power-up sequence but device power-on is  
not enabled. All power supplies are in the OFF state except VRTC.  
ACTIVE: Device POWER-ON enable conditions are met and regulated power supplies are on or can be  
enabled with full current-capability.  
SLEEP: Device SLEEP-enable conditions are met and some selected regulated power supplies are in low-  
power mode.  
17 shows the transitions for the state-machine.  
AUTODEV_ON  
DEV_ON  
PWRHOLD  
HDRST  
INT1  
Pulse  
generator  
NRESPWRON  
TDOINT1  
PWRON  
POWER ON  
ENABLE  
THERM_TS  
TD  
NO SUPPLY  
PWRON_LP_IT  
DEV_OFF  
DEV_OFF_RST  
HDRST  
VCC7 < VBNPR  
PWRDN_POL  
PWRDN  
VCC7 > PORXTAL  
VCC7 < VBNPR  
VCC7 < VBNPR  
OFF  
SLEEPSIG_POL  
SLEEP  
INT1  
POWER ON  
enabled  
POWER ON  
disabled  
SLEEP  
ENABLE  
DEV_SLP  
ACTIVE  
POWER ON  
disabled  
SLEEP  
disabled  
SLEEP  
enabled  
SLEEP  
SWCS049-024  
NOTE: PWRHOLD enables power-on unless the pin is programmed as a GPI pin.  
17. Embedded Power-Control State-Machine  
42  
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Device Functional Modes (接下页)  
8.4.1.1.1 Device POWER-ON Enable Conditions  
The enable conditions of device POWER ON include the following:  
None of the device POWER-ON disable conditions are met.  
One of the following is met:  
PWRON-signal low level  
PWRHOLD signal high level  
DEV_ON control bit set to 1 (default inactive)  
Interrupt flag active (default INT1 low) generates a POWER ON enable condition during a fixed delay  
(tDOINT1 pulse duration defined in ). Interrupt sources expected (if enabled), when the device is off:  
RTC alarm interrupt  
The active interrupt flag generates a POWER-ON enable-condition pulse of length tDOINT1 only when the device is  
in the OFF state (when the NRESPWRON signal is low). The POWER-ON enable-condition pulse occurs only if  
the interrupt status bit is initially low (no previous interrupt pending in the status register). The interrupt status  
register must first be cleared to allow device power off during the tDOINT1 pulse duration.  
The GPIO2 signal cannot be used to turn on the device, even if the associated interrupt is not masked. The  
GPIO0, GPIO1, GPIO3, GPIO4, or GPIO5 signals can be used to turn on the device, if the associated interrupt is  
not masked.  
The watchdog interrupt is not a power-on event, but it wakes up the device from sleep  
mode.  
8.4.1.1.2 Device POWER ON Disable Conditions  
The disable conditions of device POWER ON include one of the following:  
PWRON signal low level during more than the long-press delay: PWON_LP_DELAY (can be disabled though  
register programming). The interrupt corresponding to this condition is PWRON_LP_IT in the INT_STS_REG  
register.  
The die temperature reaches the thermal-shutdown threshold (THERM_TS = 1).  
DEV_OFF or DEV_OFF_RST control bit is set to 1 (the DEV_OFF value is cleared when the device is in the  
OFF state).  
If the DEV_ON bit is set to 1, after switch-off, the device switches back on. To keep the  
device off, DEV_ON must be cleared first.  
8.4.1.1.3 Device SLEEP Enable Conditions  
The enable conditions of the device SLEEP state include all of the following:  
SLEEP-signal low level (default, or high level depending on the programmed polarity)  
DEV_SLP control bit is set to 1.  
Interrupt flag inactive (default INT1 high): no nonmasked interrupt is pending.  
The SLEEP state is controlled by programming DEV_SLP and keeping the SLEEP signal floating. This state is  
also controlled through the SLEEP signal by setting the DEV_SLP bit to 1 one time after device turn-on.  
版权 © 2013–2014, Texas Instruments Incorporated  
43  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.1.1.4 Device Reset Scenarios  
The device has three reset scenarios:  
Full reset  
All digital logic of the device is reset.  
Caused by POR (power on reset) when VCC7 < VBNPR  
General reset No impact on the RTC, backup registers, or interrupt status.  
Caused by one of the follwoing:  
PWON_LP_RST bit set high  
DEV_OFF_RST bit set high  
HDRST input set high  
Turnoff  
Power reinitialization in off or backup mode.  
7 lists a mapping of the digital registers to these reset scenarios.  
8.4.1.2 Boot Configuration and Switch-On and Switch-Off Sequences  
The power sequence is the automated switch-on of the devices resources when an OFF-to-ACTIVE transition  
occurs. The power-on sequence has 15 sequential time slots to which resources (DCDCs, LDOs, 32-kHz clock,  
GPIO0, GPIO2, GPIO6, GPIO7) are assigned. The selected length of the time slot is either 0.5 ms or 2 ms. If a  
resource is not assigned to any time slot, the resource is in OFF mode after the power-on sequence and the  
voltage level can be changed through the register SEL bits before enabling the resource.  
A power-off disables all power resources at the same time by default. By setting the PWR_OFF_SEQ control bit  
to 1, power-off follows the power-up sequence in reverse order (the first resource powered on is the last resource  
powered off).  
The values of VDD1, VDD2, and EXTCTRL set in the boot sequence can be selected from 16 steps. For the  
whole range, 100-mV steps are available: 0.6 V and 0.7 to 1.4 V and 1.5 V. From 0.8 to 1.4 V, additional values  
with 50-mV step resolution can be set: 0.85 V and 1.05 V to 1.35 V.  
For LDO1, LDO2, and LDO4 all levels from 1 to 3.3 V are selectable in the boot sequence with 50-mV steps. For  
other LDOs, the level is selectable with 100-mV steps, from 1 to 3.3 V.  
The device supports two boot configurations, which define the power sequence and several device control bits.  
The boot configuration is selectable by the device BOOT1 pin.  
BOOT1  
Boot Configuration  
0
1
Fixed boot mode  
EEPROM boot mode  
The BOOT1 input pad is disabled after the boot mode is read at power up, to save power.  
2 and 3 list the power sequence and general control bits defined in the boot sequence, respectively.  
Fixed boot mode is the same in all orderable devices while EEPROM boot mode is different in each. 2 lists  
the boot configuration for power sequence control bits and 3 lists the boot configuration for general control  
bits. Refer to 4 for EEPROM boot-mode descriptions for specific orderable devices.  
44  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
2. Boot Configuration: Power-Sequence Control Bits  
TPS659119-Q1  
REGISTER  
BIT  
DESCRIPTION  
FIXED BOOT  
EEPROM BOOT  
EXTCTRL ratio selection for boot. Levels available:  
0.6, 0.7, 0.8, 0.85, 0.9, 0.95 … 1.35, 1.4, and 1.5 V  
VDD1 gain selection, x1 or x2  
VDD1_OP_REG/VDD1_SR_REG  
1.2 V  
x
VDD1_REG  
EEPROM  
VGAIN_SEL  
x1  
3
x
x
x
VDD1 time slot selection  
DCDCCTRL_REG  
VDD1_PSKIP  
VDD1 pulse skip mode enable  
Enable skip  
VDD2 voltage level selection for boot. Levels available:  
0.6, 0.7, 0.8, 0.85, 0.9 … 0.95 to 1.35, 1.4, and 1.5 V  
VDD2 gain selection, x1 or x3  
VDD2_OP_REG/VDD2_SR_REG  
1.5 V  
x
VDD2_REG  
EEPROM  
VGAIN_SEL  
x1  
x
x
x
x
x
x
VDD2 time slot selection  
6
DCDCCTRL_REG  
VIO_REG  
VDD2_PSKIP  
SEL[3:2]  
VDD2 pulse skip mode enable  
Enable skip  
1.8 V  
VIO voltage selection  
EEPROM  
VIO time slot selection  
4
DCDCCTRL_REG  
VIO_PSKIP  
VIO pulse skip mode enable  
Enable skip  
EXTCTRL voltage level selection for boot. Levels  
available include:  
EXTCTRL_OP_REG/EXTCTRL_SR_REG  
Off  
x
SEL[6:0] = 3, 11, 19, 23, 27, … 59, 63, 67  
Where: Ratio = 48 / (45 + SEL[6:0])  
EEPROM  
LDO1_REG  
EEPROM  
EXTCTRL time slot selection  
LDO1 voltage selection  
LDO1 time slot  
Off  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SEL[7:2]  
SEL[7:2]  
SEL[6:2]  
SEL[7:2]  
SEL[6:2]  
SEL[6:2]  
SEL[6:2]  
SEL[6:2]  
1.05 V  
Off  
LDO2_REG  
EEPROM  
LDO2 voltage selection  
LDO2 time slot  
1.2 V  
7
LDO3_REG  
EEPROM  
LDO3 voltage selection  
LDO3 time slot  
LDO3 voltage: 1 V  
Off  
LDO4_REG  
EEPROM  
LDO4 voltage selection  
LDO4 time slot  
1.2 V  
2
LDO5_REG  
EEPROM  
LDO5 voltage selection  
LDO5 time slot  
LDO5 voltage: 1 V  
Off  
LDO6_REG  
EEPROM  
LDO6 voltage selection  
LDO6 time slot  
LDO6 voltage: 1 V  
Off  
1.2 V  
5
LDO7_REG  
EEPROM  
LDO7 voltage selection  
LDO7 time slot  
LDO8_REG  
LDO8 voltage selection  
1 V  
版权 © 2013–2014, Texas Instruments Incorporated  
45  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
2. Boot Configuration: Power-Sequence Control Bits (接下页)  
TPS659119-Q1  
EEPROM BOOT  
REGISTER  
BIT  
DESCRIPTION  
FIXED BOOT  
EEPROM  
CLK32KOUT pin  
NRESPWRON, NRESPWRON2 pin  
GPIO0 pin  
LDO8 time slot  
7
5
x
x
x
x
x
x
x
CLK32KOUT time slot  
NRESPWRON time slot  
GPIO0 time slot  
10  
1
GPIO2 pin  
GPIO2 time slot  
Off  
6
GPIO6 pin  
GPIO6 time slot  
GPIO7 pin  
GPIO7 time slot  
5
46  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
3. Boot Configuration: General Control Bits  
TPS659119-Q1  
REGISTER  
BIT  
DESCRIPTION  
FIXED BOOT  
EEPROM BOOT  
0: VRTC LDO is in low-power mode during OFF state.  
VRTC_REG  
VRTC_OFFMASK  
CK32K_CTRL  
DEV_ON  
0
x
1: VRTC LDO is in full-power mode during OFF state.  
0: Clock source is crystal / external clock.  
1: Clock source is internal RC oscillator.  
0: No impact  
DEVCTRL_REG  
DEVCTRL_REG  
Crystal  
0
x
x
1: Maintains device on, in ACTIVE or SLEEP state  
Boot sequence time slot duration:  
0: 0.5 ms  
DEVCTRL2_REG  
TSLOTD  
2 ms  
x
1: 2 ms  
0: Turn off device after PWRON long-press not allowed.  
1: Turn off device after PWRON long-press.  
0: No impact  
DEVCTRL2_REG  
DEVCTRL2_REG  
DEVCTRL2_REG  
PWON_LP_OFF  
PWON_LP_RST  
IT_POL  
1
1
0
x
x
x
1: Reset digital core when device is off  
0: INT1 signal is active-low.  
1: INT1 signal is active-high.  
0: Device automatically switches on at NO SUPPLY-to-  
OFF or BACKUP-to-OFF transition  
INT_MSK_REG  
VMBHI_IT_MSK  
1
x
1: Start-up reason required before switch-on  
0: GPIO5 falling-edge detection interrupt not masked  
1: GPIO5 falling-edge detection interrupt masked  
0: GPIO5 rising-edge detection interrupt not masked  
1: GPIO5 rising-edge detection interrupt masked  
0: GPIO4 falling-edge detection interrupt not masked  
1: GPIO4 falling-edge detection interrupt masked  
0: GPIO4 rising-edge detection interrupt not masked  
1: GPIO4 rising-edge detection interrupt masked  
0: GPIO0 configured as push-pull output  
INT_MSK3_REG  
INT_MSK3_REG  
INT_MSK3_REG  
INT_MSK3_REG  
GPIO0_REG  
GPIO5_F_IT_MSK  
GPIO5_R_IT_MSK  
GPIO4_F_IT_MSK  
GPIO4_R_IT_MSK  
GPIO_ODEN  
1
x
x
x
x
x
x
0
1
0
Push-pull  
1
1: GPIO0 configured as open-drain output  
0: Watchdog disabled  
WATCHDOG_REG  
WATCHDOG_EN  
1: Watchdog enabled, periodic operation with 100 s  
0: Enable input buffer for external resistive divider  
1: In single-cell system, disable buffer for low lower  
EEPROM boot sequence version number  
VMBCH_REG  
VMBBUF_BYPASS  
BOOTSEQVER_SEL  
Disable buffer  
0x20  
x
x
BOOTSEQVER_REG  
版权 © 2013–2014, Texas Instruments Incorporated  
47  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
3. Boot Configuration: General Control Bits (接下页)  
TPS659119-Q1  
FIXED BOOT EEPROM BOOT  
REGISTER  
BIT  
DESCRIPTION  
0: PWRHOLD pin is used as PWRHOLD feature.  
1: PWRHOLD pin is GPI. After power on, DEV_ON set  
high internally, no processor action needed to maintain  
supplies.  
EEPROM  
EEPROM  
AUTODEV_ON  
1, PWRHOLD pin is GPI  
Active-low  
x
x
0: PWRDN signal is active-low.  
1: PWRDN signal is active-high.  
PWRDN_POL  
48  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
BOOTSEQVER:  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
4. EEPROM Configuration  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_REG  
= 0x1C  
BOOTSEQVER_  
REG  
= 0x24  
= 0x26  
= 0x30  
= 0x20  
= 0x28  
= 0x2A  
= 0x22  
= 0x1A  
ORDERABLE DEVICE  
NUMBER:  
TPS659119AIPFP  
RQ1  
TPS659119CAIPFP  
RQ1  
TPS659119BAIPFP TPS659119DAIPFP  
TPS659119EAIPFP  
RQ1  
TPS659119FAIPFP  
RQ1  
TPS659119HAIPFP  
RQ1  
TPS659119KBIPFP  
RQ1  
TPS659119LBIPFP  
RQ1  
RQ1  
RQ1  
VDD1_SLOT  
Slot 15  
Slot 8  
Slot 3  
Slot 1  
Slot 15  
Slot 6  
OFF  
Slot 12  
Slot 4  
Slot 4  
Slot 3  
Slot 5  
Slot 5  
Slot 2  
Slot 5  
OFF  
Slot 11  
Slot 12  
Slot 7  
Slot 10  
Slot 5  
Slot 4  
Slot 6  
Slot 4  
Slot 7  
Slot 6  
Slot 8  
Slot 3  
Slot 9  
Slot 7  
Slot 12  
Slot 9  
Slot 11  
Slot 14  
1.2 V  
OFF  
Slot 15  
Slot 8  
Slot 3  
Slot 1  
Slot 15  
Slot 6  
OFF  
Slot 15  
Slot 8  
Slot 3  
Slot 1  
Slot 15  
Slot 6  
Slot 3  
Slot 1  
Slot 11  
Slot 7  
Slot 12  
OFF  
OFF  
Slot 15  
Slot 8  
Slot 3  
Slot 1  
Slot 15  
Slot 6  
Slot 3  
Slot 1  
Slot 11  
Slot 7  
Slot 12  
OFF  
OFF  
VDD2_SLOT  
Slot 8  
Slot 3  
Slot 1  
OFF  
Slot 8  
Slot 3  
Slot 1  
OFF  
Slot 8  
Slot 3  
Slot 1  
OFF  
VIO_SLOT  
EXTCTRL_SLOT  
VDIG1_SLOT (LDO1)  
VDIG2_SLOT (LDO2)  
VDAC_SLOT (LDO3)  
VPLL_SLOT (LDO4)  
VAUX1_SLOT (LDO5)  
VMMC_SLOT (LDO6)  
VAUX33_SLOT (LDO7)  
VAUX2_SLOT (LDO8)  
GPIO0_SLOT  
Slot 5  
OFF  
Slot 6  
OFF  
Slot 6  
OFF  
OFF  
Slot 1  
Slot 11  
Slot 7  
Slot 12  
OFF  
OFF  
Slot 1  
Slot 11  
Slot 7  
Slot 12  
OFF  
Slot 1  
Slot 11  
Slot 7  
Slot 12  
OFF  
Slot 11  
Slot 7  
Slot 12  
OFF  
Slot 11  
Slot 7  
Slot 12  
OFF  
Slot 13  
Slot 6  
Slot 14  
Slot 1  
Slot 4  
Slot 10  
OFF  
Slot 5  
OFF  
Slot 6  
OFF  
Slot 5  
OFF  
Slot 5  
OFF  
Slot 5  
OFF  
Slot 5  
OFF  
Slot 5  
OFF  
GPIO2_SLOT  
GPIO6_SLOT  
OFF  
OFF  
OFF  
OFF  
Slot 15  
Slot 15  
Slot 10  
Slot 14  
1.05 V  
1.5 V  
OFF  
Slot 15  
Slot 15  
Slot 10  
Slot 14  
1.05 V  
1.5 V  
GPIO7_SLOT  
OFF  
OFF  
OFF  
OFF  
OFF  
CLK32KOUT_SLOT  
NRESPWRON_SLOT  
VDD1_VSEL  
Slot 10  
Slot 14  
1.05 V  
1.5 V  
1.8 V  
Slot 7  
Slot 10  
1.05 V  
1.5 V  
Slot 10  
Slot 14  
1.05 V  
1.5 V  
1.8 V  
Slot 10  
Slot 14  
1.05 V  
1.5 V  
1.8 V  
Slot 10  
Slot 14  
1.05 V  
1.5 V  
Slot 10  
Slot 14  
1.05 V  
1.5 V  
VDD2_VSEL  
1.2 V  
VIO_VSEL  
1.8 V  
3.3 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
EXTCTRL_VSEL (Ratio) EXTCTRL Divider  
Ratio = 2/3  
EXTCTRL Divider  
Ratio = 12/19  
EXTCTRL Divider  
Ratio = 2/3  
EXTCTRL Divider  
Ratio = 1/2  
EXTCTRL Divider  
Ratio = 12/19  
EXTCTRL Divider  
Ratio = 12/19  
EXTCTRL Divider  
Ratio = 12/19  
EXTCTRL Divider Ratio  
= 12/19  
EXTCTRL Divider Ratio  
= 12/19  
VDIG1_VSEL (LDO1)  
VDIG2_VSEL (LDO2)  
VDAC_VSEL (LDO3)  
VPLL_VSEL (LDO4)  
VAUX1_VSEL (LDO5)  
VMMC_VSEL (LDO6)  
VAUX33_VSEL (LDO7)  
VAUX2_VSEL (LDO8)  
VDD1_GAINSEL  
1.05 V  
1.2 V  
1 V  
1 V  
1.8 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
3.3 V  
3.3 V  
1.8 V  
1×  
1.05 V  
1.2 V  
1 V  
1.05 V  
1.2 V  
1 V  
1.05 V  
1.2 V  
1.8 V  
1.2 V  
1 V  
1.05 V  
1.2 V  
1 V  
1.05 V  
1.2 V  
1.8 V  
1.2 V  
1 V  
1.05 V  
1.2 V  
1 V  
1.2 V  
1.2 V  
1.8 V  
3.2 V  
1.8 V  
2.8 V  
2.8 V  
1×  
0.8 V  
1 V  
1.25 V  
1 V  
0.8 V  
1 V  
1.2 V  
1 V  
1.2 V  
1 V  
1.8 V  
2.8 V  
1 V  
1.8 V  
2.8 V  
1 V  
1.8 V  
2.8 V  
1 V  
1.8 V  
2.8 V  
1 V  
1.8 V  
2.8 V  
1 V  
1.8 V  
2.8 V  
1 V  
1.8 V  
2.8 V  
1 V  
1×  
1×  
1×  
1×  
1×  
1×  
1×  
VDD2_GAINSEL  
1×  
1×  
1×  
1×  
1×  
1×  
1×  
1×  
1×  
VDD1_PSKIP  
VDD1 PFM mode  
enabled  
VDD1 in PWM mode  
only  
VDD1 in PWM  
mode only  
VDD1 PFM mode  
enabled  
VDD1 PFM mode  
enabled  
VDD1 PFM mode  
enabled  
VDD1 PFM mode  
enabled  
VDD1 PFM mode  
enabled  
VDD1 PFM mode  
enabled  
VDD2_PSKIP  
VDD2 PFM mode  
enabled  
VDD2 in PWM mode  
only  
VDD2 in PWM  
mode only  
VDD2 PFM mode  
enabled  
VDD2 PFM mode  
enabled  
VDD2 PFM mode  
enabled  
VDD2 PFM mode  
enabled  
VDD2 PFM mode  
enabled  
VDD2 PFM mode  
enabled  
版权 © 2013–2014, Texas Instruments Incorporated  
49  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
4. EEPROM Configuration (接下页)  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_  
REG  
BOOTSEQVER_REG  
= 0x1C  
BOOTSEQVER_  
REG  
BOOTSEQVER:  
= 0x24  
= 0x26  
= 0x30  
= 0x20  
= 0x28  
= 0x2A  
= 0x22  
= 0x1A  
ORDERABLE DEVICE  
NUMBER:  
TPS659119AIPFP  
RQ1  
TPS659119CAIPFP  
RQ1  
TPS659119BAIPFP TPS659119DAIPFP  
TPS659119EAIPFP  
RQ1  
TPS659119FAIPFP  
RQ1  
TPS659119HAIPFP  
RQ1  
TPS659119KBIPFP  
RQ1  
TPS659119LBIPFP  
RQ1  
RQ1  
RQ1  
VIO_PSKIP  
VIO PFM mode  
enabled  
VIO in PWM mode  
only  
VIO in PWM mode  
only  
VIO PFM mode  
enabled  
VIO PFM mode  
enabled  
VIO PFM mode  
enabled  
VIO PFM mode  
enabled  
VIO PFM mode enabled  
VIO PFM mode enabled  
TSLOTD  
0.5 ms  
0.5 ms  
2 ms  
0.5 ms  
0.5 ms  
0.5 ms  
0.5 ms  
0.5 ms  
0.5 ms  
CLK32K_CTRL  
CLK32KOUT  
derived from XTAL  
oscillator  
CLK32KOUT derived  
from XTAL oscillator  
CLK32KOUT  
derived from XTAL  
oscillator  
CLK32KOUT derived  
from XTAL oscillator  
CLK32KOUT derived  
from XTAL oscillator  
CLK32KOUT derived  
from XTAL oscillator  
CLK32KOUT derived  
from XTAL oscillator  
CLK32KOUT derived  
from XTAL oscillator  
CLK32KOUT derived  
from XTAL oscillator  
ITPOL  
INT1 output active-  
low  
INT1 output active-low INT1 output active-  
low  
INT1 output active-low INT1 output active-low INT1 output active-low INT1 output active-low INT1 output active-low  
INT1 output active-low  
PWRDN_POL  
PWRDN input  
active-low  
PWRDN input active-  
low  
PWRDN input  
active-high  
PWRDN input active-  
low  
PWRDN input active-  
low  
PWRDN input active-  
low  
PWRDN input active-  
low  
PWRDN input active-low PWRDN input active-low  
WATCHDOG  
Watchdog disabled  
Digital core reset  
Watchdog disabled  
Watchdog disabled  
Watchdog disabled  
Watchdog disabled  
Watchdog disabled  
Watchdog disabled  
Watchdog disabled  
Watchdog disabled  
PWRON_LP_RST  
Digital core reset when Digital core reset  
Digital core reset when Digital core reset when Digital core reset when Digital core reset when Digital core reset when  
Digital core reset when  
device is OFF  
when device is OFF device is OFF  
when device is OFF device is OFF  
device is OFF  
device is OFF  
device is OFF  
device is OFF  
GPIO0_ODEN  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO0 is push-pull  
GPIO5_R_IT_MSK  
GPIO5 rising-edge  
interrupt enabled  
GPIO5 rising-edge  
interrupt masked  
GPIO5 rising-edge  
interrupt masked  
GPIO5 rising-edge  
interrupt enabled  
GPIO5 rising-edge  
interrupt enabled  
GPIO5 rising-edge  
interrupt enabled  
GPIO5 rising-edge  
interrupt enabled  
GPIO5 rising-edge  
interrupt enabled  
GPIO5 rising-edge  
interrupt enabled  
GPIO5_F_IT_MSK  
GPIO4_R_IT_MSK  
GPIO4_F_IT_MSK  
VMBHI_IT_MSK  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO5 falling-edge  
interrupt masked  
GPIO4 rising-edge  
interrupt enabled  
GPIO4 rising-edge  
interrupt masked  
GPIO4 rising-edge  
interrupt masked  
GPIO4 rising-edge  
interrupt enabled  
GPIO4 rising-edge  
interrupt enabled  
GPIO4 rising-edge  
interrupt enabled  
GPIO4 rising-edge  
interrupt enabled  
GPIO4 rising-edge  
interrupt enabled  
GPIO4 rising-edge  
interrupt enabled  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
GPIO4 falling-edge  
interrupt masked  
VCCS > VMBHI is  
NOT a power-on  
enable condition  
VCCS > VMBHI is  
NOT a power-on  
enable condition  
VCCS > VMBHI is  
NOT a power-on  
enable condition  
VCCS > VMBHI is  
NOT a power-on  
enable condition  
VCCS > VMBHI is  
NOT a power-on  
enable condition  
VCCS > VMBHI is  
NOT a power-on  
enable condition  
VCCS > VMBHI is  
NOT a power-on  
enable condition  
VCCS > VMBHI is NOT  
a power-on enable  
condition  
VCCS > VMBHI is NOT  
a power-on enable  
condition  
VMBBUF_BYPASS  
AUTO_DEVON  
PWRON_LP_OFF  
DEV_ON  
VCCS buffer  
disabled  
VCCS buffer disabled  
VCCS buffer  
disabled  
VCCS buffer disabled  
VCCS buffer disabled  
VCCS buffer disabled  
VCCS buffer disabled  
VCCS buffer disabled  
VCCS buffer disabled  
PWRHOLD pin  
keeps PMIC on  
PWRHOLD pin keeps  
PMIC on  
PWRHOLD pin  
keeps PMIC on  
PWRHOLD pin keeps  
PMIC on  
PWRHOLD pin keeps  
PMIC on  
PWRHOLD pin keeps  
PMIC on  
PWRHOLD pin keeps  
PMIC on  
PWRHOLD pin keeps  
PMIC on  
PWRHOLD pin keeps  
PMIC on  
PWRON long-press PWRON long-press  
turnoff ENABLED  
PWRON long-press PWRON long-press  
turnoff DISABLED  
PWRON long-press  
turnoff ENABLED  
PWRON long-press  
turnoff ENABLED  
PWRON long-press  
turnoff ENABLED  
PWRON long-press  
turnoff ENABLED  
PWRON long-press  
turnoff ENABLED  
turnoff DISABLED  
turnoff ENABLED  
DEV_ON bit NOT  
set by default  
DEV_ON bit NOT set  
by default  
DEV_ON bit NOT  
set by default  
DEV_ON bit NOT set  
by default  
DEV_ON bit NOT set  
by default  
DEV_ON bit NOT set  
by default  
DEV_ON bit NOT set  
by default  
DEV_ON bit NOT set by  
default  
DEV_ON bit NOT set by  
default  
VRTC_OFFMASK  
VRTC in low-power  
mode during OFF  
state  
VRTC in low-power  
mode during OFF  
state  
VRTC in low-power  
mode during OFF  
state  
VRTC in low-power  
mode during OFF  
state  
VRTC in low-power  
mode during OFF  
state  
VRTC in low-power  
mode during OFF  
state  
VRTC in full-power  
mode during OFF  
state  
VRTC in low-power  
mode during OFF state  
VRTC in full-power mode  
during OFF state  
50  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
8.4.1.3 Control Signals  
8.4.1.3.1 SLEEP  
When none of the device SLEEP-disable conditions are met, a falling edge (default or rising edge, depending on  
the programmed polarity) of this signal causes an ACTIVE-to-SLEEP state transition of the device. A rising edge  
(default or falling edge, depending on the programmed polarity) causes a transition back to the ACTIVE state.  
This input signal is level-sensitive and no debouncing is applied.  
While the device is in the SLEEP state, predefined resources are automatically set in the low-power mode or off.  
Resources can be kept in the active mode (full-load capability) by programming the SLEEP_KEEP_LDO_ON and  
the SLEEP_KEEP_RES_ON registers. These registers contain 1 bit per power resource. If the bit is set to 1,  
then that resource stays in active mode when the device is in the SLEEP state.  
The CLK32KOUT pin is also included in the SLEEP_KEEP_RES_ON register and the 32-kHz clock output is  
maintained in the SLEEP state if the corresponding mask bit is set.  
The status (low or high) of GPO0, GPO6, GPO7, and GPO8 is also controlled by the SLEEP signal, to allow  
enabling and disabling of external resources during sleep.  
8.4.1.3.2 PWRHOLD  
The PWRHOLD pin can be used as a PWRHOLD signal input or as a general purpose input (GPI). The mode is  
selected by the AUTODEV_ON bit, which is part of the boot configuration. When AUTODEV_MODE = 0, the  
PWRHOLD feature is selected.  
Configured as PWRHOLD, when none of the device POWER ON disable conditions are met, a high level of this  
signal causes an OFF-to-ACTIVE state transition of the device and a low level causes a transition back to the  
OFF state.  
This input signal is level-sensitive and no debouncing is applied. The rising edge, falling edge, or both of  
PWRHOLD is highlighted through an associated interrupt if interrupt is unmasked.  
When AUTODEV_ON = 1, the pin is used as a GPI. As a GPI, this input can generate a maskable interrupt from  
a rising or falling edge of the input. When AUTODEV_ON = 1, a rising edge of NRESPWRON also automatically  
sets the DEV_ON bit to 1 to maintain supplies after the switch-on sequence, thus removing the need for the  
processor to set the PWRHOLD signal or the DEV_ON bit.  
8.4.1.3.3 BOOT1  
This signal determines with which processor the device is working and, hence, which power-up sequence is  
needed. For more details, see . There is no debouncing on this input signal.  
8.4.1.3.4 NRESPWRON, NRESPWRON2  
The NRESPWRON signal is used as the reset to the processor and is in the VDDIO domain. This signal is held  
low until the ACTIVE state is reached. For more details, see .  
The NRESPWRON2 signal is a second reset output. This signal follows the state of NRESPWRON but has an  
open-drain output with external pullup. The supply for the external pullup must not be activated before the  
TPS659119-Q1 device is in control of the output state (that is, not earlier than during first power-up sequence  
slot). In off mode, the NRESPWRON2 output has a weak internal pulldown.  
8.4.1.3.5 CLK32KOUT  
This signal is the output of the 32-K oscillator, which can be enabled during the power-on sequence, depending  
on the boot mode. This signal is enabled and disabled by a register bit during the ACTIVE state of the device.  
The CLK32KOUT output can also be enabled during the SLEEP state of the device depending on the  
programming of the SLEEPMASK register.  
版权 © 2013–2014, Texas Instruments Incorporated  
51  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.4.1.3.6 PWRON  
The PWRON input is connected to an external button. If the device is in the OFF or SLEEP state, a debounced  
falling edge (PWRON input low for minimum of 100 µs) causes an OFF-to-ACTIVE state or a SLEEP-to-ACTIVE  
state transition of the device. If the device is in active mode, then a low level on this signal generates an  
interrupt. If the PWRON signal is low for more than the PWON_TO_OFF_DELAY delay and the corresponding  
interrupt is not acknowledged by the processor within 1 s, the device enters the OFF state. See 2 and 3 for  
PWRON behavior.  
8.4.1.3.7 INT1  
The INT1 signal (default active low) warns the host processor of any event that has occurred on the TPS659119-  
Q1 device. The host processor can then poll the interrupt from the interrupt status register through I2C to identify  
the interrupt source. A low level (default setting) indicates an active interrupt, highlighted in the INT_STS_REG  
register. The polarity of INT1 can be set programming the IT_POL control bit. INT1 flag active is a POWER ON  
enable condition during a fixed delay, tDOINT1 (only), when the device is in the OFF state (when NRESPWRON is  
low).  
Any of the interrupt sources can be masked programming the INT_MSK_REG register. When an interrupt is  
masked its corresponding interrupt status bit is still updated, but the INT1 flag is not activated. Interrupt source  
masking can be used to mask a device switch-on event. Because interrupt flag active is a POWER ON enable  
condition, during tDOINT1 delay, any interrupt not masked must be cleared to allow immediate turn off of the  
device.  
For a description of interrupt sources, see 6.  
8.4.1.3.8 EN2 and EN1  
EN2 and EN1 are the data and clock signals of the serial-control interface dedicated to voltage-scaling  
applications.  
These signals can also be programmed as enable signals of one or several supplies when the device is on  
(NRESPWRON high). A resource assigned to EN2 or EN1 control automatically disables the serial control  
interface.  
For the EN1_LDO_ASS_REG, EN2_LDO_REG, and SLEEP_KEEP_LDO_ON_REG registers, the EN1 and EN2  
signals can be used to control the ACTIVE or SLEEP state of any LDO-type supplies.  
For the EN1_SMPS_ASS_REG, EN2_SMPS_ASS_REG, and SLEEP_KEEP_RES_ON registers, the EN1 and  
EN2 signals can be used to control the ACTIVE or LOW-POWER state (PFM mode) of SMPS-type supplies.  
The EN2 and EN1 signals can set the output voltage of the VDD1 and VDD2 SMPS from a roof to a floor value,  
preprogrammed in the VDD1_OP_REG, VDD2_OP_REG and VDD1_SR_REG, VDD2_SR_REG registers.  
When a supply is controlled through the EN1 or EN2 signals, the state of the supply is no longer driven by the  
device SLEEP state.  
8.4.1.3.9 GPIO0–8  
GPIO0, GPIO2, and GPIO6–7 can be programmed as part of the power-up sequence and used as enable  
signals for external resources.  
GPIO0 is a configurable I/O in the VCC7 domain. By default, the output of GPIO0 is push-pull, driving low.  
GPIO0 can also be configured as an open-drain output with an external pullup.  
GPIO1 through GPIO8 are configurable open-drain digital I/Os in the VRTC domain. GPIO directivity, debouncing  
delay, and internal pullup can be programmed. By default, all are inputs with weak internal pulldown because  
open-drain output an external pullup is required.  
GPIO0–1 and GPIO3–5 can turn on the device if the corresponding interrupt is not masked. When configured as  
an input, GPIO2 cannot be used to turn on the device, even if the associated interrupt is not masked. The GPIO  
interrupt is level sensitive. When an interrupt is detected, before clearing the interrupt, it should first be disabled  
by masking it.  
GPIO1 and GPIO3 have a current-sink capability of 10 mA, and can also drive LEDs connected to a 5-V supply.  
52  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
GPIO2 can be used for synchronizing DCDCs to an external clock. Programming DCDCCKEXT = 1, VDD1,  
VDD2, and VIO DC-DC switching can be synchronized using a 3-MHz clock set though the GPIO2 pin. VDD1  
and VDD2 are in-phase and VIO is phase shifted by 180 degrees.  
Not connecting noisy switching signals to GPIO4 and GPIO5 is recommended.  
8.4.1.3.10 HDRST Input  
HDRST is a cold reset input for the PMIC. A high level at the input forces the TPS659119-Q1 into off mode,  
causing a general reset of the device to the default settings. The default state is defined by the register reset  
state and boot configuration. An HDRST high level keeps the device in off mode. When reset is released and  
HDRST input goes low, the device automatically transitions to active mode. The device is kept in active mode for  
the period tDONIT1, after which another power-on enable reason is required to keep the device on.  
The HDRST input is in the VRTC domain and has a weak internal pulldown which is active by default.  
8.4.1.3.11 PWRDN  
The PWRDN input is a reset input with selectable polarity (PWRDN_POL). A high level with active-low polarity at  
the input forces the TPS659119-Q1 device into off mode, causing a power-off reset. Off mode is maintained until  
PWRDN is released and a start-up reason is detected such as a PWRON button press or DEV_ON = 1. An  
interrupt is generated to indicate the cause for shutdown. The PWRDN input is in the VRTC domain, but can  
tolerate a 5-V input.  
8.4.1.3.12 Watchdog  
The watchdog has two modes of operation.  
In periodic operation an interrupt is generated with a regular period defined by the WTCHDG_TIME setting. The  
IC initiates WTCHDOG shutdown if the interrupt is not cleared within the period. The watchdog interrupt  
WTCHDOG counter is reinitialized when NRESPWRON is low.  
In interrupt mode the IC initiates WTCHDOG counter when an interrupt is pending and is cleared when the  
interrupt is acknowledged. If the interrupt is not cleared before watchdog expiration within WTCHDG_TIME, the  
device enters off mode.  
By default, periodic watchdog functionality is enabled with the maximum WTCHDG_TIME period.  
Periodic mode:  
WTCHDG_CNT  
0
1
N
0
1
N
WTCHDG_IT  
WTCHDG_OFF  
WTCHDG_IT clearing  
interrupt clearing  
Interrupt mode:  
WTCHDG_CNT  
WTCHDG_OFF  
0
1
i
0
1
N
SWCS049-013  
18. Watchdog Signals  
版权 © 2013–2014, Texas Instruments Incorporated  
53  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.4.1.3.13 Tracking LDO  
LDO4 has an optional mode where the output level follows that of VDD1, from 0.6 to 1.5 V, when VDD1 is active.  
When VDD1 is set to off, the LDO4 output is defined by the SEL[7:2] bits in LDO4_REG, and can be set from 0.8  
to 1.5 V.  
Tracking mode is enabled by setting TRACK = 1 in DCDCCTRL_REG. In initial activation, VDD1 must be  
enabled and allowed to settle before enabling tracking mode. After initial activation, tracking mode can remain  
enabled while VDD1 is turned off. The value of TRACK is set to the default (0) after any turnoff event.  
TRACK bit  
Setting  
time tON  
VDD1 enable  
LDO4  
LDO4  
LDO4  
LDO4  
LDO4 MODE  
No Tracking 1 to 3.3 V  
Tracking 0.6 to 1.5 V  
Tracking 0.8 V to 1.5 V  
Tracking 0.6 V  
(LDO4 has same  
level as VDD1)  
(LDO4 has same  
level as VDD1)  
SWCS049-019  
19. Tracking LDO  
8.5 Programming  
8.5.1 Time-Calendar Registers  
All time and calendar information is available in these dedicated registers, called TC registers. Values of the TC  
registers are written in BCD format.  
1. Year data ranges from 00 to 99  
Leap year = year divisible by four (2000, 2004, 2008, 2012, and so on)  
Common year = other years  
2. Month data ranges from 1 to 12  
3. Day data ranges from the following:  
1 to 31 when months are 1, 3, 5, 7, 8, 10, 12  
1 to 30 when months are 4, 6, 9, 11  
1 to 29 when month is 2 and year is a leap year  
1 to 28 when month is 2 and year is a common year  
4. Week data ranges from 0 to 6  
5. Hour data ranges from 00 to 23 in 24-hour mode and ranges from 1 to 12 in AM/PM mode  
6. Minute data ranges from 0 to 59  
7. Second data ranges from 0 to 59  
To modify the current time, software writes the new time into TC registers to fix the time-calendar information.  
The processor can write to the TC registers without stopping the RTC. In addition, software can stop the RTC by  
clearing the STOP_RTC bit of the control register, checking the RUN bit of the status to ensure that the RTC is  
frozen, updating the TC values, and restarting the RTC by setting STOP_RTC bit. An example follows.  
54  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Programming (接下页)  
5 lists the previous register values for the following example:  
Example: Time is 10H54M36S PM (PM_AM mode set), 2008 September 5  
5. Real-Time Clock Registers Example  
REGISTER  
SECONDS_REG  
MINUTES_REG  
HOURS_REG  
DAYS_REG  
VALUE  
0x36  
0x54  
0x90  
0x05  
0x09  
0x08  
MONTHS_REG  
YEARS_REG  
The user can round to the closest minute by setting the ROUND_30S register bit. TC values are set to the  
closest minute value at the next second. The ROUND_30S bit is automatically cleared when the rounding time is  
performed. Two examples follow:  
If the current time is 10H59M45S, a round operation changes time to 11H00M00S.  
if the current time is 10H59M29S, a round operation changes time to 10H59M00S.  
8.5.2 General Registers  
Software can access the RTC_STATUS_REG and RTC_CTRL_REG registers at any time. The only exception is  
that software cannot access the RTC_CTRL_REG[5] bit which must be changed only when the RTC is stopped.  
8.5.3 Compensation Registers  
The RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers must be updated before each compensation  
process. For example, software can load the compensation value into these registers after each hour event  
during an available access period.  
Hours  
3
4
6
Seconds  
58 59  
0
1
2
58 59  
0
1
2
Compensation event  
Hours  
3
4
59  
0
1
Seconds  
Compensation event  
SWCS046-016  
20. RTC Compensation Scheduling  
版权 © 2013–2014, Texas Instruments Incorporated  
55  
 
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
This drift can be balanced to compensate for any inaccuracy of the 32-kHz oscillator. Software must calibrate the  
oscillator frequency, calculate the drift compensation versus 1-h time period, and load the compensation registers  
with the drift compensation value. If the AUTO_COMP_EN bit in the RTC_CTRL_REG is enabled, the value of  
COMP_REG (in twos-complement) is added to the RTC 32-kHz counter at the first second of each hour. When  
COMP_REG is added to the RTC 32-kHz counter, the duration of the current second becomes (32768 –  
COMP_REG) / 32768 s; so, the RTC can be compensated with a 1 / 32768 s/hour time unit accuracy.  
The compensation is considered when written into the registers.  
8.5.4 Backup Registers  
As part of the RTC, the device contains five 8-bit registers that can be used for storage by the application  
firmware when the external host is powered down. These registers retain the content as long as the VRTC is  
active.  
8.5.5 I2C Interface  
A general-purpose serial-control interface (CTL-I2C) allows read and write access to the configuration registers of  
all resources of the system.  
A second serial-control interface (optional mode for EN1 and EN2 pins) can be dedicated to DVFS.  
Both control interfaces are compliant with the HS-I2C specification.  
These interfaces support the standard slave mode (100 Kbps), fast mode (400 Kbps), and high-speed mode (3.4  
Mbps). The general-purpose I2C module using one slave hard-coded address (ID1 = 2Dh). The voltage scaling  
dedicated I2C module uses one slave hardcoded address (ID0 = 12h). The master mode is not supported.  
8.5.5.1 Addressing  
The device supports seven-bit mode addressing.  
It does not support the following features:  
10-bit addressing  
General call  
8.5.5.2 Access Protocols  
Access protocols or compatibility, the I2C interfaces in the TPS659119-Q1 device use the same read and write  
protocol as other TI power ICs, based on an internal register size of 8 bits. Supported transactions are described  
below.  
8.5.5.2.1 Single-Byte Access  
A write access is initiated by a first byte including the address of the device (7 MSBs) and a write command  
(LSB), a second byte provides the address (8 bits) of the internal register, and the third byte represents the data  
to be written in the internal register (see 21).  
A read access is initiated by:  
A first byte, including the address of the device (7 MSBs) and a write command (LSB)  
A second byte, providing the address (8 bits) of the internal register  
A third byte, including again the device address (7 MSBs) and the read command (LSB)  
The device replies by sending a fourth byte which represents the content of the internal register (see 22).  
56  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
DAD: Device address  
S
W
R
I
T
E
D
A
D
6
D
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
A
D
0
R
A
D
7
R
A
D
6
R
A
D
5
R
A
D
4
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
T
7
D
A
T
6
D
A
T
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
S
T
O
P
A
C
K
A
C
K
A
C
K
T
A
R
T
A
D
5
RAD: Register address  
DAT: Data  
SCL  
SDA  
Master drives SDA  
Slave drives SDA  
SWCS049-020  
21. I2C Write-Access Single Byte  
S
T
A
R
T
W
R
I
S
D
D
D
A
D
4
D
A
D
3
D
D
D
A
D
0
R
R
A
D
6
R
A
D
5
R
A
D
4
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
D
7
D
A
D
6
D
A
D
5
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
R
E
A
D
D
A
T
7
D
D
A
T
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
S
T
A
A
C
K
A
C
K
A
C
K
T
A
R
T
A
D
6
A
D
5
A
D
2
A
D
1
A
D
7
A
D
0
A
T
6
C
O
P
T
E
K
SCL  
SDA  
SWCS049-021  
22. I2C Read-Access Single Byte  
8.5.5.2.2 Multiple-Byte Access To Several Adjacent Registers  
A write access is initiated by:  
A first byte, including the address of the device (7 MSBs) and a write command (LSB)  
A second byte, providing the base address (8 bits) of the internal registers  
The following N bytes represent the data to be written in the internal register starting at the base address and  
incremented by one at each data byte (see 23).  
A read access is initiated by:  
A first byte, including the address of the device (7 MSBs) and a write command (LSB)  
A second byte, providing the base address (8 bits) of the internal register  
A third byte, including again the device address (7 MSBs) and the read command (LSB)  
The device replies by sending a fourth byte, which represents the content of the internal registers, starting at the  
base address and next consecutive ones (see 24).  
S
T
A
R
T
W
R
I
D
A
D
6
D
A
D
5
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
A
D
0
R
A
D
7
R
A
D
6
R
A
D
5
R
A
D
4
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
T
7
D
A
T
6
D
A
D
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
D
A
T
7
D
A
T
6
D
A
T
5
D
A
T
4
D
A
T
3
D
A
T
2
D
A
T
1
D
A
T
0
S
T
A
C
K
A
C
K
A
C
K
A
C
K
O
P
T
E
SCL  
SDA  
SWCS049-022  
23. I2C Write-Access Multiple Bytes  
S
T
A
R
T
W
S
D
A
D
6
D
D
A
D
4
D
D
D
A
D
1
D
R
R
A
D
6
R
A
D
5
R
R
A
D
3
R
A
D
2
R
A
D
1
R
A
D
0
D
A
D
7
D
A
D
6
D
A
D
5
D
A
D
4
D
A
D
3
D
A
D
2
D
A
D
1
D
A
D
0
R
E
A
D
D
A
T
7
D
A
T
6
D
A
T
5
D
D
D
A
T
2
D
A
T
1
D
D
D
D
A
T
5
D
D
D
A
T
2
D
A
T
1
D
A
T
0
S
T
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
R
I
T
A
R
T
A
D
5
A
D
3
A
D
2
A
D
0
A
D
7
A
D
4
A
T
4
A
T
3
A
T
0
A
T
7
A
T
6
A
T
4
A
T
3
O
P
T
E
SCL  
SDA  
SWCS049-023  
24. I2C Read-Access Multiple Bytes  
版权 © 2013–2014, Texas Instruments Incorporated  
57  
 
 
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.5.6 Interrupts  
6. Interrupt Sources  
INTERRUPT  
DESCRIPTION  
RTC alarm event: Occurs at programmed determinate date and time  
(running in ACTIVE, OFF, and SLEEP state, default inactive)  
RTC_ALARM_IT  
RTC_PERIOD_IT  
RTC periodic event: Occurs at programmed regular period of time (every second or minute) (running in  
ACTIVE, OFF, and SLEEP state, default inactive)  
The embedded thermal monitoring module detects a die temperature above the hot-die detection  
threshold (running in ACTIVE and SLEEP state).  
HOT_DIE_IT  
Level sensitive interrupt.  
PWRHOLD_R_IT  
PWRHOLD_F_IT  
PWRHOLD signal rising edge  
PWRHOLD signal falling-edge  
PWRON is low during more than the long-press delay: PWON_TO_OFF_DELAY (can be disable though  
register programming).  
PWRON_LP_IT  
PWRON_IT  
GPIO0_R_IT  
GPIO0_F_IT  
GPIO1_R_IT  
GPIO1_F_IT  
GPIO2_R_IT  
GPIO2_F_IT  
GPIO3_R_IT  
GPIO3_F_IT  
GPIO4_R_IT  
GPIO4_F_IT  
GPIO5_R_IT  
GPIO5_F_IT  
WTCHDG_IT  
PWRDN_IT  
PWRON is low while the device is on (running in ACTIVE and SLEEP state). Level-sensitive interrupt.  
GPIO_CKSYNC rising-edge detection  
GPIO_CKSYNC falling-edge detection  
GPIO1 rising-edge detection  
GPIO1 falling-edge detection  
GPIO2 rising-edge detection  
GPIO2 falling-edge detection  
GPIO3 rising-edge detection  
GPIO3 falling-edge detection  
GPIO4 rising-edge detection  
GPIO4 falling-edge detection  
GPIO5 rising-edge detection  
GPIO5 falling-edge detection  
Watchdog interrupt  
PWRDN reset interrupt  
8.6 Register Maps  
8.6.1 Functional Registers  
The possible device reset domains are:  
Full reset: All digital of device is reset.  
Caused by Power On Reset (POR) when VCCS < VBNPR  
General reset: No impact on RTC, backup registers or interrupt status.  
Caused by PWON_LP_RST bit set high or  
DEV_OFF_RST bit set high or  
HDRST input set high  
Turnoff OFF: Power reinitialization in off or backup mode.  
In following register description, reset domain for each register is defined at the register table heading.  
The DCDCCTRL_REG and DEVCTRL2_REG have bits in two reset domains.  
The comment, Default value: See boot configuration, indicates that the default value of the  
bit is set in boot configuration and not by register reset value.  
58  
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Register Maps (接下页)  
8.6.2 TPS659119-Q1_FUNC_REG Register Mapping Summary  
7. TPS659119-Q1_FUNC_REG Register Summary(1)  
REGISTER WIDTH  
(BITS)  
REGISTER NAME  
SECONDS_REG  
TYPE  
REGISTER RESET  
ADDRESS OFFSET  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
0x00  
0x00  
0x00  
0x01  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x00  
0x00  
0x80  
0x00  
0x00  
0x00  
0x27  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x1F  
0x01  
0x01  
0x05  
0x0D  
0x33  
0x33  
0x0D  
0x4B  
0x4B  
0x00  
0x03  
0x03  
0x15  
0x15  
0x00  
0x09  
0x0D  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x30  
0x31  
0x32  
0x33  
0x34  
MINUTES_REG  
HOURS_REG  
DAYS_REG  
MONTHS_REG  
YEARS_REG  
WEEKS_REG  
ALARM_SECONDS_REG  
ALARM_MINUTES_REG  
ALARM_HOURS_REG  
ALARM_DAYS_REG  
ALARM_MONTHS_REG  
ALARM_YEARS_REG  
RTC_CTRL_REG  
RTC_STATUS_REG  
RTC_INTERRUPTS_REG  
RTC_COMP_LSB_REG  
RTC_COMP_MSB_REG  
RTC_RES_PROG_REG  
RTC_RESET_STATUS_REG  
BCK1_REG  
BCK2_REG  
BCK3_REG  
BCK4_REG  
BCK5_REG  
PUADEN_REG  
REF_REG  
VRTC_REG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VIO_REG  
VDD1_REG  
VDD1_OP_REG  
VDD1_SR_REG  
VDD2_REG  
VDD2_OP_REG  
VDD2_SR_REG  
EXTCTRL_REG  
EXTCTRL_OP_REG  
EXTCTRL_SR_REG  
LDO1_REG  
LDO2_REG  
LDO5_REG  
LDO8_REG  
LDO7_REG  
(1) Register reset values are for fixed boot mode.  
版权 © 2013–2014, Texas Instruments Incorporated  
59  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Register Maps (接下页)  
7. TPS659119-Q1_FUNC_REG Register Summary(1) (接下页)  
REGISTER WIDTH  
(BITS)  
REGISTER NAME  
TYPE  
REGISTER RESET  
ADDRESS OFFSET  
LDO6_REG  
LDO4_REG  
LD03_REG  
THERM_REG  
BBCH_REG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
0x21  
0x00  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x80  
0x00  
0x0D  
0x00  
DCDCCTRL_REG  
DEVCTRL_REG  
0x39  
0x0000 0014  
0x0000 0036  
0x00  
DEVCTRL2_REG  
SLEEP_KEEP_LDO_ON_REG  
SLEEP_KEEP_RES_ON_REG  
SLEEP_SET_LDO_OFF_REG  
SLEEP_SET_RES_OFF_REG  
EN1_LDO_ASS_REG  
EN1_SMPS_ASS_REG  
EN2_LDO_ASS_REG  
EN2_SMPS_ASS_REG  
INT_STS_REG  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x06  
INT_MSK_REG  
0xFF  
0xA8  
0xFF  
0x5A  
0xFF  
0x07  
INT_STS2_REG  
INT_MSK2_REG  
INT_STS3_REG  
INT_MSK3_REG  
GPIO0_REG  
GPIO1_REG  
0x08  
GPIO2_REG  
0x08  
GPIO3_REG  
0x08  
GPIO4_REG  
0x08  
GPIO5_REG  
0x08  
GPIO6_REG  
0x05  
GPIO7_REG  
0x05  
GPIO8_REG  
0x08  
WATCHDOG_REG  
BOOTSEQVER_REG  
VMBCH2_REG  
0x07  
0x1E  
0x00  
LED_CTRL1_REG  
LED_CTRL2_REG1  
PWM_CTRL1_REG  
PWM_CTRL2_REG  
SPARE_REG  
0x00  
0x00  
0x00  
0x00  
0x00  
VERNUM_REG  
0x00  
60  
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
8.6.3 TPS659119-Q1_FUNC_REG Register Descriptions  
8. SECONDS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x00  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for seconds  
RW  
7
6
5
4
3
2
2
2
1
0
Reserved  
SEC1  
SEC0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:4  
3:0  
SEC1  
SEC0  
Second digit of seconds (range is 0 up to 5)  
First digit of seconds (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
9. MINUTES_REG  
Address Offset  
Physical Address  
Description  
Type  
0x01  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for minutes  
RW  
7
6
5
4
3
1
0
Reserved  
MIN1  
MIN0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:4  
3:0  
MIN1  
MIN0  
Second digit of minutes (range is 0 up to 5)  
First digit of minutes (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
10. HOURS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x02  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for hours  
RW  
7
6
5
4
3
1
0
PM_NAM  
Reserved  
HOUR1  
HOUR0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
PM_NAM  
Only used in PM_AM mode (otherwise it is set to 0)  
RW  
0
0 is AM  
1 is PM  
6
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
5:4  
3:0  
HOUR1  
HOUR0  
Second digit of hours(range is 0 up to 2)  
First digit of hours (range is 0 up to 9)  
RW  
RW  
0x0  
0x0  
版权 © 2013–2014, Texas Instruments Incorporated  
61  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
11. DAYS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x03  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for days  
RW  
7
6
5
4
3
2
2
2
1
0
Reserved  
DAY1  
DAY0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
5:4  
3:0  
DAY1  
DAY0  
Second digit of days (range is 0 up to 3)  
First digit of days (range is 0 up to 9)  
RW  
RW  
0x0  
0x1  
12. MONTHS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x04  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for months  
RW  
7
6
5
4
3
1
0
Reserved  
MONTH1  
MONTH0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:5  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
4
MONTH1  
MONTH0  
Second digit of months (range is 0 up to 1)  
First digit of months (range is 0 up to 9)  
RW  
RW  
0
3:0  
0x1  
13. YEARS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x05  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for day of the week  
RW  
7
6
5
4
3
1
0
YEAR1  
YEAR0  
BITS  
7:4  
FIELD NAME  
DESCRIPTION  
TYPE  
RW  
RESET  
0x0  
YEAR1  
YEAR0  
Second digit of years (range is 0 up to 9)  
First digit of years (range is 0 up to 9)  
3:0  
RW  
0x0  
62  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
14. WEEKS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x06  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for day of the week  
RW  
7
6
5
4
3
2
1
0
Reserved  
WEEK  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:3  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
2:0  
WEEK  
First digit of day of the week (range is 0 up to 6)  
RW  
0
15. ALARM_SECONDS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x08  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for programming seconds in the alarm setting  
RW  
7
6
5
4
3
2
1
0
Reserved  
ALARM_SEC1  
ALARM_SEC0  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7
Reserved bit  
RO  
0
R returns  
0s  
6:4  
3:0  
ALARM_SEC1  
ALARM_SEC0  
Second digit for programming seconds in the alarm setting (range is 0 up  
to 5)  
RW  
0x0  
0x0  
First digit for programming seconds in the alarm setting (range is 0 up to  
9)  
RW  
16. ALARM_MINUTES_REG  
Address Offset  
Physical Address  
Description  
Type  
0x09  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for programming minutes in the alarm setting  
RW  
7
6
5
4
3
2
1
0
Reserved  
ALARM_MIN1  
ALARM_MIN0  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7
Reserved bit  
RO  
0
R returns  
0s  
6:4  
3:0  
ALARM_MIN1  
ALARM_MIN0  
Second digit for programming minutes in the alarm setting (range is 0 up  
to 5)  
RW  
0x0  
0x0  
First digit for programming minutes in the alarm setting (range is 0 up to  
9)  
RW  
版权 © 2013–2014, Texas Instruments Incorporated  
63  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
17. ALARM_HOURS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x0A  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for programming hours in the alarm setting  
RW  
7
6
5
4
3
2
1
0
Reserved  
ALARM_HOUR1  
ALARM_HOUR0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
ALARM_PM_NAM  
Only used in PM_AM mode for programming the AM/PM in the alarm  
RW  
0
setting (otherwise it is set to 0)  
0 is AM  
1 is PM  
6
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
5:4  
3:0  
ALARM_HOUR1  
ALARM_HOUR0  
Second digit for programming hours in the alarm setting (range is 0 up to  
2)  
RW  
0x0  
0x0  
First digit for programming hours in the alarm setting (range is 0 up to 9)  
RW  
18. ALARM_DAYS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x0B  
Instance  
RTC register for programming days in the alarm setting  
RW  
(RESET DOMAIN: FULL RESET)  
7
6
5
4
3
2
1
0
Reserved  
ALARM_DAY1  
ALARM_DAY0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
Reserved bit  
RO  
0x0  
R Special  
5:4  
3:0  
ALARM_DAY1  
ALARM_DAY0  
Second digit for programming days in the alarm setting (range is 0 up to  
3)  
RW  
0x0  
0x1  
First digit for programming days in the alarm setting (range is 0 up to 9)  
RW  
64  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
19. ALARM_MONTHS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x0C  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for programming months in the alarm setting  
RW  
7
6
5
4
3
2
1
0
Reserved  
ALARM_MONTH0  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:5  
Reserved bit  
RO  
R returns  
0s  
0x0  
4
ALARM_MONTH1  
ALARM_MONTH0  
Second digit for programming months in the alarm setting(range is 0 up  
to 1)  
RW  
0
3:0  
First digit for programming months in the alarm setting(range is 0 up to 9)  
RW  
0x1  
20. ALARM_YEARS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x0D  
Instance  
RTC register for programming years in the alarm setting  
RW  
(RESET DOMAIN: FULL RESET)  
7
6
5
4
3
2
1
0
ALARM_YEAR1  
ALARM_YEAR0  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:4  
ALARM_YEAR1  
Second digit for programming years in the alarm setting (range is 0 up to  
9)  
RW  
0x0  
3:0  
ALARM_YEAR0  
First digit for programming years in the alarm setting (range is 0 up to 9)  
RW  
0x0  
版权 © 2013–2014, Texas Instruments Incorporated  
65  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
21. RTC_CTRL_REG  
Address Offset  
Physical Address  
Description  
0x10  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC control register:  
Note: A dummy read of this register is necessary before each I2C read in order to update the  
ROUND_30S bit value.  
Type  
RW  
7
6
5
4
3
2
1
0
RTC_V_OPT  
GET_TIME  
TEST_MODE  
MODE_12_24  
AUTO_COMP  
ROUND_30S  
STOP_RTC  
BITS  
FIELD NAME  
RTC_V_OPT  
DESCRIPTION  
TYPE  
RESET  
7
RTC date and time register selection:  
RW  
0
0: Read access directly to dynamic registers (SECONDS_REG,  
MINUTES_REG, HOURS_REG, DAYS_REG, MONTHS_REG,  
YEAR_REG, WEEKS_REG)  
1: Read access to static shadowed registers: (see GET_TIME bit).  
6
GET_TIME  
When writing a 1 into this register, the content of the dynamic registers  
(SECONDS_REG, MINUTES_REG, HOURS_REG, DAYS_REG,  
MONTHS_REG, YEAR_REG and WEEKS_REG) is transferred into  
RW  
0
static shadowed registers. Each update of the shadowed registers needs  
to be done by re-asserting GET_TIME bit to 1 (In effect: reset it to 0 and  
then re-write it to 1)  
5
4
3
SET_32_COUNTER  
TEST_MODE  
0: No action  
RW  
RW  
RW  
0
0
0
1: set the 32-kHz counter with COMP_REG value.  
It must only be used when the RTC is frozen.  
0: functional mode  
1: test mode (Auto compensation is enable when the 32-kHz counter  
reaches at the end of the counter)  
MODE_12_24  
0: 24-hours mode  
1: 12-hours mode (PM-AM mode)  
Switching between the two modes at any time without disturbing the RTC  
is possible. Read or write are always performed with the current mode.  
2
1
AUTO_COMP  
ROUND_30S  
0: No auto compensation  
1: Auto compensation enabled  
RW  
RW  
0
0
0: No update  
1: When a one is written, the time is rounded to the closest minute.  
This bit is a toggle bit, the micro-controller can only write one and RTC  
clears it. If the micro-controller sets the ROUND_30S bit and then read it,  
the micro-controller reads one until the rounded to the closet.  
0
STOP_RTC  
0: RTC is frozen  
1: RTC is running  
RW  
0
66  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
22. RTC_STATUS_REG  
Address Offset  
Physical Address  
Description  
0x11  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC status register:  
Note: A dummy read of this register is necessary before each I2C read in order to update the status  
register value.  
Type  
RW  
7
6
5
4
3
2
1
0
POWER_UP  
ALARM  
EVENT_1D  
EVENT_1H  
EVENT_1M  
EVENT_1S  
RUN  
Reserved  
BITS  
FIELD NAME  
POWER_UP  
DESCRIPTION  
TYPE  
RESET  
7
Indicates that a reset occurred (bit cleared to 0 by writing 1).  
POWER_UP is set by a reset, is cleared by writing one in this bit.  
RW  
1
6
ALARM  
Indicates that an alarm interrupt is generated (bit clear by writing 1).  
The alarm interrupt keeps its low level, until the micro-controller write 1 in  
the ALARM bit of the RTC_STATUS_REG register.  
RW  
0
The timer interrupt is a low-level pulse (15 µs duration).  
5
4
3
2
1
EVENT_1D  
EVENT_1H  
EVENT_1M  
EVENT_1S  
RUN  
One day has occurred  
One hour has occurred  
One minute has occurred  
One second has occurred  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0: RTC is frozen  
1: RTC is running  
This bit shows the real state of the RTC, because STOP_RTC signal  
was resynchronized on 32-kHz clock, the action of this bit is delayed.  
0
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
版权 © 2013–2014, Texas Instruments Incorporated  
67  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
23. RTC_INTERRUPTS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x12  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC interrupt-control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
IT_ALARM  
IT_TIMER  
EVERY  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:5  
Reserved bit  
RO  
0x0  
R returns  
0s  
4
IT_SLEEP_MASK_E 1: Mask periodic interrupt while the TPS659119-Q1 device is in SLEEP  
RW  
0
N
mode. The interrupt event is back up in a register and occurs as soon as  
the TPS659119-Q1 device is no longer in SLEEP mode.  
0: Normal mode, no interrupt masked  
3
2
IT_ALARM  
IT_TIMER  
Enable one interrupt when the alarm value is reached (TC ALARM  
registers) by the TC registers  
RW  
RW  
0
0
Enable periodic interrupt  
0: interrupt disabled  
1: interrupt enabled  
1:0  
EVERY  
Interrupt period  
00: every second  
01: every minute  
10: every hour  
11: every day  
RW  
0x0  
24. RTC_COMP_LSB_REG  
Address Offset  
Physical Address  
Description  
0x13  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC compensation register (LSB)  
Note: This register must be written in twos-complement.  
Which means that to add one 32-kHz oscillator period every hour, the microcontroller muse write FFFF  
into RTC_COMP_MSB_REG & RTC_COMP_LSB_REG.  
To remove one 32-kHz oscillator period every hour, the microcontroller needs to write 0001 into  
RTC_COMP_MSB_REG & RTC_COMP_LSB_REG.  
The 7FFF value is forbidden.  
Type  
RW  
7
6
5
4
3
2
1
0
RTC_COMP_LSB  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:0  
RTC_COMP_LSB  
This register contains the number of 32-kHz periods to be added into the  
32-kHz counter every hour [LSB]  
RW  
0x00  
68  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
25. RTC_COMP_MSB_REG  
Address Offset  
Physical Address  
Description  
0x14  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC compensation register (MSB)  
Notes: See RTC_COMP_LSB_REG Notes.  
Type  
RW  
7
6
5
4
3
2
1
0
RTC_COMP_MSB  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:0  
RTC_COMP_MSB  
This register contains the number of 32-kHz periods to be added into the  
32-kHz counter every hour [MSB]  
RW  
0x00  
26. RTC_RES_PROG_REG  
Address Offset  
Physical Address  
Description  
Type  
0x15  
Instance  
RTC register containing oscillator resistance value  
RW  
(RESET DOMAIN: FULL RESET)  
7
6
5
4
3
2
1
0
Reserved  
SW_RES_PROG  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
5:0  
SW_RES_PROG  
Value of the oscillator resistance  
RW  
0x27  
27. RTC_RESET_STATUS_REG  
Address Offset  
Physical Address  
Description  
Type  
0x16  
Instance  
(RESET DOMAIN: FULL RESET)  
RTC register for reset status  
RW  
7
6
5
4
3
2
1
0
Reserved  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:1  
Reserved bit  
RO  
R returns  
0s  
0x0  
0
RESET_STATUS  
This bit can only be set to one and is cleared when a manual reset or a  
POR (VBAT < 2.1) occur. If this bit is reset the RTC lost its configuration.  
RW  
0
版权 © 2013–2014, Texas Instruments Incorporated  
69  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
28. BCK1_REG  
Address Offset  
Physical Address  
Description  
0x17  
Instance  
(RESET DOMAIN: FULL RESET)  
Backup register which can be used for storage by the application firmware when the external host is  
powered down. These registers retain content as long as the VRTC is active.  
Type  
RW  
7
6
6
6
5
4
3
2
1
0
BCKUP  
BITS  
FIELD NAME  
BCKUP  
DESCRIPTION  
TYPE  
RESET  
7:0  
Backup bit  
RW  
0x00  
29. BCK2_REG  
Address Offset  
Physical Address  
Description  
0x18  
Instance  
(RESET DOMAIN: FULL RESET)  
Backup register which can be used for storage by the application firmware when the external host is  
powered down. These registers retain content as long as the VRTC is active.  
Type  
RW  
7
5
4
3
2
1
0
BCKUP  
BITS  
FIELD NAME  
BCKUP  
DESCRIPTION  
TYPE  
RESET  
7:0  
Backup bit  
RW  
0x00  
30. BCK3_REG  
Address Offset  
Physical Address  
Description  
0x19  
Instance  
(RESET DOMAIN: FULL RESET)  
Backup register which can be used for storage by the application firmware when the external host is  
powered down. These registers retain content as long as the VRTC is active.  
Type  
RW  
7
5
4
3
2
1
0
BCKUP  
BITS  
FIELD NAME  
BCKUP  
DESCRIPTION  
TYPE  
RESET  
7:0  
Backup bit  
RW  
0x00  
70  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
31. BCK4_REG  
Address Offset  
Physical Address  
Description  
0x1A  
Instance  
(RESET DOMAIN: FULL RESET)  
Backup register which can be used for storage by the application firmware when the external host is  
powered down. These registers retain content as long as the VRTC is active.  
Type  
RW  
7
6
5
4
3
2
1
0
BCKUP  
BITS  
FIELD NAME  
BCKUP  
DESCRIPTION  
TYPE  
RESET  
7:0  
Backup bit  
RW  
0x00  
32. BCK5_REG  
Address Offset  
Physical Address  
Description  
0x1B  
Instance  
(RESET DOMAIN: FULL RESET)  
Backup register which can be used for storage by the application firmware when the external host is  
powered down. These registers retain content as long as the VRTC is active.  
Type  
RW  
7
6
5
4
3
2
1
0
BCKUP  
BITS  
FIELD NAME  
BCKUP  
DESCRIPTION  
TYPE  
RESET  
7:0  
Backup bit  
RW  
0x00  
版权 © 2013–2014, Texas Instruments Incorporated  
71  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
33. PUADEN_REG  
Address Offset  
0x1C  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
Pullup and pulldown control register.  
RW  
7
6
5
4
3
2
1
0
Reserved  
I2CCTLP  
I2CSRP  
PWRONP  
SLEEPP  
PWRHOLDP  
HDRSTP  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RO  
RESET  
7
6
Reserved  
I2CCTLP  
0
0
SDACTL and SCLCTL pullup control:  
1: Pullup is enabled  
RW  
0: Pullup is disabled  
5
4
3
2
1
0
I2CSRP  
SDASR and SCLSR pullup control:  
1: Pullup is enabled  
0: Pullup is disabled  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
1
1
1
1
PWRONP  
SLEEPP  
PWRON-pad pullup control:  
1: Pullup is enabled  
0: Pullup is disabled  
SLEEP-pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
PWRHOLDP  
HDRSTP  
PWRHOLD-pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
HDRST-pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
NRESPWRON2P  
NRESPWRON2 pad control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
72  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
34. REF_REG  
Address Offset  
0x1D  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
Reference control register  
RO  
7
6
5
4
3
2
1
0
Reserved  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:2  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
1:0  
ST  
Reference state:  
RO  
0x1  
ST[1:0] = 00: Off  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Reserved  
ST[1:0] = 11: On low power (SLEEP)  
(Write access available in test mode only)  
35. VRTC_REG  
Address Offset  
0x1E  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
VRTC internal regulator control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
ST  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:4  
Reserved bit  
RO  
R returns  
0s  
0x0  
3
VRTC_OFFMASK  
VRTC internal regulator off mask signal:  
RW  
0
When set to 1, the regulator keeps its full-load capability during device  
OFF state.  
When set to 0, the regulator enters in low-power mode during device  
OFF state.  
Note that VRTC enters low-power mode when the device is on backup  
even if this bit is set to 1 (Default value: See boot configuration)  
2
Reserved  
ST  
Reserved bit  
RO  
R returns  
0s  
0
1:0  
Reference state:  
RO  
0x1  
ST[1:0] = 00: Reserved  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Reserved  
ST[1:0] = 11: On low power (SLEEP)  
(Write access available in test mode only)  
版权 © 2013–2014, Texas Instruments Incorporated  
73  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
36. VIO_REG  
Address Offset  
0x20  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
VIO control register  
RW  
7
6
5
4
3
2
1
0
ILIM  
Reserved  
SEL  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
ILIM  
Current-limit threshold selection:  
ILIM[1:0] = 00: 0.7 A  
ILIM[1:0] = 01: 1.2 A  
RW  
0x0  
TPS6591  
19xAIPF  
PRQ1  
ILIM[1:0] = 10: 1.7 A  
ILIM[1:0] = 11: > 1.7 A  
5:4  
3:2  
Reserved  
SEL  
Reserved bit  
RO  
R returns  
0s  
0x0  
0x0  
Output voltage selection (EEPROM bits):  
SEL[1:0] = 00: 1.5 V  
RW  
SEL[1:0] = 01: 1.8 V  
SEL[1:0] = 10: 2.5 V  
SEL[1:0] = 11: 3.3 V  
(Default value: see boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: OFF  
RW  
0x0  
ST[1:0] = 01: ON high power (ACTIVE)  
ST[1:0] = 10: OFF  
ST[1:0] = 11: ON low power (SLEEP)  
74  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
37. VDD1_REG  
Address Offset  
0x21  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
VDD1 control register  
RW  
7
6
5
4
3
2
1
0
VGAIN_SEL  
ILMAX  
TSTEP  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
VGAIN_SEL  
Select output voltage multiplication factor: G (EEPROM bits):  
When set to 00: x1  
RW  
0x0  
When set to 01: TBD  
When set to 10: x2  
When set to 11: x3  
(Default value: see boot configuration)  
5:4  
3:2  
ILMAX  
TSTEP  
Select current limit threshold:  
When set to 0: 1.2 A  
When set to 1: > 1.7 A  
RW  
RW  
0
Time step: when changing the output voltage, the new value is reached  
through successive 12.5-mV voltage steps (if not bypassed). The  
equivalent programmable slew rate of the output voltage is then:  
TSTEP[2:0] = 000: step duration is 0, step function is bypassed  
TSTEP[2:0] = 001: 12.5 mV/µs (sampling 3 MHz)  
0x3  
TSTEP[2:0] = 010: 9.4 mV/µs (sampling 3 MHz × 3/4)  
TSTEP[2:0] = 011: 7.5 mV/µs (sampling 3 MHz × 3/5) (default)  
TSTEP[2:0] = 100: 6.25 mV/µs(sampling 3 MHz/2)  
TSTEP[2:0] = 101: 4.7 mV/µs(sampling 3 MHz/3)  
TSTEP[2:0] = 110: 3.12 mV/µs(sampling 3 MHz/4)  
TSTEP[2:0] = 111: 2.5 mV/µs(sampling 3 MHz/5)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: OFF  
RW  
0x0  
ST[1:0] = 01: ON, high-power mode  
ST[1:0] = 10: OFF  
ST[1:0] = 11: ON, low-power mode  
版权 © 2013–2014, Texas Instruments Incorporated  
75  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
38. VDD1_OP_REG  
Address Offset  
0x22  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
VDD1 voltage selection register.  
This register can be accessed by both control and voltage-scaling I2C interfaces depending on the  
SR_CTL_I2C_SEL register bit value.  
RW  
7
6
5
4
3
2
1
0
CMD  
SEL  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
CMD  
When set to 0: VDD1_OP_REG voltage is applied  
When set to 1: VDD1_SR_REG voltage is applied  
RW  
0
6:0  
SEL  
Output voltage (4 EEPROM bits) selection with GAIN_SEL = 00 (G = 1,  
RW  
0x00  
12.5 mV per LSB):  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
VOUT = (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
(Default value: See boot configuration)  
39. VDD1_SR_REG  
Address Offset  
0x23  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
VDD1 voltage selection register.  
This register can be accessed by both control and voltage scaling dedicated I2C interfaces depending  
on SR_CTL_I2C_SEL register bit value.  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:0  
SEL  
Output voltage selection with GAIN_SEL = 00 (G = 1, 12.5 mV per LSB):  
RW  
0x00  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
VOUT = (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
(Default value: See boot configuration)  
76  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
40. VDD2_REG  
Address Offset  
0x24  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
VDD2 control register  
RW  
7
6
5
4
3
2
1
0
VGAIN_SEL  
ILMAX  
TSTEP  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
VGAIN_SEL  
Select output voltage multiplication factor (x1, x3 included in EEPROM  
RW  
0x0  
bits): G  
When set to 00: x1  
When set to 01: TBD  
When set to 10: x2  
When set to 11: x3  
5:4  
3:2  
ILMAX  
TSTEP  
Select current limit threshold  
When set to 0: 1.2 A  
When set to 1: > 1.7 A  
RW  
RW  
0
Time step: when changing the output voltage, the new value is reached  
through successive 12.5-mV voltage steps (if not bypassed). The  
equivalent programmable slew rate of the output voltage is then:  
TSTEP[2:0] = 000: step duration is 0, step function is bypassed  
TSTEP[2:0] = 001: 12.5 mV/µs (sampling 3 MHz)  
0x1  
TSTEP[2:0] = 010: 9.4 mV/µs (sampling 3 MHz × 3/4)  
TSTEP[2:0] = 011: 7.5 mV/µs (sampling 3 MHz × 3/5) (default)  
TSTEP[2:0] = 100: 6.25 mV/µs(sampling 3 MHz/2)  
TSTEP[2:0] = 101: 4.7 mV/µs(sampling 3 MHz/3)  
TSTEP[2:0] = 110: 3.12 mV/µs(sampling 3 MHz/4)  
TSTEP[2:0] = 111: 2.5 mV/µs(sampling 3 MHz/5)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: OFF  
RW  
0x0  
ST[1:0] = 01: ON, high-power mode  
ST[1:0] = 10: OFF  
ST[1:0] = 11: ON, low-power mode  
版权 © 2013–2014, Texas Instruments Incorporated  
77  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
41. VDD2_OP_REG  
Address Offset  
0x25  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
VDD2 voltage selection register.  
This register can be accessed by both control-dedicated and voltage-scaling-dedicated I2C interfaces  
depending on the SR_CTL_I2C_SEL register bit value.  
RW  
7
6
5
4
3
2
1
0
CMD  
SEL  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
CMD  
Command:  
RW  
0
When set to 0: VDD2_OP_REG voltage is applied  
When set to 1: VDD2_SR_REG voltage is applied  
6:0  
SEL  
Output voltage (4 EEPROM bits) selection with GAIN_SEL = 00 (G = 1,  
RW  
0x00  
12.5 mV per LSB):  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0.0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
VOUT = (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
42. VDD2_SR_REG  
Address Offset  
0x26  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
VDD2 voltage selection register.  
This register can be accessed by both control-dedicated and voltage-scaling-dedicated I2C interfaces  
depending on the SR_CTL_I2C_SEL register bit value.  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6:0  
SEL  
Output voltage (EEPROM bits) selection with GAIN_SEL = 00 (G = 1,  
RW  
0x00  
12.5 mV per LSB):  
SEL[6:0] = 1001011 to 1111111: 1.5 V  
...  
SEL[6:0] = 0111111: 1.35 V  
...  
SEL[6:0] = 0110011: 1.2 V  
...  
SEL[6:0] = 0000001 to 0000011: 0.6 V  
SEL[6:0] = 0000000: Off (0 V)  
Note: from SEL[6:0] = 3 to 75 (dec)  
VOUT= (SEL[6:0] × 12.5 mV + 0.5625 V) × G  
78  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
43. EXTCTRL_REG  
Address Offset  
0x27  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
EXTCTRL, external converter voltage controller  
RW  
7
6
5
4
3
2
1
0
Reserved  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:2  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
1:0  
ST  
Supply state (EEPROM dependent):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On  
ST[1:0] = 10: Off  
ST[1:0] = 11: On  
44. EXTCTRL_OP_REG  
Address Offset  
0x28  
Physical Address  
Instance  
(RESET DOMAIN: TURN OFF  
RESET)  
Description  
Type  
EXTCTRL voltage-selection register.  
This register can be accessed by both control-dedicated and voltage-scaling-dedicated I2C interfaces  
depending on the SR_CTL_I2C_SEL register bit value.  
RW  
7
6
5
4
3
2
1
0
CMD  
SEL  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
CMD  
Command:  
RW  
0
When set to 0: EXTCTRL_OP_REG voltage is applied  
When set to 1: EXTCTRL_SR_REG voltage is applied  
6:0  
SEL  
Resistive divider ratio selection (4 EEPROM bits):  
For SEL[6:0] = 3 to 67,  
Ratio = 48 / (45 + SEL[6:0])  
SEL[6:0] = 67 to 127: 3/7 V/V  
SEL[6:0] = 66: 16/37 V/V  
...  
RW  
0x00  
SEL[6:0] = 35: 3/5 V/V  
...  
SEL[6:0] = 5: 24/25 V/V  
SEL[6:0] = 4: 48/49 V/V  
SEL[6:0] = 1 to 3: 1 V/V  
SEL[6:0] = 0 (EN signal low)  
版权 © 2013–2014, Texas Instruments Incorporated  
79  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
45. EXTCTRL_SR_REG  
Address Offset  
0x29  
Physical Address  
Instance  
(RESET DOMAIN: TURN OFF  
RESET)  
Description  
Type  
EXTCTRL voltage selection register.  
This register can be accessed by both control-dedicated and voltage-scaling-dedicated I2C interfaces  
depending on the SR_CTL_I2C_SEL register bit value.  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
BITS  
7
FIELD NAME  
DESCRIPTION  
TYPE  
RO  
RESET  
0
Reserved  
SEL  
6:0  
Resistive divider ratio selection (4 EEPROM bits):  
For SEL[6:0] = 3 to 67,  
Ratio = 48 / (45 + SEL[6:0])  
SEL[6:0] = 67 to 127: 3/7 V/V  
SEL[6:0] = 66: 16/37 V/V  
...  
RW  
0x03  
SEL[6:0] = 35: 3/5 V/V  
...  
SEL[6:0] = 5: 24/25 V/V  
SEL[6:0] = 4: 48/49 V/V  
SEL[6:0] = 1 to 3: 1 V/V  
SEL[6:0] = 0 (EN signal low)  
46. LDO1_REG  
Address Offset  
0x30  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
LDO1 regulator control register  
RW  
7
6
5
4
3
2
1
0
SEL  
ST  
BITS  
FIELD NAME  
SEL  
DESCRIPTION  
TYPE  
RESET  
7:2  
Supply voltage (EEPROM bits):  
SEL[7:2] = 00000: 000011: 1 V  
SEL[7:2] = 000100: 1 V  
SEL[7:2] = 000101: 1.05 V  
...  
RW  
0x0  
SEL[7:2] = 110001: 3.25 V  
SEL[7:2] = 110010: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
80  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
47. LDO2_REG  
Address Offset  
0x31  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
LDO2 regulator control register  
RW  
7
6
5
4
3
2
1
0
SEL  
ST  
BITS  
FIELD NAME  
SEL  
DESCRIPTION  
TYPE  
RESET  
7:2  
Supply voltage (EEPROM bits):  
SEL[7:2] = 00000: 000011: 1 V  
SEL[7:2] = 000100: 1 V  
SEL[7:2] = 000101: 1.05 V  
...  
RW  
0x0  
SEL[7:2] = 110001: 3.25 V  
SEL[7:2] = 110010: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
48. LDO5_REG  
Address Offset  
0x32  
Physical Address  
Instance  
(RESET DOMAIN: TUROFF  
RESET)  
Description  
Type  
LDO5 regulator control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000: 1 V  
SEL[6:2] = 00001: 1 V  
SEL[6:2] = 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
版权 © 2013–2014, Texas Instruments Incorporated  
81  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
49. LDO8_REG  
Address Offset  
0x33  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
LDO8 regulator control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000: 1 V  
SEL[6:2] = 00001: 1 V  
SEL[6:2] = 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
50. LDO7_REG  
Address Offset  
0x34  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
LDO7 regulator control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000: 1 V  
SEL[6:2] = 00001: 1 V  
SEL[6:2] = 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
82  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
51. LDO6_REG  
Address Offset  
0x35  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
LDO6 regulator control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000: 1 V  
SEL[6:2] = 00001: 1 V  
SEL[6:2] = 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
52. LDO4_REG  
Address Offset  
0x36  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
LDO4 regulator control register  
RW  
7
6
5
4
3
2
1
0
SEL  
ST  
BITS  
FIELD NAME  
SEL  
DESCRIPTION  
TYPE  
RESET  
7:2  
Supply voltage (EEPROM bits):  
SEL[7:2] = 00000: 00000: 0.8 V  
SEL[7:2] = 00000: 000001: 0.85 V  
SEL[7:2] = 00000: 000010: 0.9 V  
SEL[7:2] = 000100: 1 V  
RW  
0x00  
SEL[7:2] = 000101: 1.05 V  
...  
SEL[7:2] = 110001: 3.25 V  
SEL[7:2] = 110010: 3.3 V  
Applicable voltage selection  
TRACK LDO 0: 1 V to 3.3 V  
TRACK LDO 1: 0.8 V to 1.5 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
版权 © 2013–2014, Texas Instruments Incorporated  
83  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
53. LDO3_REG  
Address Offset  
0x37  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF OFF  
RESET)  
Description  
Type  
LDO3 regulator control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
SEL  
ST  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
RO  
R returns  
0s  
0
6:2  
SEL  
Supply voltage (EEPROM bits):  
SEL[6:2] = 00000: 1 V  
SEL[6:2] = 00001: 1 V  
SEL[6:2] = 00010: 1 V  
SEL[6:2] = 00011: 1.1 V  
...  
RW  
0x00  
SEL[6:2] = 11000: 3.2 V  
SEL[6:2] = 11001: 3.3 V  
(Default value: See boot configuration)  
1:0  
ST  
Supply state (EEPROM bits):  
ST[1:0] = 00: Off  
RW  
0x0  
ST[1:0] = 01: On high power (ACTIVE)  
ST[1:0] = 10: Off  
ST[1:0] = 11: On low power (SLEEP)  
84  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
54. Therm_REG  
Address Offset  
Physical Address  
Description  
Type  
0x38  
Instance  
(RESET DOMAIN:  
Thermal control register  
RW  
bits[5:2}: GENERAL RESET  
bit[0] TURNOFF OFF RESET)  
7
6
5
4
3
2
1
0
Reserved  
THERM_HD  
THERM_TS  
THERM_HDSEL  
Reserved  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x0  
5
4
THERM_HD  
THERM_TS  
Hot die detector output:  
When set to 0: the hot die threshold is not reached  
When set to 1: the hot die threshold is reached  
RO  
RO  
RW  
0
0
Thermal shutdown detector output:  
When set to 0: the thermal shutdown threshold is not reached  
When set to 1: the thermal shutdown threshold is reached  
3:2  
THERM_HDSEL  
Temperature selection for hot-die detector:  
When set to 00: Low temperature threshold  
0x3  
When set to 11: High temperature threshold  
1
0
Reserved  
RO  
R returns  
0s  
0
1
THERM_STATE  
Thermal shutdown module enable signal:  
RW  
When set to 0: thermal shutdown module is disable  
When set to 1: thermal shutdown module is enable  
55. BBCH_REG  
Address Offset  
0x39  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
Back-up battery charger control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
BBSEL  
BBCHEN  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:3  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
2:1  
0
BBSEL  
Back up battery charge voltage selection:  
BBSEL[1:0] = 00: 3 V  
BBSEL[1:0] = 01: 2.52 V  
BBSEL[1:0] = 10: 3.15 V  
BBSEL[1:0] = 11: VBAT  
RW  
0x0  
0
BBCHEN  
Back up battery charge enable  
RW  
版权 © 2013–2014, Texas Instruments Incorporated  
85  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
56. DCDCCTRL_REG  
Address Offset  
0x3E  
Physical Address  
Instance  
RESET DOMAIN:  
bits [7:3]: TURNOFF OFF RESET  
bits [2:0]: GENERAL RESET  
Description  
Type  
DCDC control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
TRACK  
VDD2_PSKIP  
VDD1_PSKIP  
VIO_PSKIP  
DCDCCKEXT  
DCDCCKSYNC  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
6
TRACK  
1: Tracking mode: LDO4 output follows VDD1 setting when VDD1 active.  
RW  
0
See the Functional Registers section for more information.  
0: Normal LDO operation without tracking  
5
4
3
2
VDD2_PSKIP  
VDD1_PSKIP  
VIO_PSKIP  
VDD2 pulse skip mode enable (EEPROM bit)  
Default value: See boot configuration  
RW  
RW  
RW  
RW  
1
1
1
0
VDD1 pulse skip mode enable (EEPROM bit)  
Default value: See boot configuration  
VIO pulse skip mode enable (EEPROM bit)  
Default value: See boot configuration  
DCDCCKEXT  
This signal control the muxing of the GPIO2 pad:  
When set to 0: this pad is a GPIO  
When set to 1: this pad is used as input for an external clock used for the  
synchronization of the DCDCs  
1:0  
DCDCCKSYNC  
DC-DC clock configuration:  
RW  
0x1  
DCDCCKSYNC[1:0] = 00: no synchronization of DCDC clocks  
DCDCCKSYNC[1:0] = 01: DCDC synchronous clock with phase shift  
DCDCCKSYNC[1:0] = 10: no synchronization of DCDC clocks  
DCDCCKSYNC[1:0] = 11: DCDC synchronous clock  
86  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
57. DEVCTRL_REG  
Address Offset  
0x3F  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
Device control register  
RW  
7
6
5
4
3
2
1
0
RTC_PWDN  
CK32K_CTRL  
DEV_ON  
DEV_SLP  
DEV_OFF  
BITS  
FIELD NAME  
PWR_OFF_SEQ  
DESCRIPTION  
TYPE  
RESET  
7
When set to 1, power-off is sequential, reverse of power-on sequence  
(first resource to power on is the last to power off).  
RW  
0
When set to 0, all resources disabled at the same time  
6
5
RTC_PWDN  
When set to 1, disable the RTC digital domain (clock gating and reset of  
RTC registers and logic).  
This register bit is not reset in BACKUP state.  
RW  
RW  
0
0
CK32K_CTRL  
Internal 32-kHz clock source control bit (EEPROM bit):  
When set to 0, either the crystal oscillator or the external clock is used as  
the internal 32-kHz clock source  
When set to set to 1, the internal RC oscillator is used as the 32-kHz  
clock source.  
4
SR_CTL_I2C_SEL  
Voltage scaling registers access control bit:  
RW  
1
When set to 0: access to registers by voltage scaling I2C  
When set to 1: access to registers by control I2C. The voltage scaling  
registers are: VDD1_OP_REG, VDD1_SR_REG, VDD2_OP_REG,  
VDD2_SR_REG, EXTCTRL_OP_REG, and EXTCTRL_SR_REG.  
3
2
DEV_OFF_RST  
DEV_ON  
Writing 1 starts an ACTIVE-to-OFF or SLEEP-to-OFF device state  
transition (switch-off event) and activate reset of the digital core.  
This bit is cleared in OFF state.  
RW  
RW  
0
0
Writing 1 maintains the device on (ACTIVE or SLEEP device state) (if  
DEV_OFF = 0 and DEV_OFF_RST = 0).  
EEPROM bit  
(Default value: See boot configuration)  
1
0
DEV_SLP  
DEV_OFF  
Writing 1 allows SLEEP device state (if DEV_OFF = 0 and  
DEV_OFF_RST = 0).  
Writing 0 starts an SLEEP-to-ACTIVE device state transition (wake-up  
event) (if DEV_OFF = 0 and DEV_OFF_RST = 0). This bit is cleared in  
OFF state.  
RW  
RW  
0
0
Writing 1 starts an ACTIVE-to-OFF or SLEEP-to-OFF device state  
transition (switch-off event). This bit is cleared in OFF state.  
版权 © 2013–2014, Texas Instruments Incorporated  
87  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
58. DEVCTRL2_REG  
Address Offset  
0x40  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
Device control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
TSLOT_LENGTH  
IT_POL  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7
RO  
0
R returns  
0s  
6
DCDC_SLEEP_LVL  
TSLOT_LENGTH  
When set to 1, DCDC output level in SLEEP mode is VDDx_SR_REG, to  
be other than 0 V.  
When set to 0, no effect  
RW  
0
5:4  
Time slot duration programming (EEPROM bit):  
When set to 00: 0 µs  
RW  
0x3  
When set to 01: 200 µs  
When set to 10: 500 µs  
When set to 11: 2 ms  
(Default value: See boot configuration)  
3
2
SLEEPSIG_POL  
PWON_LP_OFF  
When set to 1, SLEEP signal active-high  
When set to 0, SLEEP signal active-low  
RW  
RW  
0
1
When set to 1, allows device turn-off after a PWON Long Press (signal  
low) (EEPROM bits).  
(Default value: See boot configuration)  
1
0
PWON_LP_RST  
IT_POL  
When set to 1, allows digital core reset when the device is OFF  
(EEPROM bit).  
(Default value: See boot configuration)  
RW  
RW  
0
0
INT1 interrupt pad polarity control signal (EEPROM bit):  
When set to 0, active low  
When set to 1, active high  
(Default value: See boot configuration)  
88  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
59. SLEEP_KEEP_LDO_ON_REG  
Address Offset  
0x41  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
When corresponding control bit = 0 in EN1_ LDO_ASS register (default setting): Configuration Register  
keeping the full load capability of LDO regulator (ACTIVE mode) during the SLEEP state of the device.  
When control bit = 1, LDO regulator full load capability (ACTIVE mode) is maintained during device  
SLEEP state.  
When control bit = 0, the LDO regulator is set or stay in low-power mode during device SLEEP state(but  
then supply state can be overwritten programming ST[1:0]). There is no control bit value effect if the  
LDO regulator is off.  
When corresponding control bit = 1 in EN1_ LDO_ASS register: Configuration register setting the LDO  
regulator state driven by SCLSR_EN1 signal low level (when SCLSR_EN1 is high the regulator is on,  
full power):  
- the regulator is set off if the corresponding Control bit = 0 in SLEEP_KEEP_LDO_ON register (default)  
- the regulator is set in low-power mode if its corresponding control bit = 1 in SLEEP_KEEP_LDO_ON  
register  
Type  
RW  
7
6
5
4
3
2
1
0
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
LDO3_KEEPON  
LDO4_KEEPON  
LDO7_KEEPON  
LDO8_KEEPON  
LDO5_KEEPON  
LDO2_KEEPON  
LDO1_KEEPON  
LDO6_KEEPON  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
RW  
0
6
5
4
3
2
1
0
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
Setting supply state during device SLEEP state or when SCLSR_EN1 is  
low  
版权 © 2013–2014, Texas Instruments Incorporated  
89  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
60. SLEEP_KEEP_RES_ON_REG  
Address Offset  
Physical Address  
Description  
0x42  
Instance  
Configuration Register keeping, during the SLEEP state of the device (but then supply state can be  
overwritten programming ST[1:0]):  
- the full load capability of LDO regulator (ACTIVE mode),  
- The PWM mode of DC-DC converter  
- 32-kHz clock output  
- Register access though I2C interface (keeping the internal high speed clock on)  
- Die thermal monitoring is on  
There is no control bit value effect if the resource is off.  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
VIO_KEEPON  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
THERM_KEEPON  
When set to 1, thermal monitoring is maintained during device SLEEP  
RW  
0
state.  
When set to 0, thermal monitoring is turned off during device SLEEP  
state.  
6
5
4
CLKOUT32K_KEEPON When set to 1, CLK32KOUT output is maintained during device  
RW  
RW  
RW  
0
0
0
SLEEP state.  
When set to 0, CLK32KOUT output is set low during device SLEEP  
state.  
VRTC_KEEPON  
I2CHS_KEEPON  
When set to 1, LDO regulator full load capability (ACTIVE mode) is  
maintained during device SLEEP state.  
When set to 0, the LDO regulator is set or stays in low-power mode  
during device SLEEP state.  
When set to 1, high speed internal clock is maintained during device  
SLEEP state.  
When set to 0, high speed internal clock is turned off during device  
SLEEP state.  
3
2
Reserved  
RO  
0
0
VDD2_KEEPON  
When set to 1, VDD2 SMPS-PWM mode is maintained during device  
SLEEP state. No effect if VDD2 working mode is PFM.  
When set to 0, VDD2 SMPS-PFM mode is set during device SLEEP  
state.  
RW  
1
0
VDD1_KEEPON  
VIO_KEEPON  
When set to 1, VDD1 SMPS-PWM mode is maintained during device  
SLEEP state. No effect if VDD1 working mode is PFM.  
When set to 0, VDD1 SMPS-PFM mode is set during device SLEEP  
state.  
RW  
RW  
0
0
When set to 1, VIO SMPS-PWM mode is maintained during device  
SLEEP state. No effect if VIO working mode is PFM.  
When set to 0, VIO SMPS-PFM mode is set during device SLEEP  
state.  
90  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
61. SLEEP_SET_LDO_OFF_REG  
Address Offset  
0x43  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Configuration register turning-off LDO regulator during the SLEEP state of the device.  
Corresponding *_KEEP_ON control bit in SLEEP_KEEP_RES_ON register should be 0 to make this  
*_SET_OFF control bit effective  
Type  
RW  
7
6
5
4
3
2
1
0
LDO4_SETOFF LDO7_SETOFF LDO8_SETOFF LDO5_SETOFF LDO2_SETOFF LDO1_SETOFF LDO6_SETOFF  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
LDO3_SETOFF  
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
RW  
0
6
5
4
3
2
1
0
LDO4_SETOFF  
LDO7_SETOFF  
LDO8_SETOFF  
LDO5_SETOFF  
LDO2_SETOFF  
LDO1_SETOFF  
LDO6_SETOFF  
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
When set to 1, LDO regulator is turned off during device SLEEP state.  
When set to 0, No effect  
版权 © 2013–2014, Texas Instruments Incorporated  
91  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
62. SLEEP_SET_RES_OFF_REG  
Address Offset  
0x44  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Configuration Register turning-off SMPS regulator during the SLEEP state of the device.  
Corresponding *_KEEP_ON control bit in SLEEP_KEEP_RES_ON2 register should be 0 to make this  
*_SET_OFF control bit effective. Supplies voltage expected after the wake-up (SLEEP-to-ACTIVE state  
transition) can also be programmed.  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
VIO_SETOFF  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
DEFAULT_VOLT  
When set to 1, default voltages (register value after switch-on) are  
applied to all resources during SLEEP-to-ACTIVE transition.  
When set to 0, voltages programmed before the ACTIVE-to-SLEEP state  
transition are used to turned-on supplies during SLEEP-to-ACTIVE state  
transition.  
RW  
0
6:5  
Reserved  
RO  
R returns  
0s  
0x0  
4
3
SPARE_SETOFF  
Spare bit  
RW  
RW  
0
0
EXTCTRL_SETOFF  
When set to 1, SMPS is turned off during device SLEEP state.  
When set to 0, No effect.  
2
1
0
VDD2_SETOFF  
VDD1_SETOFF  
VIO_SETOFF  
When set to 1, SMPS is turned off during device SLEEP state.  
When set to 0, No effect.  
RW  
RW  
RW  
0
0
0
When set to 1, SMPS is turned off during device SLEEP state.  
When set to 0, No effect.  
When set to 1, SMPS is turned off during device SLEEP state.  
When set to 0, No effect.  
92  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
63. EN1_LDO_ASS_REG  
Address Offset  
0x45  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF  
RESET)  
Description  
Configuration Register setting the LDO regulators, driven by the multiplexed SCLSR_EN1 signal.  
When control bit = 1, LDO regulator state is driven by the SCLSR_EN1 control signal and is also defined  
though SLEEP_KEEP_LDO_ON register setting:  
When SCLSR_EN1 is high the regulator is on,  
When SCLSR_EN1 is low:  
- the regulator is off if the corresponding control bit = 0 in SLEEP_KEEP_LDO_ON register  
- the regulator is working in low-power mode if the corresponding control bit = 1 in  
SLEEP_KEEP_LDO_ON register  
When control bit = 0 no effect: LDO regulator state is driven though registers programming and the  
device state  
Any control bit of this register set to 1 disables the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
LDO3_EN1  
LDO4_EN1  
LDO7_EN1  
LDO8_EN1  
LDO5_EN1  
LDO2_EN1  
LDO1_EN1  
LDO6_EN1  
BITS  
FIELD NAME  
LDO3_EN1  
DESCRIPTION  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
7
6
5
4
3
2
1
0
Setting supply-state control though the SCLSR_EN1 signal  
Setting supply-state control though the SCLSR_EN1 signal  
Setting supply-state control though the SCLSR_EN1 signal  
Setting supply-state control though the SCLSR_EN1 signal  
Setting supply-state control though the SCLSR_EN1 signal  
Setting supply-state control though the SCLSR_EN1 signal  
Setting supply-state control though the SCLSR_EN1 signal  
Setting supply-state control though the SCLSR_EN1 signal  
0
0
0
0
0
0
0
0
LDO4_EN1  
LDO7_EN1  
LDO8_EN1  
LDO5_EN1  
LDO2_EN1  
LDO1_EN1  
LDO6_EN1  
版权 © 2013–2014, Texas Instruments Incorporated  
93  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
64. EN1_SMPS_ASS_REG  
Address Offset  
0x46  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF  
RESET)  
Description  
Configuration register setting the SMPS supplies driven by the multiplexed SCLSR_EN1 signal.  
When control bit = 1, SMPS supply state and voltage is driven by the SCLSR_EN1 control signal and is  
also defined though SLEEP_KEEP_RES_ON register setting.  
When control bit = 0 no effect: SMPS Supply state is driven though registers programming and the  
device state.  
Any control bit of this register set to 1 disables the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
SPARE_EN1 EXTCTRL_EN1  
VDD2_EN1  
VDD1_EN1  
VIO_EN1  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:5  
RO  
R returns  
0s  
0x0  
4
3
SPARE_EN1  
Spare bit  
RW  
RW  
0
0
EXTCTRL_EN1  
When control bit = 1:  
When EN1 is high the supply voltage is programmed though  
EXTCTRL_OP_REG register, and it can also be programmed off.  
When EN1 is low the supply voltage is programmed though  
EXTCTRL_SR_REG register, and it can also be programmed off.  
When control bit = 0: No effect: Supply state is driven though registers  
programming and the device state  
2
1
0
VDD2_EN1  
VDD1_EN1  
VIO_EN1  
When control bit = 1:  
RW  
RW  
RW  
0
0
0
When SCLSR_EN1 is high the supply voltage is programmed though  
VDD2_OP_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low the supply voltage is programmed though  
VDD2_SR_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is  
working in low-power mode, if not tuned off through VDD2_SR_REG  
register.  
When control bit = 0 No effect: the supply state is driven though registers  
programming and the device state  
When 1:  
When SCLSR_EN1 is high the supply voltage is programmed though  
VDD1_OP_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low the supply voltage is programmed though  
VDD1_SR_REG register, and it can also be programmed off.  
When SCLSR_EN1 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is  
working in low-power mode, if not tuned off though VDD1_SR_REG  
register.  
When control bit = 0 no effect: supply state is driven though registers  
programming and the device state  
When control bit = 1, the supply state is driven by the SCLSR_EN1  
control signal and is also defined though the SLEEP_KEEP_RES_ON  
register setting:  
When SCLSR_EN1 is high the supply is on,  
When SCLSR_EN1 is low:  
- the supply is off (default) or the SMPS is working in low-power mode if  
the corresponding control bit = 1 in SLEEP_KEEP_RES_ON register  
When control bit = 0 No effect: SMPS state is driven though registers  
programming and the device state  
94  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
65. EN2_LDO_ASS_REG  
Address Offset  
0x47  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF  
RESET)  
Description  
Configuration Register setting the LDO regulators, driven by the multiplexed SDASR_EN2 signal.  
When control bit = 1, LDO regulator state is driven by the SDASR_EN2 control signal and is also  
defined though SLEEP_KEEP_LDO_ON register setting:  
When SDASR_EN2 is high the regulator is on,  
When SCLSR_EN2 is low:  
- the regulator is off if the corresponding control bit = 0 in SLEEP_KEEP_LDO_ON register  
- the regulator is working in low-power mode if the corresponding control bit = 1 in  
SLEEP_KEEP_LDO_ON register  
When control bit = 0 no effect: LDO regulator state is driven though registers programming and the  
device state  
Any control bit of this register set to 1 disables the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
LDO3_EN2  
LDO4_EN2  
LDO7_EN2  
LDO8_EN2  
LDO5_EN2  
LDO2_EN2  
LDO1_EN2  
LDO6_EN2  
BITS  
FIELD NAME  
LDO3_EN2  
DESCRIPTION  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
7
6
5
4
3
2
1
0
Setting supply-state control though the SDASR_EN2 signal  
Setting supply-state control though the SDASR_EN2 signal  
Setting supply-state control though the SDASR_EN2 signal  
Setting supply-state control though the SDASR_EN2 signal  
Setting supply-state control though the SDASR_EN2 signal  
Setting supply-state control though the SDASR_EN2 signal  
Setting supply-state control though the SDASR_EN2 signal  
Setting supply-state control though the SDASR_EN2 signal  
0
0
0
0
0
0
0
0
LDO4_EN2  
LDO7_EN2  
LDO8_EN2  
LDO5_EN2  
LDO2_EN2  
LDO1_EN2  
LDO6_EN2  
版权 © 2013–2014, Texas Instruments Incorporated  
95  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
66. EN2_SMPS_ASS_REG  
Address Offset  
0x48  
Physical Address  
Instance  
(RESET DOMAIN: TURNOFF  
RESET)  
Description  
Configuration Register setting the SMPS Supplies driven by the multiplexed SDASR_EN2 signal.  
When control bit = 1, the SMPS Supply state and voltage is driven by the SDASR_EN2 control signal  
and is also defined though SLEEP_KEEP_RES_ON register setting.  
When control bit = 0 no effect: the SMPS Supply state is driven though registers programming and the  
device state  
Any control bit of this register set to 1 disables the I2C SR Interface functionality  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
SPARE_EN2 EXTCTRL_EN2  
VDD2_EN2  
VDD1_EN2  
VIO_EN2  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:5  
RO  
R returns  
0s  
0x0  
4
3
SPARE_EN2  
Spare bit  
RW  
RW  
0
0
EXTCTRL_EN2  
When control bit = 1:  
When EN2 is high the supply voltage is programmed though  
EXTCTRL_OP_REG register, and it can also be programmed off..  
When EN2 is low the supply voltage is programmed though  
EXTCTRL_SR_REG register, and it can also be programmed off.  
When EN2 is low and EXTCTRL_KEEPON = 1 the SMPS is working in  
low-power mode, if not tuned off though EXTCTRL_SR_REG register.  
When control bit = 0 no effect: the supply state is driven though registers  
programming and the device state  
2
1
0
VDD2_EN2  
VDD1_EN2  
VIO_EN2  
When control bit = 1:  
RW  
RW  
RW  
0
0
0
When SDASR_EN2 is high the supply voltage is programmed though  
VDD2_OP_REG register, and it can also be programmed off.  
When SDASR_EN2 is low the supply voltage is programmed though  
VDD2_SR_REG register, and it can also be programmed off.  
When SDASR_EN2 is low and SLEEP_KEEP_RES_ON = 1 the SMPS  
is working in low-power mode, if not tuned off though VDD2_SR_REG  
register.  
When control bit = 0 no effect: the supply state is driven though registers  
programming and the device state  
When control bit = 1:  
When SDASR_EN2 is high the supply voltage is programmed though  
VDD1_OP_REG register, and it can also be programmed off.  
When SDASR_EN2 is low the supply voltage is programmed though  
VDD1_SR_REG register, and it can also be programmed off.  
When SDASR_EN2 is low and SLEEP_KEEP_RES_ON = 1 the SMPS  
is working in low-power mode, if not tuned off though VDD1_SR_REG  
register.  
When control bit = 0 no effect: the supply state is driven though registers  
programming and the device state  
When control bit = 1,  
supply state is driven by the SCLSR_EN2 control signal and is also  
defined though SLEEP_KEEP_RES_ON register setting:  
When SDASR _EN2 is high the supply is on,  
When SDASR _EN2 is low :  
- the supply is off (default) or the SMPS is working in low-power mode if  
its corresponding control bit = 1 in SLEEP_KEEP_RES_ON register  
When control bit = 0 no effect: the SMPS state is driven though registers  
programming and the device state  
96  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
67. INT_STS_REG  
Address Offset  
Physical Address  
Description  
0x50  
Instance  
(RESET DOMAIN: FULL RESET)  
Interrupt status register:  
The interrupt status bit is set to 1 when the associated interrupt event is detected. The interrupt-status  
bit is cleared by writing 1.  
Type  
RW  
7
6
5
4
3
2
1
0
HOTDIE_IT  
PWRON_LP_IT  
PWRON_IT  
Reserved  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
RTC_PERIOD_IT  
RTC_ALARM_IT  
HOTDIE_IT  
RTC-period-event interrupt status  
RTC-alarm-event interrupt status  
Hot-die-event interrupt status  
RW  
W1 to Clr  
0
6
5
4
3
2
1
0
RW  
W1 to Clr  
0
0
0
0
0
0
0
RW  
W1 to Clr  
PWRHOLD_R_IT  
PWRON_LP_IT  
PWRON_IT  
Rising-PWRHOLD-event interrupt status  
PWRON-long-press event interrupt status  
PWRON-event interrupt status  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
Reserved  
Reserved, always clear  
RW  
W1 to Clr  
PWRHOLD_F_IT  
Falling-PWRHOLD-event interrupt status  
RW  
W1 to Clr  
版权 © 2013–2014, Texas Instruments Incorporated  
97  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
68. INT_MSK_REG  
Address Offset  
0x51  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Interrupt mask register:  
When *_IT_MSK is set to 1, the associated interrupt is masked: INT1 signal is not activated, but *_IT  
interrupt status bit is updated.  
When *_IT_MSK is set to 0, the associated interrupt is enabled: INT1 signal is activated, *_IT is  
updated.  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
RTC_PERIOD_IT_MS RTC-period-event interrupt mask  
K
RW  
1
6
RTC_ALARM_IT_MS RTC-alarm-event interrupt mask  
K
RW  
1
5
4
HOTDIE_IT_MSK  
Hot-die-event interrupt mask  
RW  
RW  
1
1
PWRHOLD_R_IT_MS PWRHOLD rising-edge-event interrupt mask  
K
3
2
1
0
PWRON_LP_IT_MSK PWRON long-press-event interrupt mask  
RW  
RW  
RW  
RW  
1
1
1
1
PWRON_IT_MSK  
Reserved  
PWRON-event interrupt mask  
Reserved, always masks  
PWRHOLD_F_IT_MS PWRHOLD falling-edge-event interrupt mask  
K
98  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
69. INT_STS2_REG  
Address Offset  
Physical Address  
Description  
0x52  
Instance  
(RESET DOMAIN: FULL RESET)  
Interrupt status register:  
The interrupt status bit is set to 1 when the associated interrupt event is detected. Interrupt status bit is  
cleared by writing 1.  
Type  
RW  
7
6
5
4
3
2
1
0
GPIO3_F_IT  
GPIO3_R_IT  
GPIO2_F_IT  
GPIO2_R_IT  
GPIO1_F_IT  
GPIO1_R_IT  
GPIO0_F_IT  
GPIO0_R_IT  
BITS  
FIELD NAME  
GPIO3_F_IT  
DESCRIPTION  
TYPE  
RESET  
7
GPIO3 falling-edge-detection interrupt status  
GPIO3 rising-edge-detection interrupt status  
GPIO2 falling-edge-detection interrupt status  
GPIO2 rising-edge-detection interrupt status  
GPIO1 falling-edge-detection interrupt status  
GPIO1 rising-edge-detection interrupt status  
GPIO0 falling-edge-detection interrupt status  
GPIO0 rising-edge-detection interrupt status  
RW  
W1 to Clr  
0
6
5
4
3
2
1
0
GPIO3_R_IT  
GPIO2_F_IT  
GPIO2_R_IT  
GPIO1_F_IT  
GPIO1_R_IT  
GPIO0_F_IT  
GPIO0_R_IT  
RW  
W1 to Clr  
0
0
0
0
0
0
0
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
版权 © 2013–2014, Texas Instruments Incorporated  
99  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
70. INT_MSK2_REG  
Address Offset  
0x53  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Interrupt mask register:  
When *_IT_MSK is set to 1, the associated interrupt is masked: INT1 signal is not activated, but *_IT  
interrupt status bit is updated.  
When *_IT_MSK is set to 0, the associated interrupt is enabled: INT1 signal is activated, *_IT is  
updated.  
Type  
RW  
7
6
5
4
3
2
1
0
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
7
6
5
4
3
2
1
0
GPIO3_F_IT_MSK  
GPIO3_R_IT_MSK  
GPIO2_F_IT_MSK  
GPIO2_R_IT_MSK  
GPIO1_F_IT_MSK  
GPIO1_R_IT_MSK  
GPIO0_F_IT_MSK  
GPIO0_R_IT _MSK  
GPIO3 falling-edge-detection interrupt mask  
GPIO3 rising-edge-detection interrupt mask  
GPIO2 falling-edge-detection interrupt mask  
GPIO2 rising-edge-detection interrupt mask  
GPIO1 falling-edge-detection interrupt mask  
GPIO1 rising-edge-detection interrupt mask  
GPIO0 falling-edge-detection interrupt mask  
GPIO0 rising-edge-detection interrupt mask  
1
1
1
1
1
1
1
1
100  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
71. INT_STS3_REG  
Address Offset  
Physical Address  
Description  
0x54  
Instance  
(RESET DOMAIN: FULL RESET)  
Interrupt status register:  
The interrupt status bit is set to 1 when the associated interrupt event is detected. The interrupt-status  
bit is cleared by writing 1.  
Type  
RW  
7
6
5
4
3
2
1
0
PWRDN_IT  
Reserved  
Reserved  
WTCHDG_IT  
GPIO5_F_IT  
GPIO5_R_IT  
GPIO4_F_IT  
GPIO4_R_IT  
BITS  
FIELD NAME  
PWRDN_IT  
DESCRIPTION  
TYPE  
RESET  
7
PWRDN reset input high detected  
RW  
0
W1 to Clr  
6
5
4
3
2
1
0
Reserved  
Always clear  
RW  
W1 to Clr  
0
0
0
0
0
0
0
Reserved  
Always clear  
RW  
W1 to Clr  
WTCHDG_IT  
GPIO5_F_IT  
GPIO5_R_IT  
GPIO4_F_IT  
GPIO4_R_IT  
Watchdog interrupt status  
RW  
W1 to Clr  
GPIO5 falling-edge-detection interrupt status  
GPIO5 rising-edge-detection interrupt status  
GPIO4 falling-edge-detection interrupt status  
GPIO4 rising-edge-detection interrupt status  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
RW  
W1 to Clr  
版权 © 2013–2014, Texas Instruments Incorporated  
101  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
72. INT_MSK3_REG  
Address Offset  
0x55  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Interrupt mask register:  
When *_IT_MSK is set to 1, the associated interrupt is masked: INT1 signal is not activated, but *_IT  
interrupt status bit is updated.  
When *_IT_MSK is set to 0, the associated interrupt is enabled: INT1 signal is activated, *_IT is  
updated.  
Type  
RW  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
7
6
5
4
3
2
1
0
PWRDN_IT_MSK  
Reserved  
PWRDN interrupt mask  
Always clear  
1
1
1
1
1
1
1
1
Reserved  
Always clear  
WTCHDG_IT_MSK  
GPIO5_F_IT_MSK  
GPIO5_R_IT_MSK  
GPIO4_F_IT_MSK  
GPIO4_R_IT_MSK  
Watchdog interrupt mask  
GPIO5 falling-edge-detection interrupt mask  
GPIO5 rising-edge-detection interrupt mask  
GPIO4 falling-edge-detection interrupt mask  
GPIO4 rising-edge-detection interrupt mask  
102  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
73. GPIO0_REG  
Address Offset  
0x60  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO0 configuration register  
RW  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_ODEN  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
GPIO_SLEEP  
DESCRIPTION  
TYPE  
RESET  
7
1: as GPO, force low  
RW  
0
0: No impact, keep as in active mode  
6
5
Reserved  
Reserved bit  
RO  
R returns  
0s  
0
0
GPIO_ODEN  
Selection of output mode, EEPROM bit  
0: Push-pull output  
RW  
1: Open-drain output  
(Default value: See boot configuration)  
GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF  
reset  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
RW  
RW  
RW  
0
0
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
(Default value: See boot configuration)  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
GPIO assigned to power-up sequence, this bit is in TURNOFF reset  
RW  
版权 © 2013–2014, Texas Instruments Incorporated  
103  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
74. GPIO1_REG  
Address Offset  
0x61  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO1 configuration register  
RW  
7
6
5
4
3
2
1
0
Reserved  
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5
4
3
2
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
Select signal to be available at GPIO when configured as output:  
0: GPIO_SET  
1: LED1 out  
RW  
RW  
RW  
RW  
0
0
1
0
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
104  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
75. GPIO2_REG  
Address Offset  
0x62  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO2 configuration register  
RW  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
GPIO_SLEEP  
DESCRIPTION  
TYPE  
RESET  
7
1: as GPO, force low  
RW  
0
0: no impact, keep as in active mode  
6:5  
4
Reserved  
RO  
R returns  
0s  
0x0  
0
GPIO_DEB  
GPIO_PDEN  
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
RW  
3
GPIO pad pulldown control:  
RW  
1
1: Pulldown is enabled  
0: Pulldown is disabled  
GPIO assigned to power-up sequence, this bit is set to 0 by a TURNOFF  
reset  
2
GPIO_CFG  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
(Default value: See boot configuration)  
GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF  
reset  
RW  
0
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
GPIO assigned to power-up sequence, this bit is in TURNOFF reset  
RW  
版权 © 2013–2014, Texas Instruments Incorporated  
105  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
76. GPIO3_REG  
Address Offset  
0x63  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO3 configuration register  
RW  
7
6
5
4
3
2
1
0
Reserved  
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7
Reserved  
RO  
R returns  
0s  
0
6:5  
GPIO_SEL  
Select signal to be available at GPIO when configured as output:  
RW  
0x0  
00: GPIO_SET  
01: LED2 out  
10: PWM out  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
RW  
RW  
RW  
0
1
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
77. GPIO4_REG  
Address Offset  
0x64  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO4 configuration register  
RW  
7
6
5
4
3
2
1
0
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:5  
RO  
R returns  
0s  
0x0  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
RW  
RW  
RW  
0
1
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
106  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
78. GPIO5_REG  
Address Offset  
0x65  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO5 configuration register  
RW  
7
6
5
4
3
2
1
0
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:5  
RO  
R returns  
0s  
0x0  
4
3
2
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
RW  
RW  
RW  
0
1
0
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
版权 © 2013–2014, Texas Instruments Incorporated  
107  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
79. GPIO6_REG  
Address Offset  
0x66  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO6 configuration register  
RW  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
GPIO_SLEEP  
DESCRIPTION  
TYPE  
RESET  
7
1: as GPO, force low  
RW  
0
0: no impact, keep as in active mode  
6:5  
4
Reserved  
RO  
R returns  
0s  
0x0  
0
GPIO_DEB  
GPIO_PDEN  
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
RW  
3
GPIO pad pulldown control:  
RW  
1
1: Pulldown is enabled  
0: Pulldown is disabled  
GPIO assigned to power-up sequence, this bit is set to 0 by a TURNOFF  
reset  
2
GPIO_CFG  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
(Default value: See boot configuration)  
GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF  
reset  
RW  
0
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
GPIO assigned to power-up sequence, this bit is in TURNOFF reset  
RW  
108  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
80. GPIO7_REG  
Address Offset  
0x67  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO7 configuration register  
RW  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
Reserved  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
GPIO_SLEEP  
DESCRIPTION  
1: as GPO, force low  
TYPE  
RESET  
7
RW  
0
0: no impact, keep as is in active mode  
6:5  
4
Reserved  
RO  
R returns  
0s  
0x0  
0
GPIO_DEB  
GPIO_PDEN  
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to1, the debouncing is 150 ms using a 50-ms clock rate  
RW  
3
GPIO pad pulldown-control:  
RW  
1
1: Pulldown is enabled  
0: Pulldown is disabled  
GPIO assigned to power-up sequence, this bit is set to 0 by a TURNOFF  
reset  
2
GPIO_CFG  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
(Default value: See boot configuration )  
GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF  
reset  
RW  
0
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
The value set on the GPIO output when configured in output mode  
GPIO assigned to power-up sequence, this bit is in TURNOFF reset  
RW  
版权 © 2013–2014, Texas Instruments Incorporated  
109  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
81. GPIO8_REG  
Address Offset  
0x68  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
GPIO8 configuration register  
RW  
7
6
5
4
3
2
1
0
Reserved  
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
GPIO_STS  
GPIO_SET  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5
4
3
2
GPIO_SEL  
GPIO_DEB  
GPIO_PDEN  
GPIO_CFG  
Select signal to be available at GPIO when configured as output:  
0: GPIO_SET  
1: LED1 out  
RW  
RW  
RW  
RW  
0
0
1
0
GPIO input debouncing time configuration:  
When set to 0, the debouncing is 91.5 µs using a 30.5-µs clock rate  
When set to 1, the debouncing is 150 ms using a 50-ms clock rate  
GPIO pad pulldown control:  
1: Pulldown is enabled  
0: Pulldown is disabled  
Configuration of the GPIO pad direction:  
When set to 0, the pad is configured as an input  
When set to 1, the pad is configured as an output  
1
0
GPIO_STS  
GPIO_SET  
Status of the GPIO pad  
RO  
1
0
Value set on the GPIO output when configured in output mode  
RW  
110  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
82. WATCHDOG_REG  
Address Offset  
0x69  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
Watchdog  
RW  
7
6
5
4
3
2
1
0
Reserved  
WTCHDG_TIME  
BITS  
FIELD NAME  
Reserved  
DESCRIPTION  
TYPE  
RESET  
7:4  
RO  
R returns  
0s  
0x0  
3
WTCHDG_MODE  
0: Periodic operation:  
RW  
0
A periodical interrupt is generated based on WTCHDG_TIME setting.  
The IC generates WTCHDOG shutdown if an interrupt is not cleared  
during the period.  
1: Interrupt mode:  
The IC generates WTCHDOG shutdown if an interrupt is pending (no  
cleared) more than WTCHDG_TIME s.  
2:0  
WTCHDG_TIME  
000: Watchdog disabled  
001: 5 seconds  
RW  
0x0  
010: 10 seconds  
011: 20 Seconds  
100: 40 seconds  
101: 60 seconds  
110: 80 seconds  
111: 100 seconds (EEPROM bit)  
(Default value: See boot configuration)  
版权 © 2013–2014, Texas Instruments Incorporated  
111  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
83. BOOTSEQVER_REG  
Address Offset  
0x6A  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
Comparator control register  
RW  
7
6
5
4
3
2
1
0
Reserved  
BOOTSEQVER_SEL  
Reserved  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
RO  
0x0  
R returns  
0s  
5:1  
0
BOOTSEQVER_SEL EEPROM boot-sequence version  
Reserved  
RW  
0x00  
0
RO  
R returns  
0s  
84. RESERVED  
Address Offset  
0x6B  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
Reserved  
RW  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5:1  
0
Reserved  
Reserved  
RW  
RW  
0x00  
0
112  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
85. LED_CTRL1_REG  
Address Offset  
0x6C  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
LED ON and OFF control register.  
RW  
7
6
5
4
3
2
1
0
Reserved  
LED2_PERIOD  
LED1_PERIOD  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
RO  
R returns  
0s  
0x0  
5:3  
LED2_PERIOD  
Period of LED2 signal:  
000: LED2 OFF  
001: 0.125 s  
010: 0.25 s  
...  
RW  
0x0  
110: 4 s  
111: 8 s  
2:0  
LED1_PERIOD  
Period of LED1 signal:  
000: LED1 OFF  
001: 0.125 s  
010: 0.25 s  
...  
RW  
0x0  
10: 2 s  
110: 4 s  
111: 8 s  
版权 © 2013–2014, Texas Instruments Incorporated  
113  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
86. LED_CTRL2_REG1  
Address Offset  
0x6D  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
LED ON and OFF control register.  
RW  
7
6
5
4
3
2
1
0
Reserved  
LED2_SEQ  
LED1_SEQ  
LED2_ON_TIME  
LED1_ON_TIME  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:6  
Reserved  
RO  
0x0  
R returns  
0s  
5
4
LED2_SEQ  
LED1_SEQ  
When set to 1, LED2 repeats two pulse sequences: ON (ON_TIME) -  
OFF (ON TIME) - ON (ON TIME) - OFF remainder of the period  
When set to 0, LED2 generates one pulse: ON (ON_TIME) - OFF (ON  
TIME))  
RW  
RW  
RW  
0
0
When set to 1, LED1 repeats two pulse sequence: ON (ON_TIME) - OFF  
(ON TIME) - ON (ON TIME) - OFF remainder of the period.  
When set to 0, LED1 generates one pulse: ON (ON_TIME) - OFF (ON  
TIME))  
3:2  
LED2_ON_TIME  
LED1_ON_TIME  
LED2 ON time:  
00: 62.5 ms  
01: 125 ms  
10: 250 ms  
11: 500 ms  
0x0  
1:0  
LED1 ON time:  
00: 62.5 ms  
01: 125 ms  
10: 250 ms  
11: 500 ms  
RW  
0x0  
114  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
87. PWM_CTRL1_REG  
Address Offset  
0x6E  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
PWM frequency  
RW  
7
6
5
4
3
2
1
0
Reserved  
PWM_FREQ  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:2  
Reserved  
Reserved bit  
RO  
R returns  
0s  
0x00  
1:0  
PWM_FREQ  
Frequency of PWM:  
00: 500 Hz  
RW  
0x0  
01: 250 Hz  
10: 125 Hz  
11: 62.5 Hz  
88. PWM_CTRL2_REG  
Address Offset  
0x6F  
Physical Address  
Instance  
(RESET DOMAIN: GENERAL  
RESET)  
Description  
Type  
PWM duty cycle.  
RW  
7
6
5
4
3
2
1
0
FREQ_DUTY_CYCLE  
BITS  
FIELD NAME  
DESCRIPTION  
TYPE  
RESET  
7:0  
FREQ_DUTY_CYCLE Duty cycle of PWM:  
RW  
0x00  
00000000: 0/256  
...  
11111111: 255/256  
89. SPARE_REG  
Address Offset  
Physical Address  
Description  
Type  
0x70  
Instance  
(RESET DOMAIN: FULL RESET)  
Spare functional register  
RW  
7
6
5
4
3
2
1
0
SPARE  
BITS  
FIELD NAME  
SPARE  
DESCRIPTION  
TYPE  
RESET  
7:0  
Spare bits  
RW  
0x00  
版权 © 2013–2014, Texas Instruments Incorporated  
115  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
90. VERNUM_REG  
Address Offset  
Physical Address  
Description  
Type  
0x80  
Instance  
(RESET DOMAIN: FULL RESET)  
Silicon version number  
RW  
7
6
5
4
3
2
1
0
READ_BOOT  
Reserved  
VERNUM  
BITS  
FIELD NAME  
READ_BOOT  
DESCRIPTION  
TYPE  
RESET  
7
This bit enables the read of the BOOT mode in order to enter JTAG  
RW  
0
mode.  
0: Disabled  
1: Enabled  
6:4  
3:0  
Reserved  
VERNUM  
Reserved bit  
RO  
R returns  
0s  
0x0  
0x0  
Value depending on silicon version number  
0000 - Revision 1.0  
RO  
116  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS659119-Q1 device is an integrated power-management integrated circuit (PMIC) that comes in an 80-  
pin, 0.5-mm pitch, LQFP package with thermal pad. This device was designed specifically for automotive  
applications and is dedicated to designs powered from a 5-V input supply that require multiple power rails. The  
device provides three step-down converters along with an interface to control an external converter and eight  
LDO regulators. The device can support a variety of different processors and applications. Two of the step-down  
converters support dynamic voltage scaling through a dedicated I2C interface to provide optimum power savings.  
The third converter provides power for the I/Os and memory in the system.  
In addition to the power resources, the device contains an embedded power controller (EPC) to manage the  
power sequencing requirements of systems. The power sequencing is programmable through EEPROM. The  
device also contains nine configurable GPIOs, a real-time clock module, an internal watchdog circuit, and two  
LED ON and OFF signal generators.  
Details on how to use this device in automotive applications are described throughout this device specification.  
The following sections provide the typical application use-case with the recommended external components and  
layout guidelines.  
9.2 Typical Application  
Following the typical application schematic (see 25) and the list of recommended external components will  
allow the TPS659119-Q1 device to achieve accurate and stable regulation with the step-down converters and  
LDO regulators. These devices are internally compensated and have been designed to operate most effectively  
with the component values listed in 91. Deviating from these values is possible but is not recommended.  
版权 © 2013–2014, Texas Instruments Incorporated  
117  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Application (接下页)  
AGND  
VCCS  
VCC7  
VCC1  
Sw1  
VDD1  
C1  
L1  
C9  
VRTC  
(LDO)  
VRTC  
and POR  
GND1  
C10  
C2  
0.6 to 1.5 V,  
12.5-mV step,  
1.5 A  
AGND  
VFB1  
OSC16MIN  
C3  
VCC2  
SW2  
Y1  
VDD2  
C4  
16M XTAL  
L2  
Real  
time  
clock  
C11  
OSC16MOUT  
OSCEXT32K  
GND2  
C12  
DGND  
0.6 to 1.5 V,  
12.5-mV step,  
1.5 A  
CLK32KOUT  
VFB2  
VDDIO  
VDDIO  
VDDIO  
TPS57114  
EN  
L3  
I2C  
SDA_SDI  
PH  
VSENSE  
SCL_SCK  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
EN  
EXTCTRL  
C13  
Bus  
control  
Selectable  
Divider  
VOUT  
VSENSE  
AGNDEX  
1 V/V to  
3/7 V/V  
65 steps  
GPIO5  
VDDIO  
GPIO6  
GPIO7  
GPIO8  
I2C  
VDDIO  
VDDIO  
EN1  
VCCIO  
SWIO  
VIO  
L4  
C14  
EN2  
Power  
control  
state  
GNDIO  
INT1  
SLEEP  
C15  
1.5, 1.8, 2.5, 3.3 V  
PWRON  
VFBIO  
VDDIO  
1.5 A  
machine  
BOOT1  
PWRHOLD  
PWRDN  
LDO1  
320 mA  
HDRST  
NRESPWRON  
NRESPWRON2  
LDO1  
1 to 3.3 V,  
C16 50-mV step  
VREF  
Analog  
references  
TESTV  
VCC6  
LDO2  
C5  
REFGND  
LDO3  
Watchdog  
1 to 3.3 V,  
50-mV step  
LDO3  
200 mA  
1 to 3.3 V,  
100-mV step  
Test interface  
LDO2  
320 mA  
C6  
C17  
VCC5  
LDO4  
LDO7  
300 mA  
1 to 3.3 V,  
100-mV step  
LDO7  
1 to 3.3 V,  
50-mV step  
C7  
LDO4  
50 mA  
C18  
VCC3  
LDO6  
LDO5  
300 mA  
LDO5  
VCC4  
1 to 3.3 V,  
100-mV step  
1 to 3.3 V,  
100-mV step  
LDO6  
300 mA  
C8  
C19  
VCC8  
LDO8  
1 to 3.3 V,  
100-mV step  
LDO8  
C20  
300 mA  
25. Application Schematic  
118  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 91.  
91. Design Parameters  
REFERENCE DESIGNATOR  
COMPONENT FUNCTION  
Input-supply decoupling capacitor  
VRTC output capacitor  
VALUE(1)  
4.7 µF, 10 V  
2.2 µF, 6.3 V  
C1  
C2  
C3  
Crystal load capacitors  
VREF filtering capacitor  
10 pF, 50 V  
100 nF  
C4  
C5  
C6  
C7  
C8  
C16  
C17  
C18  
C19  
C20  
C9  
LDO output capacitors  
2.2 µF, 6.3 V  
C11  
C14  
C10  
C12  
C15  
C13  
L1  
Step-down converter input capacitors  
10 µF, 10 V  
Step-down converter output capacitors  
External-converter output capacitor  
10 µF, 10 V  
22 µF, 10 V (×2)  
L2  
Step-down converter inductors  
Crystal  
2.2 µH, 2.6 A  
16.384 MHz  
L3  
L4  
Y1  
(1) Component minimum, maximum, or typical values are specified in the electrical-parameter section of each IP (see the External  
Component Recommendation section).  
9.2.2 Detailed Design Procedure  
9.2.2.1 Step-down Converter Input Capacitors  
All step-down converter inputs require an input decoupling capacitor to minimize input ripple voltage. Using a 10-  
V, 10-µF capacitor for each step-down converter input is recommended. Depending on the input voltage of the  
step-down converter, a 6.3-V or 10-V capacitor can be used.  
For optimal performance, the input capacitors should be placed as close to the step-down converter-input pins as  
possible. See the Layout Guidelines section for more information about component placement.  
9.2.2.2 Step-down Converter Output Capacitors  
All step-down converter outputs require an output capacitor to hold up the output voltage during a load step or a  
change to the input voltage. To ensure stability across the entire switching frequency range, the TPS659119-Q1  
device requires an output capacitance value between 4 µF and 12 µF. To meet this requirement across  
temperature and DC bias voltage, using a 10-µF capacitor for each step-down converter is recommended.  
版权 © 2013–2014, Texas Instruments Incorporated  
119  
 
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
9.2.2.3 Step-down Converter Inductors  
Again, to ensure stability across the entire switching frequency range, TI recommends to use a 2.2-µH inductor  
on each step-down converter. Because the maximum DC current for each step-down converter is 1.5-A,  
selecting an inductor with a saturation current of at least 2.3-A is important.  
9.2.2.4 LDO Input Capacitors  
All LDO inputs require an input decoupling capacitor to minimize input ripple voltage. Using a 10-V, 4.7-µF  
capacitor on each LDO input voltage supply (VCC3, VCC4, VCC5, and VCC6) is recommended. Depending on  
the input voltage of the LDO, a 6.3-V or 10-V capacitor can be used.  
For optimal performance, the LDO input capacitors should be placed as close as possible to the LDO input pins.  
See the Layout Guidelines section for more information about component placement.  
9.2.2.5 LDO Output Capacitors  
All LDO outputs require an output capacitor to hold up the voltage during a load step or changes to the input  
voltage. Using a 6-V, 2.2-µF capacitor is recommended for each LDO.  
9.2.2.6 VCC7  
The VCC7 pin is the input supply for VRTC as well as the analog references of the device. This pin requires a  
4.7-µF decoupling capacitor.  
9.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIO, PFM  
Vout = 2.5 V  
VIO, PWM  
Vout = 2.5 V  
Vout = 1.8 V  
Vout = 1.5 V  
Vout = 1.8 V  
Vout = 1.5 V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
C005  
C006  
Load Current (A)  
Load Current (A)  
26. VIO Efficiency vs Load Current,  
27. VIO Efficiency vs Load Current,  
25°C VIN = 4 V, PFM  
25°C, VOUT = 2.5 V, VIN = 4 V, PWM  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD1, PFM  
VDD1 PWM  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
C001  
C002  
Load Current (A)  
Load Current (A)  
28. VDD1 Efficiency vs Load Current,  
29. VDD1 Efficiency vs Load Current,  
25°C, VIN = 4 V, PFM  
25°C, VIN = 4 V, PWM  
120  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD2, PFM  
VDD2 PWM  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
Vout = 2.5 V  
Vout = 1.5 V  
Vout = 1.2 V  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
C003  
C004  
Load Current (A)  
Load Current (A)  
30. VDD2 Efficiency vs Load Current,  
31. VDD2 Efficiency vs Load Current,  
25°C, VIN = 4 V, PFM  
25°C, VIN = 4 V, PWM  
10 Power Supply Recommendations  
The TPS659119-Q1 device is designed to work with an analog supply voltage range of 4-V to 5.5-V. Typically, a  
stable 5-V supply is provided to the VCC7 pin as well as the step-down converter and LDO input pins with the  
appropriate bypass capacitors. If the input supply is located more than a few inches from the TPS659119-Q1  
device, additional capacitance may be required in addition to the recommended input capacitors at the VCC7 pin  
and the step-down converter and LDO input pins.  
11 Layout  
11.1 Layout Guidelines  
As in every switch-mode-supply design, general layout rules apply.  
Use a solid ground plane for power ground (PGND).  
Use an independent ground for logic, LDOs, and analog (AGND).  
Connect those grounds at a star point ideally underneath the IC.  
Place the input capacitors as close as possible to the input pins of the IC.  
This guideline is the most important and is more important than the output loop.  
Place the inductor and output capacitor as close as possible to the phase node (or switch node) of the IC  
Keep the loop area formed by the phase node, inductor, output capacitor, and PGND as small as possible.  
For traces and vias on power lines, keep inductance and resistance as low as possible by using wide traces  
and plane shapes. Avoid switching layers, but if needed, use plenty of vias.  
The goal of the previously listed guidelines is a layout that minimizes emissions, maximizes EMI immunity, and  
maintains a safe operating area of the IC.  
To minimize the spiking at the phase node for both the high-side (VIN – SWx) as well as the low-side (SWx –  
PGND), the decoupling of VIN is critical. Appropriate decoupling and thorough layout practices should ensure  
that the spikes never exceed the absolute maximum rating of the respective pin.  
版权 © 2013–2014, Texas Instruments Incorporated  
121  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
11.2 Layout Example  
VDD1  
Output  
5-V Analog  
Input Supply  
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
40  
39  
38  
37  
36  
61  
VCC1  
VCC5  
VCCS  
62 SLEEP  
63  
64  
65  
GPIO8  
LDO3  
CLK32KOUT  
OSCEXT32K  
GPIO6  
OSC16MOUT  
OSC16MIN  
35  
66 NRESPWRON  
67 VCC2  
GPIO1 34  
BOOT1 33  
VCC2  
SW2  
SW2  
68  
69  
70  
32  
31  
GPIO5  
VREF  
VDD2 Output  
Thermal pad  
REFGND  
30  
GND2  
GND2  
GPIO7  
71  
72  
73  
74  
75  
PGND  
HDRST 29  
VFBIO  
28  
VFB2  
INT1  
GPIO4 27  
GNDIO 26  
PGND  
VIO Output  
GNDIO  
25  
GPIO2  
LDO5  
LDO5  
76  
77  
78  
79  
80  
SWIO  
SWIO  
24  
23  
22  
21  
VCC4  
VCC8  
VCCIO  
VCCIO  
5-V Analog  
Input Supply  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
32. TPS659119-Q1 Layout Example  
122  
版权 © 2013–2014, Texas Instruments Incorporated  
TPS659119-Q1  
www.ti.com.cn  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
92. 首字母缩写词、缩略语和定义  
首字母缩写词  
DDR  
ES  
定义  
双倍数据速率(存储器)  
工程样品  
ESD  
FET  
静电放电  
场效应晶体管  
嵌入式电源控制器  
有限状态机  
EPC  
FSM  
GND  
GPIO  
HBM  
HD  
接地  
通用 I/O  
人体模型  
热模  
高速 I2C  
HS-I2C  
I2C  
内部集成电路  
集成电路  
IC  
ID  
标识  
IDDQ  
IEEE  
IR  
静态电源电流  
电气电子工程师协会  
指令寄存器  
I/O  
输入/输出  
JEDEC  
JTAG  
LBC7  
LDO  
LP  
联合电子器件工程设计委员会  
联合测试行动组  
Lin Bi-CMOS 7 (360nm)  
低压降线性稳压器  
低功耗应用模式  
最低有效位  
LSB  
MMC  
MOSFET  
NVM  
OD  
多媒体卡  
金属氧化物半导体场效应晶体管  
非易失性内存  
开漏  
OMAP™  
RTC  
SMPS  
SPI  
开放式多媒体应用平台™  
实时时钟  
开关模式电源  
串行外设接口  
上电复位中添加了 T659119KB 器件标识信息  
POR  
12.2 商标  
OMAP is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2013–2014, Texas Instruments Incorporated  
123  
TPS659119-Q1  
ZHCSCN5E MARCH 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
124  
版权 © 2013–2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS659119AIPFPRQ1  
TPS659119BAIPFPRQ1  
TPS659119CAIPFPRQ1  
TPS659119DAIPFPRQ1  
TPS659119EAIPFPRQ1  
TPS659119FAIPFPRQ1  
TPS659119HAIPFPRQ1  
TPS659119KBIPFPRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
80  
80  
80  
80  
80  
80  
80  
80  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
T659119A1  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
T659119BA  
T659119CA  
T659119DA  
T659119EA  
T659119FA  
T659119HA  
T659119KB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS659119AIPFPRQ1  
HTQFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
80  
80  
80  
80  
80  
80  
80  
80  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
15.0  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
TPS659119BAIPFPRQ1 HTQFP  
TPS659119CAIPFPRQ1 HTQFP  
TPS659119DAIPFPRQ1 HTQFP  
TPS659119EAIPFPRQ1 HTQFP  
TPS659119FAIPFPRQ1 HTQFP  
TPS659119HAIPFPRQ1 HTQFP  
TPS659119KBIPFPRQ1 HTQFP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Sep-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS659119AIPFPRQ1  
TPS659119BAIPFPRQ1  
TPS659119CAIPFPRQ1  
TPS659119DAIPFPRQ1  
TPS659119EAIPFPRQ1  
TPS659119FAIPFPRQ1  
TPS659119HAIPFPRQ1  
TPS659119KBIPFPRQ1  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
PFP  
80  
80  
80  
80  
80  
80  
80  
80  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
55.0  
55.0  
55.0  
55.0  
55.0  
55.0  
55.0  
55.0  
Pack Materials-Page 2  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS659119AIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659119BAIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659119CAIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659119DAIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659119EAIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659119FAIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659119HAIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659119KBIPFPRQ1

具有 3 个降压转换器和 8 个 LDO 的汽车类 1.4V 至 5.5V 电源管理 IC | PFP | 80

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65911AA2NMAR

TPS65911 Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65911AA2NMAT

TPS65911 Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65911_V01

TPS65911 Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65911_V02

TPS65911 Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI