TPS65921BZBHR [TI]

TPS65921 Power Management and USB Single Chip;
TPS65921BZBHR
型号: TPS65921BZBHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS65921 Power Management and USB Single Chip

文件: 总66页 (文件大小:737K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
TPS65921 Power Management and USB Single Chip  
1 Device Overview  
1.1 Features  
1
– 32-kHz Crystal Oscillator  
• Three Step-Down Converters:  
– Clock Slicer for 26, 19.2, and 38.4 MHz  
– HF Clock Output Buffer  
• USB:  
– Up to 1.2 A of Output Current for VDD1  
TPS65921B Supports VDD1 up to 1.2 A  
TPS65921B1 Supports VDD1 up to 1.4 A  
(Necessary for 1-GHz Operation)  
– USB HS 2.0 Transceiver  
– USB 1.3 OTG-Compliant  
– 12-Bit ULPI 1.1 Interface  
– USB Power Supply (5-V CP for VBUS)  
– SmartReflex™ Dynamic Voltage Management  
– 3.2-MHz Fixed Frequency Operation  
– VIN Range from 2.7 to 4.5 V  
• Control  
– Typical 30 µA Quiescent per Converter  
• Four General-Purpose Configurable LDOs:  
– Dynamic Voltage Scaling  
– High-Speed I2C Interface  
– All Resource Configurable by I2C  
• Keypad Interface up to 8 × 8  
• 10-Bit A/D Converter  
– 220-mA Maximum Current for One LDO  
– VIN Range from 2.7 to 4.5 V  
• Hot-Die, Thermal Shutdown Protection  
• µ*BGA 120 Balls ZQZ  
– 2 LDOs With Low Noise and High PSRR  
• RTC With Alarm Wake-Up Mechanism  
• Clock Management  
1.2 Applications  
Mobile Phones and Smart Phones  
MP3 Players  
E-Books  
OMAP™ and Low-Power DSP Supply  
Handheld Devices  
1.3 Description  
The TPS65921 device is a highly integrated power-management circuit (IC) that supports the power and  
peripheral requirements of the OMAP application processors. The device contains power management, a  
universal serial bus (USB) high-speed (HS) transceiver, an analog-to-digital converter (ADC), a real-time  
clock (RTC), a keypad interface, and an embedded power control (EPC). The power portion of the device  
contains three buck converters, two controllable by a dedicated SmartReflex class-3 interface, multiple  
low-dropout (LDO) regulators, an EPC to manage the power-sequencing requirements of OMAP, and an  
RTC module. The USB module provides an HS 2.0 transceiver suitable for direct connection to the OMAP  
universal transceiver macrocell interface (UTMI) + low pin interface (ULPI) with an integrated charge pump  
(CP).  
The device also provides auxiliary modules: ADC, keypad interface, and general-purpose inputs/outputs  
(GPIOs) muxed with the JTAG functions. The keypad interface implements a built-in scanning algorithm to  
decode hardware-based key presses and to reduce software use, with multiple additional GPIOs that can  
be used as interrupts when they are configured as inputs.  
Device Information(1)  
PART NUMBER  
TPS65921ZQZ  
PACKAGE  
BODY SIZE  
ZQZ (120)  
6.00 mm × 6.00 mm  
(1) For more information, see Section 7, Mechanical Packaging and Orderable Information.  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
1.4 Functional Block Diagram  
Figure 1-1 shows the functional block diagram of the device.  
AGND  
VBAT  
REFS  
TEST/MUXed I/O’s  
VDD1_IN  
VINTANA2  
VRTC  
VINTANA1  
VDD1_L  
VDD1  
VDD2  
VIO  
IO.1P8  
DGND  
VDD1_FDBK  
VDD1_GND  
VDD2_IN  
SRI2C_SCL  
SRI2C_SDA  
2
I C Smart-Reflex  
VDD2_L  
32KXIN  
Xtal  
32K  
VDD2_FDBK  
32KXOUT  
32KCLKOUT  
HFCLKIN  
RTC  
Clock sys  
VDD2_GND  
VIO_IN  
Clock  
slicer  
HFCLKOUT  
MSECURE  
VIO_L  
VIO_FDBK  
BOOT0  
BOOT1  
VIO_GND  
RESPWRON  
NRESWARM  
VPLLA3RIN  
Power control  
PWRON  
NSLEEP  
Control I/Os  
VPLL1OUT  
VPLL1  
INT  
SYSEN  
REGEN  
CLKEN  
VDAC.IN  
TESTRESET  
CLKREQ  
VDAC.OUT  
VDAC  
CTLI2C_SCL  
CTLI2C_SDA  
2
I C control  
Control, Data  
and Test  
logic  
VMMC1_IN  
ADCIN0  
10- bit  
ADC  
VMMC1OUT  
VMMC1  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
VAUX12SIN  
VAUX2_OUT  
VAUX2  
USB 2.0  
OTG  
DATA6  
DATA7  
NXT  
DIR  
STP  
UCLK  
ID  
VBUS  
CP_IN  
CP_CAPP  
DP  
USB  
CP  
USB  
PHY  
DM  
CP_CAPM  
CP_GND  
AVSS1  
KPD_R0  
KPD_R1  
KPD_R2  
KPD_R3  
KPD_R4  
KPD_R5  
AVSS2  
AVSS3  
AVSS4  
KEY  
PAD  
VINTDIG  
VUSB3P1  
VINTUSB1P8  
VINTUSB1P5  
KPD_R6  
KPD_R7  
SWCS048-010  
Figure 1-1. Functional Block Diagram  
2
Device Overview  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Table of Contents  
Device Overview ......................................... 1  
1
4.18 Battery Threshold Levels............................ 24  
4.19 Power Consumption................................. 25  
4.20 USB Charge Pump ................................. 25  
4.21 Hot-Die Detection and Thermal Shutdown.......... 26  
4.22 USB ................................................. 26  
4.23 MADC ............................................... 31  
4.24 TPS65921 Interface Target Frequencies ........... 33  
4.25 JTAG Interfaces ..................................... 36  
Detailed Description ................................... 38  
5.1 Functional Block Diagram........................... 38  
5.2 Clock System ....................................... 39  
5.3 32-kHz Oscillator.................................... 39  
5.4 Clock Slicer ......................................... 40  
5.5 Power Path .......................................... 43  
5.6 Charger Detection................................... 54  
5.7 MADC ............................................... 57  
5.8 JTAG Interfaces ..................................... 58  
Device and Documentation Support ............... 60  
6.1 Device Support ...................................... 60  
6.2 Documentation Support ............................. 61  
6.3 Trademarks.......................................... 61  
6.4 Electrostatic Discharge Caution..................... 61  
6.5 Export Control Notice ............................... 61  
6.6 Glossary ............................................. 61  
1.1 Features .............................................. 1  
1.2 Applications........................................... 1  
1.3 Description............................................ 1  
1.4 Functional Block Diagram ............................ 2  
Revision History ......................................... 4  
Terminal Configuration and Functions.............. 5  
3.1 Signal Descriptions ................................... 6  
Specifications ........................................... 10  
4.1 Absolute Maximum Ratings......................... 10  
4.2 Handling Ratings.................................... 10  
4.3 Recommended Operating Conditions............... 10  
2
3
4
5
4.4  
Thermal Resistance Characteristics for ZQZ  
Package ............................................. 13  
4.5 Crystal Oscillator .................................... 13  
4.6 Clock Slicer ......................................... 14  
4.7 32KCLKOUT Output Clock.......................... 14  
4.8 HFCLKOUT Output Clock........................... 15  
4.9 VDD1 DC-DC Converter ............................ 17  
4.10 VDD2 DC-DC Converter ............................ 18  
4.11 VIO DC-DC Converter .............................. 19  
4.12 VMMC1 Low Dropout Regulator .................... 20  
4.13 VDAC Low Dropout Regulator ...................... 21  
4.14 VAUX2 Low Dropout Regulator..................... 22  
4.15 VPLL1 Low Dropout Regulator ..................... 23  
4.16 Internal LDOs ....................................... 24  
4.17 Voltage References ................................. 24  
6
7
Mechanical Packaging and Orderable  
Information .............................................. 62  
7.1 Packaging Information .............................. 62  
Copyright © 2010–2014, Texas Instruments Incorporated  
Table of Contents  
3
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
2 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (March 2012) to Revision G  
Page  
Changed the format to the latest TI standards ................................................................................... 1  
4
Revision History  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
3 Terminal Configuration and Functions  
shows the ball locations for the 120-ball plastic ball grid array (PBGA) package and is used in conjunction  
with ball description to locate signal names and ball grid numbers.  
1
2
3
4
5
6
7
8
9
10  
11  
VINTANA2.  
OUT  
VMODE2/  
I2C.SR.SCL  
VMMC1.OUT  
AVSS4  
DIR/GPIO.10 VPLLA3R.IN  
VINT.IN  
VPLL1.OUT  
INT1  
IO.1P8  
VDD1.GND  
A
B
C
D
E
F
A
B
C
D
E
F
I2C.CNTL.  
SCL  
DATA0/  
VRTC.OUT  
VINTDIG.  
OUT  
VMMC1.IN  
VDAC.IN  
KPD.C3  
KPD.C4  
KPD.C1  
KPD.C2  
ADCIN0  
KPD.C0  
DGND  
SYSEN  
VDD1.GND  
VDD1.L  
VDD1.L  
VDD1.IN  
CLKEN  
VREF  
VDD1.GND  
VDD1.L  
UART4.TXD  
I2C.CNTL.  
SDA  
DATA1/ DATA2/  
UART4.RXD UART4.RTSI  
#N/A  
TEST  
NXT/GPIO.11  
HFCLKIN  
CLKREQ  
TESTV2  
DATA3/  
UART4.  
UCLK  
VINTANA1.  
OUT  
PWROK2/  
12C.SR.SDA  
DATA7/  
GPIO.5  
PWRON  
BOOT0  
KPD.R7  
KPD.R3  
KPD.R0  
VDD1.OUT  
VDD1.IN  
CTSO/  
GPIO.12  
DATA6/  
GPIO.4  
VDAC.OUT  
VAUX12S.IN  
VAUX2.OUT  
VIO.OUT  
KPD.C6  
AVSS1  
REGEN  
VPROG  
CP.GND  
VBAT  
KPD.C5  
KPD.C7  
KPD.R1  
KPD.R2  
KPD.R4  
NSLEEP1  
STP/GPIO.9 NRESPWRON  
VDD1.IN  
AVSS3  
BKBAT  
JTAG.TCK/  
BOOT1  
DATA4/  
GPIO.14  
DATA5/  
GPIO.3  
BERCLK  
GPIO.2/  
TEST1  
32KCLKOUT  
AVSS2  
KPD.R6  
MSECURE  
32KXOUT  
32KXIN  
G
H
J
G
H
J
TESTV1  
VIO.GND  
VIO.IN  
STARTADC NRESWARM VDD2.OUT  
AGND  
VINTUSB1P5. VINTUSB1P8.  
OUT  
VIO.GND  
VIO.L  
ID  
KPD.R5  
TEST.RESET VDD2.GND  
VDD2.GND  
VDD2.L  
OUT  
GPIO.1/CD2/  
VDD2.IN  
VBUS  
VBAT.USB  
GND_AGND HFCLKOUT  
K
L
K
L
JTAG.TMS  
DP/UART3.  
RXD  
DN/UART3. GPIO.0/CD1/  
JTAG.TD0  
VIO.L  
VIO.IN  
CP.CAPM  
CP.IN  
CP.CAPP  
VUSB.3P1  
VDD2.IN  
VDD2.L  
TXD  
1
2
3
4
5
6
7
8
9
10  
11  
SWCS048-009  
Figure 3-1. Ball Placement (Top View)  
Copyright © 2010–2014, Texas Instruments Incorporated  
Terminal Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
3.1 Signal Descriptions  
Table 3-1. Signal Descriptions  
NAME  
BALL  
SUPPLIES  
TYPE  
I/O  
DESCRIPTION  
PU/PD  
ADCIN0  
F2  
Analog  
I/O  
General-purpose ADC input  
NO  
ADC conversion  
request/JTAG test data  
input  
STARTADC  
H7  
VDDIO/DGND  
Digital  
I
NO  
I2C.CNTL.SDA  
I2C.CNTL.SCL  
C4  
B3  
VDDIO/DGND  
VDDIO/DGND  
Digital  
Digital  
I/O  
I/O  
I2C bidirectional data signal  
I2C bidirectional clock  
signal  
External PU  
External PU  
HS I2C bidirectional data  
signal  
HS I2C bidirectional Clock  
signal  
I2C.SR.SDA  
I2C.SR.SCL  
D4  
A3  
VDDIO/DGND  
VDDIO/DGND  
Digital  
Digital  
I/O  
I/O  
External PU  
External PU  
Input detects a control  
command to start or stop  
the system.  
PWRON  
D5  
VBAT/GND  
Digital  
I
External PU  
Enable signal for external  
LDO  
REGEN  
G3  
G8  
Digital  
Digital  
O
I
PU  
NO  
Security and digital rights  
management  
MSECURE  
VDDIO/DGND  
VBAT/GND  
Programmable  
PD (default  
active)  
Power-up sequence  
selection  
BOOT0  
E5  
F6  
E7  
Digital  
Digital  
Digital  
I
I
Programmable  
PD (default  
active)  
Power-up sequence  
selection  
BOOT1  
VBAT/GND  
Output control the  
NRESPWRON of the  
application processor  
NRESPWRON  
VDDIO/DGND  
O
NO  
NRESWARM  
NSLEEP1  
H8  
K4  
VDDIO/DGND  
VDDIO/DGND  
Digital  
Digital  
I
I
Warm reset signal  
PU  
NO  
ACTIVE-SLEEP state  
transition control signal  
INT1  
A9  
B9  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
Digital  
Digital  
Digital  
O
O
O
Output line interrupt  
System enable output  
Clock Enable  
NO  
NO  
NO  
SYSEN  
CLKEN  
F10  
PD disabled in  
ACTIVE state  
32KCLKOUT  
G6  
VDDIO/DGND  
Digital  
O
32-kHz clock output  
32KXOUT  
32KXIN  
G11  
H11  
VRTC/REFGND  
VRTC/REFGND  
Analog  
Analog  
I
I
32-kHz crystal oscillator  
32-kHz crystal oscillator  
NO  
NO  
Sine wave or square wave  
input  
HFCLKIN  
C8  
K8  
VDDIO/DGND  
VDDIO/DGND  
Analog  
Digital  
I
NO  
NO  
50% duty cycle square  
wave output  
HFCLKOUT  
O
VREF  
G10  
K7  
VREF/REFGND  
AGND  
Analog  
Analog  
Analog  
Power  
O
Bandgap voltage  
Substrate ground  
Reference ground  
Digital ground  
NO  
NO  
NO  
NO  
GND_AGND  
AGND  
I/O  
I/O  
I/O  
H10  
B8  
REFGND  
DGND  
DGND  
Supply for I/O buffers  
(VDDIO)  
IO.1P8  
A10  
Power  
I
NO  
Not used. Must be  
grounded  
BKBAT  
G9  
VBACKUP/AGND  
Power  
Power  
Power  
I
I
NO  
NO  
NO  
VDD1.IN  
VDD1.GND  
E9, E10, E11  
VDD1 DC-DC input  
A11, B10,  
B11  
VDD1 DC-DC power  
ground  
I/O  
6
Terminal Configuration and Functions  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Table 3-1. Signal Descriptions (continued)  
NAME  
BALL  
SUPPLIES  
TYPE  
I/O  
DESCRIPTION  
PU/PD  
C10, C11,  
D10  
VDD1 DC-DC switched  
output  
VDD1.L  
Power  
O
NO  
VDD1.OUT  
VDD2.IN  
D11  
Analog  
Power  
I
I
VDD1 feedback voltage  
VDD2 DC-DC input  
PD  
NO  
K10, L10  
VDD2 DC-DC power  
ground  
VDD2.GND  
VDD2.L  
J10, J11  
K11, L11  
Power  
Power  
I/O  
O
NO  
NO  
VDD2 DC-DC switched  
output  
VDD2.OUT  
VIO.IN  
H9  
Analog  
Power  
Power  
I
I
VDD2 feedback voltage  
VIO DC-DC input  
PD  
NO  
NO  
K2, L2  
J1, J2  
VIO.GND  
I/O  
VIO DC-DC power ground  
VIO DC-DC switched  
output  
VIO.L  
K1, L1  
Power  
O
NO  
VIO.OUT  
H1  
F1  
G1  
A6  
Analog  
Power  
Power  
Power  
I
I
VIO feedback voltage  
VAUX2 LDO input  
PD  
NO  
PD  
NO  
VAUX12S.IN  
VAUX2.OUT  
VPLLA3R.IN  
O
I
VAUX2 regulator output  
VPLL1/VRTC LDO input  
VPLL1 LDO regulator  
output  
VPLL1.OUT  
A8  
Power  
O
PD  
VRTC internal LDO  
regulator output (internal  
use only)  
VRTC.OUT  
VINT.IN  
B5  
A7  
D1  
Power  
Power  
Power  
O
I
PD  
NO  
PD  
VINTDIG LDO input  
VINTANA1 internal LDO  
regulator output (internal  
use only)  
VINTANA1.OUT  
O
VINTANA2 internal LDO  
regulator output (internal  
use only)  
VINTANA2.OUT  
A2  
Power  
O
PD  
VDAC/VINTANA1/VINTAN2  
LDO input  
VDAC.IN  
C1  
E1  
Power  
Power  
I
NO  
PD  
VDAC.OUT  
O
VDAC LDO regulator output  
VINTDIG internal LDO  
regulator output (internal  
use only)  
VINTDIG.OUT  
B7  
Power  
O
PD  
VMMC1 LDO regulator  
output  
VMMC1.OUT  
VBAT.USB  
A1  
K6  
L6  
J6  
J5  
Power  
Power  
Power  
Power  
Power  
O
I
PD  
NO  
PD  
PD  
PD  
VINTUSBiP5,VINTUSB1P8,  
VUSB.3P1 input regulator  
VUSB.3P1 LDO regulator  
output  
VUSB.3P1  
O
O
O
VUSB1P8 LDO regulator  
output (internal use only)  
VINTUSB1P8.OUT  
VINTUSB1P5.OUT  
VUSB1P5 LDO regulator  
output (internal use only)  
TESTV1  
TESTV2  
H2  
C9  
Analog  
Analog  
IO  
IO  
Analog test pin 1  
Analog test pin 2  
NO  
NO  
Selection between JTAG  
mode and application mode  
TEST  
D3  
VDDIO/DGND  
Digital  
IO  
PD  
AVSS1  
AVSS2  
AVSS3  
AVSS4  
VBUS  
F3  
H6  
F9  
A4  
K5  
AGND  
AGND  
AGND  
AGND  
Power  
Power  
Power  
Power  
Power  
I/O  
I/O  
I/O  
I/O  
Analog ground  
Analog ground  
Analog ground  
Analog ground  
VBUS power rail  
NO  
NO  
NO  
NO  
NO  
Copyright © 2010–2014, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
Table 3-1. Signal Descriptions (continued)  
NAME  
DP/UART3.RXD  
DN/UART3.TXD  
ID  
BALL  
L7  
SUPPLIES  
TYPE  
Analog  
Analog  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DESCRIPTION  
USB differential data line  
USB differential data line  
USB ID  
PU/PD  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
L8  
J7  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
UCLK  
D6  
E6  
A5  
C5  
B6  
C6  
C7  
HS USB Clock  
STP/GPIO.9  
HS USB Stop  
DIR/GPIO.10  
NXT/GPIO.11  
DATA0/UART4.TXD  
DATA1/UART4.RXD  
DATA2/UART4.RTSI  
HS USB Direction  
HS USB Next  
HS USB Data0  
HS USB Data1  
HS USB Data2  
DATA3/UART4.CTSO/  
GPIO.12  
D7  
VDDIO/DGND  
Digital  
I/O  
HS USB Data3  
NO  
DATA4/GPIO.14  
DATA5/GPIO.3  
DATA6/GPIO.4  
DATA7/GPIO.5  
CP.IN  
F8  
F11  
E8  
D9  
L4  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
Digital  
Digital  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HS USB Data4  
NO  
NO  
NO  
NO  
NO  
NO  
HS USB Data5  
Digital  
HS USB Data6  
Digital  
HS USB Data7  
Power  
Charge pump input voltage  
Charge pump ground  
CP.GND  
J3  
Power Gnd  
Charge pump flying  
capacitor P  
CP.CAPP  
CP.CAPM  
L5  
L3  
Analog  
Analog  
I/O  
I/O  
NO  
NO  
Charge pump flying  
capacitor M  
KPD.C0  
KPD.C1  
KPD.C2  
KPD.C3  
KPD.C4  
KPD.C5  
KPD.C6  
KPD.C7  
KPD.R0  
KPD.R1  
KPD.R2  
KPD.R3  
KPD.R4  
KPD.R5  
KPD.R6  
KPD.R7  
B4  
D2  
E2  
B2  
C2  
E4  
E3  
F4  
H5  
G4  
H4  
G5  
J4  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
VDDIO/DGND  
Open Drain  
Open Drain  
Open Drain  
Open Drain  
Open Drain  
Open Drain  
Open Drain  
Open Drain  
Digital  
O
O
O
O
O
O
O
O
I
Keypad column 0  
Keypad column 1  
Keypad column 2  
Keypad column 3  
Keypad column 4  
Keypad column 5  
Keypad column 6  
Keypad column 7  
Keypad row 0  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
Digital  
I
Keypad row 1  
Digital  
I
Keypad row 2  
Digital  
I
Keypad row 3  
Digital  
I
Keypad row 4  
J8  
Digital  
I
Keypad row 5  
G7  
F5  
Digital  
I
Keypad row 6  
Digital  
I
Keypad row 7  
Battery input voltage  
(Sense)  
VBAT  
K3  
D8  
J9  
Power  
Digital  
Digital  
I/O  
NO  
PD  
PD  
CLKREQ  
TEST.RESET  
VDDIO/DGND  
VBAT/GND  
I
I
Clock request line  
Reset the device (except  
the state-machine)  
Reserved. Must be  
grounded.  
VPROG  
H3  
F7  
L9  
Analog  
Digital  
Digital  
I
I
NO  
NO  
PD  
JTAG/TCK/BERCLK  
VDDIO/DGND  
VDDIO/DGND  
JTAG clock input  
GPIO.0/CD1/JTAG.TD  
O
JTAG test output or  
GPIO0/card detection 1  
I/O  
GPIO.1/CD2/JTAG.TM  
S
JTAG test mode state or  
GPIO1/card detection 2  
K9  
VDDIO/DGND  
Digital  
I/O  
PD  
8
Terminal Configuration and Functions  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Table 3-1. Signal Descriptions (continued)  
NAME  
BALL  
SUPPLIES  
TYPE  
I/O  
DESCRIPTION  
PU/PD  
Programmable  
PD  
GPIO.2/TEST1  
G2  
VDDIO/DGND  
Digital  
I
GPIO/Digital test pin  
VMMC1.IN  
N/A  
B1  
C3  
Power  
N/A  
I
VMMC1 input LDO  
N/A  
NO  
N/A  
N/A  
N/A  
Copyright © 2010–2014, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4 Specifications  
4.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Main battery supply  
voltage(2)  
0.0  
5.0  
V
Where supply represents the voltage  
applied to the power supply pin  
associated with the input(4)  
Voltage on any input(3)  
–0.3  
1.0 × Supply + 0.3  
V
VBUS input  
–0.3  
–40  
7
V
Operating ambient  
temperature (TA)  
85  
°C  
Operating junction  
temperature (TJ)  
Absolute maximum rating  
For parametric compliance  
–40  
–40  
–40  
125  
150  
85  
°C  
°C  
°C  
Operating junction  
temperature (TJ)  
Ambient temperature for  
parametric compliance  
With maximum 125°C as junction  
temperature (TJ)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.  
(2) The product will have negligible reliability impact if voltage spikes of 5.2 V occur for a total (cumulative over lifetime) duration of 10  
milliseconds.  
(3) Excepts VBAT input pads and VBUS pad.  
(4) Supply equals the reference level of each pin.  
4.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–55  
125  
°C  
Human Body Model (HBM), per ANSI/ESDA/JEDEC  
JS001(1)  
–1  
1
kV  
V
Electrostatic discharge (ESD)  
performance:  
VESD  
Charged Device Model (CDM),  
All pins  
–250  
250  
per JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Power and USB Path  
HFCLKIN Input Clock  
VBAT/VBAT.USB main battery supply voltage and  
VBUS  
2.7  
0
3.6  
4.5  
7
V
V
Frequency 1/tC(HFCLKIN)  
19.2, 26 or 38.4  
MHz  
ns  
0.55 ×  
tC(HFCLKIN)  
Pulse duration, HFCLKIN low or high (BP)  
0.45 × tC(HFCLKIN)  
HFCLKIN stability  
–150  
0
150  
5
ppm  
ns  
Rise time of HFCLKIN (BP)  
Fall time of HFCLKIN (BP)  
0
5
ns  
LP/HP (sine wave)  
Input dynamic range  
0.3  
0
0.7  
1.45  
1.85(1)  
Vpp  
Vpp  
BP/PD (square wave)  
Harmonic content of input signal (with 0.7-VPP amplitude): Second  
component - LP/HP (sine wave)  
–25  
dBc  
V
VIH voltage input  
BP (square mode)  
high(1)  
0.65 × IO.1P8  
(1) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface (IO.1P8V).  
10 Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
VIL voltage input low(1) BP (square mode)  
0.35 × IO.1P8  
V
Crystal Oscillator  
Parallel resonance crystal frequency 1/tC(32KHZ)  
Input voltage, Vin (normal mode)  
Crystal tolerance at room temperature, 25°C  
Crystal tolerance versus temperature range (–40°C to 85°C)  
Crystal quality factor  
32.768  
1.3  
kHz  
V
1.0  
–30  
–200  
13k  
1.55  
30  
ppm  
ppm  
200  
54k  
1
Maximum drive power  
µW  
µW  
Operating drive level  
0.5  
32KXIN 32KXOUT  
duty cycle  
Crystal  
40%  
45%  
60%  
55%  
Square wave  
32-kHz clock rise/fall  
time  
Square wave with capacitive load equivalent to  
30 pF  
Square wave in bypass mode(2)  
Square wave in bypass mode(2)  
0.1 × tC(32KHZ)  
0.35 × VBRTC  
4.5  
µs  
VIH voltage input high  
VIL voltage input low  
0.65 × VBRTC  
V
V
DC-DC Converters and LDOs  
VDD1.IN, VDD2.IN, VDD3.IN input voltage range for step-down converter  
VDD1, VDD2, VIO  
2.7  
3.6  
V
Maximum (2.7,  
output voltage  
selected + 250 mV)  
VMMC1.IN input voltage range for LDO VMMC1  
VDAC.IN input voltage range for LDO VDAC  
VAUX12S.IN input voltage range for LDO VAUX2  
3.6  
3.6  
3.6  
4.5  
4.5  
4.5  
V
V
V
2.7  
Maximum (2.7,  
output voltage  
selected + 250 mV)  
Maximum (2.7,  
output voltage  
selected + 200 mV)  
VINT.IN input voltage range for LDO VINTANA1, VINTANA2, VINTDIG  
and VRTC  
3.6  
3.6  
4.5  
V
VPLLA3R.IN input voltage range for LDO VPLL1  
2.7  
0.6  
0.6  
4.5  
1.45  
1.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD1.OUT ouput voltage range for VDD1 step-down converter  
VDD2.OUT ouput voltage range for VDD2 step-down converter  
VIO.OUT ouput voltage range for VIO step-down converter  
VMMC1.OUT output voltage range for LDO VMMC1  
VDAC.OUT output voltage range for LDO VDAC  
1.8/1.85  
1.85  
1.2  
3.15  
1.8  
VAUX2.OUT output voltage range for LDO VAUX2  
VPLL1.OUT output voltage range for LDO VPLL1  
VINTANA1.OUT output voltage for LDO VINTANA1  
VINTANA2.OUT output voltage for LDO VINTANA2  
VINTUSB1P5V.OUT output voltage for LDO VINTUSB1P5  
VINTUSB1P8V.OUT output voltage for LDO VINTUSB1P8  
VUSB3P1V.OUT output voltage for LDO VUSB3P1  
VINTDIG.OUT output voltage range for LDO VINTDIG  
1.3  
2.8  
1.0  
1.8  
1.5  
2.5/2.75  
1.5  
1.35  
1.62  
1.65  
1.98  
1.8  
3.1  
1.35  
1.45  
1.0  
1.5  
1.65  
1.55  
1.55  
Normal mode  
Backup mode  
1.5  
VRTC.OUT output  
voltage range  
1.3  
External Components  
Crystal: Nominal load cap on each oscillator input CXIN and CXOUT (3)  
9
10  
12.5  
pF  
(2) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface (IO.1P8V).  
(3) Nominal load capacitor on each oscillator input defined as CXIN = CXOUT = Cosc × 2 – (Cint + Cpin). Cosc is the load capacitor  
defined in the crystal oscillator specification, Cint is the internal capacitor, and Cpin is the parallel input capacitor.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Crystal ESR (4)  
MIN  
TYP  
MAX  
90  
UNIT  
kΩ  
pF  
µH  
Ω
Crystal shunt capacitance, CO  
Value  
1
0.7  
1
1.3  
0.1  
DCR  
External coil for VDD1  
Saturation current for TPS65921B  
1.8  
2.1  
0.7  
A
Saturation current for TPS65921B1  
Value  
A
1
1.3  
0.1  
µH  
Ω
External coil for VDD2  
and VIO  
DCR  
Saturation current  
Value(5)  
900  
5
mA  
μF  
External capacitor for  
VDD1, VDD2, VIO  
connected to VDD1.IN,  
VDD2.IN, VDD3.IN,  
and VDD1.OUT,  
10  
15  
20  
ESR at switching frequency  
1
mΩ  
VDD2.OUT, VIO.OUT  
Filtering capacitor for Value  
VMCC1.IN, VDAC.IN,  
VAUX12S.IN,  
0.3  
1
2.7  
µF  
VPPLA3R.IN, VINT.IN,  
VBAT.USB,  
VMMC1.OUT,  
VDAC.OUT,  
ESR  
20  
600  
mΩ  
VAUX2.OUT, VPPL1,  
VINTDIG, VINTANA1,  
VINTANA2, VRRTC  
Filtering capacitor for Value  
VUSB3V1, VUSB1V8,  
VUSB1V5  
0.5  
20  
2.2  
1
6.5  
µF  
ESR  
600  
mΩ  
Filtering capacitor for  
voltage reference  
Connected from VREF to REFGND  
0.3  
2.7  
6.5  
µF  
µF  
1.41 (The minimum  
can be reduced to  
1.2 µF, provided the  
charge-pump is only  
used to supply  
Filtering capacitor (Connected between  
VBUS.CPOUT and GND) and called CVBUS  
4.7  
2.2  
VUSB3V1 LDO)  
1.32 (The minimum  
can be reduced to  
External capacitor for  
charge pump and  
VBUS  
Flying capacitor (Connected between CP.CAPP 1.2 µF, provided the  
and CP.CAPM) called CVBUS.FC  
3.08  
µF  
charge-pump is only  
used to supply  
VUSB3V1 LDO)  
Filtering capacitor ESR for CVUSB.IN and  
CVBUS.FC  
20  
15  
mΩ  
µF  
Filtering capacitor CVBUS.IN  
5
10  
1
External capacitor for  
power reference filter  
Filtering capacitor  
0.3  
2.7  
µF  
(4) The crystal motional resistance Rm relates to the equivalent series resistance (ESR) by the following formula:  
æ
ö2  
÷
C0  
ESR= R 1+  
m ç  
CL ø  
è
Measured with the load capacitance specified by the crystal manufacturer. In fact, if CXIN = CXOUT = 10 pF, then CL = 5 pF. Parasitic  
capacitance from the package and board must also be considered.  
(5) For TPS65921B1, in case of OMAP frequency 1 GHz, replace 10-µF capacitor on VDD1.OUT by two 22-µF capacitors. One capacitor  
must be placed near the PMIC and one near the OMAP device.  
12  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.4 Thermal Resistance Characteristics for ZQZ Package  
NAME  
RΘJC  
RΘJB  
RΘJA  
PsiJT  
PsiJB  
DESCRIPTION  
°C/W(1) (2)  
AIR FLOW (m/s)(3)  
Junction-to-case  
20  
17  
46  
0.3  
16  
0.00  
0.00  
0.00  
0.00  
0.00  
Junction-to-board  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
(3) m/s = meters per second.  
4.5 Crystal Oscillator  
When selecting a crystal, the system designer must consider the temperature and aging characteristics of a  
crystal versus the user environment and expected lifetime of the system. The following table lists the switching  
characteristics of the oscillator.  
Table 4-1. Base Oscillator Switching Characteristics  
PARAMETER  
Crystal: Internal capacitor on each input (Cint)  
Crystal: Parallel input capacitance (Cpin)  
Parallel resonance crystal frequency  
Pin-to-pin capacitance  
MIN  
TYP  
MAX  
12  
UNIT  
pF  
8
10  
1.0  
pF  
32.768  
1.6  
kHz  
pF  
1.8  
1.0  
0.5  
54k  
500  
360  
1.8  
0.8  
Maximum drive power  
µW  
µW  
Operating drive level  
Crystal quality factor  
13k  
Start-up time, all conditions  
tSX  
ms  
µA  
µA  
Start-up time, 25°C  
Active current  
High jitter mode  
Low jitter mode  
IDDA  
consumption (configured  
through the LOJIT bit)  
Low battery mode (1.2 V)  
Startup  
1
8
IDDQ  
Current consumption  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.6 Clock Slicer  
PARAMETER  
MODE(1)  
MIN  
4.2  
15  
TYP  
MAX  
5.7  
60  
UNIT  
pF  
Internal coupling capacitor  
5
LP  
HP  
kΩ  
Parallel input resistance over 10 to 40 MHz range  
Parallel input capacitance over 10 to 40 MHz range  
30  
75  
kΩ  
BP/PD  
LP  
1
100  
0.8  
0.7  
1
MΩ  
0.3  
0.3  
0.08  
40  
HP  
pF  
BP/PD  
BP/PD  
LP/HP  
LP  
230  
60%  
18  
Output duty cycle with VIN = 0.2 VPP  
Propagation delay  
40%  
4
50%  
HP  
3
15  
ns  
BP/PD  
LP/HP  
0.2  
26  
3
Power supply rejection ratio sideband (1% RMS of supply voltage added  
sine 5 MHz)  
dBc  
LP  
175  
235  
39  
µA  
µA  
nA  
ms  
Current consumption at maximum input of 40 MHz  
Power-up time  
HP  
BP/PD  
LP/HP  
1
Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for  
jitter frequency below 300 kHz  
LP/HP  
LP/HP  
0.2%  
1.0%  
Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for  
jitter frequency above 300 kHz  
(1) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface.  
4.7 32KCLKOUT Output Clock  
NAME  
PARAMETER DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
kHz  
pF  
f
Frequency  
32.768  
CL  
Load capacitance  
40  
VOUT  
Output clock voltage, depending on output  
reference level IO.1P8  
1.8(1)  
V
VOH  
VOL  
Voltage output high  
Voltage output low  
VOUT – 0.45  
0
VOUT  
0.45  
V
V
(1) The output voltage depends on output reference level which is IO.1P8.  
The following table details the output clock timing characteristics. The following figure shows the 32KCLKOUT  
output clock waveform.  
NAME  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
CK0  
1/tC(32KCLKOUT)  
Frequency  
32.768  
kHz  
CK1  
Pulse duration,  
32KCLKOUT low or high  
0.40 ×  
tC(32KCLKOUT)  
0.60 ×  
tC(32KCLKOUT)  
tW(32KCLKOUT)  
ns  
CK2  
CK3  
tR(32KCLKOUT)  
tF(32KCLKOUT)  
Rise time, 32KCLKOUT (1)  
Fall time, 32KCLKOUT (1)  
16  
16  
ns  
ns  
At 1-kHz offset from the  
carrier  
SSB Phase Noise  
–110  
dBc/Hz  
(1) The output capacitive load is equivalent to 30 pF.  
CK0  
CK1  
CK1  
32KCLKOUT  
SWCS048-001  
Figure 4-1. 32KCLKOUT Output Clock  
14  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.8 HFCLKOUT Output Clock  
The following table summarizes the HFCLKOUT output clock electrical characteristics.  
Table 4-2. HFCLKOUT Output Clock Electrical Characteristics  
NAME  
PARAMETER DESCRIPTION  
Frequency  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
f
19.2, 26, or 38.4  
CL  
Load capacitance  
30  
VOUT  
Output clock voltage, depending on  
output reference level IO.1P8  
1.8(1)  
V
VOH  
VOL  
Voltage output high  
Voltage output low  
VOUT – 0.45  
0
VOUT  
0.45  
V
V
(1) The output voltage depends on output reference level which is IO.1P8.  
The following table details the HFCLKOUT output clock timing characteristics.  
Table 4-3. HFCLKOUT Output Clock Switching Characteristics  
NAME  
CHO1  
PARAMETER  
DESCRIPTION  
Frequency  
MIN  
TYP  
MAX  
UNIT  
1/tC(HFCLKOUT)  
19.2, 26, or 38.4  
MHz  
Pulse duration, HFCLKOUT low  
or high  
0.4 ×  
tC(HFCLKOUT)  
0.6 ×  
tC(HFCLKOUT)  
CHO2  
tW(HFCLKOUT)  
ns  
Rise time, HFCLKOUT, low  
drive(1)  
- Load: 5 pF  
3.8  
5.5  
- Load: 10 pF  
CHO3  
tR(HFCLKOUT)  
ns  
Rise time, HFCLKOUT, high  
drive(1)  
- Load: 10 pF  
- Load: 20 pF  
2.9  
5.0  
Fall time, HFCLKOUT, low  
drive(1)  
- Load: 5 pF  
3.5  
5.1  
- Load: 10 pF  
CHO4  
tF(HFCLKOUT)  
ns  
Fall time, HFCLKOUT, high  
drive(1)  
- Load: 10 pF  
- Load: 20 pF  
2.7  
4.7  
(1) Low drive: MISC_CFG[CLK_HF_DRV] = 0 (default)  
High drive: MISC_CFG[CLK_HF_DRV] = 1  
Figure 4-2 shows the HFCLKOUT output clock waveform.  
CHO1  
CHO1  
CHO2  
HFCLKOUT  
SWCS048-002  
Figure 4-2. HFCLKOUT Output Clock  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
Figure 4-3 shows the 32KCLKOUT and HFCLKOUT clock stabilization time.  
XIN  
Starting_Event  
Tstartup  
CLK32KOUTEN  
CLK32KOUT  
CLKEN  
Delay1  
HFCLKOUTEN  
HFCLKOUT  
Delay2  
NRESPWRON  
SWCS048-003  
A. Tstartup, Delay1, Delay2, and Delay3 depend on the boot mode (See Power timing chapter).  
Figure 4-3. 32KCLKOUT and HFCLKOUT Clock Stabilization Time  
HFCLKIN  
HFCLKOUT  
SWCS048-004  
Figure 4-4. HFCLKOUT Behavior  
16  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.9 VDD1 DC-DC Converter  
PARAMETER  
COMMENTS  
MIN  
2.7  
TYP  
MAX  
4.5  
UNIT  
V
Input voltage range  
3.6  
Output voltage  
0.6  
1.45  
V
Output voltage step  
Output accuracy(1)  
0.6 to 1.45 V  
0.6 to < 0.8 V  
12.5  
mV  
–6%  
–5%  
6%  
5%  
0.8 to 1.45 V  
Switching frequency  
3.2  
MHz  
IO = 10 mA, sleep  
82%  
85%  
80%  
75%  
100 mA < IO < 400 mA  
400 mA < IO < 600 mA  
600 mA < IO < 800 mA  
Conversion efficiency(2)  
Active mode  
Output voltage 0.6 V to 1.45 V  
for TPS65921B/TPS65921B1  
1.2  
1.4  
A
A
Output current  
Active mode  
Output Voltage 1.2 V to 1.45 V  
for TPS65921B1  
Sleep mode  
10  
3
mA  
µA  
Off at 30°C  
Ground current (IQ)  
Sleep, unloaded  
Active, unloaded, not switching  
VIN = VMAX  
30  
50  
300  
Short-circuit current  
Load regulation  
2.2  
A
0 < IO < IMAX  
20  
50  
10  
10  
mV  
IO = 10 mA to (IMAX/3) + 10 mA,  
maximum slew rate is IMAX/3/100 ns  
Transient load regulation at 1.2 A(3)  
Line regulation  
–65  
mV  
mV  
mV  
300 mVPP ac input, 10-μs rise and fall  
time  
Transient line regulation  
Start-up time  
0.25  
< 10  
8
1
ms  
µs  
Recovery time  
Slew rate (rising or falling)(4)  
From sleep to on with constant load  
100  
16  
4
mV/µs  
mV  
Active (PWM and PSM)  
Sleep (PFM)  
–10  
–2%  
10  
Output ripple  
2%  
Current limit for PWM/PSM mode  
switch. PSM is below this limit, and  
PWM is above this limit.  
Active mode  
150  
200  
mA  
Overshoot  
Softstart  
5%  
Output pulldown resistance  
In Off mode  
500  
700  
Ω
(1) Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process).  
(2) VBAT = 3.6 V, VDD1 = 1.2 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ  
(3) For negative transient load, the output voltage must discharge completely and settle to its final value within 100 ms. Transient load is  
specified at Vout max with a ±50% external capacitor accuracy and includes temperature and process variation.  
(4) Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1  
A.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.10 VDD2 DC-DC Converter  
PARAMETER  
COMMENTS  
MIN  
2.7  
TYP  
3.6  
MAX  
4.5  
UNIT  
V
Input voltage range  
Output voltage  
0.6  
1.0  
1.5  
V
Output voltage step  
Output accuracy(1)  
0.6 to 1.45 V  
12.5  
mV  
0.6 to < 0.8 V  
0.8 to 1.45 V  
–6%  
–5%  
6%  
5%  
Switching frequency  
3.2  
MHz  
IO = 10 mA, sleep  
100 mA < IO < 300 mA  
300 mA < IO < 500 mA  
Active mode  
82%  
85%  
80%  
Conversion efficiency(2)  
600  
10  
1
mA  
mA  
Output current  
Sleep mode  
Off at 30°C  
Ground current (IQ)  
Sleep, unloaded  
Active, unloaded, not switching  
VIN = VMAX  
30  
50  
300  
µA  
Short-circuit current  
Load regulation  
1.2  
A
0 < IO < IMAX  
20  
50  
10  
10  
mV  
IO = 10 mA to (IMAX/3) + 10 mA,  
maximum slew rate is IMAX/3/100 ns  
Transient load regulation(3)  
Line regulation  
–65  
mV  
mV  
mV  
300 mVPP ac input, 10-μs rise and fall  
time  
Transient line regulation  
Output pulldown resistance  
Start-up time  
In OFF mode  
500  
0.25  
25  
700  
1
Ω
ms  
Recovery time  
Slew rate (rising or falling)(4)  
From sleep to on with constant load  
100  
16  
µs  
4
8
mV/µs  
mV  
Active (PWM and PSM)  
Sleep (PFM)  
–10  
–2%  
10  
Output ripple  
2%  
Current limit for PWM/PSM mode  
switch. PSM is below this limit, and  
PWM is above this limit.  
Active mode  
150  
200  
5%  
mA  
Overshoot  
Softstart  
(1) Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process).  
(2) VBAT = 3.8 V, VDD1 = 1.3 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ  
(3) Output voltage must be able to discharge the load current completely and settle to its final value within 100 μs.  
(4) Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1  
A.  
18  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.11 VIO DC-DC Converter  
PARAMETER  
COMMENTS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range  
2.7  
3.6  
4.5  
V
1.8  
1.85  
Output voltage(1)  
V
DC accuracy only  
–3%  
–4%  
3%  
4%  
Including all variations (line and load  
regulations, line and load transients,  
temperature, and process)  
Output accuracy  
Switching frequency  
3.2  
MHz  
IO = 10 mA, sleep  
100 mA < IO < 400 mA  
400 mA < IO < 600 mA  
On mode  
85%  
85%  
80%  
Conversion efficiency(2)  
700  
10  
1
mA  
mA  
Output current  
Sleep mode  
Off at 30°C  
Ground current (IQ)  
Sleep, unloaded  
Active, unloaded, not switching  
0 < IO < IMAX  
30  
50  
300  
20  
10  
µA  
Load regulation  
Line regulation  
mV  
mV  
IO = 10 mA to (IMAX/3) + 10 mA,  
maximum slew rate is IMAX/3/100 ns  
Transient load regulation  
Transient line regulation  
–65  
50  
10  
mV  
mV  
300 mVPP ac input, 10-μs rise and fall  
time  
Start-up time  
0.25  
< 10  
8
1
ms  
µs  
Recovery time  
From sleep to on with constant load  
100  
16  
Slew rate (rising or falling)  
4
mV/µs  
mV  
Active (PWM and PSM)  
Sleep (PFM)  
–10  
–2%  
10  
Output ripple  
2%  
Current limit for PWM/PSM mode  
switch. PSM is below this limit, and  
PWM is above this limit.  
Active mode  
150  
200  
mA  
Overshoot  
Softstart  
5%  
Output pulldown resistance  
In Off mode  
500  
700  
Ω
(1) This voltage is tuned according to the platform and transient requirements.  
(2) VBAT = 3.8 V, VIO = 1.8 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
19  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.12 VMMC1 Low Dropout Regulator  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage  
2.7  
3.6  
5.5  
V
Output voltage including all  
variations (line and load  
regulations, line and load  
transients, temperature, and  
process)  
1.7945  
2.7645  
2.91  
1.85  
2.85  
3.0  
1.9055  
2.9355  
3.09  
VOUT  
V
3.0555  
3.15  
3.2445  
On mode  
220  
5
IOUT  
Rated output current  
mA  
Low-power mode  
On mode: 0 < IO < IMAX  
DC load regulation  
DC line regulation  
20  
mV  
mV  
On mode, VIN = VINmin to VINmax  
at IOUT = IOUTmax  
3
IOUT = 0, CL = 1 μF (within 10%  
Turn-on time  
Wake-up time  
100  
10  
µs  
µs  
of VOUT  
)
Full load capability  
f < 10 kHz  
50  
40  
25  
10 kHz < f < 100 kHz  
f = 1 MHz  
Ripple rejection  
dB  
VIN = VOUT + 1 V, IO = IMAX  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode, IOUT = 0  
Low-power mode, IOUT = 5 mA  
Off mode at 55°C  
On mode, IOUT = IOUTmax  
ILOAD: IMIN – IMAX  
70  
290  
17  
Ground current  
µA  
20  
1
VDO  
Dropout voltage(1)  
250  
mV  
mV  
Transient load regulation(2)  
–40  
250  
40  
10  
Slew: 40 mA/μs  
VIN drops 500 mV  
Slew: 40 mV/μs  
Transient line regulation  
mV  
Overshoot  
Softstart  
3%  
Pulldown resistance  
Default in off mode  
320  
450  
Ω
(1) For nominal output voltage  
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a  
tighter output voltage specification than the transient load regulation, follow the output voltage specification.  
20  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.13 VDAC Low Dropout Regulator  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage  
2.7  
3.6  
4.5  
V
Output voltage including all  
variations (line and load  
regulations, line and load  
transients, temperature, and  
process)  
1.164  
1.261  
1.746  
12  
1.3  
1.8  
1.236  
1.339  
1.854  
VOUT  
V
On mode  
70  
5
IOUT  
Rated output current  
mA  
Low-power mode  
DC load regulation  
DC line regulation  
On mode: 0 < IO < IMAX  
20  
mV  
mV  
On mode, VIN = VINmin to VINmax  
at IOUT = IOUTmax  
3
IOUT = 0, CL = 1 μF (within 10% of  
Turn-on time  
Wake-up time  
100  
10  
µs  
µs  
VOUT  
)
Full load capability  
f < 20 kHz  
65  
45  
40  
20 kHz < f < 100 kHz  
f = 1 MHz  
Ripple rejection  
Output noise  
dB  
VIN = VOUT + 1 V, IO = IMAX  
200 Hz < f < 5 kHz  
5 kHz < f < 400 kHz  
400 kHz < f < 10 MHz  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode, IOUT = 0  
Low-power mode, IOUT = 1 mA  
Off mode at 55°C  
On mode, IOUT = IOUTmax  
ILOAD: IMIN – IMAX  
400  
125  
50  
nV/Hz  
150  
350  
15  
Ground current  
µA  
25  
1
VDO  
Dropout voltage(1)  
250  
mV  
mV  
Transient load regulation(2)  
–40  
250  
40  
10  
Slew: 60 mA/μs  
VIN drops 500 mV  
Slew: 40 mV/μs  
Transient line regulation  
mV  
Overshoot  
Softstart  
3%  
Pull down resistance  
Default in off mode  
320  
450  
Ω
(1) For nominal output voltage  
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a  
tighter output voltage specification than the transient load regulation, follow the output voltage specification.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.14 VAUX2 Low Dropout Regulator  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage  
2.7  
3.6  
4.5  
V
1.3  
1.5  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.8  
Output voltage including all  
variations (line and load  
regulations, line and load  
transients, temperature, and  
process)  
VOUT  
–3%  
+3%  
V
On mode  
100  
5
IOUT  
Rated output current  
mA  
Low-power mode  
DC load regulation  
DC line regulation  
On mode: 0 < IO < IMAX  
20  
mV  
mV  
On mode, VIN = VINmin to VINmax  
at IOUT = IOUTmax  
3
IOUT = 0, CL = 1 μF (within 10% of  
Turn-on time  
Wake-up time  
100  
10  
µs  
µs  
VOUT  
)
Full load capability  
f < 10 kHz  
50  
40  
30  
10 kHz < f < 100 kHz  
f = 1 MHz  
Ripple rejection  
dB  
VIN = VOUT + 1 V, IO = IMAX  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode, IOUT = 0  
Low-power mode, IOUT = 5 mA  
Off mode at 55°C  
70  
170  
17  
Ground current  
µA  
20  
1
VDO  
Dropout voltage(1)  
On mode, IOUT = IOUTmax  
ILOAD: IMIN – IMAX  
250  
mV  
mV  
Transient load regulation(2)  
–40  
40  
10  
Slew: 40 mA/μs  
VIN drops 500 mV  
Transient line regulation  
Overshoot  
mV  
Slew: 40 mV/μs  
Softstart  
3%  
Default in off mode  
Configurable as HighZ in off mode  
250  
100  
320  
450  
Ω
Pulldown resistance  
MΩ  
(1) For nominal output voltage  
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a  
tighter output voltage specification than the transient load regulation, follow the output voltage specification.  
22  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.15 VPLL1 Low Dropout Regulator  
PARAMETER  
TEST CONDITIONS  
MIN  
2.7  
TYP  
3.6  
1.0  
1.2  
1.3  
1.8  
MAX  
4.5  
UNIT  
VIN  
Input voltage  
V
0.97  
1.03  
1.236  
1.339  
1.854  
40  
Output voltage including all  
variations (line and load  
regulations, line and load  
transients, temperature, and  
process)  
1.164  
1.261  
1.746  
VOUT  
V
On mode  
IOUT  
Rated output current  
mA  
Low-power mode  
5
DC load regulation  
DC line regulation  
On mode: 0 < IO < IMAX  
20  
mV  
mV  
On mode, VIN = VINmin to VINmax  
at IOUT = IOUTmax  
3
IOUT = 0, CL = 1 μF (within 10% of  
Turn-on time  
Wake-up time  
100  
10  
µs  
µs  
VOUT  
)
Full load capability  
f < 10 kHz  
50  
40  
30  
10 kHz < f < 100 kHz  
f = 1 MHz  
Ripple rejection  
dB  
VIN = VOUT + 1 V, IO = IMAX  
On mode, IOUT = 0  
On mode, IOUT = IOUTmax  
Low-power mode, IOUT = 0  
Low-power mode, IOUT = 1 mA  
Off mode at 55°C  
On mode, IOUT = IOUTmax  
ILOAD: IMIN – IMAX  
70  
110  
15  
Ground current  
µA  
16  
1
VDO  
Dropout voltage(1)  
250  
mV  
mV  
Transient load regulation(2)  
–40  
250  
40  
10  
Slew: 60 mA/μs  
VIN drops 500 mV  
Slew: 40 mV/μs  
Transient line regulation  
mV  
Overshoot  
Softstart  
3%  
Pulldown resistance  
Default in off mode  
320  
450  
Ω
(1) For nominal output voltage  
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a  
tighter output voltage specification than the transient load regulation, follow the output voltage specification.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.16 Internal LDOs  
Internal LDOs (except USBCP, which is a boost) are described in following table.  
NAME  
USAGE  
TYPE  
VOLTAGE RANGE  
(V)  
DEFAULT  
VOLTAGE (V)  
MAXIMUM  
CURRENT  
VINTANA1  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
LDO  
LDO  
1.5  
2.5, 2.75  
1.5  
1.5  
2.75  
1.5  
5
50 mA  
VINTANA2  
VINTDIG  
USBCP  
250 mA  
100 mA  
100 mA  
30 mA  
LDO  
Charge pump  
LDO  
5
VUSB1V5  
VUSB1V8  
VUSB3V1  
VRRTC  
1.5  
1.5  
1.8  
3.1  
1.5  
1.3  
LDO  
1.8  
30 mA  
LDO  
3.1  
14 mA  
LDO  
1.5  
30 mA  
VBRTC  
LDO  
1.3  
100 μA  
4.17 Voltage References  
PARAMETER  
TEST CONDITONS  
MIN  
TYP  
MAX  
UNIT  
Internal bandgap reference  
voltage  
On mode, measured through  
TESTV terminal  
1.272  
1.285  
1.298  
V
Reference voltage (VREF  
terminal)  
On mode  
On mode  
0.7425  
0.75  
0.7575  
V
Retention mode reference  
IREF NMOS sink  
0.492  
0.9  
0.5  
1.0  
0.508  
1.1  
25  
V
µA  
Bandgap  
IREF block  
20  
Ground current  
Preregulator  
VREF buffer  
15  
µA  
10  
Retention reference buffer  
100 Hz  
10  
Output spot noise  
A-weighted noise (rms)  
P-weighted noise (rms)  
Integrated noise  
1
μV/Hz  
nV (rms)  
nV (rms)  
µV  
200  
150  
2.2  
20 Hz to 100 kHz  
IBIAS trim bit LSB  
Ripple rejection  
0.1  
1
µA  
< 1 MHz from VBAT  
60  
dB  
Start-up time  
ms  
4.18 Battery Threshold Levels(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Main battery charged  
threshold VMBCH  
Measured on VBAT terminal  
3.14  
3.2  
2.7  
3.3  
V
Main battery low threshold  
VMBLO  
Measured on VBAT terminal (monitored  
on terminal ONNOFF)  
2.55  
2.8  
V
Main battery high threshold  
VMBHI  
Measured on terminal VBAT  
Measured on terminal VBAT  
2.5  
1.6  
2.65  
1.8  
3.0  
2.6  
2.6  
V
V
V
Batteries not present  
threshold VBNPR  
Measured on terminal VBAT in slave  
mode  
1.95  
2.1  
(1) Backup ball must always be tied to ground.  
24  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.19 Power Consumption  
The typical power consumption is obtained in the nominal operating conditions and with the TPS65921  
standalone.  
TYPICAL  
CONSUMPTION  
MODE  
DESCRIPTION  
The phone is apparently off for the user, a  
main battery is present and well-charged.  
The RTC registers, registers in backup  
domain are maintained. The wakeup  
capabilities (like the PWRON button) are  
available.  
VBAT = 3.8 V and  
Quartz present  
64 µA × 3.8 V =  
C021 boot mode  
WAIT-ON  
243.2 μW  
ACTIVE No Load  
HFCLK = 26 MHz  
Subsystem is powered by the main battery.  
All supplies are enabled with no external  
load, internal reset is released, and the  
associated processor is running. USB  
interrupt handler consumes 433 µA (typ).  
(2995 + 433) µA ×  
3.8 V = 13026 µW  
VBAT = 3.8 V  
VBAT = 3.8 V  
ACTIVE No Load  
HFCLK = 38.4 MHz  
(3879 + 433) µA ×  
3.8 V = 16386 µW  
The main battery powers subsystem.  
Selected supplies are enabled but in low-  
consumption mode and associated  
processor is in low-power mode.  
492 µA × 3.8 V =  
1870 µW  
SLEEP No Load  
4.20 USB Charge Pump  
PARAMETER  
TEST CONDITIONS  
MIN  
2.7  
4.625  
0
TYP  
3.6  
MAX  
4.5  
UNIT  
V
VIN  
VO  
Input voltage  
On mode: VIN = VBAT  
Output voltage  
5.0  
5.25  
100  
50  
V
VBAT > 3 V at VBUS  
Iload  
Rated output current  
mA  
2.7 V < VBAT < 3 V, at VBUS  
ILOAD = 100 mA, VBAT = 3.6 V  
ILOADmax/2 to ILOADmax in 5 μs  
0
Efficiency  
Setting time  
55%  
100  
400  
3
µs  
ms  
mA  
mV  
Start-up time  
Short-circuit limitation current  
DC load regulation  
250  
350  
250  
450  
500  
ILOADmin to ILOADmax  
3.0 V to VBATmax  
DC line regulation  
250  
300  
350  
350  
mV  
ILOAD = 100 mA  
IVBUS_5Vmax/2 – IVBUS_5Vmax  
50 μs, C = 2 × 4.7 μF  
Transient load regulation  
Transient line regulation  
mV  
mV  
0 – IVBUS_5Vmax/2, 50 μs, C = 2  
× 4.7 μF  
350  
350  
VBATmin to VBATmax in 50 μs,  
C = 2 × 4.7 μF  
300  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.21 Hot-Die Detection and Thermal Shutdown  
PARAMETER  
THRESHOLD (NOMINAL)(1)  
Threshold (nominal)(1)  
Thermal hot-die selection THERM_HDSEL[1:0]  
Rising temp: 120°C  
00 (1st hot-die threshold)  
01 (2nd hot-die threshold)  
Falling temp: 111°C  
Rising temp: 130°C  
Falling temp: 121°C  
Rising temp: 140°C  
10 (3rd hot-die threshold)  
11 (4th hot-die threshold)  
Thermal shutdown enable  
Falling temp: 131°C  
Not used  
Threshold (nominal)(1) - Rising temp: 150°C  
Threshold (nominal)(1) - Falling temp: 140°C  
(1) The minimum/maximum range is ±5%  
4.22 USB  
4.22.1 LS/FS Single-Ended Receivers  
PARAMETER  
COMMENTS  
USB Single-Ended Receivers  
Driver outputs unloaded  
MIN  
TYP  
MAX  
UNIT  
Skew  
SKWVP_VM  
between VP  
and VM  
–2  
0
2
ns  
Single-ended VSE_HYS  
hysteresis  
50  
2
mV  
High (driven) VIH  
V
V
Low  
VIL  
0.8  
2
Switching  
threshold  
VTH  
0.8  
V
4.22.2 LS/FS Differential Receiver  
PARAMETER  
COMMENTS  
MIN  
TYP  
TYP  
MAX  
UNIT  
Differential input sensitivity  
VDI  
Ref. USB2.0  
200  
mV  
Differential common mode  
range  
VCM  
Ref. USB2.0  
0.8  
2.5  
V
4.22.3 LS/FS Transmitter  
PARAMETER  
COMMENTS  
MIN  
0
MAX  
300  
3.6  
UNIT  
mV  
V
Low  
VOL  
Ref. USB2.0  
Ref. USB2.0  
High (driven)  
VOH  
VCRS  
2.8  
Output signal crossover  
voltage  
Ref. USB2.0, covered by eye  
diagram  
1.3  
2.0  
V
Rise time  
Fall time  
TFR  
75  
75  
300  
300  
ns  
ns  
TFF  
Ref. USB2.0, covered by eye  
diagram  
Differential rise and fall time  
matching  
TFRFM  
80%  
125%  
Low-speed data rate  
TFDRATE  
Ref. USB2.0, covered by eye  
diagram  
1.4775  
1.5225  
Mbps  
ns  
Source jitter total (including  
frequency tolerance):  
- To next transition  
TDJ1  
TDJ2  
Ref. USB2.0, covered by eye  
diagram  
–25  
–10  
25  
10  
- For paired transitions  
26  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
PARAMETER  
COMMENTS  
MIN  
TYP  
MAX  
UNIT  
Source SE0 interval of EOP  
TFEOPT  
VCM  
Ref. USB2.0, covered by eye  
diagram  
1.25  
1.5  
µs  
Downstream eye diagram  
Ref. USB2.0, covered by eye  
diagram  
Differential common mode  
range  
Ref. USB2.0  
0.8  
2.5  
V
4.22.4 FS Transmitter  
PARAMETER  
COMMENTS  
Ref. USB2.0  
MIN  
0
TYP  
MAX  
300  
3.6  
UNIT  
mV  
V
Low  
VOL  
High (driven)  
VOH  
Ref. USB2.0  
2.8  
Output signal crossover  
voltage  
VCRS  
Ref. USB2.0, covered by eye  
diagram  
1.3  
2.0  
V
Rise time  
Fall time  
TFR  
Ref. USB2.0  
Ref. USB2.0  
4
4
20  
20  
ns  
ns  
TFF  
Differential rise and fall time  
matching  
TFRFM  
Ref. USB2.0, covered by eye  
diagram  
90%  
28  
111.11%  
44  
Driver output resistance  
Full-speed data rate  
ZDRV  
Ref. USB2.0  
Ω
TFDRATE  
Ref. USB2.0, covered by eye  
diagram  
11.97  
12.03  
Mbps  
Source jitter total (including  
frequency tolerance):  
- To next transition  
TDJ1  
Ref. USB2.0, covered by eye  
diagram  
–2  
–1  
2
1
ns  
ns  
- For paired transitions  
TDJ2  
Source SE0 interval of EOP  
TFEOPT  
Ref. USB2.0, covered by eye  
diagram  
160  
175  
Downstream eye diagram  
Upstream eye diagram  
Ref. USB2.0, covered by eye  
diagram  
4.22.5 HS Differential Receiver  
PARAMETER  
COMMENTS  
MIN  
TYP  
MAX  
UNIT  
High-speed squelch detection VHSSQ  
threshold (differential signal  
amplitude)  
Ref. USB2.0  
100  
150  
mV  
High-speed disconnect  
detection threshold  
(differential signal amplitude)  
VHSDSC  
Ref. USB2.0  
525  
–50  
625  
V
High-speed differential input  
signaling levels  
Ref. USB2.0, specified by  
eye pattern templates  
mV  
mV  
ps  
High-speed data signaling  
common mode voltage range  
(guidelines for receiver)  
VHSCM  
Ref. USB2.0  
600  
150  
Receiver jitter tolerance  
Ref. USB2.0, specified by  
eye pattern templates  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.22.6 HS Transmitter  
PARAMETER  
COMMENTS  
Ref. USB2.0  
MIN  
TYP  
MAX  
UNIT  
High-speed idle level  
VHSOI  
–10  
10  
mV  
High-speed data signaling  
high  
VHSOH  
Ref. USB2.0  
Ref. USB2.0  
Ref. USB2.0  
Ref. USB2.0  
360  
–10  
700  
–825  
500  
500  
440  
10  
mV  
mV  
mV  
mV  
High-speed data signaling  
low  
VHSOL  
VCHIRPJ  
VCHIRPK  
THSR  
Chirp J level (differential  
voltage)  
1100  
–500  
Chirp K level (differential  
voltage)  
Rise Time (10% – 90%)  
Ref. USB2.0, covered by eye  
diagram  
Fall time (10% – 90%)  
THSR  
Ref. USB2.0, covered by eye  
diagram  
Driver output resistance  
(which also serves as high-  
speed termination)  
ZHSDRV  
Ref. USB2.0  
40.5  
49.5  
Ω
High-speed data range  
THSDRAT  
Ref. USB2.0, covered by eye  
diagram  
479.76  
480.24  
Mbps  
Data source jitter  
Ref. USB2.0, covered by eye  
diagram  
Downstream eye diagram  
Upstream eye diagram  
Ref. USB2.0, covered by eye  
diagram  
Ref. USB2.0, covered by eye  
diagram  
4.22.7 UART Transceiver  
PARAMETER  
MIN  
MAX  
UNIT  
tPH_DP_CON  
tPH_DISC_DET  
fUART_DFLT  
Phone D+ connect time  
100  
150  
ms  
ms  
Phone D+ disconnect time  
Default UART signaling rate (typical rate)  
9600  
TYP  
bps  
PARAMETER  
COMMENTS  
MIN  
MAX  
UNIT  
UART Transmitter CEA-2011  
DP_PULLDOWN asserted  
ISOURCE = 4 mA  
Phone UART edge rates  
Serial interface output high  
Serial interface output low  
tPH_UART_EDGE  
VOH_SER  
1
ms  
V
2.4  
0
3.3  
0.1  
3.6  
0.4  
VOL_SER  
ISINK = –4 mA  
V
UART Receiver CEA-2011  
DP_PULLDOWN asserted  
DP_PULLDOWN asserted  
Serial interface input high  
Serial interface input low  
Switching threshold  
VIH_SER  
VIL_SER  
VTH  
2.0  
0.8  
V
V
V
0.8  
2.0  
28  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.22.8 Pullup/Pulldown Resistors  
PARAMETER  
COMMENTS  
MIN  
TYP  
MAX  
UNIT  
Pullup Resistors  
Bus pullup resistor on  
upstream port (idle bus)  
RPUI  
Bus idle  
0.9  
1.1  
2.2  
1.575  
3.09  
kΩ  
Bus pullup resistor on  
upstream port (receiving)  
RPUA  
Bus driven/driver's outputs  
unloaded  
1.425  
High (floating)  
VIHZ  
Pullups/pulldowns on both  
DP and DM lines  
2.7  
3.0  
3.6  
3.6  
V
V
Phone D+ pullup voltage  
VPH_DP_UP  
Driver's outputs unloaded  
3.3  
18  
Pulldown Resistors  
Phone D+/– pulldown  
High (floating)  
RPH_DP_DWN  
RPH_DM_DWN  
VIHZ  
Driver's outputs unloaded  
14.25  
2.7  
24.8  
3.6  
kΩ  
Pullups/pulldowns on both  
DP and DM lines  
V
D+/– Data line  
Upstream facing port  
CINUB  
[1.0]  
[2]  
22  
75  
pF  
V
On-the-go device leakage  
VOTG_DATA_LKG  
ZINP  
0.342  
Input impedance exclusive  
of pullup/pulldown  
Driver’s outputs unloaded  
300  
kΩ  
4.22.9 OTG VBUS  
PARAMETER  
COMMENTS  
MIN  
TYP  
MAX  
UNIT  
VBUS Wakeup Comparator  
VBUS wake-up delay  
DELVBUS_WK_  
UP  
15  
µs  
VBUS Comparators  
A-device session valid  
A-device VBUS valid  
B-device session end  
B-device session valid  
VA_SESS_VLD  
VA_VBUS_VLD  
VB_SESS_END  
VB_SESS_VLD  
0.8  
1.1  
4.5  
0.5  
2.4  
1.4  
4.625  
0.8  
V
V
V
V
4.4  
0.2  
2.1  
2.7  
VBUS Line  
A-device VBUS input  
impedance to ground  
SRP (VBUS pulsing) capable  
A-device not driving VBUS  
RA_BUS_IN  
13.77  
0.656  
0.85  
100  
kΩ  
kΩ  
kΩ  
B-device VBUS SRP  
pulldown  
5.25 V / 8 mA, pullup voltage  
= 3 V  
RB_SRP_DWN  
RB_SRP_UP  
10  
B-device VBUS SRP pullup  
(5.25 V – 3 V) / 8 mA, pullup  
voltage = 3 V  
1.3  
1.75  
34  
B-device VBUS SRP rise  
time maximum for OTG-A  
communication  
tRISE_SRP_UP_  
MAX  
0 to 2.1 V with < 13 μF load  
0.8 to 2.0 V with > 97 μF load  
ms  
ms  
B-device VBUS SRP rise  
time minimum for standard  
host connection  
tRISE_SRP_UP_  
MIN  
46  
4.22.10 OTG ID  
PARAMETER  
COMMENTS  
MIN  
TYP  
MAX  
UNIT  
VBUS Wakeup Comparator  
ID wake-up comparator  
Wakeup when ID shorted to  
ground.  
RID_WK_UP  
30  
100  
kΩ  
ID Comparators — ID External Resistors Specifications  
ID ground comparator  
ID Float comparator  
RID_GND  
ID_GND interrupt  
4
20  
25  
kΩ  
kΩ  
RID_FLOAT  
ID_FLOAT interrupt  
200  
500  
ID Line  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
PARAMETER  
COMMENTS  
MIN  
70  
TYP  
MAX  
286  
3.2  
UNIT  
kΩ  
V
Phone ID pullup to VPH_ID_UP RPH_ID_UP  
ID unloaded (VRUSB)  
Connected to VRUSB  
90  
Phone ID pullup voltage  
ID line maximum voltage  
VPH_ID_UP  
2.5  
5.25  
V
4.22.11 USB Charger Detection  
USB Charger Detection Debounce Time  
REQUIREMENT  
Minimum 10 ms  
Minimum 20 ms  
PARAMETER  
NB CLOCK  
448  
TEST CONDITIONS  
ACTIVE/SLEEP mode  
ACTIVE/SLEEP mode  
MIN  
13.7  
27.3  
TYP  
MAX  
13.7  
27.3  
UNIT  
ms  
DEBVBUS_TIME  
DEBUSBCHG_TIM  
E
896  
ms  
Table 4-4. Voltages  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNIT  
REF  
Logic Threshold  
VLGC  
0.8  
2.0  
V
1.4.4  
Output current  
> 250 µA  
D+ Source Voltage  
VDP_SRC  
0.5  
0.675  
V
Data Detect Voltage  
VDAT_REF  
VDAT_LKG  
0.25  
0
0.4  
3.6  
V
V
Data Line Leakage Voltage  
3.9  
Table 4-5. Currents  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNIT  
REF  
Portable Device Current from  
Charging Host Port during chirp  
IDEV_HCHG_CHRP  
710  
mA  
3.6.2  
Data Contact Detect Current  
Source  
IDP_SRC  
IDM_SINK  
7
13  
µA  
µA  
D- Sink Current  
50  
150  
Table 4-6. Resistances  
PARAMETER  
D+ pulldown resistance  
D- pulldown resistance  
SYMBOL  
RDP_DWN  
RDM_DWN  
CONDITIONS  
MIN  
MAX  
UNIT  
kΩ  
14.25  
14.25  
24.8  
24.8  
kΩ  
Table 4-7. USB Charger Detection (Wait and Debounce Timing)  
USB Charger Detection (Wait and Debounce Timing)  
Requirement  
Minimum 200 us  
Minimum 40 ms  
Minimum 40 ms  
Minimum 2 s  
PARAMETER  
NB  
CLOCK  
TEST CONDITIONS  
MIN  
244.1  
54.7  
54.7  
2.73  
TYP  
MAX  
UNIT  
µs  
D+ Current source on-  
time  
TIDP_SRC_ON  
ACTIVE/SLEEP  
mode(1)  
8
244.1  
54.7  
54.7  
2.73  
D+ Voltage source on-  
time  
TVDP_SRC_ON  
ACTIVE/SLEEP  
mode(1)  
1792  
1792  
89600  
ms  
ms  
s
D+ Voltage source off  
to high current  
TVDP_SRC_HICRNT  
ACTIVE/SLEEP  
mode(1)  
DATA_CONTACT_DET  
ECT Timeout  
TDCD_TIMEOUT  
ACTIVE/SLEEP  
mode(1)  
(1) Note: LS Device mode not supported  
30  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.23 MADC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bit  
Resolution  
10  
Input dynamic range for external  
input ADCIN0  
0
1.5  
V
MADC voltage reference  
Differential nonlinearity  
Integral nonlinearity  
Offset  
1.5  
1
V
–1  
–2  
1
2
LSB  
LSB  
mV  
μA  
Best fitting  
Best fitting  
–28.5  
28.5  
Input bias  
Input capacitor CBANK  
Input current leakage  
10  
1
pF  
μA  
4.23.1 MADC Analog Input Range and Prescaler Ratio  
MADC CHANNEL  
INT/EXT  
ANALOG INPUT RANGE  
(V)  
PRESCALER  
OUTPUT RANGE (V)  
DIVIDER  
RATIO  
MIN  
MAX  
NOTE  
No prescaler  
Not used  
MIN  
N/A  
N/A  
MAX  
ADCIN0: General-  
purpose input (1)  
External  
Internal  
0.0  
1.5  
N/A  
1
ADCIN1:7 Reserved  
N/A  
N/A  
N/A  
N/A  
ADCIN8: VBUS Voltage Internal  
(VBUS)  
Prescaler in USB  
subchip.  
0.0  
6.5  
0.0  
1.5  
3/14  
Rdivider = (6 × 2.76  
kΩ)/(28 × 2.76 kΩ)  
(typ)(2)  
ADCIN9: Reserved  
Internal  
Internal  
Internal  
Not used  
ADCIN10:11 Reserved  
N/A  
2.7  
N/A  
4.7  
N/A  
0.675  
N/A  
N/A  
1.175  
N/A  
N/A  
0.25  
N/A  
ADCIN12: Main battery  
voltage (VBAT)  
Prescaler integrated  
Rdivider = 9.85 kΩ/(4 ×  
9.85 kΩ) (typ)(3)  
ADCIN13:15 Reserved  
Internal  
N/A  
N/A  
(1) General-purpose input has to be tied to ground when TPS65921 internal power supply (VINTANA1) is off.  
(2) Tolerance for resistors-type (PL_VHSR): ±19%  
(3) Tolerance for resistors-type (PL_HR): ±12%  
The table below summarizes the sequence conversion timing characteristics. Figure 4-5 shows one conversion  
sequence general timing diagram.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
Table 4-8. Sequence Conversion Timing Characteristics  
PARAMETER  
COMMENTS  
Running frequency  
MIN  
TYP  
1
MAX  
UNIT  
MHz  
μs  
F
T = 1/F  
N
Clock period  
1
Number of analog inputs to convert in a  
single sequence  
0
3
16  
4
Tstart  
SW1, SW2, or USB asynchronous request  
or real-time STARTADC request  
μs  
μs  
Tsettling time  
Settling time to wait before sampling a  
stable analog input (capacitor bank charge  
time)  
Tsettling is calculated from the max((Rs +  
Ron)*Cbank) of all possible input sources  
(internal or external). Ron is the resistance  
of the selection analog input switches (5  
kΩ). This time is software programmable by  
OCP register; default value is 12 µs.  
5
12  
260  
Tstartsar  
Tadc time  
Tcapture time  
Tstop  
The successive approximation registers  
ADC start time  
1
10  
2
μs  
μs  
The successive approximation registers  
ADC conversion time  
Tcapture time is the conversion result  
capture time.  
μs  
μs  
1
2
Full Conversion  
Sequence Time  
Only one channel (N = 1) (1)  
All channels(2)  
22  
39  
μs  
352  
624  
Conversion  
Sequence Time  
Without Tstart and Tstop: Only one channel  
(N = 1) (1)  
18  
33  
μs  
μs  
Without Tstart and Tstop: All channels(1)  
288  
0.33  
528  
STARTADC pulse  
duration  
STARTADC period is T  
(1) General-purpose input ADCIN0 must be tied to ground when TPS65921 internal power supplies (VINTANA1) is off.  
(2) Total Sequence Conversion Time General Formula: Tstart + N × (1 + Tsettling + Tadc + Tcapture) + Tstop.  
32  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
This table is illustrated in Figure 4-5. The Busy parameter indicates that a conversion sequence is running, and  
the channel N result register parameter corresponds to the result register of RT/GP selected channel.  
T one conversion  
Tstartsar  
Tstart  
Tcapture  
Tstop  
Tsettling  
Tadc  
madc_clk  
Busy  
mux_sel_lowv[3:0]  
Channel N selected  
Acquire_lowv  
start_sar_lowv  
New channel N value  
New value  
out_lowv[9:0]  
Channel X value  
Channel N  
Old value  
result register  
SWCS048-005  
Figure 4-5. One Conversion Sequence General Timing Diagram  
4.23.2 MADC Power Consumption  
PARAMETER  
Power on consumption  
Power down consumption  
TEST CONDITIONS  
MIN  
TYP  
1(1)  
1
MAX  
UNIT  
mA  
Running frequency f = 1 MHz  
μA  
(1) The consumption is given in stand-alone mode.  
4.24 TPS65921 Interface Target Frequencies  
Table below assumes testing over the recommended operating conditions.  
I/O INTERFACE  
INTERFACE DESIGNATION  
TARGET FREQUENCY  
1.5 V  
SmartReflex I2C  
Slave high-speed mode  
3.6 Mbps  
400 kbps  
100 kbps  
480 Mbps  
12 Mbps  
General-purpose I2C  
I2C Interface  
USB  
Slave fast-speed mode  
Slave standard mode  
High speed  
USB  
Full speed  
Low speed  
1.5 Mbps  
30 MHz  
Real/View® ICE tool  
XDS560 and XDS510 tools  
Lauterbach™ tool  
JTAG  
30 MHz  
30 MHz  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.24.1 I2C Timing  
The TPS65921 provides two I2C HS slave interfaces (one for general-purpose and one for SmartReflex). These  
interfaces support the standard mode (100 kbps), fast mode (400 kbps), and HS mode (3.5 Mbps). The general-  
purpose I2C module embeds four different slave hard-coded addresses (ID1 = 48h, ID2 = 49h, ID3 = 4Ah, and  
ID4 = 4Bh). The SmartReflex I2C module uses one slave hard-coded address (ID5). The master mode is not  
supported.  
Table 4-9 and Table 4-10 assume testing over the recommended operating conditions.  
START  
I1  
RESTART  
STOP  
I2  
1
I2C.SCL  
I2C.SDA  
8
9
1
8
9
I8  
I8  
I7  
I3  
I4  
I9  
ACK  
MSB  
LSB  
ACK  
MSB  
LSB  
SWCS048-006  
Figure 4-6. I2C Interface—Transmit and Receive in Slave Mode  
34  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Table 4-9. I2C Interface Timing Requirements(1)(2)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
Slave High-Speed Mode  
I3  
I4  
I7  
I8  
I9  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
10  
0
ns  
ns  
ns  
ns  
ns  
70  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tsu(SDAH-SCLH)  
160  
160  
160  
Slave Fast-Speed Mode  
I3  
I4  
I7  
I8  
I9  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
Slave Standard Mode  
100  
0
ns  
µs  
µs  
µs  
µs  
0.9  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tsu(SDAH-SCLH)  
0.6  
0.6  
0.6  
I3  
I4  
I7  
I8  
I9  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid to SCL high  
Hold time, SDA valid from SCL low  
Setup time, SCL high to SDA low  
Hold time, SCL low from SDA low  
Setup time, SDA high to SCL high  
250  
0
ns  
ns  
µs  
µs  
µs  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tsu(SDAH-SCLH)  
4.7  
4
4
(1) The input timing requirements are given by considering a rising or falling time of:  
80 ns in high-speed mode (3.4 Mbits/s)  
300 ns in fast-speed mode (400 Kbits/s)  
1000 ns in standard mode (100 Kbits/s)  
(2) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA  
SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL  
Table 4-10. I2C Interface Switching Requirements(1)(2)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
Slave High-speed Mode  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
160  
60  
ns  
ns  
Slave Fast-speed Mode  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
1.3  
0.6  
µs  
µs  
Slave Standard Mode  
I1  
I2  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
µs  
µs  
(1) The capacitive load is equivalent to:  
100 pF in high-speed mode (3.4 Mbits/s)  
400 pF in fast-speed mode (400 Kbits/s)  
400 pF in standard mode (100 Kbits/s)  
(2) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA  
SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL  
Copyright © 2010–2014, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
4.25 JTAG Interfaces  
Table 4-11 and Table 4-12 assume testing over the recommended operating conditions.  
JL1  
JL2  
JL2  
JTAG.TCK  
JTAG.TDI  
JTAG.TMS  
JTAG.TDO  
JL3  
JL5  
JL4  
JL6  
JL7  
SWCS048-007  
Figure 4-7. JTAG Interface Timing  
The input timing requirements are given by considering a rising or falling edge of 7 ns.  
4.25.1 JTAG Interface Timing Requirements  
Table 4-11. JTAG Interface Timing Requirements  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
Clock  
JL1  
JL2  
tc(TCK)  
tw(TCK)  
Cycle time, JTAG.TCK period  
30  
ns  
ns  
Pulse duration, JTAG.TCK high or  
low (1)  
0.48 × P  
0.52 × P  
Read Timing  
JL3  
JL4  
JL5  
JL6  
tsu(TDIV-TCKH)  
th(TDIV-TCKH)  
tsu(TMSV-TCKH)  
th(TMSV-TCKH)  
Setup time, JTAG.TDI valid before  
JTAG.TCK high  
8
5
8
5
ns  
ns  
ns  
ns  
Hold time, JTAG.TDI valid after  
JTAG.TCK high  
Setup time, JTAG.TMS valid before  
JTAG.TCK high  
Hold time, JTAG.TMS valid after  
JTAG.TCK high  
(1) P = JTAG.TCK clock period  
The capacitive load is equivalent to 35 pF.  
36  
Specifications  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
4.25.2 JTAG Interface Switching Characteristics  
Table 4-12. JTAG Interface Switching Characteristics  
NO.  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
Write Timing  
td(TCK-TDOV))  
Delay time, JTAG, TCK active edge to  
JTAG.TDO valid  
JL7  
0
14  
ns  
PARAMETER  
MIN  
MAX  
UNIT  
Clock  
JL1  
JL2  
tc(TCK)  
tw(TCK)  
Cycle time, JTAG.TCK period  
30  
ns  
ns  
Pulse duration, JTAG.TCK high or  
low(1)  
0.48 × P  
0.52 × P  
Read Timing  
tsu(TDIV-TCKH)  
th(TDIV-TCKH)  
tsu(TMSV-TCKH)  
th(TMSV-TCKH)  
Setup time, JTAG.TDI valid before  
JTAG.TCK high  
JL3  
JL4  
JL5  
JL6  
8
5
8
5
ns  
ns  
ns  
ns  
Hold time, JTAG.TDI valid after  
JTAG.TCK high  
Setup time, JTAG.TMS valid before  
JTAG.TCK high  
Hold time, JTAG.TMS valid after  
JTAG.TCK high  
(1) P = JTAG.TCK clock period  
4.25.3 Debouncing Time  
Debounce times are listed in Table 4-13.  
Table 4-13. Debouncing Time  
DEBOUNCING FUNCTIONS  
BLOCK  
PROGRAMMABLE  
DEBOUNCING  
TIME  
DEFAULT  
Main battery charged threshold (<3.2 V)  
Main battery low threshold detection (<2.7 V)  
Main battery plug detection  
Battery monitoring  
No  
No  
No  
580 μs  
60 μs  
60 μs  
580 μs  
60 μs  
60 μs  
Debouncing functions interrupt generation  
debounce  
POWER  
USB  
No  
125.6 μs  
125.6 μs  
0 to 250 ms  
(32/32768-second  
stgif)  
Plug/unplug detection VBUS (1)  
Plug/unplug detection ID(2)  
Yes  
30 ms  
0 to 250 ms  
(32/32768-second  
stgif)  
USB  
Yes  
Yes  
50 ms  
28 ms  
Debouncing functions interrupt generation  
debounce for VBUS and ID(3)  
POWER  
0 to 233 ms  
Hot-die detection  
Thermal shutdown detection  
PWRON(4)  
Thermistor  
No  
No  
No  
No  
60 μs  
60 μs  
60 μs  
60 μs  
Start/stop button  
Button reset  
31.25 ms  
60 μs  
31.25 ms  
60 μs  
NRESWARM  
0 or 28 ms ± 2  
ms  
MMC1/2 (plug/unplug)  
GPIO  
Yes  
0 ms  
(1) Programmable in the VBUS_DEBOUNCE register.  
(2) Programmable in the ID_DEBOUNCE register.  
(3) Programmable in the RESERVED_E[2:0] CFG_VBUSDEB register  
(4) The PWRON signal is debounced 1024 × CLK32K (maximum 1026 × CLK32K) falling edge in master mode.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
37  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
5 Detailed Description  
5.1 Functional Block Diagram  
Figure 5-1 shows the functional block diagram of the device.  
AGND  
VBAT  
REFS  
TEST/MUXed I/O’s  
VDD1_IN  
VINTANA2  
VRTC  
VINTANA1  
VDD1_L  
VDD1  
VDD2  
VIO  
IO.1P8  
DGND  
VDD1_FDBK  
VDD1_GND  
VDD2_IN  
SRI2C_SCL  
SRI2C_SDA  
2
I C Smart-Reflex  
VDD2_L  
32KXIN  
Xtal  
32K  
VDD2_FDBK  
32KXOUT  
32KCLKOUT  
HFCLKIN  
RTC  
Clock sys  
VDD2_GND  
VIO_IN  
Clock  
slicer  
HFCLKOUT  
MSECURE  
VIO_L  
VIO_FDBK  
BOOT0  
BOOT1  
VIO_GND  
RESPWRON  
NRESWARM  
VPLLA3RIN  
Power control  
PWRON  
NSLEEP  
Control I/Os  
VPLL1OUT  
VPLL1  
INT  
SYSEN  
REGEN  
CLKEN  
VDAC.IN  
TESTRESET  
CLKREQ  
VDAC.OUT  
VDAC  
CTLI2C_SCL  
CTLI2C_SDA  
2
I C control  
Control, Data  
and Test  
logic  
VMMC1_IN  
ADCIN0  
10- bit  
ADC  
VMMC1OUT  
VMMC1  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
VAUX12SIN  
VAUX2_OUT  
VAUX2  
USB 2.0  
OTG  
DATA6  
DATA7  
NXT  
DIR  
STP  
UCLK  
ID  
VBUS  
CP_IN  
CP_CAPP  
DP  
USB  
CP  
USB  
PHY  
DM  
CP_CAPM  
CP_GND  
AVSS1  
KPD_R0  
KPD_R1  
KPD_R2  
KPD_R3  
KPD_R4  
KPD_R5  
AVSS2  
AVSS3  
AVSS4  
KEY  
PAD  
VINTDIG  
VUSB3P1  
VINTUSB1P8  
VINTUSB1P5  
KPD_R6  
KPD_R7  
SWCS048-010  
Figure 5-1. Functional Block Diagram  
38  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
5.2 Clock System  
Figure 5-2 shows the TPS65921 clock overview.  
Device  
32KXIN  
OR  
32KCLKOUT  
OR  
32KXOUT  
32 kHz  
OR  
HFCLKIN  
HFCLKOUT  
SWCS048-011  
Figure 5-2. TPS65921 Clock Overview  
The TPS65921 accepts two sources of high-stability clock signals:  
32KXIN/32KXOUT: on-board 32-kHz crystal oscillator (optionally, an external 32-kHz input clock can  
be provided)  
HFCLKIN: an external high-frequency clock (19.2, 26, or 38.4 MHz)  
The TPS65921 has the capability to provide:  
32KCLKOUT digital output clock  
HFCLKOUT digital output clock with the same frequency as HFCLKIN input clock  
5.3 32-kHz Oscillator  
It is possible to use the 32-kHz input clock with either an external crystal or clock source. There are four  
configuration, one with the external crystal and three without.  
An external 32.768-kHz crystal connected on the 32KXIN / 32KXOUT balls. This configuration is  
available for the master mode only.  
A square- or sine-wave input can be applied to the 32KXIN pin with amplitude of 1.85 or 1.8 V. The  
32KXOUT pin can be driven to a dc value of the square- or sine-wave amplitude divided by 2. This  
configuration is recommended if a large load is applied on the 32KXOUT pin.  
A square- or sine-wave input can be applied to the 32KXIN pin with amplitude of 1.85 or 1.8 V. The  
32KXOUT pin can be left floating. This configuration is used if no charge is applied on the 32KXOUT  
pin.  
The oscillator is in bypass mode and a square-wave input can be applied to the 32KXIN pin with  
amplitude of 1.8 V. The 32KXOUT pin can be left floating. This configuration is used if the oscillator is  
in bypass mode (default configuration in Slave mode).  
Figure 5-3 shows the block diagram for the 32.768-kHz clock output.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Detailed Description  
39  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
IO_1P8  
(1.8 V)  
OR  
32KXIN  
32-kHz  
OSC  
OR  
32KCLKOUT  
32 kHz  
32KXOUT  
RTC  
SWCS048-014  
Figure 5-3. 32.768-kHz Clock Output Block Diagram  
The TPS65921 device has an internal 32.768-kHz oscillator connected to an external 32.768-kHz crystal  
through the 32KXIN/32KXOUT balls or an external digital 32.768-kHz clock through the 32KXIN input (see  
Figure 5-3). The TPS65921 device also generates a 32.768-kHz digital clock through the 32KCLKOUT pin  
and can broadcast it externally to the application processor or any other devices. The 32KCLKOUT clock  
is broadcast by default in the TPS65921 active mode but can be disabled if it is not used.  
The 32.768-kHz clock (or signal) is also used to clock the RTC (real-time clock) embedded in the  
TPS65921. The RTC is not enabled by default. It is up to the host processor to set the correct date and  
time and to enable the RTC functionality.  
The 32KCLKOUT output buffer can drive several devices (up to 40-pF load). At start-up, the 32.768-kHz  
output clock (32KCLKOUT) must be stabilized (frequency/duty cycle) prior to the signal output. Depending  
on the start-up condition, this may delay the start-up sequence.  
5.4 Clock Slicer  
Figure 5-4 shows the clock slicer block diagram.  
BYPASS, PWRDN, PWRSEL  
PL_HR resistance  
HFCLKOUT  
HFCLKIN  
Cc  
CDM  
clamp  
OR  
PWRDN, PWRSEL  
SWCS048-015  
Figure 5-4. Clock Slicer Block Diagram  
40  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
The clock slicer is disabled by default and enabled when the CLKEN pad is high. The slicer transforms the  
HFCLKIN clock input signal into a squared clock signal used internally by the TPS65921 device and also  
outputs it for external use. The HFCLKIN input signal can be:  
A sinusoid with peak-to-peak amplitude varying from 0.3 to 1.45 V  
A square clock signal of amplitude 1.85 V maximum. In the case of a square clock signal, the slicer is  
configured in bypass or power-down mode. If a square-wave input clock is provided, it is  
recommended to switch the block to bypass mode when possible to avoid loading the clock.  
The HFCLKIN input clock frequency must be 19.2, 26, or 38.4 MHz.  
Four different modes are programmable by register. By default, the slicer is in high-performance  
application mode:  
Bypass mode (BP): In BP mode, which overrides all the other modes, the input signal is directly  
connected to the output through some buffers. The input is a rail-to-rail square wave.  
Power-down mode (PD): During PD mode, the cell does not consume any current if bypass mode is  
not active.  
Low-power application mode (LP): In LP mode, the input sine wave is converted to a CMOS signal  
(square wave) with low power consumption.  
High-performance application mode (HP): In HP mode, the input sine wave is converted to a CMOS  
signal (square wave). It has lower duty cycle degradation and lower input-to-output delay in  
comparison to the low-power mode, but it consumes more current. The drive of the squaring inverter is  
increased by connecting additional inverters in parallel. Details can be found in the clock slicer  
electrical characteristics table.  
Figure 5-5 shows the HFCLKIN clock distribution.  
HFCLKIN  
Slicer  
HFCLKOUT  
Clock  
generator  
Slicer bypass  
SLICER_OK  
Timer  
CLKEN  
Main state-machine  
CLKREQ  
SLEEP1  
Optional request  
configurable by software  
only for legacy support  
SWCS048-016  
Figure 5-5. HFCLKIN Clock Distribution  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
When a device needs a clock signal other than 32.768 kHz, it makes a clock request and activates the  
CLKREQ pin. As a result, the TPS65921 device immediately sets CLKEN to 1 to warn the clock provider  
in the system about the clock request and starts a timer (maximum of 10 ms and uses the 32.768-kHz  
clock). Once the timer expires, the TPS65921 device opens a gated clock, the timer automatically reloads  
the defined value and a high-frequency output clock signal is available through the HFCLKOUT pin. The  
output drive of HFCLKOUT is programmable (low drive (MISC_CFG[CLK_HF_DRV] = 0) maximum load  
20 pF, high drive (MISC_CFG[CLK_HF_DRV] = 1) maximum load 30 pF), by default it is programmed to  
support Low Drive.  
CLKREQ, when enabled, has a weak pulldown resistor to support the wired-OR clock request.  
Figure 5-6 shows an example of the wired-OR clock request.  
PERIPH1  
Device  
VIO  
CLKREQ  
PERIPH2  
VIO  
PERIPHn  
VIO  
SWCS048-017  
Figure 5-6. Example of Wired-OR Clock Request  
The timer default value must be the worst case (10 ms) for the clock providers. For legacy or workaround  
support, the NSLEEP1 signal can also be used as a clock request even if it is not its primary goal. By  
default, this feature is disabled and must be enabled individually by setting the register bits associated  
with each signal.  
42  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
5.5 Power Path  
5.5.1 Step-Down Converters  
Depending on the system requirements, and also to optimize mean consumption, three operating modes  
are allowed for each step-down converter:  
Off/power-down mode: Output voltage is not maintained, and power consumption is null  
Active: DC-DC can deliver its nominal output voltage with a full load current capability.  
Sleep: The nominal output voltage is maintained with low power consumption, but also with a low load-  
current capability.  
The SMPS operates with three modulation schemes:  
Light pulse frequency modulation (PFM)  
Pulse skipping mode (PSM)  
Continuous pulse-width modulation (PWM)  
Each DC-DC converter, all of which have the same electrical characteristics, has an integrated RC  
oscillator. The use of these RC oscillators is configurable through register bits, and by default the RC  
oscillator of VDD1 is used for all DC-DC converters.  
5.5.2 LDO  
The VPLL1 programmable LDO regulator is high-PSRR, low-noise, linear regulator used for the host  
processor PLL supply.  
The VDAC programmable LDO regulator is a high-PSRR, low-noise, linear regulator that powers the host  
processor dual-video DAC. It is controllable with registers through I2C and can be powered down.  
The VMMC1 LDO regulator is a programmable linear voltage converter that powers the MMC slot. It  
includes a discharge resistor and over-current protection (short circuit). This LDO regulator can also be  
turned off automatically when the MMC card extraction is detected (through one dedicated GPIO). The  
VMMC1 LDO can be powered through an independent supply other than the battery; for example, a  
charge pump. In this case, the input from the VMMC1 LDO can possibly be higher than the battery  
voltage.  
The VAUX2 general-purpose LDO regulator powers the auxiliary devices.  
The VRRTC voltage regulator is a programmable, LDO, linear voltage regulator supplying (1.5 V) the  
embedded RTC (32.768-kHz oscillator) and dedicated I/Os of the digital host counterpart. The VRRTC  
regulator is also the supply voltage of the power-management digital state-machine. The VRRTC regulator  
is supplied from the UPR line, switched on by the main battery. The VRRTC output is present as long as a  
valid energy source is present. The VRRTC line is supplied by an LDO when VBAT > 2.7 V, and a clamp  
circuit when VBAT < 2.7 V.  
The VINTDIG LDO regulator supplies the TPS65921 digital blocks.  
To supply the TPS65921 analog blocks, there are two LDOs: VINTANA1 (1.5 V) and VINTANA2 (2.75  
V/2.5 V). The 2.5-V setting is selected when the battery voltage falls below 3.0 V.  
The VUSB3V1 internal LDO regulator powers the USB PHY, charger detection, and OTG of the USB  
subchip inside the TPS65921 device.  
It can take its power from two possible sources:  
VBAT.USB (only for high battery voltages)  
VBUS (only in low-power mode)  
See Charge-pump section for more details.  
The USB standard requires data lines to be biased with pullups biased from a > 3.0 V supply, USB PHY  
cannot directly operate from VBAT.USB for battery voltages lower than 3.3 V.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
In such case, VBUS should be supplied by a boosted voltage to ensure enough overhead for USB LDO  
operation. An internal charge pump (whose output is connected to VBUS) can be used for this purpose.  
To select between these two power sources, a power mux is connected to the VUSB3V1 LDO supply.  
The VUSB1V8 and VUSB1V5 internal LDO regulators power the USB subchip inside the TPS65921  
device.  
The short-circuit current for the LDOs and DC-DCs in the TPS65921 device is approximately twice the  
maximum load current. In certain cases when the output of the block is shorted to ground, the power  
dissipation can exceed the 1.2 W requirement if no action is taken. A short-circuit protection scheme is  
included in the TPS65921 device to ensure that if the output of an LDO or DC-DC converter is short-  
circuited, then the power dissipation does not exceed the 1.2-W level.  
The three USB LDOs VUSB3V1, VUSB1V8, and VUSB1V5 are included in this short circuit protection  
scheme which monitors the LDO output voltage at a frequency of 1 Hz, and generates an interrupt when a  
short circuit is detected.  
The scheme compares the LDO output voltage to a reference voltage and detects a short circuit if the  
LDO voltage drops below this reference value (0.5 V or 0.75 V programmable). In the case of the  
VUSB3V1 and VUSB1V8 LDOs, the reference is compared with a divided down voltage (1.5 V typical).  
If a short circuit is detected on VUSB3V1, then the power subchip FSM switches this LDO to sleep-mode.  
If a short circuit is detected on VUSB1V8 or VUSB1V5, then the power subchip FSM switches the relevant  
LDO off.  
5.5.3 Power Reference  
The bandgap voltage reference is filtered (RC filter), using an external capacitor connected across the  
VREF output and an analog ground (REFGND). The VREF voltage is scaled, distributed, and buffered  
inside the device. The bandgap is started in fast mode (not filtered) and is set automatically by the power  
state-machine in slow mode (filtered, less noisy) after switch on.  
5.5.4 Power Use Cases  
The TPS65921 device has two modes:  
Master: The TPS65921 device decides to power up or down the system and control the other power  
ICs in the system with the SYSEN output.  
Slave: The TPS65921 device is controlled by another power IC with a digital signal on the PWRON  
input. There is no battery management in slave mode.  
The modes corresponding to BOOT0–BOOT1 combination value are:  
NAME  
DESCRIPTION  
Master_C021_Generic 10  
Slave_C021_Generic 11  
BOOT0  
BOOT1  
MC021(1)  
SC021  
1
1
0
1
(1) Boot mode for OMAP3430 is c021 Master boot mode.  
Process modes define:  
The boot voltage for the host core  
The boot sequence associated with the process  
The DVFS protocol associated with the process  
MODE  
C021.M  
Boot core voltage  
Power sequence  
DVFS protocol  
1.2 V  
VIO followed by VPLL1, VDD2, VDD1  
SmartReflex interface (I2C high speed)  
44  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Regulator states depending on use cases:  
REGULATOR  
MODE: C021 (MASTER/SLAVE)  
BACKUP  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
WAIT ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
SLEEP NO LOAD  
OFF  
ACTIVE NO LOAD  
VAUX2  
OFF  
OFF  
ON  
VMMC1  
VPLL1  
OFF  
SLEEP  
OFF  
VDAC  
OFF  
ON  
VINTANA1  
VINTANA2  
VINTDIG  
VIO  
SLEEP  
SLEEP  
SLEEP  
SLEEP  
SLEEP  
SLEEP  
OFF  
ON  
ON  
ON  
VDD1  
ON  
VDD2  
ON  
VUSB1V5  
VUSB1V8  
VUSB3V1  
OFF  
OFF  
ON  
OFF  
SLEEP  
5.5.5 Power Timing  
Sequence start is a symbolic internal signal to ease the description of the power sequences and occurs  
according to the different events detailed in Figure 5-7.  
Sequence start timing depends on the TPS65921 starting event. If the starting event is:  
Main battery insertion, event time is 1.126 ms (time to set up internal LDO and relax internal reset)  
VBUS insertion, event time is 25 cycles of 32k  
Starting_Event is main battery insertion  
Vbat  
1.126 ms  
Sequence_Start  
Starting_Event is VBUS insertion  
Vbus  
782 ms = 25 cycle32k  
Sequence_Start  
Starting_Event is PWRON button  
PWRON  
Pushbutton debouncing - 30 ms  
Sequence_Start  
Starting_Event is PWRON rising when device is in slave mode  
PWRON  
0 ms  
Sequence_Start  
SWCS048-018  
Figure 5-7. Timings Before Sequence Start  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
5.5.5.1 Switch On In MASTER_C021_GENERIC Mode  
Figure 5-8 describes the timing and control that must occur in Master_C021_Generic mode.  
Sequence_Start is a symbolic internal signal to ease the description of the power sequences and occurs  
according to the different events detailed in Figure 5-7.  
Sequence_Start  
4608 ms battery detection  
REGEN  
VIO  
1068 ms - 3 MHz oscillator setting + clock switch  
1.8 V  
1179 ms for VIO stabilization  
VPLL1  
VDD2  
VDD1  
1.8 V  
1022 ms for LDO stabilization and start DC-DC ramping  
1.2 V  
1099 ms for VDD2 stabilization and VDD1 start ramping  
1.2 V  
1175 ms for VDD1 stabilization  
32KCLKOUT  
SYSEN  
61 ms  
1179 ms for VIO stabilization  
CLKEN  
29.053 ms  
32.410 ms  
HFCLKOUT  
T1  
NRESPWRON  
SWCS048-019  
Figure 5-8. Timings—Switch On in Master_C021_Generic Mode  
PARAMETER  
MIN  
MAX  
UNIT  
32k clock cycles  
T1  
10  
11  
46  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
5.5.5.2 Switch On In SLAVE_C021_GENERIC Mode  
Figure 5-9 describes the timing and control that must occur in Slave_C021_Generic mode.  
Sequence_Start is a symbolic internal signal to ease the description of the power sequences and occurs  
according to the different events detailed in Figure 5-7.  
PWRON  
4791 ms – 3 MHz oscillator setting + internal reg  
REGEN  
1068 ms for external supply ramp  
VIO  
1.8 V  
1179 ms for VIO DC-DC stablilization  
VPLL1  
VDD2  
1.8 V  
1022 ms  
1.2 V  
1099 ms for VDD2 stabilization  
VDD1  
1.2 V  
1175 ms for VDD1 stabilization  
32KCLKOUT  
SYSEN  
61 ms  
1099 ms for VDD2 stabilization  
29.053 ms  
CLKEN  
1953 ms for digital clock setting  
HFCLKOUT  
NRESPWRON  
T1  
SWCS048-020  
Figure 5-9. Timings—Switch On in Slave_C021_Generic Model  
PARAMETER  
MIN  
MAX  
UNIT  
T1  
10  
11  
32k clock cycles  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
5.5.5.3 Switch-Off Sequence  
This section describes the signal behavior required to switch off the system.  
48  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
5.5.5.3.1 Switch-Off Sequence In Master Modes  
Figure 5-10 describes the timing and control that occur during the switch-off sequence in master modes.  
VBAT  
DEVOFF (register)  
18 ms  
NRESPWRON  
1,2 ms  
REGEN  
18 ms  
32KCLKOUT  
1,2 ms  
DCDCs  
1,2 ms  
LDOs  
18 ms  
SYSEN  
18 ms  
HFCLKOUT  
126 ms  
CLKEN  
3.42 ms before detection of starting event  
NEXT_Startup_event  
SWCS048-021  
NOTE: All of the above timings are the typical values with the default setup (depending on the resynchronization between  
power domains, state machinery priority, and so forth).  
Figure 5-10. Switch-Off Sequence in Master Modes  
In case the value of the HF clock is different from 19.2 MHz (with HFCLK_FREQ bit field values set  
accordingly inside the CFG_BOOT register), then the delay between DEVOFF and  
NRESPWRON/CLK32KOUT/SYSEN/HFCLKOUT is divided by 2 (meaning around 9 μs). This is due to  
the internal frequency used by POWER STM switching from 3 MHz to 1.5 MHz in case the value of the  
HF clock is 19.2 MHz.  
The DEVOFF event is the PWRON falling edge in slave mode and the DEVOFF internal register write in  
master mode.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
5.5.5.3.2 Switch-Off Sequence in Slave Mode  
Figure 5-11 describes the timing and control that occur during the switch off-sequence in slave mode.  
VBAT  
PWRON  
18 ms  
NRESPWRON  
1,2 ms  
REGEN  
18 ms  
32KCLKOUT  
1,2 ms  
DCDCs  
1,2 ms  
LDOs  
18 ms  
SYSEN  
18 ms  
HFCLKOUT  
3.42 ms before detection of starting event  
NEXT_Startup_event  
6 ms (see comment in notes  
about reducing this interval)  
VIO  
6 ms  
32KXIN  
SWCS048-022  
NOTE: All of the above timings are the typical values with the default setup (depending on the resynchronization between  
power  
domains,  
state  
machinery  
priority,  
and  
so  
forth).  
If necessary, the 6-ms period to maintain VIO and 32KXIN after PWRON goes low can be reduced to 150 μs.  
Figure 5-11. Switch-Off Sequence in Slave Mode  
In case the value of the HF clock is different from 19.2 MHz (with HFCLK_FREQ bit field values set  
accordingly inside the CFG_BOOT register), then the delay between DEVOFF and  
NRESPWRON/CLK32KOUT/ SYSEN/HFCLKOUT is divided by 2 (meaning around 9 μs). This is due to  
the internal frequency used by POWER STM switching from 3 MHz into 1.5 MHz in case the value of the  
HF clock is 19.2 MHz.  
5.5.5.4 Charge Pump  
The charge pump generates a 5.0-V (nominal) power supply voltage from battery to the VBUS  
CP.OUT/VUSB.IN pin. The input voltage range is 2.7 to 4.5 V for the battery voltage. The charge pump  
operating frequency is 1 MHz.  
The charge pump tolerates 6 V on VBUS when it is in power down mode. The charge pump integrates a  
short-circuit current limitation at 450 mA.  
Figure 5-12 shows the charge pump.  
50  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Switched 3.3 V  
USB connector  
VBAT.USB  
VBUS  
CP.IN  
CP.GND  
CPOUT  
Normal operation  
USB @ VBUS > 4.4 V  
5.0-V CP  
Power-up  
USB @ VBAT > 3.20 V  
USBIN  
USB3P3  
TPS65921  
DP  
DM  
ID  
USB PHY  
SWCS048-023  
Figure 5-12. General Overview of the Charge Pump and Its Interfaces  
The charge pump can be used to supply USB 3.1 V LDO when battery voltage is lower than this LDO  
VBATmin voltage (see Section 4).  
5.5.6 USB Transceiver  
The TPS65921 device includes a USB OTG transceiver that support USB 480 Mbps HS, 12 Mbps FS, and  
USB 1.5 Mbps LS through a 4-pin UTMI+ ULPI.  
It also includes a module covering Battery Charging Specification v1.0. Figure 5-13 shows the USB 2.0  
PHY highlight block diagram.  
USB OTG device  
OMAP  
(LINK)  
Device  
USB PHY  
ULPI  
Phone connector  
(USB)  
PC  
ADC inputs  
(optional)  
Charger  
SWCS048-024  
Figure 5-13. USB 2.0 PHY Highlight  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
Figure 5-14 shows the USB system application schematic.  
VBAT  
C
C
VBUS.IN  
VBUS.PC  
C
USB.1P3  
C
USB.1P5  
C
USB3P1  
VBAT  
VBAT.USB  
C
VBAT.USB  
C
VBUS  
VBUS  
ULPI_CLK  
ULPI_STP  
ULPI_DIR  
ULPI_NXT  
TPS65921  
D+ / RXD  
D– / TXD  
USB  
PLL  
USB  
PWR  
USB  
CP  
USB OTG  
connector  
ID  
GND  
ULPI_DATA0  
ULPI_DATA1  
ULPI_DATA2  
ULPI_DATA3  
ULPI_DATA4  
ULPI_DATA5  
ULPI_DATA6  
ULPI_DATA7  
USB 2.0 HS-OTG  
transceiver (PHY)  
ULPI  
OMAP  
host  
processor  
(LINK)  
Registers  
OTG  
TXEN  
DAT  
SE0  
SWCS048-025  
Figure 5-14. USB System Application Schematic  
5.5.7 PHY  
The PHY is the physical signaling layer of the USB 2.0. It contains all the drivers and receivers required  
for physical data and protocol signaling on the DP and DM lines.  
The PHY interfaces to the USB controller through a standard digital interface called the universal  
transceiver macro cell interface (UTMI).  
The transmitters and receivers inside the PHY are classified into two main classes:  
The FS and LS transceivers. These are the legacy USB1.x transceivers.  
The HS transceivers  
To bias the transistors and run the logic, the PHY also contains reference generation circuitry consisting  
of:  
A DPLL, which does a frequency multiplication to achieve the 480-MHz low-jitter lock necessary for  
USB, and also the clock required for the switched capacitor resistance block.  
A switched capacitor resistance block used to replicate an external resistor on chip.  
Built-in pullup and pulldown resistors are used as part of the protocol signaling.  
Apart from this, the PHY also contains circuitry that protects it from an accidental 5 V short on the DP and  
DM lines.  
52  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
5.5.7.1 LS/FS Single-Ended Receivers  
In addition to the differential receiver, there is a single-ended receiver (SE–, SE+) for each of the two data  
lines D+/–. The main purpose of the single-ended receivers is to qualify the D+ and D– signals in the  
FS/LS modes of operation.  
5.5.7.2 LS/FS Differential Receiver  
A differential input receiver (RX) retrieves the LS/FS differential data signaling. The differential voltage on  
the line is converted into digital data by a differential comparator on DP/DM. This data is then sent to a  
clock and data recovery circuit, which recovers the clock from the data. In an additional serial mode, the  
differential data is directly output on the RXRCV pin.  
5.5.7.3 LS/FS Transmitter  
The USB transceiver (TX) uses a differential output driver to drive the USB data signal D+/– onto the USB  
cable. The outputs of the driver support 3-state operation to achieve bidirectional half-duplex transactions.  
5.5.7.4 HS Differential Receiver  
The HS receiver consists of the following blocks:  
A differential input comparator to receive the serial data  
A squelch detector to qualify the received data  
An oversampler-based clock data recovery scheme followed by a NRZI decoder, bit unstuffing, and  
serial-to-parallel converter to generate the UTMI DATAOUT  
5.5.7.5 HS Differential Transmitter  
The HS transmitter is always operated on the UTMI parallel interface. The parallel data on the interface is  
serialized, bit-stuffed, NRZI-encoded, and transmitted as a DC output current on DP or DM depending on  
the data. Each line has an effective 22.5-Ω load to ground, which generates the voltage levels for  
signaling.  
A disconnect detector is also part of the HS transmitter. A disconnect on the far end of the cable causes  
the impedance seen by the transmitter to double, thereby doubling the differential amplitude seen on the  
DP and DM lines.  
5.5.7.6 UART Transceiver  
In this mode, the ULPI data bus is redefined as a 2-pin UART interface, which exchanges data through a  
direct access to the FS/LS analog transmitter and receiver.  
ULPI  
Device  
USB connector  
DATA0: UART_TX  
DATA1: UART_RX  
DP/RXD/MIC  
DM/TXD/SPKR  
SWCS048-026  
Figure 5-15. USB UART Data Flow  
The OTG block integrates three main functions:  
The USB plug detection function on VBUS and ID  
The ID resistor detection  
The VBUS level detection  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
5.6 Charger Detection  
To support Battery Charging Specification v1.1 [BCS v1.1], a charger detection module is included in the  
TPS65921 USB module.  
The detection mechanism aims distinguishing several types of power sources that can be connected on  
VBUS line:  
Dedicated charger port  
Standard host port  
Charging host port  
The hardware includes:  
A dedicated voltage referenced pullup on DP line  
A dedicated current controlled pulldown on DM line  
A detection comparator on DM line  
A control/detection state-machine including timers  
Additional circuitry is added on DP/DM respectively for data line symmetry (required for HS operation) and  
for possible future extension  
ID pin status detection (as defined per OTG v1.3 standard) and DP/DM single-ended receivers (as defined  
per USB v2.0 standard) are also used to determine the type of device plugged on the USB connector.  
For details on the detection mechanism, refer to [BCS v1.1] (1).  
The charging detection feature has two modes (description of each mode follows):  
1. Software CTL mode: Software has direct control of current source and USB charger detection  
comparator on DP/DM (enabled when USB_SW_CTRL_EN=1) using USB_CHRG_CTRL registers  
bits.  
2. Software FSM mode: Software can start and stop USB charger detection state-machine.  
For both modes, DPPULLDOWN and DMPULLDOWN bits in OTG_CTRL register are 1 by default. This  
can cause errors in charger detection. Therefore, both bits must be cleared to 0 before software begins  
charger detection sequence.  
1- Software CTL Mode (Manual detection):  
When in this mode the charger detection circuitry is fully under control of software. Refer to  
POWER_CONTROL  
Conditions:  
register  
bits  
as  
to  
how  
to  
control  
the  
detection  
circuitry.  
The TPS65921 device is powered and is in active mode.  
USB_SW_CHRG_CTRL_EN = 1, register bit set by the software  
USB_CHG_DET_EN_SW = 1, register bit set by the software  
Control the USB_SW_CHRF_CTRL register to achieve charger detection.  
2- Software FSM Mode (Automatic detection):  
The TPS65921 also supports automated battery charger detection through the USB battery charger  
detection FSM in Figure 5-16 while the chip is in active mode. This mode is set by software using the  
SW_USB_DET bit. When in this mode, the automated charger detection finite state-machine (FSM) is  
enabled.  
Refer  
to  
the  
state-machine  
diagram  
for  
details.  
Conditions:  
The TPS65921 device is powered and is in active mode.  
USB_HW_CHRG_DET_EN = 1  
See the Register Map for more details.  
54  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
The TPS65921 device also supports automated data contact detection in the FSM through the  
DATA_CONTACT_DET_EN bit which should be set at the same time as SW_USB_DET above, before  
setting SW_CONTROL bit. This enables a block of the FSM, which performs data contact detect for a  
maximum of DCD_TIMEOUT before automatically skipping to charger detection.  
See Figure 5-16,USB Battery Charger FSM, for details of how context is stored if SW_CONTROL bit is set  
while in software FSM mode.  
USB_DET_ON  
CHGD_INIT  
INIT  
DATA_CONTACT_DET_EN=0  
CHGDCTRL=”000_0000"  
CHGDCTRL=”011_0110"  
DATA_CONTACT_DET_EN=1  
CHGD_SETUP  
DCD_INIT  
Wait TVDP_SCR_ON  
CHGDCTRL=”011_1010"  
Dcounter=DCD_TIMEOUT  
Or  
CHGD_SERX_DP_DEB=0  
End wait  
DCD_SETUP  
CHGD CH_ECK  
Always ON  
Dcounter=0  
Wait TIDP_SRC_ON  
End wait  
CHGD_SERX_DM_DEB=0  
and  
CHGD_VDM_DEB=1  
DCD_CHECK  
Dcounter=Dcounter+1  
USB500_WAIT  
CHGDCTRL=010_0000  
Wait TVDP_SRC_HICRNT  
End wait  
Dcounter<DCD_TIMEOUT  
USB500_DETECTED  
CHGDCTRL=100_0000  
USP_P=0  
USP_P=1  
and  
(USB_HW_CHRG_DET_EN=1 or  
USB_SW_CHRG_DET_EN=1)  
(USB_HW_CHRG_DET_EN=0 and  
USB_SW_CHRG_DET_EN=0)  
USB_P=0  
or  
(USB_HW_CHRG_DET_EN=0 and  
USB_SW_CHRG_DET_EN=0)  
USB_DET_STS  
USB_DET_OFF  
CHGDCTRL=xxx_0000  
USB charger status is memorized  
CHGDCTRL=000_0000  
SWCS048-027  
Figure 5-16. USB Battery Charger Detection FSM  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
USB charger detection status bit definition:  
USBVBUS_PRES: Detect presence of valid VBUS. Comparator output is debounced for  
DEBVBUS_TIME (minimum 10 ms) on CKCHG and generates a USB_P signal. USB_P is computed  
only if a battery presence is detected.  
USBCHRG_PRES: Detect presence of USB charger on DP/DM. The feature is enabled through the  
USB_DET_EN signal, then USBPHY performs checks on DP/DM and return status  
USB_DET_RESULT:  
1 : USB 500-mA charger is detected.  
0 : USB 100-mA charger is detected.  
USB_DET_STATUS: 500-mA/100-mA USB charger detect presence comparator output is debounced  
during DEBUSBCHG_TIME (minimum 20 ms) on CKCHG, debounced signal is USB_DET_RESULT  
(set to 1 in case of 500-mA charger)  
Two signals are the result of the charger detection state machine:  
USB100_P: Valid 100-mA charger (VBUS supplier) is detected.  
USB500_P: Valid 500-mA charger (USB charger) is detected.  
5.6.1 USB Battery Charger FSM  
The FSM uses the control signals CHGDCTRL[6:0] described below to control and observe battery  
charger detection.  
When the SW_CONTROL bit is set to 1, the current context of the FSM and the state of charger detection  
is latched in POWER_CONTROL register bits HWDETECT, DP_VSRC_EN, VDAT_DET, and  
DET_COMP, after which FSM control signals CHGDCTRL[6:0] are ignored, and charger detection  
hardware and the CHGR_DET pin are controlled by the software.  
The CHGD_IDP_SRC_EN bit is not latched when the SW_CONTROL bit is set (for example, if the FSM is  
performing data-contact detection at the time the SW_CONTROL is set to 1, the CHGD_IDP_SRC_EN bit  
is unchanged — its default value is 0).  
56  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
5.6.2 FSM Control Signals  
Table 5-1. USB Charger Detect FSM I/O Control Signals  
CONTROL SIGNAL  
CONTROL SIGNAL  
USB500_P  
DESCRIPTION  
TYPE  
Input  
Bit(6)  
Bit(5)  
Bit(4)  
500-mA USB charging can be enabled  
100-mA USB charging can be enabled  
USB100_P  
Input  
CHGD_DET_EN  
Enable charger detection (used to enable  
CHGD IBIAS block)  
Output  
Bit(3)  
Bit(2)  
CHGD_IDP_SRC_EN  
CHGD_VDP_SRC_EN  
Enable IDP_SRC and RDM_DWN  
Output  
Output  
Enable VDP_SRC buffer, IDM_SINK, and  
VDAT_REF_DM comp  
Bit(1)  
Bit(0)  
CHGD_SERX_EN  
Reserved  
Enable SERX comparators on DP and DM  
Reserved  
Output  
Output  
Table 5-1 shows control signals used to control the charger detection analog block from the FSM. The bit  
number in the left-handed column indicates control bit position used in the charger detection state-  
machine. Both SERX comparator outputs (CHGD_SERX_DP, CHGD_SERX_DM) are available for  
register read in the VENDOR_SPECIFIC3 register.  
Example:  
State: DCD_INIT  
Control: CHGDCTRL[6:0] = 011_1010  
Bit(6): USB500_P = 0  
Bit(5): USB100_P = 1  
Bit(4): CHGD_DET_EN = 1  
Bit(3): CHGD_IDP_SRC_EN = 1  
Bit(2): CHGD_VDP_SRC_EN = 0  
Bit(1): CHGD_SERX_EN = 1  
Bit(0): Reserved = 0  
5.7 MADC  
The Monitoring Analog-to-Digital Convertor (MADC) enables the host processors to monitor analog signals  
using Analog-to-Digital Conversion (ADC). After the conversion is complete, the host processor reads the  
results of the conversion through the inter-integrated circuit (I2C) interface.  
The MADC has the following features:  
10-bit ADC  
External input (ADCIN0)  
Internal inputs (VBUS and battery voltage)  
MADC resource shared among multiple users, including system host processors and the internal USB  
Four ways of starting analog-to-digital (ADC) conversion  
Quarter-bit accuracy if the averaging function is used for modem-initiated real-time (RT) conversion  
requests  
Management of potential concurrent conversion requests and priority between different resource users  
Interrupt signal to the primary interrupt handler (PIH) module at the end-of-sequence of conversions  
Averaging feature to sample the input channel on four consecutive conversion cycles instead of once,  
and to provide the average value of four conversions  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
 
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
Because the MADC is shared by users, there are four ways to start the ADC conversion. Three of these  
requests can be triggered by external host processors, and one request is issued by USB:  
Hardware or RT conversion request: This request is initiated by the external host processor to request  
RT signal conversion. This conversion request is most useful when tied to a modem processor request  
for battery voltage level, in synchronization with a signal frame boundary. The host processor can  
request conversion on all ADC input channels using this conversion request.  
SW1 software conversion request: This request can be initiated by the first external host processor to  
request non-RT conversions. This request is also called an asynchronous or GP conversion (GPC)  
request.  
SW2 software conversion request: This request can be initiated by the second external host processor  
to request non-RT conversions. This request is also called an asynchronous or GPC request.  
USB conversion request: This is a GPC request triggered by the USB through TPS65921 internal  
signals. This conversion request is for the ADCIN12 channel.  
It is possible to delay the conversion by programming the acquisition time (ACQUISITION register).  
5.8 JTAG Interfaces  
The TPS65921 JTAG TAP controller handles standard IEEE JTAG interfaces. This section describes the  
timing requirements for the tools used to test the TPS65921 power management.  
The JTAG/TAP module provides a JTAG interface according to IEEE Std1149.1a. This interface uses the  
four I/O pins TMS, TCK, TDI, and TDO. The TMS, TCK, and TDI inputs contain a pullup device, which  
makes their state high when they are not driven. The output TDO is a 3-state output, which is high  
impedance except when data are shifted between TDI and TDO.  
TCK is the test clock signal.  
TMS is the test mode select signal.  
TDI is the scan path input.  
TDO is the scan path output.  
TMS and TDO are multiplexed at the top level with the CPIO0 and CPIO1 pins. The dedicated external  
TEST pin switches from functional mode (GPIO0/GPIO1) to JTAG mode (TMS/TDO). The JTAG  
operations are controlled by a state-machine that follows the IEEE Std1149.1a state diagram. This state-  
machine is reset by the TPS65921 internal power-on reset. A test mode is selected by writing a 6-bit word  
(instruction) into the instruction register and then accessing the related data register.  
5.8.1 Keyboard  
The keyboard is connected to the chip using:  
KBR (7:0) input pins for row lines  
KBC (7:0) output pins for column lines  
Figure 5-17 shows the keyboard connection.  
58  
Detailed Description  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
Device  
VCC  
Internal  
pullup  
8 x 8  
Keyboard matrix  
kbd_r_0  
kbd_r_1  
kbd_r_2  
Keyboard controller  
kbd_r_3  
kbd_r_4  
kbd_r_5  
kbd_r_6  
kbd_r_7  
kbd_c_0  
kbd_c_1  
kbd_c_2  
kbd_c_3  
kbd_c_4  
kbd_c_5  
kbd_c_6  
kbd_c_7  
SWCS048-028  
Figure 5-17. Keyboard Connection  
When a key button of the keyboard matrix is pressed, the corresponding row and column lines are shorted  
together. To allow key press detection, all input pins (KBR) are pulled up to VCC and all output pins (KBC)  
driven to a low level.  
Any action on a button generates an interrupt to the sequencer.  
The decoding sequence is written to allow detection of simultaneous press actions on several key buttons.  
The keyboard interface can be used with a smaller keyboard area than 8 × 8. To use a 6 × 6 keyboard,  
KBR(6) and KBR(7) must be tied high to prevent any scanning process distribution.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
6 Device and Documentation Support  
6.1 Device Support  
6.1.1 Development Support  
TI offers an extensive line of development tools, including tools to evaluate the performance of the  
processors, generate code, develop algorithm implementations, and fully integrate and debug software  
and hardware modules. The tool's support documentation is electronically available within the Code  
Composer Studio™ Integrated Development Environment (IDE).  
The following products support development of the TPS65921 device applications:  
Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE):  
including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target  
software needed to support any TPS65921 device application.  
Hardware Development Tools: Extended Development System (XDS™) Emulator  
For a complete listing of development-support tools for the TPS65921 platform, visit the Texas  
Instruments website at www.ti.com. For information on pricing and availability, contact the nearest TI field  
sales office or authorized distributor.  
6.1.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)  
(for example, TPS65921). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
P
Marking used to note prototype (X), preproduction (P), or qualified/production device (Blank).  
Blank in the symbol or part number are collapsed so there are no gaps between characters.  
A
Mask set version descriptor (initial silicon = BLANK, first silicon revision = A, second silicon  
revision = B,...) Initial silicon version is ES1.0; first revision can be named ES2.0, ES1.1, or  
ES1.01 depending on the level of change. NOTE: Device name maximum is 10 characters.  
YM  
Year month  
LLLLS  
$
Lot code  
Fab planning code  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, ZQZ). provides a legend for reading the complete device name for any  
TPS65921 device.  
60  
Device and Documentation Support  
Copyright © 2010–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
www.ti.com  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
For orderable part numbers of TPS65921 devices in the ZQZ package types, see the Package Option  
Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.  
6.2 Documentation Support  
The following documents describe the TPS65921 processor/MPU. Copies of these documents are  
available on the Internet at www.ti.com.  
SWCU067 TPS65921 Register Manual  
SWCZ003 TPS65921 Silicon Errata  
SWCA091 TPS65921 PCB Layout Guidelines (Rev. A)  
6.2.1 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help  
developers get started with Embedded Processors from Texas Instruments and to foster  
innovation and growth of general knowledge about the hardware and software surrounding  
these devices.  
6.3 Trademarks  
SmartReflex, OMAP, Code Composer Studio, E2E are trademarks of Texas Instruments.  
6.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
6.5 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data  
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any  
controlled product restricted by other applicable national regulations, received from disclosing party under  
nondisclosure obligations (if any), or any direct product of such technology, to any destination to which  
such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior  
authorization from U.S. Department of Commerce and other competent Government authorities to the  
extent required by those laws.  
6.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2010–2014, Texas Instruments Incorporated  
Device and Documentation Support  
61  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
TPS65921  
SWCS048G MARCH 2010REVISED SEPTEMBER 2014  
www.ti.com  
7 Mechanical Packaging and Orderable Information  
7.1 Packaging Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
62  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: TPS65921  
Copyright © 2010–2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Nov-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2000  
2000  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65921B1ZBHR  
TPS65921B1ZQZR  
PREVIEW  
NFBGA  
ZBH  
120  
120  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
65921B1ZBH  
NRND  
BGA  
ZQZ  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
TPS65921B1  
MICROSTAR  
JUNIOR  
TPS65921BZBHR  
TPS65921BZQZR  
PREVIEW  
NRND  
NFBGA  
ZBH  
ZQZ  
120  
120  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
65921BZBH  
TPS65921B  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Nov-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS65921BZQZ

Power Management and USB Single Chip
TI

TPS65921BZQZR

Power Management and USB Single Chip
TI

TPS65921ZQZ

TPS65921 Power Management and USB Single Chip
TI

TPS65921_V01

TPS65921 Power Management and USB Single Chip
TI

TPS6593-Q1

具有 5 个降压转换器和 4 个 LDO 的汽车类 2.8V 至 5.5V 电源管理 IC (PMIC)
TI

TPS65930

Integrated Power Management Audio Codec (TPS65930 Only)
TI

TPS65930A2ZCH

Integrated Power Management / Audio Codec (TPS65930 Only)
TI

TPS65930A2ZCHR

Integrated Power Management / Audio Codec (TPS65930 Only)
TI

TPS65930BZCH

Integrated Power Management Audio Codec (TPS65930 Only)
TI

TPS65930BZCHR

Integrated Power Management Audio Codec (TPS65930 Only)
TI

TPS65930_11

Integrated Power Management / Audio Codec (TPS65930 Only)
TI

TPS6594-Q1

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications
TI