TPS6593-Q1 [TI]

具有 5 个降压转换器和 4 个 LDO 的汽车类 2.8V 至 5.5V 电源管理 IC (PMIC);
TPS6593-Q1
型号: TPS6593-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 5 个降压转换器和 4 个 LDO 的汽车类 2.8V 至 5.5V 电源管理 IC (PMIC)

集成电源管理电路 转换器
文件: 总394页 (文件大小:10504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
TPS6593-Q1 5 个降压转换器4 LDO 且适用于汽车安全相关应用的电  
源管IC (PMIC)  
300mA 输出电流具有短路和过流保护  
• 非易失性存储(NVM) 中的可配置电源序列控制:  
1 特性  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性:  
– 可配置的电源状态间上电和断电序列  
– 电源序列中可包括数字输出信号  
– 数字输入信号可用于触发电源序列转换  
– 可配置的安全相关错误处理  
32kHz 晶体振荡器可输出缓冲32kHz 时钟输出  
• 具有警报和定期唤醒机制的实时时(RTC)  
• 具有一SPI 或两I2C 控制接口且第二I2C  
接口专用Q&A 看门狗通信  
– 器件的输入电源电压范围3V 5.5V  
– 器件温度等140°C +125°C 环境工作  
温度范围  
– 器HBM 分类等2  
– 器CDM 分类等C4A  
• 符合功能安全标准作为目标  
– 专为功能安全应用开发  
• 封装选项:  
– 在产品发布时将会提供有助ISO26262 和  
IEC61508 系统设计的文档  
– 系统功能符ASIL-D SIL-3 要求  
– 硬件完整性符ASIL-B SIL-2 要求  
– 输入电源电压监测  
– 所有输出电源轨上的欠压/过压监测和过流监测  
– 具有可选触发/Q&A 模式的看门狗  
– 具有可选级别/PWM 模式的两个错误信号监测  
(ESM)  
8mm × 8mm 56 VQFNP间距0.5mm  
2 应用  
汽车信息娱乐系统与数字仪表组导航系统远程  
信息处理车身电子装置与照明  
高级驾驶辅助系(ADAS)  
工业控制和自动化  
3 说明  
TPS6593-Q1 器件提供四个灵活的多相可配置降压稳  
压器每相的输出电流为 3.5A),以及一个具有 2A  
输出电流的额外降压稳压器。  
– 具有高温警告和热关断功能的温度监测  
– 对内部配置寄存器和非易失性存储(NVM) 的  
位完整(CRC) 错误检测  
• 低功耗  
3-1. 器件信息表  
封装  
2μA 典型关断电流  
器件型号(1)  
TPS6593-Q1  
封装尺寸标称值)  
– 仅备用电源模式下的典型值7μA  
– 低功耗待机模式下的典型值20μA  
• 五个开关模式电源降压稳压器:  
VQFNP (56)  
8.00mm × 8.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 输出电压范围0.3V 3.34V电压阶跃为  
5mV10mV 20mV)  
– 输出电流其中一个4A另外三个3.5A,  
还有一个2A  
– 四个降压稳压器的灵活多相功能单轨的输出电  
流高14A  
– 短路和过流保护  
– 内部软启动可限制浪涌电流  
– 开关频率2.2MHz/4.4MHz  
– 可与外部时钟输入同步  
• 三个具有可配置旁路模式的低压(LDO) 线性稳压  
– 线性稳压模式下的输出电压范围0.6V 3.3V  
电压阶跃50mV)  
– 旁路模式下的输出电压范围1.7V 3.3V  
500 mA 输出电流具有短路和过流保护  
• 一个具有低噪声的低压(LDO) 线性稳压器  
– 输出电压范围1.2V 3.3V电压阶跃为  
25mV)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE83  
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
nINT  
I2C and SPI  
128-kHz RC Oscillator  
OSC32KCAP  
OSC32KIN  
nPWRON/ENABLE  
Interrupt Handler  
32-kHz Crystal Oscillator  
VBACKUP  
OSC32KOUT  
Backup Supply  
VCCA  
Management  
WAKEn  
nSLEEPn  
Real-Time Clock  
(RTC) With Calendar  
SYNCCLKOUT/CLK32KOUT  
VOUT_LDOVRTC  
LDO  
RTC  
Bandgap  
VRTC  
20-MHz Monitor Oscillator  
20-MHz RC Oscillator  
Clock Controller  
& Monitor  
Fixed  
State Machine  
(FFSM)  
LDO  
INT  
Bandgap  
VINT  
VOUT_LDOVINT  
Trigger Mode or  
Question and Answer  
(Q&A) Watchdog  
FSD  
Clock  
DPLL with  
Dividers and  
SSM  
SYNCCLKIN  
(GPIO10)  
Pre-  
Configurable  
State  
Machine  
(PFSM)  
Mux  
nERR_MCU,  
nERR_SoC  
VIN Monitor  
Level or PWM Mode  
Error Signal Monitors  
(MCU, SoC)  
OVP  
UVLO  
Bandgap  
Single or Multiphase  
BUCK1  
PVIN_B1  
SW_B1  
FB_B1  
Power-Good Monitor  
for Buck and LDO  
Regulators  
Resource Controller  
3.5 A  
SRAM  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
PVIN_B5  
Power Good  
Controller & Monitor  
VIN Monitor  
OVP  
UVLO  
Bandgap  
Registers  
CRC  
BUCK2  
PVIN_B2  
SW_B2  
FB_B2  
3.5 A  
I2C/SPI/  
GPIO/  
SPMI  
Thermal Monitor  
LDO1, Bypass  
Thermal  
Controller  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
Register Map  
VOUT_LDO1  
PVIN_LDO12  
Non-Volatile Memory  
(NVM)  
LBIST  
Over-Current Monitor,  
Short Circuit Monitor  
BUCK3  
PVIN_B3  
SW_B3  
FB_B3  
3.5 A  
SPMI  
I2C and SPI  
CRC  
LDO2, Bypass  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
BIST and CRC  
Over-Current Monitor,  
Short Circuit Monitor  
VOUT_LDO2  
Target  
Control  
I2C1 I2C2  
SPI  
LDO3, Bypass  
PVIN_LDO3  
VOUT_LDO3  
BUCK4  
PVIN_B4  
SW_B4  
FB_B4  
Over-Current Monitor,  
Short Circuit Monitor  
4 A (Single-Phase)  
or 3.5 A  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
LDO4  
(Low Noise)  
Over-Current Monitor,  
Short Circuit Monitor  
PVIN_LDO4  
VOUT_LDO4  
BUCK5  
PVIN_B5  
SW_B5  
FB_B5  
2 A  
GPIO Control  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
VIO_IN  
Safety  
Bandgap  
AMUXOUT  
nRST_OUT  
EN_DRV  
VCCA  
Copyright © 2019, Texas Instruments Incorporated  
功能图  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
7.20 Serial Peripheral Interface (SPI)............................. 40  
7.21 Typical Characteristics............................................41  
8 Detailed Description......................................................44  
8.1 Overview...................................................................44  
8.2 Functional Block Diagram.........................................45  
8.3 Feature Description...................................................46  
8.4 Device Functional Modes........................................118  
8.5 Control Interfaces....................................................151  
8.6 Configurable Registers........................................... 158  
8.7 Register Maps.........................................................160  
9 Application and Implementation................................358  
9.1 Application Information........................................... 358  
9.2 Typical Application.................................................. 358  
10 Power Supply Recommendations............................378  
11 Layout.........................................................................378  
11.1 Layout Guidelines................................................. 378  
11.2 Layout Example.................................................... 380  
12 Device and Documentation Support........................381  
12.1 Device Support..................................................... 381  
12.2 Device Nomenclature............................................381  
12.3 Documentation Support........................................ 382  
12.4 Receiving Notification of Documentation Updates382  
12.5 支持资源................................................................382  
12.6 Trademarks...........................................................382  
12.7 Electrostatic Discharge Caution............................382  
12.8 术语表................................................................... 382  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 3  
5 说明.........................................................................5  
6 Pin Configuration and Functions...................................6  
6.1 Digital Signal Descriptions........................................ 11  
7 Specifications................................................................ 18  
7.1 Absolute Maximum Ratings...................................... 18  
7.2 ESD Ratings............................................................. 19  
7.3 Recommended Operating Conditions.......................19  
7.4 Thermal Information..................................................19  
7.5 General Purpose Low Drop-Out Regulators  
(LDO1, LDO2, LDO3)..................................................21  
7.6 Low Noise Low Drop-Out Regulator (LDO4)............ 22  
7.7 Internal Low Drop-Out Regulators (LDOVRTC,  
LDOVINT)....................................................................23  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5  
Regulators...................................................................24  
7.9 Reference Generator (BandGap)..............................30  
7.10 Monitoring Functions ..............................................31  
7.11 Clocks, Oscillators, and PLL................................... 33  
7.12 Thermal Monitoring and Shutdown.........................34  
7.13 System Control Thresholds.....................................35  
7.14 Current Consumption..............................................36  
7.15 Backup Battery Charger..........................................36  
7.16 Digital Input Signal Parameters.............................. 36  
7.17 Digital Output Signal Parameters ...........................37  
7.18 I/O Pullup and Pulldown Resistance.......................38  
7.19 I2C Interface............................................................38  
Information.................................................................. 382  
13.1 Packaging Information.......................................... 383  
13.2 Tape and Reel Information....................................384  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2020) to Revision A (July 2022)  
Page  
• 增加了以符合功能安全标准为目.....................................................................................................................1  
Change pin 52 from N.C into GND. ................................................................................................................... 6  
Section 8.8 Specifications - BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators: Change typical value  
for parameter 4.112 (from 300-mA to 420-mA), parameter 4.113 (from 200-mA to 100-mA), parameter 4.122  
(from 250-mA to 370-mA), parameter 4.123 (from 150-mA to 30-mA), parameter 4.131 (from 400-mA to 310-  
mA), parameter 4.132 (from 170-mA to 290-mA), parameter 4.133 (from 230-mA to 20-mA), parameter 4.151  
(from 335-mA to 290-mA), parameter 4.152 (from 150-mA to 230-mA), parameter 4.153 (from 185-mA to 50-  
mA) .................................................................................................................................................................. 18  
BUCK Regulator Overview: added Current Limit .............................................................................................48  
Added section: BUCK Regulator Current Limit ................................................................................................57  
Added LDO1, LDO2, LDO3 Current Limit description ..................................................................................... 60  
Added LDO4 Current Limit description ............................................................................................................61  
Added explanation on how to use Voltage Monitors of unused BUCK and LDO regulators ............................63  
Watchdog (WDOG): added Q&A (question an answer) mode .........................................................................80  
Added Section:Watchdog Question-Answer Mode ..........................................................................................91  
Added Section: Error Signal Monitor (ESM) .................................................................................................. 101  
Changed all instances of legacy terminology into "controller" and "target", also in all sub-sections ............. 143  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
For I2C, changed all instances of legacy terminology into "controller" and "target". For SPI, changed all  
instances of legacy terminology into "controller" and "peripheral". For the CRC, changed all instances of  
legacy terminology into "CRC on received data (R_CRC)", and "CRC on transmitted data" (T_CRC). These  
changes also applies to all sub-sections. ...................................................................................................... 151  
Corrected figure on Calculation of 8-Bit Controller CRC (R_CRC) Output, corrected figure on Calculation of 8-  
Bit Target CRC (T_CRC) Input ...................................................................................................................... 151  
Added note about missing R_CRC after am I2C write .................................................................................. 154  
Added note which explains the I2C addresses for each register map page on the I2C bus. Added note which  
explains how each register map page is addressed when using SPI. ...........................................................158  
Added note about writing to RESERVED bits causing a Register Map CRC error ....................................... 159  
Corrected description of register DEV_REV ..................................................................................................160  
Changed bit 7 to RESERVED in registers BUCK1_CTRL, BUCK2_CTRL, BUCK3_CTRL, BUCK4_CTRL,  
BUCK5_CTRL, LDO1_CTRL, LDO2_CTRL, LDO3_CTRL and LDO4_CTRL .............................................. 160  
Updated PDN example figure, and updated the table with the Local and POL Capacitors used for Buck Use  
Case Validation ..............................................................................................................................................363  
Updated the recommendations for the Digital Signal Connections ............................................................... 366  
Updated Layout Guidelines with respect to output capacitor on VOUT_LDOVINT pin ................................. 378  
Updated Layout Example figure .................................................................................................................... 380  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
5 说明)  
所有降压稳压器均可与内部 2.2MHz 4.4MHz 时钟信号或外部 1MHz2MHz 4MHz 时钟信号同步。为改善  
EMC 性能可对同步的降压开关时钟信号进行集成式扩频调制。此时钟信号也可通GPIO 输出引脚供外部器件  
使用。该器件提供四LDO其中三个可配置为负载开关500mA 电流另一个具300mA 电流和低噪声  
性能。  
非易失性存储器 (NVM) 用于控制默认的电源序列以及诸如输出电压和 GPIO 配置等默认配置。NVM 经过预先编  
无需外部编程即可启动。器件的寄存器映射中存储的大多数静态默认配置可通过 SPI I2C 接口进行更改,  
从而根据多种不同系统需求配置器件。NVM 还具备位完整性错误检测功(CRC)可在检测到错误时停止上电序  
防止系统在未知状态下启动。  
TPS6593-Q1 包含 32kHz 晶体振荡器为集成式 RTC 模块提供精确的 32kHz 时钟。备用电池管理功能可在主电  
源发生功率损耗时利用纽扣电池或超级电容为晶体振荡器和实时时(RTC) 模块供电。  
TPS6593-Q1 器件包括保护和诊断机制例如输入电源上的电压监测、所有降压和 LDO 稳压器输出上的电压监  
测、寄存器和接口 CRC、电流限制、短路保护、热预警和过热关断。该器件还包括可监测 MCU 软件锁定情况的  
Q&A 或触发模式看门狗以及可监控随附 SoC MCU 所产生错误信号且具有故障注入选项的两个错误信号监测  
(ESM) 输入TPS6593-Q1 可通过中断处理程序向处理器报告这些事件便MCU 采取相关措施进行响应。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
6-1 shows the 56-pin RWE plastic quad-flatpack no-lead (VQFNP) pin assignments and thermal pad.  
GPIO10  
AMUXOUT  
VOUT_LDOVINT  
VOUT_LDOVRTC  
VCCA  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GPIO8  
2
OSC32KCAP  
OSC32KOUT  
OSC32KIN  
FB_B5  
3
4
REFGND1  
5
REFGND2  
6
VBACKUP  
PVIN_B5  
VOUT_LDO4  
PVIN_LDO4  
VOUT_LDO3  
PVIN_LDO3  
VOUT_LDO2  
PVIN_LDO12  
VOUT_LDO1  
nINT  
7
Thermal  
Pad  
(GND)  
8
SW_B5  
9
GPIO2  
10  
11  
12  
13  
14  
GPIO1  
SCL_I2C1/SCK_SPI  
SDA_I2C1/SDI_SPI  
EN_DRV  
Not to scale  
6-1. 56-Pin RWE (VQFNP) Package, 0.5-mm Pitch, With Thermal Pad (Top View)  
6-1. Pin Attributes  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NAME  
NO.  
STEP-DOWN CONVERTERS (BUCKs)  
Output voltage-sense (feedback) input for BUCK1 or differential voltage-  
sense (feedback) positive input for BUCK12/123/1234 in multi-phase  
configuration.  
FB_B1  
FB_B2  
22  
21  
I
I
Ground  
Ground  
Output voltage-sense (feedback) input for BUCK2 or differential voltage-  
sense (feedback) negative input for BUCK12/123/1234 in multi-phase  
configuration.  
Output voltage-sense (feedback) input for BUCK3 or differential voltage-  
sense (feedback) positive input for BUCK34 in dual-phase configuration.  
FB_B3  
FB_B4  
49  
50  
I
I
Ground  
Ground  
Output voltage-sense (feedback) input for BUCK4 or differential voltage-  
sense (feedback) negative input for BUCK34 in dual-phase configuration.  
FB_B5  
37  
26  
17  
45  
54  
35  
I
I
I
I
I
I
Output voltage-sense (feedback) input for BUCK5  
Power input for BUCK1  
Ground  
VCCA  
VCCA  
VCCA  
VCCA  
VCCA  
PVIN_B1  
PVIN_B2  
PVIN_B3  
PVIN_B4  
PVIN_B5  
Power input for BUCK2  
Power input for BUCK3  
Power input for BUCK4  
Power input for BUCK5  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NAME  
NO.  
27  
28  
15  
16  
43  
44  
55  
56  
34  
SW_B1  
SW_B1  
SW_B2  
SW_B2  
SW_B3  
SW_B3  
SW_B4  
SW_B4  
SW_B5  
O
O
O
O
O
O
O
O
O
Switch node of BUCK1  
Switch node of BUCK1  
Switch node of BUCK2  
Switch node of BUCK2  
Switch node of BUCK3  
Switch node of BUCK3  
Switch node of BUCK4  
Switch node of BUCK4  
Switch node of BUCK5  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
LOW-DROPOUT REGULATORS  
PVIN_LDO3  
PVIN_LDO4  
PVIN_LDO12  
VOUT_LDO1  
VOUT_LDO2  
VOUT_LDO3  
VOUT_LDO4  
10  
8
I
Power input voltage for LDO3 regulator  
Power input voltage for LDO4 regulator  
Power input voltage for LDO1 and LDO2 regulator  
LDO1 output voltage  
VCCA  
VCCA  
I
12  
13  
11  
9
I
VCCA  
O
O
O
O
Floating  
Floating  
Floating  
Floating  
LDO2 output voltage  
LDO3 output voltage  
7
LDO4 output voltage  
LOW-DROPOUT REGULATORS (INTERNAL)  
LDOVINT output for connecting to the filtering capacitor. Not for external  
loading.  
VOUT_LDOVINT  
2
3
O
O
LDOVRTC output for connecting to the filtering capacitor. Not for external  
loading.  
VOUT_LDOVRTC  
CRYSTAL OSCILLATOR  
OSC32KCAP  
Filtering capacitor for the 32 KHz crystal Oscillator, connected to VRTC  
through an internal 100 resistor.  
40  
O
Floating  
OSC32KIN  
38  
39  
I
32-KHz crystal oscillator input  
32-KHz crystal oscillator output  
Ground  
Floating  
OSC32KOUT  
SYSTEM CONTROL  
AMUXOUT  
O
1
O
O
Buffered bandgap output  
Floating  
Floating  
Enable Drive output pin to indicate the device entering safe state (set low  
when ENABLE_DRV bit is '0').  
EN_DRV  
29  
Primary function: General-purpose input(1) and output  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SCL_I2C2, which is the Q&A WatchDog I2C serial  
clock (external pull-up).  
I
Ground  
Ground  
Floating  
I
Alternative function: CS_SPI, which is the SPI chip enable signal.  
GPIO1  
32  
Alternative function: nRSTOUT_SoC, which is the SoC reset or power on  
output (Active Low).  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
I
Ground  
Ground  
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NAME  
NO.  
Primary function: General-purpose input(1) and output  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SDA_I2C2, which is the Q&A WatchDog I2C serial  
bidirectional data (external pull-up).  
I/O  
Ground  
Floating  
Ground  
O
I
Alternative function: SDO_SPI, which is the SPI output data signal.  
GPIO2  
33  
Alternative function: TRIG_WDOG, which is the watchdog trigger input  
signal for Watchdog Trigger mode.  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
I
Ground  
Ground  
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: nERR_SoC, which is the system error count down  
input signal from the SoC (Active Low).  
I
Floating  
Floating  
Ground  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
GPIO3  
46  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: LP_WKUP1 or LP_WKUP2, which are capable of  
processing a wake-up request for the device to go to higher power states  
while the device is in LP STANDBY state. They can also be used as  
I
Ground  
regular WKUP1 or WKUP2 pins while the device is in mission states.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
Floating  
Ground  
GPIO4  
47  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: LP_WKUP1 or LP_WKUP2, which are capable of  
processing a wake-up request for the device to go to higher power states  
while the device is in LP STANDBY state. They can also be used as  
I
Ground  
regular WKUP1 or WKUP2 pins while the device is in mission states.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SCLK_SPMI, which is the Multi-PMIC SPMI serial  
I/O interface clock signal. The SCLK_SPMI is an output pin for the SPMI  
controller device, and an input pin for the SPMI peripheral device.  
Floating  
GPIO5  
23  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Ground  
Ground  
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
NAME  
6-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NO.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SDATA_SPMI, which is the Multi-PMIC SPMI serial  
interface bidirectional data signal.  
I/O  
Floating  
Ground  
Ground  
GPIO6  
24  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: nERR_MCU, which is the system error count down  
input signal from the MCU (Active Low).  
I
Floating  
Ground  
Ground  
GPIO7  
18  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SYNCCLKOUT, which is a clock output synchronized  
to the switching clock signals for the bucks in the device.  
O
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative function: DISABLE_WDOG, which is the input to disable the  
watchdog monitoring function.  
I
GPIO8  
41  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: PGOOD, which is the indication signal for valid  
regulator output voltages and currents  
O
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative function: SYNCCLKOUT, which is the internal fallback  
switching clock for BUCK.  
O
GPIO9  
19  
Alternative function: DISABLE_WDOG, which is the input to disable the  
watchdog monitoring function.  
I
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NAME  
NO.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SYNCCLKIN, which is the external switching clock  
input for BUCK.  
I
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative function: SYNCCLKOUT, which is the internal fallback  
switching clock for BUCK.  
O
GPIO10  
42  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: TRIG_WDOG, which is the watchdog trigger input  
signal for Watchdog Trigger mode.  
I
Ground  
Floating  
Ground  
Ground  
GPIO11  
53  
Alternative function: nRSTOUT_SoC, which is the SoC reset or power on  
output (Active Low).  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
GND  
nINT  
52  
14  
Analog ground  
O
Maskable interrupt output request to the host processor (Active Low)  
Floating  
NPWRON_SEL = '0': ENABLE- Level sensitive input pin to power up the  
device, with configurable polarity  
I
I
Floating  
Ground  
nPWRON/ENABLE  
20  
NPWRON_SEL = '1': nPWRON - Active low edge sensitive button press  
pin to power up the device  
nRSTOUT  
25  
31  
O
I
MCU reset or power on reset output (Active Low)  
Floating  
Ground  
Ground  
If SPI is the default interface: SCL_I2C1 - I2C serial clock (external pullup)  
If I2C is the default interface: CLK_SPI - SPI clock signal  
SCL_I2C1/SCK_SPI  
I
If SPI is the default interface: SDA_I2C1 - I2C serial bidirectional data  
(external pullup)  
I/O  
I
Ground  
Ground  
SDA_I2C1/SDI_SPI  
30  
If I2C is the default interface: SDI_SPI - SPI input data signal  
POWER SUPPLIES AND REFERENCE GROUNDS  
GND  
51  
I
Analog ground  
Power Ground, which is also the thermal pad of the package. Connect to  
PCB ground planes with multiple vias.  
PGND/ThermalPad  
REFGND1  
REFGND2  
VBACKUP  
VCCA  
5
6
System reference ground  
I
System reference ground  
36  
4
Backup power source input pin  
Ground  
I
Analog input voltage for the internal LDOs and other internal blocks  
Digital supply input for GPIOs and I/O supply voltage  
VIO_IN  
48  
I
(1) Default option before NVM settings are loaded into the device.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6.1 Digital Signal Descriptions  
6-2. Signal Descriptions  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
SIGNAL NAME  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
nPWRON  
(Selectable  
function of  
VIL(VCCA),  
VIH(VCCA)  
400 kΩPU to  
Input  
VRTC  
VRTC  
50 ms  
None  
None  
NPWRON_SEL  
VCCA  
nPWRON/  
ENABLE pin)(1)  
NPWRON_SEL  
ENABLE_POL  
ENABLE_DEGLITCH  
_EN  
ENABLE_PU_PD_E  
N
ENABLE  
400 kΩSPU to  
VCCA, or  
400 kΩSPD to  
GND  
(Selectable  
function of  
nPWRON/  
ENABLE pin)(1)  
VIL(VCCA),  
VIH(VCCA)  
Input  
8 µs  
ENABLE_PU_SEL  
VCCA/  
PVIN_B1  
10 kΩHigh-side  
EN_DRV  
Output  
Input  
VOL(EN_DRV)  
PP  
None  
ENABLE_DRV  
to VCCA  
SCL_I2C1  
(Selectable  
function of  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
I2C or SPI selection  
from NVM-  
VIL(DIG),  
VIH(DIG)  
VINT  
VINT  
VINT  
VINT  
VINT  
None  
None  
None  
None  
None  
PU to VIO  
configuration (6)  
I2C1_HS  
SCL_I2C1/  
SCK_SPI pin)(1)  
SDA_I2C1  
(Selectable  
function of  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
I2C or SPI selection  
from NVM-  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA  
Input/output  
Input  
VIO  
OD  
PU to VIO  
PU to VIO  
PU to VIO  
None  
configuration(6)  
I2C1_HS  
SDA_I2C1/  
SDI_SPI pin)(1)  
I2C or SPI selection  
from NVM-  
SCL_I2C2  
(Selectable  
function of  
GPIO1)(1)  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
VIL(DIG),  
VIH(DIG)  
configuration(6)  
I2C2_HS  
GPIO1_SEL  
I2C or SPI selection  
from NVM-  
SDA_I2C2  
(Selectable  
function of  
GPIO2)(1)  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA  
Input/output  
Input  
VIO  
OD  
configuration(6)  
I2C2_HS  
GPIO2_SEL  
SCK_SPI  
(Selectable  
function of  
I2C or SPI selection  
from NVM-  
VIL(DIG),  
VIH(DIG)  
None  
SCL_I2C1/  
configuration(6)  
SCK_SPI pin)(1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
SIGNAL NAME  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
SDI_SPI  
(Selectable  
function of  
SDA_I2C1/  
SDI_SPI pin)(1)  
I2C or SPI selection  
from NVM-  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
VINT  
None  
None  
None  
configuration(6)  
CS_SPI  
I2C or SPI selection  
from NVM-  
(Selectable  
function of  
GPIO1)(1)  
VIL(DIG),  
VIH(DIG)  
Input  
None  
None  
None  
None  
None  
configuration(6)  
GPIO1_SEL  
SDO_SPI  
(Selectable  
function of  
GPIO2)(1)  
I2C or SPI selection  
from NVM-  
VOL(VIO)_20mA,  
VOH(VIO)  
Output  
VIO  
PP(3) / HiZ  
configuration(6)  
GPIO2_SEL  
Output for  
SPMI controller  
device, input  
for SPMI  
peripheral  
device  
SCLK_SPMI  
(Configurable  
function of  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
NVM-configuration(6)  
GPIO5_SEL  
GPIO5_PU_PD_EN  
400 kΩPD to  
VINT  
VINT  
None  
None  
VINT  
PP  
None  
GND  
GPIO5)(1)  
SDATA_SPMI  
(Configurable  
function of  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
NVM-configuration(6)  
GPIO6_SEL  
GPIO6_PU_PD_EN  
400 kΩPD to  
Input/output  
VINT  
PP / HiZ  
None  
GND  
GPIO6)(1)  
nINT  
Output  
Output  
VOL(nINT)  
VCCA  
OD  
None  
PU to VCCA  
10 kΩPull-Up to  
VIO if configured  
as Push-Pull  
VCCA/  
VIO  
PU to VIO if Open-drain  
(driven low if no VINT)  
nRSTOUT  
VOL(nRSTOUT)  
PP(3) or OD  
NRSTOUT_OD  
GPIO1_SEL  
PU to VIO if Open-drain GPIO1_OD  
(driven low if no VINT) GPIO11_SEL  
GPIO11_OD  
nRSTOUT_SoC  
(Configurable  
function of  
10 kΩPull-Up to  
VIO if configured  
as Push-Pull  
VCCA/  
VIO  
Output  
Output  
VOL(nRSTOUT)  
PP(3) or OD  
PP(3) or OD  
GPIO1 and  
GPIO11)(1)  
GPIO9_SEL  
GPIO9_OD  
PU to VIO if Open-drain PGOOD_POL  
PGOOD  
(Configurable  
function of  
GPIO9)(1)  
VOL(VIO),  
VOH(VIO)  
VIO  
None  
PGOOD_WINDOW  
PGOOD_SEL_x  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
SIGNAL NAME  
6-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Domain  
Power  
Domain  
Push-pull/  
DEGLITCH TIME(5)  
Open-drain(4)  
nERR_MCU  
(Configurable  
function of  
VIL(DIG),  
VIH(DIG)  
400 kΩPD to  
Input  
VINT  
8 µs  
None  
None  
GPIO7_SEL  
GPIO3_SEL  
GND  
GPIO7)(1)  
nERR_SoC  
(Configurable  
function of  
GPIO3)(1)  
VIL(DIG),  
VIH(DIG)  
400 kΩPD to  
Input  
Input  
VRTC  
15 µs  
30 µs  
GND  
DISABLE_WDO  
G
(Configurable  
function of  
GPIO8 and  
GPIO9)(1)  
VIL(DIG),  
VIH(DIG)  
GPIO8_SEL  
GPIO9_SEL  
400 kΩPD to  
VINT  
VINT  
PU to VIO  
GND  
TRIG_WDOG  
(Configurable  
function of  
GPIO2_SEL  
GPIO2_PU_PD_EN  
GPIO11_SEL  
VIL(DIG),  
VIH(DIG)  
400 kΩSPD to  
Input  
Input  
30 µs  
None  
GND  
GPIO2 and  
GPIO11_PU_PD_EN  
GPIO11)(1)  
GPIO3 or 4:  
400 kΩSPU to  
VRTC  
GPIO5 or 6:  
400 kΩSPU to  
VINT  
all other GPIOs:  
400 kΩSPU to  
VIO  
GPIO3 or  
4:  
VRTC  
other  
GPIOs:  
VINT  
nSLEEP1  
GPIOn_SEL  
GPIOn_PU_PD_EN  
NSLEEP1B  
(Configurable  
function of all  
GPIO pins)(1)  
VIL(DIG),  
VIH(DIG)  
8 µs  
None  
GPIO3 or 4:  
400 kΩSPU to  
VRTC  
GPIO5 or 6:  
400 kΩSPU to  
VINT  
all other GPIOs:  
400 kΩSPU to  
VIO  
GPIO3 or  
4:  
VRTC  
other  
GPIOs:  
VINT  
nSLEEP2  
GPIOn_SEL  
(Configurable  
function of all  
GPIO pins)(1)  
VIL(DIG),  
VIH(DIG)  
Input  
8 µs  
None  
GPIOn_PU_PD_EN  
NSLEEP2B  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
SIGNAL NAME  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
GPIO5 or 6:  
400 kΩSPU to  
VINT or  
400 kΩSPD to  
GND  
all other GPIOs:  
400 kΩSPU to  
VIO or  
WKUP1  
GPIOn_SEL  
GPIOn_DEGLITCH_  
EN  
GPIOn_PU_PD_EN  
GPIOn_PU_SEL  
(Configurable  
function of all  
GPIO pins except  
GPIO3 and  
GPIO4)(1)  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
8 µs  
None  
400 kΩSPD to  
GND  
GPIO5 or 6:  
400 kΩSPU to  
VINT or  
400 kΩSPD to  
GND  
all other GPIOs:  
400 kΩSPU to  
VIO or  
WKUP2  
GPIOn_SEL  
GPIOn_DEGLITCH_  
EN  
GPIOn_PU_PD_EN  
GPIOn_PU_SEL  
(Configurable  
function of all  
GPIO pins except  
GPIO3 and  
GPIO4)(1)  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
8 µs  
None  
400 kΩSPD to  
GND  
GPIO3,4_SEL  
GPIO3,4_DEGLITCH  
_EN  
GPIO3,4_PU_PD_E  
N
LP_WKUP1  
(Configurable  
function of  
GPIO3 and  
GPIO4)(1)  
400 kΩSPU to  
VRTC, or  
400 kΩSPD to  
GND  
8 µs,  
no deglitch in  
LP_STANDBY state  
VIL(DIG),  
VIH(DIG)  
Input  
Input  
VRTC  
VRTC  
None  
None  
GPIO3,4_PU_SEL  
GPIO3,4_SEL  
GPIO3,4_DEGLITCH  
_EN  
GPIO3,4_PU_PD_E  
N
LP_WKUP2  
(Configurable  
function of  
GPIO3 and  
GPIO4)(1)  
400 kΩSPU to  
VRTC, or  
400 kΩSPD to  
GND  
8 µs,  
no deglitch in  
LP_STANDBY state  
VIL(DIG),  
VIH(DIG)  
GPIO3,4_PU_SEL  
GPIO1_DIR  
Input:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA,  
VOH(VIO)  
400 kΩSPU to  
VIO, or  
400 kΩSPD to  
GND  
GPIO1_DEGLITCH_  
EN  
GPIO1_PU_PD_EN  
GPIO1_PU_SEL  
Output:  
PU to VIO  
if Open-drain  
GPIO1  
Input/output  
VINT  
8 µs  
VIO  
PP(3) or OD  
GPIO1_OD  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
SIGNAL NAME  
6-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Domain  
Power  
Domain  
Push-pull/  
DEGLITCH TIME(5)  
Open-drain(4)  
GPIO2_DIR  
Input:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA,  
VOH(VIO)  
400 kΩSPU to  
VIO, or  
400 kΩSPD to  
GND  
GPIO2_DEGLITCH_  
EN  
GPIO2_PU_PD_EN  
GPIO2_PU_SEL  
Output:  
PU to VIO  
if Open-drain  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
Input/output  
VINT  
VRTC  
VRTC  
VINT  
VINT  
8 µs  
VIO  
PP(3) or OD  
PP or OD  
PP or OD  
PP or OD  
PP or OD  
GPIO2_OD  
GPIO3_DIR  
Input:  
GPIO3_DEGLITCH_  
EN  
GPIO3_PU_PD_EN  
GPIO3_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG),  
VOH(DIG)  
400 kΩSPU to  
VINT, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
Input/output  
Input/output  
Input/output  
Input/output  
8 µs  
8 µs  
8 µs  
8 µs  
VINT  
VINT  
VINT  
VINT  
GPIO3_OD  
GPIO4_DIR  
Input:  
GPIO4_DEGLITCH_  
EN  
GPIO4_PU_PD_EN  
GPIO4_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG),  
VOH(DIG)  
400 kΩSPU to  
VINT, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
GPIO4_OD  
GPIO5_DIR  
Input:  
GPIO5_DEGLITCH_  
EN  
GPIO5_PU_PD_EN  
GPIO5_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
400 kΩSPU to  
VINT, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
GPIO5_OD  
GPIO6_DIR  
Input:  
GPIO6_DEGLITCH_  
EN  
GPIO6_PU_PD_EN  
GPIO6_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
400 kΩSPU to  
VINT, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
GPIO6_OD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
6-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
SIGNAL NAME  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
GPIO7_DIR  
Input:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩSPU to  
VIO, or  
400 kΩSPD to  
GND  
GPIO7_DEGLITCH_  
EN  
GPIO7_PU_PD_EN  
GPIO7_PU_SEL  
Output:  
PU to VIO  
if Open-drain  
GPIO7  
Input/output  
VINT  
VINT  
VINT  
VINT  
VINT  
8 µs  
VIO  
VIO  
VIO  
VIO  
VIO  
PP(3) or OD  
PP(3) or OD  
P(3)P or OD  
PP(3) or OD  
PP(3) or OD  
GPIO7_OD  
GPIO8_DIR  
Input:  
GPIO8_DEGLITCH_  
EN  
GPIO8_PU_PD_EN  
GPIO8_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩSPU to  
VIO, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
Input/output  
Input/output  
Input/output  
Input/output  
8 µs  
8 µs  
8 µs  
8 µs  
GPIO8_OD  
GPIO9_DIR  
Input:  
GPIO9_DEGLITCH_  
EN  
GPIO9_PU_PD_EN  
GPIO9_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩSPU to  
VIO, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
GPIO9_OD  
GPIO10_DIR  
Input:  
GPIO10_DEGLITCH  
_EN  
GPIO10_PU_PD_EN  
GPIO10_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩSPU to  
VIO, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
GPIO10_OD  
GPIO11_DIR  
Input:  
GPIO11_DEGLITCH_  
EN  
GPIO11_PU_PD_EN  
GPIO11_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩSPU to  
VIO, or  
400 kΩSPD to  
GND  
PU to VIO  
if Open-drain  
GPIO11_OD  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
SIGNAL NAME  
6-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Domain  
Power  
Domain  
Push-pull/  
DEGLITCH TIME(5)  
Open-drain(4)  
SYNCCLKIN  
(Configurable  
function of  
VIL(DIG),  
VIH(DIG)  
GPIO10_SEL  
GPIO10_PU_PD_EN  
400 kΩSPD to  
Input  
VINT  
None  
None  
None  
GND  
GPIO10)(1)  
SYNCCLKOUT  
(Configurable  
function of  
GPIO8_SEL  
GPIO9_SEL  
GPIO10_SEL  
VOL(VIO),  
VOH(VIO)  
Output  
Output  
VIO  
PP(3)  
None  
None  
GPIO8, GPIO9,  
and GPIO10)(1)  
CLK32KOUT  
(Configurable  
function of  
GPIO3, GPIO4,  
GPIO8, and  
GPIO10)(1)  
GPIO3 or 4:  
VOL(DIG),  
VOH(DIG)  
GPIO8 or 10:  
VOL(VIO),  
VOH(VIO)  
GPIO3 or 4:  
VRTC  
GPIO8 or 10:  
VIO  
GPIO3_SEL  
GPIO4_SEL  
GPIO8_SEL  
GPIO10_SEL  
PP(3)  
None  
(1) Configurable function through NVM register setting.  
(2) PU = Pullup, PD = Pulldown, SPU = Software-configurable pullup, SPD = Software-configurable pulldown.  
(3) When VIO is not available, the push-pull pin must be configured as low output to minimize current leakage from the IO cell.  
(4) PP = Push-pull, OD = Open-drain.  
(5) Deglitch time is only applicable when option is enabled.  
(6) NVM-configuration for I2C/SPI and SPMI cannot be overwritten during operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted). Voltage level is with reference to the thermal/ground  
pad of the device.(1)  
POS  
MIN  
MAX UNIT  
M1.3  
Voltage on OV protected supply input pin  
VCCA(2)  
6
6
V
V
0.3  
Voltage on all buck supply voltage input  
pins  
M1.4  
PVIN_Bx(2)  
0.3  
0.5  
0.3  
Voltage difference between supply input  
pins  
M1.4a  
M1.5a  
Between VCCA and each PVIN_Bx  
SW_Bx pins  
0.5  
V
V
PVIN_Bx + 0.3  
V, up to 6 V  
Voltage on all buck switch nodes  
M1.5b  
M1.6  
M1.7  
SW_Bx pins, 10-ns transient  
FB_Bx  
10  
4
V
V
V
2  
0.3  
0.3  
Voltage on all buck voltage sense nodes  
Voltage on all LDO supply voltage input pins PVIN_LDOx(2)  
6
PVIN_LDOx +  
0.3 V, up to 6 V  
M1.8  
M1.9  
M1.10  
Voltage on all LDO output pins  
Voltage on internal LDO output pins  
Voltage on I/O supply pin  
VOUT_LDOx  
V
V
V
0.3  
0.3  
0.3  
VOUT_LDOVINT, VOUT_LDOVRTC  
VIO_IN with respect to ground pad  
2
VCCA + 0.3 V,  
up to 6 V  
Voltage on logic pins (input or output) in VIO I2C and SPI pins, nRSTOUT, and nINT pins, and all  
M1.11  
M1.12  
M1.13  
M1.14  
M1.15  
6
6
6
6
V
V
V
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
domain  
GPIO output buffers except GPIO5 & GPIO6  
Voltage on logic pins (input or output) in  
LDOVINT domain  
GPIO5 & GPIO6, and all GPIO input buffers except  
GPIO3 & GPIO4  
Voltage on logic pins (input) in LDOVRTC  
domain  
GPIO3 & GPIO4  
Voltage on logic pins (input or output) in  
VCCA domain  
nPWRON/ENABLE & EN_DRV  
AMUXOUT  
VCCA + 0.3 V,  
up to 6 V  
Voltage on analog mux output pin  
M1.16  
M1.17  
M1.18  
M2.1a  
M2.1b  
M2.3a  
Voltage on back-up power supply input  
Voltage on crystal oscillator pins  
Voltage on REFGND pins  
VBACKUP  
6
2
V
V
V
0.3  
0.3  
0.3  
OSC32KIN, OSC32KOUT, & OSC32KCAP  
REFGND1 & REFGND2  
0.3  
VCCA, PVIN_Bx (voltage below 2.7 V)  
VIO (only when VCCA < 2 V)  
All pins other than power resources  
60 mV/µs  
60 mV/µs  
Voltage rise slew-rate on input supply pins  
20  
5
mA  
A
Buck1/2/3/4 regulators: PVIN_Bx and SW_Bx per  
phase  
M2.3b  
Peak output current  
M2.3c  
M2.4a  
Buck5 regulator: PVIN_B5 and SW_B5  
GPIOx pins, source current  
3
3
A
mA  
GPIO1/2/5/6, SDA_I2C1/SDI_SPI, EN_DRV, nINT,  
and nRSTOUT pins, sink current  
M2.4b  
8
mA  
Average output current, 100 k hour, TJ =  
M2.4c  
M2.4d  
M2.4e  
M3  
GPIO3/4/7/8/9/10/11 pins, sink current  
LDO1/2/3 regulators  
3
350  
210  
160  
150  
mA  
mA  
mA  
°C  
125℃  
LDO4 regulators  
Junction temperature, TJ  
Storage temperature, Tstg  
45  
65  
M4  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The voltage at VCCA and PVIN pins can exceed the 6 V absolute max condition for a short period of time, but must remain less than 8  
V. VCCA at 8 V for a 100 ms duration is equivalent to approximately 8 hours of aging for the device at room temperature.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.2 ESD Ratings  
POS  
VALUE  
UNIT  
Electrostatic  
discharge  
M5  
M6  
V(ESD)  
V(ESD)  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
±2000  
V
Electrostatic  
discharge  
±500  
V
(1) AEC Q100-002 indicates that HBM stressing must be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
MIN  
VCCA_UV  
2.8  
NOM  
MAX UNIT  
R1.3  
Voltage on OV protected supply input pin  
Voltage on all buck supply input pins  
Voltage difference between supply input pins  
Voltage on all buck switch nodes  
VCCA  
5.5  
5.5  
V
V
V
V
V
V
V
V
V
V
R1.4  
PVIN_Bx  
R1.4a  
R1.5  
Between VCCA and each PVIN_Bx  
SW_Bx pins  
0.2  
0.2  
3.3  
5.5  
R1.6  
Voltage on all buck voltage sense nodes(1)  
FB_Bx  
0
1.2  
VOUT_Bn,max  
VCCA  
VCCA  
3.3  
R1.7a  
R1.7b  
R1.8  
PVIN_LDO12, PVIN_LDO3  
PVIN_LDO4  
3.3  
3.3  
Voltage on all LDO supply voltage input pins  
2.2  
Voltage on all LDO output pins(1)  
Voltage on internal LDO output pins  
Voltage on reference ground pins  
VOUT_LDOx  
0
R1.9  
VOUT_LDOVINT, VOUT_LDOVRTC  
REFGNDx  
1.65  
0.3  
1.7  
1.95  
R1.10  
R1.11  
0.3  
VVIO_IN = 1.8 V  
1.8  
3.3  
1.9  
Voltage on I/O supply pin  
V
V
VCCA, up to  
3.465V  
R1.12  
R1.13  
VVIO_IN = 3.3 V  
3.135  
0
I2C and SPI pins, nRSTOUT & nRSTOUT_SoC  
pins, GPIO1, GPIO2, GPIO7, GPIO8, GPIO9,  
GPIO10, and GPIO11 pins  
Voltage on logic pins (input or output) in VIO  
domain  
VVIO_IN  
VVIO_IN,max  
Full Battery, up  
to 5.5V  
R1.14  
R1.15  
R1.16  
R1.17  
R1.18  
Voltage on backup supply pin  
Voltage on crystal oscillator pins  
VBACKUP  
0
0
0
0
0
V
V
V
V
V
VOUT_LDOVRTC,  
OSC32KIN, OSC32KOUT, OSC32KCAP  
With fail-safe(3): GPIO3 & GPIO4  
With fail-safe(3): GPIO5 & GPIO6  
nPWRON/ENABLE, EN_DRV  
max  
Voltage on logic pins (input or output) in  
LDOVRTC domain  
VOUT_LDOVRTC,  
1.8  
1.8  
max  
Voltage on logic pins (input or output) in  
LDOVINT domain  
VOUT_LDOVINT,m  
ax  
Voltage on logic pins (input or output) in VCCA  
domain  
VVCCA  
R1.19  
R1.20  
Operating free-air temperature(2)  
Junction temperature, TJ  
25  
25  
125  
150  
°C  
°C  
40  
40  
Operational  
(1) The maximum output voltage of BUCK1 to BUCK5 and LDO1 to LDO4 can be reduced by an NVM setting to adopt the maximum  
voltage to the requirements (or maximum ratings) of the load. This reduction of the maximum output voltage protects the processor  
from exceeding the maximum ratings of the core voltage. The default value is defined in the nonvolatile memory (NVM) and can be  
updated by software through I2C/SPI interface after device start-up.  
(2) Additional cooling strategies may be necessary to keep junction temperature at recommended limits.  
(3) The input buffer of a fail-safe GPIO pin is isolated from its input signal. Therefore, the input voltage to a fail-safe pin can be as high as  
5.5 V.  
7.4 Thermal Information  
TPS6593-Q1  
THERMAL METRIC(1)  
RWE (VQFNP)  
56 PINS  
21.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
RθJC(top)  
9.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.4 Thermal Information (continued)  
TPS6593-Q1  
THERMAL METRIC(1)  
RWE (VQFNP)  
UNIT  
56 PINS  
6.2  
RθJB  
ψJT  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
6.2  
ψJB  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.5 General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad  
of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
Connected from PVIN_LDOn to GND, Shared input  
tank capacitance (depending on platform requirements)  
1.1a  
CIN(LDOn)  
Input filtering capacitance(1)  
1
1
2.2  
2.2  
µF  
Output filtering effective  
capacitance(2)  
1.1b  
1.1c  
1.1d  
1.2a  
1.2b  
COUT(LDOn)  
Connected from VOUT_LDOn to GND  
4
20  
µF  
mΩ  
µF  
V
CESR (LDOn) Filtering capacitor ESR(3)  
1 MHz f 10 MHz  
1 MHz f 10 MHz  
LDO mode  
COUT_TOTAL (L Total capacitance at output  
DOn)  
20  
(Local + POL)(5)  
VIN(LDOn)  
LDO Input voltage  
1.2  
1.7  
VCCA  
VIN(LDOn)_bypas LDO Input voltage in bypass  
VCCA, up  
to 3.6 V  
Bypass mode  
V
mode  
s
LDO output voltage  
VOUT(LDOn)  
1.3  
LDO mode, with 50-mV steps  
0.6  
3.3  
1%  
V
configurable range  
Total DC output voltage  
accuracy, including voltage  
LDO mode, VIN(LDOn) - VOUT(LDOn) > 300 mV,  
1.4a  
1%  
V
OUT(LDOn) 1V  
TDCOV(LDOn)  
references, DC load and line  
regulations, process and  
temperature variations  
LDO mode, VIN(LDOn) - VOUT(LDOn) > 300 mV, VOUT(LDOn)  
< 1V  
1.4b  
10  
mV  
10  
1.6  
1.7  
IOUT(LDOn)  
Output current  
500  
1800  
1500  
mA  
mA  
V
IN(LDOn)min VIN(LDOn) VIN(LDOn)max  
ISHORT(LDOn)  
LDO current limitation  
LDO mode and bypass mode  
LDOn_BYPASS = 0  
700  
1.8a  
IIN_RUSH(LDOn) LDO inrush current  
mA  
LDOx_BYPASS = 1, with maximum 50-µF load  
connected to VOUT_LDOn  
1500  
65  
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output bypass mode. LDOn_PLDN = '00'  
1.11a RDIS(LDOn)  
1.11b RDIS(LDOn)  
1.11c RDIS(LDOn)  
1.11d RDIS(LDOn)  
1.12a  
35  
60  
50  
125  
250  
500  
60  
kΩ  
Ω
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output bypass mode. LDOn_PLDN = '01'  
200  
400  
800  
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output bypass mode. LDOn_PLDN = '10'  
120  
240  
Ω
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output  
Ω
bypass mode. LDOn_PLDN = '11'  
f = 1 kHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
f = 10 kHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
1.12b  
50  
Power supply ripple rejection  
from VIN(LDOn)  
PSRRVIN(LDOn)  
dB  
f = 100 kHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
1.12c  
1.12d  
1.13  
35  
f = 1 MHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
24  
For LDO1, LDO2, & LDO3, VCCA = VIN(LDOn) = 3.3 V,  
TJ = 25°C  
IQoff(LDOn)  
IQon(LDOn)  
TLDR(LDOn)  
Quiescent current, off mode  
2
µA  
µA  
1.14a  
1.14b  
LDOn_BYPASS = 0, ILOAD = 0 mA , TJ = 25°C  
LDOn_BYPASS = 1, ILOAD = 0 mA , TJ = 25°C  
78  
68  
Quiescent current, on mode  
Transient load regulation,  
LDOn_BYPASS = 0, IOUT = 20% to 80% of IOUTmax, tr =  
tf = 1 µs  
1.15  
1.16  
25  
-2  
mV  
(4)  
ΔVOUT  
Transient regulation due to  
Bypass Mode to Linear Mode  
Transition  
TBYPASS_to_LD  
VIN(LDOn) = 3.3V, IOUT=IOUT(LDOn)max, LDOn_BYPASS bit  
switches between 1 and 0  
mV  
O(LDOn)  
100 Hz < f 100 kHz, VIN = 3.3 V, VOUT = 1.8 V, IOUT  
300 mA  
=
1.17  
1.18  
1.19a  
VNOISE(LDOn)  
RMS Noise  
Ripple  
250  
µVRMS  
mVPP  
From the internal charge pump  
5
3.1 V VIN(LDOn) 3.5 V, PVIN_LDOx VCCA, IOUT  
= 500 mA, LDOx_BYPASS = 1  
200  
RBYPASS(LDOn) Bypass resistance  
mΩ  
1.7 V VIN(LDOn) 1.9 V, IOUT = 500 mA,  
LDOn_BYPASS = 1  
1.19c  
250  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.5 General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3) (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad  
of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VTH_RV_SC(LDO Threshold voltage for Short  
1.20  
LDOn_EN = 0  
140  
150  
160 mV  
Circuit  
n)  
Timing Requirements  
Time between enable of the LDOn to within OV/UV  
monitor level  
19.1  
ton(LDOn)  
Turn-on time  
500  
µs  
VOUT from 0.3 V to 90% of LDOn_VSET.  
LDOn_SLOW_RAMP = 0  
19.2a  
19.2b  
25 mV/µs  
tramp(LDOn)  
Ramp-up slew rate  
VOUT from 0.3 V to 90% of LDOn_VSET.  
LDOn_SLOW_RAMP = 1  
3
35  
44  
mV/µs  
µs  
19.3a tdelay_OC(LDOn) Over-current detection delay  
Detection signal delay when IOUT > ILIM  
tdeglitch_OC(LDOn Over-current detection signal  
19.3b  
Digital deglitch time for the over-current detection signal  
38  
µs  
deglitch time  
)
tlatency_OC(LDOn Over-current signal total  
19.4  
Total delay from Iout > ILIM to interrupt or PFSM trigger  
79  
µs  
latency time  
)
(1) Input capacitors must be placed as close as possible to the device pins.  
(2) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of the  
capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the outputs of  
regulators.  
(3) Ceramic capacitors recommended  
(4) Load transient voltage must be considered when selecting UV/OV threshold levels for the LDO output  
(5) Additional capacitance, including local and POL, beyond the specified value can cause the LDO to become unstable  
7.6 Low Noise Low Drop-Out Regulator (LDO4)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
Connected from PVIN_LDO4 to GND, Shared input  
tank capacitance (depending on platform requirements)  
2.1a  
2.1b  
2.1c  
CIN(LDO4)  
Input filtering capacitance(1)  
1
1
2.2  
2.2  
µF  
COUT(LDO4)  
CESR(LDO4)  
Output filtering capacitance(2) Connected from VOUT_LDO4 to GND  
4
µF  
Input and output capacitor  
1 MHz f 10 MHz  
ESR(3)  
20  
mΩ  
2.1d  
2.1e  
2.2  
15  
30  
µF  
µF  
V
1 MHz f 10 MHz, fast ramp  
COUT_TOTAL  
Total capacitance at output  
(Local + POL)(4)  
(LDO4)  
1 MHz f 10 MHz, slow ramp  
VIN(LDO4)  
LDO Input voltage  
2.2  
1.2  
5.5  
LDO output voltage  
with 25-mV steps  
configurable range  
2.3  
VOUT(LDO4)  
3.3  
1%  
V
Total DC output voltage  
accuracy, including voltage  
references, DC load and line  
regulations, process and  
temperature  
2.5  
TDCOV(LDO4)  
VIN(LDO4) - VOUT(LDO4) > 300 mV  
1%  
2.7  
2.8  
2.9  
IOUT(LDO4)  
Output current  
300 mA  
900 mA  
650 mA  
V
IN(LDO4)min VIN(LDO4) VIN(LDO4)max  
ISHORT(LDO4)  
LDO current limit  
400  
IIN_RUSH(LDO4) LDO inrush current  
VIN = 3.3V when LDO is enabled  
f = 1 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
2.13a  
2.13b  
2.13c  
2.13d  
70  
70  
62  
15  
f = 10 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
PSRR(LDO4)  
Power supply ripple rejection  
dB  
f = 100 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
f = 1 MHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.6 Low Noise Low Drop-Out Regulator (LDO4) (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Active only when converter is disabled, LDO4_PLDN =  
'00'  
2.12a  
35  
50  
65  
200  
400  
800  
2
kΩ  
Ω
Active only when converter is disabled, LDO4_PLDN =  
'01'  
2.12b  
2.12c  
2.12d  
2.14  
2.15  
2.16  
2.17  
2.18  
2.19  
60  
120  
240  
125  
250  
500  
Pulldown discharge resistance  
at LDO output  
RDIS(LDO4)  
Active only when converter is disabled, LDO4_PLDN =  
'10'  
Ω
Active only when converter is disabled, LDO4_PLDN=  
'11'  
Ω
For all LDO regulators, VCCA = VIN(LDO4) = 3.8 V, TJ =  
25℃  
IQoff(LDO4)  
Leakage current in off mode  
Quiescent current  
µA  
ILOAD = 0 mA ,LDO4 under valid operating condition, TJ  
= 25℃  
IQon(LDO4)  
40  
µA  
mV  
Transient load regulation,  
ΔVOUT  
VIN(LDO4) = 3.3V, VOUT(LDO4) = 2.80V, IOUT = 20% of  
IOUT_MAX to 80% of IOUT_MAX in 1us, COUT(LDO4) = 2.2uF  
TLDR(LDO4)  
TLNR(LDO4)  
VNOISE(LDO4)  
25  
25  
Transient line regulation,  
ΔVOUT / VOUT  
On mode, not under dropout condition, VIN step = 600  
mVPP, tr = tf = 10 µs  
-25  
25  
mV  
100 Hz < f 100 kHz, VIN = 3.3 V, VOUT = 1.8 V, IOUT  
=
RMS Noise  
15  
µVRMS  
mV  
300 mA  
VTH_SC_RV(LDO Threshold voltage for Short  
LDO4_EN = 0  
140  
150  
160  
Circuit  
4)  
Timing Requirements  
19.11a tSTART(LDO4)  
19.12  
Time from completion of enable command to output  
voltage at 0.5 V  
Start Time  
150  
350  
2.3  
µs  
µs  
Measured from 0.5 V to 90% of LDO4_VSET.  
LDO4_SLOW_RAMP = 0  
a1  
tRAMP(LDO4)  
Ramp Time  
19.12  
Measured from 0.5 V to 90% of LDO4_VSET.  
LDO4_SLOW_RAMP = 1  
ms  
a2  
19.12  
b
VOUT from 0.5 V to 90% of LDO4_VSET.  
LDO4_SLOW_RAMP = 0  
27 mV/µs  
tRAMP_SLEW(LD  
Ramp up slew rate  
O4)  
VOUT from 0.5 V to 90% of LDO4_VSET.  
LDO4_SLOW_RAMP = 1  
19.12c  
3
35  
44  
79  
mV/µs  
µs  
19.13  
a
tdelay_OC(LDO4) Over-current detection delay  
Detection signal delay when IOUT > ILIM  
19.13 tdeglitch_OC(LDO4 Over-current detection signal  
b
Digital deglitch time for the over-current detection signal  
Total delay from Iout > ILIM to interrupt or PFSM trigger  
38  
µs  
deglitch time  
)
tlatency_OC(LDO4 Over-current signal total  
19.14  
µs  
latency time  
)
(1) Input capacitors must be placed as close as possible to the device pins.  
(2) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of the  
capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the outputs of  
regulators.  
(3) Ceramic capacitors recommended  
(4) Additional capacitance, including local and POL, beyond the specified value can cause the LDO to become unstable  
7.7 Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
COUT(LDOinternal  
3.1  
Output filtering capacitance(1)  
Connected from VOUT_LDOx to GND  
1
2.2  
4
µF  
)
3.3a  
3.3b  
VOUT(LDOVRTC)  
LDOVRTC  
LDOVINT  
1.8  
1.8  
V
V
LDO output voltage  
VOUT(LDOVINT)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.7 Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT) (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
LDOVRTC, VCCA = 3.3 V, TJ = 25℃  
LDOVINT, VCCA = 3.3 V, TJ = 25℃  
MIN  
TYP  
MAX UNIT  
3.7a  
2
IQoff(LDOinternal) Leakage current, off mode  
µA  
2
3.7b  
LDOVRTC under valid operating condition, ILOAD = 0  
mA  
3.8a  
3.8b  
3.9  
3
3
10  
IQon(LDOinternal) Quiescent current, on mode  
µA  
LDOVINT under valid operating condition, ILOAD = 0 mA  
LDOx disabled  
10  
Pulldown discharge resistance  
RDIS(LDOinterna;)  
60  
125  
190  
Ω
at LDO output  
(1) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of the  
capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given DC voltage at the outputs of  
regulators.  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics - Output Voltage  
4.1a  
1-phase output  
0.3  
0.3  
3.34  
1.9  
V
VVOUT_Bn  
Output voltage configurable range  
4.1b  
4.2a  
4.2b  
4.2c  
4.2d  
Multi-phase output  
V
20  
5
mV  
mV  
mV  
mV  
0.3 V VVOUT_Bn < 0.6 V  
0.6 V VVOUT_Bn < 1.1 V  
1.1 V VVOUT_Bn < 1.66 V  
1.66 V VVOUT_Bn < 3.34 V  
VVOUT_Bn_Step Output voltage configurable step size  
VDROPOUT_Bn Input and output voltage difference  
10  
20  
Minimum voltage between PVIN_Bn and  
VOUT_Bn to fulfill the electrical characteristics  
4.4  
0.7  
V
4.5a  
4.5b  
4.5c  
4.5d  
4.5e  
4.5f  
BUCKn_SLEW_RATE[2:0] = 000b  
BUCKn_SLEW_RATE[2:0] = 001b  
BUCKn_SLEW_RATE[2:0] = 010b  
BUCKn_SLEW_RATE[2:0] = 011b  
BUCKn_SLEW_RATE[2:0] = 100b  
BUCKn_SLEW_RATE[2:0] = 101b  
BUCKn_SLEW_RATE[2:0] = 110b  
BUCKn_SLEW_RATE[2:0] = 111b  
26.6  
17  
33.3  
20  
36.6 mV/µs  
22 mV/µs  
9
10  
11 mV/µs  
4.5  
5
5.5 mV/µs  
2.75 mV/µs  
1.38 mV/µs  
0.69 mV/µs  
0.344 mV/µs  
Output voltage slew-rate configurable  
VOUT_SR_Bn  
range(5) (8)  
2.25  
1.12  
0.56  
2.5  
1.25  
0.625  
4.5g  
4.5h  
0.281 0.3125  
Electrical Characteristics - Output Current, Limits and Thresholds  
4.7a  
4.7b  
4.7c  
1-phase, BUCK5  
1-phase, BUCK4  
1-phase, BUCK1, BUCK2, BUCK3  
2-phase  
2
4
A
A
A
A
A
A
3.5  
7
IOUT_Bn  
Output current(3) (4)  
4.7d  
4.7e  
4.7f  
3-phase  
10.5  
14  
4-phase  
Mismatch between phase current and average  
phase current, 1A/phase < IOUT_Bn 2A /  
phase  
4.8a  
4.8b  
20%  
10%  
Current balancing for multi-phase  
output  
IOUT_MP_Bal  
Mismatch between phase current and average  
phase current, IOUT_Bn > 2 A / phase  
4.9a  
4.9b  
Forward current limit (peak during  
each switching cycle) configurable  
range  
BUCK5  
2.5  
2.5  
3.5  
5.5  
A
A
ILIM_FWD_PEAK  
_ Range  
BUCK1, BUCK2, BUCK3, BUCK4  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ILIM_FWD_PEAK  
4.10  
Forward current limit step Size  
1
A
_Step  
ILIM_FWD = 2.5 A or 3.5 A, 3.0 V VPVIN_Bn  
5.5 V  
4.11a  
4.11b  
4.11c  
4.11d  
4.12  
-0.55  
-0.55  
0.55  
0.55  
10%  
10%  
2.8  
A
A
ILIM_FWD = 4.5 A, 3.0 V VPVIN_Bn 5.5 V,  
BUCK1, BUCK2, BUCK3, BUCK4  
ILIM_FWD_PEAK  
Forward current limit accuracy  
_Accuracy  
ILIM_FWD = 5.5 A, 3.0 V VPVIN_Bn 4.5 V,  
BUCK1, BUCK2, BUCK3, BUCK4  
15%  
10%  
1.5  
ILIM_FWD = 5.5 A, 4.5 V VPVIN_Bn 5.5 V,  
BUCK1, BUCK2, BUCK3, BUCK4  
Negative current limit (peak during  
each switching cycle)  
ILIM_NEG  
2
A
4.15a  
4.15b  
4.15c  
4.16a  
4.16b  
4.16c  
4.16d  
4.16e  
4.16f  
From 1-phase to 2-phase  
2.0  
4.0  
6.0  
1.3  
2.7  
3.5  
0.7  
1.3  
2.5  
A
A
A
A
A
A
A
A
A
IADD  
Phase adding level (multi-phase rails) From 2-phase to 3-phase  
From 3-phase to 4-phase  
From 2-phase to 1-phase  
Phase shedding level (multi-phase  
From 3-phase to 2-phase  
rails)  
ISHED  
From 4-phase to 3-phase  
Hysteresis from 2-phase to 1-phase  
Phase shedding hysteresis (multi-  
phase rails)  
ISHED_Hyst  
Hysteresis from 3-phase to 2-phase  
Hysteresis from 4-phase to 3-phase  
Electrical Characteristics - Current Consumption, On-Resistance, and Output Pulldown Resistance  
4.17  
Ioff  
Shutdown current, BUCKn disabled  
VCCA = VPVIN_Bn = 3.3 V. TJ = 25°C  
1
µA  
µA  
IOUT_Bn = 0 mA, not switching, first single phase  
or primary phase in multi-phase  
configuration, TJ = 25°C  
4.18a  
80  
IOUT_Bn = 0 mA, not switching, additional single  
phase or primary phase in multi-phase  
configuration, TJ = 25°C  
4.18b  
4.18c  
IQ_AUTO  
Auto mode quiescent current  
60  
30  
µA  
µA  
IOUT_Bn = 0 mA, not switching, secondary/  
tertiary/quaternary phase in multi-phase  
configuration, TJ = 25°C  
4.19a  
4.19b  
4.20a  
4.20b  
IOUT_Bn = 1 A, BUCK5  
55  
52  
41  
30  
110  
100  
70  
mΩ  
mΩ  
mΩ  
mΩ  
RDS(ON) HS FET On-resistance, high-side FET  
RDS(ON) LS FET On-resistance, low-side FET  
IOUT_Bn = 1 A, BUCK1, BUCK2, BUCK3,  
BUCK4  
IOUT_Bn = 1 A, BUCK5  
IOUT_Bn = 1 A, BUCK1, BUCK2, BUCK3,  
BUCK4  
55  
Regulator disabled, per phase, BUCKn_PLDN =  
1
4.21  
4.22  
RDIS_Bn  
RSW_SC  
Output pulldown discharge resistance  
50  
2
100  
4.5  
150  
20  
Ω
Ω
Short circuit detection resistance  
threshold at the SW pin  
Electrical Characteristics - 4.4 MHz VOUT Less than 1.9 V, Multiphase or High COUT Single Phase  
4.31  
4.32  
4.33a  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
3.0  
0.3  
3
3.3  
5.5  
1.9  
V
V
Output voltage configurable range  
Input filtering capacitance(1)  
22  
22  
µF  
COUT-  
4.33b  
4.33c  
Output capacitance, local(2)  
Per phase  
Per phase  
10  
µF  
µF  
Local(Buckn)  
Output capacitance, total (local and  
POL)(2)  
COUT-TOTAL_Bn  
70  
250  
286  
4.34a  
4.34b  
4.35  
Inductance  
154  
220  
10  
nH  
mΩ  
mA  
LBn  
Power inductor  
DCR  
IQ_PWM  
PWM mode Quiescent current  
Per phase, IOUT_Bn = 0 mA  
19  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
VVOUT_Bx < 1 V, PWM mode  
VOUT_Bx 1 V, PWM mode  
VVOUT_Bx < 1 V, PFM mode  
MIN  
10  
1%  
20  
TYP  
MAX UNIT  
4.160a  
10  
1%  
25  
mV  
4.160b  
4.160c  
V
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.160d  
4.37a  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to  
400 mA / phase, tr = tf = 1 µs, PWM mode  
10  
15  
mV  
mV  
mV  
0.6 V VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to  
1.75A / phase, tr = tf = 1 µs, PWM mode,  
BUCK1, BUCK2, BUCK3, BUCK4  
4.37ba  
4.37bb  
4.37ca  
0.6 V VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode, BUCK5  
TLDSR_MP  
Transient load step response(7)  
15  
1.5 V VVOUT_Bn 1.9 V, IOUT_Bn = 1 mA to  
1.75 A / phase, tr = tf = 1 µs, PWM mode,  
BUCK1, BUCK2, BUCK3, BUCK4  
1.2%  
1.5 V VVOUT_Bn 1.9 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode, BUCK5  
4.37cb  
4.38  
1.0%  
±5  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn = IOUT(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
mV  
4.39a  
4.39b  
4.40  
PWM mode, 1-phase  
PFM mode  
3
15  
mVPP  
VOUT_Ripple  
25 mVPP  
VTH_SC_RV(Bn) Threshold voltage for Short Circuit  
Bn_EN = 0  
140  
150  
160  
mV  
mA  
PWM to PFM switch current  
4.102  
4.101  
4.103  
IPWM-PFM  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
400  
500  
100  
threshold(6)  
PFM to PWM switch current  
IPFM-PWM  
mA  
mA  
threshold(6)  
PWM to PFM switch current  
IPWM-PFM_HYST  
hysteresis  
Electrical Characteristics - DDR VTT Termination, 2.2 MHz Single Phase Only  
4.41  
VPVIN_Bn  
IOUT_Bn_SINK  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
2.8  
1  
0.5  
3
3.3  
5.5  
0.7  
V
A
4.42  
Current sink  
4.43  
Output voltage programmable range  
Input filtering capacitance(1)  
V
4.44a  
4.44b  
22  
22  
µF  
µF  
COUT-TOTAL_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.44c  
COUT-TOTAL_Bn  
35  
65  
µF  
POL)(2)  
4.45a  
4.45b  
4.46a  
4.161a  
Inductance  
329  
470  
10  
611  
nH  
mΩ  
mA  
mV  
LBn  
Power inductor  
DCR  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
VVOUT_Bx < 1 V, PWM mode  
19  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
10  
10  
VOUT_DC_Bx  
4.161b  
4.48  
1%  
V
VOUT_Bx 1 V, PWM mode  
1%  
0.5 V VVOUT_Bn 0.7 V, IOUT_Bn = -1 mA to  
-1000 mA, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
15  
mV  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn = IOUT_Bn(max)  
4.49  
4.50  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
±5  
3
20  
6
mV  
VOUT_Ripple  
PWM mode  
mVPP  
Electrical Characteristics - 4.4 MHz VOUT Less than 1.9 V, Low COUT, Single Phase Only  
4.51  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
3.0  
0.3  
3
3.3  
5.5  
1.9  
V
V
4.52  
Output voltage configurable range  
Input filtering capacitance(1)  
4.53a  
4.53b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output capacitance, total (local and  
POL)(2)  
4.53c  
COUT-TOTAL_Bn  
25  
100  
286  
µF  
4.54a  
4.54b  
Inductance  
DCR  
154  
220  
10  
nH  
LBn  
Power inductor  
mΩ  
IOUT_Bn = 0 mA, BUCK1, BUCK2, BUCK3,  
BUCK4  
4.55a  
19  
19  
mA  
IQ_PWM  
PWM mode Quiescent current  
4.55b  
IOUT_Bn = 0 mA, BUCK5  
mA  
mV  
4.162a  
4.162b  
4.162c  
VVOUT_Bx < 1 V, PWM mode  
10  
1%  
35  
10  
1%  
20  
V
VOUT_Bx 1 V, PWM mode  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
mV  
-1% - 10  
mV  
1% + 25  
mV  
4.162d  
4.57a  
4.57b  
4.57c  
4.58  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to  
200 mA / phase, tr = tf = 1 µs, PWM mode  
15  
15  
mV  
mV  
0.6 V VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
1.5 V VVOUT_Bn 1.9 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode  
1.5%  
±5  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn= IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
8
mV  
4.59a  
4.59b  
PWM mode  
PFM mode  
5
mVPP  
VOUT_Ripple  
15  
50 mVPP  
mA  
PFM to PWM switch current  
threshold(6)  
4.111  
4.112  
4.113  
IPFM-PWM  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
500  
420  
100  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 4.4 MHz VOUT Greater than 1.7 V, Single Phase Only  
4.61  
4.62  
VPVIN_Bn  
Input voltage range  
Output current  
4.5  
5
5.5  
2.5  
V
A
IOUT_Bn_4.4_HV  
OUT  
4.63  
VVOUT_Bn  
CIN_Bn  
Output voltage configurable range  
Input filtering capacitance(1)  
1.7  
3
3.34  
V
4.64a  
4.64b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.64c  
COUT-TOTAL_Bn  
50  
150  
611  
µF  
POL)(2)  
4.65a  
Inductance  
329  
470  
10  
nH  
mΩ  
mA  
mV  
LBn  
Power inductor  
4.65b  
DCR  
4.66a  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
VVOUT_Bx < 1 V, PWM mode  
19  
4.163a  
4.163b  
4.163c  
10  
1%  
25  
10  
1%  
20  
V
VOUT_Bx 1 V, PWM mode  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.163d  
4.68  
V
VOUT_Bx 1 V, PFM mode  
1.7 V VVOUT_Bn 3.34 V, IOUT_Bn = 1 mA to  
1 A/phase, tr = tf = 1 µs, PWM mode  
TLDSR_SP  
TLNSR  
Transient load step response(7)  
Transient line response  
1.5%  
±5  
VPVIN_Bn stepping from 4.7 V to 5.2 V, tr = tf = 10  
µs, IOUT_Bn = IOUT_Bn(max)  
4.69  
-20  
20  
7
mV  
4.70a  
4.70b  
PWM mode  
PFM mode  
3
mVPP  
VOUT_Ripple  
Ripple voltage(7)  
15  
25 mVPP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PFM to PWM switch current  
threshold(6)  
4.121  
IPFM-PWM  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.8 V  
400  
mA  
PWM to PFM switch current  
threshold(6)  
4.122  
4.123  
IPWM-PFM  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.8 V  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.8 V  
370  
30  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 2.2 MHz Full VOUT Range and VIN Greater than 4.5 V, Single Phase Only  
4.71  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
4.5  
0.3  
3
5
5.5  
V
V
4.72  
Output voltage configurable range  
Input filtering capacitance(1)  
3.34  
4.73a  
4.73b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.73c  
COUT-TOTAL_Bn  
100  
700  
1000  
1300  
µF  
POL)(2)  
4.74a  
4.74b  
4.75  
Inductance  
1000  
10  
nH  
mΩ  
mA  
mV  
LBn  
Power inductor  
DCR  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
VVOUT_Bx < 1 V, PWM mode  
13  
4.164a  
4.164b  
4.164c  
10  
1%  
25  
10  
1%  
20  
V
VOUT_Bx 1 V, PWM mode  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.164d  
4.77a  
4.77b  
4.77c  
4.78  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to  
400 mA / phase, tr = tf = 1 µs, PWM mode  
15  
15  
mV  
mV  
0.6 V VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
1.5 V VVOUT_Bn 3.34 V, IOUT_Bn = 1 mA to  
2 A / phase, tr = tf = 1 µs, PWM mode  
1.5%  
±5  
VPVIN_Bn stepping from 4.7 V to 5.2 V, tr = tf = 10  
µs, IOUT_Bn= IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
mV  
4.79a  
4.79b  
PWM mode  
PFM mode  
3
7.5 mVPP  
25 mVPP  
VOUT_Ripple  
15  
PFM to PWM switch current  
threshold(6)  
4.131  
4.132  
4.133  
IPFM-PWM  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.0V  
310  
290  
20  
mA  
mA  
mA  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase  
4.81  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
3.0  
0.3  
3
3.3  
5.5  
1.9  
V
V
4.82  
Output voltage configurable range  
Input filtering capacitance(1)  
4.83a  
4.83b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
Per phase  
Per phase  
10  
Output capacitance, total (local and  
4.83c  
COUT-TOTAL_Bn  
100  
329  
1000  
611  
µF  
POL)(2)  
4.84a  
4.84b  
4.85  
Inductance  
DCR  
470  
10  
nH  
mΩ  
mA  
LBn  
Power inductor  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
13  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
VVOUT_Bx < 1 V, PWM mode  
VOUT_Bx 1 V, PWM mode  
VVOUT_Bx < 1 V, PFM mode  
MIN  
10  
1%  
20  
TYP  
MAX UNIT  
4.165a  
10  
1%  
25  
mV  
4.165b  
4.165c  
V
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.165d  
4.87a  
4.87b  
4.87c  
4.88  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to  
400 mA / phase, tr = tf = 1 µs, PWM mode  
5
15  
mV  
mV  
0.6 V VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
1.5 V VVOUT_Bn 1.9 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
1.0%  
±5  
VPVIN_Bn stepping from 4.7 V to 5.2 V, tr = tf = 10  
µs, IOUT_Bn= IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
5
mV  
4.89a  
4.89b  
PWM mode, 1-phase  
PFM mode  
3
mVPP  
VOUT_Ripple  
15  
25 mVPP  
mA  
PFM to PWM switch current  
threshold(6)  
4.141  
4.142  
4.143  
IPFM-PWM  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
500  
400  
100  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 2.2 MHz Full VOUT and Full VIN Range, Single Phase Only  
4.91  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
2.8  
0.3  
3
3.3  
5.5  
V
V
4.92  
Output voltage configurable range  
Input filtering capacitance(1)  
3.34  
4.93a  
4.93b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.93c  
COUT-TOTAL_Bn  
100  
700  
500  
µF  
POL)(2)  
4.94a  
4.94b  
Inductance  
DCR  
1000  
10  
1300  
nH  
LBn  
Power inductor  
mΩ  
IOUT_Bn = 0 mA, BUCK1, BUCK2, BUCK3,  
BUCK4  
4.95  
IQ_PWM  
PWM mode Quiescent current  
13  
mA  
mV  
4.166a  
4.166b  
VVOUT_Bx < 1 V, PWM mode  
10  
10  
1%  
V
VOUT_Bx 1 V, PWM mode  
VOUT_Bx 1 V, PFM mode  
1%  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
-1% - 10  
mV  
1% + 15  
mV  
4.166d  
4.166c  
4.97a  
V
VVOUT_Bx < 1 V, PFM mode  
25  
mV  
mV  
20  
0.3 V VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to  
400 mA / phase, tr = tf = 1 µs, PWM mode  
35  
17  
0.6 V VVOUT_Bn < 1.0 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
4.97b  
4.97c  
4.98  
TLDSR_SP  
Transient load step response(7)  
mV  
1.0 V VVOUT_Bn 3.34 V, IOUT_Bn = 1 mA to  
2 A / phase, tr = tf = 1 µs, PWM mode  
3.5%  
±5  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn = IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
mV  
4.99a  
4.99b  
PWM mode  
PFM mode  
3
7.5 mVPP  
25 mVPP  
VOUT_Ripple  
15  
PFM to PWM switch current  
threshold(6)  
4.151  
4.152  
IPFM-PWM  
IPWM-PFM  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
290  
230  
mA  
mA  
PWM to PFM switch current  
threshold(6)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PWM to PFM switch current  
hysteresis  
4.153  
IPWM-PFM_HYST  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
50  
mA  
Switching Characteristics  
20.1a  
20.1b  
2.2 MHz setting, internal clock  
2
4
2.2  
4.4  
2.2  
4.4  
2.2  
4.4  
4.4  
2.2  
2.4 MHz  
4.8 MHz  
2.64 MHz  
5.3 MHz  
2.64 MHz  
5.3 MHz  
MHz  
4.4 MHz setting, internal clock  
20.1d  
2.2 MHz setting, internal clock, spread spectrum  
4.4 MHz setting, internal clock, spread spectrum  
2.2 MHz setting, synchronized to external clock  
4.4 MHz setting, synchronized to external clock  
0.6 V VVOUT_Bn  
1.76  
3.5  
1.76  
3.5  
Steady state switching frequency in  
PWM mode (NVM configurable)  
fSW  
20.1e  
20.1f  
20.1g  
20.2a  
Automatic maximum switching  
frequency scaling in PWM mode  
fSW_max  
20.2b  
MHz  
0.3 V VVOUT_Bn < 0.6 V  
Timing Requirements  
From end of voltage ramp to within 15mV from  
target VOUT_DC_Bx  
20.3  
20.4  
20.5a  
tsettle_Bn  
tstartup_Bn  
tdelay_OC  
Settling time after voltage scaling  
Start-up delay  
105  
218  
7
µs  
µs  
µs  
From enable to start of output voltage rise  
100  
19  
150  
Peak current limit triggering during every  
switching cycle  
Over-current detection delay  
Digital deglitch time for detected signal.  
Time duration to filter out short positive  
and negative pulses  
Over-current detection signal deglitch  
time  
20.5b  
20.6  
tdeglitch_OC  
23  
30  
µs  
µs  
Over-current signal latency time from Total delay from over-current detection to  
detection interrupt or PFSM trigger  
tlatency_OC  
(1) Input capacitors must be placed as close as possible to the device pins.  
(2) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of the  
capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given DC voltage at the outputs of  
regulators.  
(3) The maximum output current can be limited by the forward current limit. The maximum output current is also limited by the junction  
temperature and maximum average current over lifetime. The power dissipation inside the die increases the junction temperature and  
limits the maximum current depending on the length of the current pulse, efficiency, board and ambient temperature.  
(4) Additional cooling strategies may be necessary to keep the device junction temperature at recommended limits with large output  
current.  
(5) SLEW_RATEx[2:0] register default comes from NVM memory, and can be re-configured by the MCU. Output capacitance, forward and  
negative current limits and load current may limit the maximum and minimum slew rates.  
(6) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependent on the output voltage, input voltage, and  
the inductor current level. The BUCK Regulator does not switch over from PWM to PFM for Fsw=2.2MHz and VOUT < 0.5V  
(7) Please refer to the applications section of the data sheet regarding the power delivery network (PDN) used for the transient load step  
and output ripple test conditions. All ripple specs are defined across POL capacitor in the described PDN.  
(8) The 33.3 mV/µs slew-rate setting is not recommended for LBx 1 µH, as this can trigger OV detection due to larger overshoot at the  
buck output.  
7.9 Reference Generator (BandGap)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
Capacitance between AMUXOUT pin and thermal/  
ground pad  
5.1  
Max capacitance at AMUX pin  
Output voltage  
100  
pF  
V
5.2  
Measured at the AMUXOUT pin  
1.17  
1.2  
30  
1.23  
Timing Requirements  
From AMUXOUT_EN=1 to the time bandgap voltage  
settles  
21.1  
tSU_REF  
Start-up time  
µs  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.10 Monitoring Functions  
Over operating free-air temperature range (unless otherwise noted). Voltage level is measured with reference to the thermal/  
ground pad of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: BUCK REGULATORS OUTPUT  
7.1a  
7.1b  
7.1c  
BUCKn_OV_THR = 0x0  
2%  
2.5%  
3%  
4%  
5%  
6%  
7%  
9%  
20  
3%  
3.5%  
4%  
5%  
6%  
7%  
8%  
10%  
30  
4%  
4.5%  
5%  
6%  
7%  
8%  
9%  
11%  
40  
BUCKn_OV_THR = 0x1  
BUCKn_OV_THR = 0x2  
BUCKn_OV_THR = 0x3  
BUCKn_OV_THR = 0x4  
BUCKn_OV_THR = 0x5  
BUCKn_OV_THR = 0x6  
BUCKn_OV_THR = 0x7  
BUCKn_OV_THR = 0x0  
BUCKn_OV_THR = 0x1  
BUCKn_OV_THR = 0x2  
BUCKn_OV_THR = 0x3  
BUCKn_OV_THR = 0x4  
BUCKn_OV_THR = 0x5  
BUCKn_OV_THR = 0x6  
BUCKn_OV_THR = 0x7  
BUCKn_UV_THR = 0x0  
BUCKn_UV_THR = 0x1  
BUCKn_UV_THR = 0x2  
BUCKn_UV_THR = 0x3  
BUCKn_UV_THR = 0x4  
BUCKn_UV_THR = 0x5  
BUCKn_UV_THR = 0x6  
BUCKn_UV_THR = 0x7  
BUCKn_UV_THR = 0x0  
BUCKn_UV_THR = 0x1  
BUCKn_UV_THR = 0x2  
BUCKn_UV_THR = 0x3  
BUCKn_UV_THR = 0x4  
BUCKn_UV_THR = 0x5  
BUCKn_UV_THR = 0x6  
BUCKn_UV_THR = 0x7  
Overvoltage monitoring for BUCK  
7.1d  
output, threshold accuracy,  
V
VBUCK_OV_TH  
7.1e  
7.1f  
OUT_Bn 1 V(1)  
7.1g  
7.1h  
7.2a  
7.2b  
7.2c  
7.2d  
7.2e  
7.2f  
25  
35  
45  
30  
40  
50  
Overvoltage monitoring for BUCK  
output, threshold accuracy,  
VOUT_Bn < 1 V(1)  
40  
50  
60  
mV  
70  
VBUCK_OV_TH_mv  
50  
60  
60  
70  
80  
90  
7.2g  
7.2h  
7.3a  
7.3b  
7.3c  
7.3d  
7.3e  
7.3f  
70  
80  
90  
100  
110  
4%  
3% 2%  
4.5% 3.5% 2.5%  
5%  
6%  
7%  
8%  
9%  
4% 3%  
5% 4%  
6% 5%  
7% 6%  
8% 7%  
Undervoltage monitoring for buck  
output, threshold accuracy,  
VOUT_Bn 1 V(1)  
VBUCK_UV_TH  
7.3g  
7.3h  
7.4a  
7.4b  
7.4c  
7.4d  
7.4e  
7.4f  
11% 10% 9%  
40  
45  
50  
60  
70  
80  
90  
30  
35  
40  
50  
60  
70  
80  
20  
25  
30  
40  
50  
60  
70  
90  
Undervoltage monitoring for buck  
output, threshold accuracy,  
VOUT_Bn < 1 V(1)  
VBUCK_UV_TH_mv  
mV  
7.4g  
7.4h  
110 100  
Electrical Characteristics: LDO REGULATOR OUTPUTS  
7.5a  
7.5b  
7.5c  
LDOn_OV_THR = 0x0  
LDOn_OV_THR = 0x1  
LDOn_OV_THR = 0x2  
LDOn_OV_THR = 0x3  
LDOn_OV_THR = 0x4  
LDOn_OV_THR = 0x5  
LDOn_OV_THR = 0x6  
LDOn_OV_THR = 0x7  
2%  
2.5%  
3%  
3%  
3.5%  
4%  
4%  
4.5%  
5%  
Overvoltage monitoring for LDO  
7.5d  
4%  
5%  
6%  
output, threshold accuracy,  
V
VLDO_OV_TH  
7.5e  
7.5f  
5%  
6%  
7%  
OUT_LDOn 1 V(2)  
6%  
7%  
8%  
7.5g  
7.5h  
7%  
8%  
9%  
9%  
10%  
11%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.10 Monitoring Functions (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is measured with reference to the thermal/  
ground pad of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
7.6a  
LDOn_OV_THR = 0x0  
20  
30  
40  
45  
50  
7.6b  
7.6c  
7.6d  
7.6e  
7.6f  
LDOn_OV_THR = 0x1  
LDOn_OV_THR = 0x2  
LDOn_OV_THR = 0x3  
LDOn_OV_THR = 0x4  
LDOn_OV_THR = 0x5  
LDOn_OV_THR = 0x6  
LDOn_OV_THR = 0x7  
LDOn_UV_THR = 0x0  
LDOn_UV_THR = 0x1  
LDOn_UV_THR = 0x2  
LDOn_UV_THR = 0x3  
LDOn_UV_THR = 0x4  
LDOn_UV_THR = 0x5  
LDOn_UV_THR = 0x6  
LDOn_UV_THR = 0x7  
LDOn_UV_THR = 0x0  
LDOn_UV_THR = 0x1  
LDOn_UV_THR = 0x2  
LDOn_UV_THR = 0x3  
LDOn_UV_THR = 0x4  
LDOn_UV_THR = 0x5  
LDOn_UV_THR = 0x6  
LDOn_UV_THR = 0x7  
25  
35  
30  
40  
Overvoltage monitoring for LDO  
VLDO_OV_TH_mv output, threshold accuracy,  
VOUT_LDOn < 1 V(2)  
40  
50  
60  
mV  
70  
50  
60  
60  
70  
80  
90  
7.6g  
7.6h  
7.7a  
7.7b  
7.7c  
7.7d  
7.7e  
7.7f  
70  
80  
90  
100  
110  
4%  
3% 2%  
4.5% 3.5% 2.5%  
5%  
6%  
7%  
8%  
9%  
4% 3%  
5% 4%  
6% 5%  
7% 6%  
8% 7%  
Undervoltage monitoring for LDO  
output, threshold accuracy,  
OUT_LDOn 1 V(2)  
VLDO_UV_TH  
V
7.7g  
7.7h  
7.8a  
7.8b  
7.8c  
7.8d  
7.8e  
7.8f  
11% 10% 9%  
40  
45  
50  
60  
70  
80  
90  
30  
35  
40  
50  
60  
70  
80  
20  
25  
30  
40  
50  
60  
70  
90  
Undervoltage monitoring for LDO  
VLDO_UV_TH_mv output, threshold accuracy,  
mV  
VOUT_LDOn < 1 V(2)  
7.8g  
7.8h  
110 100  
Electrical Characteristics: VCCA INPUT  
7.9a  
7.9b  
7.9c  
7.9d  
VCCA_OV_THR = 0x0  
VCCA_OV_THR = 0x1  
VCCA_OV_THR = 0x2  
VCCA_OV_THR = 0x3  
VCCA_OV_THR = 0x4  
VCCA_OV_THR = 0x5  
VCCA_OV_THR = 0x6  
VCCA_OV_THR = 0x7  
VCCA_UV_THR = 0x0  
VCCA_UV_THR = 0x1  
VCCA_UV_THR = 0x2  
VCCA_UV_THR = 0x3  
VCCA_UV_THR = 0x4  
VCCA_UV_THR = 0x5  
VCCA_UV_THR = 0x6  
VCCA_UV_THR = 0x7  
2%  
2.5%  
3%  
3%  
3.5%  
4%  
4%  
4.5%  
5%  
4%  
5%  
6%  
Overvoltage monitoring for VCCA  
VCCAOV_TH  
input, threshold accuracy(3)  
7.9e  
5%  
6%  
7%  
7.9f  
6%  
7%  
8%  
7.9g  
7%  
8%  
9%  
7.9h  
9%  
10%  
-3%  
11%  
-2%  
7.10a  
7.10b  
7.10c  
7.10d  
7.10e  
7.10f  
7.10g  
7.10h  
-4%  
-4.5% -3.5% -2.5%  
-5%  
-6%  
-7%  
-8%  
-9%  
-11%  
-4%  
-5%  
-3%  
-4%  
-5%  
-6%  
-7%  
-9%  
Undervoltage monitoring for  
VCCAUV_TH  
VCCA input, threshold accuracy(3)  
-6%  
-7%  
-8%  
-10%  
Timing Requirements  
26.30a tdelay_OV_UV  
26.30b tdelay_OV_UV  
BUCK and LDO OV/UV detection  
delay  
Detection delay with 5 mV (Vin < 1 V) or 0.5% (Vin 1 V)  
over/underdrive  
8
µs  
µs  
VCCA OV/UV detection delay  
Detection delay with 30 mV over/underdrive  
12  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.10 Monitoring Functions (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is measured with reference to the thermal/  
ground pad of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VMON_DEGLITCH_SEL = 0: Digital deglitch time for  
detected signal  
26.31a tdeglitch1_OV_UV  
3.4  
3.8  
4.2  
22  
µs  
µs  
VCCA, BUCK and LDO OV/UV  
signal deglitch time  
VMON_DEGLITCH_SEL = 1: Digital deglitch time for  
detected signal  
26.31b tdeglitch2_OV_UV  
18  
20  
VMON_DEGLITCH_SEL = 0: Total delay from 5mV (Vin < 1  
V) or 0.5% (Vin 1 V) over/underdrive to interrupt or PFSM  
trigger  
26.32a tlatency1_OV_UV  
13  
30  
µs  
µs  
BUCK and LDO OV/UV signal  
latency time  
VMON_DEGLITCH_SEL = 1: Total delay from 5mV (Vin < 1  
V) or 0.5% (Vin 1 V) over/underdrive to interrupt or PFSM  
trigger  
26.32b tlatency2_OV_UV  
tlatency1_VCCA_OV  
VMON_DEGLITCH_SEL = 0: Total delay from 30 mV over/  
underdrive to interrupt or PFSM trigger  
26.32b  
13  
30  
µs  
µs  
µs  
µs  
_UV  
VCCA OV/UV signal latency time  
PGOOD signal deglitch time  
tlatency2_VCCA_OV  
VMON_DEGLITCH_SEL = 1: Total delay from 30 mV over/  
underdrive to interrupt or PFSM trigger  
26.32b  
_UV  
tdeglitch_PGOOD_ris  
26.33a  
Internal logic signal transitions from invalid to valid(4)  
Internal logic signal transitions from valid to invalid(4)  
9.5  
10.5  
e
tdeglitch_PGOOD_fal  
26.33b  
0
l
(1) The default values of BUCKn_OV_THR & BUCKn_UV_THR registers come from the NVM memory, and can be re-configured by  
software.  
(2) The default values of LDOn_OV_THR & LDOn_UV_THR registers come from the NVM memory, and can be re-configured by software.  
(3) The default values of VCCA_OV_THR & VCCA_UV_THR registers come from the NVM memory, and can be re-configured by  
software.  
(4) Interrupt status signal is input signal for PGOOD deglitch logic.  
7.11 Clocks, Oscillators, and PLL  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: CRYSTAL  
6.1  
6.2  
6.4  
Crystal frequency  
32768  
Hz  
Crystal frequency tolerance  
Crystal series resistance  
Parameter of crystal, TJ = 25°C  
20 ppm  
20  
At fundamental frequency  
90  
kΩ  
The power dissipated in the crystal during oscillator  
operation  
6.5  
Oscillator drive power  
0.1  
1.4  
0.5  
μW  
Corresponding to crystal frequency, including parasitic  
capacitances  
6.6  
6.7  
Crystal Load capacitance(1)  
Crystal shunt capacitance  
6
12.5  
2.6  
pF  
pF  
Parameter of crystal  
Electrical Characteristics: 32-kHz CRYSTAL OSCILLATOR EXTERNAL COMPONENTS  
6.7a  
Load capacitance on  
External Capacitors  
0
13  
pF  
pF  
OSC32KIN and OSC32KOUT  
(parallel mode, including  
parasitic of PCB for external  
capacitor)(2)  
6.7b  
Internal Capacitors  
9.5  
12  
14.5  
Switching Characteristics: 32-kHz CRYSTAL OSCILLATOR CLOCK  
Crystal Oscillator output  
frequency  
23.1  
23.2  
23.3  
23.4  
Typical with specified load capacitors  
32768  
50%  
10  
Hz  
Crystal Oscillator Output duty  
cycle  
Parameter of crystal, TJ = 25°C  
40%  
60%  
20  
Crystal Oscillator rise and fall  
time  
10% to 90%, with 10 pF load capacitance  
ns  
From Oscillator enable to reaching ±1% of final output  
frequency  
Crystal Oscillator Settling time  
200  
ms  
Switching Characteristics: 20-MHz and 128-kHz RC OSCILLATOR CLOCK  
20 MHz RC Oscillator output  
frequency  
23.10  
19  
20  
21 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.11 Clocks, Oscillators, and PLL (continued)  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
128 kHz RC Oscillator output  
frequency  
23.12  
121  
128  
135 kHz  
Switching Characteristics: DPLL, SYNCCLKIN, and SYNCCLKOUT  
22.1a  
22.1b  
22.1c  
22.2a  
22.2b  
22.2c  
EXT_CLK_FREQ = 0x0  
EXT_CLK_FREQ = 0x1  
1.1  
2.2  
4.4  
External input clock nominal  
frequency  
MHz  
EXT_CLK_FREQ = 0x2  
SS_DEPTH = 0x0  
SS_DEPTH = 0x1  
SS_DEPTH = 0x2  
18%  
12%  
10%  
18%  
12%  
10%  
External input clock required  
accuracy from nominal  
frequency  
22.13  
a
Logic low time for SYNCCLKIN  
clock  
40  
40  
ns  
ns  
22.13  
b
Logic high time for  
SYNCCLKIN clock  
External clock detection delay  
for missing clock detection  
22.3  
22.4  
22.5  
1.8  
20  
µs  
µs  
µs  
External clock input debounce  
time for clock detection  
Clock change delay (internal to  
external)  
From valid clock detection to use of external clock  
600  
22.7a  
22.7b  
22.7c  
22.8  
SYNCCLKOUT_FREQ_SEL = 0x1  
SYNCCLKOUT_FREQ_SEL = 0x2  
SYNCCLKOUT_FREQ_SEL = 0x3  
Cycle-to-cycle  
1.1  
2.2  
MHz  
MHz  
MHz  
SYNCCLKOUT clock nominal  
frequency  
4.4  
SYNCCLKOUT duty-cycle  
40%  
5
50%  
60%  
50  
SYNCCLKOUT output buffer  
external load  
22.9  
35  
pF  
22.11a  
22.11b  
SS_DEPTH = 0x1  
SS_DEPTH = 0x2  
6.3%  
8.4%  
Spread spectrum variation for  
nominal switching frequency  
Timing Requirements: Clock Monitors  
26.7a  
26.7b  
Clock Monitor Failure signal  
latency from occurrence of  
error  
Failure on 20MHz system clock  
10  
40  
µs  
µs  
tlatency_CLKfail  
Failure on 128KHz monitoring clock  
Clock Monitor Drift signal  
latency from detection  
26.8  
26.9  
tlatency_CLKdrift  
fsysclk  
115  
µs  
Internal system clock  
19  
20  
21 MHz  
20%  
Threshold for internal system  
clock frequency drift detection  
26.10 CLKdrift_TH  
26.11 CLKfail_TH  
-20%  
Threshold for internal system  
clock stuck at high or stuck at  
low detection  
10 MHz  
(1) Customer must use the XTAL_SEL bit to select the corresponding crystal based on its load capacitance.  
(2) External capacitors must be used if crystal load capacitance > 6 pF.  
7.12 Thermal Monitoring and Shutdown  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
8.1a  
8.1b  
8.2a  
8.2b  
TWARN_0  
TWARN_LEVEL = 0  
120  
130  
130  
135  
130  
140  
140  
145  
140  
150  
150  
155  
°C  
°C  
°C  
°C  
TWARN_INT thermal warning  
threshold (no hysteresis)  
TWARN_1  
TWARN_LEVEL = 1  
TSD_ORD_LEVEL = 0  
TSD_ORD_LEVEL = 1  
TSD_orderly_0  
TSD_orderly_1  
TSD_ORD_INT thermal  
shutdown rising threshold  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.12 Thermal Monitoring and Shutdown (continued)  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
TSD_ORD_LEVEL = 0  
TSD_ORD_LEVEL = 1  
MIN  
TYP  
MAX UNIT  
TSD_orderly_hys_  
8.2c  
10  
°C  
0
TSD_ORD_INT thermal  
shutdown hysteresis  
TSD_orderly_hys_  
8.2d  
8.3a  
8.3b  
5
150  
5
°C  
1
TSD_IMM_INT thermal  
shutdown rising threshold  
TSD_imm  
140  
160  
425  
°C  
°C  
TSD_IMM_INT thermal  
shutdown hysteresis  
TSD_imm_hys  
Timing Requirements  
TSD signal latency from  
detection  
26.6  
tlatency_TSD  
µs  
7.13 System Control Thresholds  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
VCCA UVLO/POR falling  
threshold  
9.1  
9.2  
VPOR_Falling  
Measured on VCCA pin  
2.7  
2.7  
2.75  
2.8  
3
V
V
VCCA UVLO/POR rising  
threshold  
VPOR_Rising  
VPOR_Hyst  
Measured on VCCA pin  
9.3  
VCCA UVLO/POR hysteresis  
100  
4.0  
5.7  
mV  
V
9.5aa  
9.5ab  
Measured on VCCA pin. VCCA_PG_SET = 0b  
Measured on VCCA pin. VCCA_PG_SET = 1b  
3.9  
5.6  
4.1  
5.8  
VVCCA_OVP_Risi  
VCCA OVP rising threshold  
ng  
V
VVCCA_OVP_Hys  
9.5b  
9.15  
9.16  
9.17  
VCCA OVP hysteresis  
50  
mV  
t
Input slew rate of VCCA and  
PVIN_x supplies  
Measured at VCCA and PVIN_x pins as voltage rises  
from 0V to VPOR_Rising  
VVCCA_PVIN_SR  
VVIO_SR  
60 mV/µs  
60 mV/µs  
60 mV/µs  
Measured at VIO pin as voltage rises from 0V  
to VPOR_Rising  
Input slew rate of VIO supply  
Input slew rate of VBACKUP  
supply  
VVBACKUP_SR  
Measured at VBACKUP pin  
Timing Requirements  
VCCA_PG_SEL = 0b. Total delay from detection of  
VCCA_OVP to the rise of VCCA_OVP_INT  
26.3a  
15  
15  
µs  
µs  
tlatency_VCCAOV VCCA_OVP signal latency  
from detection  
P
VCCA_PG_SEL = 1b. Total delay from detection of  
VCCA_OVP to the rise of VCCA_OVP_INT  
26.3b  
26.4  
26.5  
Measured time between VVCCA falling from 3.3 V to 2.7  
V with 100mv/µs slope, to the detection of  
VCCA_UVLO signal  
tlatency_VCCAUVL VCCA_UVLO signal latency  
10  
µs  
from detection  
O
LDOVINT OVP and UVLO  
tlatency_VINT  
With 25-mV overdrive  
12  
µs  
signal latency from detection  
26.15 tLBISTrun  
Run time for LBIST  
1.8  
ms  
Device initialization time to  
tINIT_NVM_ANAL load default values for NVM  
26.16  
26.17  
2
1
ms  
ms  
registers, and start-up analog  
OG  
circuits  
Device initialization time for  
tINIT_REF_CLK_L  
reference bandgaps, system  
clock, and internal LDOs  
DO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
MAX UNIT  
7.14 Current Consumption  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Electrical Characteristics  
From VBACKUP pin. PWRON/ENABLE deactivated.  
Device powered by the backup battery source. VCCA =  
0V. VIO = 0V. VBACKUP = 3.3V. Only 32-kHz crystal  
oscillator and RTC counters are functioning. TJ = 25.  
Backup current consumption,  
regulators disabled  
10.2  
IBACKUP_RTC  
7
10  
24  
µA  
µA  
Combined current from VCCA and PVIN_x pins. VCCA  
= PVIN_Bx = PVIN_LDOx = 3.3 V. VIO = 0V. 32-kHz  
crystal oscillator and RTC digital is functioning. GPIO  
pins in LDOVRTC domain are active. All monitors are  
off. TJ = 25.  
Low Power Standby current  
consumption, regulators  
disabled  
10.3a ILP_STANDBY  
11  
Combined current from VCCA, and PVIN_x. VCCA =  
PVIN_Bx = PVIN_LDOx = 3.3 V. VIO = 0V. TJ = 25.  
VCCA_VMON_EN=0.  
10.5a ISTANDBY  
Standby current consumption  
Sleep current consumption  
50  
62  
µA  
µA  
Combined current from VCCA and PVIN_x pins. VCCA  
= PVIN_Bx = PVIN_LDOx = 3.3 V. VIO = 0V. TJ = 25.  
One buck regulator enabled in PFS/PWM mode, no  
load. Buck and VCCA OV/UV monitoring enabled.  
10.6a ISLEEP_3V3  
290  
363  
Combined current from VCCA and PVIN_x pins. VCCA  
= PVIN_Bx = PVIN_LDOx = 5 V. VIO = 0V. TJ = 25.  
One buck regulator enabled in PFS/PWM mode, no  
load. Buck and VCCA OV/UV monitoring enabled.  
10.6b ISLEEP_5V  
Sleep current consumption  
300  
375  
µA  
7.15 Backup Battery Charger  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
27.1a  
VBACKUP = 1 V, BB_ICHR = 0x0  
VBACKUP = 1 V, BB_ICHR = 0x1  
BB_VEOC = 0x0  
100  
500  
2.5  
2.8  
3
Icharge  
Charging current  
µA  
27.1b  
27.2a  
27.2b  
27.2c  
27.2d  
2.4  
2.7  
2.9  
3.2  
2.6  
BB_VEOC = 0x1  
2.9  
V
VEOC  
End of charge voltage(1)  
BB_VEOC = 0x2  
3.1  
BB_VEOC = 0x3  
3.3  
3.4  
End of charge, charger  
27.3  
Iq_CHGR Quiescent current of backup battery charger  
enabled, VCCA - VBACKUP > 200  
mV. Measured from VCCA pin  
5
9
µA  
nA  
VCCA - VBACKUP > 200 mV. Charger  
disabled. Device not in BACKUP state.  
Tj < 125°C  
27.4a  
10  
100  
Iq_CHGR_  
Off current of backup battery charger  
OFF  
VCCA - VBACKUP > 200 mV. Charger  
disabled. Device not in BACKUP state.  
125°C < Tj < 150°C  
27.4b  
27.5  
250  
4
Additional capacitor added when  
backup battery ESR > 20  
CBKUP  
Backup battery capacitance with additional capacitor  
Backup battery series resistance  
1
2.2  
µF  
27.6a  
27.6b  
Without additional capacitor in parallel  
With additional capacitor in parallel  
20  
RBKUP_E  
Ω
SR  
1000  
(1) End of charge (EOC) voltage measured when VCCA-VBACKUP > 200mV. When VCCA-VBACKUP is 200mV, the charger remains  
fully functional, although the EOC voltage measurement is not based on final voltage, but on charger dropout.  
7.16 Digital Input Signal Parameters  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device. VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: nPWRON/ENABLE  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.16 Digital Input Signal Parameters (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device. VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin.  
POS  
11.1  
11.2  
11.3  
PARAMETER  
TEST CONDITIONS  
MIN  
-0.3  
1.26  
150  
TYP  
MAX UNIT  
VIL(VCCA)  
VIH(VCCA)  
Low-level input voltage  
High-level input voltage  
Hysteresis  
0
0.54  
V
V
mV  
Electrical Characteristics: I2C/SPI Pins and Input Signals through all GPIO pins  
11.4  
11.5  
11.6  
VIL(DIG)  
VIH(DIG)  
Low-level input voltage  
High-level input voltage  
Hysteresis  
-0.3  
1.26  
150  
0
0.54  
V
V
mV  
Timing Requirements: nPWRON/ENABLE  
24.1a tLPK_TIME  
nPWRON Long Press Key time  
nPWRON button deglitch time ENABLE_DEGLITCH_EN = 1  
8
s
24.1b tdegl_PWRON  
48  
6
50  
52  
10  
ms  
ENABLE_EGLITCH_EN = 1, exclude when activated  
24.2  
tdegl_ENABLE  
ENABLE signal deglitch time(1) under LP_STANDBY state while the system clock is not  
available  
8
µs  
Timing Requirements: GPIx, nSLEEPx, nERRx, and other digital input signals  
Time from valid GPIx assertion  
until device wakes up from  
LP_STANDBY state to ACTIVE  
or MCU ONLY states  
24.3  
tWKUP_LP  
5
ms  
GPIx and nSLEEPx signal  
deglitch time  
25.1a tdegl_GPIx  
GPIOn_DEGLITCH_EN = 1  
6
8
10  
5
µs  
Time from receiving nPWRON/  
ENABLE trigger in STANDBY  
state to nRSTOUT assertion  
25.2a  
ms  
tSTARTUP  
Time from a valid GPIx  
assertion until device starts  
power-up sequence from a low  
power state  
25.2b  
LDOVINT = 1.8V  
LDOVINT = 1.8V  
1.5  
1.5  
ms  
ms  
Time from nSLEEPx assertion  
until device starts power-down  
sequence to enter a low power  
state  
25.3  
tSLEEP  
input through LP_WKUP1 and LP_WKUP2 (GPIO3 or  
GPIO4) pins while the device is in LP_STANDBY state  
25.4a  
25.4b  
40  
200  
24  
ns  
ns  
µs  
µs  
Minimum valid input pulse  
width for the WKUP input  
signals  
tWK_PW_MIN  
input through WKUP1, WKUP2, LP_WKUP1 and  
LP_WKUP2 pins while the device is in mission states  
DISABLE_WDOG input signal  
deglitch time  
25.5a tWD_DIS  
25.5b tWD_pulse  
30  
30  
36  
36  
TRIG_WDOG input signal  
deglitch time  
24  
(1) ENABLE signal deglitch is not available when device is activated from the LP_STANDBY state while the deglitching clock is not  
available.  
7.17 Digital Output Signal Parameters  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device. VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: SDA_I2C1, and Output Signals through GPO1 and GPO2 pins  
Low-level output voltage, push-  
pull and open-drain  
12.11 VOL(VIO)_20mA  
12.12 VOH(VIO)  
IOL = 20 mA  
IOH = 3 mA  
0.4  
0.4  
V
V
High-level output voltage,  
push-pull  
VIO 0.4  
Electrical Characteristics: Output Signals through GPO3 and GPO4 pins  
Low-level output voltage, push-  
pull  
12.13 VOL(DIG)  
IOL = 3 mA  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.17 Digital Output Signal Parameters (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device. VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
High-level output voltage,  
push-pull  
12.14 VOH(DIG)  
IOH = 3 mA  
1.4  
V
Electrical Characteristics: Output Signals through GPO5 and GPO6 pins  
Low-level output voltage, push-  
pull  
12.4  
12.5  
VOL(DIG)_20mA  
VOH(DIG)  
IOL = 20 mA  
IOH = 3 mA  
0.4  
V
V
High-level output voltage,  
push-pull  
1.4  
Electrical Characteristics: Output Signals through GPO7, GPO8, GPO9, GPO10, and GPO11 pins  
Low-level output voltage, push-  
pull and open-drain  
12.1  
12.2  
12.3  
VOL(VIO)  
VOH(VIO)  
IOL = 3 mA  
IOH = 3 mA  
0.4  
V
V
V
High-level output voltage,  
push-pull  
VIO 0.4  
Supply for external pullup  
resistor, open drain  
VIO  
Electrical Characteristics:nINT, nRSTOUT  
Low-level output voltage for  
nINT pin  
12.7  
12.8  
VOL(nINT)  
IOL = 20 mA  
IOL = 20 mA  
0.4  
0.4  
V
V
Low-level output voltage for  
nRSTOUT and  
VOL(nRSTOUT)  
nRSTOUT_SoC pin  
Timing Requirements  
Gating time for readback  
monitor  
12.10 tgate_readback  
Signal level change or GPIO selection (GPIOn_SEL)  
8.8  
9.6  
µs  
7.18 I/O Pullup and Pulldown Resistance  
Over operating free-air temperature range, VIO refers to the VIO_IN pin, VCCA refers the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
13.1a nPWRON pullup resistance  
nPWRON IO buffer internal pull up to VCCA supply  
280  
280  
280  
280  
400  
400  
400  
400  
520  
520  
520  
520  
kΩ  
kΩ  
kΩ  
kΩ  
ENABLE IO buffer internal pull up to VCCA supply and  
pull down to ground  
13.1b ENABLE pullup and pulldown resistance  
13.2  
13.3  
GPIO pullup resistance  
GPIO1 -11 pins configured as input with internal pullup  
GPIO1 - 11 pins configured as inputs with internal  
pulldown  
GPIO pulldown resistance  
nRSTOUT and nRSTOUT_SoC pullup  
resistance  
13.4  
Internal pullup to VIO supply when output driven high  
8
10  
12  
kΩ  
7.19 I2C Interface  
Over operating free-air temperature range (unless otherwise noted). Device supports standard mode (100 kHz), fast mode  
(400 kHz), and fast mode+ (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode (3.4 MHz) only when VIO is 1.8 V.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Electrical Characteristics  
Capacitive load for SDA  
and SCL  
14.1  
CB  
400  
pF  
Timing Requirements  
16.1a  
16.1b  
Standard mode  
100  
400  
1
kHz  
Fast mode  
16.1c  
16.1d  
16.1e  
Serial clock frequency  
Fast mode+  
ƒSCL  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
3.4  
1.7  
MHz  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.19 I2C Interface (continued)  
Over operating free-air temperature range (unless otherwise noted). Device supports standard mode (100 kHz), fast mode  
(400 kHz), and fast mode+ (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode (3.4 MHz) only when VIO is 1.8 V.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
4.7  
1.3  
0.5  
160  
320  
4
TYP  
MAX  
UNIT  
16.2a  
Standard mode  
16.2b  
Fast mode  
µs  
16.2c tLOW  
16.2d  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
ns  
µs  
ns  
16.2e  
16.3a  
16.3b  
0.6  
0.26  
60  
16.3c tHIGH  
16.3d  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
16.3e  
120  
250  
100  
50  
16.4a  
16.4b  
tSU;DAT  
ns  
16.4c  
Fast mode+  
16.4d  
High-speed mode  
Standard mode  
Fast mode  
10  
16.5a  
10  
3450  
900  
16.5b  
10  
ns  
ns  
16.5c tHD;DAT  
16.5d  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
10  
70  
16.5e  
10  
150  
16.6a  
4.7  
0.6  
0.26  
160  
4
Setup time for a start or  
a REPEATED START  
condition  
16.6b  
tSU;STA  
16.6c  
µs  
ns  
µs  
ns  
µs  
Fast mode+  
16.6d  
16.7a  
High-speed mode  
Standard mode  
Fast mode  
Hold time for a start or a  
REPEATED START  
condition  
16.7b  
tHD;STA  
16.7c  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
Fast mode+  
16.7d  
High-speed mode  
Standard mode  
Fast mode  
16.8a  
Bus free time between a  
STOP and START  
condition  
16.8b tBUF  
16.8c  
Fast mode+  
16.9a  
Standard mode  
Fast mode  
16.9b  
tSU;STO  
16.9c  
0.6  
0.26  
160  
µs  
ns  
Setup time for a STOP  
condition  
Fast mode+  
16.9d  
High-speed mode  
Standard mode  
Fast mode  
16.10a  
1000  
300  
120  
80  
16.10b  
20  
16.10c trDA  
16.10d  
Rise time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
ns  
ns  
10  
20  
16.10e  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
300  
300  
120  
80  
16.11a  
16.11b  
Fast mode  
6.5  
6.5  
10  
16.11c tfDA  
16.11d  
Fall time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
16.11e  
13  
160  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.19 I2C Interface (continued)  
Over operating free-air temperature range (unless otherwise noted). Device supports standard mode (100 kHz), fast mode  
(400 kHz), and fast mode+ (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode (3.4 MHz) only when VIO is 1.8 V.  
POS  
PARAMETER  
TEST CONDITIONS  
Standard mode  
Fast mode  
Rise time of SCL signal Fast mode+  
High-speed mode, Cb = 100 pF  
MIN  
TYP  
MAX  
1000  
300  
120  
40  
UNIT  
16.12a  
16.12b  
16.12c trCL  
16.12d  
16.12e  
16.13a  
20  
ns  
10  
20  
10  
High-speed mode, Cb = 400 pF  
80  
Rise time of SCL signal High-speed mode, Cb = 100 pF  
after a repeated start  
condition and after an  
acknowledge bit  
Standard mode  
Fast mode  
80  
trCL1  
ns  
ns  
16.13b  
High-speed mode, Cb = 400 pF  
20  
160  
16.14a  
300  
300  
120  
40  
16.14b  
6.5  
6.5  
10  
16.14c tfCL  
16.14d  
Fall time of SCL signal  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
16.14e  
20  
80  
Pulse width of spike  
suppressed (SCL and  
SDA spikes that are less  
than the indicated width  
are suppressed)  
Standard mode, fast mode, and fast  
mode+  
16.15a  
50  
10  
tSP  
ns  
16.15b  
High-speed mode  
7.20 Serial Peripheral Interface (SPI)  
These specifications are ensured by design, VIO = 1.8 V or 3.3V (unless otherwise noted).  
POS  
PARAMETERS  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Electrical Characteristics  
15.1  
Capacitive load on pin SDO  
30  
pF  
Timing Requirements  
17.1  
17.2  
17.3  
17.4  
17.5  
17.6  
17.7  
17.8  
17.9  
1
2
3
4
5
6
7
8
9
Cycle time  
200  
150  
150  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Enable lead time  
Enable lag time  
Clock low time  
Clock high time  
60  
Data setup time  
15  
Data hold time  
15  
Output data valid after SCLK falling  
New output data valid after SCLK falling  
4
60  
30  
17.1  
0
10  
11  
Disable time  
ns  
ns  
17.1  
1
CS inactive time  
100  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.21 Typical Characteristics  
65  
60  
55  
260  
255  
250  
245  
240  
235  
230  
225  
VCCA_PG_SET = 3.3 V  
VCCA_PG_SET = 5 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
LP STANDBY, no OVP  
LP STANDBY  
STANDBY  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VCCA (V)  
5
5.25 5.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VCCA (V)  
5
5.25 5.5  
TA = 25°C  
TA = 25°C  
7-1. Quiescent Current vs Input Voltage  
7-2. Standby Current with VCCA Monitor  
1.5  
4
3
2
1
0
1.3  
1.1  
0.9  
0.7  
0.5  
SR = 33.3 V/ms  
SR = 20 V/ms  
SR = 10 V/ms  
SR = 5 V/ms  
SR = 2.5 V/ms  
SR = 1.25 V/ms  
SR = 0.625 V/ms  
SR = 0.3125 V/ms  
2.2 MHz, Adding  
2.2 MHz, Shedding  
4.4 MHz, Adding  
4.4 MHz, Shedding  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
1
2
3
4
5
6
Time (ms)  
IOUT_Bn (A)  
VPVIN_Bn = 3.3 V  
Buck VSET = 0.6 V  
to 1.4 V  
TA = 25°C  
VPVIN_Bn = 3.3 V  
Buck VSET = 1.0 V  
TA = 25°C  
7-3. Buck Phase Adding and Shedding  
7-4. Buck Ramp-up Slew Rate  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.2  
1
SR = 33.3 V/ms  
SR = 20 V/ms  
SR = 10 V/ms  
SR = 5 V/ms  
SR = 2.5 V/ms  
SR = 1.25 V/ms  
SR = 0.625 V/ms  
SR = 0.3125 V/ms  
0.8  
0.6  
0.4  
0.2  
0
2.2MHz, 1-phase  
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
-0.2  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
Time (ms)  
VPVIN_Bn = 3.3 Buck VSET = 1.4 V to  
0.6 V  
7-5. Buck Ramp-down Slew Rate  
TA = 25°C  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
V
7-6. Buck Start-up with no Load, Auto Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.21 Typical Characteristics (continued)  
1.2  
1.2  
1
1
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
2.2MHz, 1-phase  
2.2MHz, 1-phase  
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
0.4  
0.2  
0
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
-0.2  
-0.2  
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
7-7. Buck Start-up with 1A Load, Auto Mode  
7-8. Buck Shutdown with no Load, Auto Mode  
1.2  
1.6  
1
1.4  
1.2  
1
0.8  
0.6  
2.2MHz, 1-phase  
0.4  
0.2  
0
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
0.8  
No Load  
with 1A load  
-0.2  
0.6  
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
0
5
10  
15  
20  
25  
30 35  
Time (us)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
VPVIN_Bn = 3.3 V  
Buck VSET = 0.6 V  
to 1.4 V  
Slew Rate = 33.3  
V/ms  
7-9. Buck Shutdown with 1A Load, Auto Mode  
7-10. Buck Ramp-up with and without Load  
1.5  
3.5  
No Load  
3.3 V to 0.8 V  
1.4  
1.3  
1.2  
1.1  
1
with 1A load  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
Bypass Mode  
3
2.5  
2
1.5  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0
-0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Time (us)  
Time (ms)  
VPVIN_Bn = 3.3 Buck VSET = 1.4 V to  
0.6 V  
Slew Rate = 33.3  
V/ms  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
V
7-12. GPLDO Start-up with LDOn_SLOW_RAMP = 0  
7-11. Buck Ramp-down with and without Load  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
7.21 Typical Characteristics (continued)  
3.5  
3.5  
3
3.3 V to 0.8 V  
3.3 V to 0.8 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
Bypass Mode  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
Bypass Mode  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Time (ms)  
Time (ms)  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
VIN(LDOn) = 3.3 V or LDOn_PLDN = 500  
TA = 25°C  
5 V  
Ω
7-13. GPLDO Start-up with LDOn_SLOW_RAMP = 1  
7-14. GPLDO Shutdown  
3.5  
3.5  
3
3.3 V to 0.8 V  
3.3 V to 0.8 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Time (ms)  
Time (ms)  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
7-15. LNLDO Start-up with LDOn_SLOW_RAMP = 0  
7-16. LNLDO Start-up with LDOn_SLOW_RAMP = 1  
3.5  
3.3 V to 0.8 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
3
2.5  
2
1.5  
1
0.5  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Time (ms)  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
LDOn_PLDN = 500 Ω  
7-17. LNLDO Shutdown  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS6593-Q1 device is a Power-Management Integrated Circuit (PMIC), available in a 56-pin, 0.5-mm pitch,  
8-mm × 8-mm QFN package. The TPS6593-Q1 is designed for powering embedded systems or System on Chip  
(SoC) in automotive or industrial applications. The TPS6593-Q1 provides five configurable BUCK regulators, of  
which four rails have the ability to combine outputs in multi-phase mode. BUCK4 has the ability to supply up to 4  
A output current in single-phase mode, while BUCK1, BUCK2, and BUCK3 have the ability to supply up to 3.5 A  
output current in single-phase mode. When working in multi-phase mode, each BUCK1, BUCK2, BUCK3, and  
BUCK4 can supply up to 3.5 A output current per phase, adding up to 14 A output current in four-phase  
configuration. BUCK5 is a single-phase only BUCK regulator, which supports up to 2 A output current. All five of  
the BUCK regulators have the capability to sink a current up to 1 A, and support dynamic voltage scaling.  
Double-buffered voltage scaling registers enable each BUCK regulator to transition to a different voltage during  
operation by SPI or I2C. A digital PLL enables the BUCK regulators to synchronize to an external clock input,  
with phase delays between the output rails.  
The TPS6593-Q1 device also provides three LDO rails, which can supply up to 500 mA output current per rail  
and can be configured in bypass mode and used as a load switch. One additional low-noise LDO rail can supply  
up to 300 mA output current. The 500-mA LDOs support 0.6 V to 3.3 V output voltage with 50-mV step. The 300-  
mA low-noise LDO supports 1.2 V to 3.3 V output voltage with 25-mV step. The output voltages of the LDOs can  
be pre-configured through the SPI or I2C interfaces, which are used to configure the power rails and the power  
states of the TPS6593-Q1 device.  
I2C channel 1 (I2C1) is the main channel with access to the registers, which control the configurable power  
sequencer, the states and the outputs of power rails, the device operating states, the RTC registers and the  
Error Signal Monitors. I2C channel 2 (I2C2), which is available through the GPIO1 and GPIO2 pins, is dedicated  
for accessing the Q&A Watchdog communication registers. If GPIO1 and GPIO2 are not configured as I2C2  
pins, I2C1 can access all of the registers, including the Q&A Watchdog registers. Alternatively, depending on the  
NVM-configuration of the orderable part number, SPI is the selected interface for the device and can be used to  
access all registers.  
The TPS6593-Q1 device includes an internal RC-oscillator to sequence all resources during power up and  
power down. Two internal LDOs (LDOVINT and LDOVRTC) generate the supply for the entire digital circuitry of  
the device as soon as the external input supply is available through the VCCA input. A backup battery supply  
input can also be used to power the RTC block and a 32-kHz Crystal Oscillator clock generator in the event of  
main supply power loss.  
TPS6593-Q1 device has eleven GPIO pins each with multiple functions and configurable features. All of the  
GPIO pins, when configured as general-purpose output pins, can be included in the power-up and power-down  
sequence and used as enable signals for external resources. In addition, each GPIO can be configured as a  
wake-up input or a sleep-mode trigger. The default configuration of the GPIO pins comes from the non-volatile  
memory (NVM), and can be re-programmed by system software if the external connection permits.  
The TPS6593-Q1 device includes a watchdog with selectable trigger or Q&A modes to monitor MCU software  
lockup, and two error signal monitor (ESM) inputs with fault injection options to monitor the lock-step signal of  
the attached SoC or MCU. TPS6593-Q1 includes protection and diagnostic mechanisms such as voltage  
monitoring on the input supply, voltage monitoring on all BUCK and LDO regulator outputs, CRC on  
configuration registers, CRC on non-volatile memory, CRC on communication interfaces, current-limit and short-  
circuit protection on all output rails, thermal pre-warning, and over-temperature shutdown. The device also  
includes a Q&A or trigger mode watchdog to monitor for MCU software lockup, and two Error Signal Monitor  
inputs with selectable level mode or PWM mode, and with fault injection options to monitor the error signals from  
the attached SoC or MCU. The TPS6593-Q1 can notify the processor of these events through the interrupt  
handler, allowing the MCU to take action in response.  
An SPMI interface is included in the TPS6593-Q1 device to distribute power state information to at most five  
satellite PMICs on the same network, thus enabling synchronous power state transition across multiple PMICs in  
the application system. This feature allows the consolidation of IO control signals from up to six PMICs powering  
the system into one primary TPS6593-Q1 PMIC.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
VIO  
VSYS  
nPWRON/ENABLE  
Control  
Interface  
Windowed  
Power-Good  
Monitor  
Grounds  
PGOOD  
SCL_I2C1/CLK_SPI  
LDOVINT  
VINT  
BSM  
LDOVRTC  
VRTC  
SDA_I2C1/SDI_SPI  
I2C CNTRL,  
SYNCCLKOUT  
CS_SPI  
SDO_SPI  
or SPI  
Single or  
VCC internal  
supply  
Multi-Phase  
nRSTOUT  
nINT  
PVIN_B1  
SW_B1  
FB_B1  
VCCA  
VCCA  
VCCA  
Internal  
Interrupt  
events  
EN  
VSEL  
RAMP  
CLK1  
BUCK1  
3.5 A  
RC  
DPLL  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
OSC32KIN  
Oscillator  
(Phase  
synchronization  
and dither)  
(AVS)  
<GND_B1>  
SYNCCLKIN  
PVIN_B2  
SW_B2  
FB_B2  
EN  
VSEL  
RAMP  
CLK2  
BUCK2  
3.5 A  
DFT  
NVM Controller  
NVM Memory  
(AVS)  
<GND_B2>  
Registers  
VCCA  
Pre-Configurable  
Power Sequencer  
Controller  
PVIN_B3  
SW_B3  
FB_B3  
EN  
VSEL  
RAMP  
CLK3  
BUCK3  
3.5 A  
VCCA_UVLO  
(AVS)  
ECO  
PWM  
DVS  
<GND_B3>  
WAKEn  
NSLEEPn  
Default NVM Settings  
PVIN_B4  
SW_B4  
FB_B4  
VCCA  
VCCA  
EN  
VSEL  
RAMP  
CLK4  
BUCK4  
4 A (1N)  
3.5A (multiN)  
Thermal  
Monitoring and  
Shutdown  
(AVS)  
<GND_B4>  
Hot die detection  
PVIN_B5  
SW_B5  
FB_B5  
EN  
VSEL  
RAMP  
CLK5  
BUCK5  
2 A  
Single-Phase  
32-kHz Crystal  
Oscillator  
<GND_B5>  
RTC  
OSC32KOUT  
OSC32KCAP  
100Ω  
VRTC  
REFGND1  
Bypass  
LDO1  
500 mA  
Bypass  
LDO2  
500 mA  
Bypass  
LDO3  
500 mA  
LDO4  
300 mA  
Low Noise  
Internal supply  
Quiet Ground  
AMUX_OUT  
Reference  
and Bias  
REFGND2  
VCCA  
* These red squares are internal pads for down-bonds to the package thermal/ground pad.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 System Supply Voltage Monitor  
The comparator module in TPS6593-Q1, which monitors the voltage on the VCCA pins, controls the power state  
machine of the device. VCCA voltage detection outputs determine the power states of the device as follows:  
VCCA_UVLO The TPS6593-Q1 returns to the BACKUP state. LDOVRTC is powered by the output of the  
Backup Supply Management (BSM) module during the BACKUP state. The device returns to the  
NO SUPPLY state and is completely shut down when the input supply of the LDOVRTC falls  
below the operating range. The device cannot return to the BACKUP state from the NO SUPPLY  
state.  
VCCA_UV  
The TPS6593-Q1 transitions from the NO SUPPLY state to the INIT state when the voltage on  
the VCCA pin rises above VCCA_UV during initial power-up.  
VCCA_OVP If the voltage on VCCA pin rises above the VCCA_OVP threshold while TPS6593-Q1 is in  
operation, then the device clears the ENABLE_DRV bit and starts the immediate shutdown  
sequence.  
A separate voltage comparator monitors whether or not the VCCA voltage is within the expected PGOOD range  
when VCCA is expected to be 5-V or 3.3-V. This voltage comparator checks at device power-up whether the  
voltage on the VCCA supply pin is above the VCCA_UV threshold. Refer to 8.3.3 for additional detail on the  
operation of the PGOOD monitor function.  
LDOVINT, which is the internal supply to the digital core of the device, may attempt to restart the device when  
the input voltage at VCCA pin falls or stays between VCCA_UVLO and VCCA_UV voltage levels; the voltage at  
the VCCA pin, however, must be above the VCCA_UV voltage level for the device to power up properly.  
8-1 shows a block diagram of the VCCA input voltage monitoring.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
VCCA  
VSYS  
Preregulator  
External Protection  
Safety  
Band Gap  
+
VCCA_UVLO  
VCCA_OVP  
œ
œ
+
VCCA OVP and UVLO  
Monitor  
8-1. VCCA Monitor  
8.3.2 Power Resources (Bucks and LDOs)  
The power resources provided by the TPS6593-Q1 device includes synchronous, current mode control bucks  
and linear LDOs. These supply resources provide power to the external processors, components, and modules  
inside the TPS6593-Q1 device. The supply of the bucks, the PVIN_Bx pins, must connect to the VCCA pin  
externally. The supply of the LDOs, the PVIN_LDOx pins, may connect to the VCCA pin or a buck output which  
is at a lower voltage level than the VCCA.  
The voltage output of each power resource is continuously monitored by a dedicated analog monitor on an  
independent reference voltage domain. An unused regulator can also be used as a voltage monitor for an  
external rail by connecting the external rail to the FB_Bn the VOUT_LDOn pin.  
8-1 lists the power resources provided by the TPS6593-Q1 device.  
8-1. Power Resources  
RESOURCE  
TYPE  
VOLTAGE  
CURRENT CAPABILITY  
COMMENTS  
0.3 V to 0.6 V, 20-mV steps  
0.6 V to 1.1 V, 5-mV steps  
1.1 V to 1.66 V, 10-mV steps  
1.66 V to 3.34 V, 20-mV steps  
BUCK1, BUCK2,  
BUCK3  
Can be configured in multi-phase mode  
or stand-alone in single-phase mode  
BUCK  
3.5 A  
0.3 V to 0.6 V, 20-mV steps  
0.6 V to 1.1 V, 5-mV steps  
1.1 V to 1.66 V, 10 mV steps  
1.66 V to 3.34 V, 20-mV steps  
4 A in single-phase mode Can be configured in multi-phase mode  
3.5 A in multi-phase mode or stand-alone in single-phase mode  
BUCK4  
BUCK  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-1. Power Resources (continued)  
RESOURCE  
TYPE  
VOLTAGE  
CURRENT CAPABILITY  
COMMENTS  
0.3 to 0.6 V, 20-mV steps  
0.6 V to 1.1 V, 5-mV steps  
1.1 V to 1.66 V, 10-mV steps  
1.66 V to 3.34 V , 20-mV steps  
BUCK5  
BUCK  
2 A  
Only in single-phase mode  
LDO1, LDO2,  
LDO3  
LDO  
LDO  
0.6 V to 3.3 V, 50-mV steps  
1.2 V to 3.3 V, 25-mV steps  
500 mA  
300 mA  
Bypass mode configurable  
Low-noise  
LDO4  
8.3.2.1 Buck Regulators  
8.3.2.1.1 BUCK Regulator Overview  
The TPS6593-Q1 includes five synchronous buck converters, of which four can be combined in multi-phase  
configuration. All of the buck converters support the following features:  
Automatic mode control based on the loading (PFM or PWM mode) or Forced-PWM mode operation  
External clock synchronization option to minimize crosstalk  
Optional spread spectrum technique to reduce EMI  
Soft start  
AVS support with configurable slew-rate  
Windowed undervoltage and overvoltage monitors with configurable threshold  
Windowed voltage monitor for external supply when the buck converter is disabled  
Output Current Limit  
Short-to-Ground Detection on SW_Bx pins at start-up of the buck regulator  
When the outputs of these buck converters are combined in multi-phase configuration, it also supports the  
following features:  
Current balancing between the phases of the converter  
Differential voltage sensing from point of the load  
Phase shifted outputs for EMI reduction  
Optional dynamic phase shedding or adding  
There are two modes of operation for the buck converter, depending on the required output current: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 600 mA or higher. Lighter output current loads cause the converter to automatically  
switch into PFM mode for reduced current consumption. The device avoids pulse skipping and allows easy  
filtering of the switch noise by external filter components when forced-PWM mode is selected (BUCKn_FPWM =  
1). The forced-PWM mode is the recommended mode of operation for the buck converter to achieve better ripple  
and transient performance. The drawback of this forced-PWM mode is the higher quiescent current at low output  
current levels.  
When operating in PWM mode the phases of a multi-phase regulator are automatically added or shed based on  
the load current level. The forced multi-phase mode can be enabled for lower ripple at the output.  
8-2 shows a block diagram of a single core.  
8-3 shows the interleaving switching action of the multi-phase converters.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
PVIN  
High-Side  
Current Limit  
Loop  
Comparator  
FBP  
FBN  
Feedback Network  
PDN  
Gate  
Driver  
PWM  
Generator  
œ
Low-Side  
Current Limit  
DAC  
+
Error  
Amplifier  
CLK  
8-2. BUCK Core Block Diagram  
IL_TOT_4PH  
IL1  
IL2  
IL4  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM1  
PWM2  
PWM4  
PWM3  
Switching Cycle 360º  
0
90  
180  
270  
360  
450  
540  
630  
720  
Phase (Degrees)  
8-3. Example of PWM Timings, Inductor Current Waveforms, and Total Output Current in 4-Phase  
Configuration. 1  
8.3.2.1.2 Multi-Phase Operation and Phase-Adding or Shedding  
The 4-phase converters (BUCK1, BUCK2, BUCK3, and BUCK4) switches each channel 90° apart under heavy  
load conditions. As a result, the 4-phase converter has an effective ripple frequency four times greater than the  
switching frequency of any one phase. In the same way, 3-phase converter has an effective ripple frequency  
three times greater and 2-phase converter has an effective ripple frequency two times greater than the switching  
frequency of any one phase; the parallel operation, however, decreases the efficiency at light load conditions.  
The TPS6593-Q1 can change the number of active phases to optimize efficiency for the variations of the load in  
order to overcome this operational inefficiency. The process in which the multi-phase buck regulator in case of  
increasing load current automatically increases the number of active phases is called phase adding. The process  
in which the multi-phase buck regulator in case of decreasing load current automatically decreases the number  
of active phases is called phase shedding. The concept is shown in 8-4.  
1
Graph is not in scale and is for illustrative purposes only.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
The converter can be forced to multi-phase operation by the BUCKn_FPWM_MP bit in BUCKn_CTRL1 register.  
If the regulator operates in forced multi-phase mode , each phase automatically operates in the forced-PWM  
mode. If the multi-phase operation is not forced, the number of phases are added and shed automatically to  
follow the required output current.  
Best efficiency obtained with  
N=1  
N=2  
N=3  
N=4  
Load Current  
8-4. Multiphase BUCK Converter Efficiency vs Number of Phases (Converters in PWM Mode) 2  
8.3.2.1.3 Transition Between PWM and PFM Modes  
The forced-PWM mode operation with phase-adding or shedding optimizes efficiency at mid-to-full load.  
TheTPS6593-Q1 converter operates in PWM mode at load current of approximately 600 mA or higher. The  
device automatically switches into PFM mode for reduced current consumption when forced-PWM mode is  
disabled (BUCKn_FPWM = 0) at lighter load-current levels. A high efficiency is achieved over a wide output-  
load-current range by combining the PFM and the PWM modes.  
8.3.2.1.4 Multi-Phase BUCK Regulator Configurations  
The control of the multi-phase regulator settings is done using the control registers of the primary BUCK  
regulator in the multi-phase configuration. The TPS6593-Q1 ignores settings in the following registers of the  
secondary and, if used, the tertiary and quatenary BUCK regulators :  
BUCKn_CTRL register, except BUCKn_VMON_EN  
BUCKn_CONF register  
BUCKn_VOUT_1 and BUCKn_VOUT_2 registers  
BUCKn_PG_WINDOW register  
Interrupt bits related to the secondary and, if sued, the tertiary and quatenary BUCK regulator, except  
BUCKn_ILIM_INT, BUCKn_ILIM_MASK and BUCKn_ILIM_STAT  
8-2 shows the supported Multi-Phase BUCK regulator configurations and the assigned primary BUCK  
regulator in each configuration.  
8-2. Primary BUCK Assignment for Supported Multi-phase Configuration  
Supported Multi-Phase BUCK Regulator Configuration  
Primary BUCK Assignment  
4-Phase: BUCK1 + BUCK2 + BUCK3 + BUCK4  
BUCK1  
2
Graph is not in scale and is for illustrative purposes only.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-2. Primary BUCK Assignment for Supported Multi-phase Configuration (continued)  
Supported Multi-Phase BUCK Regulator Configuration  
Primary BUCK Assignment  
3-Phase: BUCK1 + BUCK2 + BUCK3  
BUCK1  
BUCK1  
BUCK3  
2-Phase: BUCK1 + BUCK2  
2-Phase: BUCK3 + BUCK4  
When the BUCK regulators are configured in 3-phase or 4-phase configurations, there are exceptions to the  
above list of registers that the TPS6593-Q1 ignores. The configuration registers are user-configurable for the  
voltage monitor function on BUCK3 and BUCK4 in a 4-phase configuration and BUCK3 in a 3-phase  
configuration. The UV/OV voltage monitors of these BUCK3 and BUCK4 regulators can be used to monitor  
external supply rails, by connecting these external rails to the FB_Bn pins of these BUCK3 and BUCK4  
regulators. The following list of registers and register bits for BUCK3 and BUCK4 can be used to enable and set  
the target voltage for the external voltage monitoring function under such configuration:  
BUCKn_VMON_EN bit  
BUCKn_VSEL bit  
BUCKn_SLEW_RATE  
BUCKn_VOUT_1 and BUCKn_VOUT_2 registers  
BUCKn_PG_WINDOW register  
Customers are responsible for the values set in these registers when using BUCK3 or BUCK4 to monitor an  
external supply under the 3-phase or 4-phase configuration. If the voltage monitor function is not used under  
such a scenario, the FB_Bn pins must be connected to the reference ground, and the BUCKn_VMON_EN bits  
must be set to '0'.  
8.3.2.1.5 Spread-Spectrum Mode  
The TPS6593-Q1 device supports spread-spectrum modulation of the switching clock signal used by the BUCK  
regulators. Three factory-selectable modulation modes are available: the first mode is modulation from external  
input clock at the SYNCCLKIN pin; the second mode is modulating the input clock at the SYNCCLKIN pin using  
the DPLL; the third mode is modulating the internal 20-MHz RC-Oscillator clock using the DPLL.  
The spread-spectrum modulation mode is pre-configured in NVM. Changing this modulation mode during  
operation is not supported.  
The modulation frequency range is limited by the DPLL bandwidth. The max frequency spread for the input clock  
to the DPLL is ±18% to secure parametric compliance of the BUCK output performance.  
The internal modulation is disabled by default and can be enabled and configured after power up. Internal  
modulation is activated by setting the SS_EN control bit. The internal modulation must be disabled (SS_EN = 0)  
when changing the following parameter:  
SS_DEPTH[1:0] Spread Spectrum modulation depth  
When internal modulation is enabled and configured, it can be disabled by the system MCU during operation.  
The device transition to different mission states does not impact internal modulation when it is enabled and  
configured.  
8.3.2.1.6 Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support  
An AVS or a DVS voltage value can be configured by the attached MCU after the BUCK regulator is powered up  
to the default output voltage selected in register BUCKn_VSET1, that loads its default value from NVM. The  
purpose of the AVS/DVS voltage is to set the BUCK output voltage to enable optimal efficiency and performance  
of the attached SoC.  
All of BUCK regulators in the TPS6593-Q1 device support AVS and DVS voltage scaling changes. Once the  
AVS/DVS voltage value is written into the BUCKn_VSET1 or BUCKn_VSET2 register, and the MCU sets the  
BUCKn_VSEL register to select the AVS/DVS voltage, the output of the BUCK regulator remains at the  
AVS/DVS voltage level instead of the default voltage from NVM until one of the following events occur:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Error that causes the device to re-initialize itself through a power cycle after reaching the SAFE RECOVERY  
state  
Error that causes the device to execute warm reset  
MCU configures the device to enter the LP STANDBY state  
8-5 shows the arbitration scheme for loading the output level of the BUCK regulator from the AVS register  
using the BUCKn_VSET control registers.  
I2C/SPI  
BUCK ENABLE *)  
I2C/SPI  
BUCK VOLTAGE SELECT *)  
BUCKn_EN  
BUCKn_VSEL  
I2C/SPI  
I2C/SPI  
BUCKn_VSET1  
BUCKn_VSET2  
DCDC  
Regulator  
MUX  
*) BUCK ENABLE and BUCK VOLTAGE SELECT bits  
are located in BUCKx_CTRL register  
8-5. AVS/DVS Configuration Register Arbitration Diagram  
The digital control block automatically updates the OV and UV threshold of the BUCK output voltage monitor  
during the AVS or DVS voltage change. When the output voltage is increased, the OV threshold is updated at  
the same time the BUCKn_VSETx is updated to the AVS voltage level, while the UV threshold is updated after a  
delay calculated by 方程1.  
When the output voltage is decreased, the UV threshold is updated at the same time the BUCKn_VSETx is  
updated to the AVS voltage level, while the OV threshold is updated after a delay calculated by 方程1.  
tPG_OV_UV_DELAY = (dV / BUCKn_SLEW_RATE) + tsettle_Bx  
(1)  
In order to prevent erroneous voltage monitoring, the digital block also temporarily masks the results of the OV  
and UV monitor from the regulator output when the BUCK regulator is enabled and the voltage is rising to the  
BUCKn_VSETx level. The duration of the mask starts from the time the BUCK regulator is enabled. The BUCK  
OV monitor output is masked for a fixed delay time of tPG_OV_GATE, that is approximately 115 µs 128 µs. The  
UV monitor output is masked for the time duration calculated by 方程式 2. The 370-µs additional delay time in  
the formula includes the start-up delay of the BUCK regulator, and the fixed delay after the ramp.  
tPG_UV_GATE = (BUCKn_VSET / BUCKn_SLEW_RATE) + 370 µs  
(2)  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
备注  
Because output capacitance, forward and negative current limits and load current of the BUCK  
regulator may affect the slew rate of the BUCK regulator output voltage, the delay time of tPG_UV_GATE  
may not be sufficient long for the slower slew rate setting when the target BUCK regulator output  
voltage is higher. Please refer to the PMIC User's Guide for detail information about the supported  
voltage level and slew rate setting combinations of a particular orderable part number.  
8-6 and 8-7 are timing diagrams illustrating the voltage change for AVS and DVS enabled BUCK regulators  
and the corresponding OV and UV monitor threshold changes.  
Ini al voltage  
AVS_VNOM  
OV limit  
OV limit  
OV limit  
UV limit  
UV limit  
Default from NVM  
BUCKn VOUT  
I2C/SPI write  
State control (or  
I2C/SPI write)  
State control (or  
I2C/SPI write)  
State control (or  
I2C/SPI write)  
BUCKn_VSET1 0x00 0x5F  
BUCKn_VSET2 0x00 0x5F  
0x5A  
Automa c control  
by digital  
BUCKn_EN  
0
1
0
1
0 us  
BUCKn_OV_SET  
(internal register, not  
Register bits  
0x00 0x5F  
0x5A  
accessible by user)  
tPG_OV_UV_DELAY  
0x5A  
BUCKn_UV_SET  
(internal register, not  
0x00  
0x5F  
accessible by user)  
BUCKn_VSEL  
0
0
BUCKn_OV_UV_EN  
1
0
1
Automa c control  
by digital  
Automa c control  
by digital  
0 us  
Automa c control  
by digital  
BUCKn_OV Monitor Output  
BUCKn_OV Ga ng  
tPG_OV_GATE  
tPG_OV_GATE  
Automa c control  
by digital  
0 us  
BUCKn_UV Monitor Output  
BUCKn_UV Ga ng  
tPG_UV_GATE  
tPG_UV_GATE  
8-6. AVS Voltage and OV UV Threshold Level Change Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
OPP_OD  
(or OPP_TURBO)  
OPP_OD  
(or OPP_TURBO)  
OPP_NOM  
OV limit  
OV limit  
UV limit  
UV limit  
BUCKn VOUT  
I2C/SPI write  
(DVFS control)  
State control (or  
I2C/SPI write)  
State control (or  
I2C/SPI write)  
BUCKn_VSET1  
0x73  
0x5F  
BUCKn_VSET2  
0x5F  
Automa c control  
by digital  
BUCKn_EN  
1
0
1
0 us  
BUCKn_OV_SET  
(internal register, not  
Register bits  
0x73  
0x5F  
accessible by user)  
tPG_OV_UV_DELAY  
BUCKn_UV_SET  
(internal register, not  
0x5F  
0x73  
accessible by user)  
BUCKn_VSEL  
0
1
BUCKn_OV_UV_EN  
0
1
Automa c control  
by digital  
0 us  
Automa c control  
by digital  
BUCKn_OV Monitor Output  
BUCKn_OV Ga ng  
tPG_OV_GATE  
0 us  
BUCKn_UV Monitor Output  
BUCKn_UV Ga ng  
tPG_UV_GATE  
8-7. DVS Voltage and OV UV Threshold Level Change Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.2.1.7 BUCK Output Voltage Setting  
8-3 shows the coding used to select the BUCK regulator output voltage.  
8-3. Output Voltage Selection for BUCK Regulators  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
10 mV steps  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
20 mV steps  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0.3  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0.6  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0.85  
0.855  
0.86  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
1.1  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
1.66  
1.68  
1.7  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
2.52  
2.54  
2.56  
2.58  
2.6  
0.32  
0.34  
0.36  
0.38  
0.4  
0.605  
0.61  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.2  
0.615  
0.62  
0.865  
0.87  
1.72  
1.74  
1.76  
1.78  
1.8  
0.625  
0.63  
0.875  
0.88  
2.62  
2.64  
2.66  
2.68  
2.7  
0.42  
0.44  
0.46  
0.48  
0.5  
0.635  
0.64  
0.885  
0.89  
1.82  
1.84  
1.86  
1.88  
1.9  
0.645  
0.65  
0.895  
0.9  
2.72  
2.74  
2.76  
2.78  
2.8  
0.52  
0.54  
0.56  
0.58  
0.655  
0.66  
0.905  
0.91  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.3  
0.665  
0.67  
0.915  
0.92  
1.92  
1.94  
1.96  
1.98  
2
0.675  
0.68  
0.925  
0.93  
2.82  
2.84  
2.86  
2.88  
2.9  
0.685  
0.69  
0.935  
0.94  
2.02  
2.04  
2.06  
2.08  
2.1  
0.695  
0.7  
0.945  
0.95  
2.92  
2.94  
2.96  
2.98  
3.0  
0.705  
0.71  
0.955  
0.96  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
0.715  
0.72  
0.965  
0.97  
2.12  
2.14  
2.16  
2.18  
2.2  
0.725  
0.73  
0.975  
0.98  
3.02  
3.04  
3.06  
0.735  
0.985  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-3. Output Voltage Selection for BUCK Regulators (continued)  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
10 mV steps  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
20 mV steps  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0.74  
0.745  
0.75  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0.99  
0.995  
1.0  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
1.38  
1.39  
1.4  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
2.22  
2.24  
2.26  
2.28  
2.3  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
3.08  
3.1  
3.12  
3.14  
3.16  
3.18  
3.2  
0.755  
0.76  
1.005  
1.01  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.5  
0.765  
0.77  
1.015  
1.02  
2.32  
2.34  
2.36  
2.38  
2.4  
0.775  
0.78  
1.025  
1.03  
3.22  
3.24  
3.26  
3.28  
3.3  
0.785  
0.79  
1.035  
1.04  
2.42  
2.44  
2.46  
2.48  
2.5  
0.795  
0.8  
1.045  
1.05  
3.32  
3.34  
0.805  
0.81  
1.055  
1.06  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.6  
0.815  
0.82  
1.065  
1.07  
0.825  
0.83  
1.075  
1.08  
0.835  
0.84  
1.085  
1.09  
0.845  
1.095  
1.61  
1.62  
1.63  
1.64  
1.65  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.2.1.8 BUCK Regulator Current Limit  
Each BUCK regulator includes a Current Limit to protect the internal High-Side and Low-Side Power-FETs  
against over-current. The High-Side Current Limit, also referred to as Forward Current Limit, is for BUCK1..4  
adjustable between 2.5 A and 5.5 A with 1-A steps with register bits BUCKx_ILIM[3:0]. For BUCK5, this Forward  
Current Limit has selectable levels 2.5 A and 3.5 A with register bits BUCK5_ILIM[3:0].  
The Low-Side Current Limit, also referred to as Negative Current Limit, has a fixed value of typical 2 A.  
8.3.2.1.9 SW_Bx Short-to-Ground Detection  
Each BUCK regulator includes a SW_Bx Short-to-Ground Detection. This SW_Bx Short-to-Ground Detection  
monitors whether the SW_B1...SW_B5 pins have a short-to-ground condition, either caused by external short on  
these pins or caused by a short in the low-side power-FET of the BUCK regulator. This SW_Bx Short to Ground  
Detection is activated before the power-up of the BUCK regulator. When this function detects a short-to-ground  
condition on the SW_B1...SW_B5 pins, the TPS6593-Q1 aborts the power-up sequence and sets the  
corresponding interrupt bits BUCKx_SC_INT (x=1...5). After this, the TPS6593-Q1 transitions to the SAFE  
RECOVERY state, after which it performs an attempt to restart as described in 8.4.1.1.  
8.3.2.1.10 Sync Clock Functionality  
The TPS6593-Q1 device contains a SYNCCLKIN (GPIO10) input to synchronize switching clock of the BUCK  
regulator with the external clock. The block diagram of the clocking and PLL module is shown in 8-8. The  
external clock is selected when the external clock is available, and SEL_EXT_CLK = '1'. The nominal frequency  
of the external input clock is set by EXT_CLK_FREQ[1:0] bits in the NVM and it can be 1.1 MHz, 2.2 MHz, or 4.4  
MHz. The external SYNCCLKIN clock must be inside accuracy limits (18%/+18%) of the typical input  
frequency for valid clock detection.  
The EXT_CLK_INT interrupt is generated in case the external clock is expected (SEL_EXT_CLK = 1), but it is  
not available or the clock frequency is not within the valid range.  
The TPS6593-Q1 device can also generate a clock signal, SYNCCLKOUT, for external device use. The  
SYNCCLKOUT_FREQ_SEL[1:0]  
selects  
the  
frequency  
of  
the  
SYNCCLKOUT.  
Note:  
SYNCCLKOUT_FREQ_SEL[1:0] must stay static while SYNCCLKOUT is used, as changing the output  
frequency selection can cause glitches on the clock output. The SYNCCLKOUT is available through GPIO8,  
GPIO9, or GPIO10.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
20 MHz  
RC  
Oscillator  
Main CLK  
Detector  
RESET  
Main Digital Clock  
Buck1  
Buck2  
20 MHz  
RC  
Oscillator  
÷ 18  
Phase and  
freq control  
DPLL  
/N  
52.8MHz +/- 20%  
SYNCCLKIN  
Detector  
Divider  
SYNCCLKOUT  
_FREQ_SEL  
SYNCCLKOUT  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
Spread-spec  
Control  
SYNCCLKIN  
SEL_EXT_CLK  
8-8. Sync Clock and DPLL Module  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.2.2 Low Dropout Regulators (LDOs)  
All of the LDO regulators in the TPS6593-Q1 device can be supplied by the system supply or another pre-  
regulated voltage source which are within the specified VIN range. The PVIN_LDOn voltage level must be equal  
or less than the VCCA voltage level to ensure proper operation of the LDOs. The default output voltages of all  
LDOs are loaded from the NVM memory and can be configured by the LDOn_VSET[7:0]. There is no hardware  
protection to prevent software from selecting an improper output voltage if the minimum level of PVIN_LDOn is  
lower than the dropout voltage of the LDO regulator in addition to the configured LDO output voltage. In such  
conditions, the output voltage droops to near the PVIN_LDOn level.  
备注  
Writing a RESERVED value to the LDOn_VSET[7:0] register bits causes a LDOn_OV_INT or  
LDOn_UV_INT interrupt.  
The LDO regulators do not have slew rate control for voltage ramp; by setting the LDOn_SLOW_RAMP bit to '1',  
however, the ramp up speed of the regulator output voltage is < 3 V/ms.  
If an LDO is not needed, its associated UV/OV Voltage Monitor can be used to monitor an external voltage rail  
by connecting the external rail to the VOUT_LDOn pin. The voltage level of the monitored external rail must be  
within the PGOOD monitor range of the LDOn_VSET[7:0] of the LDO. If an external resistor divider is necessary  
in this case, the user must take into account the input impedance at the VOUT_LDOn pin (as shown in 8-9),  
and adjust the resistor values to compensate for the voltage shift.  
External Supply  
Output  
PVIN_LDOn  
VOUT_LDOn  
LDO  
50 k  
Pull-Down resistor  
512 kΩ  
when LDOs are  
Disabled  
LDOn_UV_THR  
+
UV  
œ
DAC  
œ
OV  
+
LDOnOV_THR  
8-9. Impedance at the VOUT_LDOn Pins  
8.3.2.2.1 LDOVINT  
The LDOVINT voltage regulator is dedicated to supply the digital and analog functions of the TPS6593-Q1  
device, which are not required to be always-on and can be turned-off when the device is in low power states.  
The LDOVINT voltage regulator is automatically enabled and disabled as needed if LP_STANDBY_SEL = '1'.  
The automatic control optimizes the overall current consumption when the device is in low power LP_STANDBY  
state.  
The LDOVINT voltage regulator is dedicated for internal use only, and cannot be used to support external loads.  
An output filtering capacitor must be connected at the VOUT_LDOVINT pin. Do not connect any other  
components or external loads to this VOUT_LDOVINT pin.  
8.3.2.2.2 LDOVRTC  
The LDOVRTC voltage regulator supplies always-on functions, such as wake-up functions. This power resource  
is active as soon as a valid VCCA is present. The LDOVRTC voltage regulator is dedicated for internal use only,  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
and cannot be used to support external loads. An output filtering capacitor must be connected at the  
VOUT_LDOVRTC pin. Do not connect any other components or external loads to this VOUT_LDOVRTC pin.  
This voltage regulator is enabled in normal mode or backup mode. The LDOVRTC voltage regulator functions in  
normal mode when supplied from the main system power rail and is able to supply the input buffers of GPIO3  
and GPIO4, the digital components, the crystal, and the RTC calendar module of the TPS6593-Q1 device. The  
LDOVRTC voltage regulator remains on in BACKUP state when VCCA is below the VCCA_UVLO level, and the  
backup power source is above the LDOVRTC_UVLO level.  
Only the 32 kHz crystal and the RTC counter are activated in the BACKUP state. The RTC calendar function  
remains active in the LP_STANDBY state, but the interrupt functions are reduced to maintaining the wake up  
functions only. The RTC calendar and interrupt functions are fully activated in the mission states.  
The customer has the option to enable the shelf mode by setting the LDORTC_DIS bit to 1 while the device is in  
the MISSION state and the I2C bus is in operation and ramp down VCCA to 0 V immediately after the I2C write  
has completed. This shelf mode forces the device to skip the BACKUP state and enters the NO SUPPLY state  
under VCCA_UVLO condition. This mode is useful to prevent the continual draining of the backup power source  
when the 32 KHz crystal and RTC counter functions are no longer needed.  
8.3.2.2.3 LDO1, LDO2, and LDO3  
The LDO1, LDO2 and LDO3 regulators can deliver up to 500 mA of current, with a configurable output range of  
0.6 V to 3.3 V in 50-mV steps. These 3 LDO regulators also support bypass mode, which allows an input voltage  
at the PVIN_LDOn to show up at the VOUT_LDOn pin. This feature allows the LDOs to be configured as load  
switches with power sequencing control. Similar to the buck regulators mentioned in 8.3.2.1.4, the UV/OV  
Voltage Monitor of an un-used LDO regulator can also be used to monitor an external voltage rail by connecting  
the external rail to the VOUT_LDOn pin.  
The bypass capability to connect the input voltage to the output in bypass mode is supported when the input  
voltage is within the 1.7 V to 3.5 V range. This bypass capability also allows the LDO to switch from 3.3 V in  
bypass mode to 1.8 V in LDO mode or from 1.8 V in LDO mode to 3.3 V in bypass mode for an SD card I/O  
supply.  
The LDO1, LDO2 and LDO3 regulator include a Current-Limit to protect the internal Power-FET against  
overcurrent. This Current-Limit has a fixed value between 700 mA and 1800 mA.  
It is important to wait until the LDO has settled on the target voltage from the previous change when changing  
the LDO output voltage setting. The worst-case voltage scaling time for LDO1, LDO2, and LDO3 is 63 µs x (7 +  
the number of 50-mV steps to the new target voltage).  
8-4 shows the coding used to select the output voltage for LDO1, LDO2, and LDO3.  
8-4. Output Voltage Selection for LDO1, LDO2, and LDO3  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
LDOx_VSET  
LDOx_VSET  
LDOx_VSET  
LDOx_VSET  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
Reserved  
Reserved  
Reserved  
Reserved  
0.60  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
2.80  
2.85  
2.90  
2.95  
3.00  
0.65  
3.05  
0.70  
3.10  
0.75  
3.15  
0.80  
3.20  
0.85  
3.25  
0.90  
3.30  
0.95  
Reserved  
Reserved  
1.00  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
LDOx_VSET  
8-4. Output Voltage Selection for LDO1, LDO2, and LDO3 (continued)  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
LDOx_VSET  
LDOx_VSET  
LDOx_VSET  
0x0D  
0x0E  
0x0F  
1.05  
1.10  
1.15  
0x1D  
0x1E  
0x1F  
1.85  
1.90  
1.95  
0x2D  
0x2E  
0x2F  
2.65  
2.70  
2.75  
0x3D  
0x3E  
0x3F  
Reserved  
Reserved  
Reserved  
8.3.2.2.4 Low-Noise LDO (LDO4)  
The LDO4 regulator can deliver up to 300 mA of current, with a configurable output range of 1.2 V to 3.3 V in 25-  
mV steps. This LDO is specifically designed to supply noise sensitive circuits. This supply can be used to power  
circuits such as PLLs, oscillators, or other analog modules that require low noise on the supply. LDO4 does not  
support bypass mode. However, if the LDO4 output voltage is not used, the associated UV/OV Voltage Monitor  
of this regulator can be used as to monitor an external voltage rail by connecting this external voltage rail to the  
VOUT_LDO4 pin.  
The LDO4 regulator includes a Current-Limit to protect the internal Power-FET against overcurrent. This  
Current-Limit has a fixed value between 400 mA and 900 mA.  
8-5 shows the coding used to select the output voltage for LDO4.  
8-5. Output Voltage Selection for LDO4  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
LDO4_VSET  
LDO4_VSET  
LDO4_VSET  
LDO4_VSET  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
2.000  
2.025  
2.050  
2.075  
2.100  
2.125  
2.150  
2.175  
2.200  
2.225  
2.250  
2.275  
2.300  
2.325  
2.350  
2.375  
2.400  
2.425  
2.450  
2.475  
2.500  
2.525  
2.550  
2.575  
2.600  
2.625  
2.650  
2.675  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
2.800  
2.825  
2.850  
2.875  
2.900  
2.925  
2.950  
2.975  
3.000  
3.025  
3.050  
3.075  
3.100  
3.125  
3.150  
3.175  
3.200  
3.225  
3.250  
3.275  
3.300  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-5. Output Voltage Selection for LDO4 (continued)  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
LDO4_VSET  
LDO4_VSET  
LDO4_VSET  
LDO4_VSET  
0x1C  
0x1D  
0x1E  
0x1F  
Reserved  
Reserved  
Reserved  
Reserved  
0x3C  
0x3D  
0x3E  
0x3F  
1.900  
1.925  
1.950  
1.975  
0x5C  
0x5D  
0x5E  
0x5F  
2.700  
2.725  
2.750  
2.775  
0x7C  
0x7D  
0x7E  
0x7F  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.3 Output Voltage Monitor and PGOOD Generation  
The TPS6593-Q1 device monitors the undervoltage (UV) and overvoltage (OV) conditions on the output voltages  
of the BUCK and LDO, regulators and VCCA (when it is expected to be 5 V or 3.3 V), and has the option to  
indicate the result with a PGOOD signal. Thermal warning can also be included in the result of the PGOOD  
monitor if it is not masked. Either voltage and current monitoring or only voltage monitoring can be selected for  
PGOOD indication. This selection is set by the PGOOD_SEL_BUCKn register bits for each BUCK regulator  
(select primary phase for multi-phase regulator), and is set by the PGOOD_SEL_LDOn register bits for each  
LDO regulator. When voltage and current are monitored, an active PGOOD signal active indicates that the  
regulator output is inside the Power-Good voltage window and that load current is below the current limit. If only  
voltage is monitored, then the current monitoring is ignored for the PGOOD signal.  
The PGOOD signal represents the momentary status of the included indications without latching. If the PGOOD  
signal goes low due to an indicated warning or error condition, the PGOOD signal goes high immediately when  
the previous indicated warning or error condition is no longer present.  
The BUCKn_VMON_EN bit enables the overvoltage (OV) , undervoltage (UV) and short-circuit (SC)  
comparators. The current limit (ILIM) comparator of each BUCK regulator is activated as soon as the  
corresponding BUCK regulator is enabled. In order to add the current limit indication of a BUCK regulator to the  
PGOOD signal, the BUCKn_VMON_EN bit of the corresponding BUCK regulator must be set. For LDO  
regulators, the LDOn_VMON_EN bit enables the OV and UV, short-circuit (SC) comparators. The current limit  
(ILIM) comparator of each LDO regulator is activated as soon as the corresponding LDO regulator is enabled. In  
order to add the current limit indication of an LDO to the PGOOD signal, the LDOn_VMON_EN bit of the  
corresponding LDO regulator must be set. When a BUCK or an LDO is not needed as a regulated output, it can  
be used as a voltage monitor for an external rail. For BUCK converters, if the BUCKn_VMON_EN bit remains '1'  
while the BUCKn_EN bit is '0', it can be used as a voltage monitor for an external rail that is connected to the  
FB_Bn pin of the BUCK regulator. For LDO regulators, if the LDOn_VMON_EN bit remains '1' while the  
LDOn_EN bit is '0', it can be used as a voltage monitor for an external rail which is connected to the  
VOUT_LDOn pin.  
When the voltage monitor for a BUCK or LDO regulator is disabled, the output of the corresponding monitor is  
automatically masked to prevent it from forcing PGOOD inactive. The masking allows PGOOD to be connected  
to other open-drain power good signals in the system.  
The VCCA input voltage monitoring is enabled with VCCA_VMON_EN bit. The monitoring can be enabled by an  
NVM default setting, that starts the monitoring of the VCCA voltage after the device passes the BOOT BIST  
state. The reference voltage for the VCCA monitor can be set by the VCCA_PG_SET bit to either 3.3 V or 5 V.  
The PGOOD_SEL_VCCA register bit selects whether or not the result of the VCCA monitor is included in the  
PGOOD monitor output signal.  
An NVM option is available to gate the PGOOD output with the nRSTOUT and the nRSTOUT_SoC signals, the  
intended reset signals for the safety MCU and the SoC respectively. When PGOOD_SEL_NRSTOUT = '1', the  
PGOOD pin is gated by the nRSTOUT signal. When PGOOD_SEL_NRSTOUT_SOC = '1', the PGOOD pin is  
gated by the nRSTOUT_SoC signal. This option allows the PGOOD output to be used as an enable signal for  
external peripherals.  
The outputs of the voltage monitors from all the output rails are combined, and PGOOD is active only if all the  
sources shows active status.  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW bit. If the bit is 0, only  
undervoltage is monitored; if the bit is 1, then undervoltage and overvoltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by PGOOD_POL and GPIO9_OD bits.  
8-10 shows the Power-Good generation block diagram, and 8-11 shows the Power-Good waveforms.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Die  
Temperature  
Monitor  
TJ < TWARN  
TWARN_LEVEL  
PGOOD_SEL_TDIE_WARN  
PGOOD_BUCKn  
BUCKn  
PGOOD_WINDOW  
Monitor  
BUCKn_ILIM  
BUCKn_VSETn  
BUCKn_UV_THR  
BUCKn_OV_THR  
BUCKn_VMON_EN  
PGOOD_SEL_BUCKn  
Monitor  
PGOOD_LDOn  
LDOn  
PGOOD_WINDOW  
PGOOD (GPIO9)  
LDOn_VSET  
LDOn_UV_THR  
LDOn_OV_THR  
PGOOD_POL  
LDOn_VMON_EN  
PGOOD_SEL_LDOn  
PGOOD_VCCA  
VCCA  
Monitor  
PGOOD_WINDOW  
VCCA_PG_SET  
VCCA_UV_THR  
VCCA_OV_THR  
VCCA_VMON_EN  
PGOOD_SEL_VCCA  
NRSTOUT  
PGOOD_SEL_NRSTOUT  
NRSTOUT_SoC  
PGOOD_SEL_NRSTOUT_SOC  
8-10. PGOOD Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Voltage  
Powergood window  
BUCKn_VSETn or  
LDOn_VSET (1)  
Power-good  
window  
BUCKn_VSETn or  
LDOn_VSET (2)  
Time  
On Request  
VIO  
BUCKn_VMON_EN  
or LDOn_VMON_EN  
NRSTOUT  
or NRSTOUT_SoC  
tlatency  
tlatency  
_PGOOD  
_PGOOD  
PGOOD  
(PGOOD_SEL_NRSTOUT =1  
or PGOOD_SEL_NRSTOUT_SOC = 1)  
tlatency  
tlatency  
_PGOOD  
_PGOOD  
PGOOD  
(PGOOD_SEL_NRSTOUT = 0  
and PGOOD_SEL_NRSTOUT_SOC = 0)  
BUCKn_VSETn or LDOn_VSET (1)  
BUCKn_VSETn or LDOn_VSET (2)  
Regulator VSET  
8-11. PGOOD Waveforms  
The OV and UV threshold of the voltage monitors of the BUCK regulators and the LDO regulators are updated  
automatically by the digital control block when the output voltage setting changes. When the output voltage of  
the regulator is increased, the OV threshold is updated at the same time the _VSET of the regulator is changed.  
The UV threshold is updated after a delay calculated by the delta voltage change and the slew rate setting.  
When the output voltage is decreased, the UV threshold is updated at the same time the _VSET of the regulator  
is changed. The OV threshold is updated after a delay calculated by the delta voltage change and the slew rate  
setting. The OV and UV threshold of the BUCK and LDO output voltage monitors are calculated based on the  
target output voltage set by the corresponding BUCKn_VSET1, BUCKn_VSET2, or LDOn_VSET registers, and  
the deviation from the target output voltage set (the voltage window) by the corresponding BUCKn_UV_THR,  
BUCKn_OV_THR, LDOn_UV_THR, and the LDOn_OV_THR registers. For the OV and UV threshold of BUCK  
and LDO output monitors to update with the correct timing, the following operating procedures must be followed  
when updating the _VSET values of the regulators to avoid detection of OV/UV fault:  
BUCK and LDO regulators must be enabled at the same time as or earlier than as their VMON  
New voltage level must not be set before the start-up has finished  
New voltage level must not be set before the previous voltage change (ramp plus settling time) has  
completed  
The voltage monitors of unused BUCK or LDO regulators can be used for external supply rails monitoring. In  
three-phase configuration, the Voltage Monitor of BUCK3 (on FB_B3 pin) becomes a free available resource for  
monitoring an external supply voltage. In four-phase configuration, the Voltage Monitor of both BUCK3 (on  
FB_B3 pin) and BUCK4 (on FB_B4 pin) become free available resources for monitoring two external supply  
voltages.. The target output voltage is set by the corresponding BUCKn_VSET1, BUCKn_VSET2, or  
LDOn_VSET registers, and the deviation from the target output voltage set (the voltage window) by the  
corresponding BUCKn_UV_THR, BUCKn_OV_THR, LDOn_UV_THR, and the LDOn_OV_THR registers.  
Following aspects need to be taken into account if Voltage Monitors of unused BUCK or LDO regulators are  
used for monitoring external supply rails:  
For voltage monitors of unused LDO regulators: the voltage level applied at the VOUT_LDOx pin, inclusive  
expected tolerances, must be below the supply voltage applied at the PVIN_LDOx pin  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
For voltage monitors of unused BUCK and LDO regulators: the maximum nominal supply voltage of the  
monitored supply rail is 3.3V  
For voltage monitors of unused BUCK regulators and for voltage monitors of BUCK3 and/or BUCK4  
regulators if used in a three-phase or four-phase configuration: the configured values for the BUCKn_VSET  
and the BUCKn_SLEW_RATE determine the delay-time for the voltage monitoring to become active after the  
corresponding BUCKn_VMON_EN bit is set. See equation (2) in 8.3.2.1.6. If BUCK3 and/or BUCK4  
regulators are used in a three-phase or four-phase configuration: even though the values for the  
BUCK1_VSET and BUCK1_SLEW_RATE bits determine the output voltage and slew-rate of the three-phase  
or four-phase output rail, the values for BUCK3_VSET respectively BUCK4_VSET and BUCK3_SLEW_RATE  
respectively BUCK4_SLEW_RATE bits determine the power-good level and the voltage monitoring delay  
time for the BUCK3 respectively BUCK4 Voltage Monitors.  
For voltage monitors of unused LDO regulators: the delay-time for the voltage monitoring to become active  
after the corresponding LDOn_VMON_EN bit is set it 601..606μs.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.4 Thermal Monitoring  
The TPS6593-Q1 device includes several thermal monitoring functions for internal thermal protection of the  
PMIC.  
The TPS6593-Q1 device integrates thermal detection modules to monitor the temperature of the die. These  
modules are placed on opposite sides of the device and close to the LDO and BUCK modules. An over-  
temperature condition at either module first generates a warning to the system, and if the temperature continues  
to rise, then a switch-off of the PMIC device can occur before damage to the die.  
Three thermal protection levels are available. One of these protections is a thermal warning function described in  
8.3.4.1, that sends an interrupt to software. Software is expected to close any noncritical running tasks to  
reduce power. The second and third protections are the thermal shutdown (TS) function described in 8.3.4.2,  
that begins device shutdown orderly or immediately.  
Thermal monitoring is automatically enabled when one of the BUCK or LDO outputs is enabled within the  
mission states. The thermal monitoring is disabled in the LP_STANDBY state, when only the internal regulators  
are enabled, to minimize the device power consumption. Indication of a thermal warning event is written to the  
TWARN_INT register.  
The current consumption of the thermal monitoring can be decreased in the mission states when the low power  
dissipation is important. If LPM_EN bit is set and the temperature is below thermal warning level in all thermal  
detection modules, only one thermal detection module is monitored. If the temperature rises in this module,  
monitoring in all thermal detection modules is started.  
If the die temperature of the TPS6593-Q1 device continues to rise while the device is in mission state, an  
TSD_ORD_INT or TSD_IMM_INT interrupt is generated, causing a SEVERE or MODERATE error trigger  
(respectively) in the state machine. While the sequencing and error handling is NVM memory dependent, TI  
recommends a sequenced shutdown for MODERATE errors, and an immediate shutdown, using resistive  
discharging, for SEVERE errors to prevent damage to the device. The system cannot restart until the  
temperature falls below the thermal warning threshold.  
8.3.4.1 Thermal Warning Function  
The thermal monitor provides a warning to the host processor through the interrupt system when the  
temperature reaches within a cautionary range. The threshold value must be set to less than the thermal  
shutdown threshold.  
The integrated thermal warning function provides the MCU an early warning of over-temperature condition. This  
monitoring system is connected to the interrupt controller and can send an TWARN_INT interrupt when the  
temperature is higher than the preset threshold. The TPS6593-Q1 device uses the TWARN_LEVEL register bit  
to set the thermal warning threshold temperature at 130°C or 140°C. There is no hysteresis for the thermal  
warning level.  
When the power-management software triggers an interrupt, immediate action must be taken to reduce the  
amount of power drawn from the PMIC device (for example, noncritical applications must be closed).  
8.3.4.2 Thermal Shutdown  
The thermal shutdown detector monitors the temperature on the die. If the junction reaches a temperature at  
which damage can occur, a switch-off transition is initiated and a thermal shutdown event is written into a status  
register. There are two levels of thermal shutdown threshold. When the die temperature reaches the TSD_orderly  
level, the TPS6593-Q1 device performs an orderly shutdown of all output power rails. If the die temperature  
raises rapidly and reaches the TSD_imm level before the orderly shutdown process completes, the TPS6593-Q1  
device performs an immediate shutdown with activated pull-down on all output power rails, in order to turn off all  
of the output power rails as rapidly as possible. After the thermal shutdown takes place, the system cannot  
restart until the die temperature is below the thermal warning threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.5 Backup Supply Power-Path  
The LDOVRTC is supplied from either the VBACKUP (backup supply from either coin-cell or super-cap) input or  
VCCA. The power-path is designed to prioritize VCCA to maximize the life of the backup supply.  
When VCCA drops below the VCCA_UVLO threshold, the device shuts down all rails except the LDOVRTC, and  
enters the BACKUP mode. At this point, the Backup Supply Power-Path switches to the VBACKUP as the input  
of LDOVRTC. When the voltage of VCCA returns to level above the VCCA_UVLO threshold level, the power-  
path switches the input of LDOVRTC back to VCCA.  
When both the VCCA voltage drop below the VCCA_UVLO threshold, and the VBACKUP voltage drops below  
1.7V (RTC_LDO_UVLO threshold), the LDOVRTC is turned OFF and the digital core is reset, which forces the  
device into the NO SUPPLY state.  
Note: a backup supply is not required for the device to operate. The device skips the BACKUP state if the  
VBACKUP pin is grounded.  
8.3.6 General-Purpose I/Os (GPIO Pins)  
The TPS6593-Q1 device integrates eleven configurable general-purpose I/Os that are multiplexed with  
alternative features as listed in 6  
For GPIOs characteristics, refer to Electrical Characteristics tables for Digital Input Signal Parameters and Digital  
Output Signal Parameters.  
When configured as primary functions, all GPIOs are controlled through the following set of registers bits under  
the individual GPIOn_CONF register.  
GPIOn_DEGLITCH_EN: Enables the 8 µs deglitch time for each GPIO pin (input)  
GPIOn_PU_PD_EN: Enables the internal pull up or pull down resistor connected to each GPIO pin  
GPIOn_PU_SEL: Selects the pull up or the pull down resistor to be connected when GPIOn_PU_PD_EN =  
'1'. '1' = pull-up resistor selected, '0' = pull-down resistor selected  
GPIOn_OD: Configures the GPIO pin (output) as: '1' = open drain, '0' = push-pull  
GPIOn_DIR: Configures the input or output direction of each GPIO pin  
Each GPIO event can generate an interrupt on a rising edge, falling edge, or both, configured through the  
GPIOn_FALL_MASK and the GPIOn_RISE_MASK register bits. A GPIO-interrupt applies when the primary  
function (general-purpose I/O) has been selected and also for the following alternative functions:  
nRSTOUT_SOC  
PGOOD  
nERR_MCU  
nERR_SoC  
TRIG_WDOG  
DISABLE_WDOG  
NSLEEP1, NSLEEP2  
WKUP1, WKUP2  
LP_WKUP1, LP_WKUP2  
The GPIOn_SEL[2:0] register bits under the GPIOn_CONF registers control the selection between a primary and  
an alternative function. When a pre-defined function is selected, some predetermined IO characteristics (such as  
pullup, pulldown, push-pull or open drain) for the pin are enforced regardless of the settings of the associated  
GPIO configuration register. Please note that if the GPIOn_SEL[2:0] is changed during device operation, a signal  
glitch may occur which may cause digital malfunction, especially if it involves a clock signal such as SCL_I2C2,  
CLK32KOUT, SCL_SPMI, SYNCCLKIN, or SYNCCLKOUT. Please refer to 6.1 for more detail on the  
predetermined IO characteristics for each pre-defined digital interface function.  
All GPIOs can be configured as a wake-up input when it is configured as a WKUP1 or a WKUP2 signal. Only  
GPIO3 and GPIO4 can be configured as LP_WKUP1 or LP_WKUP2 signal so that they can be used to wake-up  
the device from LP_STANDBY state. All GPIOs can also be configured as a NSLEEP1 or a NSLEEP2 input. For  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
more information regarding the usage of the NSLEEPx pins and the WKUPx pins, please refer to 8.4.1.2.4.3  
and 8.4.1.2.4.4.  
Any of the GPIO pin can also be configured as part of the power-up sequence to enable external devices such  
as external BUCKs when it is configured as a general-purpose output port.  
The nINT pin, the EN_DRV pin, the nRSTOUT pin and the GPIO pin assigned as nRSTOUT_SOC have  
readback monitoring to detect errors on the signals. The monitoring of the EN_DRV pin checks for mismatch in  
both low and high levels. For the nINT pin, the nRSTOUT pin and the GPIO pin assigned as nRSTOUT_SOC,  
the readback monitoring only checks for mismatches in the low level, therefore it is allowed to combine these  
signals with other external pull-down sources. The readback mismatch is continuously monitored without deglitch  
circuitry during operation, and the monitoring is gated for tgate_readback period when the signal state is changed or  
when a new function is selected for the GPIO pin with the GPIOn_SEL bits. NINT_READBACK_INT,  
EN_DRV_READBACK_INT, NRSTOUT_READBACK_INT, and NRSTOUT_SOC_READBACK_INT are the  
interrupt bits that are set in an event of a readback mismatch for these pins, respectively.  
备注  
All GPIO pin are set to generic input pins with resistive pull-down before NVM memory is loaded  
during device power up. Therefore, if any GPIOs has external pull-up resistors connecting to a voltage  
domain that is energized before the NVM memory is loaded, the GPIO pin is pulled high before the  
configuration for the pin is loaded from the NVM.  
备注  
For GPIO pins with internal pull down enabled, additional leakage current flows into the GPIO pin if  
this pin is pulled-up to a voltage higher than the voltage level of its output power domain. If the internal  
pull down must be enabled, please use a resistor divider to divide down the input voltage, or use a  
series resistor to connect to the input source and ensure the voltage level at the GPIO pin is below the  
voltage level of its output power domain.  
8.3.7 nINT, EN_DRV, and nRSTOUT Pins  
The nINT, EN_DRV and nRSTOUT pin, and the GPIO pin assigned as nRSTOUT_SoC are IO pins with  
dedicated functions.  
The nINT pin is the open drain interrupt output pin. More description regarding the function of this pin can be  
found under 8.3.8.  
The nRSTOUT pin, together with the GPIO pin assigned as nRSTOUT_SoC, are the system reset pins which  
can be configured as open-drain or push-pull outputs. These pins stay in the default low state until the PFSM of  
the TPS6593-Q1 sets the associated control bits NRSTOUT and NRSTOUT_SOC in the register map. These  
control bits NRSTOUT and NRSTOUT_SOC are set by the PFSM typically after the end of a power-up  
sequence. At the beginning of a power-down sequence, the PFSM clears these control bits NRSTOUT and  
NRSTOUT_SOC in order to pull-down the nRSTOUT and nRSTOUT_SoC pins before the ramp-down of the  
voltage rails.  
The purpose of the EN_DRV pin is to indicate that the TPS6593-Q1 has entered a safe state. The EN_DRV pin  
has an internal 10kΩ high-side pull-up to the VCCA supply. The TPS6593-Q1 pulls this EN_DRV pin to the  
default low state, and releases the pull-down when the MCU sets the ENABLE_DRV bit to '1'.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.8 Interrupts  
The interrupt registers in the device are organized in hierarchical fashion. The interrupts are grouped into the  
following categories:  
BUCK ERROR  
LDO ERROR  
These interrupts indicate over-voltage (OV), under-voltage (UV), short-circuit (SC)  
and over-current (ILIM) error conditions found on the BUCK regulators .  
These interrupts indicate OV, UV, and SC error conditions found on the LDO  
regulators, as well as OV and UV error conditions found on the VCCA supply.  
VMON ERROR  
These interrupts indicate OV and UV error conditions found on the VCCA supply.  
SEVERE ERROR  
These errors indicate severe device error conditions, such as thermal shutdown,  
PFSM sequencing and execution error and VCCA over-voltage, that causes the  
device to trigger the PFSM to execute immediate shutdown of all digital outputs,  
external voltage rails and monitors, and proceed to the Safe Recovery State.  
MODERATE ERROR  
These interrupts provide warnings to the system to indicate multiple restart attempts  
from SAFE RECOVERY state exceeding the allowed recovery count, multiple warm-  
reset executions exceeding the allowed recovery count, detection of long press  
nPWRON button, SPMI communication error, register CRC error, BIST failure, read-  
back error on nRSTOUT or nINT pins, or junction temperature reaching orderly  
shutdown level. These warning causes the device to trigger the PFSM to execute  
orderly shutdown of all digital outputs, external voltage rails and monitors, and  
proceed to the SAFE RECOVERY state.3  
MISCELLANEOUS  
WARNING  
These interrupts provide information to the system to indicate detection of WDOG or  
ESM errors, die temperature crossing thermal warning threshold, device passing BIST  
test, or external sync clock availability.  
START-UP SOURCE  
GPIO DETECTION  
These interrupts provide information to the system on the mechanism that caused the  
device to start up, which includes FSD, RTC alarm or timer interrupts, the activation of  
the ENABLE pin or the nPRWON pin button detection.  
These interrupts indicate a High-Leverl or Rising-Edge detection, or indicate a Low-  
Level or Falling-Edge detection at the GPIO1 through GPIO11 pins.  
FSM ERROR  
INTERRUPT  
These interrupts indicate the detection of an error that causes the device mission  
state changes.  
All interrupts are logically combined on a single output pin, nINT (active low). The host processor can read the  
INT_TOP register to find the interrupt registers to find out the source of the interrupt, and write '1' to the  
corresponding interrupt register bit to clear the interrupt. This mechanism ensures when a new interrupt occurs  
while the nINT pin is still active, all of the corresponding interrupt register bits retain the interrupt source  
information until it is cleared by the host.  
Hierarchical Structure of Interrupt Registers shows the hierarchical structure of the interrupt registers according  
to the categories described above. The purpose of this register structure is to reduce the number of interrupt  
register read cycles the host has to perform in order to identify the source of the interrupt. Summary of Interrupt  
Signals summarizes the trigger and the clearing mechanism for all of the interrupt signals. This table also shows  
which interrupt sources can be masked by setting the corresponding mask register to '1'. When an interrupt is  
masked, the interrupt bit is not updated when the associated event occurs, the nINT line is not affected, and the  
event is not recorded. If an interrupt is masked after the event occurred, the interrupt register bit reflects the  
event until the bit is cleared. While the event is masked, the interrupt register bit is not over-written when a new  
event occurs.  
3
The SEVERE ERROR and the MODERATE ERROR are handled in NVM memory but TI requires that the NVM pre-configurable finite  
state machine (PFSM) settings always follow this described error handling to meet device specifications.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
INT_FSM_ERR[7:0]  
READBACK  
_ERR_INT  
SOC_PWR  
_ERR_INT  
MCU_PWR  
_ERR_INT  
ORD_  
SHUTDOWN_INT  
IMM_  
SHUTDOWN_INT  
WD_INT  
ESM_INT  
COMM_ERR_INT  
INT_COMM_ERR[7:0]  
I2C2_ADR  
_ERR_INT  
I2C2_CRC  
_ERR_INT  
COMM_ADR  
_ERR_INT  
COMM_CRC  
_ERR_INT  
COMM_FRM  
_ERR_INT  
INT_READBACK_ERR[7:0]  
NRSTOUT_SOC  
_READBACK_INT  
EN_DRV  
_READBACK_INT  
INT_ESM[7:0]  
ESM_MCU  
_RST_INT  
ESM_MCU  
_FAIL_INT  
ESM_MCU  
_PIN_INT  
ESM_SOC  
_RST_INT  
ESM_SOC  
_FAIL_INT  
ESM_SOC  
_PIN_INT  
INT_SEVERE_ERR[7:0]  
VCCA_OVP_INT  
BIST_FAIL  
TSD_IMM_INT  
TSD_ORD_INT  
BIST_PASS_INT  
PFSM_ERR_INT  
INT_MODERATE_ERR[7:0]  
NRSTOUT  
_READBACK_INT  
NINT_READBACK  
_INT  
NPWRON_LONG  
_INT  
SPMI_ERR_INT  
RECOV_CNT_INT  
TWARN_INT  
REG_CRC_ERR_INT  
INT_MISC[7:0]  
EXT_CLK_INT  
ENABLE_INT  
INT_STARTUP[7:0]  
NPWRON  
_START_INT  
SOFT_REBOOT_INT  
FSD_INT  
RTC_INT  
INT_GPIO[7:0]  
GPIO1_8_INT  
GPIO4_INT  
GPIO11_INT  
GPIO3_INT  
GPIO10_INT  
GPIO2_INT  
GPIO9_INT  
GPIO1_INT  
INT_GPIO1_8[7:0]  
GPIO8_INT  
GPIO7_INT  
GPIO6_INT  
GPIO5_INT  
INT_LDO_VMON[7:0]  
INT_VMON[7:0]  
VCCA_INT  
LDO3_4_INT  
LDO1_2_INT  
VCCA_UV_INT  
LDO3_UV_INT  
LDO1_UV_INT  
VCCA_OV_INT  
LDO3_OV_INT  
LDO1_OV_INT  
INT_LDO3_4[7:0]  
LDO4_ILIM_INT  
LDO4_SC_INT  
LDO2_SC_INT  
LDO4_UV_INT  
LDO2_UV_INT  
LDO4_OV_INT  
LDO2_OV_INT  
LDO3_ILIM_INT  
LDO1_ILIM_INT  
LDO3_SC_INT  
LDO1_SC_INT  
INT_LDO1_2[7:0]  
LDO2_ILIM_INT  
INT_BUCK[7:0]  
INT_BUCK5[7:0]  
BUCK5_INT  
BUCK3_4_INT  
BUCK1_2_INT  
BUCK5_ILIM_INT  
BUCK3_ILIM_INT  
BUCK1_ILIM_INT  
BUCK5_SC_INT  
BUCK3_SC_INT  
BUCK1_SC_INT  
BUCK5_UV_INT  
BUCK3_UV_INT  
BUCK1_UV_INT  
BUCK5_OV_INT  
BUCK3_OV_INT  
BUCK1_OV_INT  
INT_BUCK3_4[7:0]  
BUCK4_ILIM_INT  
BUCK4_SC_INT  
BUCK2_SC_INT  
BUCK4_UV_INT  
BUCK2_UV_INT  
BUCK4_OV_INT  
BUCK2_OV_INT  
INT_BUCK1_2[7:0]  
BUCK2_ILIM_INT  
8-12. Hierarchical Structure of Interrupt Registers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-6. Summary of Interrupt Signals  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
EN_ILIM_FSM_CTR  
L=1:  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
EN_ILIM_FSM_CTR  
L=0:  
N/A  
EN_ILIM_FSM_CT  
RL=1:  
Transition according Depends on PFSM  
to FSM trigger and configuration, see  
interrupt  
EN_ILIM_FSM_CT diagram  
RL=0:  
Write 1 to  
BUCKn_ILIM_INT  
bit  
BUCK regulator  
forward current limit  
triggered  
BUCKn_ILIM_INT =  
1
BUCKn_ILIM_MASK  
BUCKn_ILIM_STAT Interrupt is not  
cleared if current  
PFSM transition  
limit violation is  
active  
Interrupt only  
EN_ILIM_FSM_CTR  
L=1:  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
EN_ILIM_FSM_CTR  
L=0:  
N/A  
EN_ILIM_FSM_CT  
RL=1:  
Transition according Depends on PFSM  
to FSM trigger and configuration, see  
interrupt  
EN_ILIM_FSM_CT diagram  
RL=0:  
Interrupt only  
Write 1 to  
LDOn_ILIM_INT bit  
Interrupt is not  
cleared if current  
limit violation is  
active  
LDO regulator current  
limit triggered  
LDOn_ILIM_INT = 1 LDOn_ILIM_MASK  
LDOn_ILIM_STAT  
PFSM transition  
Write 1 to  
BUCKn_SC_INT bit  
Interrupt is not  
cleared if the  
According to  
BUCK output or switch BUCKn_GRP_SEL  
Regulator disable  
and transition  
according to FSM  
Depends on PFSM  
configuration, see  
PFSM transition  
BUCKn is enabled  
and the BUCKn  
output voltage is  
below the short-  
circuit threshold  
after elapse of  
expected ramp-up  
time interval  
BUCKn_SC_INT = 1 N/A  
N/A  
short circuit detected  
and x_RAIL_TRIG  
bits  
trigger and interrupt diagram  
Write 1 to  
LDOn_SC_INT bit  
Interrupt is not  
cleared if the LDOn  
is enabled and the  
LDOn output voltage  
is below the short-  
circuit threshold  
after elapse of  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Regulator disable  
and transition  
according to FSM  
Depends on PFSM  
configuration, see  
PFSM transition  
LDO output short  
circuit detected  
LDOn_SC_INT = 1  
N/A  
N/A  
trigger and interrupt diagram  
expected ramp-up  
time interval  
Write 1 to  
BUCKn_OV_INT bit  
Interrupt is not  
BUCKn_OV_STAT cleared if the  
associated fault  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
Transition according  
to FSM trigger and  
interrupt  
BUCK regulator  
overvoltage  
configuration, see  
PFSM transition  
diagram  
BUCKn_OV_INT = 1 BUCKn_OV_MASK  
BUCKn_UV_INT = 1 BUCKn_UV_MASK  
LDOn_OV_INT = 1 LDOn_OV_MASK  
condition is still  
present  
Write 1 to  
BUCKn_UV_INT bit  
Interrupt is not  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
BUCK regulator  
undervoltage  
BUCKn_UV_STAT cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
LDOn_OV_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
LDO regulator  
overvoltage  
LDOn_OV_STAT  
LDOn_UV_STAT  
VCCA_OV_STAT  
Write 1 to  
LDOn_UV_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
LDO regulator  
undervoltage  
LDOn_UV_INT = 1  
LDOn_UV_MASK  
Write 1 to  
VCCA_OV_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
According to  
VCCA_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
VCCA input  
overvoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
VCCA_OV_INT = 1 VCCA_OV_MASK  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
Write 1 to  
VCCA_UV_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
According to  
VCCA_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
VCCA input  
undervoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
VCCA_UV_INT = 1 VCCA_UV_MASK  
VCCA_UV_STAT  
Write 1 to  
TWARN_INT bit  
Interrupt is not  
cleared if  
Thermal warning  
N/A  
Interrupt only  
Not valid  
TWARN_INT = 1  
TWARN_MASK  
TWARN_STAT  
temperature is  
above thermal  
warning level  
Write 1 to  
TSD_ORD_INT bit  
This interrupt bit can  
only be read by the  
MCU after the  
device has  
recovered from a  
previously occurred  
over-temperature  
event.  
All regulators  
disabled and Output STARTUP_DEST[1:0]  
GPIOx set to low in state after  
Automatic start-up to  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Thermal shutdown,  
orderly sequenced  
TSD_ORD_INT = 1 N/A  
TSD_ORD_STAT  
a sequence and  
temperature is below  
TWARN level  
interrupt(1)  
Write 1 to  
TSD_IMM_INT bit  
This interrupt bit can  
only be read by the  
MCU after the  
device has  
recovered from a  
previously occurred  
over-temperature  
event.  
All regulators  
Automatic start-up to  
STARTUP_DEST[1:0]  
state after  
temperature is below  
TWARN level  
disabled with pull-  
down resistors and  
Output GPIOx set to  
low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
Thermal shutdown,  
immediate  
TSD_IMM_INT = 1  
N/A  
TSD_IMM_STAT  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Write 1 to  
BIST_FAIL_INT bit  
BIST error  
STARTUP_DEST[1:0] BIST_FAIL_INT = 1 BIST_FAIL_MASK  
state  
N/A  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Write 1 to  
REG_CRC_ERR_IN  
T bit  
REG_CRC_ERR_IN  
T = 1  
Register CRC error  
STARTUP_DEST[1:0]  
state  
REG_CRC_ERR_MASK N/A  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
SPMI communication WN  
Write 1 to  
SPMI_ERR_INT bit  
STARTUP_DEST[1:0] SPMI_ERR_INT = 1 SPMI_ERR_MASK  
state  
N/A  
error  
(MODERATE_ERR_I  
NT)  
Write 1 to  
COMM_FRM_ERR_  
INT bit  
COMM_FRM_ERR_ COMM_FRM_ERR_MA  
Not valid  
SPI frame error  
N/A  
Interrupt only  
Interrupt only  
Interrupt only  
Interrupt only  
Interrupt only  
N/A  
N/A  
N/A  
INT = 1(4)  
SK  
Write 1 to  
COMM_CRC_ERR_  
INT bit  
COMM_CRC_ERR_ COMM_CRC_ERR_MA  
INT = 1 SK  
I2C1 or SPI CRC error N/A  
Not valid  
Not valid  
Not valid  
Not valid  
Write 1 to  
COMM_ADR_ERR_  
INT bit  
I2C1 or SPI address  
COMM_ADR_ERR_ COMM_ADR_ERR_MA  
N/A  
error(5)  
INT = 1  
SK  
Write 1 to  
I2C2_CRC_ERR_IN  
T bit  
I2C2_CRC_ERR_IN  
T = 1  
I2C2 CRC error  
N/A  
N/A  
I2C2_CRC_ERR_MASK N/A  
I2C2_ADR_ERR_MASK N/A  
Write 1 to  
I2C2_ADR_ERR_IN  
T bit  
I2C2_ADR_ERR_IN  
T = 1  
I2C2 address error(5)  
Automatic start-up to  
STARTUP_DEST[1:0]  
state. If previous  
PFSM_ERR_INT is  
pending, VCCA power  
cycle needed for  
recovery.  
All regulators  
disabled with pull-  
down resistors and  
Output GPIOx set to  
low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
PFSM_ERR_INT =  
1
Write 1 to  
PFSM_ERR_INT bit  
PFSM error  
N/A  
Write 1 to  
EN_DRV_READBA  
CK_INT bit  
EN_DRV pin read-  
back error (monitoring N/A  
high and low states)  
EN_DRV_READBA EN_DRV_READBACK_ EN_DRV_READBA Interrupt is not  
Interrupt only  
Not valid  
CK_INT = 1  
MASK  
CK_STAT  
cleared if the  
associated fault  
condition is still  
present  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
Write 1 to  
NINT_READBACK_I  
NT bit  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
NINT pin read-back  
error (monitoring low  
state)  
NINT_READBACK_I NINT_READBACK_MA NINT_READBACK Interrupt is not  
STARTUP_DEST[1:0]  
state  
NT = 1  
SK  
_STAT  
cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
NRSTOUT_READB  
ACK_INT bit  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
NRSTOUT pin read-  
back error (monitoring  
low state)  
NRSTOUT_READB NRSTOUT_READBACK NRSTOUT_READB Interrupt is not  
STARTUP_DEST[1:0]  
state  
ACK_INT = 1  
_MASK  
ACK_STAT  
cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
NRSTOUT_SOC_R  
EADBACK_INT bit  
NRSTOUT_SOC pin  
read-back error  
(monitoring low state)  
NRSTOUT_SOC_R NRSTOUT_SOC_READ NRSTOUT_SOC_R Interrupt is not  
N/A  
N/A  
N/A  
Interrupt only  
Not valid  
Not valid  
Not valid  
EADBACK_INT = 1 BACK_MASK  
EADBACK_STAT  
cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
ESM_SOC_PIN_IN  
T bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
Fault detected by  
SOC ESM (level  
mode: low level  
detected, PWM mode:  
PWM signal timing  
violation)  
ESM_SOC_PIN_IN  
T = 1  
Interrupt only  
ESM_SOC_PIN_MASK N/A  
Fault detected by  
SOC ESM (level  
mode: low level longer  
than DELAY1 time,  
PWM mode: ESM  
error counter >  
Write 1 to  
ESM_SOC_FAIL_IN  
T bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
Interrupt and  
EN_DRV = 0  
(configurable)  
ESM_SOC_FAIL_IN  
T = 1  
ESM_SOC_FAIL_MASK N/A  
FAIL_THR longer than  
DELAY1time)  
Write 1 to  
ESM_SOC_RST_IN  
T bit  
Fault detected by  
SOC ESM (level  
mode: low level longer  
than  
DELAY1+DELAY2  
time, PWM mode:  
ESM error counter >  
FAIL_THR longer than  
DELAY1+DELAY2  
time)  
Automatically returns  
to the current  
operating state after  
the completion of SoC  
warm reset  
This bit can only be  
read by the MCU  
after the TPS6593-  
Q1 has executed a  
warm-reset and the  
recovery counter  
does not exceed the  
recovery threshold  
Interrupt, and  
NRSTOUT_SOC  
toggle(1)  
ESM_SOC_RST_IN  
T = 1  
ESM_SOC_RST  
ESM_SOC_RST_MASK N/A  
Write 1 to  
Fault detected by  
MCU ESM (level  
mode: low level  
detected, PWM mode:  
PWM signal timing  
violation  
ESM_MCU_PIN_IN  
T bit  
ESM_MCU_PIN_IN  
T = 1  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
N/A  
Interrupt only  
Not valid  
ESM_MCU_PIN_MASK N/A  
Fault detected by  
MCU ESM (level  
mode: low level longer  
than DELAY1 time,  
PWM mode: ESM  
error counter >  
Write 1 to  
ESM_MCU_FAIL_IN  
T bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
Interrupt and  
EN_DRV = 0  
(configurable)  
ESM_MCU_FAIL_IN  
T = 1  
N/A  
Not valid  
ESM_MCU_FAIL_MASK N/A  
FAIL_THR longer than  
DELAY1 time)  
Write 1 to  
ESM_MCU_RST_IN  
T bit  
Fault detected by  
MCU ESM (level  
mode: low level longer  
than  
DELAY1+DELAY2  
time, PWM mode:  
ESM error counter >  
FAIL_THR longer than  
DELAY1+DELAY2  
time)  
Interrupt and Warm Automatically returns  
Reset (EN_DRV = 0 to the current  
and NRSTOUT and operating state after  
This bit can only be  
read by the MCU  
after the TPS6593-  
Q1 has executed a  
warm-reset and the  
recovery counter  
does not exceed the  
recovery threshold  
ESM_MCU_RST_IN  
T = 1  
ESM_MCU_RST  
ESM_MCU_RST_MASK N/A  
NRSTOUT_SOC  
the completion of  
warm reset  
toggle)(1)  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
Interrupt only  
Interrupt only  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
Write 1 to  
External clock is  
expected, but it is not  
available or the  
EXT_CLK_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
N/A  
Not valid  
EXT_CLK_INT = 1(2) EXT_CLK_MASK  
EXT_CLK_STAT  
frequency is not in the  
valid range  
BIST completed  
successfully  
BIST_PASS_INT =  
BIST_PASS_MASK  
1
Write 1 to  
BIST_PASS_INT bit  
N/A  
N/A  
Not valid  
N/A  
N/A  
Clear interrupt and  
WD_FAIL_CNT <  
WD_FAIL_TH  
Watchdog fail counter  
above fail threshold  
Interrupt and  
EN_DRV = 0  
Write 1 to  
WD_FAIL_INT bit  
WD_FAIL_INT = 1  
N/A  
Write 1 to  
WD_RST_INT bit  
This bit can only be  
read by the MCU  
after the TPS6593-  
Q1 has executed a  
warm-reset and the  
recovery counter  
does not exceed the  
recovery threshold  
Interrupt and Warm  
Reset if  
Automatically returns  
to the current  
operating state after  
the completion of  
warm reset  
WD_RST_EN = 1  
(EN_DRV = 0 and  
NRSTOUT and  
NRSTOUT_SOC  
toggle)(1)  
Watchdog fail counter WD_RST (if  
above reset threshold WD_RST_EN = 1)  
WD_RST_INT = 1  
N/A  
N/A  
Write 1 to  
WD_LONGWIN_TI  
MEOUT_INT bit  
Interrupt and Warm Automatically returns  
Reset (EN_DRV = 0 to the current  
and NRSTOUT and operating state after  
This bit can only be  
read by the MCU  
after the TPS6593-  
Q1 has executed a  
warm-reset and the  
recovery counter  
does not exceed the  
recovery threshold  
Watchdog long  
WD_RST  
WD_LONGWIN_TI  
MEOUT_INT = 1  
N/A  
N/A  
window timeout  
NRSTOUT_SOC  
the completion of  
warm reset  
toggle)(1)  
Start-up to  
STARTUP_DEST[1:  
0] state and  
Write 1 to ALARM  
bit  
RTC alarm wake-up  
RTC timer wake-up  
TRIGGER_SU_x  
TRIGGER_SU_x  
TRIGGER_SU_x  
Not valid  
Not valid  
Not valid  
ALARM = 1  
TIMER = 1  
IT_ALARM = 0  
IT_TIMER = 0  
N/A  
interrupt(1)  
Start-up to  
STARTUP_DEST[1:  
0] state and  
N/A  
Write 1 to TIMER bit  
interrupt(1)  
Start-up to  
Write 1 to  
NPWRON_START_I  
NT bit  
Low state in  
NPWRON pin  
STARTUP_DEST[1:  
0] state and  
NPWRON_START_I NPWRON_START_MAS  
NT = 1  
NPWRON_IN  
K
interrupt(1)  
All regulators  
disabled and Output  
GPIOx set to low in  
a sequence and  
interrupt(1)  
Write 1 to  
NPWRON_LONG_I  
NT bit  
Long low state in  
NPWRON pin  
ORDERLY_SHUTDO  
WN  
Valid power-on  
request  
NPWRON_LONG_I NPWRON_LONG_MAS  
NPWRON_IN  
NT = 1  
K
Transition to  
TRIGGER_FORCE_ STANDBY or  
Low state in ENABLE STANDBY/ LP_STANDBY  
TRIGGER_FORCE_ depending on the  
ENABLE pin rise  
Not valid  
N/A  
N/A  
N/A  
N/A  
pin  
LP_STANDBY  
LP_STANDBY_SEL  
bit setting(1)  
(1)  
Write 1 to  
ENABLE_INT bit  
ENABLE pin rise  
TRIGGER_SU_x  
ENABLE_INT = 1  
ENABLE_MASK  
ENABLE_STAT  
N/A  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low in STARTUP_DEST[1:0]  
Write 1 to  
ORD_SHUTDOWN_  
INT  
Fault causing orderly  
shutdown  
ORDERLY_SHUTDO  
WN  
ORD_SHUTDOWN_ ORD_SHUTDOWN_MA  
INT SK  
a sequence and  
state  
interrupt(1)  
All regulators  
disabled (depending  
on NVM  
configuration with or Automatic start-up to  
Write 1 to  
IMM_SHUTDOWN_I  
NT  
Fault causing  
immediate shutdown  
IMMEDIATE_SHUTD  
OWN  
IMM_SHUTDOWN_I IMM_SHUTDOWN_MA  
NT SK  
without pull-down  
resistors) and  
STARTUP_DEST[1:0]  
state  
N/A  
N/A  
Output GPIOx set to  
low immediately  
and interrupt(1)  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
Write 1 to  
MCU_PWR_ERR_I  
NT  
Power supply error for MCU_POWER_ERR  
MCU OR  
MCU_PWR_ERR_I MCU_PWR_ERR_MAS  
NT  
K
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
Write 1 to  
SOC_PWR_ERR_I  
NT  
Power supply error for SOC_POWER_ERR  
SOC_PWR_ERR_I SOC_PWR_ERR_MAS  
N/A  
SOC  
OR  
NT  
K
Write 1 to  
VCCA_OVP _INT bit  
This bit can only be  
read by the MCU if  
VCCA < VCCAOVP  
level. As long as  
VCCA VCCAOVP  
level, device stays in  
SAFE RECOVEY  
state, and hence  
this interrupt cannot  
be not cleared.  
All regulators  
Automatic start-up to  
STARTUP_DEST[1:0]  
state after VCCA  
voltage is below  
VCCAOVP  
disabled with pull-  
down resistors and  
Output GPIOx set to  
low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
VCCA over-voltage  
VCCA_OVP_INT =  
1
N/A  
VCCA_OVP_STAT  
(VCCAOVP  
)
According to  
GPIOx_FSM_MASK Transition according  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
GPIO interrupt  
and  
to FSM trigger and Not valid  
GPIOx_INT = 1  
GPIOx_IN  
GPIOx_FSM_MASK_ interrupt  
POL bits  
Transition to  
WKUP1 and  
LP_WKUP1 signals  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
WKUP1  
WKUP2  
ACTIVE state and  
Not valid  
Not valid  
N/A  
N/A  
N/A  
N/A  
GPIOx_IN  
GPIOx_IN  
GPIOx_IN  
GPIOx_IN  
interrupt(1)  
Transition to MCU  
ONLY state and  
interrupt(1)  
WKUP2 and  
LP_WKUP2 signals  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
According to  
NSLEEP1 and  
NSLEEP2  
State transition  
based on NSLEEP1 Not valid  
and NSLEEP2  
NSLEEP1 signal,  
NSLEEP1B bit  
NSLEEP1_MASK  
NSLEEP2_MASK  
N/A  
N/A  
According to  
NSLEEP1 and  
NSLEEP2  
State transition  
based on NSLEEP1 Not valid  
and NSLEEP2  
NSLEEP2 signal,  
NSLEEP2B bit  
All regulators  
disabled with pull-  
LDOVINT over- or  
undervoltage  
Reset condition for  
all logic circuits  
Valid LDOVINT  
voltage  
down resistors and  
Output GPIOx set to  
low immediately(1)  
N/A  
N/A  
N/A  
N/A  
All regulators  
disabled with pull-  
Main clock outside  
valid frequency  
Reset condition for  
all logic circuits  
down resistors and VCCA power cycle  
Output GPIOx set to  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
low immediately(1)  
All regulators  
Recovery counter limit ORDERLY_SHUTDO disabled and Output  
VCCA power cycle  
N/A  
N/A  
exceeded(3)  
WN  
GPIOx set to low in  
a sequence(1)  
All regulators  
disabled with pull-  
VCCA supply falling  
below VCCAUVLO  
Reset condition for  
all logic circuits  
down resistors and VCCA voltage rising  
Output GPIOx set to  
N/A  
N/A  
low immediately(1)  
Start-up to  
STARTUP_DEST[1:  
First supply detection,  
VCCA supply rising  
above VCCAUVLO  
Write 1 to FSD_INT  
bit  
TRIGGER_SU_x  
Not valid  
FSD_INT = 1  
FSD_MASK  
0] state and  
interrupt(1)  
(1) The results shown in this column are selected to meet functional safety assumptions and device specifications. The actual results can  
be configured differently in NVM memory. TI recommends reviewing of the system and device functional safety goal and  
documentation before deviating from these recommendations.  
(2) Interrupt is generated during clock detector operation and in case clock is not available when clock detector is enabled.  
(3) This event does not occur if RECOV_CNT_THR = 0, even though RECOV_CNT continues to accumulate and increase, and eventually  
saturates when it reaches the maximum count of 15.  
(4) Due to a digital logic errata in the device, a write or read SPI command which coincide with the rising edge of the CS signal may not  
cause the COMM_FRM_ERR_INT interrupt.  
(5) I2C1, I2C2, or SPI address error only occur in safety applications if the interface CRC feature is enabled, when both  
I2C1_SPI_CRC_EN and I2C2_CRC_EN are set to '1'.  
8.3.9 RTC  
8.3.9.1 General Description  
The RTC is driven by the 32-kHz oscillator and it provides the alarm and time-keeping functions.  
The main functions of the RTC block are:  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Time information (seconds, minutes, and hours) in binary-coded decimal (BCD) code  
Calendar information (day, month, year, and day of the week) in BCD code up to year 2099  
Configurable interrupts generation; the RTC can generate two types interrupts which can be enabled and  
masked individually:  
Timer interrupts periodically (1-second, 1-minute, 1-hour, or 1-day periods)  
Alarm interrupt at a precise time of the day (alarm function)  
Oscillator frequency calibration and time correction with 1/32768 resolution  
8-13 shows the RTC block diagram.  
32-kHz  
clock input  
32-kHz  
counter  
Frequency  
compensation  
Week days  
Control  
Seconds  
Minutes  
Hours  
Days  
Months  
Years  
Interrupt  
Alarm  
INT_ALARM  
INT_TIMER  
8-13. RTC Block Diagram  
8.3.9.2 Time Calendar Registers  
All the time and calendar information is available in the time calendar (TC) dedicated registers:  
SECONDS_REG, MINUTES_REG, HOURS_REG, DAYS_REG, WEEKS_REG, MONTHS_REG, and  
YEARS_REG. The TC register values are written in BCD code.  
Year data ranges from 00 to 99.  
Leap Year = Year divisible by four (2000, 2004, 2008, 2012, and so on)  
Common Year = Other years  
Month data ranges from 01 to 12.  
Day value ranges:  
1 to 31 when months are 1, 3, 5, 7, 8, 10, 12  
1 to 30 when months are 4, 6, 9, 11  
1 to 29 when month is 2 and year is a leap year  
1 to 28 when month is 2 and year is a common year  
Weekday value ranges from 0 to 6.  
Hour value ranges from 0 to 23 in 24-hour mode and ranges from 1 to 12 in AM or PM mode.  
Minutes value ranges from 0 to 59.  
Seconds value ranges from 0 to 59.  
Example: Time is 10H54M36S PM (PM_AM mode set), 2008 September 5; previous registers values are listed  
in 8-7:  
8-7. RTC Time Calendar Registers Example  
REGISTER  
CONTENT  
RTC_SECONDS  
0x36  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-7. RTC Time Calendar Registers Example (continued)  
REGISTER  
CONTENT  
RTC_MINTURES  
RTC_HOURS  
RTC_DAYS  
0x54  
0x10  
0x05  
RTC_MONTHS  
RTC_YEARS  
RTC_WEEKS  
0x09  
0x08  
0x06  
The user can round to the closest minute, by setting the ROUND_30S register bit in the RTC_CTRL_REG  
register. TC values are set to the closest minute value at the next second. The ROUND_30S bit is automatically  
cleared when the rounding time is performed.  
Example:  
If current time is 10H59M45S, round operation changes time to 11H00M00S  
If current time is 10H59M29S, round operation changes time to 10H59M00S  
8.3.9.2.1 TC Registers Read Access  
TC register read access can be done in two ways:  
A direct read to the TC registers. In this case, there can be a discrepancy between the final time read and the  
real time because the RTC keeps running because some of the registers can toggle in between register  
accesses. Software must manage the register change during the reading.  
Read access to shadowed TC registers. These registers are at the same addresses as the normal TC  
registers. They are selected by setting the GET_TIME bit in the RTC_CTRL_REG register. When this bit is  
set, the content of all TC registers is transferred into shadow registers so they represent a coherent  
timestamp, avoiding any possible discrepancy between them. When processing the read accesses to the TC  
registers, the value of the shadowed TC registers is returned so it is completely transparent in terms of  
register access.  
8.3.9.2.2 TC Registers Write Access  
TC registers write accesses can be done while RTC is stopped. MCU can stop the RTC by the clearing the  
STOP_RTC bit of the control register and checking the RUN bit of the status to be sure that RTC is frozen. MCU  
then updates the TC values and restarts the RTC by setting the STOP_RTC bit, which ensures that the final  
written values are aligned with the targeted values.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.9.3 RTC Alarm  
RTC alarm registers (ALARM_SECONDS_REG, ALARM_MINUTES_REG, ALARM_HOURS_REG,  
ALARM_DAYS_REG, ALARM_MONTHS_REG, and ALARM_YEARS_REG) are used to set the alarm time or  
date to the corresponding generated ALARM interrupts. See 8.3.9.2 for how these register values are written  
in BCD code, with the same data range as described for the TC registers.  
8.3.9.4 RTC Interrupts  
The RTC supports two types of interrupts:  
ALARM interrupt. This interrupt is generated when the configured date or time in the corresponding ALARM  
registers is reached. This interrupt is enabled and disabled by setting the IT_ALARM bit. It is important to set  
the IT_ALARM = 0 to disable the alarm interrupt prior to configuring the ALARM registers to prevent the  
interrupt from mis-firing.  
TIMER interrupt. This interrupt is generated when the periodic time (day, hour, minute, second) set in the  
EVERY bits of the RTC_INTERRUPTS register is reached. The first of the periodic interrupt occurs when the  
RTC counter reaches the next day, hour, minute, or second counter value. For example, if a timer interrupt is  
set for every hour at 2:59 AM, the first interrupt occurs at 3:00 AM instead of 3:59 AM. This interrupt is  
enabled and disabled by setting the IT_TIMER bit. It is important to set the IT_TIMER = 0 to disable the timer  
interrupt prior to configuring the periodic time value to prevent the interrupt from mis-firing.  
Both types of the RTC interrupts can be used to wake-up the device from the STANDBY state or the  
LP_STANDBY state when they are not masked.  
8.3.9.5 RTC 32-kHz Oscillator Drift Compensation  
The RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers are used to compensate for any inaccuracy  
of the 32-kHz clock output from the 32-kHz crystal oscillator. To compensate for any inaccuracy, MCU must  
perform an external calibration of the oscillator frequency by calculating the needed drift compensation  
compared to one hour time-period, and load the compensation registers with the drift compensation value.  
The compensation mechanism is enabled by the AUTO_COMP_EN bit in the RTC_CTRL_REG register. The  
compensation process happens after the first second of each hour. The time between second 1 and second 2  
(T_ADJ) is adjusted based on the settings of the two RTC_COMP_MSB_REG and RTC_COMP_LSB_REG  
registers. These two registers form a 16-bit, 2 s complement value COMP_REG (from 32767 to 32767) that is  
subtracted from the 32-kHz counter as per the following formula to adjust the length of T_ADJ: (32768 -  
COMP_REG) / 32768. Therefore, this compensation mechanism can adjust the compensation with a 1/32768-  
second time-unit accuracy per hour and up to 1 second per hour.  
Software must ensure that these registers are updated before each compensation process (there is no hardware  
protection). For example, software can load the compensation value into these registers after each hour event,  
during second 0 to second 1, just before the compensation period, happening from second 1 to second 2.  
If the SET_32_COUNTER bit in the RTC_CTRL_REG register is set to '1', the internal 32-kHz counter is pre-  
loaded with the content of the RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers. This preloading  
of the internal 32-kHz counter can only be done when the RTC is stopped.  
8-14 shows the RTC compensation scheduling.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
HOURS_REG  
3
4
5
6
0
1
...  
58  
59  
0
1
...  
58  
59  
0
1
...  
58  
59  
0
1
...  
58  
59  
SECONDS_REG  
HOURS_REG  
SECONDS_REG  
3
4
59  
0
58  
2
3
Compensation Value Frozen  
New Compensation Value  
RTC_COMP_xxx_REG  
Register  
Update  
Compensation  
Event  
8-14. RTC Compensation Scheduling  
8.3.10 Watchdog (WDOG)  
The watchdog monitors the correct operation of the MCU. This watchdog requires specific messages from the  
MCU in specific time intervals to detect correct operation of the MCU. The MCU can control the logic-level of the  
EN_DRV pin when the watchdog detects correct operation of the MCU. When the watchdog detects an incorrect  
operation of the MCU, the TPS6593-Q1 device pulls the EN_DRV pin low . This EN_DRV pin can be used in the  
application as a control-signal to deactivate the power output stages, for example a motor driver, in case of  
incorrect operation of the MCU.  
The watchdog has two different modes that are defined as follows:  
Trigger mode In trigger mode, the MCU applies a pulse signal with a minimum pulse width of tWD_pulse on the  
pre-assigned GPIO input pin to send the required watchdog trigger. To select this mode, the  
MCU must clear bit WD_MODE_SELECT. Watchdog Trigger Mode provides more details.  
Q&A  
In Q&A mode, the MCU sends watchdog answers through the I2C1 bus , I2C2 bust or SPI bus.  
(question and (Which of these communication busses is to be used depends on the NVM configuration.  
answer) mode Please refer to the User's Guide of the orderable part number for further details). To select this  
mode, the MCU must set bit WD_MODE_SELECT. Watchdog Question-Answer Mode provides  
more details.  
8.3.10.1 Watchdog Fail Counter and Status  
The watchdog includes a watchdog fail counter WD_FAIL_CNT[3:0] that increments because of bad events or  
decrements because of good events. Furthermore, the watchdog includes two configurable thresholds:  
1. Fail-threshold (configurable through bits WD_FAIL_TH[2:0])  
2. Reset-threshold (configurable through bits WD_RST_TH[2:0])  
When the WD_FAIL_CNT[3:0] counter value is less than or equal to the configured Watchdog-Fail threshold  
(WD_FAIL_TH[2:0]) and bit WD_FIRST_OK=1, the MCU can set the ENABLE_DRV bit when no other error-  
flags are set.  
When the WD_FAIL_CNT[3:0] counter value is greater than the configured Watchdog-Fail threshold  
(WD_FAIL_CNT[3:0] > WD_FAIL_TH[2:0]), the device clears the ENABLE_DRV bit, sets the error-flag  
WD_FAIL_INT, and pulls the nINT pin low.  
When the WD_FAIL_CNT[3:0] counter value is greater than the configured Watchdog-Fail plus Watchdog-Reset  
threshold (WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] + WD_RST_TH[2:0])) and the watchdog-reset function is  
enabled (configuration bit WD_RST_EN=1), the device generates a WD_ERROR trigger in the state machine  
(see PFSM Trigger Selections) and sets the error-flag WD_RST_INT, and pulls the nINT pin low. Unless  
described otherwise in the User's Guide of the orderable part number, this WD_ERROR trigger in the state  
machine causes the TPS6593-Q1 to execute a warm-reset, during which the GPIO pins assigned as nRSTOUT  
and nRSTOUT_SoC are pulled low, and released after a pre-configured delay time.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
The device clears the WD_FAIL_CNT[3:0] each time the watchdog enters the Long Window. The status bits  
WD_FAIL_INT and WD_RST_INT are latched until the MCU writes a 1to these bits.  
Overview of Watchdog Fail Counter Value Ranges and Corresponding Device Status gives an overview of the  
Watchdog Fail Counter value ranges and the corresponding device status.  
8-8. Overview of Watchdog Fail Counter Value Ranges and Corresponding Device Status  
Watchdog Fail Counter value  
Device Status  
WD_FAIL_CNT[3:0]  
MCU can set the ENABLE_DRV bit if WD_FIRST_OK=1 and no  
other error-flags are set  
WD_FAIL_CNT[3:0] WD_FAIL_TH[2:0]  
The device clears the ENABLE_DRV bit, sets error-flag  
WD_FAIL_INT and pulls the nINT pin low  
WD_FAIL_TH[2:0] < WD_FAIL_CNT[3:0] (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
If configuration bit WD_RST_EN=1, device generates WD_ERROR  
trigger in the state machine and reacts as defined in the PFSM, sets  
the error-flag WD_RST_INT, and pulls the nINT pin low. See  
Summary of Interrupt Signals for the interrupt handling of WD_RTS.  
WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] + WD_RST_TH[2:0])  
The WD_FAIL_CNT[3:0] counter responds as follows:  
When the Watchdog is in the Long-Window, the WD_FAIL_CNT[3:0] is cleared to 4b0000  
A good event decrements the WD_FAIL_CNT[3:0] by one before the start of the next Window-1  
A bad event increments the WD_FAIL_CNT[3:0] by one before the start of the next Window-1  
Refer to Watchdog Trigger Mode and Watchdog Q&A Related Definitions respectively for definitions of good  
events and bad events.  
8.3.10.2 Watchdog Start-Up and Configuration  
When the device releases the nRSTOUT pin, the watchdog starts with the Long Window. This Long Window has  
a time interval (tLONG_WINDOW) with a default value set in bits WD_LONGWIN[7:0].  
As long as the watchdog is in the Long Window, the MCU can configure the watchdog through the following  
register bits:  
WD_EN to enable or disable the watchdog  
WD_LONGWIN[7:0] to increase the duration of the Long-Window time-interval  
WD_MODE_SELECT to select the Watchdog mode (Trigger mode or Q&A Mode)  
WD_PWRHOLD to activate the Watchdog Disable function (more detail in 8.3.10.4)  
WD_RETURN_LONGWIN to configure whether to return to Long-Window or continue to the next sequence  
after the completion of the current watchdog sequence (more detail in 8.3.10.4)  
WD_WIN1[6:0] to configure the duration of the Window-1 time-interval  
WD_WIN2[6:0] to configure the duration of the Window-2 time-interval  
WD_RST_EN to enable or disable the watchdog-reset function  
WD_FAIL_TH[2:0] to configure the Watchdog-Fail threshold  
WD_RST_TH[2:0] to configure the Watchdog-Reset threshold  
WD_QA_FDBK[1:0] to configure the settings for the reference answer-generation  
WD_QA_LFSR[1:0] to configure the settings for the question-generation  
WD_QUESTION_SEED[3:0] to configure the starting-point for the 1st question-generation  
The device keeps the above register bit values configured by the MCU as long as the device is powered.  
The MCU can configure the time interval of the Long Window (tLONG_WINDOW) with the WD_LONGWIN[7:0] bits.  
The WD_LONGWIN[7:0] bits are defined as:  
0x00: 80 ms  
0x01 - 0x40: 125 ms to 8 sec, in 125-ms steps  
0x41 - 0xFF: 12 sec to 772 sec, in 4-sec steps  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Use 方程式 3 and 方程式 4 to calculate the minimum and maximum values for the Long Window (tLONG_WINDOW  
)
time interval when WD_LONGWIN[7:0] > 0x00:  
tLONG_WINDOW_MIN = WD_LONGWIN[7:0] × 0.95  
tLONG_WINDOW_MAX = WD_LONGWIN[7:0] × 1.05  
(3)  
(4)  
备注  
If the MCU software changes the duration of the Long-Window to an interval shorter than the time in  
which the watchdog has been in the Long-Window, the time-out function of the Long-Window does no  
longer operate.  
When the MCU clears bit WD_EN, the watchdog goes out of the Long Window and disables the watchdog.  
When the watchdog is disabled in this way, the MCU can set bit WD_EN back to 1to enable the watchdog  
again, and the MCU can control the ENABLE_DRV bit when no other error-flags are set. The MCU must clear bit  
WD_PWRHOLD before setting bit WD_EN back to 1to start the watchdog in Long Window.  
The watchdog locks the following configuration register bits when it goes out of the Long Window and starts the  
first watchdog sequence:  
WD_WIN1[6:0]  
WD_WIN2[6:0]  
WD_LONGWIN[7:0]  
WD_MODE_SELECT  
WD_QA_FDBK[1:0], WD_QA_LFSR[1:0] and WD_QUESTION_SEED[3:0]  
WD_RST_EN, WD_EN, WD_FAIL_TH[2:0] and WD_RST_TH[2:0]  
8.3.10.3 MCU to Watchdog Synchronization  
In order to go out of the Long Window and start the first watchdog sequence, the MCU must do the following  
before elapse of the Long Window time interval:  
Clear bits WD_PWRHOLD (more detail in 8.3.10.4)  
Apply a pulse signal with a minimum pulse-width tWD_pulse on the pre-assigned GPIO pin in the case the  
watchdog is configured for Trigger mode, or  
Write four times to WD_ANSWER[7:0] in the case the watchdog is configured for Q&A mode  
When the MCU fails to get the watchdog out of the Long Window before the configured Long Window time  
interval (tLONG_WINDOW  
)
elapses, the device goes through  
a
warm reset, and sets the  
WD_LONGWIN_TIMEOUT_INT. This bit latched until the MCU writes a 1to clear it.  
8.3.10.4 Watchdog Disable Function  
The watchdog in the TPS6593-Q1 device has a Watchdog Disable function to prevent an unwanted MCU reset  
in case the MCU is un-programmed or needs to be reprogrammed. In order to activate this Watchdog Disable  
function for an un-programmed MCU, DISABLE_WDOG pin must be asserted to a logic-high level for a time-  
interval longer than tWD_DIS prior to the moment the device releases the nRSTOUT pin. If the Watchdog Disable  
function is activated in this way, the device sets bit WD_PWRHOLD to keep the watchdog in the Long Window.  
The watchdog stays in the Long Window until the MCU clears the WD_PWRHOLD bit.  
In case the MCU needs to be reprogrammed while the watchdog monitors the correct operation of the MCU, the  
MCU can set bit WD_RETURN_LONGWIN to put the watchdog back in the Long Window. When the MCU set  
this bit, the watchdog returns to the Long Window after the current Watchdog Sequence completes. In order to  
make the watchdog stay in the Long Window as long as needed the MCU can either re-configure the Long  
Window (tLONG_WINDOW) time interval, or set the WD_PWRHOLD bit. Once the MCU starts the first watchdog  
sequence (as described in 8.3.10.3), the MCU must clear bit WD_RETURN_LONGWIN before the end of the  
first watchdog sequence in order to continue the watchdog sequence operation.  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.10.5 Watchdog Sequence  
Once the watchdog is out of the Long Window, each watchdog sequence starts with a Window-1 followed by a  
Window-2. The watchdog ends the current sequence and after one 20-MHz system clock cycle starts a next  
sequence when one of the events below occurs:  
The configured Window-2 time period elapses  
The watchdog detects a pulse signal with a minimum pulse-width tWD_pulse on the pre-assigned GPIO pin if  
the watchdog is used in Trigger mode  
The watchdog detects four times a write access to WD_ANSWER[7:0] in case the watchdog is used in Q&A  
mode  
The MCU can configure the time periods of the Window-1 (tWINDOW1) and Window-2 (tWINDOW2) with the bits  
WD_WIN1[6:0] and WD_WIN2[6:0] respectively, before starting the sequence.  
Use 方程5 and 方程6 to calculate the minimum and maximum values for the tWINDOW1 time interval.  
tWINDOW1_MIN = (WD_WIN1[6:0] + 1) × 0.55 × 0.95 ms  
tWINDOW1_MAX = (WD_WIN1[6:0] + 1) × 0.55 × 1.05 ms  
(5)  
(6)  
Use 方程7 and 方程8 to calculate the minimum and maximum values for the tWINDOW-2 time interval.  
tWINDOW2_MIN = (WD_WIN2[6:0] + 1) × 0.55 × 0.95 ms  
tWINDOW2_MAX = (WD_WIN2[6:0] + 1) × 0.55 × 1.05 ms  
(7)  
(8)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS6593-Q1  
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.10.6 Watchdog Trigger Mode  
When the TPS6593-Q1 device is configured to use the Watchdog Trigger Mode, the watchdog receives the  
watchdog-triggers from the MCU on the pre-assigned GPIO pin. A rising edge on this GPIO pin, followed by a  
stable logic-high level on that pin for more than the maximum pulse time, tWD_pulse(max), is a watchdog-trigger.  
The watchdog uses a deglitch filter with a tWD_pulse filter time and the internal 20-MHz system clock to create the  
internally-generated trigger pulse from the watchdog-trigger on the pre-assigned GPIO pin.  
The watchdog detects a good event when the watchdog-trigger comes in Window-2. The rising edge of the  
watchdog-trigger on the pre-assigned GPIO pin must occur for at least the tWD_pulse time before the end of  
Window-2 to generate such a good event.  
The watchdog detects a bad event when one of the following events occurs:  
The watchdog-trigger comes in Window-1. The rising edge of the watchdog-trigger on the pre-assigned GPIO  
pin must occur for at least the tWD_pulse time before the end of Window-1 to generate such a bad event. In  
case of this bad event, the device sets bits WD_TRIG_EARLY and WD_BAD_EVENT.  
No watchdog-trigger comes in Window-2. In case of this bad event (also referred to as time-out event), the  
device sets bits WD_TIMEOUT and WD_BAD_EVENT.  
Please consider that the minimum WD-pulse duration needs to meet the maximum deglitch time tWD_pulse (max)  
.
The status bit WD_BAD_EVENT is read-only. The watchdog clears the WD_BAD_EVENT status bit at the end of  
the watchdog-sequence.  
WatchDog Flow Chart and Timing Diagrams in Trigger Mode shows the flow-chart of the watchdog in Trigger  
mode.  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.10.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode  
NO SUPPLY  
Device sets WD_RST_EN=1 per default  
Device sets WD_EN=1 per default.  
Wake-up  
request?  
NO  
YES  
RESTART  
from all  
states except  
NO SUPPLY  
Reset-Extension  
me-interval  
elapsed?  
NO  
YES  
WATCHDOG LONG WINDOW  
- MCU reset inac ve  
- Device forces ENABLE_DRV= 0  
- MCU clears error- ags  
WD_RETURN_  
LONGWIN=1?  
YES  
- Device releases nINT pin if no other error- ags are set  
- Device unlocks Watchdog-Con gura on registers  
- Device sets WD_FAIL_CNT[3:0]=4'b0000 and sets WD_FIRST_OK=0  
MCU either clears WD_EN, or:  
NO  
WINDOW-1  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not change  
ENABLE_DRV bit  
1) MCU con gures watchdog in Trigger mode  
2) MCU con gures Window-1 and Window-2 me-intervals  
3) MCU con gures WD_FAIL_TH, WD_RST_TH and WD_RST_EN  
4) MCU sends trigger pulse  
- Device waits un l WINDOW-1 me elapses  
NO  
- Device sets  
WD_TRG_EARLY  
error- ag  
- Device sets  
WD_BAD_EVENT  
error- ag  
Device has  
WINDOW-1  
NO  
WD_PWRHOLD=0?  
YES  
YES  
NO  
Received trigger-  
me-interval  
elapsed?  
pulse  
?
YES  
WD_EN=0?  
YES  
NO  
WINDOW-2  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
YES  
- MCU sends trigger-pulse  
NO  
NORMAL – NO Watchdog  
- MCU reset inac ve  
- MCU can set  
ENABLE_DRV=1 if no other  
error- ags are set  
NO  
WD_EN=0?  
Device sets  
WD_TIMEOUT error-  
ag  
Device has  
Received trigger-  
WINDOW-2  
me-interval  
elapsed?  
YES  
NO  
Device clears  
WD_BAD_EVENT  
error- ag  
- Device sets  
WD_BAD_EVENT  
error- ag  
pulse  
?
- Interrupt inac ve if no  
other error- ag set  
YES  
- Device decrements WD_FAIL_CNT  
- Device sets WD_FIRST_OK=1  
- MCU can set ENABLE_DRV=1 if no other error- ags are set  
Device has  
received trigger  
pulse?  
Device locks all Watchdog  
con gura on register bits, except  
WD_RETURN_LONGWIN bit  
YES  
NO  
Device Increments  
WD_FAIL_CNT[3:0]  
LONG-WINDOW  
me-interval  
elapsed?  
NO  
YES  
WD_FAIL_CNT[3:0] >  
WD_FAIL_TH  
[2:0]  
NO  
Device sets  
WD_LONGWIN_TIMEOUT  
error- ag  
YES  
WATCHDOG-RESET  
- Device pulls MCU & SoC reset  
pins low (trigger to FSM)  
- Device forces ENABLE_DRV=0  
- Device clears WD_FIRST_OK bit  
- Device forces ENABLE_DRV=0  
- Device sets WD_FAIL_INT  
error- ag  
- Interrupt ac ve  
Reset-Extension  
me-interval  
YES  
NO  
elapsed?  
WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
&
- Device sets WD_RST_INT  
error- ag  
- Interrupt ac ve  
- Device clears  
WD_BAD_EVENT error- ag  
YES  
NO  
WD_RST_EN=1  
8-15. Flow Chart for WatchDog Monitor in Trigger Mode  
8-16, 8-17, 8-18, 8-19, and 8-20 give examples of watchdog is trigger mode with good and bad  
events after device start-up. In these figures, the red bended arrows indicate a delay of one 20-MHz system  
clock cycle.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
RESET Extension Time  
nRSTOUT  
(Reset to MCU, controlled by  
internal RSTOUT-control signal  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt <  
tWINDOW-2  
tt < tLONG_WINDOW  
t
tt = tWINDOW-1  
t
tt < tWINDOW-2  
t
tt = tWINDOW-1  
t
t
Window-1  
Watchdog Windows  
LongWindow  
Window-1  
Window-2  
Window-1  
Window-2  
xxxx  
0000  
0000  
0000  
WD_FAIL_CNT[3:0]  
0
1
x
WD_FIRST_OK  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
0
0
0
x
x
x
WD_LONGWIN_TIMEOUT  
_INT  
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
x
x
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
1
x
0
ENABLE_DRV  
Device State  
ACTIVE or MCU_ONLY  
x
000  
RECOV_CNT[2:0]  
8-16. Watchdog in Trigger Mode Normal MCU Start-up with Correct Watchdog-Triggers  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
RESET Extension Time  
RESET Extension Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
Watchdog-Triggeron  
GPIOpin  
InternallyGenerated  
TriggerPulse  
tt = tLONG_WINDOW  
t
tt = tLONG_WINDOW  
t
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
LongWindow  
LongWindow  
0000  
xxxx  
x
0000  
0
0000  
0
0
WD_FIRST_OK  
MCU clears watchdog error-flags  
0
0
x
WD_FAIL_INT  
WD_RST_INT  
x
x
WD_LONGWIN_  
TIMEOUT_INT  
0
1
1
1
WD_TRG_EARLY  
WD_TIMEOUT  
0
0
x
x
0
0
0
x
ENABLE_DRV  
0
ACTIVE or MCU_ONLY  
(same state as previously)  
ACTIVE or MCU_ONLY  
(same state as previously)  
Warm Reset  
Warm Reset  
ACTIVE or MCU_ONLY  
x
Warm Reset  
SHUTDOWN  
Device State  
RECOV_CNT[2:0]  
000  
001  
010  
110  
111  
000  
8-17. Watchdog in Trigger Mode MCU Does Not Send Watchdog-Triggers After Start-up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
RESET Extension  
Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt < tLONG_WINDOW  
t
tt < tWINDOW-1  
Window-1  
t
tt = tWINDOW-1  
Window-1  
t
tt < tWINDOW-2  
Window-2  
t
tt < tWINDOW-1  
Window-1  
t
Watchdog  
Windows  
Long  
Window  
LongWindow  
WD_FAIL_CNT[3:0]  
xxxx  
0000  
0000  
0001  
0010  
WD_FAIL_CNT >  
0000  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
WD_FAIL_CNT  
> WD_FAIL_TH  
WD_FAIL_TH + WD_RST_TH  
0
1
x
0
WD_FIRST_OK  
WD_FAIL_INT  
WD_RST_INT  
MCU clears watchdog error-flags  
1
x
x
0
0
1
WD_LONGWIN  
_TIMEOUT_INT  
x
0
x
x
1
1
WD_TRG_EARLY  
WD_TIMEOUT  
0
0
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
x
1
0
ENABLE_DRV  
Device State  
0
ACTIVE or MCU_ONLY (same  
state as previously)  
x
ACTIVE or MCU_ONLY  
Warm Reset  
001  
RECOV_CNT[2:0]  
000  
8-18. Watchdog in Trigger Mode Bad Event (Watchdog-Triggers in Window-1) After Start-up  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
RESET  
Extension Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t < tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt < tLONG_WINDOW  
t
tt = tWINDOW-1  
Window-1  
t
tt < tWINDOW-2  
Window-2  
t
tt = tWINDOW-1  
t
tt = tWINDOW-2  
Window-2  
t
tt = tWINDOW-1  
Window-1  
t
tt = tWINDOW-2  
Window-2  
t
LongWindow  
Window-1  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
xxxx  
0000  
0001  
0000  
0000  
0010  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
WD_FAIL_CNT >  
WD_FAIL_CNT > WD_FAIL_TH  
WD_FAIL_TH + WD_RST_TH  
0
1
x
0
FIRST_WD_OK  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
1
x
x
0
0
1
WD_LONGWIN_  
TIMEOUT_INT  
x
0
x
x
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
1
MCU sets ENABLE_DRV (only possible when FIRST_WD_OK=1)  
x
x
1
0
ENABLE_DRV  
Device State  
0
Warm  
Reset  
ACTIVE or MCU_ONLY  
(same state as previously)  
ACTIVE or MCU_ONLY  
001  
RECOV_CNT[2:0]  
000  
8-19. Watchdog in Trigger Mode Bad Events (Too Short or no Trigger in Window-2) After Start-up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t < tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt <  
tLONG_WINDOW  
t
tt <  
tWINDOW-2  
tt <  
tWINDOW-2  
tt <  
tWINDOW-2t  
tt = tWINDOW-1  
t
tt = tWINDOW-1  
Window-1  
t
tt = tWINDOW-2  
Window-2  
t
tt = tWINDOW-1  
Window-1  
t
tt = tWINDOW-1  
Window-1  
t
t
t
LongWindow  
Window-1  
Window-1  
Window-2  
Window-2  
Window-2  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
00  
00  
xxxx  
0000  
0000  
0001  
0000  
WD_FAIL_CNT > WD_FAIL_TH  
0
1
x
FIRST_WD_OK  
MCU clears WD_FAIL_TH error-flag (only  
possible when WD_FAIL_CNT =< WD_FAIL_TH)  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
x
x
1
0
0
0
WD_LONGWIN_  
TIMEOUT_INT  
x
0
x
x
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
1
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
MCU sets ENABLE_DRV (only  
possible when FIRST_WD_OK=1)  
x
1
1
ENABLE_DRV  
0
0
ACTIVE or MCU_ONLY  
x
Device State  
000  
RECOV_CNT[2:0]  
8-20. Watchdog in Trigger Mode Good Events (Correct Watchdog-Triggers) After Start-up, Followed by a Bad-Event (No Watchdog-Trigger  
in Window-2) and After That Followed by a Good Event.  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.10.8 Watchdog Question-Answer Mode  
When the TPS6593-Q1 device is configured to use the Watchdog Question Answer mode, the watchdog  
requires specific messages from the MCU in specific time intervals to detect correct operation of the MCU.  
The device provides a question for the MCU in WD_QUESTION[3:0] during operation. The MCU performs a  
fixed series of arithmetic operations on this question to calculate the required 32-bit answer. This answer is split  
into four answer bytes: Answer-3, Answer-2, Answer-1, and Answer-0. The MCU writes these answer bytes one  
byte at a time into WD_ANSWER[7:0] from the SPI or the dedicated I2C2 interface, mapped to GPIO1 and  
GPIO2 pins.  
A good event occurs when the MCU sends the correct answer-bytes calculated for the current question in the  
correct watchdog window and in the correct sequence.  
A bad event occurs when one of the events that follows occur:  
The MCU sends the correct answer-bytes, but not in the correct watchdog window.  
The MCU sends incorrect answer-bytes.  
The MCU returns correct answer-bytes, but in the incorrect sequence.  
If the MCU stops providing answer-bytes for the duration of the watchdog time-period, the watchdog detects a  
time-out event. This time-out event sets the WD_TIMEOUT status bit, increments the WD_FAIL_CNT[3:0]  
counter, and starts a new watchdog sequence.  
8.3.10.8.1 Watchdog Q&A Related Definitions  
A question and answer are defined as follows:  
Question  
A question is a 4-bit word (see 8.3.10.8.2).  
The watchdog provides the question to the MCU when the MCU reads the WD_QUESTION[3:0] bits.  
The MCU can request each new question at the start of the watchdog sequence, but this is not  
required to calculate the answer. The MCU can also have a software implementation that generates  
the question according the circuit shown in 8-23. Nevertheless, the answer and therefore the  
answer-bytes are always based on the question generated inside the watchdog of the device. So, if  
the MCU generates an incorrect question and gives answer-bytes calculated from this incorrect  
question, the watchdog detects a bad event  
Answer An answer is a 32-bit word that is split into four answer bytes: Answer-3, Answer-2, Answer-1, and  
Answer-0.  
The watchdog receives an answer-byte when the MCU writes to the WD_ANSWER[7:0] bits. For  
each question, the watchdog requires four correct answer-bytes from the MCU in the correct timing  
and order (Answer-3, Answer-2, and Answer-1 in Window 1 in the correct sequence, and Answer-0  
in Window 2) to detect a good event.  
The watchdog sequence in Q&A mode ends after the MCU writes the fourth answer byte (Answer-0), or after a  
time-out event when the Window-2 time-interval elapses.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Window-1  
t = tWINDOW-1  
Window-2  
t = tWINDOW-2  
Three correct answer-bytes must be provided in Window-1 and  
in the correct order:  
The fourth answer-byte, Answer-0, must be provided  
in Window-2.  
ñ
ñ
ñ
Answer-3  
Answer-2  
Answer-1  
After the MCU writes the fourth Answer-0 to  
WD_ANSWER[7:0], the Watchdog generates the  
next question within 1 Internal System Clock Cycle,  
after which the next Watchdog Sequence  
(Q&A [n + 1]) begins  
After the Window-1 time elapses, Window 2 begins.  
The MCU needs to write the answer-bytes to the WD_ANSWER[7:0] bits.  
Question  
Answer  
MCU reads question(1)  
MCU provides answer(2)  
Write to  
Write to  
Write to  
WD_ANSWER[7:0]  
-> Answer-1  
Read bits WD_  
QUESTION[3:0]  
Write to  
WD_ANSWER[7:0]  
-> Answer-0  
WD_ANSWER[7:0] WD_ANSWER[7:0]  
-> Answer-3  
I2C2/SPI  
Commands  
-> Answer-2  
NCS Pin (for  
SPI only)  
1 Internal System Clock Cycle  
to Generate a new question for the next watchdog  
sequence Q&A [n + 1]  
Q&A [n]  
Q&A [n + 1]  
Watchdog Sequence  
(1) The MCU is not required to read the question. The MCU can give correct answer-bytes Answer-3, Answer-2, Answer-1 as soon as  
Window-1 starts. The next watchdog sequence always starts in 1 system clock cycle after the watchdog receives the final Answer-0.  
(2) The MCU can put other I2C or SPI commands in-between the write-commands to WD_ANSWER[7:0] (even re-requesting the  
question). The insertion of other commands in-between the write-commands to WD_ANSWER[7:0] has no influence on the detection of  
a good event, as long as the three correct answer-bytes in Window-1 are in the correct sequence, and the fourth correct answer-byte is  
provided before the configured Window-2 time-interval elapses.  
8-21. Watchdog Sequence in Q&A Mode  
8.3.10.8.2 Question Generation  
The watchdog uses a 4-bit question counter (QST_CNT[3:0] bits in 8-22), and a 4-bit Markov chain to  
generate a 4-bit question. The MCU can read this question in the WD_QUESTION[3:0] bits. The watchdog  
generates a new question when the question counter increments, which only occurs when the watchdog detects  
a good event. The watchdog does not generate a new question when it detects a bad event or a time-out event.  
The question-counter provides a clock pulse to the Markov chain when it transitions from 4b1111 to 4b0000.  
The question counter and the Markov chain are set to the default value of 4b0000 when the watchdog goes  
out of the Long Window.  
备注  
The Question-Generator is only re-initialized (starting with question 0000) at device power-up. In  
following situations, the MCU software needs to read the current question in order to synchronize with  
the Question-Generator:  
After MCU re-boot from a warm-reset  
After MCU software sets bit WD_RETURN_LONGWIN=1 to put the Watchdog back into Long  
Window  
After MCU wrote WD_EN=0, then reenable Watchdog again with WD_EN=1  
8-22 shows the logic combination for the WD_QUESTION[3:0] generation.  
8-23 shows how the logic combination of the question-counter with the WD_ANSW_CNT[1:0] status bits  
generates the reference answer-bytes.  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
4-Bit LFSR Polynomial Equation(1)  
WD_QA_LFSR[1:0] = 0x00:  
y = x4 + x3 + 1 (Default Value)  
y = x4 + x2 + 1  
y = x3 + x2 + 1  
WD_QA_LFSR[1:0] = 0x01:  
WD_QA_LFSR[1:0] = 0x10:  
WD_QA_LFSR[1:0] = 0x11:  
y = x4 + x3 + x2 +1  
x3  
x1  
x2  
x4  
Bit 0  
Bit 3  
Bit 1  
Bit 2  
4-bit SEED Value Loaded when the device goes to the RESET state  
(Configurable Through WD_QUESTION_SEED[3:0])  
(Default Value 4'b1010)  
x1  
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
x2  
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
x3  
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
x4  
0
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
x2  
x1  
x4  
x3  
00  
01  
10  
11  
WD_QUESTION[0]  
SEED  
1
QST_CNT[1]  
QST_CNT[0]  
QST_CNT[3]  
QST_CNT[2]  
00  
01  
10  
11  
2
3
4
x4  
x3  
x2  
x1  
00  
01  
10  
11  
5
WD_QUESTION[1]  
6
7
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
QST_CNT[0]  
00  
01  
10  
11  
8
9
10  
11  
12  
13  
14  
15  
00  
01  
10  
11  
x1  
x4  
x3  
x2  
WD_QUESTION[2]  
00  
01  
10  
11  
QST_CNT[0]  
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
The default question-sequence order with the default  
WD_QUESTION_SEED[3:0] and WD_QA_LFSR[1:0] values  
x3  
x2  
x1  
x4  
00  
01  
10  
11  
WD_QUESTION[3]  
”Question‘ Counter  
CNT [0]  
QST_CNT[0]  
QST_CNT[1]  
QST_CNT[2]  
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
QST_CNT[0]  
QST_CNT[3]  
00  
01  
10  
11  
CNT [1]  
—good event“  
INCR + 1  
trigger  
CNT [2]  
CNT [3]  
Feedback settings are controllable through the bits  
WD_QA_FDBK[1:0]  
(Default value is 2'b00; the selected signals are in red)  
(1) If the current value for bits (x1, x2, x3, x4) is 4'b0000, the next value for these bits (x1, x2, x3, x4) is 4'b0001, and all further question  
generation begins from this value.  
8-22. Watchdog Question Generation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[0]  
X = 3, 2,1, 0  
WD_ANSW_CNT[1]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
00  
01  
10  
11  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[1]  
X = 3, 2,1, 0  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
00  
01  
10  
11  
WD_QUESTION[1]  
WD_ANSW_CNT[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
WD_QUESTION[1]  
WD_QUESTION[1]  
00  
01  
10  
11  
Reference-Answer-X[2]  
X = 3, 2,1, 0  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
00  
01  
10  
11  
WD_QUESTION[1]  
WD_ANSW_CNT[1]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[3]  
X = 3, 2,1, 0  
WD_QUESTION[0]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
00  
01  
10  
11  
WD_QUESTION[3]  
WD_ANSW_CNT[1]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[4]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
00  
01  
10  
11  
Reference-Answer-X[5]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[0]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
00  
01  
10  
11  
Reference-Answer-X[6]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[7]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
Feedback settings are controllable through the bits WD_QA_FDBK[1:0]  
(Default value is 2'b00; the selected signals are in red)  
Calculated Reference-Answer-X byte  
8-23. Watchdog Reference Answer Calculation  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.10.8.3 Answer Comparison  
The 2-bit, watchdog-answer counter, WD_ANSW_CNT[1:0], counts the number of received answer-bytes and  
controls the generation of the reference answer-byte as shown in 8-23. At the start of each watchdog  
sequence, the default value of the WD_ANSW_CNT[1:0] counter is 2b11 to indicate that the watchdog expects  
the MCU to write the correct Answer-3 in WD_ANSWER[7:0].  
The device sets the WD_ANSW_ERR status bit as soon as one answer byte is not correct. The device clears  
this status bit only if the MCU writes a 1to this bit.  
8.3.10.8.3.1 Sequence of the 2-bit Watchdog Answer Counter  
The sequence of the 2-bit, watchdog answer-counter is as follows for each counter value:  
WD_ANSW_CNT[1:0] = 2b11:  
1. The watchdog calculates the reference Answer-3.  
2. A write access occurs. The MCU writes the Answer-3 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-3 with the Answer-3 byte in WD_ANSWER[7:0].  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b10 and sets the WD_ANSW_ERR  
status bit to 1 if the Answer-3 byte was incorrect.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
WD_ANSW_CNT[1:0] = 2b10:  
1. The watchdog calculates the reference Answer-2.  
2. A write access occurs. The MCU writes the Answer-2 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-2 with the Answer-2 byte in WD_ANSWER[7:0]..  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b01 and sets the WD_ANSW_ERR  
status bit to 1 if the Answer-2 byte was incorrect.  
WD_ANSW_CNT[1:0] = 2b01:  
1. The watchdog calculates the reference Answer-1.  
2. A write access occurs. The MCU writes the Answer-1 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-1 with the Answer-1 byte in WD_ANSWER[7:0]..  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b00 and sets the WD_ANSW_ERR  
status bit to 1 if the Answer-1 byte was incorrect.  
WD_ANSW_CNT[1:0] = 2b00:  
1. The watchdog calculates the reference Answer-0.  
2. A write access occurs. The MCU writes the Answer-0 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-0 with the Answer-0 byte in WD_ANSWER[7:0].  
4. The watchdog sets the WD_ANSW_ERR status bit to 1 if the Answer-0 byte was incorrect.  
5. The watchdog starts a new watchdog sequence and sets the WD_ANSW_CNT[1:0] to 2b11.  
The MCU needs to clear the bit by writing a '1' to the WD_ANSW_ERR bit.  
8-9. Set of Questions and Corresponding Answer-Bytes Using the Default Setting of WD_QA_CFG  
Register  
ANSWER-BYTES (EACH BYTE TO BE WRITTEN INTO WD_ANSWER[7:0])  
WD QUESTION  
ANSWER-3  
ANSWER-2  
ANSWER-1  
ANSWER-0  
WD_ANSW_CNT [1:0] =  
WD_ANSW_CNT [1:0] =  
WD_ANSW_CNT [1:0] =  
WD_ANSW_CNT [1:0] =  
WD_QUESTION[3:0]  
2b11  
2b10  
2b01  
2b00  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
FF  
B0  
E9  
A6  
75  
3A  
63  
2C  
D2  
9D  
C4  
8B  
58  
17  
4E  
01  
0F  
40  
19  
56  
85  
CA  
93  
DC  
22  
6D  
34  
7B  
A8  
E7  
BE  
F1  
F0  
BF  
E6  
A9  
7A  
35  
6C  
23  
DD  
92  
CB  
84  
57  
18  
41  
0E  
00  
4F  
16  
59  
8A  
C5  
9C  
D3  
2D  
62  
3B  
74  
A7  
E8  
B1  
FE  
8.3.10.8.3.2 Watchdog Sequence Events and Status Updates  
The watchdog sequence events are as follows for the different scenarios listed:  
A good event occurs when all answer bytes are correct in value and timing. After such a good event,  
following events occur:  
1. The WD_FAIL_CNT[2:0] counter decrements by one at the end of the watchdog-sequence.  
2. The question-counter increments by one and the watchdog generates a new question.  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
A bad event occurs when all answer-bytes are correct in value but not in correct timing. After such a bad  
event, following events occur:  
1. The WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
2. The WD_ANSW_EARLY and WD_BAD_EVENT status bits are set if watchdog receives all four answers  
in Window-1.  
3. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
4. The question-counter does not change, and hence the watchdog does not generate a new question.  
A bad event occurs when one or more of the answer-bytes are not correct in value but in correct timing. After  
such a bad event, following events occur:  
1. The WD_ANSW_ERR and WD_BAD_EVENT status bits are set as soon as the watchdog detects an  
incorrect answer-byte.  
2. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
3. The question-counter does not change, and hence the watchdog does not generate a new question.  
A bad event occurs when one or more of the answer-bytes are not correct in value and not in correct timing.  
After such a bad event, following events occur:  
1. The WD_ANSW_ERR and WD_BAD_EVENT status bits are set as soon as the watchdog detects an  
incorrect answer-byte.  
2. The WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
3. The WD_ANSW_EARLY and WD_BAD_EVENT status bits are set if watchdog receives all four answer-  
bytes in Window-1.  
4. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
5. The question-counter does not change, and hence the watchdog does not generate a new question.  
A time-out event occurs when the device receives less than 4 answer-bytes before Window-2 time-interval  
elapses. After a time-out event occurs, following events occur:  
1. WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
2. The WD_TIMEOUT and WD_BAD_EVENT status bits are set at the end of the watchdog-sequence.  
3. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
4. The question-counter does not change, and hence the watchdog does not generate a new question.  
The status bit WD_BAD_EVENT is read-only. The watchdog clears the WD_BAD_EVENT status bit at the end of  
the watchdog-sequence.  
The status bits WD_SEQ_ERR, WD_ANSW_EARLY, and WD_TIMEOUT are latched until the MCU writes a  
1to these bits. If one or more of these status bits are set, the watchdog can still detect a good event in the  
next watchdog-sequence. These status bits are read-only. The watchdog clears the WD_BAD_EVENT status bit  
at the end of the watchdog-sequence.  
8-24 shows the flow-chart of the watchdog in Q&A mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
WD_RETURN_  
LONGWIN=1?  
YES  
NO  
NO SUPPLY  
ANSWER-3  
Device sets WD_RST_EN=1 per default  
Device sets WD_EN=1 per default.  
Wake-up  
- Device sets WD_ANSW_CNT[2:0]=2'b11  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
NO  
request?  
NO  
NO  
- MCU sends ANSWER-3  
- Device sets  
WD_SEQ_ERR  
error- ag  
YES  
Device has  
received  
ANSWER-3 ?  
- Device sets  
WD_BAD  
_EVENT  
WINDOW-2  
me-interval  
elapsed?  
WINDOW-1  
me-interval  
elapsed?  
YES  
NO  
error- ag  
RESTART  
YES  
from all  
states except  
NO SUPPLY  
Reset-Extension  
me-interval  
elapsed?  
NO  
YES  
- Device sets  
ANSWER-3  
correct?  
WD_ANSW_ERR error- ag  
- Device sets  
NO  
YES  
WD_BAD_EVENT error- ag  
YES  
WATCHDOG LONG WINDOW  
- Device releases MCU reset pin  
- Device forces ENABLE_DRV= 0  
ANSWER-2  
- Device sets WD_ANSW_CNT[2:0]=2'b10  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
- MCU clears error- ags  
- Device releases nINT pin if no other error- ags are set  
- Device unlocks Watchdog-Con gura on registers  
- Device sets WD_ANSW_CNT[2:0]=2'b11  
- Device sets WD_FAIL_CNT[3:0]=4'b0000 and sets WD_FIRST_OK=0  
MCU either clears WD_EN, or:  
1) MCU con gures watchdog in Q&A mode  
2) MCU con gures Window-1 and Window-2 me-intervals  
3) MCU con gures WD_FAIL_TH, WD_RST_TH and WD_RST_EN  
4) MCU sends 4 answers  
NO  
NO  
- MCU sends ANSWER-2  
- Device sets  
WD_SEQ_ERR  
error- ag  
- Device sets  
WD_BAD  
_EVENT  
Device has  
received  
ANSWER-2?  
YES  
WINDOW-2  
me-interval  
elapsed?  
WINDOW-1  
me-interval  
elapsed?  
NO  
YES  
error- ag  
YES  
- Device sets  
ANSWER-2  
correct?  
WD_ANSW_ERR error- ag  
- Device sets  
WD_BAD_EVENT error- ag  
NO  
NO  
WD_PWRHOLD=0?  
YES  
YES  
ANSWER-1  
- Device sets WD_ANSW_CNT[2:0]=2'b01  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
WD_EN=0?  
YES  
NO  
NO  
NO  
- MCU sends ANSWER-1  
- Device sets  
WD_SEQ_ERR  
error- ag  
- Device sets  
WD_BAD  
_EVENT  
YES  
Device has  
WINDOW-2  
me-interval  
elapsed?  
WINDOW-1  
me-interval  
elapsed?  
NORMAL – NO Watchdog  
- MCU reset inac ve  
- MCU can set  
ENABLE_DRV=1 if no other  
error- ags are set  
YES  
NO  
received  
NO  
WD_EN=0?  
ANSWER-1?  
error- ag  
YES  
- Device released nINT pin if  
no other error- ag set  
YES  
- Device sets  
WD_ANSW_ERR error- ag  
- -Device sets  
NO  
ANSWER-1  
correct?  
WD_BAD_EVENT error- ag  
YES  
Device generates 1st  
QUESTION  
Device has  
received 4  
answers ?  
YES  
ANSWER-0  
- Device locks all Watchdog  
con gura on register bits,  
except  
- Device sets WD_ANSW_CNT[2:0]=2'b00  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
WD_RETURN_LONGWIN bit  
NO  
NO  
- MCU sends ANSWER-0  
Device sets  
WD_TIMEOUT  
error- ag  
- Device sets  
WD_BAD_EVENT  
error- ag  
LONG-WINDOW  
me-interval  
elapsed?  
Device has  
received  
ANSWER-0?  
NO  
WINDOW-2  
me-interval  
elapsed?  
YES  
NO  
Device  
Increments  
WD_FAIL_CNT  
[3:0]  
YES  
YES  
Device sets  
WD_LONGWIN_TIMEOUT  
error- ag  
Device sets  
WD_ANSW_EARLY error- ag  
- Device sets  
WINDOW-1  
me-interval  
not elapsed?  
YES  
WD_FAIL_CNT[3:0] >  
WD_FAIL_TH  
[2:0]  
NO  
WD_BAD_EVENT error- ag  
WATCHDOG-RESET  
- Device pulls MCU & SoC reset  
pins low (trigger to FSM)  
NO  
YES  
- Device forces ENABLE_DRV=0  
- Device clears WD_FIRST_OK bit  
- Device sets  
WD_ANSW_ERR error- ag  
- Device sets  
Device clears  
WD_BAD_EVENT  
error- ag  
NO  
ANSWER-0  
correct?  
- Device forces ENABLE_DRV=0  
- Device sets WD_FAIL_INT  
error- ag  
WD_BAD_EVENT error- ag  
YES  
- Interrupt ac ve  
Reset-Extension  
me-interval  
YES  
NO  
elapsed?  
- Device sets WD_RST_INT  
error- ag  
YES  
WD_BAD_EVENT  
=1?  
- Interrupt ac ve  
- Device clears  
WD_BAD_EVENT error- ag  
NO  
WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
&
- Device decrements WD_FAIL_CNT  
- Device generates next QUESTION  
- Device sets WD_FIRST_OK=1  
YES  
NO  
- MCU can set ENABLE_DRV=1 if no other error- ags are set  
WD_RST_EN=1  
8-24. Flow Chart for WatchDog in Q&A Mode  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.10.8.3.3 Watchdog Q&A Sequence Scenarios  
8-10. Correct and Incorrect WD Q&A Sequence Run Scenarios  
NUMBER OF WD ANSWERS  
WD STATUS BITS IN WDT_STATUS REGISTER  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
ANSW_ERR ANSW_EARLY  
SEQ_ERR  
TIME_OUT  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
0 answers  
0 answers  
0 answers  
0b  
1b  
0b  
0b  
0b  
0b  
1b  
1b  
No answers  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 INCORRECT  
answers  
1b  
1b  
0b  
0b  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] = 3  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 CORRECT  
answers  
0 answers  
0 answers  
1 CORRECT answer  
Less than 3 CORRECT  
ANSWER in RESPONSE  
WINDOW 1 and 1 CORRECT  
ANSWER in RESPONSE  
WINDOW 2  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 CORRECT answer 1 CORRECT answer  
0b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
2 CORRECT answer 1 CORRECT answer  
(WD_ANSW_CNT[1:0] < 3)  
1 INCORRECT  
0 answers  
answer  
Less than 3 CORRECT  
ANSWER in RESPONSE  
WINDOW 1 and 1 INCORRECT  
ANSWER in RESPONSE  
WINDOW 2  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
1 CORRECT answer  
answer  
2 CORRECT  
answers  
1 INCORRECT  
answer  
(WD_ANSW_CNT[1:0] < 3)  
4 CORRECT  
answers  
0 answers  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
Less than 3 CORRECT  
ANSWER in WIN1 and more  
than 1 CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
3 CORRECT  
answers  
1 CORRECT answer  
0b  
1b  
0b  
0b  
1b  
1b  
0b  
0b  
2 CORRECT  
answers  
2 CORRECT  
answers  
4 INCORRECT  
answers  
0 answers  
Less than 3 CORRECT  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
INCORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
3 INCORRECT  
answers  
1 CORRECT answer  
2 CORRECT  
answers  
2 INCORRECT  
answers  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
3 CORRECT  
answers  
0 answers  
0b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
1 INCORRECT  
answer  
2 CORRECT  
answers  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
2 INCORRECT  
answers  
1 CORRECT answer  
3 INCORRECT  
answers  
0 answers  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
INCORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
2 INCORRECT  
answer  
1b  
0b  
1b  
1b  
2 INCORRECT  
answer  
1 INCORRECT  
answer  
4 CORRECT  
answers  
0 answers  
0b  
1b  
0b  
0b  
1b  
1b  
0b  
0b  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
3 CORRECT  
answers  
2 INCORRECT  
answers  
2 CORRECT  
answers  
4 INCORRECT  
answers  
0 answers  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
INCORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
3 INCORRECT  
answers  
1b  
0b  
1b  
0b  
2 INCORRECT  
answers  
2 INCORRECT  
answers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-10. Correct and Incorrect WD Q&A Sequence Run Scenarios (continued)  
NUMBER OF WD ANSWERS  
WD STATUS BITS IN WDT_STATUS REGISTER  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
ANSW_ERR ANSW_EARLY  
SEQ_ERR  
TIME_OUT  
3 CORRECT  
answers  
0 answers  
0 answers  
0 answers  
0b  
0b  
0b  
0b  
0b  
1b  
1b  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD Question  
Less than 4 CORRECT ANSW in  
RESPONSE WINDOW 1 and  
more than 0 ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
2 CORRECT  
answers  
1b  
0b  
1 CORRECT  
answers  
-New WD cycle starts after the  
4th WD answer  
3 CORRECT  
answers  
1 CORRECT answer -Decrement WD failure counter  
-New WD cycle starts with a new  
WD question  
0b  
1b  
1b  
1b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
0b  
1b  
0b  
0b  
0b  
CORRECT SEQUENCE  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] < 3  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] = 3  
-New WD cycle starts after the  
4th WD answer  
3 CORRECT  
answers  
1 INCORRECT  
-Increment WD failure counter  
answers  
0b  
0b  
0b  
0b  
0b  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
3 INCORRECT  
answers  
0 answers  
-New WD cycle starts after the  
4th WD answer  
3 INCORRECT  
answers  
1 CORRECT answer -Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
4th WD answer  
3 INCORRECT  
answers  
1 INCORRECT  
-Increment WD failure counter  
answer  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 CORRECT  
answers  
Not applicable  
3 CORRECT  
answers + 1  
INCORRECT answer  
Not applicable  
Not applicable  
Not applicable  
4 CORRECT or INCORRECT  
ANSWER in RESPONSE  
WINDOW 1  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
2 CORRECT  
answers + 2  
INCORRECT  
answers  
1b  
1b  
0b  
0b  
1 CORRECT answer  
+ 3 INCORRECT  
answers  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.11 Error Signal Monitor (ESM)  
The TPS6593-Q1 device has two error signal monitor (ESMs): one ESM_MCU to monitor the MCU error output  
signal at the nERR_MCU input pin, and one ESM_SoC to monitor the SoC error output signal at the nERR_SoC  
input pin.  
At device start-up, the ESM_MCU and ESM_SoC can be enabled or disabled through configuration bits  
ESM_MCU_EN and ESM_SOC_EN. The values for these configuration bits are stored in the NVM memory of  
the device. To start the enabled ESM, the MCU sets the start bits ESM_MCU_START or ESM_SOC_START for  
the corresponding ESM through software after the system is powered up and the initial software configuration is  
completed. If the MCU clears a start bit, the ESM stops monitoring its input pin. The MCU can set the  
ENABLE_DRV bit only when the MCU has either started or disabled the ESM. When the corresponding ESM is  
started, the following configuration registers are write protected and can only be read:  
Configuration registers write-protected by the ESM_MCU_START register bit:  
ESM_MCU_DELAY1_REG  
ESM_MCU_DELAY2_REG  
ESM_MCU_MODE_CFG  
ESM_MCU_HMAX_REG  
ESM_MCU_HMIN_REG  
ESM_MCU_LMAX_REG  
ESM_MCU_LMIN_REG  
Configuration registers write-protected by the ESM_SOC_START register bit:  
ESM_SOC_DELAY1_REG  
ESM_SOC_DELAY2_REG  
ESM_SOC_MODE_CFG  
ESM_SOC_HMAX_REG  
ESM_SOC_HMIN_REG  
ESM_SOC_LMAX_REG  
ESM_SOC_LMIN_REG  
The ESM uses a deglitch-filter with deglitch-time tdegl_ESMx to monitor its related input pin.  
The MCU can configure the ESM in two different modes that are defined as follows:  
Level the ESM detects an ESM-error when the input pin remains low for a time equal to or longer than the  
Mode deglitch-time tdegl_ESMx  
.
To select this mode for the ESM_MCU, the MCU must clear bit ESM_MCU_MODE. To select this  
mode for the ESM_SoC, the MCU must clear bit ESM_SOC_MODE. See 8.3.11.1.1 for further detail  
.
PWM the ESM monitors a PWM signal at its input pin. The ESM detects a bad-event when the frequency or  
Mode duty cycle of the PWM input signal deviates from the expected signal. The ESM detects a good-event  
when the frequency and duty cycle of the PWM signal match with the expected signal for one signal  
period.  
The ESM has an error-counter (ESM_MCU_ERR_CNT[4:0] or ESM_SOC_ERR_CNT[4:0]), which  
increments with +2 after each bad-event, and decrements with -1 after each good-event. The ESM  
detects an ESM-error when the error-counter value is more than its related threshold value.  
To select this mode for the ESM_MCU, the MCU must set bit ESM_MCU_MODE. To select this mode  
for the ESM_SoC, the MCU must set bit ESM_SOC_MODE. See 8.3.11.1.2 for further details.  
The MCU can configure each ESM as long as its related start bit is cleared to 0 (bit ESM_MCU_START or  
ESM_SOC_START). As soon as the MCU sets a start bit, the device sets a write-protection on the configuration  
registers of the related ESM except the related start bits ESM_MCU_START and ESM_SOC_START.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.11.1 ESM Error-Handling Procedure  
Each ESM has two of its own configurable delay-timers that are reset when the device clears the respective  
ESM_x_START bit. Below steps describe the procedure through which the ESM goes in case it detects an ESM-  
error:  
1. If the respective mask bit ESM_x_PIN_MASK=0, the device sets interrupt bit ESM_MCU_PIN_INT or  
ESM_SOC_PIN_INT, and pulls the nINT pin low.  
2. The ESM starts the delay-1 timer (configurable through related ESM_MCU_DELAY1[7:0] or  
ESM_SOC_DELAY1[7:0] bits).  
3. If the ESM-error is no longer present and MCU has cleared the related interrupt bit ESM_MCU_PIN_INT or  
ESM_SOC_PIN_INT before the delay-1 timer elapses, the device releases the nINTpin, the ESM resets the  
delay-1 and delay-2 timers and continues to monitor its input pin.  
4. If the ESM-error is still present, or if MCU has not cleared the related interrupt bit ESM_MCU_PIN_INT or  
ESM_SOC_PIN_INT, and the delay-1 timer elapses, then the ESM clears the ENABLE_DRV bit if bit  
ESM_MCU_ENDRV=1 or if bit ESM_SOC_ENDRV=1.  
5. If the delay-2 timer (configurable through related ESM_MCU_DELAY2[7:0] or ESM_SOC_DELAY2[7:0] bits)  
is set to 0, then the ESM skips steps 6 of this list, and performs step 7.  
6. If the delay-2 timer is not set to 0, then:  
a. ESM starts the delay-2 timer,  
b. If ESM_MCU_FAIL_MASK = 0, the device sets interrupt bit ESM_MCU_FAIL_INT and pulls the nINT pin  
low and starts the delay-2 timer.  
c. If ESM_SOC_FAIL_MASK = 0, the device sets interrupt bit ESM_SOC_FAIL_INT, pulls the nINT pin low  
and starts the delay-2 timer.  
7. If the ESM-error is no longer present and the MCU has cleared the related interrupt bits listed below before  
the delay-2 timer elapses, the device releases the nINTpin, the ESM resets the delay-1 and delay-2 timers  
and continues to monitor its input pin:  
ESM_MCU_PIN_INT (and ESM_MCU_FAIL_INT if set in step 6), or  
ESM_SOC_PIN_INT (and ESM_SOC_FAIL_INT if set in step 6)  
8. If the ESM-error is still present, or if MCU has not cleared the related interrupt bits ESM_MCU_PIN_INT and  
ESM_MCU_FAIL_INT , or ESM_SOC_PIN_INT and ESM_SOC_FAIL_INT, and the delay-2 timer elapses,  
then :  
a. For ESM_MCU, the device:  
i. clears the ESM_MCU_START BIT  
ii. sets interrupt bits ESM_MCU_FAIL_INT and ESM_MCU_RST_INT, which the device handles as an  
ESM_MCU_RST trigger for FSM, described in Summary of Interrupt Signals  
iii. After this trigger handling completes, the device re-initializes the ESM_MCU  
b. For ESM_SoC, the device:  
i. clears the ESM_SOC_START bit  
ii. sets interrupt bits ESM_SOC_FAIL_INT and ESM_SOC_RST_INT, which the device handles as an  
ESM_SOC_RST trigger for FSM, described in Summary of Interrupt Signals  
iii. After this trigger handling completes, the device re-initializes the ESM_SoC  
ESM_MCU_DELAY1[7:0] and ESM_SOC_DELAY1[7:0] set the delay-1 time-interval (tDELAY-1) for the related  
ESM_MCU or ESM_SoC. Use 方程9 and 方程10 to calculate the worst-case values for the tDELAY-1  
:
Min. tDELAY-1 = (ESM_x_DELAY1[7:0] × 2.048 ms) × 0.95  
Max. tDELAY-1 = (ESM _x_DELAY1[7:0] × 2.048 ms) × 1.05  
(9)  
(10)  
, in which x stands for either MCU or SoC.  
ESM_MCU_DELAY2[7:0] or ESM_SOC_DELAY2[7:0] bits set the delay-2 time-interval (tDELAY-2) for the related  
ESM_MCU or ESM_SoC. Use 方程11 and 方程12 to calculate the worst-case values for the tDELAY-2  
:
Min. tDELAY-2 = (ESM_x_DELAY2[7:0] × 2.048 ms) × 0.95  
(11)  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Max. tDELAY-2 = (ESM_x_DELAY2[7:0] × 2.048 ms) × 1.05  
(12)  
, in which x stands for either MCU or SoC.  
8.3.11.1.1 Level Mode  
In Level Mode, after MCU has set the start bit (bit ESM_MCU_START or bit ESM_SOC_START), the ESM  
monitors its nERR_MCU or nERR_SoC input pin. Each ESM detects an ESM-error when the voltage level on its  
input pin remains low for a time equal or longer than the deglitch-time tdegl_ESMx. When an ESM_x detects an  
ESM-error, it starts the ESM Error-Handling procedure as described in 8.3.11.1. The Error-Handling  
Procedure is stopped if, before elapse of the delay-1 or delay-2 interval, the voltage level on the input pin  
remains high for a time equal or longer than the deglitch-time tdegl_ESMx and the MCU clears all corresponding  
interrupt bits. If the ESM-error persists such that the configured delay-1 and delay-2 times elapse, the ESM  
sends a ESM_x_RST trigger to the PFSM and the device clear the ESM_x_START bit. After the PFSM  
completes the handling of the ESM_x_RST trigger, the device re-initializes the ESM.  
For a complete overview on how the ESM works in Level Mode, please refer to the flow-chart in 8-25. In this  
flow-chart, the _x stands for either _MCU or _SoC. 8-26, 8-27, 8-28, and 8-29 show example wave  
forms for several error-cases for the ESM in Level Mode. In these examples, only the ESM_MCU is shown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Global Reset Conditions:  
START  
ESM_x Level Mode  
Procedure  
- Warm-Reset from Watchdog or ESM_x  
- Immediate or Orderly Shutdown  
ESM_x in Level-Mode  
- Device releases MCU/SoC reset pin  
- MCU can set ENABLE_DRV bit  
- Device releases nINT pin  
- Device Power-On-Reset  
NO  
ESM_x_EN=1  
?
- no ESM_x interrupt bit set  
YES  
ESM_x pin  
level  
= 0?  
- Device clears ESM_x_START=0  
- Device resets the ESM_x_DELAY1  
and ESM_x_DELAY2 timers  
YES  
ESM_x-INTERRUPT  
- If ESM_x_PIN_MASK=0, device sets  
ESM_x_PIN_INT interrupt bit And pulls nINT  
pin low  
- Device starts ESM_x_DELAY1 timer, or  
continues to run this timer if already started  
- Device does not change ENABLE_DRV bit  
- Device does not change the level of the  
MCU/SoC reset pins  
Note: the procedures ^Check  
ESM_x_START=1" and ^ESM_x Level  
a}ꢀꢁ tŒ}ꢂꢁꢀµŒꢁ^ Œµv ]v ‰ꢃŒꢃooꢁo.  
If ESM_x_START=0, the device stops  
the ^ESM_x Level Mode  
- Device releases  
nINT pin if all  
interrupt bits are  
cleared  
Reset-Extension  
time-interval  
elapsed?  
NO  
- ESM resets  
tŒ}ꢂꢁꢀµŒꢁ^  
ESM_x_DELAY1 and  
ESM_x_DELAY2  
timers  
Check ESM_x_START=1  
YES  
- Device stops ESM_x  
Level Mode Procedure  
- Device resets the  
ESM_x_DELAY1 and  
ESM_x_DELAY2 timers  
ESM_x pin  
level =1 &  
ESM_x_PIN_INT=0  
?
NO  
YES  
ESM_x_START  
=1?  
YES  
NO  
ESM_x-CONFIGURE  
- Device releases MCU/SoC reset pin  
- For ESM_MCU: Device forces ENABLE_DRV = 0  
- For ESM_SoC: Device forces ENABLE_DRV = 0 if ESM_SoC_ENDRV = 1  
- MCU clears all interrupt bits  
ESM_x_DELAY1  
NO  
time-interval  
elapsed?  
- Device releases nINT pin if no other interrupt bits are set  
YES  
-
ESM_x configuration registers unlocked  
- MCU either clears ESM_x_EN, or  
1) MCU configures ESM_x in Level-Mode (bit ESM_x_MODE)  
2) MCU configures ESM_x_DELAY1, ESM_x_DELAY2 and ESM_x_ENDRV  
3) MCU sets ESM_x_START  
Configuration bit  
ESM_x_ENDRV =1?  
Device forces  
ENABLE_DRV= 0  
YES  
Device locks all  
ESM_x  
NO  
ESM_x_START  
=1?  
YES  
configuration  
registers  
NO  
ESM_x_DELAY2  
set to 0?  
YES  
NO  
ESM_x_EN  
=0?  
NO  
- If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bit And pulls  
nINT pin low  
YES  
- Device starts ESM_x_DELAY2 timer, or  
continues to run this timer if already started  
NO ESM_x  
- MCU/SoC reset inactive  
- MCU can set ENABLE_DRV bit (if  
no other interrupt bits are set)  
- nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
YES  
ESM_x pin level =1  
& ESM_x_PIN_INT=0 &  
ESM_x_FAIL_INT=0  
?
ESM_x Level-Mode  
Error-Handling  
Procedure  
NO  
NO  
ESM_x_EN  
=0?  
YES  
ESM_x_DELAY2  
time-interval  
elapsed?  
NO  
YES  
-
If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bIt and pulls nINT  
pin low  
ESM_x-RESET  
- ESM_x_RST trigger send to to FSM  
- If ESM_x_RST_MASK=0, device sets  
ESM_x_RST_INT interrupt bit and  
pulls nINT pin low  
8-25. Flow Chart for Error Detection in Level Mode  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU sets  
nRSTOUT Pin  
ESM_MCU_START  
ESM_MCU_START  
x
0
1
tdegl_ESMx 15 s  
tLOW_ERROR <  
ESM_MCU_DELAY1  
ESM_MCU Input  
Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 timer reset after  
MCU clears ESM_MCU_PIN_INT  
ESM_MCU_DELAY1  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT  
nINT Pin  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
x
0
1
ENABLE_DRV  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Device State  
x
ACTIVE or MCU_ONLY  
t
0
Case Number 1:  
MCU initiated a fault-injection, and MCU clears the ESM_MCU_PIN_INT interrupt bit before elapse of ESM_MCU_DELAY1 time-interval  
8-26. Example Waveform for ESM in Level Mode - Case Number 1: ESM_MCU Signal Recovers Before Elapse of Delay-1 time-interval  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
105  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START  
x
0
1
ESM_MCU_START  
tESM_DEGLITCH 15 s  
tLOW_ERROR < (ESM_MCU_DELAY1 +  
ESM_MCU_DELAY2)  
ESM_MCU Input Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2 timers reset after  
MCU clears ESM_MCU_PIN_INT and  
ESM_MCU_FAIL_INT  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
0
x
0
1
1
ENABLE_DRV  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV  
x
ACTIVE or MCU_ONLY  
Device State  
t
0
Case Number 2: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, but the MCU recovers and clears the interrupt bits before elapse of the ESM_MCU_DELAY2 time-interval  
8-27. Example Waveform for ESM in Level Mode Case Number 2: Delay-2 Not Set To 0 and ESM_MCU_ENDRV=1, ESM_MCU Signal  
Recovers Before Elapse of Delay-2 Time-Interval  
Copyright © 2022 Texas Instruments Incorporated  
106  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU sets  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START after all  
interrupt bits are cleared  
ESM_MCU_START  
ESM_MCU_START  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
ESM_MCU Input  
Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 timer  
reset when ESM resets the  
MCU  
ESM_MCU_DELAY1  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_RST_INT  
nINT Pin  
&
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3a: ESM_MCU_DELAY2 = 0  
An error event occurred in the MCU, and the MCU is unable to correct the error before elapse of the ESM_MCU_DELAY1 time-interval. Hence the PMIC resets the MCU  
8-28. Example Waveform for ESM in Level Mode Case Number 3a: Delay-2 Set To 0 and ESM_MCU_ENDRV=1, ESM_MCU Input Signal  
Recovers Too Late and MCU-Reset Occurs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
107  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START  
MCU sets ESM_MCU_START  
after all interrupt bits are cleared  
ESM_MCU_START  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
ESM_MCU Input Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Internally Deglitched  
ESM_MCU Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2  
timers reset when ESM  
resets the MCU  
MCU clears  
ESM_MCU_PIN_INT  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN__MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
and ESM_MCU_RST_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3b: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, and the MCU is unable to correct the error before elapse of the ESM_MCU_DELAY1 and ESM_MCU_DELAY2 time-intervals. Hence the PMIC resets the MCU  
8-29. Example Waveform for ESM in Level Mode Case Number 3b: Delay-2 Not Set to 0 and ESM_MCU_ENDRV=1, ESM_MCU Input Signal  
Recovers Too Late and MCU-Reset Occurs  
Copyright © 2022 Texas Instruments Incorporated  
108  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU sets  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets ESM_MCU_START  
after all interrupt bits are cleared  
ESM_MCU_START  
ESM_MCU_START  
ESM_MCU Input Pin  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Internally Deglitched  
ESM_MCU Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2  
timers reset when ESM  
resets the MCU  
MCU clears  
ESM_MCU_PIN_INT  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN__MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
and ESM_MCU_RST_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
1
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3c: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, the MCU recovers and clears ESM_MCU_FAIL_INT, but fails to clear ESM_MCU_PIN_INT before elapse of the ESM_MCU_DELAY2 time-interval.  
Hence the PMIC resets the MCU and sets ESM_FAIL_INT (if ESM_MCU_FAIL_MASK=0).  
8-30. Example Waveform for ESM in Level Mode Case Number 3c: Delay-2 Not Set to 0 and ESM_MCU_ENDRV=1, MCU Fails to Clear  
ESM_MCU_PIN_INT Before Elapse of the ESM_MCU_DELAY2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
109  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.3.11.1.2 PWM Mode  
8.3.11.1.2.1 Good-Events and Bad-Events  
In PWM mode, each ESM monitors the high-pulse and low-pulse duration times its PWM inputs signal as  
follows:  
After a falling edge, the ESM starts monitoring the low-pulse time-duration. If the input signal remains low  
after exceeding the maximum low-pulse time-threshold (tLOW_MAX_TH), the ESM detects a bad event and the  
low-pulse duration counter reinitializes. Each time the signal further exceeds the maximum threshold, the  
ESM detects a bad event. On the next rising edge on the input signal, the ESM starts the high-pulse time-  
duration monitoring  
After a rising edge, the ESM starts monitoring the high-pulse time-duration. If the input signal remains high  
after exceeding the maximum high-pulse time-threshold (tHIGH_MAX_TH), the ESM detects a bad event and the  
high-pulse duration counter reinitializes. Each time the signal further exceeds the maximum threshold, the  
ESM detects a bad event. On the next falling edge on the input signal, the ESM starts the low-pulse time-  
duration monitoring.  
In addition, each ESM detects a bad-event in PWM mode if one of the events that follow occurs on the  
deglitched signal of the related input pin nERR_MCU or nERR_SoC:  
A high-pulse time-duration that is longer than the maximum high-pulse time-threshold (tHIGH_MAX_TH) that is  
configured in corresponding register bits ESM_MCU_HMAX[7:0] or ESM_SOC_HMAX[7:0].  
A high-pulse time-duration that is shorter than the minimum high-pulse time-threshold (tHIGH_MIN_TH) that is  
configured in corresponding register bits ESM_MCU_HMIN[7:0] or ESM_SOC_HMIN[7:0].  
A low-pulse time-duration that is longer than the maximum low-pulse time-threshold (tLOW_MAX_TH) that is  
configured in corresponding register bits ESM_MCU_LMAX[7:0] or ESM_SOC_LMAX[7:0].  
A low-pulse time-duration that is less than the minimum low-pulse time-threshold (tLOW_MIN_TH) that is  
configured in corresponding register bits ESM_MCU_LMIN[7:0] or ESM_SOC_LMIN[7:0].  
Each ESM detects a good-event in PWM mode if one of the events that follow occurs on the deglitched signal of  
the related input pin nERR_MCU or nERR_SoC:  
A low-pulse time-duration within the minimum and maximum low-pulse time-thresholds is followed by a high-  
pulse time-duration within the minimum and maximum high-pulse time-thresholds, or  
A high-pulse duration within the minimum and maximum high-pulse time-thresholds is followed by a low-  
pulse duration within the minimum and maximum low-pulse time-thresholds  
Register bits ESM_MCU_HMAX[7:0] and ESM_SOC_HMAX[7:0] set the maximum high-pulse time-threshold  
(tHIGH_MAX_TH) for the related ESM. Use 方程式 13 and 方程式 14 to calculate the worst-case values for the  
tHIGH_MAX_TH  
:
Min. tHIGH_MAX_TH = (15 µs +ESM_x_HMAX[7:0] × 15 µs) × 0.95  
Max. tHIGH_MAX_TH = (15 µs +ESM_x_HMAX[7:0] × 15 µs) × 1.05  
(13)  
(14)  
, in which x stands for either MCU or SoC.  
ESM_MCU_HMIN[7:0] and ESM_SOC_HMIN[7:0] set the minimum high-pulse time-threshold (tHIGH_MIN_TH) for  
the related ESM. Use 方程15 and 方程16 to calculate the worst-case values for the tHIGH_MIN_TH  
:
Min. tHIGH_MIN_TH = (15 µs +ESM_x_HMIN[7:0] × 15 µs) × 0.95  
Max. tHIGH_MIN_TH = (15 µs +ESM_x_HMIN[7:0] × 15 µs) × 1.05  
(15)  
(16)  
, in which x stands for either MCU or SoC.  
ESM_MCU_LMAX[7:0] and ESM_SOC_LMAX[7:0] set the maximum low-pulse time-threshold (tLOW_MAX_TH) for  
the related ESM. Use 方程17 and 方程18 to calculate the worst-case values for the tLOW_MAX_TH  
:
Min. tLOW_MAX_TH = (15 µs +ESM_x_LMAX[7:0] × 15 µs) × 0.95  
(17)  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Max. tLOW_MAX_TH = (15 µs +ESM_x_LMAX[7:0] × 15 µs) × 1.05  
(18)  
, in which x stands for either MCUor SoC.  
ESM_MCU_LMIN[7:0] and ESM_SOC_LMIN[7:0] set the minimum low-pulse time-threshold (tLOW_MIN_TH) for  
the related ESM. Use 方程19 and 方程20 to calculate the worst-case values for the tLOW_MIN_TH  
:
Min. tLOW_MIN_TH = (15 µs +ESM_x_LMIN[7:0] × 15 µs) × 0.95  
Max. tLOW_MIN_TH = (15 µs +ESM_x_LMIN[7:0] × 15 µs) × 1.05  
(19)  
(20)  
, in which x stands for either MCU or SoC.  
Please note that when setting up the minimum and the maximum low-pulse or high-pulse time-thresholds need  
to be configured such that clock tolerances from the TPS6593-Q1 and from the processor are incorporated. 方程  
21, 方程22, 方程23, and 方程24 are a guideline on how to incorporate these clock-tolerances:  
ESM_x_HMIN[7:0] < 0.5 × (ESM_x_HMAX[7:0] + ESM_x_HMIN[7:0]) × 0.95 × (1 - MCU/SoC clock tolerance) (21)  
ESM_x_HMAX[7:0] > 0.5 × (ESM_x_HMAX[7:0] + ESM_x_HMIN[7:0]) × 1.05 × (1 + MCU/SoC clock tolerance) (22)  
ESM_x_LMIN[7:0] < 0.5 × (ESM_x_LMAX[7:0] + ESM_x_LMIN[7:0]) × 0.95 × (1 - MCU/SoC clock tolerance)  
(23)  
ESM_x_LMAX[7:0] > 0.5 × (ESM_x_LMAX[7:0] + ESM_x_LMIN[7:0]) × 1.05 × (1 + MCU/SoC clock tolerance) (24)  
, in which x stands for either MCU or SoC.  
8.3.11.1.2.2 ESM Error-Counter  
If an ESM detects a bad-event, it increments its related error-counter (bits ESM_MCU_ERR_CNT[4:0] or bits  
ESM_SOC_ERR_CNT[4:0]) by 2. If an ESM detects a good-event, it decrements its related error-counter (bits  
ESM_MCU_ERR_CNT[4:0] or bits ESM_SOC_ERR_CNT[4:0]) by 1.  
The device clears each ESM error counter when ESM_x_START=0. Furthermore, the device clears the error-  
counter ESM_SOC_ERR[4:0] when it resets the SoC.  
Each ESM error-counter has  
a
related threshold (bits ESM_MCU_ERR_CNT_TH[3:0] or bits  
ESM_SOC_ERR_CNT_TH[3:0]) that the MCU can configure if the related ESM_x_START bit is 0. If the ESM  
error-counter value is above its configured threshold, the related ESM has detected a so-called ESM-error and  
starts the Error-Handling Procedure as described in 8.3.11.1. If the ESM error-counter reached a value equal  
or less its configured threshold before the elapse of the configured delay-1 or delay-2 intervals and the MCU  
software clears all ESM related interrupt bits, the ESM-error is no longer present and the ESM stops the Error-  
Handling Procedure as described in 8.3.11.1. If the ESM-error persists such that the configured delay-1 and  
delay-2 times elapse, the ESM sends a ESM_x_RST trigger to the PFSM and the device clears the  
ESM_x_START bit. After the PFSM completes the handling of the ESM_x_RST trigger, the device re-initializes  
the related ESM.  
8.3.11.1.2.3 ESM Start-Up in PWM Mode  
After the MCU has set the start bit of an ESM (bit ESM_MCU_START or bit ESM_SOC_START), there are two  
possible scenarios:  
1. The deglitched signal of the monitored input pin has a low level at the moment the MCU sets the start bit. In  
this scenario, the related ESM starts the following procedure:  
a. Start a timer with a time-length according the value configured in corresponding ESM_MCU_LMAX[7:0]  
or ESM_SOC_LMAX[7:0].  
b. Wait for a first rising edge on its deglitched input signal.  
c. If the rising edge comes before the configured time-length elapses, the ESM skips the next step and  
starts to monitor the high-pulse duration time. Hereafter, the ESM detects good-events or bad-events as  
described in 8.3.11.1.2.1. 8-32 shows an example this scenario as Case Number 1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
d. If the configured time-length (configured in corresponding ESM_MCU_LMAX[7:0] or  
ESM_SOC_LMAX[7:0]) elapses, the ESM detects a bad-event and increments the related error-counter  
with +2. Hereafter, the ESM detects good-events or bad-events as described in 8.3.11.1.2.1. 8-34  
shows an example this scenario as Case Number 3.  
e. If the ESM error-counter value is above its configured threshold, the related ESM has detected a so-  
called ESM-error and starts the Error-Handling Procedure as described in 8.3.11.1.2.1.  
f. During this Error-Handling Procedure, the ESM continues to monitor its related input pin, and updates  
the error-counter accordingly when it detects good-events or bad-events, until the Error-Handling  
Procedure reaches the step in which the ESM sends an ESM_x_RST trigger to the PFSM, which,  
depending on the PFSM configuration, resets the MCU or SoC. 8-35 shows a scenario in which the  
device resets the MCU or SoC as Case Number 4.  
g. If the ESM error-counter reaches a value equal or less its configured threshold before the elapse of the  
configured delay-1 or delay-2 time-intervals and the MCU software clears all ESM related interrupt bits,  
the ESM-error is no longer present and the ESM stops the Error-Handling Procedure as described in 节  
8.3.11.1.2.1.  
2. The deglitched signal monitored input pin has a high level at the moment the MCU sets the start bit. In this  
scenario, the related ESM starts the following procedure:  
a. Start a timer with a time-length according the value configured in corresponding ESM_MCU_HMAX[7:0]  
or ESM_SOC_HMAX[7:0].  
b. Wait for a first falling edge on its deglitched input signal.  
c. If the falling edge comes before the configured time-length elapses, the ESM skips the next step and  
starts to monitor the low-pulse duration time. Hereafter, the ESM detects good-events or bad-events as  
described in 8.3.11.1.2.1. 8-33 shows an example this scenario as Case Number 2.  
d. If the configured time-length (configured in corresponding ESM_MCU_HMAX[7:0] or  
ESM_SOC_HMAX[7:0]) elapses, the ESM detects a bad-event and increments the related error-counter  
with +2. Hereafter, the ESM detects good-events or bad-events as described in 8.3.11.1.2.1.  
e. If the ESM error-counter value is above its configured threshold, the related ESM has detected a so-  
called ESM-error and starts the Error-Handling Procedure as described in 8.3.11.1.2.1.  
f. During this Error-Handling Procedure, the ESM continues to monitor its related input pin, and updates  
the error-counter accordingly when it detects good-events or bad-events, until the Error-Handling  
Procedure reaches the step in which the ESM sends an ESM_x_RST trigger to the PFSM, which,  
depending on the PFSM configuration, resets the MCU or SoC, as Case Number 4.  
g. If the ESM error-counter reaches a value equal or less its configured threshold before the elapse of the  
configured delay-1 or delay-2 time-intervals and the MCU software clears all ESM related interrupt bits,  
the ESM-error is no longer present and the ESM stops the Error-Handling Procedure as described in 节  
8.3.11.1.2.1.  
8.3.11.1.2.4 ESM Flow Chart and Timing Diagrams in PWM Mode  
For a complete overview on how the ESM works in PWM Mode, please refer to the flow-chart in 8-31. In this  
flow-chart, the _x stands for either _MCU or _SoC 8-32, 8-33, 8-34, and 8-35 show example  
waveforms for several error-cases for the ESM in PWM Mode. In this flow-chart, the _x stands for either _MCU  
or _SoC  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Global Reset Conditions:  
NO  
ESM_x-CONFIGURE  
- Device releases MCU/SoC reset pins  
- Device forces ENABLE_DRV= 0  
- MCU clears all interrupt bits  
- Device releases nINT pin if no other interrupt bits are set  
- Warm-Reset from Watchdog or ESM_x  
- Immediate or Orderly Shutdown  
NO ESM_x  
NO  
- MCU/SoC reset inac ve  
- MCU can set ENABLE_DRV bit -  
nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
YES  
ESM_x_EN  
=0?  
- Device Power-On-Reset  
ESM_x_START  
=1?  
NO  
ESM_x_EN  
=0?  
-
ESM_x con gura on registers unlocked  
YES  
START  
- MCU either clears ESM_x_EN, or  
1) MCU con gures ESM in PWM-Mode +  
ESM_x_H/L_MAX/MIN mes  
2) MCU con gures ESM_x_DELAY1, ESM_x_DELAY2 and  
ESM_x_ENDRV  
YES  
Device locks all  
ESM_x  
con gura on  
registers  
- Device stops  
YES  
ESM_x_PWM Mode  
Procedure and ESM_x  
PWM Error-Handling  
Procedure  
NO  
ESM_x_EN=1  
?
3) MCU sets ESM_x_START  
ESM_x_  
START=1?  
NO  
YES  
Note: the procedures „Check ESM_x_START=1", „ESM_x PWM Mode Procedure“ and „ESM_x  
PWM Error-Handling Procedure“ run in parallel. If ESM_x_START=0, the device stops the  
„ESM_x PWM Mode Procedure“ and the „ESM_x PWM Error-Handling Procedure“  
Check  
ESM_x_START=1  
- Device resets the  
ESM_x_DELAY1 and  
ESM_x_DELAY2 mers  
- Device clears  
ESM_x_START=0  
- Device resets the  
ESM_x_DELAY1  
and ESM_x_DELAY2  
mers  
ESM_x_ PWM Mode Procedure  
NO  
YES  
NO  
ESM_x  
ESM_x  
detects  
Falling Edge  
?
ESM_x_  
LMAX time  
elapsed?  
ESM_x_  
HMAX time  
elapsed?  
ESM_x pin  
level  
= 0?  
detects  
Rising Edge  
?
YES  
NO  
NO  
NO  
NO  
YES  
YES  
- MCU/SoC reset inac ve  
Reset-Extension  
me-interval  
elapsed?  
YES  
YES  
ESM_x  
PWM Error-  
Handling  
- MCU can set ENABLE_DRV bit  
- nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
ESM_x  
PWM Error-  
Handling  
Device increase  
ESM_x  
Error-Counter  
with +2  
Device increase  
ESM_x  
Error-Counter  
with +2  
Procedure  
Procedure  
NO  
NO  
ESM_x  
detects  
Falling Edge  
?
ESM_x  
detects  
Rising Edge  
?
ESM_x_  
HMAX time  
elapsed?  
ESM_x_  
LMAX time  
elapsed?  
YES  
YES  
NO  
NO  
Device increase  
ESM_x  
Device increase  
ESM_x  
YES  
YES  
Error-Counter  
with +2  
Error-Counter  
with +2  
ESM_x_  
HMIN time  
elapsed?  
ESM_x_  
LMIN time  
elapsed?  
Device increase  
ESM_x  
Error-Counter  
with +2  
Device increase  
ESM_x  
Error-Counter  
with +2  
NO  
NO  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
Device decrease  
ESM_x  
Error-Counter  
with -1  
NO  
NO  
ESM_x  
detects  
Rising Edge  
?
ESM_x  
detects  
Falling Edge  
?
ESM_x_  
LMAX time  
elapsed?  
ESM_x_  
HMAX time  
elapsed?  
NO  
NO  
Device decrease  
ESM_x  
YES  
YES  
Error-Counter  
with -1  
Device increase ESM_x  
Error-Counter with +2  
Device increase ESM_x  
Error-Counter with +2  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
ESM_x_  
LMIN time  
elapsed?  
ESM_x_  
HMIN time  
elapsed?  
Device increase ESM_x  
Error-Counter with +2  
Device increase ESM_x  
Error-Counter with +2  
NO  
NO  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-Handling Procedure  
Note: until step ESM_x-RESET, the  
ESM_x_PWM Mode Procedure runs  
NO  
ESM_x  
Error-Counter  
Threshold &  
ESM_x_PIN_INT=  
0?  
ESM_x-INTERRUPT  
in parallel  
Con gura on  
- If ESM_x_PIN_MASK=0, device sets  
ESM_x_PIN_INT interrupt bit and pulls nINT  
pin low  
ESM_x_DELAY1  
me-interval  
elapsed?  
NO  
YES  
bit  
ESM_x_ENDRV  
=1?  
YES  
ESM_x  
- Device starts ESM_x_DELAY1 mer, or  
con nues to run this mer if already started  
- Device does not change ENABLE_DRV bit  
- Device does not change the level of the  
MCU/SoC reset pins  
Error-Counter  
>Threshold  
YES  
START  
END  
Device forces  
ENABLE_DRV= 0  
NO  
YES  
NO  
- Device releases nINT pin if  
all interrupt bits are cleared  
- ESM resets ESM_x_DELAY1  
and ESM_x_DELAY2 mers  
ESM_x_DELAY2  
set to 0?  
YES  
YES  
NO  
ESM_x-RESET  
ESM_x  
If ESM_x_RST_MASK=0:  
- ESM_x_RST trigger send  
to to FSM  
Error-Counter  
< Threshold &  
ESM_x_PIN_INT=0 &  
ESM_x_FAIL_INT  
=0?  
-
If ESM_x_FAIL_MASK=0,  
- If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bit and pulls nINT pin  
low  
- Device starts ESM_x_DELAY2 mer, or con nues  
to run this mer if already started  
ESM_x_DELAY2  
me-interval  
elapsed?  
device sets ESM_x_FAIL_INT  
interrupt bit and pulls nINT  
pin low  
YES  
NO  
- device sets  
ESM_x_RST_INT interrupt  
bit and pulls nINT pin low  
NO  
8-31. Flow-Chart for ESM_MCU and ESM_SoC in PWM Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15 s  
tHIGH_MAX_TH  
=
tHIGH_MAX_TH  
=
(ESM_x_HMAX [7:0] + 1) × 15 s  
(ESM_x_HMAX [7:0] + 1) × 15 s  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
× 15 s  
× 15 s  
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1) × 15 s  
(ESM_x_LMAX[7:0] + 1) × 15 s  
(ESM_x_LMAX[7:0] + 1) × 15 s  
tLOW_MIN_TH  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0] + 1) × 15 s  
(ESM_x_LMIN[7:0] + 1) × 15 s  
High-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and  
Started  
Deglitched ESM_x  
Input Signal  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
no bad event trigger as  
long as rising edge on  
ESM_x signal comes  
before elapse of  
tPWM_LOW  
tPWM_LOW  
tPWM_HIGH  
tPWM_HIGH  
1 ESM_x good-event  
1 ESM_x good-event  
tLOW_MAX_TH  
InternalESM_x  
badeventTrigger  
InternalESM_x  
goodeventTrigger  
ESM_x_ERR_CNT[4:0]  
x
00000  
ESM_x_PIN_INT  
(ESM_x_PIN_MASK=0)  
0
nINT Pin  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK=0)  
0
ESM_x_RST_INT  
(ESM_x_RST_MASK=0)  
0
0
ENABLE_DRV  
x
1
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if ESM_SOC_ENDRV=0  
or if ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Case Number 1:  
PWM signal has a low level at the moment the MCU sets bit ESM_x_start, and the PMIC receives a PWM Error Signal with Correct Timing afterwards  
8-32. Example Waveform for ESM in PWM Mode Case Number 1: ESM Starts with Low-Level at Deglitched Input signal, and Receives  
Correct PWM Signal Afterwards. (The _x stand for _MCU or _SoC)  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15 s  
tHIGH_MAX_TH  
=
tHIGH_MAX_TH  
=
tHIGH_MAX_TH  
=
(ESM_x_HMAX [7:0] + 1) × 15 s  
(ESM_x_HMAX [7:0] + 1) × 15 s  
(ESM_x_HMAX [7:0] + 1) × 15 s  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
× 15 s  
× 15 s  
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1) × 15 s  
(ESM_x_LMAX[7:0] + 1) × 15 s  
tLOW_MIN_TH  
(ESM_x_LMIN[7:0] + 1) × 15 s  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:0] + 1) × 15 s  
=
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Stopped,  
High-Pulse Timer  
Stopped,  
High-Pulse Timer  
Stopped,  
Deglitched ESM_x  
Input Signal  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
no bad event trigger as  
long as falling edge on  
ESM_x signal comes  
before elapse of  
tPWM_HIGH  
tPWM_HIGH  
tPWM_LOW  
tPWM_LOW  
1 ESM_x good-event  
1 ESM_x good-event  
tHIGH_MAX_TH  
InternalESM_x  
badeventTrigger  
InternalESM_x  
goodeventTrigger  
x
00000  
ESM_x_ERR_CNT[4:0]  
ESM_x_PIN_INT  
(ESM_x_PIN_MASK=0)  
0
nINT Pin  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK=0)  
0
ESM_x_RST_INT  
(ESM_x_RST_MASK=0)  
0
0
ENABLE_DRV  
x
1
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if ESM_SOC_ENDRV=0  
or if ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Case Number 2:  
PWM signal has a high level at the moment the MCU sets bit ESM_x_start, and the PMIC receives a PWM Error Signal with Correct Timing afterwards  
8-33. Example Waveform for ESM in PWM Mode Case Number 2: ESM Starts with High-Level at Deglitched Input Signal, and Receives  
Correct PWM Signal Afterwards (The _x stand for _MCU or _SoC)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15 s  
tHIGH_MAX_TH =  
(ESM_x_HMAX [7:0] + 1) ×  
tHIGH_MAX_TH =  
(ESM_x_HMAX [7:0] + 1) ×  
tHIGH_MAX_TH =  
(ESM_x_HMAX [7:0] + 1) ×  
15 s  
15 s  
15 s  
tHIGH_MIN_TH =  
(ESM_x_HMIN  
tHIGH_MIN_TH =  
(ESM_x_HMIN  
tHIGH_MIN_TH =  
(ESM_x_HMIN  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 s  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
× 15 s  
× 15 s  
× 15 s  
tLOW_MIN_TH  
(ESM_x_LMIN[7:0]  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0]  
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0]  
+ 1) × 15 s  
+ 1) × 15 s  
+ 1) × 15 s  
Deglitched ESM_x  
Input Signal  
tPWM_LOW  
tPWM_LOW  
tPWM_LOW  
tPWM_HIGH  
tPWM_HIGH  
tPWM_HIGH  
1 ESM_x good event  
1 ESM_x good event  
1 ESM_x good event  
InternalESM_xbad  
eventTrigger  
InternalESM_xgood  
eventTrigger  
ESM_x_ERR_CNT[4:0]  
00010  
00001  
00000  
ESM_x_DELAY2  
00000  
ESM_x_DELAY1 and  
x
00000  
ESM_x_ERR_CNT_  
TH[3:0] = 0001  
ESM_x_DELAY1  
ESM_x_DELAY2 timers reset after  
MCU clears ESM_x_PIN_INT and  
ESM_x_FAIL_INT  
MCU clears ESM_x_PIN_INT  
ESM_x_ERR_CNT[4:0] ≤  
ESM_x_ERR_CNT_TH[3:0]  
&
ESM_x_PIN_INT  
0
1
0
&
nINT Pin  
MCU clears  
ESM_x_FAIL_INT  
1
0
0
ESM_x_FAIL_INT  
0
0
ESM_x_RST_INT  
ENABLE_DRV  
x
1
0
1
MCU sets ENABLE_DRV (ESM_MCU,  
only possible if ESM_MCU_START=1.  
ESM_SOC possible if  
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if ESM_SOC_ENDRV=0  
or if ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Note: PMIC clears ENABLE_DRV  
only when configuration bit  
ESM_x_ENDRV=1  
ESM_SOC_ENDRV=0 or if  
ESM_SOC_ENDRV=1 and  
ESM_SOC_START=1)  
Case Number 3: ESM_DELAY2 > 0  
PWM signal has a low level at the moment the MCU sets bit ESM_x_start, but the PMIC receives the PWM Error Signal too late. Afterwards PWM Error Signal recovers with Correct Timing and  
ESM_x_ERR_CNT[4:0] reaches a value less than the configured ESM_x_ERR_CNT_TH[3:0] before elapse of the ESM_x_DELAY2 time-interval  
8-34. Example Waveform for ESM in PWM Mode Case Number 3: ESM Starts with Low-Level at Deglitched Input Signal, but Receives Too  
Late a Correct PWM Signal Afterwards (The _x stand for _MCU or _SoC)  
Copyright © 2022 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Reset-Extension  
Time  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets  
ESM_x_START after all  
interrupt bits are cleared  
MCU sets ESM_x_START  
x
0
0
1
1
ESM_x_START  
tdegl_ESMx 15 s  
tHIGH_MAX_TH  
(ESM_x_HMAX  
tdegl_ESMx 15 s  
tHIGH_MAX_TH =  
(ESM_x_HMAX  
=
tHIGH_MAX_TH  
=
(ESM_x_HMA(ESM_x_HMAX  
tHIGH_MAX_TH =  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 [7:0] + 1) × 15 s  
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
1) × 15 s  
1) x 15 s  
1) x 15 s  
1) x 15 s  
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0]  
+ 1) × 15 s  
× 15 s  
× 15 s  
× 15 s  
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
Deglitched ESM_x  
Input Signal  
t
t
tPWM_HIGH  
tPWM_LOW  
tPWM_HIGH  
tPWM_LOW  
tPWM_HIGH  
tPWM_LOW  
P
W
M
_
H
I
G
H
P
W
M
_
L
O
W
1 ESM_x good event  
1 ESM_x good event  
InternalESM_xbad  
eventTrigger  
InternalESM_xgood  
eventTrigger  
ESM_x_ERR_  
CNT[4:0]  
00100  
00101  
00000  
x
00000  
00110  
00010  
ESM_x_ERR_CNT_  
TH[3:0] = 0011  
ESM_x_DELAY1 and ESM_x_DELAY2 timers  
reset when ESM_x resets the MCU or SoC  
ESM_x_DELAY1  
ESM_x_DELAY2  
MCU clears ESM_x_PIN_INT  
ESM_x_ERR_CNT[4:0] ≤  
ESM_x_ERR_CNT_TH[3:0]  
&
ESM_x_PIN_INT  
(ESM_x_PIN_MASK  
=0)  
0
1
0
&
nINT Pin  
MCU clears  
ESM_x_FAIL_INT  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK  
=0)  
1
0
0
MCU clears  
ESM_x_RST_INT  
ESM_x_RST_INT  
(ESM_x_RST_MASK  
=0)  
0
0
0
1
ENABLE_DRV  
x
1
0
1
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if  
ESM_SOC_ENDRV=0 or if ESM_SOC_ENDRV=1 and  
ESM_SOC_START=1)  
Note: PMIC clears ENABLE_DRV  
only when configuration bit  
ESM_x_ENDRV=1  
MCU sets ENABLE_DRV (ESM_MCU, only  
possible if ESM_MCU_START=1. ESM_SOC  
possible if ESM_SOC_ENDRV=0 or if  
ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Case Number 4: _DELAY2 > 0  
PWM signal has an error after start-up, and the ESM_x_ERR_CNT[4:0] > ESM_x_ERR_CNT_TH[3:0] during the elapse of ESM_x_DELAY1 and ESM_x_DELAY2. Hence the PMIC  
pulls the nRSTOUT / nRSOUT_SoC pin low, and releases this pin after the reset-extension time. After this, MCU clears all errors and restarts the ESM_x  
8-35. Example Waveform for ESM in PWM Mode Case Number 4: ESM Starts with Low-Level at Deglitched Input Signal and Receives a  
Correct PWM Signal. Afterwards the ESM Detects Bad Events, and the PWM Signal Recovers Too Late which Leads to an ESM_x Reset Trigger  
to the PFSM (The _x stand for _MCU or _SoC)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Device State Machine  
The TPS6593-Q1 device integrates a finite state machine (FSM) engine that manages the state of the device  
during operating state transitions. The device supports NVM-configurable mission states with configurable input  
triggers for transitions between states. Any resources, including the 5 BUCK regulators, 4 LDO regulators, and  
all of the digital IO pins including the 11 GPIO pins on the device can be controlled during power sequencing.  
When a resource is not controlled or configured through a power sequence, the resource is left in the default  
state as pre-configured by the NVM.  
Each resource can be pre-configured through the NVM configuration, or re-configured through register bits.  
Therefore, the user can statically control the resource through the control interfaces (I2C or SPI), or the FSM can  
automatically control the resource during state sequences.  
The FSM is powered by an internal LDO that is automatically enabled when VCCA supply is available to the  
device. Ensuring that the VCCA supply is the first supply available to the device is important to ensure proper  
operation of all the power resources as well as the control interface and device IOs.  
There are 3 parts of the FSM that control the operational modes of the TPS6593-Q1 device:  
Fixed Device Power Finite State Machine (FFSM)  
Pre-configurable Finite State Machine (PFSM) for Mission States (ACTIVE, MCU_ONLY, S2R,  
DEEP_SLEEP)  
Error Handling Operations  
The PFSM provides configurable rail and voltage monitoring sequencing utilizing instructions in configuration  
memory. This flexibility enables customers to alter power-up sequences on a platform basis. The FFSM handles  
the majority of fixed functionality that is internally mandated and common to all platforms.  
8.4.1.1 Fixed Device Power FSM  
The Fixed Device Power portion of the FSM engine manages the power up of the device before the power rails  
are fully enabled and ready to power external loadings, and the power down of the device when in the event of  
insufficient power supply or device or system error conditions. While the device is in one of the Hardware Device  
Powers states, the ENABLE_DRV bit remains low.  
The definitions and transition triggers of the Device Power States are fixed and cannot be reconfigured.  
Following are the definitions of the Device Power states:  
NO SUPPLY  
The device is not powered by a valid energy source on the system power rail. The device is  
completely powered off.  
BACKUP (RTC The device is not powered by a valid supply on the system power rail (VCCA < VCCA_UVLO);  
backup  
battery)  
a backup power source, however, is present and is within the operating range of the  
LDOVRTC. The RTC clock counter remains active in this state if it has been previously  
activated by appropriate register enable bit. The calendar function of the RTC block is  
activated, but not accessible in this state. Customer has the option to enable the shelf mode  
by disconnecting the VCCA supply completely, even while the backup battery is connected to  
the VBACKUP pin. The shelf mode forces the device to skip the BACKUP state and enters the  
NO SUPPLY state under VCCA_UVLO condition to reduce current draining from the backup  
battery.  
LP_STANDBY The device can enter this state from a mission state after receiving a valid OFF request or an  
I2C trigger, and the LP_STANDBY_SEL= 1. When the device is in this state, the RTC clock  
counter and the RTC Alarm or Timer Wake-up functions are active if they have been  
previously activated by appropriate register enable bit. Low Power Wake-up input monitor in  
the LDOVRTC domain (LP_WKUP secondary function through GPIO3 or GPIO4) and the on  
request monitors are also enabled in this state. When a logic level transition from high-to-low  
or low-to-high with a minimum pulse length of tLP_WKUP is detected on the assigned LP_WKUP  
pin, or if the device detects a valid on-request or a wake-up signal from the RTC block, the  
Copyright © 2022 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
device proceeds to power up the device and reach the default mission state. More details  
regarding the LP_WAKE function can be found in 8.4.1.2.4.5.  
INIT  
The device is powered by a valid supply on the system power rail (VCCA VCCA_UV). If the  
device was previously in LP_STANDBY state, it has received an external wake-up signal at  
the LP_WKUP1/2 pins, the RTC alarm or timer wake-up signal, or an On Request from the  
nPWRON/ENABLE pin. Device digital and monitor circuits are powered up. The PMIC reads  
its internal NVM memory in this state and configures default values to registers, IO  
configuration and FSM accordingly.  
BOOT BIST  
The device is running the built-in self-test routine that includes both the LBIST and the CRC.  
An option is available to shorten the device power up time from the NO_SUPPLY state by  
setting the NVM bit FAST_BOOT_BIST = '1' to skip the LBIST. Software can also set the  
FAST_BIST = '1' to skip LBIST after the device wakes up from the LP STANDBY state. When  
the device arrives at this state from the SAFE_RECOVERY state, LBIST is automatically  
skipped if it has not previously failed. If LBIST failed, but passed after multiple re-tries before  
exceeding the recovery counter limit, the device powers up normally. The following NVM bits  
are pre-configured options that can be set to disable parts of the CRC tests if further  
sequence time reduction is required (please refer to the User's Guide of the orderable part  
number):  
REG_CRC_EN = '0': disables the register map and SRAM CRC check  
备注  
Note: the BIST tests are executed as parallel processes, and the longest process  
determines the total BIST duration  
RUNTIME BIST A request was received from the MCU to exercise a run-time built-in self-test  
(RUNTIME_BIST) on the device. No rails are modified and all external signals, including all  
I2C or SPI interface communications, are ignored during BIST. If the device passed BIST, it  
resumes the previous operation. If the device failed BIST, it shuts down all of the regulator  
outputs and proceed to the SAFE RECOVERY state. In order to avoid a register CRC error, all  
register writes must be avoided after the request for the BIST operation until the device pulls  
the nINT pin low to indicate the completion of BIST. The results of the BIST are indicated by  
the BIST_PASS_INT or the BIST_FAIL_INT bits.  
备注  
After completion of the RUNTIME_BIST, the LDOx_UV detections are masked for a  
time-interval equal to the configured LDOx ramp-up time (25mV/μs ir 3mV/us  
according configuration bit LDOx_SLOW_RAMP). The actual LDOx output voltages  
are not affected by this masking of the LDOx_UV detections.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
SAFE  
RECOVERY  
The device meets the qualified error condition for immediate or ordered shutdown request. If  
the error is recovered within the recovery time interval or meets the restart condition, the  
device increments the recovery counter, and returns to INIT state if the recovery counter value  
does not exceed the threshold value. Until a supply power cycle occurs, the device stays in  
the SAFE RECOVERY state if one of the following conditions occur:  
the recovery counter exceeds the threshold value  
the die temperature cannot be reduced to less than TWARN level  
VCCA stays above OVP threshold  
When multiple system conditions occur simultaneously that demand power state arbitration, the device goes to  
the higher priority state according to the following priority order:  
1. NO SUPPLY  
2. BACKUP  
3. SAFE_RECOVERY  
4. LP_STANDBY  
5. MISSION STATES  
8-36 shows the power transition states of the FSM engine.  
Copyright © 2022 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
NO  
SUPPLY  
LDOVRTC UVLO Condi on or  
Shelf Mode enabled  
VCCA < VCCA_UVLO  
or LDOVINT UVLO Condi on  
BACKUP  
All States  
Except NO SUPPLY  
VCCA > VCCA_UV  
LP STANDBY  
VCCA > VCCA_UV  
LP_STANDBY_SEL = 1 and  
no valid WAKE request1  
Valid WAKE Request1  
INIT  
INIT done and  
no error detected  
Error recovered or  
meets restart condi on  
O
request and  
All States  
Recovery  
counter exceeded  
LP_STANDBY_SEL = 1  
Thermal Shutdown or  
VCCA OVP  
Error Condi ons  
(recovery cnt +1)  
SAFE  
RECOVERY  
BOOT  
BIST  
BOOT BIST error  
(recovery cnt +1)  
Orderly shutdown  
Condi on  
(recovery cnt +1)  
BOOT BIST success  
Severe or Moderate  
PFSM Errors  
(recovery cnt +1)  
Mission States  
RUNTIME BIST request  
RUNTIME BIST complete  
RUNTIME  
BIST  
1 A valid WAKE request consist of:  
ꢀꢁnPWRON/ENABLE on request detec on if the device arrived the LP_STANDBY state through  
the long key-press of the nPWRON pin or by disabling the ENABLE pin, or  
ꢀꢁRTC Alarm, RTC Timer, LP_WKUP1 or LP_WKUP2 detec on if the device arrived the  
LP_STANDBY state through wri ng to a TRIGGER_I2C_0 bit.  
8-36. State Diagram for Device Power States  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4.1.1.1 Register Resets and NVM Read at INIT State  
Several registers inside the TPS6593-Q1 have pre-configured default values that are stored in the NVM of the  
TPS6593-Q1. These registers are referred to as NVM pre-configured registers.  
When the device transitions from the LP_STANDBY or the SAFE_RECOVERY to the INIT state, based on  
FIRST_STARTUP_DONE bit, the registers are reset and the NVM is read. When the FIRST_STARTUP_DONE  
is '0', registers which are not in the RTC domain are reset, and all of the NVM pre-configured registers including  
the ones in the RTC domain, are loaded from the NVM. When the FIRST_STARTUP_DONE bit is set to '1',  
typically after the initial power up from a supply power cycle, the registers in the RTC domain are not reset, and  
the NVM pre-configured registers in the RTC domain are not re-loaded from the NVM. This prevents the control  
and status bits stored in the RTC domain registers from being over written.  
8-11. Register resets and NVM read at INIT state  
Registers without NVM pre-  
FIRST  
_STARTUP_DONE  
NVM pre-configured  
registers in RTC Domain  
Other NVM pre-configured  
registers  
Registers without  
NVM pre-configuration  
configuration in RTC  
Domain  
Reset and defaults read  
from NVM  
0
1
Defaults read from NVM  
No changes  
No changes  
No changes  
Reset  
Reset  
Reset and defaults read  
from NVM  
Below are the NVM pre-configured register bits in the RTC domain:  
GPIO3_CONF and GPIO4_CONF registers, except the GPIOn_DEGLITCH_EN bits  
GPIO3_RISE_MASK, GPIO3_FALL_MASK, GPIO4_RISE_MASK, and GPIO4_FALL_MASK bits  
NPWRON_CONF register except ENALBE_DEGLITCH_EN and NRSTOUT_OD bits  
FSD_MASK, ENABLE_MASK, NPWRON, START_MASK, and NPWRON_LONG_MASK bits  
STARTUP_DEST, FAST_BIST, LP_STANDBY_SEL, XTAL_SEL, and XTAL_EN bits  
PFSM_DELAYn, and RTC_SPARE_n bits  
Below are the register bits without NVM pre-configuration in the RTC domain:  
FIRST_STARTUP_DONE bit  
SCRATCH_PAD_n bits  
All of RTC control and configuration registers  
8.4.1.2 Pre-Configurable Mission States  
When the device arrives at a mission state, all rail sequencing is controlled by the pre-configurable FSM engine  
(PFSM) through the configuration memory. The configuration memory allows configurations of the triggers and  
the operation states that together form the configurable sub state machine within the scope of mission states.  
This sub state machine can be used to control and sequence the different voltage outputs as well as any GPIO  
outputs that can be used as enable for external rails. When the device is in a mission state, it has the capacity to  
supply the processor and other platform modules depending on the power rail configuration. The definitions and  
transition triggers of the mission states are configurable through the NVM configuration. Unlike the user  
registers, the PFSM definition stored in the NVM cannot be modified during normal operation. When the PMIC  
determines that a transition to another operation state is necessary, it reads the configuration memory to  
determine what sequencing is needed for the state transition.  
8-15 shows how the trigger signals for each state transition can come from a variety of interface or GPIO  
inputs, or potential error sources. 8-37 shows how the device processes all of the possible error sources  
inside the PFSM engine, a hierarchical mask system is applied to filter out the common errors that can be  
handled by interrupt only, and categorize the other error sources as Severe Global Error, Moderate Global Error,  
and so forth. The filtered and categorized triggers are sent into the PFSM engine, that then determines the entry  
and exit condition for each configured mission state.  
Copyright © 2022 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
All Potential Error (Interrupt) Sources  
INTERRUPT  
is given  
First level mask to filter out non-error interrupts vs. interrupts which require error handling  
VCCA BUCK1 BUCK2 BUCK3 BUCK4 BUCK5 LDO1  
LDO2  
LDO3  
LDO4  
Recovery Counter Limit to FSM  
WD error to FSM  
OR  
function  
Severe Global  
Error  
MCU Rail Group  
SoC Rail Group  
Other Rail Group  
SoC Error Monitor to FSM  
MCU Error Monitor to FSM  
Mask  
Moderate Global  
Error  
IMMEDIATE  
SHUTDOWN trigger  
input to FSM  
Immediate Shutdown Trigger Mask  
Orderly Shutdown Trigger Mask  
MCU Power Error Trigger Mask  
SoC Power Error Trigger Mask  
ORDERLY  
SHUTDOWN trigger  
input to FSM  
MCU Power  
Error Signal  
SoC Power  
Error Signal  
8-37. Error Source Hierarchical Mask System  
8-39 shows an example of how the PFSM engine utilizes instructions to execute the configured device state  
and sequence transitions of the mission state-machine. 8-12 provides the instruction set and usage  
description of each instruction in the following sections. 8.4.1.2.2 describes how the instructions are stored in  
the NVM memory.  
8-12. Configurable FSM Instruction set  
Command Opcode  
"0000"  
Command  
REG_WRITE_MASK_PAGE0_IMM  
REG_WRITE_IMM  
Command Description  
Write the specified data, except the masked bits, to the specified  
page 0 register address.  
"0001"  
Write the specified data to the specified register address.  
Write the specified data, except the masked bits, to the specified  
register address.  
"0010"  
REG_WRITE_MASK_IMM  
Write the target voltage of a specified regulator after a specified  
delay.  
"0011"  
"0100"  
"0101"  
"0110"  
REG_WRITE_VOUT_IMM  
REG_WRITE_VCTRL_IMM  
REG_WRITE_MASK_SREG  
SREG_READ_REG  
Write the operation mode of a specified regulator after a specified  
delay.  
Write the data from a scratch register, except the masked bits, to  
the specified register address.  
Write scratch register (REG0-3) with data from a specified  
address.  
Execution is paused until the specified type of the condition is met  
or timed out.  
"0111"  
"1000"  
"1001"  
WAIT  
DELAY_IMM  
DELAY_SREG  
Delay the execution by a specified time.  
Delay the execution by a time value stored in the specified scratch  
register.  
Set a trigger destination address for a given input signal or  
condition.  
"1010"  
TRIG_SET  
"1011"  
"1100"  
TRIG_MASK  
END  
Sets a trigger mask that determines which triggers are active.  
Mark the final instruction in a sequential task.  
Write the specified data to the BIT_SEL location of the specified  
page 0 register address.  
"1101"  
"1110"  
REG_WRITE_BIT_PAGE0_IMM  
REG_WRITE_WIN_PAGE0_IMM  
Write the specified data to the SHIFT location of the specified  
page 0 register address.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-12. Configurable FSM Instruction set (continued)  
Command Opcode  
Command  
Command Description  
"1111"  
SREG_WRITE_IMM  
Write the specified data to the scratch register (REG0-3).  
8.4.1.2.1 PFSM Commands  
Following section describes each PFSM command in detail and provides example usage codes. More  
information on example NVM configuration, available device options and documentations can be found at Fully  
Customizable Integrated Power.  
8.4.1.2.1.1 REG_WRITE_IMM Command  
Description: Write the specified data to the specified register address  
Assembly command: REG_WRITE_IMM [ADDR=]<Address> [DATA=]<Data>  
Address and Data can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=' and 'DATA=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_IMM 0x1D 0x55 Write value 0x55 to address 0x1D  
REG_WRITE_IMM ADDR=0x10 DATA=0xFF Write value 0xFF to address 0x10  
REG_WRITE_IMM DATA=0xFF ADDR=0x10 Write value 0xFF to address 0x10  
8.4.1.2.1.2 REG_WRITE_MASK_IMM Command  
Description: Write the specified data, except the masked bits, to the specified register address  
Assembly command: REG_WRITE_MASK_IMM [ADDR=]<Address> [DATA=]<Data> [MASK=]<Mask>  
Address, Data, and Mask can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', and 'MASK=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_MASK_IMM 0x1D 0x80 0xF0 Write 0b1000 to the upper 4 bits of the register at address  
0x1D  
REG_WRITE_MASK_IMM ADDR=0x10 DATA=0x0F MASK=0xF0 Write 0b1111 to the lower 4 bits of the  
register at address 0x10  
REG_WRITE_MASK_IMM DATA=0x0F MASK=0xF0 ADDR=0x10 Write 0b1111 to the lower 4 bits of the  
register at address 0x10  
8.4.1.2.1.3 REG_WRITE_MASK_PAGE0_IMM Command  
Description: Write the specified data, except the masked bits, to the specified page 0 register address  
Assembly  
command:  
REG_WRITE_MASK_PAGE0_IMM  
[ADDR=]<Address>  
[DATA=]<Data>  
[MASK=]<Mask>  
Address, Data, and Mask can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', and 'MASK=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_MASK_PAGE0_IMM 0x1D 0x80 0xF0 Write 0b1000 to the upper 4 bits of the register at  
address 0x1D  
REG_WRITE_MASK_PAGE0_IMM ADDR=0x10 DATA=0x0F MASK=0xF0 Write 0b1111 to the lower 4  
bits of the register at address 0x10  
REG_WRITE_MASK_PAGE0_IMM DATA=0x0F MASK=0xF0 ADDR=0x10 Write 0b1111 to the lower 4  
bits of the register at address 0x10  
Copyright © 2022 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4.1.2.1.4 REG_WRITE_BIT_PAGE0_IMM Command  
Description: Write the specified data to the BIT_SEL location of the specified page 0 register address  
Assembly command: REG_WRITE_BIT_PAGE0_IMM [ADDR=]<Address> [BIT=]<Bit> [DATA=]<Data>  
Address, Bit, and Data can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'BIT=', and 'DATA=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_BIT_PAGE0_IMM 0x1D 7 0 Write '0' to bit 7 of the register at address 0x1D  
REG_WRITE_BIT_PAGE0_IMM ADDR=0x10 BIT=3 DATA=1 Write 0b1 to bit 3 of the register at address  
0x10  
8.4.1.2.1.5 REG_WRITE_WIN_PAGE0_IMM Command  
Description: Write the specified data to the SHIFT location of the specified page 0 register address  
Assembly command: REG_WRITE_WIN_PAGE0_IMM [ADDR=]<Address> [DATA=]<Data> [MASK=]<Mask>  
[SHIFT=]<Shift>  
Address, Data, Mask, and Shift can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', 'MASK=', and 'SHIFT=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_WIN_PAGE0_IMM ADDR=0x1D DATA=0x8 MASK=0x13 SHIFT=2 Write bits 5:4 to 0b10  
to the register at address 0x1D. Data and mask give 5-bit value 0bx10xx. These two bits are then left shifted  
2 bit-positions to give full byte value of 0bxx10xxxx, hence sets bits 5:4 to 0b10.  
8.4.1.2.1.6 REG_WRITE_VOUT_IMM Command  
Description: Write the target voltage of a specified regulator after a specified delay. This command is a spin-off of  
the REG_WRITE_IMM command with the intention to save instruction bits.  
Assembly  
command:  
REG_WRITE_VOUT_IMM  
[REGULATOR=]<Regulator  
ID>  
[SEL=]<VSEL>  
[VOUT=]<Vout> [DELAY=]<Delay>  
'REGULATOR=', ''SEL=', 'VOUT=', and 'DELAY=' are options. When included, the parameters can be in any  
order.  
Regulator ID = BUCK1, BUCK2, BUCK3, BUCK4, BUCK5, LDO1, LDO2, LDO3, or LDO4.  
VSEL selects the BUCKn_VSET1 or BUCKn_VSET2 bits which the command writes to if Regulator ID is  
BUCK1-5. VSEL is defined as: '0': BUCKn_VSET1, '1': BUCKn_VSET2, '2': Currently Active BUCKn_VSET, '3':  
Currently Inactive BUCKn_VSET. If Regulator ID is LDO1-4, VSEL value is ignored.  
VOUT = output voltage in mV or V. Unit must be listed.  
DELAY = delay time in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between 0-63,  
which becomes the threshold count for the counter running a step size specified in the register  
PFSM_DELAY_STEP. The delay value is rounded to the nearest achievable delay time based on the current  
step size. Current step size is based on the default NVM setting or a SET_DELAY value from a previous  
command in the same sequence. Assembler reports an error if the step size is too large or too small to meet the  
delay.  
Examples:  
REG_WRITE_VOUT_IMM BUCK3 2 1.05 V 100 µs Sets BUCK3 to 1.05 V by updating the active  
BUCK3_VSET register after 100 µs  
REG_WRITE_VOUT_IMM REGULATOR=LDO1 SEL=0 VOUT=700 mV DELAY=6 ms Sets LDO1 to 700  
mV after 6 ms.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4.1.2.1.7 REG_WRITE_VCTRL_IMM Command  
Description: Write the operation mode of a specified regulator after a specified delay. This command is a spin-off  
of the REG_WRITE_IMM command with the intention to save instruction bits.  
Assembly command: REG_WRITE_VCTRL_IMM [REGULATOR=]<Regulator ID> [VCTRL=]<VCTRL>  
[MASK=]<Mask> [DELAY=]<Delay> [DELAY_MODE=]<Delay Mode>  
'REGULATOR=', 'VCTRL=', 'MASK=', and 'DELAY=' are options. When included, the parameters can be in any  
order.  
Regulator ID = BUCK1, BUCK2, BUCK3, BUCK4, BUCK5, LDO1, LDO2, LDO3, or LDO4.  
VCTRL = 0-15, in hex, decimal, or binary format. Data to write to the following regulator control fields:  
BUCKs: BUCKn_PLDN, BUCKn_VMON_EN, BUCKn_VSEL, BUCKn_FPWM_MP, BUCKn_FPWM, and  
BUCKn_EN  
LDOs: LDOn_PLDN, LDOn_VMON_EN, 0, 0, LDOn_EN  
DELAY = delay time in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between 0-63,  
which becomes the threshold count for the counter running a step size specified in the register  
PFSM_DELAY_STEP. Delay value is be rounded to the nearest achievable delay time based on the current step  
size. Current step size is based on the default NVM setting or a SET_DELAY value from a previous command in  
the same sequence. Assembler reports an error if the step size is too large or too small to meet the delay.  
Delay Mode must be one of the below options: MATCH_EN = 0 (Delay if VCTRL enable bit mismatches)  
MATCH_ALL = 1 (Delay if any VCTRL bits mismatch) ALWAYS = 2 (Delay always)  
Examples:  
REG_WRITE_VCTRL_IMM BUCK3 0x00 0xE0 100 µs Sets BUCK3 to OFF (VCTRL bits = 0b00000)  
after 100 µs  
REG_WRITE_VCTRL_IMM REGULATOR=LDO1 VCTRL=0x09 MASK=0x36 DELAY=10 ms Set  
LDO1_VMON and LDO1_EN to '1' after 10 ms  
8.4.1.2.1.8 REG_WRITE_MASK_SREG Command  
Description: Write the data from a scratch register, except the masked bits, to the specified register address  
Assembly command: REG_WRITE_MASK_SREG [REG=]<Scratch Register> [ADDR=]<Address>  
[MASK=]<Mask>  
'REG=', 'ADDR=', and 'MASK=' are options. When included, the parameters can be in any order.  
Scratch Register can be R0, R1, R2, or R3.  
Address and Mask can be in any literal integer format (decimal, hex, and so forth).  
Examples:  
REG_WRITE_MASK_SREG R2 0x22 0x00 Write the content of scratch register 2 to address 0x22  
REG_WRITE_MASK_SREG REG=R0 ADDR=0x054 MASK=0xF0 Write the lower 4 bits of scratch  
register 0 to address 0x54  
8.4.1.2.1.9 SREG_READ_REG Command  
Description: Write scratch register (REG0-3) with data from a specified address  
Assembly command: SREG_READ_REG [REG=]<Scratch Register> [ADDR=]<Address>  
'REG=' and 'ADDR=' are options. When included, the parameters can be in any order.  
Scratch Register can be R0, R1, R2, or R3.  
Address can be in any literal integer format (decimal, hex, and so forth).  
Examples:  
SREG_READ_REG R2 0x15 Read the content of address 0x15 and write the data to scratch register 2  
Copyright © 2022 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
SREG_READ_REG ADDR=0x077 REG=R3 Read the content of address 0x77 and write the data to  
scratch register 3  
8.4.1.2.1.10 SREG_WRITE_IMM Command  
Description: Write the specified data to the scratch register (REG0-3)  
Assembly command: SREG_WRITE_IMM [REG=]<Register> [DATA=]<Data>  
Data can be in any literal integer format (decimal, hex, and so forth).  
Register can be R0, R1, R2, or R3.  
'REG=' and 'DATA=' are options. When included, the parameters can be in any order.  
Examples:  
SREG_WRITE_IMM R2 0x15 Write 0x15 to scratch register 2  
SREG_WRITE_IMM ADDR=0x077 REG=R3 Read 0x77 to scratch register 3  
8.4.1.2.1.11 WAIT Command  
Description: Wait upon a condition of a given type. Execution is paused until the specified type of the condition is  
met or timed out  
Assembly  
command:  
WAIT  
[COND=]<Condition>  
[TYPE=]<Type>  
[TIMEOUT=]<Timeout>  
[DEST=]<Destination>  
Alternative assembly command: JUMP [DEST=]<Destination>  
'COND=', 'TYPE=', 'TIMEOUT=', and 'DEST=' are options. When included, the parameters can be in any order.  
Condition are listed in 8-13. Examples: GPIO1, BUCK1_PG, I2C_1  
Type = LOW, HIGH, RISE, or FALL  
Timeout = timeout value in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between  
0-63. Timeout value is be rounded to the nearest achievable time based on the current step size. Current step  
size is based on the default NVM setting or a SET_DELAY value from a previous command in the same  
sequence. Assembler reports an error if the step size is too large or too small to meet the delay.  
Destination = Label to jump to if when timeout occurs. Destination must be after the WAIT statement in memory.  
Memory space can be either '0' or '1'. '0' indicates the destination address is in the PFSM memory space. '1'  
indicates the destination address is external and represents a FSM state ID.  
When using the jump command, the PFSM performs an unconditional jump. The command is be compiled as  
"WAIT COND=63 TYPE=LOW TIMEOUT=0 DEST=<Destination>". Condition 63 is a hardcoded 1, so the  
condition is never satisfied and hence always times out. Therefore this command always jumps to the  
destination.  
Examples:  
WAIT GPIO4 RISE 1 s <Destination> 0 Wait to execute the command at the specified SRAM address  
when a rise edge is detected at GPIO4, or after 1 second  
WAIT COND=BUCK1_PG TYPE=HIGH TIMEOUT=500 µs DEST=<mcu2act_seq> Wait to execute the  
commands at <mcu2act_seq> address as soon as BUCK1 output is within power-good range, or after 500 µs  
8-13. WAIT Command Conditions  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
0
1
2
3
4
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
16  
17  
18  
19  
20  
LDO1_PG  
LDO2_PG  
LDO3_PG  
LDO4_PG  
PGOOD  
32  
33  
34  
35  
36  
I2C_0  
I2C_1  
I2C_2  
I2C_3  
I2C_4  
48  
49  
50  
51  
52  
LP_STANDBY_SEL  
N/A  
N/A  
N/A  
N/A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-13. WAIT Command Conditions (continued)  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
5
6
GPIO6  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
TWARN_EVENT  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
I2C_5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
GPIO7  
INTERRUPT_PIN  
I2C_6  
7
GPIO8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
I2C_7  
8
GPIO9  
SREG0_0  
SREG0_1  
SREG0_2  
SREG0_3  
SREG0_4  
SREG0_5  
SREG0_6  
SREG0_7  
9
GPIO10  
10  
11  
12  
13  
14  
15  
GPIO11  
BUCK1_PG  
BUCK2_PG  
BUCK3_PG  
BUCK4_PG  
BUCK5_PG(use for  
EXT_VMON  
1
PowerGood)  
8.4.1.2.1.12 DELAY_IMM Command  
Description: Delay the execution by a specified time  
Assembly command: DELAY_IMM <Delay>  
Delay = delay time in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between 0-63.  
Delay value is be rounded to the nearest achievable time based on the current step size. Current step size is  
based on the default NVM setting or a SET_DELAY value from a previous command in the same sequence.  
Assembler reports an error if the step size is too large or too small to meet the delay.  
Examples:  
DELAY_IMM 100 µs Delay execution by 100 µs  
DELAY_IMM 10 ms Delay execution by 10 ms  
DELAY_IMM 8 Delay execution by 8 ticks of the current PFSM time step  
8.4.1.2.1.13 DELAY_SREG Command  
Description: Delay the execution by a time value stored in the specified scratch register.  
Assembly command: DELAY_SREG <Register>  
Register can be R0, R1, R2, or R3.  
Examples:  
DELAY_SREG R0 Delay execution by the time value stored in scratch register0  
8.4.1.2.1.14 TRIG_SET Command  
Description: Set a trigger destination address for a given input signal or condition. These commands must be  
defined at the beginning of PFSM configuration memory.  
Assembly  
command:  
TRIG_SET  
[DEST=]<Destination>  
[ID=]<Trig_ID>  
[SEL=]<Trig_sel>  
[TYPE=]<Trig_type> [IMM=]<IMM> [EXT=]<Memory space>  
'DEST=', 'ID=', 'SEL='. 'TYPE=', 'IMM=', and 'EXT=' are options. When included, the parameters can be in any  
order.  
Destination is the label where this trigger starts executing.  
Trig_ID is the ID of the hardware trigger module to be configured (value range 0-27). They must be defined in  
numeric order based on the priority of the trigger.  
Copyright © 2022 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Trig_Sel is the 'Trigger Name' from the 8-15. This 'Trigger Name' is the trigger signal to be associated with the  
specified TRIG_ID.  
Trig_type = LOW, HIGH, RISE, or FALL.  
IMM can be either '0' or '1'. = '0' if the trigger is not activated until the END command of a given task; '1' if the  
trigger is activated immediately and can abort a sequence.  
REENTRANT can be either '0' or '1'. '1' permits a trigger to return to the current state, that allows a self-  
branching trigger to execute the current sequence again.  
Memory space can be either '0' or '1'. '0' indicates the destination address is in the PFSM memory space. '1'  
indicates the destination address is external and represents a FSM state ID.  
Examples:  
TRIG_SET seq1 20 GPIO_1 LOW 0 0 Set trigger 20 to be GPIO_1=Low, not immediate. When triggered,  
start executing at seq1label.  
TRIG_SET DEST=seq2 ID=15 SEL=WD_ERROR TYPE=RISE IMM=0 EXT=0 Set trigger 15 to be rising  
WD_ERROR trigger, not immediate. When triggered, start executing at seq2label.  
8.4.1.2.1.15 TRIG_MASK Command  
Description: Sets a trigger mask that determines which triggers are active. Setting a 0enables the trigger,  
setting a 1disables (masks) the trigger.  
Assembly command: TRIG_MASK <Mask value>  
Mask Value = 28-bit mask in any literal integer format (decimal, hex, and so forth).  
Examples:  
TRIG_MASK 0x5FF82F0 Set the trigger mask to 0x5FF82F0  
8.4.1.2.1.16 END Command  
8-14 shows the format of the END commands.  
8-14. END Command Format  
Bit[3:0]  
CMD  
4 bits  
Description: Marks the final instruction in a sequential task  
Fields:  
CMD: Command opcode (0xC)  
Assembly command: END  
8.4.1.2.2 Configuration Memory Organization and Sequence Execution  
The configuration memory is loaded from NVM into an SRAM. 8-38 shows an example configuration memory  
with only two configured sequences.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
pfsm_start:  
TRIG_SET DEST=sequence_name1 ID=0 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name2 ID=1 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name3 ID=2 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name4 ID=4 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name5 ID=4 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
……  
TRIG_MASK 0xFFFFFF0  
END  
sequence_name1  
These TRIG_SET instructions are used to  
define the trigger types which initiates each  
power state sequence. There are a total of  
28 TRIG_SET available for each PMIC. TYPE  
parameter defines the type of trigger as:  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
DELAY_IMM delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
TRIG_MASK 0xFC00EDF  
END  
……  
sequence_name4  
High: active high (level sensitive)  
Low: active low (level sensitive)  
Rise: active high (edge sensitive)  
Fall: active low (edge sensitive)  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
DELAY_IMM delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
DELAY_IMM delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
TRIG_MASK 0xFEF6EDC  
END  
8-38. Configuration Memory Script Example  
As soon as the PMIC state reaches the mission states, it starts reading from the configuration memory until it  
hits the first END command. Setting up the triggers (1-28) must be the first section of the configuration memory,  
as well as the first set of trigger configurations. The trigger configurations are read and mapped to an internal  
lookup table that contains the starting address associated with each trigger in the configuration memory. If the  
trigger destination is an FFSM state then the address contains the fixed state value. After the trigger  
configurations are read and mapped into the SRAM, these triggers control the execution flow of the state  
transitions. The signal source of each trigger is listed under 8-15.  
When a trigger or multiple triggers are activated, the PFSM execution engine looks up the starting address  
associated with the highest priority unmasked trigger, and starts executing commands until it hits an END  
command. The last commands before END statement is generally the TRIG_MASK command, which directs the  
PFSM to a new set of unmasked trigger configurations, and the trigger with the highest priority in the new set is  
serviced next. Trigger priority is determined by the Trigger ID associated with each trigger. The priority of the  
trigger decreases as the associated trigger ID increases. As a result, the critical error triggers are usually located  
at the lowest trigger IDs.  
The TRIG_SET commands specify if a trigger is immediate or non-immediate. Immediate triggers are serviced  
immediately, which involves branching from the current sequence of commands to reach a new target  
destination. The non-immediate triggers are accumulated and serviced in the order of priority through the  
execution of each given sequence until the END command in reached. Therefore, the trigger ID assignment for  
each trigger can be arranged to produce the desired PFSM behavior.  
The TRIG_MASK command determines which triggers are active at the end of each sequence, and is usually  
placed just before the END instruction. The TRIG_MASK takes a 28 bit input to allow any combination of triggers  
to be enabled with a single command. Through the definition of the active triggers after each sequence  
execution the TRIG_MASK command can be conceptualized as establishing a power state.  
The above sequence of waiting for triggers and executing the sequence associated with an activated trigger is  
the normal operating condition of the PFSM execution engine when the PMIC is in the MISSION state. The  
Copyright © 2022 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
FFSM state machine takes over control from the execution engine each time an event occurs that requires a  
transition from the MISSION state of the PMIC to a fixed device state.  
8-15. PFSM Trigger Selections  
Trigger Name  
Trigger Source  
An error event causes one of the triggers defined in the FSM_TRIG_SEL_1/2 register to activate, and  
the intended action for the activated trigger is to immediate shutdown the device  
IMMEDIATE_SHUTDOWN  
MCU_POWER_ERROR  
ORDERLY_SHUTDOWN  
Output failure detection from a regulator which is assigned to the MCU rail group (x_GRP_SEL = '01')  
An event which causes MODERATE_ERR_INT = '1'  
nPWRON long-press event when NPOWRON_SEL = '01', or ENABLE = '0' when NPOWERON_SEL =  
'00'  
FORCE_STANDBY  
SPMI_WD_BIST_DONE  
ESM_MCU_ERROR  
WD_ERROR  
Completion of SPMI WatchDog BIST  
An event that causes ESM_MCU_RST_INT  
An event that causes WD_RST_INT  
SOC_POWER_ERROR  
ESM_SOC_ERROR  
Output failure detection from a regulator which is assigned to the SOC rail group (x_GRP_SEL = '10')  
An event that causes ESM_SOC_RST_INT  
NSLEEP2 and NSLEEP1 = '11'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.1.2.4.3  
A
WKUP1  
A rising or falling edge detection on a GPIO pin that is configured as WKUP1 or LP_WKUP1  
A valid On-Request detection when STARTUP_DEST = '11'  
SU_ACTIVE  
NSLEEP2 and NSLEEP1 = '10'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.1.2.4.3  
B
WKUP2  
A rising or falling edge detection on a GPIO pin that is configured as WKUP2 or LP_WKUP2  
A valid On-Request detection when STARTUP_DEST = '10'  
SU_MCU_ONLY  
NSLEEP2 and NSLEEP1 = '01', More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.1.2.4.3  
C
D
NSLEEP2 and NSLEEP1 = '00'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.1.2.4.3  
SU_STANDBY  
SU_X  
A valid On-Request detection when STARTUP_DEST = '00'  
A valid On-Request detection when STARTUP_DEST = '01'  
PFSM WAIT command condition timed out. More information regarding the WAIT command can be  
found under 8.4.1.2.1.11  
WAIT_TIMEOUT  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
I2C_0  
Input detection at GPIO1 pin  
Input detection at GPIO2 pin  
Input detection at GPIO3 pin  
Input detection at GPIO4 pin  
Input detection at GPIO5 pin  
Input detection at GPIO6 pin  
Input detection at GPIO7 pin  
Input detection at GPIO8 pin  
Input detection at GPIO9 pin  
Input detection at GPIO10 pin  
Input detection at GPIO11 pin  
Input detection of TRIGGER_I2C_0 bit  
Input detection of TRIGGER_I2C_1 bit  
Input detection of TRIGGER_I2C_2 bit  
Input detection of TRIGGER_I2C_3 bit  
Input detection of TRIGGER_I2C_4 bit  
Input detection of TRIGGER_I2C_5 bit  
Input detection of TRIGGER_I2C_6 bit  
I2C_1  
I2C_2  
I2C_3  
I2C_4  
I2C_5  
I2C_6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-15. PFSM Trigger Selections (continued)  
Trigger Name  
Trigger Source  
I2C_7  
Input detection of TRIGGER_I2C_7 bit  
SREG0_0  
SREG0_1  
SREG0_2  
SREG0_3  
SREG0_4  
SREG0_5  
SREG0_6  
SREG0_7  
0
Input detection of SCRATCH_PAD_REG_0 bit 0  
Input detection of SCRATCH_PAD_REG_0 bit 1  
Input detection of SCRATCH_PAD_REG_0 bit 2  
Input detection of SCRATCH_PAD_REG_0 bit 3  
Input detection of SCRATCH_PAD_REG_0 bit 4  
Input detection of SCRATCH_PAD_REG_0 bit 5  
Input detection of SCRATCH_PAD_REG_0 bit 6  
Input detection of SCRATCH_PAD_REG_0 bit 7  
Always '0'  
1
Always '1'  
Copyright © 2022 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4.1.2.3 Mission State Configuration  
The Mission States portion of the FSM engine manages the sequencing of power rails and external outputs in  
the user defined states. The rest of Device State Machine the 8-39 is used as an example state machine that  
is defined through the configuration memory using the configuration FSM instructions.  
To LP_STANDBY  
To Safe Recovery  
State  
State  
Severe or  
Moderate PFSM  
Errors  
From any  
Operation States  
LP_STAND  
=1  
BY_SEL  
Immediate or Orderly  
Shutdown Condition  
Detected  
Valid On Request and  
STANDBY  
STARTUP_DEST[1:0] = 0x00  
Valid On Request and  
OFF request  
STARTUP_DEST[1:0] = 0x03  
Warm Reset triggered by  
ESM or WDOG error  
Valid On Request and  
STARTUP_DEST[1:0] = 0x02  
OFF request  
ACTIVE  
OFF request  
WKUP1 0W1 or  
NSLEEP1  
NSLEEP2&NSLEEP1  
11W10  
0W1  
NSLEEP2  
1:0  
WKUP1 0W 1 or  
NSLEEP2&NSLEEP1  
00W11  
MCU ONLY  
WKUP2 0W 1 or  
NSLEEP2&NSLEEP1  
00W10  
NSLEEP2  
1:0  
Warm Reset triggered by  
ESM or WDOG error  
DEEP SLEEP  
/S2R  
8-39. Example of a Mission State-Machine  
Each power state (light blue bubbles in 8-39) defines the ON or OFF state and the sequencing timing of the  
external regulators and GPIO outputs. This example defines 4 power states: STANDBY, ACTIVE, MCU ONLY,  
and DEEP_SLEEP/S2R states. The priority order of these states is as follows:  
1. ACTIVE  
2. MCU ONLY  
3. DEEP SLEEP/S2R  
4. STANDBY  
The transitions between each power state is determined by the trigger signals source pre-selected from 8-15.  
These triggers are then placed in the order of priority through the trigger ID assignment of each trigger source.  
The critical error triggers are placed first, some specified as immediate triggers that can interrupt an on-going  
sequence. The non-error triggers, which are used to enable state transitions during normal device operation, are  
then placed according to the priority order of the state the device is transitioning to. 8-16 list the trigger signal  
sources, in the order of priority, used to define the power states and transitions of the example mission state  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
machine shown in 8-39. This table also helps to determine which triggers must be masked by the  
TRIG_MASK command upon arriving a pre-defined power state to produce the desired PFSM behavior.  
8-16. List of Trigger Used in Example Mission State Machine  
Trigger ID  
Trigger Masked In Each User Defined Power State  
Trigger Signal  
State Transitions  
DEEP  
SLEEP / S2R  
STANDBY  
ACTIVE  
MCU ONLY  
0
1
2
3
IMMEDIATE_SHUTDOWN (1)  
MCU_POWER_ERROR (1)  
ORDERLY_SHUTDOWN (1)  
TRIGGER_FORCE_STANDBY  
From any state to SAFE  
RECOVERY  
From any state to SAFE  
RECOVERY  
From any state to SAFE  
RECOVERY  
From any state to  
STANDBY or  
Masked  
Masked  
Masked  
LP_STANDBY  
4
5
6
WD_ERROR  
Perform warm reset of all  
power rails and return to  
ACTIVE  
Masked  
Masked  
Masked  
Masked  
ESM_MCU_ERROR  
ESM_SOC_ERROR  
Perform warm reset of all  
power rails and return to  
ACTIVE  
Perform warm reset of  
power rails in SOC  
domain and return to  
ACTIVE  
Masked  
Masked  
Masked  
7
8
WD_ERROR  
Perform warm reset of all  
power rails and return to  
MCU ONLY  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
ESM_MCU_ERROR  
Perform warm reset of all  
power rails and return to  
MCU ONLY  
9
SOC_POWER_ERROR  
ACTIVE to MCU ONLY  
Start RUNTIME_BIST  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
10  
11  
TRIGGER _I2C_1 (self-cleared)  
TRIGGER_I2C_2 (self-cleared)  
Enable I2C CRC  
Function  
Masked  
Masked  
Masked  
12  
13  
14  
TRIGGER_SU_ACTIVE  
TRIGGER_WKUP1  
STANDBY to ACTIVE  
Any State to ACTIVE  
TRIGGER_A (NSLEEP2&NSLEEP1 MCU ONLY or DEEP  
= '11')  
Masked  
SLEEP/S2R to ACTIVE  
15  
16  
TRIGGER_SU_MCU_ONLY  
TRIGGER_WKUP2  
STANDBY to MCU ONLY  
Masked  
Masked  
Masked  
STANDBY or DEEP  
SLEEP/S2R to MCU  
ONLY  
17  
18  
TRIGGER_B (NSLEEP2&NSLEEP1 ACTIVE or DEEP  
= '10')  
SLEEP/S2R to MCU  
ONLY  
Masked  
TRIGGER_D or TRIGGER_C  
(NSLEEP2 = '0' )  
ACTIVE or MCU ONLY  
to DEEP SLEEP/S2R  
Masked  
Masked  
Mask  
Masked  
Masked  
Masked  
19  
20  
TRIGGER_I2C_0 (self-cleared)  
Always '1' (2)  
Any state to STANDBY  
STANDBY to SAFE  
RECOVERY  
Masked  
Masked  
21  
22  
23  
24  
Not Used  
Mask  
Mask  
Mask  
Mask  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Not Used  
Not Used  
Not Used  
Copyright © 2022 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Trigger ID  
8-16. List of Trigger Used in Example Mission State Machine (continued)  
Trigger Masked In Each User Defined Power State  
Trigger Signal  
State Transitions  
DEEP  
STANDBY  
ACTIVE  
MCU ONLY  
SLEEP / S2R  
Masked  
25  
26  
27  
Not Used  
Not Used  
Not Used  
Mask  
Mask  
Mask  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
28-bit TRIG_MASK Value in Hex format: 0xFFE4FF8 0xFF18180  
0xFF01270  
0xFFC9FF0  
(1) This is an immediate trigger.  
(2) When an error occurs, which requires the device to enter directly to the SAFE RECOVERY state, the mask for this trigger must be  
removed while all other non-immediate triggers are masked. The device exits the mission states and the FFSM state machine takes  
over control of the device power states once this trigger is executed.  
8.4.1.2.4 Pre-Configured Hardware Transitions  
There are some pre-defined trigger sources, such as on-requests and off-requests, that are constructed with the  
combination of hardware input signals and register bits settings. This section provides more detail to these pre-  
defined trigger sources and shows how they can be utilized in the PFSM configuration to initiate state to state  
transitions.  
8.4.1.2.4.1 ON Requests  
ON requests are used to switch on the device, which then transitions the device from the STANDBY or the  
LP_STANDBY to the state specified by STARTUP_DEST[1:0].  
After the device arrives at the corresponding STARTUP_DEST[1:0] operation state, the MCU must setup the  
NSLEEP1 and NSLEEP2 signals accordingly before clearing the STARTUP_INT interrupt. Once the interrupt is  
cleared, the device stays or moves to the next state corresponding to the NSLEEP signals state assignment as  
specified in 8-20.  
8-17 lists the available ON requests.  
8-17. ON Requests  
EVENT  
MASKABLE  
COMMENT  
Edge sensitive  
Level sensitive  
DEBOUNCE  
50 ms  
nPWRON (pin)  
ENABLE (pin)  
Yes  
Yes  
8 µs  
VCCA > VCCA_UV and FSD  
unmasked  
First Supply Detection (FSD)  
Yes  
N/A  
RTC ALARM Interrupt  
RTC TIMER Interrupt  
Yes  
Yes  
Yes  
N/A  
N/A  
8 µs  
WKUP1 or WKUP2 Detection  
Edge sensitive  
Edge sensitive  
LP_WKUP1 or LP_WKUP2  
Detection  
Yes  
N/A  
Recover from system errors  
which caused immediate or  
orderly shutdown of the  
device  
Recovery from Immediate and  
Orderly Shutdown  
No  
N/A  
If one of the events listed in 8-17 occurs, then the event powers on the device unless one of the gating  
conditions listed in 8-18 is present.  
8-18. ON Requests Gating Conditions  
EVENT  
MASKABLE  
COMMENT  
VCCA > VCCA_OVP Device stays in SAFE RECOVERY until VCCA  
< VCCA_OVP  
VCCA_OVP (event)  
No  
VCCA_UVLO (event)  
VINT_OVP (event)  
No  
No  
VCCA < VCCA_UVLO  
LDOVINT > 1.98 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TPS6593-Q1  
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-18. ON Requests Gating Conditions (continued)  
EVENT  
MASKABLE  
COMMENT  
VINT_UVLO (event)  
No  
LDOVINT < 1.62 V  
Device stays in SAFE RECOVERY until temperature decreases  
below TWARN level  
TSD (event)  
No  
The NPWRON_SEL NVM register bit determines whether the nPWRON/ENABLE pin is treated as a power on  
press button or a level sensitive enable switch. When this pin is configured as the nPWRON button, a short  
button press detection is latched internally as a device enable signal until the NPWRON_START_INT is cleared,  
or a long press key event is detected. The short button press detection occurs when an falling edge is detected  
at the nPWRON pin. When the NPWRON_START_MASK bit is set to '1', the device does no longer react to the  
changing state of the pin as the nPWRON press button.  
The nPWRON/ENABLE pin is a level sensitive pin when it is configured as an ENABLE pin, and an assertion  
enables the device until the pin is released. When the ENABLE_MASK bit is set to '1', the device does no longer  
react to the changing state of the pin as the ENABLE switch.  
8.4.1.2.4.2 OFF Requests  
An OFF request is used to orderly switch off the device. OFF requests initiate transition from any other mission  
state to the STANDBY state or the LP_STANDBY state depending on the setting of the LP_STANDBY_SEL bit.  
8-19 lists the conditions to generate the OFF requests and the corresponding destination state.  
8-19. OFF Requests  
LP_STANDBY_SEL BIT  
EVENT  
DEBOUNCE  
DESTINATION STATE  
SETTING  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
STANDBY  
LP_STANDBY  
STANDBY  
nPWRON (pin)  
(long press key event)  
8 s  
ENABLE (pin)  
8 µs  
NA  
LP_STANDBY  
STANDBY  
I2C_TRIGGER_0  
LP_STANDBY  
The long press key event occurs when the nPWRON pin stays low for longer than tLPK_TIME while the device is in  
a mission state.  
When the nPWRON or ENABLE pin is used as the OFF request, the device wakes up from the STANDBY or the  
LP_STANDBY state through the ON request initiated by the same pin. The NPWRON_START_MASK or the  
ENABLE_MASK must remain low in this case to allow the detection of the ON request initiated by the pin. If the  
device needs to enter the LP_STANDBY state through the OFF request, it is important that the state of the  
nPWRON or ENABLE pin must remain the same until the state transition is completed. Failure to do so may  
result in unsuccessful wake-up from the LP_STANDBY state when the pin re-initiates On request.  
Using the I2C_TRIGGER_0 bit as the OFF request enables the device to wake up from the STANDBY or the  
LP_STANDBY states through the detection of LP_WKUPn/WKUPn pins, as well as RTC alarm or timer  
interrupts. To enable this feature, the device must set the I2C_TRIGGER_0 bit to '1' while the NSLEEPn signals  
are masked, and the ON request (initialized by the nPWRON or ENABLE pins) must remain active. Also the  
interrupt bits ENABLE_INT, FSD_INT and the GPIOx_INT bits (for the GPIOx pins assigned as WKUP1 or  
WKUP2) must be cleared before setting the I2C_TRIGGER_0 bit to '1'.  
8.4.1.2.4.3 NSLEEP1 and NSLEEP2 Functions  
The SLEEP requests are activated through the assertion of nSLEEP1 or nSLEEP2 pins that are the secondary  
functions of the 11 GPIO pins. These pins can be selected through GPIO configuration using the GPIOx_SEL  
register bits. If the nSLEEP1 or nSLEEP2 pins are not available, the NSLEEP1B and NSLEEP2B register bits  
can be configured in place for their functions. The input of nSLEEP1 pin and the state of the NSLEEP1B register  
bit are combined to create the NSLEEP1 signal through an OR function. Similarly for the input of the nSLEEP2  
pin and the NSLEEP2B register bit as they are combined to create the NSLEEP2 signal.  
Copyright © 2022 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
A 1 0 logic level transition of the NSLEEP signal generates a sleep request, while a 0 1 logic level  
transition reverses the sleep request in the example PFSM from 8-39. When a NSLEEPn signal transitions  
from 1 0, it generates a sleep request to go from a higher power state to a lower power state. When the signal  
transitions from 0 1, it reverses the sleep request and returns the device to the higher power state.  
The NSLEEP1 signal is designed to control the SoC supply rails. The NSLEEP2 signal is designed to control the  
MCU supply rails. When NSLEEP1 signal changes from 1 0, depending on the state of NSLEEP2, the  
TPS6593-Q1 device exits ACTIVE state and enters either the MCU ONLY or the S2R states. When NSLEEP2  
signal changes from 1 0, the device enters the S2R state regardless the state of NSLEEP1.  
When the NSLEEP2 input signal changes from 0 1, the MCU supply rails are enabled and the device exits  
S2R state. Depending on the state of NSLEEP1 signal, the device enters either the MCU ONLY or the ACTIVE  
state. In order for the system to function correctly, the MCU rails must be enabled when the NSLEEP1 input  
signal changes from 0 1, which enables the SOC supply rails. NSLEEP1 0 1 transition is ignored if  
NSLEEP2 is 0.  
The NSLEEPn_MASK bit can be used to mask the sleep request associated with the corresponding NSLEEPn  
signal. When the NSLEEPn_MASK = 1, the corresponding NSLEEPn signal is ignored. 8-20 shows how the  
combination of the NSLEEPn signals and NSLEEPn_MASK bits creates triggers A/B/C/D to the FSM to control  
the power state of the device.  
The states of the resources during ACTIVE, SLEEP, and DEEP SLEEP/S2R states are defined in the  
LDOn_CTRL and BUCKn_CTRL registers. For each resource, a transition to the MCU ONLY or the DEEP  
SLEEP/S2R states is controlled by the FSM when the resource is associated to the SLEEP or DEEP  
SLEEP/S2R states.  
8-20 shows the corresponding state assignment based on the state of the NSLEEPn and their corresponding  
mask signals using the example PFSM from 8-39.  
8-20. NSLEEPn Transitions and Mission State Assignments  
Current State  
NSLEEP1  
NSLEEP2  
NSLEEP1 MASK NSLEEP2 MASK  
Trigger to FSM  
TRIGGER B  
TRIGGER A  
TRIGGER A  
Next State  
MCU ONLY  
ACTIVE  
DEEP SLEEP/S2R  
DEEP SLEEP/S2R  
DEEP SLEEP/S2R  
0
0
0
1
0
0
0
0
1
0 1  
0 1  
0 1  
Don't care  
ACTIVE  
0 1  
DEEP SLEEP/S2R  
or MCU ONLY  
Don't care  
0 1  
TRIGGER A  
TRIGGER A  
TRIGGER D  
ACTIVE  
ACTIVE  
MCU ONLY  
MCU ONLY  
1
0
0
0
0
0 1  
0
DEEP SLEEP  
or S2R  
1 0  
MCU ONLY  
Don't care  
1
0
DEEP SLEEP  
or S2R  
1 0  
TRIGGER D  
TRIGGER B  
TRIGGER D  
ACTIVE  
ACTIVE  
1
0
0
0
0
MCU ONLY  
1 0  
1 0  
DEEP SLEEP  
or S2R  
1 0  
ACTIVE  
ACTIVE  
Don't care  
1
0
0
1
DEEP SLEEP  
or S2R  
1 0  
TRIGGER D  
TRIGGER B  
Don't care  
MCU ONLY  
1 0  
8.4.1.2.4.4 WKUP1 and WKUP2 Functions  
The WKUP1 and WKUP2 functions are activated through the edge detection on all GPIO pins. Any one of these  
GPIO pins when configured as an input pin can be configured to wake up the device by setting GPIOn_SEL bit  
to select the WKUP1 or WKUP2 functions. In the example PFSM depicted in 8-39, when a GPIO pin is  
configured as a WKUP1 pin, a rising or falling edge detected at the input of this pin (configurable by the  
GPIOn_FALL_MASK and the GPIOn_RISE_MASK bits) wakes up the device to the ACTIVE state. Likewise if a  
GPIO pin is configured as a WKUP2 pin, a detected edge wakes up the device to the MCU ONLY state. If  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
multiple edge detections of WKUP signals occur simultaneous, the device goes to the state in the following  
priority order:  
1. ACTIVE  
2. MCU ONLY  
When a valid edge is detected at a WKUP pin, the nINT pin generates an interrupt to signal the MCU of the  
wake-up event, and the GPIOx_INT interrupt bit is set. The wake request remains active until the GPIOx_INT bit  
is cleared by the MCU. While the wake request is executing, the device does not react to sleep requests to enter  
a lower power state until the corresponding GPIOx_INT interrupt bit is cleared to cancel the wake request. After  
the wake request is canceled, the device returns to the state indicated by the NSLEEP1 and NSLEEP2 signals  
as shown in 8-20.  
8.4.1.2.4.5 LP_WKUP Pins for Waking Up from LP STANDBY  
The LP_WKUP functions are activated through the edge detection of LP_WKUP pins, configurable as secondary  
functions of GPIO3 and GPIO4. They are specially designed to wake the device up from the LP STANDBY state  
when a high speed wake-up signal is detected. Similar to the WKUP1 and WKUP2 pins, when GPIO3 or GPIO4  
pin is configured as an LP_WKUP1 pin, a rising or falling edge detected at the input of this pin (configurable by  
the GPIOn_FALL_MASK and the GPIOn_RISE_MASK bits) wakes up the device to the ACTIVE state. Likewise,  
if the pin is configured as an LP_WKUP2 pin, a detected edge wakes up the device to the MCU ONLY state. If  
multiple edge detections of LP_WKUP signals occur simultaneously, the device goes to the state in the following  
priority order:  
1. ACTIVE  
2. MCU ONLY  
备注  
Due to a digital control erratum in the device, the ENABLE_MASK/NPWRON_START_MASK bit must  
be set to '1' before the device enters LP_STANDBY state in order for the LP_WKUP2 pin to correctly  
wake up the device to the MCU_ONLY state.  
The TPS6593-Q1 device supports limited CAN wake-up capability through the LP_WKUP1/2 pins. When an  
input signal (without deglitch) with logic level transition from high-to-low or low-to-high with a minimum pulse  
width of tWK_PW_MIN is detected on the assigned LP_WKUP1/2 pins, the device wakes up asynchronously and  
executes the power up sequence. CAN-transceiver RXD- or INH-outputs can be connected to the LP_WKUP  
pin. If RXD-output is used, it is assumed that the transceiver RXD-pin IO is powered by the transceiver itself from  
an external supply when TPS6593-Q1 is in the LP_STANDBY state. If INH-signal is used it has to be scaled  
down to the recommenced GPIO input voltage level specified in the electrical characteristics table.  
In this PFSM example, the device can wake up from the LP_STANDBY state through the detection of LP_WKUP  
pins only if it enters the LP_STANDBY state through the TRIGGER_I2C_0 OFF request while the NSLEEPn  
signals are masked, and the on request initialized by the nPWRON/ENABLE pin remains active. Once a valid  
wake-up signal is detected at the LP_WKUP pin, it is handled as a WAKE request. The nINT pin generates an  
interrupt to signal the MCU of the wake-up event, and the corresponding GPIOx_INT interrupt bit is set. The  
wake request remains active until the interrupt bit is cleared by the MCU. 8-20 shows how the device returns  
to the state indicated by the NSLEEP1 and NSLEEP2 signals after the wake request is canceled.  
8-40 illustrates the valid wake-up signal at the LP_WKUP1/2 pins, and the generation and clearing of the  
internal wake-up signal.  
Copyright © 2022 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
> tWK_PW_MIN  
High Pulse Input at LP_WKUP pin  
(GPIO3 or GPIO4)  
(e.g. INH-signal)  
Wake Signal Latched  
on rising edge  
MCU clears the  
Wake interrupt  
> tWK_PW_MIN  
Low Pulse Input at LP_WKUP pin  
(GPIO3 or GPIO4)  
(e.g. RXD-signal)  
Wake Signal Latched  
on falling edge  
MCU clears the  
Wake interrupt  
8-40. CAN Wake-Up Timing Diagram  
8.4.1.3 Error Handling Operations  
The FSM engine of the TPS6593-Q1 device is designed to handle the following types of errors throughout the  
operation:  
Power Rail Output Error  
Boot BIST Error  
Runtime BIST Error  
Catastrophic Error  
Watchdog Error  
Error Signal Monitor (ESM) Error  
Warnings  
8.4.1.3.1 Power Rail Output Error  
A power rail output error occurs when an error condition is detected from the output rails of the device that are  
used to power the attached MCU or SoC. These errors include the following:  
Rails not reaching or maintaining within the power good voltage level threshold.  
A short condition that is detected at a regulator output.  
The load current that exceeds the forward current limit.  
The BUCKn_GRP_SEL, LDOn_GRP_SEL, and VCCA_GRP_SEL registers are used to configure the rail group  
for all of the Bucks, LDOs, and the voltage monitors that are available for external rails. The selectable rail  
groups are MCU rail group, SoC rail group, or other rail group. The TPS6593-Q1 device is designed to react  
differently when an error is detected from a power resource assigned to the different rail groups.  
8-37 shows how the SOC_RAIL_TRIG[1:0], MCU_RAIL_TRIG[1:0], and OTHER_RAIL_TRIG[1:0] registers  
are used as the Immediate Shutdown Trigger Mask, Orderly Shutdown Trigger Mask, MCU Power Error Trigger  
Mask, or the SoC Power Error Trigger Mask. The settings of these register bits determine the error handling  
sequence that the assigned groups of rails perform in case of an output error. The PFSM engine can be  
configured to execute the appropriate error handling sequence for the following error handling sequence options:  
immediate shutdown, orderly shutdown, MCU power error, or SOC power error. For example, if an immediate  
shutdown sequence is assigned to the MCU rail group through the MCU_RAIL_TRIG[1:0], any failure detected in  
this group of rails causes the IMMEDIATE_SHUTDOWN trigger to be executed. This trigger is expected to start  
the immediate shutdown sequence and cause the device to enter the SAFE RECOVERY state. The device  
immediately resets the attached MCU and SoC by driving the nRSTOUT and nRSTOUT_SoC (GPO1 or  
GPIO11) pins low. All of the power resources assigned to the MCU and SOC shut down immediately without a  
sequencing order. The nINT pin signals that an MCU_PWR_ERR_INT interrupt event has occurred and the  
EN_DRV pin is forced low. If the error is recoverable within the recovery time interval, the device increments the  
recovery count, returns to INIT state, and reattempts the power up sequence (if the recovery count has not  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
exceeded the counter threshold). If the recovery count has already exceeded the threshold, the device stays in  
the SAFE RECOVERY state until VCCA voltage is below the VCCA_UVLO threshold and the device is power  
cycled.  
The power resources assigned to the SoC rail group are typically assigned to the SOC power error handling  
sequence. In this PFSM example depicted in 8-39, when a power resource in this group is detected, the  
PFSM typically causes the device to execute the shutdown of all the resources assigned to the SoC rail group,  
and the device enters the MCU ONLY state. The device immediately resets the attached SoC by toggling the  
nRSTOUT_SoC (GPO1 or GPIO11) pin. The reset output to the MCU and the resources assigned to the MCU  
rail group remain unchanged. The EN_DRV pin also remains unchanged, and the nINT pin signals that an  
SOC_PWR_ERR_INT interrupt event has occurred. To recover from the MCU_ONLY state after a SOC power  
error, the MCU software must set NSLEEP1 signal to '0' while NSLEEP2 signal remains '1'. This action signals  
TPS6593-Q1 that MCU has acknowledged the SOC power error, and is ready to return to normal operation.  
MCU can then set the NSLEEP1 signal back to '1' for the device to return to ACTIVE state and reattempt the  
SoC power up. Refer to 8.4.1.2.4.3 for information regarding the setting of the NSLEEP1 and NSLEEP2  
signals.  
8.4.1.3.2 Catastrophic Error  
Catastrophic errors are errors that affect multiple power resources such as errors detected in supply voltage,  
LDOVINT supply for control logic, errors on internal clock signals, and device temperature passing the thermal  
shutdown threshold, error detected on the SPMI bus, or an error detected in the PFSM sequence.  
Following errors are grouped as severe errors:  
VCCA > OVP threshold  
Junction temperature > immediate shutdown level  
Error in PFSM Sequence  
For these above listed errors, depending on the setting of bits SEVERE_ERR_TRIG[1:0], an immediate or  
orderly shutdown condition is created. The PFSM executes the corresponding sequence for the  
IMMEDIATE_SHUTDOWN trigger or the ORDERLY_SHUTDOWN trigger and enters the SAFE RECOVERY  
state.  
Following errors are grouped as moderate errors:  
Junction temperature > orderly shutdown level  
BIST failure  
CRC error in register map  
Recovery counter exceeding the threshold value  
Error on SPMI bus  
Readback error on nRSTOUT pin or nINT pin  
For these above listed errors, depending on the setting of bits MODERATE_ERR_TRIG[1:0], an immediate or  
orderly shutdown condition is created. The PFSM executes the corresponding sequence for the  
IMMEDIATE_SHUTDOWN trigger or the ORDERLY_SHUTDOWN trigger and enters the SAFE RECOVERY  
state.  
For following errors, the device performs an immediate shutdown and resets all internal logic circuits:  
VCCA < UVLO threshold  
Error on LDOVINT supply  
Errors on internal clock signals  
Unrecoverable CRC error in the SRAM memory of the PFSM  
For all of the above listed errors, the device resets the attached MCU and SoC by driving the nRSTOUT and the  
GPIO pin used as nRSTOUT_SoC (GPO1 or GPIO11) pins low. All of the power resources assigned to the MCU  
and SOC are shut down. The nINT pin is driven low to signal an interrupt event has occurred, and the EN_DRV  
pin is forced low.  
Copyright © 2022 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4.1.3.3 Watchdog (WDOG) Error  
Watchdog (WDOG) describes details about the Watchdog (WDOG) errors detection mechanisms.  
8.4.1.3.4 Warnings  
Warning are non-catastrophic errors. When such an error occurs while the device is in the operating states, the  
device detects the error and handles the error through the interrupt handler. These are errors such as thermal  
warnings, I2C, or SPI communication errors, or power resource current limit detection while the output voltage  
still maintains within the power good threshold. When these errors occur, the nINT pin is driven low to signal an  
interrupt event has occurred. The device remains in the operation state and the state of the EN_DRV pin, the  
power resources, and the reset outputs remain unchanged.  
The power resource current limit detection can, by setting bit EN_ILIM_FSM_CTRL=1, be configured such that it  
is handled as a Power Rail Output Error as described in 8.4.1.3.1.  
8.4.1.4 Device Start-up Timing  
8-41 shows the timing diagram of the TPS6593-Q1 after the first supply detection.  
VCCA  
VCCA_UVLO  
tINIT_REF_CLK_LDO  
Reference Block &  
System Clock Ready  
VINT & VRTC  
tINIT_NVM_ANALOG  
NVM  
Ini aliza on  
tBOOT_BIST  
Boot BIST  
Comple on  
Valid On Request  
Power Sequence Time  
Power Up Rail  
Sequencing  
Reset delay  
nRSTOUT  
NO SUPPLY  
INIT  
BOOT BIST  
STANDBY  
ACTIVE  
8-41. Device Start-up Timing Diagram  
tINIT_REFCLK_LDO is the start-up time for the reference block. tINIT_NVM_ANALOG is the time for the device to load the  
default values of the NVM configurable registers from the NVM memory, and the start-up time for the analog  
circuits in the device. tINIT_REFCLK_LDO and tINIT_NVM_ANALOG are defined in the electrical characteristics table.  
BOOT_BIST is the sum of tLBISTrun (which are defined in the electrical characterization tables) and a less than 60us  
time-interval needed for the Cyclic Redundany Check on the register map and the SRAM.  
The Power Sequence time is the total time for the device to complete the power up sequence. Please refer to 节  
8.4.1.5 for more details.  
The reset delay time is a configurable wait time for the nRSTOUT and the nRSTOUT_SoC release after the  
power up sequence is completed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4.1.5 Power Sequences  
A power sequence is an automatic preconfigured sequence the TPS6593-Q1 device applies to its resources,  
which include the states of the BUCKs, LDOs, 32-kHz clock and the GPIO output signals. For a detailed  
description of the GPIOs signals, please refer to General-Purpose I/Os (GPIO Pins).  
8-42 shows an example of a power up transition followed by a power down transition. The power up  
sequence is triggered through a valid on request, and the power down sequence is trigger by a valid off request.  
The resources controlled (for this example) are: BUCK3, LDO1, BUCK2, LDO2, GPIO1, LDO4, and LDO3. The  
time between each resource enable and disable (TinstX) is also part of the preconfigured sequence definition.  
When a resource is not assigned to any power sequence, it remains in off mode. The MCU can enable and  
configure this resource independently when the power sequence completes.  
Power Up Sequence  
Power Down Sequence  
Valid On  
Request  
X
X
Valid Off  
Request  
X
X
BUCK3  
LDO1  
t(inst16)  
t(inst1)  
t(inst15)  
t(inst14)  
t(inst2)  
BUCK2  
t(inst3)  
t(inst4)  
t(inst5)  
t(inst6)  
LDO2  
REGEN1  
LDO4  
t(inst13)  
t(inst12)  
t(inst11)  
LDO3  
t(inst7)  
t(inst8)  
t(inst10)  
t(inst9)  
GPIO7  
nRSTOUT/  
nRSTOUT_SoC  
8-42. Power Sequence Example  
As the power sequences of the TPS6593-Q1 device are defined according to the processor requirements, the  
total time for the completion of the power sequence varies across various system definitions.  
8.4.1.6 First Supply Detection  
The TPS6593-Q1 device can be configured to automatically start up from a first supply-detection (FSD) event  
detection. This feature is enabled by setting the FSD_MASK register bit to '0', and setting the  
NPWRON_SEL[1:0] registers bits to '10' or '11' to mask the functionality of the nPWRON/ENABLE pin. When the  
device is powered up from the NO SUPPLY state, the FSD detection is validated after the NVM default for this  
feature is loaded into the device memory.  
When the FSD feature is enabled, the PMIC immediately powers up from the NO SUPPLY state to an operation  
state, configured by the STARTUP_DEST[1:0] bits when VCCA > VCCA_UV, while VCCA_UV gating is  
performed, and only when VCCA voltage monitoring is enabled (VCCA_VMON_EN = 1). After the device arrives  
the corresponding STARTUP_DEST[1:0] operation state, the MCU must setup the NSLEEP1 and NSLEEP2  
signals accordingly before clearing the FSD_INT interrupt. Once the interrupt is cleared, the device either stays  
in the current state or moves to the destination state according to the state of the NSLEEP1/2 signals as  
specified in 8-20.  
8.4.1.7 Register Power Domains and Reset Levels  
The TPS6593-Q1 registers are defined by the following categories:  
LDOVINT registers  
Copyright © 2022 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
LDOVRTC registers (registers in RTC domain)  
LDOVINT  
registers  
The LDOVINT registers are powered by the internal LDOVINT, and retain their values until the  
device enters the LP_STANDBY state or the BACKUP state after the device was fully powered up  
and in operation. When this occurs, LDOVINT is powered off, all LDOVINT registers (including  
the VSET registers which store the output voltage levels for all of the external power rails) are  
reset. As the device re-enters the INIT state from a wake up signal or an On-request, the  
registers powered by the LDOVINT are re-written with the default values from NVM (Non-Volatile  
Memory). All registers in the device, except the LDOVRTC registers (registers in RTC domain),  
are powered by LDOVINT.  
LDOVRTC The LDOVRTC registers (registers in RTC domain) retain their values until a Power-On-Reset  
registers (POR) occurs. POR occurs when the device loses supply power and enters the NO SUPPLY  
(registers in state. When this occurs, LDOVRTC is powered off, and all LDOVRTC registers are reset.  
RTC  
domain)  
Following are the LDOVRTC registers:  
All RTC registers  
RTC and Crystal Oscillator bits  
Status registers for the following events: TSD and RTC reset  
Control registers for PWRON/ENABLE, GPIO3, and GPIO4 pins (for wake signal monitor  
during LP_STANDBY state)  
Following interrupt registers:  
FSD_INT  
RECOV_CNT_INT  
TSD_ORD_INT  
TSD_IMM_INT  
PFSM_ERR_INT  
VCCA_OVP_INT  
ESM_MCU_RST_INT  
ESM_SOC_RST_INT  
WD_RST_INT  
WD_LONGWIN_TIMEOUT_INT  
NPWRON_LONG_INT  
8.4.2 Multi-PMIC Synchronization  
A multi-PMIC synchronization scheme is implemented in the TPS6593-Q1 device to synchronize the power state  
changes with other PMIC devices. This feature consolidates and simplifies the IO control signals required  
between the application processor or the microcontroller and multiple PMICs in the system. The control interface  
consists of an SPMI protocol that communicates the next power state information from the primary PMIC to up to  
5 secondary PMICs, and receives feedback signal from the secondary PMICs to indicate any error condition or  
power state information. 8-43 is the block diagram of the power state synchronization scheme. The primary  
PMIC in this block diagram is responsible for broadcasting the synchronous system power state data, and  
processing the error feedback signals from the secondary PMICs. The primary PMIC is the controller device on  
the SPMI bus, and the secondary PMICs are the target devices on the SPMI bus.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Synchronous-System Power-State Data  
Error Feedback  
Primary PMIC  
Secondary PMIC  
Secondary PMIC  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Power-State  
Sequencer  
Controller  
Power-State  
Sequencer  
Controller  
Power-State  
Power supply  
Sequencer Controller  
configuration  
STATE  
1
Exit Condition 1  
Signal list  
Internal condition list  
Error Conditions  
Timeout on PGOOD  
Thermal  
Current  
Voltage  
Power supply  
configuration  
Power supply  
configuration  
STATE  
1
Exit Condition  
Signal list  
Internal condition list  
1
STATE  
1
Exit Condition 1  
Signal list  
Internal condition list  
STATE_1  
Error Conditions  
Timeout on PGOOD  
Thermal  
Error Conditions  
Timeout on PGOOD  
Thermal  
...  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
Current  
Voltage  
Current  
Voltage  
STATE_1  
STATE_1  
Effective  
power  
state  
...  
...  
Effective  
power  
state  
Effective  
power  
state  
OFF  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE_2  
OFF  
OFF  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE_2  
STATE_2  
ERROR  
(SAFE STATE)  
ERROR  
(SAFE STATE)  
ERROR  
(SAFE STATE)  
STATE_3  
Controller for  
Output Power  
Supply Rails  
STATE_3  
STATE_3  
Controller for  
Output Power  
Supply Rails  
Controller for  
Output Power  
Supply Rails  
STATE_N  
STATE_N  
STATE_N  
Power  
supply  
error  
Power  
supply  
error  
Power  
supply  
error  
Signal Arbitration  
Logic  
ENABLE or WAKE  
signals from  
external hardware  
Power-State Control  
Signals such as:  
ACTIVE, SLEEP, RESET,  
ERROR, TRACKING  
Scalable Microprocessor and System on Chip  
8-43. Multi-PMIC Power State Synchronization Block Diagram  
In this scheme, each primary and secondary PMIC runs on its own system clock, and maintains its own register  
map. Each PMIC monitors its own activities and pulls down the open-drain output of nINT or PGOOD pin when  
errors are detected. The microprocessor must read the status bits from each PMIC device through the I2C or  
SPI interface to find out the source of the error that is reported.  
To synchronize the timing when entering and exiting from the LP_STANDBY state, the VOUT_LDOVINT of the  
TPS6593-Q1 device must be connected to the ENABLE input of the secondary PMICs, which are the target  
devices in the SPMI interface bus. 8-44 illustrates the pin connections between the primary, the secondary,  
and the application processor or the System-on-Chip.  
Copyright © 2022 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
VIO  
Secondary PMIC  
I2C_SCL  
I2C_SDA  
SDATA  
SCLK  
Interrupt  
Handler  
Power  
nINT  
Sequencer  
Power Good  
Monitor  
ENABLE  
PGOOD  
Secondary PMIC  
I2C_SCL  
I2C_SDA  
SDATA  
SCLK  
Power  
nINT  
Sequencer  
µProcessor  
&
PGOOD  
ENABLE  
System  
on  
Primary PMIC  
Chip  
I2C1_SCL  
I2C1_SDA  
VOUT_LDOVINT  
nPWRON/ENABLE  
nINT  
nERRORx  
nSLEEPx  
Power  
Sequencer  
GPIO  
nRSTOUTx  
WAKEn  
PG  
SCLK  
SDATA  
I2C2_SCL  
I2C2_SDA  
Q&A  
WDOG  
8-44. Multi-PMIC Pin Connections  
The power sequencer of the multiple PMICs are synchronized at the beginning of each power up and power  
down sequence; a variation in the sequence timing, however, is still possible due to the ±5% clock accuracy of  
the independent system clocks on the primary and secondary PMICs. The worst-case sequence timing variation  
from different PMIC rails is up to ±10% of the target delay time. 8-45 illustrates the creation of this timing  
variation between PMICs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
Primary PMIC  
System clock  
(+/-5% accuracy)  
...  
...  
...  
Primary PMIC  
Rail X  
Sequence delay between rails in Primary PMIC  
Primary PMIC  
Rail Y  
Secondary PMIC  
...  
System clock  
(+/-5% accuracy)  
Sequence delay between rails in secondary PMIC  
Secondary PMIC  
Rail Z  
Sequencing timing variation between PMIC rails  
8-45. Multi-PMIC Rail Sequencing Timing Variation  
8.4.2.1 SPMI Interface System Setup  
An SPMI interface in the TPS6593-Q1 device is utilized to communicate the power state transition across  
multiple PMICs in the system. The SPMI interface contains a controller block and a target block. There is only  
one PMIC, which is the primary PMIC, that acts as SPMI controller in any given system. As the SPMI controller it  
initiates SPMI interface BIST and executes periodic checking of the SPMI bus health.  
The primary PMIC has a controller-ID (CID)= 1. The target block of SPMI interface in the primary PMIC device is  
activated as well, in order to receive SPMI communication messages from the secondary PMICs. The primary  
PMIC has a target-ID (TID) = 0101.  
Each secondary PMIC on the SPMI network only has the target block of its SPMI interface enabled. There  
cannot be more than five secondary PMICs in the system. The target-IDs (TIDs) for the five secondary PMICs  
are:  
1st target device: 0011  
2nd target device: 1100  
3rd target device: 1001  
4th target device: 0110  
5th target device: 1010  
All devices in the SPMI network listen to the group target-ID (GTID): 1111. This address is used to communicate  
all power state transition information in broadcast mode to all connected devices on the SPMI bus.  
8.4.2.2 Transmission Protocol and CRC  
The communication between the devices on the network utilizes Extended Register Write command to GTID  
address 1111 with byte length of 2. Sequence format complies with MIPI SPMI 2.0 specification. First data frame  
carries the data payload of 5 bits and 3 filler bits.  
Communication over the SPMI interface may contain information regarding the power state transition or the  
unique TID of one or more target devices. In the case of power state information, the data payload contains 5  
bits of Trigger ID information and 3 trigger state bits. In the case of TID information, all 8 bits contain the TID of  
the target device.  
Second data frame carries 8 bits of CRC information. CRC polynomial used is X8 + X2 + X + 1. CRC is  
calculated over the SPMI command frame, the address frame, and the first data frame (which contains the  
payload and excludes the parity bits in these three frames).  
Copyright © 2022 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-46 shows the data format of the SPMI Extended Register Write Command.  
SCLK  
SDATA  
SA3  
SA2  
SA1  
SA0  
0
0
0
0
BC3  
BC2  
BC1  
BC0  
P
Extended register-write command frame  
SSC  
SCLK  
SDATA  
P
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
P
Register address (data frame) for first register  
SCLK  
SDATA  
P
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
First data frame  
... Intermediate Data Frames ...  
SCLK  
SDATA  
P
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
0
Last data frame  
Bus park ACK or Bus park  
NAK  
Signal driven by BOM or request-capable peripheral device  
(SCLK always driven by BOM only)  
Signal not driven; pulldown only.  
Response by peripheral devices  
For reference only  
8-46. SPMI Extended Register Write Command  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.4.2.2.1 Operation with Transmission Errors  
If the receiving device detects a parity or CRC error in the incoming sequence it responds with negative ACK/  
NACK per SPMI standard.  
If the transmitting device sees NACK response, it tries to resend the message as many times as indicated by  
SPMI_RETRY_LIMIT register bits. After that it considers the SPMI bus inoperable, sets SPMI_ERR_INT  
interrupt and goes to the safe recovery state and executes an orderly shutdown. Bus arbitration requests do not  
count as failed attempts if a target device loses bus arbitration. SPMI_RETRY_LIMIT counter is reset after each  
successful transmission by the device.  
If a target device has determined that SPMI does not work reliably it does not respond to any SPMI commands  
anymore until power-on-reset event has occurred. This "no-response" behavior is to prevent continued operation  
in a situation where SPMI is unreliable. If a target device does no longer respond to any SPMI command, the  
controller device on the SPMI bus detects a missing target device on the network during the periodic testing of  
SPMI bus. The target device then internally handles the SPMI error condition per error handling rules set for the  
device (in general executing an orderly shutdown). SPMI block signals to the device that SPMI bus error has  
occurred after the retry limit has been exceeded.  
8.4.2.2.2 Transmitted Information  
The SPMI bus is used to carry two types of information:  
PFSM Trigger ID between the SPMI controller and target devices  
TID from SPMI target devices to SPMI controller device  
The SPMI controller device reads the TID of the target devices periodically to check the health of the interface.  
Exchanging Trigger IDs for the power state transition is sufficient to keep the PFSMs of all the devices on the  
SPMI network in synchronization. Device interrupts explain reason for the power state transitions.  
8.4.2.3 SPMI Target Device Communication to SPMI Controller Device  
An SPMI target device communicates to the SPMI controller device and any other SPMI target devices, only if  
there is an internal error that is not SPMI related. The target device initiates the error communication using  
Arbitration Request with A-bit as defined in the SPMI 2.0 specification. SPMI 2.0 protocol manages the situation  
with multiple target devices requesting error communication at the same time, by using the target arbitration  
process as described in SPMI 2.0 specification. Once the SPMI target device wins the arbitration using the A-bit  
protocol, it performs an Extended Register Write command to Group Target ID (GTID) address 1111 by using the  
protocol described in 8.4.2.2 for communicating PFSM trigger ID.  
8.4.2.3.1 Incomplete Communication from SPMI Target Device to SPMI Controller Device  
In case the SPMI controller device detects an arbitration request on the SPMI interface, but the received  
sequence has an error or is incomplete, the SPMI controller device immediately performs the SPMI Built-In Self-  
Test (SPMI-BIST). If this SPMI-BIST fails, the SPMI controller device executes the error handling for the SPMI  
error. If the SPMI-BIST passes successfully, the SPMI controller device resumes normal operation.  
8.4.2.4 SPMI-BIST Overview  
The SPMI-BIST is performed during BIST state and regularly during runtime operation. 8-47 below illustrates  
how the SPMI-BIST operates during device power-up.  
Copyright © 2022 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
PMIC internal sequencing  
PWRON/ENABLE causes transition  
to active mode  
ñ
ñ
ñ
read NVM  
initialization  
Etc.  
Power sequence  
FTTI >> SPMI BIST interval  
VIN  
PWRON/ENABLE  
PMIC State  
BOOT BIST  
STANDBY  
ACTIVE/MISSION  
SPMI  
SPMI BIST patterns  
SPMI BIST pattern as part of BOOT  
BIST sequence  
SPMI messaging to secondary PMIC  
to go to ACTIVE state  
8-47. SPMI-BIST Operation  
After the input power is detected and verified to be at the correct level, the TPS6593-Q1 initializes itself by  
reading the NVM and performs all actions that are needed to prepare for operation . After this initialization, the  
TPS6593-Q1 enters the BOOT BIST state, in which the internal logic performs a series of tests to verify that the  
TPS6593-Q1 device is OK. As part of this test, the SPMI- BIST is performed. After it is completed successfully,  
the TPS6593-Q1 device goes to the standby state and waits for further signals from the system to initiate the  
power-up sequence of the processor.  
A valid on request initiates the processor power-up sequence. The controller device communicates this event  
through the SPMI bus to all of the target devices. After that, the power-up sequence is executed and TPS6593-  
Q1 enters the configured mission state.  
8.4.2.4.1 SPMI Bus during Boot BIST and RUNTIME BIST  
During Boot BIST and RUNTIME BIST, both the Logic BIST (LBIST) on the SPMI logic and the SPMI-BIST are  
performed to check correct operation of the SPMI bus. The LBIST is performed first before the SPMI-BIST  
during BOOT BIST and RUNTIME BIST. The SPMI-BIST is implemented by reading TID from each target device  
on the SPMI bus into the controller device, and ensuring they are unique and match the expected amount of  
target devices. This process of checking the TID of each target device ensures that:  
All SPMI target devices are present in the system as expected  
The SPMI logic blocks are working on the SPMI controller device and all of the SPMI target devices  
The pins and wires on the ICs and PCB are in working order  
The SPMI-BIST is initiated by the SPMI controller block in the primary PMIC by writing a request to all SPMI  
target device(s) (using GTID) to send their TIDs to the SPMI controller block of the primary PMIC. Upon  
receiving this command from the SPMI controller device, the SPMI target devices request SPMI bus arbitration  
using the SR-bit protocol. Upon winning the bus arbitration the SPMI target devices transmit their TID into the  
SPMI target block of the primary PMIC.  
The SPMI controller block of the primary PMIC contains a list of all SPMI target device(s) on the SPMI bus and  
their TIDs in the register set. The SPMI controller block of the primary PMIC reads the TID from each SPMI  
target device and compares the result with the stored TID for the corresponding SPMI target device. The SPMI  
controller device has to ensure that every non-zero TID on its list is returned, in order to support use cases in  
which there are two or more identical SPMI target devices, with same TID, in the system. In these cases, it is  
mandatory that the expected number of the same TIDs is returned. If no identical PMICs are to be used, then a  
return of the same TID multiple times is an error due to incorrect assembly of identical PMICs onto the PCB. An  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
all-zero TID stored in the list of the primary PMIC indicates that there are no SPMI target device(s) present on  
the SPMI Bus.  
8.4.2.4.2 Periodic Checking of the SPMI  
The SPMI controller block in the primary PMIC executes the SPMI-BIST periodically while device is operating.  
The time-period after the SPMI-BIST is repeated according factory-configured settings during the device boot  
time, and after the device reaches mission states. The factory-configured settings of this SPMI-BIST time period  
must be the same for all PMICs on the same SPMI network. The SPMI target devices on the SPMI bus expect a  
request for sending its TID from the SPMI controller device within 1.5x the factory-configured period . This factor  
1.5x provides enough margin for clock uncertainty between the SPMI controller device and the SPMI target  
device.  
During mission state operation, the SPMI controller device expects the SPMI target devices to respond to the  
TID request within the factory-configured polling time-out period . In other words, from the polling start command  
each SPMI target device must respond within this factory-configured time interval.  
During boot time or when the device enters Safe Recovery state, to prevent the SPMI controller device from  
polling the SPMI target devices too often while one or more of these recovering from a system error such as a  
thermal shutdown event, the device sets a longer timeout period that allows the SPMI target devices to respond  
to the SPMI controller device before he SPMI controller device reports an error.  
If one or more devices on the SPMI bus cause a violating of the polling time-out period either during start-up or  
during normal operation, the SPMI controller block in the affected PMIC(s) sets a SPMI error trigger signal to the  
PFSM of the affected PMIC(s), causing a complete shutdown of the affected PMIC(s). As a result, the affected  
PMIC(s) no longer respond on the SPMI bus, which in turn is detected by the SPMI controller block off the non-  
affected PMICs on the SPMI bus. The SPMI controller block in these PMICs sets an SPMI error to the PFSM in  
these PMICs, causing a complete shutdown of these PMICs. Therefore, all PMICs are finally shutdown if one or  
more devices on the SPMI bus cause a violating of the polling time-out period .  
8.4.2.4.3 SPMI Message Priorities  
The SPMI Bus uses the protocol priority levels listed in 8-21 for each type of communication message.  
8-21. SPMI Message Types and Priorities  
SPMI protocol priority level  
Name of priority level in SPMI standard  
Message types  
State transition messages from  
target device(s) to controller  
device  
Highest  
A-bit arbitration  
State transition messages from  
controller device to target  
device(s)  
priority arbitration  
target device TID to controller  
device  
SR-bit arbitration  
Controller device request of TIDs  
from target device(s)  
Lowest  
secondary arbitration  
Copyright © 2022 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.5 Control Interfaces  
The device has two, exclusive selectable (from factory settings) interfaces. Please refer to the User's Guide of  
the orderable part number which option has been selected. The first selection is up to two high-speed I2C  
interfaces. The second selection is one SPI interface. The SPI and I2C1 interfaces are used to fully control and  
configure the device, and have access to all of the configuration registers and Watchdog registers. During  
normal operating mode, when the I2C configuration is selected, and the GPIO1 and GPIO2 pins are configured  
as the SCL_I2C2 and SDA_I2C2 pins, the I2C2 interface becomes the dedicated interface for the Q&A  
Watchdog communication channel, while I2C1 interface no longer has access to the Watchdog registers. .  
8.5.1 CRC Calculation for I2C and SPI Interface Protocols  
For safety applications, the TPS6593-Q1 supports read and write protocols with embedded CRC data fields. The  
TPS6593-Q1 uses a standard CRC-8 polynomial to calculate the checksum value: X8 + X2 + X + 1. The CRC  
algorithm details are as follows:  
Initial value for the remainder is all 1s  
Big-endian bit stream order  
Result inversion is enabled  
For I2C Interface, the TPS6593-Q1 uses the above mentioned CRC-8 polynomial to calculate the checksum  
value on every bit except the ACK and NACK bits it receives from the MCU during a write protocol. The  
TPS6593-Q1 compares this calculated checksum with the R_CRC checksum value that it receives from the  
MCU. The TPS6593-Q1 also uses the above mentioned CRC-8 polynomial to calculate the T_CRC checksum  
value during a read protocol. This T_CRC checksum value is based on every bit that the TPS6593-Q1 receives,  
except the ACK and NACK bits and except the repeated I2C_ID bits, and the data that the TPS6593-Q1  
transmits to the MCU during a read protocol. The MCU must use this same CRC-8 polynomial to calculate the  
checksum value based on the bits that the MCU receives from the TPS6593-Q1. The MCU must compare this  
calculated checksum with the T_CRC checksum value that it receives from the TPS6593-Q1.  
For the SPI interface, the TPS6593-Q1 uses the above mentioned CRC-8 polynomial to calculate the checksum  
value on every bit it receives from the MCU during a write protocol. The TPS6593-Q1 compares this calculated  
checksum with the R_CRC checksum value, that it receives from the MCU. During a read protocol, the device  
also uses the above mentioned CRC-8 polynomial to calculate the T_CRC checksum value based on the first 16  
bits sent by the MCU, and the next 8 bits the TPS6593-Q1 transmits to the MCU. The MCU must use this same  
CRC-8 polynomial to calculate the checksum value based on the bits which the MCU sends to and receives from  
the TPS6593-Q1, and compare it with the T_CRC checksum value that it receives from the TPS6593-Q1.  
8-48 and 8-49 are examples for the 8-bit R_CRC and the T_CRC calculation from 16-bit databus.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
24  
24-bit bus ordering value for I2C:  
RW ADDR[7:0]  
0
I2C_ID[7:1]  
WDATA[7..0]  
WDATA[7..0]  
24  
24-bit bus ordering value for SPI:  
0
ADDR[7:0]  
PAGE[2:0]  
0
RESERVED[3:0]  
Flip-Flop the Preload Value  
(Seed Value)  
1
1
1
1
1
1
1
1
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
R_CRC[7]  
R_CRC[6]  
R_CRC[5]  
R_CRC[4]  
R_CRC[3]  
R_CRC[2]  
R_CRC[1]  
R_CRC[0]  
8-48. Calculation of 8-Bit CRC on Received Data (R_CRC)  
32  
24  
32-bit bus ordering value for I2C:  
0
0
I2C_ID[7:1]  
RW  
ADDR[7:0]  
I2C_ID[7:1]  
RW  
WDATA[7..0]  
WDATA[7..0]  
24-bit bus ordering value for SPI:  
ADDR[7:0]  
PAGE[2:0]  
0
RESERVED[3:0]  
Flip-Flop the Preload Value  
(Seed Value)  
1
1
1
1
1
1
1
1
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
T_CRC[7]  
T_CRC[6]  
T_CRC[5]  
T_CRC[4]  
T_CRC[3]  
T_CRC[2]  
T_CRC[1]  
T_CRC[0]  
8-49. Calculation of 8-Bit CRC on Transmitted Data (T_CRC)  
Copyright © 2022 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.5.2 I2C-Compatible Interface  
The default I2C1 7-bit device address of the TPS6593-Q1 device is set to a binary value that is described in the  
User's Guide of the orderable part number of the TPS6593-Q1 PMIC, while the two least-significant bits can be  
changed for alternative page selection listed under 8.6.1. The default 7-bit device address for the I2C2  
interface, for accessing the watchdog configuration registers and for operating the watchdog in Q&A mode, is  
described in the User's Guide of the orderable part number of the TPS6593-Q1 PMIC.  
The I2C-compatible synchronous serial interface provides access to the configurable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL).  
Every device on the bus is assigned a unique address and acts as either a controller or a target depending on  
whether it generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor  
placed somewhere on the line and remain HIGH even when the bus is idle. The device supports standard mode  
(100 kHz), fast mode (400 kHz), and fast mode plus (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode  
(3.4 MHz) only when VIO is 1.8 V.  
8.5.2.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
8-50. Data Validity Diagram  
8.5.2.2 Start and Stop Conditions  
The device is controlled through an I2C-compatible interface. START and STOP conditions classify the beginning  
and end of the I2C session. A START condition is defined as the SDA signal going from HIGH to LOW while the  
SCL signal is HIGH. A STOP condition is defined as the SDA signal going from LOW to HIGH while the SCL  
signal is HIGH. The I2C controller device device always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
8-51. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. The I2C controller  
device can generate repeated START conditions during data transmission. A START and a repeated START  
condition are equivalent function-wise. 8-52 shows the SDA and SCL signal timing for the I2C-compatible bus.  
For timing values, see the Specification section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
8-52. I2C-Compatible Timing  
8.5.2.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the controller device. The controller device releases the SDA line (HIGH) during the acknowledge clock pulse.  
The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates  
an acknowledge after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the controller device is the receiver, it  
must indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte  
clocked out of the target device. This negative acknowledge still includes the acknowledge clock pulse  
(generated by the controller device), but the SDA line is not pulled down.  
After the START condition, the bus controller device sends a chip address. This address is seven bits long  
followed by an eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a  
WRITE and a 1 indicates a READ. The second byte selects the register to which the data is written. The third  
byte contains data to write to the selected register. 8-53 shows an example bit format of device address  
110000-Bin = 60Hex.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Address (chip address)  
8-53. Example Device Address  
For safety applications, the device supports read and write protocols with embedded CRC data fields. In a write  
cycle, the I2C controller device (i.e. the MCU) must provide the 8-bit CRC value after sending the write data bits  
and receiving the ACK from the target (i.e. the TPS6593-Q1 PMIC). The CRC value must be calculated from  
every bit included in the write protocol except the ACK bits from the target. See CRC Calculation for I2C and SPI  
Interface Protocols. In a read cycle, the I2C target must provide the 8-bit CRC value after sending the read data  
bits and the ACK bit, and expect to receive the NACK from the controller at the end of the protocol. The CRC  
value must be calculated from every bit included in the read protocol except the ACK and NACK bits. See CRC  
Calculation for I2C and SPI Interface Protocols.  
备注  
If I2C CRC is enabled in the device and an I2C write without R_CRC bits is done, the device does not  
process the write request. The device does not set any interrupt bit and does not pull the nINT pin low.  
The embedded CRC field can be enabled or disabled from the protocol by setting the I2C1_SPI_CRC_EN  
register bit to '1' - enabled, '0' - disabled. The default of this bit is configurable through the NVM.  
Copyright © 2022 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
In case the calculated CRC-value does not match the received CRC-check-sum, an I2C-CRC-error is detected,  
the COMM_CRC_ERR_INT bit is set, unless it is masked by the COMM_CRC_ERR_MASK bit. The MCU must  
clear this bit by writing a 1to the COMM_CRC_ERR_INT bit.  
When the CRC field is enabled, in the case when MCU attempts to write to a read-only register or a register-  
address that does not exist, the device sets the COMM_ADR_ERR_INT bit, unless the  
COMM_ADR_ERR_MASK bit is set. The MCU must clear this bit by writing a 1 to the  
COMM_ADR_ERR_INT bit.  
START  
ACK  
ACK  
ACK STOP  
I2C_ID[7:1]  
0
ADDR[7:0]  
WDATA[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x16  
8-54. I2C Write Cycle without CRC  
START  
ACK  
ACK  
ACK STOP  
STOP  
R_CRC[7:0]  
I2C_ID[7:1]  
0
ADDR[7:0]  
WDATA[7:0]  
SCL  
SDA  
0x43  
0x60  
0x36  
0x16  
The I2C controller device device (i.e. the MCU) provides R_CRC[7:0], which is calculated from the I2C_ID, R/W, ADDR, and the WDATA  
bits (24 bits). See CRC Calculation for I2C and SPI Interface Protocols.  
8-55. I2C Write Cycle with CRC  
REPEATED  
STOP  
START  
START  
ACK  
ACK  
ACK  
NCK  
I2C_ID[7:1]  
0
ADDR[7:0]  
I2C_ID[7:1]  
1
RDATA[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x60  
0x16  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
8-56. I2C Read Cycle without CRC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
REPEATED  
START  
STOP  
START  
ACK  
ACK  
ACK  
ACK  
NCK  
I2C_ID[7:1]  
0
ADDR[7:0]  
I2C_ID[7:1]  
1
RDATA[7:0]  
T_CRC[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x60  
0x16  
0x7D  
The I2C target device (i.e. the TPS6593-Q1) provides T_CRC[7:0], which is calculated from the I2C_ID, R/W, ADDR, I2C_ID, R/W, and  
the RDATA bits (32 bits). See CRC Calculation for I2C and SPI Interface Protocols.  
8-57. I2C READ Cycle with CRC  
8.5.2.4 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an  
8-bit word is sent to the device, the internal address index counter is incremented by one and the next register is  
written. 8-22 lists the writing sequence to two consecutive registers. Note that auto increment feature does not  
support CRC protocol.  
8-22. Auto-Increment Example  
DEVICE  
ADDRESS =  
0x60  
REGISTER  
ADDRESS  
ACTION  
START  
WRITE  
DATA  
DATA  
STOP  
PMIC device  
ACK  
ACK  
ACK  
ACK  
8.5.3 Serial Peripheral Interface (SPI)  
The device supports SPI serial-bus interface and it operates as a peripheral device. The MCU in the system acts  
as the controller device. A single read and write transmission consists of 24-bit write and read cycles (32-bit if  
CRC is enabled) in the following order:  
Bits 1-8: ADDR[7:0], Register address  
Bits 9-11: PAGE[2:0], Page address for register  
Bit 12: Read/Write definition, 0 = WRITE, 1 = READ.  
Bits 13-16: RESERVED[4:0], Reserved, use all zeros.  
For Write: Bits 17-24: WDATA[7:0], write data  
For Write with CRC enabled: Bits 25-32: R_CRC[7:0], CRC error code calculated from bits 1-24 sent by the  
controller device (i.e. the MCU). See 8.5.1.  
For Read: Bits 17-24: RDATA[7:0], read data  
For Read with CRC enabled: Bits 25-32: T_CRC[7:0], CRC error code calculated from bits 1-16 sent by the  
controller device (i.e. the MCU), and bits 17-24, sent by the peripheral device (i.e. the TPS6593-Q1). See 节  
8.5.1.  
The embedded CRC filed can be enabled or disabled from the protocol by setting the I2C1_SPI_CRC_EN  
register bit to '1' - enabled, '0' - disabled. The default of this bit is configurable through the NVM.  
The SDO output is in a high-impedance state when the CS pin is high. When the CS pin is low, the SDO output  
is always driven low except when the RDATA or SCRC bits are sent. When the RDATA or SCRC bits are sent,  
the SDO output is driven accordingly.  
The address, page, data, and CRC are transmitted MSB first. The chip-select signal (CS) must be low during the  
cycle transmission. The CS signal resets the interface when it is high, and must be taken high between  
successive cycles. Data is clocked in on the rising edge of the SCLK clock signal and it is clocked out on the  
falling edge of SCLK clock signal.  
The SPI Timing diagram shows the timing information for these signals.  
Copyright © 2022 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
0
WDATA[7:0]  
ADDR[7:0]  
SDO_SPI Hi-Z  
Hi-Z  
8-58. SPI Write Cycle  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
ADDR[7:0]  
0
WDATA[7:0]  
R_CRC[7:0]  
SDO_SPI Hi-Z  
Hi-Z  
8-59. SPI Write Cycle with CRC  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
1
ADDR[7:0]  
Hi-Z  
RDATA[7:0]  
Hi-Z  
SDO_SPI  
8-60. SPI Read Cycle  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
1
ADDR[7:0]  
SDO_SPI Hi-Z  
RDATA[7:0]  
T_CRC[7:0]  
Hi-Z  
8-61. SPI Read Cycle with CRC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
备注  
Due to a digital control erratum in the device, the TPS6593-Q1 pulls the nINT pin low and sets  
interrupt bit COMM_FRM_ERR_INT if the pin CS_SPI is low during device power-up and goes high  
after completion of the device power-up sequence. After system start-up, the MCU must clear this  
COMM_FRM_ERR_INT bit such that the TPS6593-Q1 can release the nINT pin.  
8.6 Configurable Registers  
8.6.1 Register Page Partitioning  
The registers in the TPS6593-Q1 device are organized into five internal pages. Each page represents a different  
type of register. The below list shows the pages with their register types:  
Page 0: User Registers  
Page 1: NVM Control, Configuration, and Test Registers  
Page 2: Trim Registers  
Page 3: SRAM for PFSM Registers  
Page 4: Watchdog Registers  
备注  
When I2C Interfaces are used, each of the above listed register pages has its own 6-bit I2C device  
address. In order to address Page 0 to 3, the two LSBs if the pre-configured I2C1_ID are replaced  
with 00 for Page 0, 01 for Page 1, 10 for Page 2 and 11 for Page 3. As an example, if I2C1_ID=0x26  
(0100110b) , Page 0 to 3 have following addresses:  
Page 0: 0100100  
Page 1: 0100101  
Page 2: 0100110  
Page 3: 0100111  
For Page 4 the I2C device address is according register bits I2C2_ID. Therefore, in case both I2C1  
and I2C2 Interfaces are used, each TPS6593-Q1 device occupies four I2C device addresses (for Page  
0, Page 1, Page 2 and Page 3) on the I2C1 bus and one I2C device address (for Page 4) on the I2C2  
bus. And in case only I2C1 Interfaces is used, each TPS6593-Q1 device occupies five I2C device  
addresses (for Page 0, Page 1, Page 2, Page 3 and Page 4) on the I2C1 bus. In case multiple devices  
are used on a common I2C bus, care must be taken to avoid overlapping I2C device addresses.  
备注  
When SPI Interface is used, the above listed register pages are addresses with the PAGE[2:0] bits:  
0x0 addresses Page 0, 0x1 addresses Page 1, 0x2 addresses Page 2, 0x3 addresses Page 3  
8.6.2 CRC Protection for Configuration, Control, and Test Registers  
The TPS6593-Q1 device includes a static CRC-16 engine to protect all the static registers of the device. Static  
registers are registers in Page 1, 2, and 3, with values that do not change once loaded from NVM. The CRC-16  
engine continuously checks the control registers on the device. The expected CRC-16 value is stored in the  
NVM. When the CRC-16 engine detects a mismatch between the calculated and expected CRC-16 values, the  
interrupt bit REG_CRC_ERR_INT is set and the device forces an orderly shutdown sequence to return to the  
SAFE RECOVERY state. The device NVM control, configuration, and test registers in page 1 are protected  
against read or write access when the device is in normal functional mode. .  
The CRC-16 engine uses a standard CRC-16 polynomial to calculate the internal known-good checksum-value,  
which is X16 + X14 + X13 + X12 + X10 + X8 + X6 + X4 + X3 + X + 1.  
The initial value for the remainder of the polynomial is all 1s and is in big-endian bit-stream order. The inversion  
of the calculated result is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
备注  
The CRC-16 engine assumes a default value of '0' for all undefined or reserved bits in all control  
registers. Therefore, the software MUST NOT write the value of '1' to any of these undefined or  
reserved bits. If the value of '1 is written to any undefined or reserved bit of a writable register, the  
CRC-16 engine detects a mismatch between the calculated and expected CRC-16 values, and hence  
the interrupt bit REG_CRC_ERR_INT is set and the device forces an orderly shutdown sequence to  
return to the SAFE RECOVERY state.  
8.6.3 CRC Protection for User Registers  
A dynamic CRC-8 engine exists to protect registers that have values that can change during operation. These  
are registers in Page 1 and 4. When writes occur to these pages, the dynamic CRC-8 is checked, computed,  
and updated. Continuously during operation the CRC-8 are evaluated and verified in a round-robin fashion.  
The CRC-8 engine utilizes the Polynomial(0xA6) = X8 + X6 + X3 + X2 + 1, which provides a H4 hamming  
distance.  
备注  
If a RESERVED bit in a R/W configuration register gets set to 1h through a I2C/SPI write, the  
TPS6593-Q1 detects a CRC error in the register map. Therefore, it is important that system software  
involved in the I2C/SPI write-access to the TPS6593-Q1 keeps all RESERVED bits (i.e. all bits with  
the word RESERVED in the Register Field Description tables in the Register Map section at 0h.  
8.6.4 Register Write Protection  
For safety application, in order to prevent unintentional writes to the control registers, the TPS6593-Q1 device  
implements locking and unlocking mechanisms to many of its configuration/control registers described in the  
following subsections.  
8.6.4.1 ESM and WDOG Configuration Registers  
The configuration registers for the watchdog and the ESM are locked when their monitoring functions are in  
operation. The locking mechanism and the list of the locked watchdog register is described under 8.3.10.2.  
The locking mechanism and the list of the locked ESM registers is described under  
Error Signal Monitor (ESM)  
8.6.4.2 User Registers  
User registers in page 0, except the ESM and the WDOG configuration registers described in 8.6.4.1, and the  
interrupt registers (x_INT) at address 0x5a through 0x6c in page 0, can be write protected by a dedicated lock.  
User must write '0x9B' to the REGISTER_LOCK register to unlock the register. Writing any value other than  
'0x9B' activates the lock again. To check the register lock status, user must read the  
REGISTER_LOCK_STATUS bit. When this bit is '0', it indicates the user registers are unlocked. When this bit is  
'1', the user registers are locked. During start-up sequence such as powering up for the first time, waking up from  
LP_STANDBY, or recovering from SAFE_RECOVERY, the user registers are unlocked automatically.  
As an extra measure of protection to prevent the accidental change of the buck frequency while the buck is in  
operation, the BUCKn_FREQ_SEL register bits are locked by the pre-configured NVM settings, unless  
mentioned otherwise in the User's Guide of the orderable part number.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7 Register Maps  
Copyright © 2022 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1 TPS6593-Q1 Registers  
8-23 lists the memory-mapped registers for the TPS6593-Q1 registers. All register offset addresses not listed  
in 8-23 should be considered as reserved locations and the register contents should not be modified.  
8-23. TPS6593-Q1 Registers  
Offset  
1h  
Acronym  
Register Name  
Section  
DEV_REV  
8.7.1.1  
8.7.1.2  
8.7.1.3  
8.7.1.4  
8.7.1.5  
8.7.1.6  
8.7.1.7  
8.7.1.8  
8.7.1.9  
8.7.1.10  
8.7.1.11  
8.7.1.12  
8.7.1.13  
8.7.1.14  
8.7.1.15  
8.7.1.16  
8.7.1.17  
8.7.1.18  
8.7.1.19  
8.7.1.20  
8.7.1.21  
8.7.1.22  
8.7.1.23  
8.7.1.24  
8.7.1.25  
8.7.1.26  
8.7.1.27  
8.7.1.28  
8.7.1.29  
8.7.1.30  
8.7.1.31  
8.7.1.32  
8.7.1.33  
8.7.1.34  
8.7.1.35  
8.7.1.36  
8.7.1.37  
8.7.1.38  
8.7.1.39  
2h  
NVM_CODE_1  
NVM_CODE_2  
BUCK1_CTRL  
3h  
4h  
5h  
BUCK1_CONF  
BUCK2_CTRL  
6h  
7h  
BUCK2_CONF  
BUCK3_CTRL  
8h  
9h  
BUCK3_CONF  
BUCK4_CTRL  
Ah  
Bh  
BUCK4_CONF  
BUCK5_CTRL  
Ch  
Dh  
BUCK5_CONF  
BUCK1_VOUT_1  
BUCK1_VOUT_2  
BUCK2_VOUT_1  
BUCK2_VOUT_2  
BUCK3_VOUT_1  
BUCK3_VOUT_2  
BUCK4_VOUT_1  
BUCK4_VOUT_2  
BUCK5_VOUT_1  
BUCK5_VOUT_2  
BUCK1_PG_WINDOW  
BUCK2_PG_WINDOW  
BUCK3_PG_WINDOW  
BUCK4_PG_WINDOW  
BUCK5_PG_WINDOW  
LDO1_CTRL  
Eh  
Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
LDO2_CTRL  
LDO3_CTRL  
LDO4_CTRL  
LDORTC_CTRL  
LDO1_VOUT  
LDO2_VOUT  
LDO3_VOUT  
LDO4_VOUT  
LDO1_PG_WINDOW  
LDO2_PG_WINDOW  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-23. TPS6593-Q1 Registers (continued)  
Offset  
29h  
2Ah  
2Bh  
2Ch  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
56h  
57h  
58h  
Acronym  
Register Name  
Section  
LDO3_PG_WINDOW  
LDO4_PG_WINDOW  
VCCA_VMON_CTRL  
VCCA_PG_WINDOW  
GPIO1_CONF  
8.7.1.40  
8.7.1.41  
8.7.1.42  
8.7.1.43  
8.7.1.44  
8.7.1.45  
8.7.1.46  
8.7.1.47  
8.7.1.48  
8.7.1.49  
8.7.1.50  
8.7.1.51  
8.7.1.52  
8.7.1.53  
8.7.1.54  
8.7.1.55  
8.7.1.56  
8.7.1.57  
8.7.1.58  
8.7.1.59  
8.7.1.60  
8.7.1.61  
8.7.1.62  
8.7.1.63  
8.7.1.64  
8.7.1.65  
8.7.1.66  
8.7.1.67  
8.7.1.68  
8.7.1.69  
8.7.1.70  
8.7.1.71  
8.7.1.72  
8.7.1.73  
8.7.1.74  
8.7.1.75  
8.7.1.76  
8.7.1.77  
8.7.1.78  
8.7.1.79  
8.7.1.80  
8.7.1.81  
8.7.1.82  
GPIO2_CONF  
GPIO3_CONF  
GPIO4_CONF  
GPIO5_CONF  
GPIO6_CONF  
GPIO7_CONF  
GPIO8_CONF  
GPIO9_CONF  
GPIO10_CONF  
GPIO11_CONF  
NPWRON_CONF  
GPIO_OUT_1  
GPIO_OUT_2  
GPIO_IN_1  
GPIO_IN_2  
RAIL_SEL_1  
RAIL_SEL_2  
RAIL_SEL_3  
FSM_TRIG_SEL_1  
FSM_TRIG_SEL_2  
FSM_TRIG_MASK_1  
FSM_TRIG_MASK_2  
FSM_TRIG_MASK_3  
MASK_BUCK1_2  
MASK_BUCK3_4  
MASK_BUCK5  
MASK_LDO1_2  
MASK_LDO3_4  
MASK_VMON  
MASK_GPIO1_8_FALL  
MASK_GPIO1_8_RISE  
MASK_GPIO9_11  
MASK_STARTUP  
MASK_MISC  
MASK_MODERATE_ERR  
MASK_FSM_ERR  
MASK_COMM_ERR  
MASK_READBACK_ERR  
Copyright © 2022 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-23. TPS6593-Q1 Registers (continued)  
Offset  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
80h  
81h  
82h  
83h  
84h  
Acronym  
Register Name  
Section  
MASK_ESM  
8.7.1.83  
8.7.1.84  
8.7.1.85  
8.7.1.86  
8.7.1.87  
8.7.1.88  
8.7.1.89  
8.7.1.90  
8.7.1.91  
8.7.1.92  
8.7.1.93  
8.7.1.94  
8.7.1.95  
8.7.1.96  
8.7.1.97  
8.7.1.98  
8.7.1.99  
8.7.1.100  
8.7.1.101  
8.7.1.102  
8.7.1.103  
8.7.1.104  
8.7.1.105  
8.7.1.106  
8.7.1.107  
8.7.1.108  
8.7.1.109  
8.7.1.110  
8.7.1.111  
8.7.1.112  
8.7.1.113  
8.7.1.114  
8.7.1.115  
8.7.1.116  
8.7.1.117  
8.7.1.118  
8.7.1.119  
8.7.1.120  
8.7.1.121  
8.7.1.122  
8.7.1.123  
8.7.1.124  
8.7.1.125  
INT_TOP  
INT_BUCK  
INT_BUCK1_2  
INT_BUCK3_4  
INT_BUCK5  
INT_LDO_VMON  
INT_LDO1_2  
INT_LDO3_4  
INT_VMON  
INT_GPIO  
INT_GPIO1_8  
INT_STARTUP  
INT_MISC  
INT_MODERATE_ERR  
INT_SEVERE_ERR  
INT_FSM_ERR  
INT_COMM_ERR  
INT_READBACK_ERR  
INT_ESM  
STAT_BUCK1_2  
STAT_BUCK3_4  
STAT_BUCK5  
STAT_LDO1_2  
STAT_LDO3_4  
STAT_VMON  
STAT_STARTUP  
STAT_MISC  
STAT_MODERATE_ERR  
STAT_SEVERE_ERR  
STAT_READBACK_ERR  
PGOOD_SEL_1  
PGOOD_SEL_2  
PGOOD_SEL_3  
PGOOD_SEL_4  
PLL_CTRL  
CONFIG_1  
CONFIG_2  
ENABLE_DRV_REG  
MISC_CTRL  
ENABLE_DRV_STAT  
RECOV_CNT_REG_1  
RECOV_CNT_REG_2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-23. TPS6593-Q1 Registers (continued)  
Offset  
85h  
86h  
87h  
88h  
8Ah  
8Bh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A6h  
A7h  
ABh  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
BEh  
BFh  
C0h  
C1h  
C2h  
Acronym  
Register Name  
Section  
FSM_I2C_TRIGGERS  
FSM_NSLEEP_TRIGGERS  
BUCK_RESET_REG  
SPREAD_SPECTRUM_1  
FREQ_SEL  
8.7.1.126  
8.7.1.127  
8.7.1.128  
8.7.1.129  
8.7.1.130  
8.7.1.131  
8.7.1.132  
8.7.1.133  
8.7.1.134  
8.7.1.135  
8.7.1.136  
8.7.1.137  
8.7.1.138  
8.7.1.139  
8.7.1.140  
8.7.1.141  
8.7.1.142  
8.7.1.143  
8.7.1.144  
8.7.1.145  
8.7.1.146  
8.7.1.147  
8.7.1.148  
8.7.1.149  
8.7.1.150  
8.7.1.151  
8.7.1.152  
8.7.1.153  
8.7.1.154  
8.7.1.155  
8.7.1.156  
8.7.1.157  
8.7.1.158  
8.7.1.159  
8.7.1.160  
8.7.1.161  
8.7.1.162  
8.7.1.163  
8.7.1.164  
8.7.1.165  
8.7.1.166  
8.7.1.167  
8.7.1.168  
FSM_STEP_SIZE  
USER_SPARE_REGS  
ESM_MCU_START_REG  
ESM_MCU_DELAY1_REG  
ESM_MCU_DELAY2_REG  
ESM_MCU_MODE_CFG  
ESM_MCU_HMAX_REG  
ESM_MCU_HMIN_REG  
ESM_MCU_LMAX_REG  
ESM_MCU_LMIN_REG  
ESM_MCU_ERR_CNT_REG  
ESM_SOC_START_REG  
ESM_SOC_DELAY1_REG  
ESM_SOC_DELAY2_REG  
ESM_SOC_MODE_CFG  
ESM_SOC_HMAX_REG  
ESM_SOC_HMIN_REG  
ESM_SOC_LMAX_REG  
ESM_SOC_LMIN_REG  
ESM_SOC_ERR_CNT_REG  
REGISTER_LOCK  
MANUFACTURING_VER  
CUSTOMER_NVM_ID_REG  
SOFT_REBOOT_REG  
RTC_SECONDS  
RTC_MINUTES  
RTC_HOURS  
RTC_DAYS  
RTC_MONTHS  
RTC_YEARS  
RTC_WEEKS  
ALARM_SECONDS  
ALARM_MINUTES  
ALARM_HOURS  
ALARM_DAYS  
ALARM_MONTHS  
ALARM_YEARS  
RTC_CTRL_1  
Copyright © 2022 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8-23. TPS6593-Q1 Registers (continued)  
Offset  
C3h  
Acronym  
Register Name  
Section  
RTC_CTRL_2  
8.7.1.169  
8.7.1.170  
8.7.1.171  
8.7.1.172  
8.7.1.173  
8.7.1.174  
8.7.1.175  
8.7.1.176  
8.7.1.177  
8.7.1.178  
8.7.1.179  
8.7.1.180  
8.7.1.181  
8.7.1.182  
8.7.1.183  
8.7.1.184  
8.7.1.185  
8.7.1.186  
8.7.1.187  
8.7.1.188  
8.7.1.189  
8.7.1.190  
8.7.1.191  
8.7.1.192  
C4h  
RTC_STATUS  
C5h  
RTC_INTERRUPTS  
RTC_COMP_LSB  
C6h  
C7h  
RTC_COMP_MSB  
RTC_RESET_STATUS  
SCRATCH_PAD_REG_1  
SCRATCH_PAD_REG_2  
SCRATCH_PAD_REG_3  
SCRATCH_PAD_REG_4  
PFSM_DELAY_REG_1  
PFSM_DELAY_REG_2  
PFSM_DELAY_REG_3  
PFSM_DELAY_REG_4  
WD_ANSWER_REG  
WD_QUESTION_ANSW_CNT  
WD_WIN1_CFG  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
401h  
402h  
403h  
404h  
405h  
406h  
407h  
408h  
409h  
40Ah  
WD_WIN2_CFG  
WD_LONGWIN_CFG  
WD_MODE_REG  
WD_QA_CFG  
WD_ERR_STATUS  
WD_THR_CFG  
WD_FAIL_CNT_REG  
Complex bit access types are encoded to fit into small table cells. 8-24 shows the codes that are used for  
access types in this section.  
8-24. TPS6593-Q1 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
W1C  
W
Write  
1C  
1 to clear  
WSelfClrF  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.1 DEV_REV Register (Offset = 1h) [Reset = 00h]  
DEV_REV is shown in 8-57 and described in 8-25.  
Return to the 8-23.  
8-62. DEV_REV Register  
7
6
5
4
3
2
1
0
TI_DEVICE_ID  
R/W-0h  
8-25. DEV_REV Register Field Descriptions  
Bit  
7-0  
Field  
TI_DEVICE_ID  
Type  
Reset  
Description  
R/W  
0h  
Refer to Technical Reference Manual / User's Guide for specific  
numbering.  
Note: This register can be programmed only by the manufacturer.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.2 NVM_CODE_1 Register (Offset = 2h) [Reset = 00h]  
NVM_CODE_1 is shown in 8-58 and described in 8-26.  
Return to the 8-23.  
8-63. NVM_CODE_1 Register  
7
6
5
4
3
2
1
0
TI_NVM_ID  
R/W-0h  
8-26. NVM_CODE_1 Register Field Descriptions  
Bit  
7-0  
Field  
TI_NVM_ID  
Type  
Reset  
Description  
R/W  
0h  
0x00 - 0xF0 are reserved for TI manufactured NVM variants  
0xF1 - 0xFF are reserved for special use  
0xF1 = Engineering sample, blank NVM [trim and basic defaults  
only], customer programmable for engineering use only  
0xF2 = Production unit, blank NVM [trim and basic defaults only],  
customer programmable in volume production  
0xF3-FF = Reserved, do not use  
Note: This register can be programmed only by the manufacturer.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.3 NVM_CODE_2 Register (Offset = 3h) [Reset = 00h]  
NVM_CODE_2 is shown in 8-59 and described in 8-27.  
Return to the 8-23.  
8-64. NVM_CODE_2 Register  
7
6
5
4
3
2
1
0
TI_NVM_REV  
R/W-0h  
8-27. NVM_CODE_2 Register Field Descriptions  
Bit  
7-0  
Field  
TI_NVM_REV  
Type  
Reset  
Description  
R/W  
0h  
NVM revision of the IC  
Note: This register can be programmed only by the manufacturer.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.4 BUCK1_CTRL Register (Offset = 4h) [Reset = 22h]  
BUCK1_CTRL is shown in 8-60 and described in 8-28.  
Return to the 8-23.  
8-65. BUCK1_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK1_PLDN BUCK1_VMON BUCK1_VSEL BUCK1_FPWM BUCK1_FPWM  
BUCK1_EN  
_EN  
_MP  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
8-28. BUCK1_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
BUCK1_PLDN  
1h  
Enable output pull-down resistor when BUCK1 is disabled:  
(Default from NVM memory)  
0h = Pull-down resistor disabled  
1h = Pull-down resistor enabled  
4
3
2
BUCK1_VMON_EN  
BUCK1_VSEL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Enable BUCK1 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0h = OV, UV, SC and ILIM comparators are disabled  
1h = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK1:  
(Default from NVM memory)  
0h = BUCK1_VOUT_1  
1h = BUCK1_VOUT_2  
BUCK1_FPWM_MP  
Forces the BUCK1 regulator to operate always in multi-phase and  
forced PWM operation mode:  
(Default from NVM memory)  
0h = Automatic phase adding and shedding.  
1h = Forced to multi-phase operation, all phases in the multi-phase  
configuration.  
1
0
BUCK1_FPWM  
BUCK1_EN  
R/W  
R/W  
1h  
0h  
Forces the BUCK1 regulator to operate in PWM mode:  
(Default from NVM memory)  
0h = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1h = Forced to PWM operation.  
Enable BUCK1 regulator:  
(Default from NVM memory)  
0h = BUCK regulator is disabled  
1h = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.5 BUCK1_CONF Register (Offset = 5h) [Reset = 22h]  
BUCK1_CONF is shown in 8-61 and described in 8-29.  
Return to the 8-23.  
8-66. BUCK1_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK1_ILIM  
R/W-4h  
BUCK1_SLEW_RATE  
R/W-2h  
8-29. BUCK1_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
BUCK1_ILIM  
0h  
4h  
Sets the switch peak current limit of BUCK1. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0h = Reserved  
1h = Reserved  
2h = 2.5 A  
3h = 3.5 A  
4h = 4.5 A  
5h = 5.5 A  
6h = Reserved  
7h = Reserved  
2-0  
BUCK1_SLEW_RATE  
R/W  
2h  
Sets the output voltage slew rate for BUCK1 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0h = 33 mV/μs  
1h = 20 mV/μs  
2h = 10 mV/μs  
3h = 5.0 mV/μs  
4h = 2.5 mV/μs  
5h = 1.3 mV/μs  
6h = 0.63 mV/μs  
7h = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.6 BUCK2_CTRL Register (Offset = 6h) [Reset = 22h]  
BUCK2_CTRL is shown in 8-62 and described in 8-30.  
Return to the 8-23.  
8-67. BUCK2_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK2_PLDN BUCK2_VMON BUCK2_VSEL  
_EN  
RESERVED  
BUCK2_FPWM  
BUCK2_EN  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
8-30. BUCK2_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
BUCK2_PLDN  
1h  
Enable output pull-down resistor when BUCK2 is disabled:  
(Default from NVM memory)  
0h = Pull-down resistor disabled  
1h = Pull-down resistor enabled  
4
3
BUCK2_VMON_EN  
BUCK2_VSEL  
R/W  
R/W  
0h  
0h  
Enable BUCK2 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0h = OV, UV, SC and ILIM comparators are disabled  
1h = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK2:  
(Default from NVM memory)  
0h = BUCK2_VOUT_1  
1h = BUCK2_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0h  
1h  
BUCK2_FPWM  
Forces the BUCK2 regulator to operate in PWM mode:  
(Default from NVM memory)  
0h = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1h = Forced to PWM operation.  
0
BUCK2_EN  
R/W  
0h  
Enable BUCK2 regulator:  
(Default from NVM memory)  
0h = BUCK regulator is disabled  
1h = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.7 BUCK2_CONF Register (Offset = 7h) [Reset = 22h]  
BUCK2_CONF is shown in 8-63 and described in 8-31.  
Return to the 8-23.  
8-68. BUCK2_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK2_ILIM  
R/W-4h  
BUCK2_SLEW_RATE  
R/W-2h  
8-31. BUCK2_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
BUCK2_ILIM  
0h  
4h  
Sets the switch peak current limit of BUCK2. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0h = Reserved  
1h = Reserved  
2h = 2.5 A  
3h = 3.5 A  
4h = 4.5 A  
5h = 5.5 A  
6h = Reserved  
7h = Reserved  
2-0  
BUCK2_SLEW_RATE  
R/W  
2h  
Sets the output voltage slew rate for BUCK2 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0h = 33 mV/μs  
1h = 20 mV/μs  
2h = 10 mV/μs  
3h = 5.0 mV/μs  
4h = 2.5 mV/μs  
5h = 1.3 mV/μs  
6h = 0.63 mV/μs  
7h = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.8 BUCK3_CTRL Register (Offset = 8h) [Reset = 22h]  
BUCK3_CTRL is shown in 8-64 and described in 8-32.  
Return to the 8-23.  
8-69. BUCK3_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK3_PLDN BUCK3_VMON BUCK3_VSEL BUCK3_FPWM BUCK3_FPWM  
BUCK3_EN  
_EN  
_MP  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
8-32. BUCK3_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
BUCK3_PLDN  
1h  
Enable output pull-down resistor when BUCK3 is disabled:  
(Default from NVM memory)  
0h = Pull-down resistor disabled  
1h = Pull-down resistor enabled  
4
3
2
BUCK3_VMON_EN  
BUCK3_VSEL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Enable BUCK3 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0h = OV, UV, SC and ILIM comparators are disabled  
1h = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK3:  
(Default from NVM memory)  
0h = BUCK3_VOUT_1  
1h = BUCK3_VOUT_2  
BUCK3_FPWM_MP  
Forces the BUCK3 regulator to operate always in multi-phase and  
forced PWM operation mode:  
(Default from NVM memory)  
0h = Automatic phase adding and shedding.  
1h = Forced to multi-phase operation, all phases in the multi-phase  
configuration.  
1
0
BUCK3_FPWM  
BUCK3_EN  
R/W  
R/W  
1h  
0h  
Forces the BUCK3 regulator to operate in PWM mode:  
(Default from NVM memory)  
0h = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1h = Forced to PWM operation.  
Enable BUCK3 regulator:  
(Default from NVM memory)  
0h = BUCK regulator is disabled  
1h = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.9 BUCK3_CONF Register (Offset = 9h) [Reset = 22h]  
BUCK3_CONF is shown in 8-65 and described in 8-33.  
Return to the 8-23.  
8-70. BUCK3_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK3_ILIM  
R/W-4h  
BUCK3_SLEW_RATE  
R/W-2h  
8-33. BUCK3_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
BUCK3_ILIM  
0h  
4h  
Sets the switch peak current limit of BUCK3. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0h = Reserved  
1h = Reserved  
2h = 2.5 A  
3h = 3.5 A  
4h = 4.5 A  
5h = 5.5 A  
6h = Reserved  
7h = Reserved  
2-0  
BUCK3_SLEW_RATE  
R/W  
2h  
Sets the output voltage slew rate for BUCK3 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0h = 33 mV/μs  
1h = 20 mV/μs  
2h = 10 mV/μs  
3h = 5.0 mV/μs  
4h = 2.5 mV/μs  
5h = 1.3 mV/μs  
6h = 0.63 mV/μs  
7h = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.10 BUCK4_CTRL Register (Offset = Ah) [Reset = 22h]  
BUCK4_CTRL is shown in 8-66 and described in 8-34.  
Return to the 8-23.  
8-71. BUCK4_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK4_PLDN BUCK4_VMON BUCK4_VSEL  
_EN  
RESERVED  
BUCK4_FPWM  
BUCK4_EN  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
8-34. BUCK4_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
BUCK4_PLDN  
1h  
Enable output pull-down resistor when BUCK4 is disabled:  
(Default from NVM memory)  
0h = Pull-down resistor disabled  
1h = Pull-down resistor enabled  
4
3
BUCK4_VMON_EN  
BUCK4_VSEL  
R/W  
R/W  
0h  
0h  
Enable BUCK4 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0h = OV, UV, SC and ILIM comparators are disabled  
1h = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK4:  
(Default from NVM memory)  
0h = BUCK4_VOUT_1  
1h = BUCK4_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0h  
1h  
BUCK4_FPWM  
Forces the BUCK4 regulator to operate in PWM mode:  
(Default from NVM memory)  
0h = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1h = Forced to PWM operation.  
0
BUCK4_EN  
R/W  
0h  
Enable BUCK4 regulator:  
(Default from NVM memory)  
0h = BUCK regulator is disabled  
1h = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.11 BUCK4_CONF Register (Offset = Bh) [Reset = 22h]  
BUCK4_CONF is shown in 8-67 and described in 8-35.  
Return to the 8-23.  
8-72. BUCK4_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK4_ILIM  
R/W-4h  
BUCK4_SLEW_RATE  
R/W-2h  
8-35. BUCK4_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
BUCK4_ILIM  
0h  
4h  
Sets the switch peak current limit of BUCK4. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0h = Reserved  
1h = Reserved  
2h = 2.5 A  
3h = 3.5 A  
4h = 4.5 A  
5h = 5.5 A  
6h = Reserved  
7h = Reserved  
2-0  
BUCK4_SLEW_RATE  
R/W  
2h  
Sets the output voltage slew rate for BUCK4 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0h = 33 mV/μs  
1h = 20 mV/μs  
2h = 10 mV/μs  
3h = 5.0 mV/μs  
4h = 2.5 mV/μs  
5h = 1.3 mV/μs  
6h = 0.63 mV/μs  
7h = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.12 BUCK5_CTRL Register (Offset = Ch) [Reset = 22h]  
BUCK5_CTRL is shown in 8-68 and described in 8-36.  
Return to the 8-23.  
8-73. BUCK5_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK5_PLDN BUCK5_VMON BUCK5_VSEL  
_EN  
RESERVED  
BUCK5_FPWM  
BUCK5_EN  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
8-36. BUCK5_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
BUCK5_PLDN  
1h  
Enable output pull-down resistor when BUCK5 is disabled:  
(Default from NVM memory)  
0h = Pull-down resistor disabled  
1h = Pull-down resistor enabled  
4
3
BUCK5_VMON_EN  
BUCK5_VSEL  
R/W  
R/W  
0h  
0h  
Enable BUCK5 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0h = OV, UV, SC and ILIM comparators are disabled  
1h = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK5:  
(Default from NVM memory)  
0h = BUCK5_VOUT_1  
1h = BUCK5_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0h  
1h  
BUCK5_FPWM  
Forces the BUCK5 regulator to operate in PWM mode:  
(Default from NVM memory)  
0h = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1h = Forced to PWM operation.  
0
BUCK5_EN  
R/W  
0h  
Enable BUCK5 regulator:  
(Default from NVM memory)  
0h = BUCK regulator is disabled  
1h = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.13 BUCK5_CONF Register (Offset = Dh) [Reset = 22h]  
BUCK5_CONF is shown in 8-69 and described in 8-37.  
Return to the 8-23.  
8-74. BUCK5_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK5_ILIM  
R/W-4h  
BUCK5_SLEW_RATE  
R/W-2h  
8-37. BUCK5_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
BUCK5_ILIM  
0h  
4h  
Sets the switch peak current limit of BUCK5. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0h = Reserved  
1h = Reserved  
2h = 2.5 A  
3h = 3.5 A  
4h = Reserved  
5h = Reserved  
6h = Reserved  
7h = Reserved  
2-0  
BUCK5_SLEW_RATE  
R/W  
2h  
Sets the output voltage slew rate for BUCK5 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0h = 33 mV/μs  
1h = 20 mV/μs  
2h = 10 mV/μs  
3h = 5.0 mV/μs  
4h = 2.5 mV/μs  
5h = 1.3 mV/μs  
6h = 0.63 mV/μs  
7h = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.14 BUCK1_VOUT_1 Register (Offset = Eh) [Reset = 00h]  
BUCK1_VOUT_1 is shown in 8-70 and described in 8-38.  
Return to the 8-23.  
8-75. BUCK1_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK1_VSET1  
R/W-0h  
8-38. BUCK1_VOUT_1 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK1_VSET1  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.15 BUCK1_VOUT_2 Register (Offset = Fh) [Reset = 00h]  
BUCK1_VOUT_2 is shown in 8-71 and described in 8-39.  
Return to the 8-23.  
8-76. BUCK1_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK1_VSET2  
R/W-0h  
8-39. BUCK1_VOUT_2 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK1_VSET2  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.16 BUCK2_VOUT_1 Register (Offset = 10h) [Reset = 00h]  
BUCK2_VOUT_1 is shown in 8-72 and described in 8-40.  
Return to the 8-23.  
8-77. BUCK2_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK2_VSET1  
R/W-0h  
8-40. BUCK2_VOUT_1 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK2_VSET1  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.17 BUCK2_VOUT_2 Register (Offset = 11h) [Reset = 00h]  
BUCK2_VOUT_2 is shown in 8-73 and described in 8-41.  
Return to the 8-23.  
8-78. BUCK2_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK2_VSET2  
R/W-0h  
8-41. BUCK2_VOUT_2 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK2_VSET2  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.18 BUCK3_VOUT_1 Register (Offset = 12h) [Reset = 00h]  
BUCK3_VOUT_1 is shown in 8-74 and described in 8-42.  
Return to the 8-23.  
8-79. BUCK3_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK3_VSET1  
R/W-0h  
8-42. BUCK3_VOUT_1 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK3_VSET1  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.19 BUCK3_VOUT_2 Register (Offset = 13h) [Reset = 00h]  
BUCK3_VOUT_2 is shown in 8-75 and described in 8-43.  
Return to the 8-23.  
8-80. BUCK3_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK3_VSET2  
R/W-0h  
8-43. BUCK3_VOUT_2 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK3_VSET2  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.20 BUCK4_VOUT_1 Register (Offset = 14h) [Reset = 00h]  
BUCK4_VOUT_1 is shown in 8-76 and described in 8-44.  
Return to the 8-23.  
8-81. BUCK4_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK4_VSET1  
R/W-0h  
8-44. BUCK4_VOUT_1 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK4_VSET1  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.21 BUCK4_VOUT_2 Register (Offset = 15h) [Reset = 00h]  
BUCK4_VOUT_2 is shown in 8-77 and described in 8-45.  
Return to the 8-23.  
8-82. BUCK4_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK4_VSET2  
R/W-0h  
8-45. BUCK4_VOUT_2 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK4_VSET2  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.22 BUCK5_VOUT_1 Register (Offset = 16h) [Reset = 00h]  
BUCK5_VOUT_1 is shown in 8-78 and described in 8-46.  
Return to the 8-23.  
8-83. BUCK5_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK5_VSET1  
R/W-0h  
8-46. BUCK5_VOUT_1 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK5_VSET1  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.23 BUCK5_VOUT_2 Register (Offset = 17h) [Reset = 00h]  
BUCK5_VOUT_2 is shown in 8-79 and described in 8-47.  
Return to the 8-23.  
8-84. BUCK5_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK5_VSET2  
R/W-0h  
8-47. BUCK5_VOUT_2 Register Field Descriptions  
Bit  
7-0  
Field  
BUCK5_VSET2  
Type  
Reset  
Description  
R/W  
0h  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.24 BUCK1_PG_WINDOW Register (Offset = 18h) [Reset = 00h]  
BUCK1_PG_WINDOW is shown in 8-80 and described in 8-48.  
Return to the 8-23.  
8-85. BUCK1_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK1_UV_THR  
R/W-0h  
BUCK1_OV_THR  
R/W-0h  
8-48. BUCK1_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
BUCK1_UV_THR  
0h  
Powergood low threshold level for BUCK1:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
BUCK1_OV_THR  
R/W  
0h  
Powergood high threshold level for BUCK1:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.25 BUCK2_PG_WINDOW Register (Offset = 19h) [Reset = 00h]  
BUCK2_PG_WINDOW is shown in 8-81 and described in 8-49.  
Return to the 8-23.  
8-86. BUCK2_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK2_UV_THR  
R/W-0h  
BUCK2_OV_THR  
R/W-0h  
8-49. BUCK2_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
BUCK2_UV_THR  
0h  
Powergood low threshold level for BUCK2:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
BUCK2_OV_THR  
R/W  
0h  
Powergood high threshold level for BUCK2:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.26 BUCK3_PG_WINDOW Register (Offset = 1Ah) [Reset = 00h]  
BUCK3_PG_WINDOW is shown in 8-82 and described in 8-50.  
Return to the 8-23.  
8-87. BUCK3_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK3_UV_THR  
R/W-0h  
BUCK3_OV_THR  
R/W-0h  
8-50. BUCK3_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
BUCK3_UV_THR  
0h  
Powergood low threshold level for BUCK3:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
BUCK3_OV_THR  
R/W  
0h  
Powergood high threshold level for BUCK3:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.27 BUCK4_PG_WINDOW Register (Offset = 1Bh) [Reset = 00h]  
BUCK4_PG_WINDOW is shown in 8-83 and described in 8-51.  
Return to the 8-23.  
8-88. BUCK4_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK4_UV_THR  
R/W-0h  
BUCK4_OV_THR  
R/W-0h  
8-51. BUCK4_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
BUCK4_UV_THR  
0h  
Powergood low threshold level for BUCK4:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
BUCK4_OV_THR  
R/W  
0h  
Powergood high threshold level for BUCK4:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.28 BUCK5_PG_WINDOW Register (Offset = 1Ch) [Reset = 00h]  
BUCK5_PG_WINDOW is shown in 8-84 and described in 8-52.  
Return to the 8-23.  
8-89. BUCK5_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK5_UV_THR  
R/W-0h  
BUCK5_OV_THR  
R/W-0h  
8-52. BUCK5_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
BUCK5_UV_THR  
0h  
Powergood low threshold level for BUCK5:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
BUCK5_OV_THR  
R/W  
0h  
Powergood high threshold level for BUCK5:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.29 LDO1_CTRL Register (Offset = 1Dh) [Reset = 60h]  
LDO1_CTRL is shown in 8-85 and described in 8-53.  
Return to the 8-23.  
8-90. LDO1_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
LDO1_PLDN  
R/W-3h  
LDO1_VMON_  
EN  
RESERVED  
R/W-0h  
LDO1_SLOW_  
RAMP  
LDO1_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-53. LDO1_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
LDO1_PLDN  
0h  
6-5  
3h  
Enable output pull-down resistor when LDO1 is disabled:  
(Default from NVM memory)  
0h = 50 kOhm  
1h = 125 Ohm  
2h = 250 Ohm  
3h = 500 Ohm  
4
LDO1_VMON_EN  
R/W  
0h  
Enable LDO1 OV and UV comparators:  
(Default from NVM memory)  
0h = OV and UV comparators are disabled  
1h = OV and UV comparators are enabled.  
3-2  
1
RESERVED  
R/W  
R/W  
0h  
0h  
LDO1_SLOW_RAMP  
LDO1 start-up slew rate selection  
0h = 25mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
1h = 3mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
0
LDO1_EN  
R/W  
0h  
Enable LDO1 regulator:  
(Default from NVM memory)  
0h = LDO1 regulator is disabled  
1h = LDO1 regulator is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.30 LDO2_CTRL Register (Offset = 1Eh) [Reset = 60h]  
LDO2_CTRL is shown in 8-86 and described in 8-54.  
Return to the 8-23.  
8-91. LDO2_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
LDO2_PLDN  
R/W-3h  
LDO2_VMON_  
EN  
RESERVED  
R/W-0h  
LDO2_SLOW_  
RAMP  
LDO2_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-54. LDO2_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
LDO2_PLDN  
0h  
6-5  
3h  
Enable output pull-down resistor when LDO2 is disabled:  
(Default from NVM memory)  
0h = 50 kOhm  
1h = 125 Ohm  
2h = 250 Ohm  
3h = 500 Ohm  
4
LDO2_VMON_EN  
R/W  
0h  
Enable LDO2 OV and UV comparators:  
(Default from NVM memory)  
0h = OV and UV comparators are disabled  
1h = OV and UV comparators are enabled.  
3-2  
1
RESERVED  
R/W  
R/W  
0h  
0h  
LDO2_SLOW_RAMP  
LDO2 start-up slew rate selection  
0h = 25mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
1h = 3mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
0
LDO2_EN  
R/W  
0h  
Enable LDO2 regulator:  
(Default from NVM memory)  
0h = LDO1 regulator is disabled  
1h = LDO1 regulator is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.31 LDO3_CTRL Register (Offset = 1Fh) [Reset = 60h]  
LDO3_CTRL is shown in 8-87 and described in 8-55.  
Return to the 8-23.  
8-92. LDO3_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
LDO3_PLDN  
R/W-3h  
LDO3_VMON_  
EN  
RESERVED  
R/W-0h  
LDO3_SLOW_  
RAMP  
LDO3_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-55. LDO3_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
LDO3_PLDN  
0h  
6-5  
3h  
Enable output pull-down resistor when LDO3 is disabled:  
(Default from NVM memory)  
0h = 50 kOhm  
1h = 125 Ohm  
2h = 250 Ohm  
3h = 500 Ohm  
4
LDO3_VMON_EN  
R/W  
0h  
Enable LDO3 OV and UV comparators:  
(Default from NVM memory)  
0h = OV and UV comparators are disabled  
1h = OV and UV comparators are enabled.  
3-2  
1
RESERVED  
R/W  
R/W  
0h  
0h  
LDO3_SLOW_RAMP  
LDO3 start-up slew rate selection  
0h = 25mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
1h = 3mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
0
LDO3_EN  
R/W  
0h  
Enable LDO3 regulator:  
(Default from NVM memory)  
0h = LDO1 regulator is disabled  
1h = LDO1 regulator is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.32 LDO4_CTRL Register (Offset = 20h) [Reset = 60h]  
LDO4_CTRL is shown in 8-88 and described in 8-56.  
Return to the 8-23.  
8-93. LDO4_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
LDO4_PLDN  
R/W-3h  
LDO4_VMON_  
EN  
RESERVED  
R/W-0h  
LDO4_SLOW_  
RAMP  
LDO4_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-56. LDO4_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
LDO4_PLDN  
0h  
6-5  
3h  
Enable output pull-down resistor when LDO4 is disabled:  
(Default from NVM memory)  
0h = 50 kOhm  
1h = 125 Ohm  
2h = 250 Ohm  
3h = 500 Ohm  
4
LDO4_VMON_EN  
R/W  
0h  
Enable LDO4 OV and UV comparators:  
(Default from NVM memory)  
0h = OV and UV comparators are disabled  
1h = OV and UV comparators are enabled.  
3-2  
1
RESERVED  
R/W  
R/W  
0h  
0h  
LDO4_SLOW_RAMP  
LDO4 start-up slew rate selection  
0h = 25mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
1h = 3mV/us max ramp up slew rate for LDO output from 0.3V to  
90% of LDOn_VSET  
0
LDO4_EN  
R/W  
0h  
Enable LDO4 regulator:  
(Default from NVM memory)  
0h = LDO1 regulator is disabled  
1h = LDO1 regulator is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.33 LDORTC_CTRL Register (Offset = 22h) [Reset = 00h]  
LDORTC_CTRL is shown in 8-89 and described in 8-57.  
Return to the 8-23.  
8-94. LDORTC_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDORTC_DIS  
R/W-0h  
8-57. LDORTC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
LDORTC_DIS  
0h  
Disable LDORTC regulator:  
0h = LDORTC regulator is enabled  
1h = LDORTC regulator is disabled  
Copyright © 2022 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.34 LDO1_VOUT Register (Offset = 23h) [Reset = 00h]  
LDO1_VOUT is shown in 8-90 and described in 8-58.  
Return to the 8-23.  
8-95. LDO1_VOUT Register  
7
6
5
4
3
2
1
0
LDO1_BYPASS  
R/W-0h  
LDO1_VSET  
R/W-0h  
RESERVED  
R/W-0h  
8-58. LDO1_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO1_BYPASS  
R/W  
0h  
Set LDO1 to bypass mode:  
(Default from NVM memory)  
0h = LDO is set to linear regulator mode.  
1h = LDO is set to bypass mode.  
6-1  
0
LDO1_VSET  
RESERVED  
R/W  
R/W  
0h  
0h  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.35 LDO2_VOUT Register (Offset = 24h) [Reset = 00h]  
LDO2_VOUT is shown in 8-91 and described in 8-59.  
Return to the 8-23.  
8-96. LDO2_VOUT Register  
7
6
5
4
3
2
1
0
LDO2_BYPASS  
R/W-0h  
LDO2_VSET  
R/W-0h  
RESERVED  
R/W-0h  
8-59. LDO2_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_BYPASS  
R/W  
0h  
Set LDO2 to bypass mode:  
(Default from NVM memory)  
0h = LDO is set to linear regulator mode.  
1h = LDO is set to bypass mode.  
6-1  
0
LDO2_VSET  
RESERVED  
R/W  
R/W  
0h  
0h  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.36 LDO3_VOUT Register (Offset = 25h) [Reset = 00h]  
LDO3_VOUT is shown in 8-92 and described in 8-60.  
Return to the 8-23.  
8-97. LDO3_VOUT Register  
7
6
5
4
3
2
1
0
LDO3_BYPASS  
R/W-0h  
LDO3_VSET  
R/W-0h  
RESERVED  
R/W-0h  
8-60. LDO3_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO3_BYPASS  
R/W  
0h  
Set LDO3 to bypass mode:  
(Default from NVM memory)  
0h = LDO is set to linear regulator mode.  
1h = LDO is set to bypass mode.  
6-1  
0
LDO3_VSET  
RESERVED  
R/W  
R/W  
0h  
0h  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.37 LDO4_VOUT Register (Offset = 26h) [Reset = 00h]  
LDO4_VOUT is shown in 8-93 and described in 8-61.  
Return to the 8-23.  
8-98. LDO4_VOUT Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDO4_VSET  
R/W-0h  
8-61. LDO4_VOUT Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
LDO4_VSET  
0h  
6-0  
0h  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.38 LDO1_PG_WINDOW Register (Offset = 27h) [Reset = 00h]  
LDO1_PG_WINDOW is shown in 8-94 and described in 8-62.  
Return to the 8-23.  
8-99. LDO1_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDO1_UV_THR  
R/W-0h  
LDO1_OV_THR  
R/W-0h  
8-62. LDO1_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
LDO1_UV_THR  
0h  
Powergood low threshold level for LDO1:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
LDO1_OV_THR  
R/W  
0h  
Powergood high threshold level for LDO1:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.39 LDO2_PG_WINDOW Register (Offset = 28h) [Reset = 00h]  
LDO2_PG_WINDOW is shown in 8-95 and described in 8-63.  
Return to the 8-23.  
8-100. LDO2_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDO2_UV_THR  
R/W-0h  
LDO2_OV_THR  
R/W-0h  
8-63. LDO2_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
LDO2_UV_THR  
0h  
Powergood low threshold level for LDO2:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
LDO2_OV_THR  
R/W  
0h  
Powergood high threshold level for LDO2:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.40 LDO3_PG_WINDOW Register (Offset = 29h) [Reset = 00h]  
LDO3_PG_WINDOW is shown in 8-96 and described in 8-64.  
Return to the 8-23.  
8-101. LDO3_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDO3_UV_THR  
R/W-0h  
LDO3_OV_THR  
R/W-0h  
8-64. LDO3_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
LDO3_UV_THR  
0h  
Powergood low threshold level for LDO3:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
LDO3_OV_THR  
R/W  
0h  
Powergood high threshold level for LDO3:  
Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.41 LDO4_PG_WINDOW Register (Offset = 2Ah) [Reset = 00h]  
LDO4_PG_WINDOW is shown in 8-97 and described in 8-65.  
Return to the 8-23.  
8-102. LDO4_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDO4_UV_THR  
R/W-0h  
LDO4_OV_THR  
R/W-0h  
8-65. LDO4_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-3  
RESERVED  
0h  
LDO4_UV_THR  
0h  
Powergood low threshold level for LDO4:  
(Default from NVM memory)  
0h = -3% / -30mV  
1h = -3.5% / -35 mV  
2h = -4% / -40 mV  
3h = -5% / -50 mV  
4h = -6% / -60 mV  
5h = -7% / -70 mV  
6h = -8% / -80 mV  
7h = -10% / -100mV  
2-0  
LDO4_OV_THR  
R/W  
0h  
Powergood high threshold level for LDO4:  
(Default from NVM memory)  
0h = +3% / +30mV  
1h = +3.5% / +35 mV  
2h = +4% / +40 mV  
3h = +5% / +50 mV  
4h = +6% / +60 mV  
5h = +7% / +70 mV  
6h = +8% / +80 mV  
7h = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.42 VCCA_VMON_CTRL Register (Offset = 2Bh) [Reset = 00h]  
VCCA_VMON_CTRL is shown in 8-98 and described in 8-66.  
Return to the 8-23.  
8-103. VCCA_VMON_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
VMON_DEGLIT  
CH_SEL  
RESERVED  
R/W-0h  
VCCA_VMON_  
EN  
R/W-0h  
R/W-0h  
8-66. VCCA_VMON_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R/W  
0h  
VMON_DEGLITCH_SEL R/W  
0h  
Deglitch time select for BUCKx_VMON, LDOx_VMON and  
VCCA_VMON  
(Default from NVM memory)  
0h = 4 us  
1h = 20 us  
4-1  
0
RESERVED  
R/W  
R/W  
0h  
0h  
VCCA_VMON_EN  
Enable VCCA OV and UV comparators:  
(Default from NVM memory)  
0h = OV and UV comparators are disabled  
1h = OV and UV comparators are enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.43 VCCA_PG_WINDOW Register (Offset = 2Ch) [Reset = 40h]  
VCCA_PG_WINDOW is shown in 8-99 and described in 8-67.  
Return to the 8-23.  
8-104. VCCA_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
VCCA_PG_SE  
T
VCCA_UV_THR  
VCCA_OV_THR  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
8-67. VCCA_PG_WINDOW Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0h  
6
VCCA_PG_SET  
1h  
Powergood level for VCCA pin:  
(Default from NVM memory)  
0h = 3.3 V  
1h = 5.0 V  
5-3  
VCCA_UV_THR  
R/W  
0h  
Powergood low threshold level for VCCA pin:  
(Default from NVM memory)  
0h = -3%  
1h = -3.5%  
2h = -4%  
3h = -5%  
4h = -6%  
5h = -7%  
6h = -8%  
7h = -10%  
2-0  
VCCA_OV_THR  
R/W  
0h  
Powergood high threshold level for VCCA pin:  
(Default from NVM memory)  
0h = +3%  
1h = +3.5%  
2h = +4%  
3h = +5%  
4h = +6%  
5h = +7%  
6h = +8%  
7h = +10%  
Copyright © 2022 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.44 GPIO1_CONF Register (Offset = 31h) [Reset = 0Ah]  
GPIO1_CONF is shown in 8-100 and described in 8-68.  
Return to the 8-23.  
8-105. GPIO1_CONF Register  
7
6
5
4
3
2
1
0
GPIO1_SEL  
GPIO1_DEGLIT GPIO1_PU_PD GPIO1_PU_SE  
GPIO1_OD  
GPIO1_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-68. GPIO1_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO1_SEL  
R/W  
0h  
GPIO1 signal function:  
(Default from NVM memory)  
0h = GPIO1  
1h = SCL_I2C2/CS_SPI  
2h = NRSTOUT_SOC  
3h = NRSTOUT_SOC  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO1_DEGLITCH_EN  
GPIO1_PU_PD_EN  
GPIO1_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO1 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO1 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO1 pin pull-up/pull-down resistor:  
GPIO1_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO1_OD  
GPIO1_DIR  
R/W  
R/W  
1h  
0h  
GPIO1 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO1 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.45 GPIO2_CONF Register (Offset = 32h) [Reset = 0Ah]  
GPIO2_CONF is shown in 8-101 and described in 8-69.  
Return to the 8-23.  
8-106. GPIO2_CONF Register  
7
6
5
4
3
2
1
0
GPIO2_SEL  
GPIO2_DEGLIT GPIO2_PU_PD GPIO2_PU_SE  
GPIO2_OD  
GPIO2_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-69. GPIO2_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO2_SEL  
R/W  
0h  
GPIO2 signal function:  
(Default from NVM memory)  
0h = GPIO2  
1h = TRIG_WDOG  
2h = SDA_I2C2/SDO_SPI  
3h = SDA_I2C2/SDO_SPI  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO2_DEGLITCH_EN  
GPIO2_PU_PD_EN  
GPIO2_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO2 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO2 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO2 pin pull-up/pull-down resistor:  
GPIO2_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO2_OD  
GPIO2_DIR  
R/W  
R/W  
1h  
0h  
GPIO2 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO2 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.46 GPIO3_CONF Register (Offset = 33h) [Reset = 0Ah]  
GPIO3_CONF is shown in 8-102 and described in 8-70.  
Return to the 8-23.  
8-107. GPIO3_CONF Register  
7
6
5
4
3
2
1
0
GPIO3_SEL  
GPIO3_DEGLIT GPIO3_PU_PD GPIO3_PU_SE  
GPIO3_OD  
GPIO3_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-70. GPIO3_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO3_SEL  
R/W  
0h  
GPIO3 signal function:  
(Default from NVM memory)  
0h = GPIO3  
1h = CLK32KOUT  
2h = NERR_SOC  
3h = NERR_SOC  
4h = NSLEEP1  
5h = NSLEEP2  
6h = LP_WKUP1  
7h = LP_WKUP2  
4
3
2
GPIO3_DEGLITCH_EN  
GPIO3_PU_PD_EN  
GPIO3_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO3 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO3 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO3 pin pull-up/pull-down resistor:  
GPIO3_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO3_OD  
GPIO3_DIR  
R/W  
R/W  
1h  
0h  
GPIO3 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO3 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.47 GPIO4_CONF Register (Offset = 34h) [Reset = 0Ah]  
GPIO4_CONF is shown in 8-103 and described in 8-71.  
Return to the 8-23.  
8-108. GPIO4_CONF Register  
7
6
5
4
3
2
1
0
GPIO4_SEL  
GPIO4_DEGLIT GPIO4_PU_PD GPIO4_PU_SE  
GPIO4_OD  
GPIO4_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-71. GPIO4_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO4_SEL  
R/W  
0h  
GPIO4 signal function:  
(Default from NVM memory)  
0h = GPIO4  
1h = CLK32KOUT  
2h = CLK32KOUT  
3h = CLK32KOUT  
4h = NSLEEP1  
5h = NSLEEP2  
6h = LP_WKUP1  
7h = LP_WKUP2  
4
3
2
GPIO4_DEGLITCH_EN  
GPIO4_PU_PD_EN  
GPIO4_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO4 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO4 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO4 pin pull-up/pull-down resistor:  
GPIO4_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO4_OD  
GPIO4_DIR  
R/W  
R/W  
1h  
0h  
GPIO4 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO4 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.48 GPIO5_CONF Register (Offset = 35h) [Reset = 0Ah]  
GPIO5_CONF is shown in 8-104 and described in 8-72.  
Return to the 8-23.  
8-109. GPIO5_CONF Register  
7
6
5
4
3
2
1
0
GPIO5_SEL  
GPIO5_DEGLIT GPIO5_PU_PD GPIO5_PU_SE  
GPIO5_OD  
GPIO5_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-72. GPIO5_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO5_SEL  
R/W  
0h  
GPIO5 signal function:  
(Default from NVM memory)  
0h = GPIO5  
1h = SCLK_SPMI  
2h = SCLK_SPMI  
3h = SCLK_SPMI  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO5_DEGLITCH_EN  
GPIO5_PU_PD_EN  
GPIO5_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO5 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO5 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO5 pin pull-up/pull-down resistor:  
GPIO5_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO5_OD  
GPIO5_DIR  
R/W  
R/W  
1h  
0h  
GPIO5 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO5 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.49 GPIO6_CONF Register (Offset = 36h) [Reset = 0Ah]  
GPIO6_CONF is shown in 8-105 and described in 8-73.  
Return to the 8-23.  
8-110. GPIO6_CONF Register  
7
6
5
4
3
2
1
0
GPIO6_SEL  
GPIO6_DEGLIT GPIO6_PU_PD GPIO6_PU_SE  
GPIO6_OD  
GPIO6_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-73. GPIO6_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO6_SEL  
R/W  
0h  
GPIO6 signal function:  
(Default from NVM memory)  
0h = GPIO6  
1h = SDATA_SPMI  
2h = SDATA_SPMI  
3h = SDATA_SPMI  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO6_DEGLITCH_EN  
GPIO6_PU_PD_EN  
GPIO6_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO6 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO6 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO6 pin pull-up/pull-down resistor:  
GPIO6_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO6_OD  
GPIO6_DIR  
R/W  
R/W  
1h  
0h  
GPIO6 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO6 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.50 GPIO7_CONF Register (Offset = 37h) [Reset = 0Ah]  
GPIO7_CONF is shown in 8-106 and described in 8-74.  
Return to the 8-23.  
8-111. GPIO7_CONF Register  
7
6
5
4
3
2
1
0
GPIO7_SEL  
GPIO7_DEGLIT GPIO7_PU_PD GPIO7_PU_SE  
GPIO7_OD  
GPIO7_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-74. GPIO7_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO7_SEL  
R/W  
0h  
GPIO7 signal function:  
(Default from NVM memory)  
0h = GPIO7  
1h = NERR_MCU  
2h = NERR_MCU  
3h = NERR_MCU  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO7_DEGLITCH_EN  
GPIO7_PU_PD_EN  
GPIO7_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO7 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO7 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO7 pin pull-up/pull-down resistor:  
GPIO7_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO7_OD  
GPIO7_DIR  
R/W  
R/W  
1h  
0h  
GPIO7 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO7 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.51 GPIO8_CONF Register (Offset = 38h) [Reset = 0Ah]  
GPIO8_CONF is shown in 8-107 and described in 8-75.  
Return to the 8-23.  
8-112. GPIO8_CONF Register  
7
6
5
4
3
2
1
0
GPIO8_SEL  
GPIO8_DEGLIT GPIO8_PU_PD GPIO8_PU_SE  
GPIO8_OD  
GPIO8_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-75. GPIO8_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO8_SEL  
R/W  
0h  
GPIO8 signal function:  
(Default from NVM memory)  
0h = GPIO8  
1h = CLK32KOUT  
2h = SYNCCLKOUT  
3h = DISABLE_WDOG  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO8_DEGLITCH_EN  
GPIO8_PU_PD_EN  
GPIO8_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO8 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO8 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO8 pin pull-up/pull-down resistor:  
GPIO8_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO8_OD  
GPIO8_DIR  
R/W  
R/W  
1h  
0h  
GPIO8 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO8 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.52 GPIO9_CONF Register (Offset = 39h) [Reset = 0Ah]  
GPIO9_CONF is shown in 8-108 and described in 8-76.  
Return to the 8-23.  
8-113. GPIO9_CONF Register  
7
6
5
4
3
2
1
0
GPIO9_SEL  
GPIO9_DEGLIT GPIO9_PU_PD GPIO9_PU_SE  
GPIO9_OD  
GPIO9_DIR  
CH_EN  
_EN  
L
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-76. GPIO9_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
GPIO9_SEL  
R/W  
0h  
GPIO9 signal function:  
(Default from NVM memory)  
0h = GPIO9  
1h = PGOOD  
2h = DISABLE_WDOG  
3h = SYNCCLKOUT  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO9_DEGLITCH_EN  
GPIO9_PU_PD_EN  
GPIO9_PU_SEL  
R/W  
R/W  
R/W  
0h  
1h  
0h  
GPIO9 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
Control for GPIO9 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO9 pin pull-up/pull-down resistor:  
GPIO9_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO9_OD  
GPIO9_DIR  
R/W  
R/W  
1h  
0h  
GPIO9 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO9 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.53 GPIO10_CONF Register (Offset = 3Ah) [Reset = 0Ah]  
GPIO10_CONF is shown in 8-109 and described in 8-77.  
Return to the 8-23.  
8-114. GPIO10_CONF Register  
7
6
5
4
3
2
1
0
GPIO10_SEL  
GPIO10_DEGLI GPIO10_PU_P GPIO10_PU_S  
GPIO10_OD  
GPIO10_DIR  
TCH_EN  
D_EN  
EL  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-77. GPIO10_CONF Register Field Descriptions  
Bit  
Field  
GPIO10_SEL  
Type  
Reset  
Description  
7-5  
R/W  
0h  
GPIO10 signal function:  
(Default from NVM memory)  
0h = GPIO10  
1h = SYNCCLKIN  
2h = SYNCCLKOUT  
3h = CLK32KOUT  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO10_DEGLITCH_EN R/W  
0h  
1h  
0h  
GPIO10 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
GPIO10_PU_PD_EN  
GPIO10_PU_SEL  
R/W  
R/W  
Control for GPIO10 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO10 pin pull-up/pull-down resistor:  
GPIO10_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO10_OD  
GPIO10_DIR  
R/W  
R/W  
1h  
0h  
GPIO10 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO10 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.54 GPIO11_CONF Register (Offset = 3Bh) [Reset = 0Ah]  
GPIO11_CONF is shown in 8-110 and described in 8-78.  
Return to the 8-23.  
8-115. GPIO11_CONF Register  
7
6
5
4
3
2
1
0
GPIO11_SEL  
GPIO11_DEGLI GPIO11_PU_P GPIO11_PU_S  
GPIO11_OD  
GPIO11_DIR  
TCH_EN  
D_EN  
EL  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
8-78. GPIO11_CONF Register Field Descriptions  
Bit  
Field  
GPIO11_SEL  
Type  
Reset  
Description  
7-5  
R/W  
0h  
GPIO11 signal function:  
(Default from NVM memory)  
0h = GPIO11  
1h = TRIG_WDOG  
2h = NRSTOUT_SOC  
3h = NRSTOUT_SOC  
4h = NSLEEP1  
5h = NSLEEP2  
6h = WKUP1  
7h = WKUP2  
4
3
2
GPIO11_DEGLITCH_EN R/W  
0h  
1h  
0h  
GPIO11 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time.  
GPIO11_PU_PD_EN  
GPIO11_PU_SEL  
R/W  
R/W  
Control for GPIO11 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for GPIO11 pin pull-up/pull-down resistor:  
GPIO11_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
GPIO11_OD  
GPIO11_DIR  
R/W  
R/W  
1h  
0h  
GPIO11 signal type when configured to output:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
GPIO11 signal direction:  
(Default from NVM memory)  
0h = Input  
1h = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.55 NPWRON_CONF Register (Offset = 3Ch) [Reset = 88h]  
NPWRON_CONF is shown in 8-111 and described in 8-79.  
Return to the 8-23.  
8-116. NPWRON_CONF Register  
7
6
5
4
3
2
1
0
NPWRON_SEL  
R/W-2h  
ENABLE_POL ENABLE_DEGL ENABLE_PU_P ENABLE_PU_S RESERVED  
NRSTOUT_OD  
ITCH_EN  
D_EN  
EL  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
8-79. NPWRON_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
NPWRON_SEL  
R/W  
2h  
NPWRON/ENABLE signal function:  
(Default from NVM memory)  
0h = ENABLE  
1h = NPWRON  
2h = None  
3h = None  
5
4
ENABLE_POL  
R/W  
0h  
0h  
Control for ENABLE pin polarity:  
(Default from NVM memory)  
0h = Active high  
1h = Active low  
ENABLE_DEGLITCH_EN R/W  
NPWRON/ENABLE signal deglitch time:  
(Default from NVM memory)  
0h = No deglitch, only synchronization.  
1h = 8 us deglitch time when ENABLE, 50 ms deglitch time when  
NPWRON.  
3
2
ENABLE_PU_PD_EN  
ENABLE_PU_SEL  
R/W  
R/W  
1h  
0h  
Control for NPWRON/ENABLE pin pull-up resistor:  
(Default from NVM memory)  
0h = Pull-up/pull-down resistor disabled  
1h = Pull-up/pull-down resistor enabled  
Control for NPWRON/ENABLE pin pull-down resistor:  
ENABLE_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0h = Pull-down resistor selected  
1h = Pull-up resistor selected  
1
0
RESERVED  
R/W  
R/W  
0h  
0h  
NRSTOUT_OD  
NRSTOUT signal type:  
(Default from NVM memory)  
0h = Push-pull output  
1h = Open-drain output  
Copyright © 2022 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.56 GPIO_OUT_1 Register (Offset = 3Dh) [Reset = 00h]  
GPIO_OUT_1 is shown in 8-112 and described in 8-80.  
Return to the 8-23.  
8-117. GPIO_OUT_1 Register  
7
6
5
4
3
2
1
0
GPIO8_OUT  
R/W-0h  
GPIO7_OUT  
R/W-0h  
GPIO6_OUT  
R/W-0h  
GPIO5_OUT  
R/W-0h  
GPIO4_OUT  
R/W-0h  
GPIO3_OUT  
R/W-0h  
GPIO2_OUT  
R/W-0h  
GPIO1_OUT  
R/W-0h  
8-80. GPIO_OUT_1 Register Field Descriptions  
Bit  
Field  
GPIO8_OUT  
Type  
Reset  
Description  
7
R/W  
0h  
Control for GPIO8 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
6
5
4
3
2
1
0
GPIO7_OUT  
GPIO6_OUT  
GPIO5_OUT  
GPIO4_OUT  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Control for GPIO7 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Control for GPIO6 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Control for GPIO5 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Control for GPIO4 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Control for GPIO3 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Control for GPIO2 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Control for GPIO1 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.57 GPIO_OUT_2 Register (Offset = 3Eh) [Reset = 00h]  
GPIO_OUT_2 is shown in 8-113 and described in 8-81.  
Return to the 8-23.  
8-118. GPIO_OUT_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
GPIO11_OUT  
R/W-0h  
GPIO10_OUT  
R/W-0h  
GPIO9_OUT  
R/W-0h  
8-81. GPIO_OUT_2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-3  
2
RESERVED  
0h  
GPIO11_OUT  
0h  
Control for GPIO11 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
1
0
GPIO10_OUT  
GPIO9_OUT  
R/W  
R/W  
0h  
0h  
Control for GPIO10 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Control for GPIO9 signal when configured to GPIO Output:  
(Default from NVM memory)  
0h = Low  
1h = High  
Copyright © 2022 Texas Instruments Incorporated  
222 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.58 GPIO_IN_1 Register (Offset = 3Fh) [Reset = 00h]  
GPIO_IN_1 is shown in 8-114 and described in 8-82.  
Return to the 8-23.  
8-119. GPIO_IN_1 Register  
7
6
5
4
3
2
1
0
GPIO8_IN  
R-0h  
GPIO7_IN  
R-0h  
GPIO6_IN  
R-0h  
GPIO5_IN  
R-0h  
GPIO4_IN  
R-0h  
GPIO3_IN  
R-0h  
GPIO2_IN  
R-0h  
GPIO1_IN  
R-0h  
8-82. GPIO_IN_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_IN  
GPIO7_IN  
GPIO6_IN  
GPIO5_IN  
GPIO4_IN  
GPIO3_IN  
GPIO2_IN  
GPIO1_IN  
R
0h  
Level of GPIO8 signal:  
0h = Low  
1h = High  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Level of GPIO7 signal:  
0h = Low  
1h = High  
Level of GPIO6 signal:  
0h = Low  
1h = High  
Level of GPIO5 signal:  
0h = Low  
1h = High  
Level of GPIO4 signal:  
0h = Low  
1h = High  
Level of GPIO3 signal:  
0h = Low  
1h = High  
Level of GPIO2 signal:  
0h = Low  
1h = High  
Level of GPIO1 signal:  
0h = Low  
1h = High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.59 GPIO_IN_2 Register (Offset = 40h) [Reset = 00h]  
GPIO_IN_2 is shown in 8-115 and described in 8-83.  
Return to the 8-23.  
8-120. GPIO_IN_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
NPWRON_IN  
R-0h  
GPIO11_IN  
R-0h  
GPIO10_IN  
R-0h  
GPIO9_IN  
R-0h  
8-83. GPIO_IN_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0h  
NPWRON_IN  
R
0h  
Level of NPWRON/ENABLE signal:  
0h = Low  
1h = High  
2
1
0
GPIO11_IN  
GPIO10_IN  
GPIO9_IN  
R
R
R
0h  
0h  
0h  
Level of GPIO11 signal:  
0h = Low  
1h = High  
Level of GPIO10 signal:  
0h = Low  
1h = High  
Level of GPIO9 signal:  
0h = Low  
1h = High  
Copyright © 2022 Texas Instruments Incorporated  
224 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.60 RAIL_SEL_1 Register (Offset = 41h) [Reset = 00h]  
RAIL_SEL_1 is shown in 8-116 and described in 8-84.  
Return to the 8-23.  
8-121. RAIL_SEL_1 Register  
7
6
5
4
3
2
1
0
BUCK4_GRP_SEL  
R/W-0h  
BUCK3_GRP_SEL  
R/W-0h  
BUCK2_GRP_SEL  
R/W-0h  
BUCK1_GRP_SEL  
R/W-0h  
8-84. RAIL_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
BUCK4_GRP_SEL  
R/W  
0h  
Rail group selection for BUCK4:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
BUCK3_GRP_SEL  
BUCK2_GRP_SEL  
BUCK1_GRP_SEL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Rail group selection for BUCK3:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
Rail group selection for BUCK2:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
Rail group selection for BUCK1:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.61 RAIL_SEL_2 Register (Offset = 42h) [Reset = 00h]  
RAIL_SEL_2 is shown in 8-117 and described in 8-85.  
Return to the 8-23.  
8-122. RAIL_SEL_2 Register  
7
6
5
4
3
2
1
0
LDO3_GRP_SEL  
LDO2_GRP_SEL  
R/W-0h  
LDO1_GRP_SEL  
R/W-0h  
BUCK5_GRP_SEL  
R/W-0h  
R/W-0h  
8-85. RAIL_SEL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LDO3_GRP_SEL  
R/W  
0h  
Rail group selection for LDO3:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
5-4  
3-2  
1-0  
LDO2_GRP_SEL  
LDO1_GRP_SEL  
BUCK5_GRP_SEL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Rail group selection for LDO2:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
Rail group selection for LDO1:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
Rail group selection for BUCK5:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
Copyright © 2022 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.62 RAIL_SEL_3 Register (Offset = 43h) [Reset = 00h]  
RAIL_SEL_3 is shown in 8-118 and described in 8-86.  
Return to the 8-23.  
8-123. RAIL_SEL_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
VCCA_GRP_SEL  
R/W-0h  
LDO4_GRP_SEL  
R/W-0h  
8-86. RAIL_SEL_3 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3-2  
RESERVED  
0h  
VCCA_GRP_SEL  
0h  
Rail group selection for VCCA monitoring:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
1-0  
LDO4_GRP_SEL  
R/W  
0h  
Rail group selection for LDO4:  
(Default from NVM memory)  
0h = No group assigned  
1h = MCU rail group  
2h = SOC rail group  
3h = OTHER rail group  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.63 FSM_TRIG_SEL_1 Register (Offset = 44h) [Reset = 00h]  
FSM_TRIG_SEL_1 is shown in 8-119 and described in 8-87.  
Return to the 8-23.  
8-124. FSM_TRIG_SEL_1 Register  
7
6
5
4
3
2
1
0
SEVERE_ERR_TRIG  
R/W-0h  
OTHER_RAIL_TRIG  
R/W-0h  
SOC_RAIL_TRIG  
R/W-0h  
MCU_RAIL_TRIG  
R/W-0h  
8-87. FSM_TRIG_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
SEVERE_ERR_TRIG  
R/W  
0h  
Trigger selection for Severe Error:  
(Default from NVM memory)  
0h = Immediate shutdown  
1h = Orderly shutdown  
2h = MCU power error  
3h = SOC power error  
OTHER_RAIL_TRIG  
SOC_RAIL_TRIG  
MCU_RAIL_TRIG  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Trigger selection for OTHER rail group:  
(Default from NVM memory)  
0h = Immediate shutdown  
1h = Orderly shutdown  
2h = MCU power error  
3h = SOC power error  
Trigger selection for SOC rail group:  
(Default from NVM memory)  
0h = Immediate shutdown  
1h = Orderly shutdown  
2h = MCU power error  
3h = SOC power error  
Trigger selection for MCU rail group:  
(Default from NVM memory)  
0h = Immediate shutdown  
1h = Orderly shutdown  
2h = MCU power error  
3h = SOC power error  
Copyright © 2022 Texas Instruments Incorporated  
228 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.64 FSM_TRIG_SEL_2 Register (Offset = 45h) [Reset = 00h]  
FSM_TRIG_SEL_2 is shown in 8-120 and described in 8-88.  
Return to the 8-23.  
8-125. FSM_TRIG_SEL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
MODERATE_ERR_TRIG  
R/W-0h  
8-88. FSM_TRIG_SEL_2 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-2  
1-0  
R/W  
0h  
MODERATE_ERR_TRIG R/W  
0h  
Trigger selection for Moderate Error:  
(Default from NVM memory)  
0h = Immediate shutdown  
1h = Orderly shutdown  
2h = MCU power error  
3h = SOC power error  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.65 FSM_TRIG_MASK_1 Register (Offset = 46h) [Reset = 00h]  
FSM_TRIG_MASK_1 is shown in 8-121 and described in 8-89.  
Return to the 8-23.  
8-126. FSM_TRIG_MASK_1 Register  
7
6
5
4
3
2
1
0
GPIO4_FSM_M GPIO4_FSM_M GPIO3_FSM_M GPIO3_FSM_M GPIO2_FSM_M GPIO2_FSM_M GPIO1_FSM_M GPIO1_FSM_M  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-89. FSM_TRIG_MASK_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO4_FSM_MASK_POL R/W  
0h  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
6
5
4
3
2
1
0
GPIO4_FSM_MASK  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO3_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO3_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO2_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO2_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO1_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO1_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
Copyright © 2022 Texas Instruments Incorporated  
230 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.66 FSM_TRIG_MASK_2 Register (Offset = 47h) [Reset = 00h]  
FSM_TRIG_MASK_2 is shown in 8-122 and described in 8-90.  
Return to the 8-23.  
8-127. FSM_TRIG_MASK_2 Register  
7
6
5
4
3
2
1
0
GPIO8_FSM_M GPIO8_FSM_M GPIO7_FSM_M GPIO7_FSM_M GPIO6_FSM_M GPIO6_FSM_M GPIO5_FSM_M GPIO5_FSM_M  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-90. FSM_TRIG_MASK_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_FSM_MASK_POL R/W  
0h  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
6
5
4
3
2
1
0
GPIO8_FSM_MASK  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO7_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO7_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO6_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO6_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO5_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO5_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.67 FSM_TRIG_MASK_3 Register (Offset = 48h) [Reset = 00h]  
FSM_TRIG_MASK_3 is shown in 8-123 and described in 8-91.  
Return to the 8-23.  
8-128. FSM_TRIG_MASK_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
GPIO11_FSM_ GPIO11_FSM_ GPIO10_FSM_ GPIO10_FSM_ GPIO9_FSM_M GPIO9_FSM_M  
MASK_POL  
MASK  
MASK_POL  
MASK  
ASK_POL  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-91. FSM_TRIG_MASK_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R/W  
0h  
GPIO11_FSM_MASK_PO R/W  
L
0h  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
4
3
2
1
0
GPIO11_FSM_MASK  
R/W  
0h  
0h  
0h  
0h  
0h  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO10_FSM_MASK_PO R/W  
L
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO10_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
GPIO9_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0h = Masking sets signal value to '0'  
1h = Masking sets signal value to '1'  
GPIO9_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0h = Not masked  
1h = Masked  
Copyright © 2022 Texas Instruments Incorporated  
232 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.68 MASK_BUCK1_2 Register (Offset = 49h) [Reset = 00h]  
MASK_BUCK1_2 is shown in 8-124 and described in 8-92.  
Return to the 8-23.  
8-129. MASK_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_M RESERVED  
ASK  
BUCK2_UV_M BUCK2_OV_M BUCK1_ILIM_M RESERVED  
BUCK1_UV_M BUCK1_OV_M  
ASK  
ASK  
ASK  
ASK  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-92. MASK_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_MASK  
R/W  
0h  
Masking for BUCK2 current monitoring interrupt BUCK2_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
BUCK2_UV_MASK  
Masking of BUCK2 under-voltage detection interrupt  
BUCK2_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
3
BUCK2_OV_MASK  
BUCK1_ILIM_MASK  
R/W  
R/W  
0h  
0h  
Masking of BUCK2 over-voltage detection interrupt BUCK2_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking for BUCK1 current monitoring interrupt BUCK1_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0h  
0h  
BUCK1_UV_MASK  
Masking of BUCK1 under-voltage detection interrupt  
BUCK1_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
BUCK1_OV_MASK  
R/W  
0h  
Masking of BUCK1 over-voltage detection interrupt BUCK1_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 233  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.69 MASK_BUCK3_4 Register (Offset = 4Ah) [Reset = 00h]  
MASK_BUCK3_4 is shown in 8-125 and described in 8-93.  
Return to the 8-23.  
8-130. MASK_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_M RESERVED  
ASK  
BUCK4_UV_M BUCK4_OV_M BUCK3_ILIM_M RESERVED  
BUCK3_UV_M BUCK3_OV_M  
ASK  
ASK  
ASK  
ASK  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-93. MASK_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_MASK  
R/W  
0h  
Masking for BUCK4 current monitoring interrupt BUCK4_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
BUCK4_UV_MASK  
Masking of BUCK4 under-voltage detection interrupt  
BUCK4_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
3
BUCK4_OV_MASK  
BUCK3_ILIM_MASK  
R/W  
R/W  
0h  
0h  
Masking of BUCK4 over-voltage detection interrupt BUCK4_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking for BUCK3 current monitoring interrupt BUCK3_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0h  
0h  
BUCK3_UV_MASK  
Masking of BUCK3 under-voltage detection interrupt  
BUCK3_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
BUCK3_OV_MASK  
R/W  
0h  
Masking of BUCK3 over-voltage detection interrupt BUCK3_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
234 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.70 MASK_BUCK5 Register (Offset = 4Bh) [Reset = 00h]  
MASK_BUCK5 is shown in 8-126 and described in 8-94.  
Return to the 8-23.  
8-131. MASK_BUCK5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK5_ILIM_M RESERVED  
ASK  
BUCK5_UV_M BUCK5_OV_M  
ASK  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-94. MASK_BUCK5 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3
RESERVED  
0h  
BUCK5_ILIM_MASK  
0h  
Masking for BUCK5 current monitoring interrupt BUCK5_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0h  
0h  
BUCK5_UV_MASK  
Masking of BUCK5 under-voltage detection interrupt  
BUCK5_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
BUCK5_OV_MASK  
R/W  
0h  
Masking of BUCK5 over-voltage detection interrupt BUCK5_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 235  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.71 MASK_LDO1_2 Register (Offset = 4Ch) [Reset = 00h]  
MASK_LDO1_2 is shown in 8-127 and described in 8-95.  
Return to the 8-23.  
8-132. MASK_LDO1_2 Register  
7
6
5
4
3
2
1
0
LDO2_ILIM_MA RESERVED  
SK  
LDO2_UV_MA LDO2_OV_MA LDO1_ILIM_MA RESERVED  
LDO1_UV_MA LDO1_OV_MA  
SK  
SK  
SK  
SK  
SK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-95. MASK_LDO1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_ILIM_MASK  
R/W  
0h  
Masking for LDO2 current monitoring interrupt LDO2_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
LDO2_UV_MASK  
Masking of LDO2 under-voltage detection interrupt LDO2_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
3
LDO2_OV_MASK  
LDO1_ILIM_MASK  
R/W  
R/W  
0h  
0h  
Masking of LDO2 over-voltage detection interrupt LDO2_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking for LDO1 current monitoring interrupt LDO1_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0h  
0h  
LDO1_UV_MASK  
Masking of LDO1 under-voltage detection interrupt LDO1_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
LDO1_OV_MASK  
R/W  
0h  
Masking of LDO1 over-voltage detection interrupt LDO1_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
236 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.72 MASK_LDO3_4 Register (Offset = 4Dh) [Reset = 00h]  
MASK_LDO3_4 is shown in 8-128 and described in 8-96.  
Return to the 8-23.  
8-133. MASK_LDO3_4 Register  
7
6
5
4
3
2
1
0
LDO4_ILIM_MA RESERVED  
SK  
LDO4_UV_MA LDO4_OV_MA LDO3_ILIM_MA RESERVED  
LDO3_UV_MA LDO3_OV_MA  
SK  
SK  
SK  
SK  
SK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-96. MASK_LDO3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO4_ILIM_MASK  
R/W  
0h  
Masking for LDO4 current monitoring interrupt LDO4_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
LDO4_UV_MASK  
Masking of LDO4 under-voltage detection interrupt LDO4_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
3
LDO4_OV_MASK  
LDO3_ILIM_MASK  
R/W  
R/W  
0h  
0h  
Masking of LDO4 over-voltage detection interrupt LDO4_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking for LDO3 current monitoring interrupt LDO3_ILIM_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0h  
0h  
LDO3_UV_MASK  
Masking of LDO3 under-voltage detection interrupt LDO3_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
LDO3_OV_MASK  
R/W  
0h  
Masking of LDO3 over-voltage detection interrupt LDO3_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 237  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.73 MASK_VMON Register (Offset = 4Eh) [Reset = 00h]  
MASK_VMON is shown in 8-129 and described in 8-97.  
Return to the 8-23.  
8-134. MASK_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
VCCA_UV_MA VCCA_OV_MA  
SK  
SK  
R/W-0h  
R/W-0h  
8-97. MASK_VMON Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1
RESERVED  
0h  
VCCA_UV_MASK  
0h  
Masking of VCCA under-voltage detection interrupt VCCA_UV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
VCCA_OV_MASK  
R/W  
0h  
Masking of VCCA over-voltage detection interrupt VCCA_OV_INT:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
238 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.74 MASK_GPIO1_8_FALL Register (Offset = 4Fh) [Reset = 00h]  
MASK_GPIO1_8_FALL is shown in 8-130 and described in 8-98.  
Return to the 8-23.  
8-135. MASK_GPIO1_8_FALL Register  
7
6
5
4
3
2
1
0
GPIO8_FALL_ GPIO7_FALL_ GPIO6_FALL_ GPIO5_FALL_ GPIO4_FALL_ GPIO3_FALL_ GPIO2_FALL_ GPIO1_FALL_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-98. MASK_GPIO1_8_FALL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_FALL_MASK  
GPIO7_FALL_MASK  
GPIO6_FALL_MASK  
GPIO5_FALL_MASK  
GPIO4_FALL_MASK  
GPIO3_FALL_MASK  
GPIO2_FALL_MASK  
GPIO1_FALL_MASK  
R/W  
0h  
Masking of interrupt for GPIO8 low state transition:  
This bit does not affect GPIO8_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Masking of interrupt for GPIO7 low state transition:  
This bit does not affect GPIO7_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO6 low state transition:  
This bit does not affect GPIO6_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO5 low state transition:  
This bit does not affect GPIO5_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO4 low state transition:  
This bit does not affect GPIO4_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO3 low state transition:  
This bit does not affect GPIO3_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO2 low state transition:  
This bit does not affect GPIO2_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO1 low state transition:  
This bit does not affect GPIO1_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 239  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.75 MASK_GPIO1_8_RISE Register (Offset = 50h) [Reset = 00h]  
MASK_GPIO1_8_RISE is shown in 8-131 and described in 8-99.  
Return to the 8-23.  
8-136. MASK_GPIO1_8_RISE Register  
7
6
5
4
3
2
1
0
GPIO8_RISE_ GPIO7_RISE_ GPIO6_RISE_ GPIO5_RISE_ GPIO4_RISE_ GPIO3_RISE_ GPIO2_RISE_ GPIO1_RISE_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-99. MASK_GPIO1_8_RISE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_RISE_MASK  
GPIO7_RISE_MASK  
GPIO6_RISE_MASK  
GPIO5_RISE_MASK  
GPIO4_RISE_MASK  
GPIO3_RISE_MASK  
GPIO2_RISE_MASK  
GPIO1_RISE_MASK  
R/W  
0h  
Masking of interrupt for GPIO8 high state transition:  
This bit does not affect GPIO8_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Masking of interrupt for GPIO7 high state transition:  
This bit does not affect GPIO7_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO6 high state transition:  
This bit does not affect GPIO6_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO5 high state transition:  
This bit does not affect GPIO5_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO4 high state transition:  
This bit does not affect GPIO4_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO3 high state transition:  
This bit does not affect GPIO3_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO2 high state transition:  
This bit does not affect GPIO2_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO1 high state transition:  
This bit does not affect GPIO1_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
240 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.76 MASK_GPIO9_11 Register (Offset = 51h) [Reset = 00h]  
MASK_GPIO9_11 is shown in 8-132 and described in 8-100.  
Return to the 8-23.  
8-137. MASK_GPIO9_11 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
GPIO11_RISE_ GPIO10_RISE_ GPIO9_RISE_ GPIO11_FALL_ GPIO10_FALL_ GPIO9_FALL_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-100. MASK_GPIO9_11 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
GPIO11_RISE_MASK  
0h  
Masking of interrupt for GPIO11 high state transition:  
This bit does not affect GPIO11_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
3
2
1
0
GPIO10_RISE_MASK  
GPIO9_RISE_MASK  
GPIO11_FALL_MASK  
GPIO10_FALL_MASK  
GPIO9_FALL_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
Masking of interrupt for GPIO10 high state transition:  
This bit does not affect GPIO10_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO9 high state transition:  
This bit does not affect GPIO9_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO11 low state transition:  
This bit does not affect GPIO11_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO10 low state transition:  
This bit does not affect GPIO10_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of interrupt for GPIO9 low state transition:  
This bit does not affect GPIO9_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 241  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.77 MASK_STARTUP Register (Offset = 52h) [Reset = 00h]  
MASK_STARTUP is shown in 8-133 and described in 8-101.  
Return to the 8-23.  
8-138. MASK_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SOFT_REBOO  
T_MASK  
FSD_MASK  
RESERVED  
R/W-0h  
ENABLE_MAS NPWRON_STA  
K
RT_MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-101. MASK_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
SOFT_REBOOT_MASK  
0h  
Masking of SOFT_REBOOT_MASK interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
FSD_MASK  
R/W  
0h  
Masking of FSD_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
3-2  
1
RESERVED  
R/W  
R/W  
0h  
0h  
ENABLE_MASK  
Masking of ENABLE_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
NPWRON_START_MASK R/W  
0h  
Masking of NPWRON_START_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
242 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.78 MASK_MISC Register (Offset = 53h) [Reset = 00h]  
MASK_MISC is shown in 8-134 and described in 8-102.  
Return to the 8-23.  
8-139. MASK_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
TWARN_MASK  
RESERVED EXT_CLK_MAS BIST_PASS_M  
K
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-102. MASK_MISC Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3
RESERVED  
0h  
TWARN_MASK  
0h  
Masking of TWARN_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0h  
0h  
EXT_CLK_MASK  
Masking of EXT_CLK_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
BIST_PASS_MASK  
R/W  
0h  
Masking of BIST_PASS_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 243  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.79 MASK_MODERATE_ERR Register (Offset = 54h) [Reset = 00h]  
MASK_MODERATE_ERR is shown in 8-135 and described in 8-103.  
Return to the 8-23.  
8-140. MASK_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
NRSTOUT_RE NINT_READBA NPWRON_LON SPMI_ERR_MA RESERVED  
REG_CRC_ER BIST_FAIL_MA  
RESERVED  
ADBACK_MAS  
K
CK_MASK  
G_MASK  
SK  
R_MASK  
SK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-103. MASK_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NRSTOUT_READBACK_ R/W  
MASK  
0h  
Masking of NRSTOUT_READBACK_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
4
NINT_READBACK_MASK R/W  
NPWRON_LONG_MASK R/W  
0h  
0h  
0h  
Masking of NINT_READBACK_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of NPWRON_LONG_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
SPMI_ERR_MASK  
R/W  
Masking of SPMI_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
3
2
RESERVED  
R/W  
R/W  
0h  
0h  
REG_CRC_ERR_MASK  
Masking of REG_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
1
0
BIST_FAIL_MASK  
RESERVED  
R/W  
R/W  
0h  
0h  
Masking of BIST_FAIL_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
244 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.80 MASK_FSM_ERR Register (Offset = 56h) [Reset = 00h]  
MASK_FSM_ERR is shown in 8-136 and described in 8-104.  
Return to the 8-23.  
8-141. MASK_FSM_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SOC_PWR_ER MCU_PWR_ER ORD_SHUTDO IMM_SHUTDO  
R_MASK  
R_MASK  
WN_MASK  
WN_MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-104. MASK_FSM_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-4  
3
R/W  
0h  
SOC_PWR_ERR_MASK R/W  
0h  
Masking of SOC_PWR_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
0
MCU_PWR_ERR_MASK R/W  
0h  
0h  
0h  
Masking of MCU_PWR_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
ORD_SHUTDOWN_MAS R/W  
K
Masking of ORD_SHUTDOWN_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
IMM_SHUTDOWN_MASK R/W  
Masking of IMM_SHUTDOWN_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 245  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.81 MASK_COMM_ERR Register (Offset = 57h) [Reset = 00h]  
MASK_COMM_ERR is shown in 8-137 and described in 8-105.  
Return to the 8-23.  
8-142. MASK_COMM_ERR Register  
7
6
5
4
3
2
1
0
I2C2_ADR_ER  
R_MASK  
RESERVED  
I2C2_CRC_ER  
R_MASK  
RESERVED  
COMM_ADR_E  
RR_MASK  
RESERVED COMM_CRC_E COMM_FRM_E  
RR_MASK  
RR_MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-105. MASK_COMM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C2_ADR_ERR_MASK  
R/W  
0h  
Masking of I2C2_ADR_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
I2C2_CRC_ERR_MASK  
Masking of I2C2_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
3
RESERVED  
R/W  
0h  
0h  
COMM_ADR_ERR_MASK R/W  
Masking of COMM_ADR_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2
1
RESERVED  
R/W  
0h  
0h  
COMM_CRC_ERR_MAS R/W  
K
Masking of COMM_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
0
COMM_FRM_ERR_MAS R/W  
K
0h  
Masking of COMM_FRM_ERR_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
246 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.82 MASK_READBACK_ERR Register (Offset = 58h) [Reset = 00h]  
MASK_READBACK_ERR is shown in 8-138 and described in 8-106.  
Return to the 8-23.  
8-143. MASK_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NRSTOUT_SO  
C_READBACK  
_MASK  
RESERVED  
R/W-0h  
EN_DRV_REA  
DBACK_MASK  
R/W-0h  
R/W-0h  
8-106. MASK_READBACK_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-4  
3
R/W  
0h  
NRSTOUT_SOC_READB R/W  
ACK_MASK  
0h  
Masking of NRSTOUT_SOC_READBACK_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
2-1  
0
RESERVED  
R/W  
0h  
0h  
EN_DRV_READBACK_M R/W  
ASK  
Masking of EN_DRV_READBACK_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 247  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.83 MASK_ESM Register (Offset = 59h) [Reset = 00h]  
MASK_ESM is shown in 8-139 and described in 8-107.  
Return to the 8-23.  
8-144. MASK_ESM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
ESM_MCU_RS ESM_MCU_FAI ESM_MCU_PIN ESM_SOC_RS ESM_SOC_FAI ESM_SOC_PIN  
T_MASK  
L_MASK  
_MASK  
T_MASK  
L_MASK  
_MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-107. MASK_ESM Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0h  
ESM_MCU_RST_MASK  
0h  
Masking of ESM_MCU_RST_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
4
3
2
1
0
ESM_MCU_FAIL_MASK R/W  
0h  
0h  
0h  
0h  
0h  
Masking of ESM_MCU_FAIL_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
ESM_MCU_PIN_MASK  
ESM_SOC_RST_MASK  
ESM_SOC_FAIL_MASK  
ESM_SOC_PIN_MASK  
R/W  
R/W  
R/W  
R/W  
Masking of ESM_MCU_PIN_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of ESM_SOC_RST_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of ESM_SOC_FAIL_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Masking of ESM_SOC_PIN_INT interrupt:  
(Default from NVM memory)  
0h = Interrupt generated  
1h = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
248 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.84 INT_TOP Register (Offset = 5Ah) [Reset = 00h]  
INT_TOP is shown in 8-140 and described in 8-108.  
Return to the 8-23.  
8-145. INT_TOP Register  
7
6
5
4
3
2
1
0
FSM_ERR_INT SEVERE_ERR MODERATE_E  
MISC_INT  
STARTUP_INT  
GPIO_INT  
LDO_VMON_IN  
T
BUCK_INT  
_INT  
RR_INT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
8-108. INT_TOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
FSM_ERR_INT  
R
0h  
Interrupt indicating that INT_FSM_ERR register has pending  
interrupt. The reason for the interrupt is indicated in INT_FSM_ERR  
register.  
This bit is cleared automatically when INT_FSM_ERR register is  
cleared to 0x00.  
SEVERE_ERR_INT  
MODERATE_ERR_INT  
R
R
0h  
0h  
Interrupt indicating that INT_SEVERE_ERR register has pending  
interrupt. The reason for the interrupt is indicated in  
INT_SEVERE_ERR register.  
This bit is cleared automatically when INT_SEVERE_ERR register is  
cleared to 0x00.  
Interrupt indicating that INT_MODERATE_ERR register has pending  
interrupt. The reason for the interrupt is indicated in  
INT_MODERATE_ERR register.  
This bit is cleared automatically when INT_MODERATE_ERR  
register is cleared to 0x00.  
4
3
MISC_INT  
R
R
0h  
0h  
Interrupt indicating that INT_MISC register has pending interrupt.  
The reason for the interrupt is indicated in INT_MISC register.  
This bit is cleared automatically when INT_MISC register is cleared  
to 0x00.  
STARTUP_INT  
Interrupt indicating that INT_STARTUP register has pending  
interrupt. The reason for the interrupt is indicated in INT_STARTUP  
register.  
This bit is cleared automatically when INT_STARTUP register is  
cleared to 0x00.  
2
1
GPIO_INT  
R
R
0h  
0h  
Interrupt indicating that INT_GPIO register has pending interrupt.  
The reason for the interrupt is indicated in INT_GPIO register.  
This bit is cleared automatically when INT_GPIO register is cleared  
to 0x00.  
LDO_VMON_INT  
Interrupt indicating that INT_LDO_VMON register has pending  
interrupt. The reason for the interrupt is indicated in  
INT_LDO_VMON register.  
This bit is cleared automatically when INT_LDO_VMON register is  
cleared to 0x00.  
0
BUCK_INT  
R
0h  
Interrupt indicating that INT_BUCK register has pending interrupt.  
The reason for the interrupt is indicated in INT_BUCK register.  
This bit is cleared automatically when INT_BUCK register is cleared  
to 0x00.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 249  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.85 INT_BUCK Register (Offset = 5Bh) [Reset = 00h]  
INT_BUCK is shown in 8-141 and described in 8-109.  
Return to the 8-23.  
8-146. INT_BUCK Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
BUCK5_INT  
R-0h  
BUCK3_4_INT BUCK1_2_INT  
R-0h R-0h  
8-109. INT_BUCK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
BUCK5_INT  
R
0h  
R
0h  
Interrupt indicating that INT_BUCK5 register has pending interrupt.  
The reason for the interrupt is indicated in INT_BUCK5 register.  
This bit is cleared automatically when INT_BUCK5 register is cleared  
to 0x00.  
1
0
BUCK3_4_INT  
BUCK1_2_INT  
R
R
0h  
0h  
Interrupt indicating that INT_BUCK3_4 register has pending  
interrupt.  
This bit is cleared automatically when INT_BUCK3_4 register is  
cleared to 0x00.  
Interrupt indicating that INT_BUCK1_2 register has pending  
interrupt.  
This bit is cleared automatically when INT_BUCK1_2 register is  
cleared to 0x00.  
Copyright © 2022 Texas Instruments Incorporated  
250 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.86 INT_BUCK1_2 Register (Offset = 5Ch) [Reset = 00h]  
INT_BUCK1_2 is shown in 8-142 and described in 8-110.  
Return to the 8-23.  
8-147. INT_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_I BUCK2_SC_IN BUCK2_UV_IN BUCK2_OV_IN BUCK1_ILIM_I BUCK1_SC_IN BUCK1_UV_IN BUCK1_OV_IN  
NT  
T
T
T
NT  
T
T
T
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-110. INT_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_INT  
BUCK2_SC_INT  
BUCK2_UV_INT  
BUCK2_OV_INT  
BUCK1_ILIM_INT  
BUCK1_SC_INT  
BUCK1_UV_INT  
BUCK1_OV_INT  
R/W1C  
0h  
Latched status bit indicating that BUCK2 output current limit has  
been triggered.  
Write 1 to clear.  
6
5
4
3
2
1
0
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Latched status bit indicating that the BUCK2 output voltage has  
fallen below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that BUCK2 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK2 output over-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK1 output current limit has  
been triggered.  
Write 1 to clear.  
Latched status bit indicating that the BUCK1 output voltage has  
fallen below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that BUCK1 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK1 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 251  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.87 INT_BUCK3_4 Register (Offset = 5Dh) [Reset = 00h]  
INT_BUCK3_4 is shown in 8-143 and described in 8-111.  
Return to the 8-23.  
8-148. INT_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_I BUCK4_SC_IN BUCK4_UV_IN BUCK4_OV_IN BUCK3_ILIM_I BUCK3_SC_IN BUCK3_UV_IN BUCK3_OV_IN  
NT  
T
T
T
NT  
T
T
T
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-111. INT_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_INT  
BUCK4_SC_INT  
BUCK4_UV_INT  
BUCK4_OV_INT  
BUCK3_ILIM_INT  
BUCK3_SC_INT  
BUCK3_UV_INT  
BUCK3_OV_INT  
R/W1C  
0h  
Latched status bit indicating that BUCK4 output current limit has  
been triggered.  
Write 1 to clear.  
6
5
4
3
2
1
0
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Latched status bit indicating that the BUCK4 output voltage has  
fallen below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that BUCK4 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK4 output over-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK3 output current limit has  
been triggered.  
Write 1 to clear.  
Latched status bit indicating that the BUCK3 output voltage has  
fallen below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that BUCK3 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK3 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
252 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.88 INT_BUCK5 Register (Offset = 5Eh) [Reset = 00h]  
INT_BUCK5 is shown in 8-144 and described in 8-112.  
Return to the 8-23.  
8-149. INT_BUCK5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK5_ILIM_I BUCK5_SC_IN BUCK5_UV_IN BUCK5_OV_IN  
NT  
T
T
T
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-112. INT_BUCK5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R/W  
0h  
BUCK5_ILIM_INT  
R/W1C  
0h  
Latched status bit indicating that BUCK5 output current limit has  
been triggered.  
Write 1 to clear.  
2
1
0
BUCK5_SC_INT  
BUCK5_UV_INT  
BUCK5_OV_INT  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
Latched status bit indicating that the BUCK5 output voltage has  
fallen below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that BUCK5 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK5 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 253  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.89 INT_LDO_VMON Register (Offset = 5Fh) [Reset = 00h]  
INT_LDO_VMON is shown in 8-145 and described in 8-113.  
Return to the 8-23.  
8-150. INT_LDO_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
VCCA_INT  
R-0h  
RESERVED  
R-0h  
LDO3_4_INT  
R-0h  
LDO1_2_INT  
R-0h  
8-113. INT_LDO_VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
VCCA_INT  
R
0h  
R
0h  
Interrupt indicating that INT_VMON register has pending interrupt.  
The reason for the interrupt is indicated in INT_VMON register.  
This bit is cleared automatically when INT_VMON register is cleared  
to 0x00.  
3-2  
1
RESERVED  
LDO3_4_INT  
R
R
0h  
0h  
Interrupt indicating that INT_LDO3_4 register has pending interrupt.  
This bit is cleared automatically when INT_LDO3_4 register is  
cleared to 0x00.  
0
LDO1_2_INT  
R
0h  
Interrupt indicating that INT_LDO1_2 register has pending interrupt.  
This bit is cleared automatically when INT_LDO1_2 register is  
cleared to 0x00.  
Copyright © 2022 Texas Instruments Incorporated  
254 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.90 INT_LDO1_2 Register (Offset = 60h) [Reset = 00h]  
INT_LDO1_2 is shown in 8-146 and described in 8-114.  
Return to the 8-23.  
8-151. INT_LDO1_2 Register  
7
6
5
4
3
2
1
0
LDO2_ILIM_IN LDO2_SC_INT LDO2_UV_INT LDO2_OV_INT LDO1_ILIM_IN LDO1_SC_INT LDO1_UV_INT LDO1_OV_INT  
T
T
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-114. INT_LDO1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_ILIM_INT  
LDO2_SC_INT  
LDO2_UV_INT  
LDO2_OV_INT  
LDO1_ILIM_INT  
LDO1_SC_INT  
LDO1_UV_INT  
LDO1_OV_INT  
R/W1C  
0h  
Latched status bit indicating that LDO2 output current limit has been  
triggered.  
Write 1 to clear.  
6
5
4
3
2
1
0
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Latched status bit indicating that LDO2 output voltage has fallen  
below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that LDO2 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO2 output over-voltage has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that LDO1 output current limit has been  
triggered.  
Write 1 to clear.  
Latched status bit indicating that LDO1 output voltage has fallen  
below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that LDO1 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO1 output over-voltage has been  
detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 255  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.91 INT_LDO3_4 Register (Offset = 61h) [Reset = 00h]  
INT_LDO3_4 is shown in 8-147 and described in 8-115.  
Return to the 8-23.  
8-152. INT_LDO3_4 Register  
7
6
5
4
3
2
1
0
LDO4_ILIM_IN LDO4_SC_INT LDO4_UV_INT LDO4_OV_INT LDO3_ILIM_IN LDO3_SC_INT LDO3_UV_INT LDO3_OV_INT  
T
T
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-115. INT_LDO3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO4_ILIM_INT  
LDO4_SC_INT  
LDO4_UV_INT  
LDO4_OV_INT  
LDO3_ILIM_INT  
LDO3_SC_INT  
LDO3_UV_INT  
LDO3_OV_INT  
R/W1C  
0h  
Latched status bit indicating that LDO4 output current limit has been  
triggered.  
Write 1 to clear.  
6
5
4
3
2
1
0
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Latched status bit indicating that LDO4 output voltage has fallen  
below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that LDO4 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO4 output over-voltage has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that LDO3 output current limit has been  
triggered.  
Write 1 to clear.  
Latched status bit indicating that LDO3 output voltage has fallen  
below 150 mV level during operation.  
Write 1 to clear.  
Latched status bit indicating that LDO3 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO3 output over-voltage has been  
detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
256 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.92 INT_VMON Register (Offset = 62h) [Reset = 00h]  
INT_VMON is shown in 8-148 and described in 8-116.  
Return to the 8-23.  
8-153. INT_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
VCCA_UV_INT VCCA_OV_INT  
R/W1C-0h R/W1C-0h  
8-116. INT_VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
R/W  
0h  
VCCA_UV_INT  
R/W1C  
0h  
Latched status bit indicating that the VCCA input voltage has  
decreased below the under-voltage monitoring level. The actual  
status of the VCCA under-voltage monitoring is indicated by  
VCCA_UV_STAT bit.  
Write 1 to clear interrupt.  
0
VCCA_OV_INT  
R/W1C  
0h  
Latched status bit indicating that the VCCA input voltage has  
exceeded the over-voltage detection level. The actual status of the  
over-voltage is indicated by VCCA_OV_STAT bit.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 257  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.93 INT_GPIO Register (Offset = 63h) [Reset = 00h]  
INT_GPIO is shown in 8-149 and described in 8-117.  
Return to the 8-23.  
8-154. INT_GPIO Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
GPIO1_8_INT  
R-0h  
GPIO11_INT  
R/W1C-0h  
GPIO10_INT  
R/W1C-0h  
GPIO9_INT  
R/W1C-0h  
8-117. INT_GPIO Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
7-4  
3
RESERVED  
0h  
GPIO1_8_INT  
0h  
Interrupt indicating that INT_GPIO1_8 has pending interrupt. The  
reason for the interrupt is indicated in INT_GPIO1_8 register.  
This bit is cleared automatically when INT_GPIO1_8 register is  
cleared to 0x00.  
2
1
0
GPIO11_INT  
GPIO10_INT  
GPIO9_INT  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
Latched status bit indicating that GPIO11 has pending interrupt.  
GPIO11_IN bit in GPIO_IN_2 register shows the status of the  
GPIO11 signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO10 has pending interrupt.  
GPIO10_IN bit in GPIO_IN_2 register shows the status of the  
GPIO10 signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO9 has pending interrupt.  
GPIO9_IN bit in GPIO_IN_2 register shows the status of the GPIO9  
signal.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
258 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.94 INT_GPIO1_8 Register (Offset = 64h) [Reset = 00h]  
INT_GPIO1_8 is shown in 8-150 and described in 8-118.  
Return to the 8-23.  
8-155. INT_GPIO1_8 Register  
7
6
5
4
3
2
1
0
GPIO8_INT  
R/W1C-0h  
GPIO7_INT  
R/W1C-0h  
GPIO6_INT  
R/W1C-0h  
GPIO5_INT  
R/W1C-0h  
GPIO4_INT  
R/W1C-0h  
GPIO3_INT  
R/W1C-0h  
GPIO2_INT  
R/W1C-0h  
GPIO1_INT  
R/W1C-0h  
8-118. INT_GPIO1_8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_INT  
GPIO7_INT  
GPIO6_INT  
GPIO5_INT  
GPIO4_INT  
GPIO3_INT  
GPIO2_INT  
GPIO1_INT  
R/W1C  
0h  
Latched status bit indicating that GPIO8 has has pending interrupt.  
GPIO8_IN bit in GPIO_IN_1 register shows the status of the GPIO8  
signal.  
Write 1 to clear interrupt.  
6
5
4
3
2
1
0
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Latched status bit indicating that GPIO7 has has pending interrupt.  
GPIO7_IN bit in GPIO_IN_1 register shows the status of the GPIO7  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO6 has has pending interrupt.  
GPIO6_IN bit in GPIO_IN_1 register shows the status of the GPIO6  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO5 has has pending interrupt.  
GPIO5_IN bit in GPIO_IN_1 register shows the status of the GPIO5  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO4 has has pending interrupt.  
GPIO4_IN bit in GPIO_IN_1 register shows the status of the GPIO4  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO3 has has pending interrupt.  
GPIO3_IN bit in GPIO_IN_1 register shows the status of the GPIO3  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO2 has pending interrupt.  
GPIO2_IN bit in GPIO_IN_1 register shows the status of the GPIO2  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO1 has pending interrupt.  
GPIO1_IN bit in GPIO_IN_1 register shows the status of the GPIO1  
signal.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 259  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.95 INT_STARTUP Register (Offset = 65h) [Reset = 00h]  
INT_STARTUP is shown in 8-151 and described in 8-119.  
Return to the 8-23.  
8-156. INT_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SOFT_REBOO  
T_INT  
FSD_INT  
R/W1C-0h  
RESERVED  
R/W-0h  
RTC_INT  
ENABLE_INT NPWRON_STA  
RT_INT  
R/W1C-0h  
R-0h  
R/W1C-0h  
R/W1C-0h  
8-119. INT_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R/W  
0h  
SOFT_REBOOT_INT  
R/W1C  
0h  
Latched status bit indicating that soft reboot event has been  
detected.  
Write 1 to clear.  
4
FSD_INT  
R/W1C  
0h  
Latched status bit indicating that PMIC has started from  
NO_SUPPLY or BACKUP state (first supply dectection).  
Write 1 to clear.  
3
2
RESERVED  
RTC_INT  
R/W  
R
0h  
0h  
Latched status bit indicating that RTC_STATUS register has pending  
interrupt.  
This bit is cleared automatically when ALARM and TIMER interrupts  
are cleared.  
1
0
ENABLE_INT  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that ENABLE pin active event has been  
detected.  
Write 1 to clear.  
NPWRON_START_INT  
Latched status bit indicating that NPWRON start-up event has been  
detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
260 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.96 INT_MISC Register (Offset = 66h) [Reset = 00h]  
INT_MISC is shown in 8-152 and described in 8-120.  
Return to the 8-23.  
8-157. INT_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
TWARN_INT  
RESERVED  
EXT_CLK_INT BIST_PASS_IN  
T
R/W1C-0h  
R/W-0h  
R/W1C-0h  
R/W1C-0h  
8-120. INT_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
TWARN_INT  
R/W  
0h  
R/W1C  
0h  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal warning level. The actual status of the thermal  
warning is indicated by TWARN_STAT bit in STAT_MISC register.  
Write 1 to clear interrupt.  
2
1
RESERVED  
R/W  
0h  
0h  
EXT_CLK_INT  
R/W1C  
Latched status bit indicating that external clock is not valid.  
Internal clock is automatically taken into use.  
Write 1 to clear.  
0
BIST_PASS_INT  
R/W1C  
0h  
Latched status bit indicating that BOOT_BIST or RUNTIME_BSIT  
has been completed.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 261  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.97 INT_MODERATE_ERR Register (Offset = 67h) [Reset = 00h]  
INT_MODERATE_ERR is shown in 8-153 and described in 8-121.  
Return to the 8-23.  
8-158. INT_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
NRSTOUT_RE NINT_READBA NPWRON_LON SPMI_ERR_IN RECOV_CNT_I REG_CRC_ER BIST_FAIL_INT TSD_ORD_INT  
ADBACK_INT  
CK_INT  
G_INT  
T
NT  
R_INT  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-121. INT_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NRSTOUT_READBACK_I R/W1C  
NT  
0h  
Latched status bit indicating that NRSTOUT readback error has been  
detected.  
Write 1 to clear interrupt.  
6
5
4
3
2
1
0
NINT_READBACK_INT  
NPWRON_LONG_INT  
SPMI_ERR_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Latched status bit indicating that NINT readback error has been  
detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that NPWRON long press has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that the SPMI communication interface  
has detected an error.  
Write 1 to clear interrupt.  
RECOV_CNT_INT  
REG_CRC_ERR_INT  
BIST_FAIL_INT  
Latched status bit indicating that RECOV_CNT has reached the limit  
(RECOV_CNT_THR).  
Write 1 to clear.  
Latched status bit indicating that the register CRC checking has  
detected an error.  
Write 1 to clear interrupt.  
Latched status bit indicating that the BOOT_BIST or  
RUNTIME_BIST has detected an error.  
Write 1 to clear interrupt.  
TSD_ORD_INT  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal level causing a sequenced shutdown. The  
regulators have been disabled. The regulators cannot be enabled if  
this bit is active. The actual status of the temperature is indicated by  
TSD_ORD_STAT bit in STAT_MODERATE_ERR register.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
262 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.98 INT_SEVERE_ERR Register (Offset = 68h) [Reset = 00h]  
INT_SEVERE_ERR is shown in 8-154 and described in 8-122.  
Return to the 8-23.  
8-159. INT_SEVERE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
PFSM_ERR_IN VCCA_OVP_IN TSD_IMM_INT  
T
T
R/W-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-122. INT_SEVERE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
R/W  
0h  
PFSM_ERR_INT  
R/W1C  
0h  
Latched status bit indicating that the PFSM sequencer has detected  
an error.  
Write 1 to clear interrupt.  
1
0
VCCA_OVP_INT  
TSD_IMM_INT  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that the VCCA input voltage has  
exceeded the over-voltage threshold level causing an immediate  
shutdown. The regulators have been disabled.  
Write 1 to clear interrupt.  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal level causing an immediate shutdown. The  
regulators have been disabled. The regulators cannot be enabled if  
this bit is active. The actual status of the temperature is indicated by  
TSD_IMM_STAT bit in THER_CLK_STATUS register.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 263  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.99 INT_FSM_ERR Register (Offset = 69h) [Reset = 00h]  
INT_FSM_ERR is shown in 8-155 and described in 8-123.  
Return to the 8-23.  
8-160. INT_FSM_ERR Register  
7
6
5
4
3
2
1
0
WD_INT  
ESM_INT  
READBACK_E COMM_ERR_I SOC_PWR_ER MCU_PWR_ER ORD_SHUTDO IMM_SHUTDO  
RR_INT  
NT  
R_INT  
R_INT  
WN_INT  
WN_INT  
R-0h  
R-0h  
R-0h  
R-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-123. INT_FSM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD_INT  
R
0h  
Interrupt indicating that WD_ERR_STATUS register has pending  
interrupt.  
This bit is cleared automatically when WD_RST_INT, WD_FAIL_INT  
and WD_LONGWIN_TIMEOUT_INT are cleared.  
6
5
ESM_INT  
R
R
0h  
0h  
Interrupt indicating that INT_ESM has pending interrupt.  
This bit is cleared automatically when INT_ESM register is cleared to  
0x00.  
READBACK_ERR_INT  
Interrupt indicating that INT_READBACK_ERR has pending  
interrupt.  
This bit is cleared automatically when INT_READBACK_ERR  
register is cleared to 0x00.  
4
COMM_ERR_INT  
R
0h  
Interrupt indicating that INT_COMM_ERR has pending interrupt. The  
reason for the interrupt is indicated in INT_COMM_ERR register.  
This bit is cleared automatically when INT_COMM_ERR register is  
cleared to 0x00.  
3
2
1
0
SOC_PWR_ERR_INT  
MCU_PWR_ERR_INT  
ORD_SHUTDOWN_INT  
IMM_SHUTDOWN_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
Latched status bit indicating that SOC power error has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that MCU power error has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that orderly shutdown has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that immediate shutdown has been  
detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
264 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.100 INT_COMM_ERR Register (Offset = 6Ah) [Reset = 00h]  
INT_COMM_ERR is shown in 8-156 and described in 8-124.  
Return to the 8-23.  
8-161. INT_COMM_ERR Register  
7
6
5
4
3
2
1
0
I2C2_ADR_ER  
R_INT  
RESERVED  
I2C2_CRC_ER  
R_INT  
RESERVED  
COMM_ADR_E  
RR_INT  
RESERVED COMM_CRC_E COMM_FRM_E  
RR_INT  
RR_INT  
R/W1C-0h  
R/W-0h  
R/W1C-0h  
R/W-0h  
R/W1C-0h  
R/W-0h  
R/W1C-0h  
R/W1C-0h  
8-124. INT_COMM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C2_ADR_ERR_INT  
R/W1C  
0h  
Latched status bit indicating that I2C2 write to non-existing, protected  
or read-only register address has been detected.  
Write 1 to clear interrupt.  
6
5
RESERVED  
R/W  
0h  
0h  
I2C2_CRC_ERR_INT  
R/W1C  
Latched status bit indicating that I2C2 CRC error has been detected.  
Write 1 to clear interrupt.  
4
3
RESERVED  
R/W  
0h  
0h  
COMM_ADR_ERR_INT  
R/W1C  
Latched status bit indicating that I2C1/SPI write to non-existing,  
protected or read-only register address has been detected.  
Write 1 to clear interrupt.  
2
1
RESERVED  
R/W  
0h  
0h  
COMM_CRC_ERR_INT  
R/W1C  
Latched status bit indicating that I2C1/SPI CRC error has been  
detected.  
Write 1 to clear interrupt.  
0
COMM_FRM_ERR_INT  
R/W1C  
0h  
Latched status bit indicating that SPI frame error has been detected.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 265  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.101 INT_READBACK_ERR Register (Offset = 6Bh) [Reset = 00h]  
INT_READBACK_ERR is shown in 8-157 and described in 8-125.  
Return to the 8-23.  
8-162. INT_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NRSTOUT_SO  
C_READBACK  
_INT  
RESERVED  
R/W-0h  
EN_DRV_REA  
DBACK_INT  
R/W1C-0h  
R/W1C-0h  
8-125. INT_READBACK_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-4  
3
R/W  
0h  
NRSTOUT_SOC_READB R/W1C  
ACK_INT  
0h  
Latched status bit indicating that NRSTOUT_SOC readback error  
has been detected.  
Write 1 to clear interrupt.  
2-1  
0
RESERVED  
R/W  
0h  
0h  
EN_DRV_READBACK_IN R/W1C  
T
Latched status bit indicating that EN_DRV readback error has been  
detected.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
266 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.102 INT_ESM Register (Offset = 6Ch) [Reset = 00h]  
INT_ESM is shown in 8-158 and described in 8-126.  
Return to the 8-23.  
8-163. INT_ESM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
ESM_MCU_RS ESM_MCU_FAI ESM_MCU_PIN ESM_SOC_RS ESM_SOC_FAI ESM_SOC_PIN  
T_INT  
L_INT  
_INT  
T_INT  
L_INT  
_INT  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-126. INT_ESM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R/W  
0h  
ESM_MCU_RST_INT  
R/W1C  
0h  
Latched status bit indicating that MCU ESM reset has been detected.  
Write 1 to clear interrupt.  
4
3
2
1
0
ESM_MCU_FAIL_INT  
ESM_MCU_PIN_INT  
ESM_SOC_RST_INT  
ESM_SOC_FAIL_INT  
ESM_SOC_PIN_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
0h  
0h  
Latched status bit indicating that MCU ESM fail has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that MCU ESM fault has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that SOC ESM reset has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that SOC ESM fail has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that SOC ESM fault has been detected.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 267  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.103 STAT_BUCK1_2 Register (Offset = 6Dh) [Reset = 00h]  
STAT_BUCK1_2 is shown in 8-159 and described in 8-127.  
Return to the 8-23.  
8-164. STAT_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_S  
TAT  
RESERVED BUCK2_UV_ST BUCK2_OV_ST BUCK1_ILIM_S  
RESERVED BUCK1_UV_ST BUCK1_OV_ST  
AT  
AT  
TAT  
AT  
AT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
8-127. STAT_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_STAT  
R
0h  
Status bit indicating that BUCK2 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0h  
0h  
BUCK2_UV_STAT  
Status bit indicating that BUCK2 output voltage is below under-  
voltage threshold.  
4
3
BUCK2_OV_STAT  
BUCK1_ILIM_STAT  
R
R
0h  
0h  
Status bit indicating that BUCK2 output voltage is above over-voltage  
threshold.  
Status bit indicating that BUCK1 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0h  
0h  
BUCK1_UV_STAT  
Status bit indicating that BUCK1 output voltage is below under-  
voltage threshold.  
0
BUCK1_OV_STAT  
R
0h  
Status bit indicating that BUCK1 output voltage is above over-voltage  
threshold.  
Copyright © 2022 Texas Instruments Incorporated  
268 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.104 STAT_BUCK3_4 Register (Offset = 6Eh) [Reset = 00h]  
STAT_BUCK3_4 is shown in 8-160 and described in 8-128.  
Return to the 8-23.  
8-165. STAT_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_S  
TAT  
RESERVED BUCK4_UV_ST BUCK4_OV_ST BUCK3_ILIM_S  
RESERVED BUCK3_UV_ST BUCK3_OV_ST  
AT  
AT  
TAT  
AT  
AT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
8-128. STAT_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_STAT  
R
0h  
Status bit indicating that BUCK4 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0h  
0h  
BUCK4_UV_STAT  
Status bit indicating that BUCK4 output voltage is below under-  
voltage threshold.  
4
3
BUCK4_OV_STAT  
BUCK3_ILIM_STAT  
R
R
0h  
0h  
Status bit indicating that BUCK4 output voltage is above over-voltage  
threshold.  
Status bit indicating that BUCK3 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0h  
0h  
BUCK3_UV_STAT  
Status bit indicating that BUCK3 output voltage is below under-  
voltage threshold.  
0
BUCK3_OV_STAT  
R
0h  
Status bit indicating that BUCK3 output voltage is above over-voltage  
threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 269  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.105 STAT_BUCK5 Register (Offset = 6Fh) [Reset = 00h]  
STAT_BUCK5 is shown in 8-161 and described in 8-129.  
Return to the 8-23.  
8-166. STAT_BUCK5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
BUCK5_ILIM_S  
TAT  
RESERVED BUCK5_UV_ST BUCK5_OV_ST  
AT  
AT  
R-0h  
R-0h  
R-0h  
R-0h  
8-129. STAT_BUCK5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0h  
BUCK5_ILIM_STAT  
R
0h  
Status bit indicating that BUCK5 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0h  
0h  
BUCK5_UV_STAT  
Status bit indicating that BUCK5 output voltage is below under-  
voltage threshold.  
0
BUCK5_OV_STAT  
R
0h  
Status bit indicating that BUCK5 output voltage is above over-voltage  
threshold.  
Copyright © 2022 Texas Instruments Incorporated  
270 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.106 STAT_LDO1_2 Register (Offset = 70h) [Reset = 00h]  
STAT_LDO1_2 is shown in 8-162 and described in 8-130.  
Return to the 8-23.  
8-167. STAT_LDO1_2 Register  
7
6
5
4
3
2
1
0
LDO2_ILIM_ST  
AT  
RESERVED  
LDO2_UV_STA LDO2_OV_STA LDO1_ILIM_ST  
RESERVED  
LDO1_UV_STA LDO1_OV_STA  
T
T
AT  
T
T
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
8-130. STAT_LDO1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_ILIM_STAT  
R
0h  
Status bit indicating that LDO2 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0h  
0h  
LDO2_UV_STAT  
Status bit indicating that LDO2 output voltage is below under-voltage  
threshold.  
4
3
LDO2_OV_STAT  
LDO1_ILIM_STAT  
R
R
0h  
0h  
Status bit indicating that LDO2 output voltage is above over-voltage  
threshold.  
Status bit indicating that LDO1 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0h  
0h  
LDO1_UV_STAT  
Status bit indicating that LDO1 output voltage is below under-voltage  
threshold.  
0
LDO1_OV_STAT  
R
0h  
Status bit indicating that LDO1 output voltage is above over-voltage  
threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 271  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.107 STAT_LDO3_4 Register (Offset = 71h) [Reset = 00h]  
STAT_LDO3_4 is shown in 8-163 and described in 8-131.  
Return to the 8-23.  
8-168. STAT_LDO3_4 Register  
7
6
5
4
3
2
1
0
LDO4_ILIM_ST  
AT  
RESERVED  
LDO4_UV_STA LDO4_OV_STA LDO3_ILIM_ST  
RESERVED  
LDO3_UV_STA LDO3_OV_STA  
T
T
AT  
T
T
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
8-131. STAT_LDO3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO4_ILIM_STAT  
R
0h  
Status bit indicating that LDO4 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0h  
0h  
LDO4_UV_STAT  
Status bit indicating that LDO4 output voltage is below under-voltage  
threshold.  
4
3
LDO4_OV_STAT  
LDO3_ILIM_STAT  
R
R
0h  
0h  
Status bit indicating that LDO4 output voltage is above over-voltage  
threshold.  
Status bit indicating that LDO3 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0h  
0h  
LDO3_UV_STAT  
Status bit indicating that LDO3 output voltage is below under-voltage  
threshold.  
0
LDO3_OV_STAT  
R
0h  
Status bit indicating that LDO3 output voltage is above over-voltage  
threshold.  
Copyright © 2022 Texas Instruments Incorporated  
272 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.108 STAT_VMON Register (Offset = 72h) [Reset = 00h]  
STAT_VMON is shown in 8-164 and described in 8-132.  
Return to the 8-23.  
8-169. STAT_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
VCCA_UV_STA VCCA_OV_STA  
T
T
R-0h  
R-0h  
8-132. STAT_VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
R
0h  
VCCA_UV_STAT  
R
0h  
Status bit indicating that VCCA input voltage is below under-voltage  
level.  
0
VCCA_OV_STAT  
R
0h  
Status bit indicating that VCCA input voltage is above over-voltage  
level.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 273  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.109 STAT_STARTUP Register (Offset = 73h) [Reset = 00h]  
STAT_STARTUP is shown in 8-165 and described in 8-133.  
Return to the 8-23.  
8-170. STAT_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ENABLE_STAT  
R-0h  
RESERVED  
R-0h  
8-133. STAT_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
ENABLE_STAT  
RESERVED  
R
0h  
R
0h  
Status bit indicating nPWRON / EN pin status  
0
R
0h  
Copyright © 2022 Texas Instruments Incorporated  
274 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.110 STAT_MISC Register (Offset = 74h) [Reset = 00h]  
STAT_MISC is shown in 8-166 and described in 8-134.  
Return to the 8-23.  
8-171. STAT_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
TWARN_STAT  
RESERVED  
EXT_CLK_STA  
T
RESERVED  
R-0h  
R-0h  
R-0h  
R-0h  
8-134. STAT_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0h  
TWARN_STAT  
R
0h  
Status bit indicating that die junction temperature is above the  
thermal warning level.  
2
1
0
RESERVED  
R
R
R
0h  
0h  
0h  
EXT_CLK_STAT  
RESERVED  
Status bit indicating that external clock is not valid.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 275  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.111 STAT_MODERATE_ERR Register (Offset = 75h) [Reset = 00h]  
STAT_MODERATE_ERR is shown in 8-167 and described in 8-135.  
Return to the 8-23.  
8-172. STAT_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
TSD_ORD_STA  
T
R-0h  
R-0h  
8-135. STAT_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
R
0h  
TSD_ORD_STAT  
R
0h  
Status bit indicating that the die junction temperature is above the  
thermal level causing a sequenced shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
276 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.112 STAT_SEVERE_ERR Register (Offset = 76h) [Reset = 00h]  
STAT_SEVERE_ERR is shown in 8-168 and described in 8-136.  
Return to the 8-23.  
8-173. STAT_SEVERE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
VCCA_OVP_S TSD_IMM_STA  
TAT  
T
R-0h  
R-0h  
8-136. STAT_SEVERE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
R
0h  
VCCA_OVP_STAT  
R
0h  
Status bit indicating that the VCCA voltage is above overvoltage  
protection level.  
0
TSD_IMM_STAT  
R
0h  
Status bit indicating that the die junction temperature is above the  
thermal level causing an immediate shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 277  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.113 STAT_READBACK_ERR Register (Offset = 77h) [Reset = 00h]  
STAT_READBACK_ERR is shown in 8-169 and described in 8-137.  
Return to the 8-23.  
8-174. STAT_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
NRSTOUT_SO NRSTOUT_RE NINT_READBA EN_DRV_REA  
C_READBACK ADBACK_STAT  
_STAT  
CK_STAT  
DBACK_STAT  
R-0h  
R-0h  
R-0h  
R-0h  
8-137. STAT_READBACK_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0h  
NRSTOUT_SOC_READB  
ACK_STAT  
R
0h  
Status bit indicating that NRSTOUT_SOC pin output is high and  
device is driving it low.  
2
1
0
NRSTOUT_READBACK_  
STAT  
R
R
R
0h  
0h  
0h  
Status bit indicating that NRSTOUT pin output is high and device is  
driving it low.  
NINT_READBACK_STAT  
Status bit indicating that NINT pin output is high and device is driving  
it low.  
EN_DRV_READBACK_S  
TAT  
Status bit indicating that EN_DRV pin output is different than driven.  
Copyright © 2022 Texas Instruments Incorporated  
278 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.114 PGOOD_SEL_1 Register (Offset = 78h) [Reset = 00h]  
PGOOD_SEL_1 is shown in 8-170 and described in 8-138.  
Return to the 8-23.  
8-175. PGOOD_SEL_1 Register  
7
6
5
4
3
2
1
0
PGOOD_SEL_BUCK4  
R/W-0h  
PGOOD_SEL_BUCK3  
R/W-0h  
PGOOD_SEL_BUCK2  
R/W-0h  
PGOOD_SEL_BUCK1  
R/W-0h  
8-138. PGOOD_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PGOOD_SEL_BUCK4  
R/W  
0h  
PGOOD signal source control from BUCK4  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
5-4  
3-2  
1-0  
PGOOD_SEL_BUCK3  
PGOOD_SEL_BUCK2  
PGOOD_SEL_BUCK1  
R/W  
R/W  
R/W  
0h  
0h  
0h  
PGOOD signal source control from BUCK3  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
PGOOD signal source control from BUCK2  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
PGOOD signal source control from BUCK1  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 279  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.115 PGOOD_SEL_2 Register (Offset = 79h) [Reset = 00h]  
PGOOD_SEL_2 is shown in 8-171 and described in 8-139.  
Return to the 8-23.  
8-176. PGOOD_SEL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
PGOOD_SEL_BUCK5  
R/W-0h  
8-139. PGOOD_SEL_2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1-0  
RESERVED  
0h  
PGOOD_SEL_BUCK5  
0h  
PGOOD signal source control from BUCK5  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
Copyright © 2022 Texas Instruments Incorporated  
280 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.116 PGOOD_SEL_3 Register (Offset = 7Ah) [Reset = 00h]  
PGOOD_SEL_3 is shown in 8-172 and described in 8-140.  
Return to the 8-23.  
8-177. PGOOD_SEL_3 Register  
7
6
5
4
3
2
1
0
PGOOD_SEL_LDO4  
R/W-0h  
PGOOD_SEL_LDO3  
R/W-0h  
PGOOD_SEL_LDO2  
R/W-0h  
PGOOD_SEL_LDO1  
R/W-0h  
8-140. PGOOD_SEL_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
PGOOD_SEL_LDO4  
R/W  
0h  
PGOOD signal source control from LDO4  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
PGOOD_SEL_LDO3  
PGOOD_SEL_LDO2  
PGOOD_SEL_LDO1  
R/W  
R/W  
R/W  
0h  
0h  
0h  
PGOOD signal source control from LDO3  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
PGOOD signal source control from LDO2  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
PGOOD signal source control from LDO1  
(Default from NVM memory)  
0h = Masked  
1h = Powergood threshold voltage  
2h = Powergood threshold voltage AND current limit  
3h = Powergood threshold voltage AND current limit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 281  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.117 PGOOD_SEL_4 Register (Offset = 7Bh) [Reset = 00h]  
PGOOD_SEL_4 is shown in 8-173 and described in 8-141.  
Return to the 8-23.  
8-178. PGOOD_SEL_4 Register  
7
6
5
4
3
2
1
0
PGOOD_WIND PGOOD_POL PGOOD_SEL_ PGOOD_SEL_ PGOOD_SEL_  
RESERVED  
R/W-0h  
PGOOD_SEL_  
VCCA  
OW  
NRSTOUT_SO  
C
NRSTOUT  
TDIE_WARN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-141. PGOOD_SEL_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGOOD_WINDOW  
R/W  
0h  
Type of voltage monitoring for PGOOD signal:  
(Default from NVM memory)  
0h = Only undervoltage is monitored  
1h = Both undervoltage and overvoltage are monitored  
6
5
4
3
PGOOD_POL  
R/W  
0h  
0h  
0h  
0h  
PGOOD signal polarity select:  
(Default from NVM memory)  
0h = PGOOD signal is high when monitored inputs are valid  
1h = PGOOD signal is low when monitored inputs are valid  
PGOOD_SEL_NRSTOUT R/W  
_SOC  
PGOOD signal source control from nRSTOUT_SOC pin:  
(Default from NVM memory)  
0h = Masked  
1h = nRSTOUT_SOC pin low state forces PGOOD signal to low  
PGOOD_SEL_NRSTOUT R/W  
PGOOD signal source control from nRSTOUT pin:  
(Default from NVM memory)  
0h = Masked  
1h = nRSTOUT pin low state forces PGOOD signal to low  
PGOOD_SEL_TDIE_WAR R/W  
N
PGOOD signal source control from thermal warning  
(Default from NVM memory)  
0h = Masked  
1h = Thermal warning affecting to PGOOD signal  
2-1  
0
RESERVED  
R/W  
R/W  
0h  
0h  
PGOOD_SEL_VCCA  
PGOOD signal source control from VCCA monitoring  
(Default from NVM memory)  
0h = Masked  
1h = VCCA OV/UV threshold affecting PGOOD signal  
Copyright © 2022 Texas Instruments Incorporated  
282 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.118 PLL_CTRL Register (Offset = 7Ch) [Reset = 00h]  
PLL_CTRL is shown in 8-174 and described in 8-142.  
Return to the 8-23.  
8-179. PLL_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
EXT_CLK_FREQ  
R/W-0h  
8-142. PLL_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1-0  
RESERVED  
0h  
EXT_CLK_FREQ  
0h  
Frequency of the external clock (SYNCCLKIN):  
See electrical specification for input clock frequency tolerance.  
(Default from NVM memory)  
0h = 1.1 MHz  
1h = 2.2 MHz  
2h = 4.4 MHz  
3h = Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 283  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.119 CONFIG_1 Register (Offset = 7Dh) [Reset = C0h]  
CONFIG_1 is shown in 8-175 and described in 8-143.  
Return to the 8-23.  
8-180. CONFIG_1 Register  
7
6
5
4
3
2
1
0
NSLEEP2_MAS NSLEEP1_MAS EN_ILIM_FSM_  
I2C2_HS  
I2C1_HS  
RESERVED TSD_ORD_LEV TWARN_LEVE  
K
K
CTRL  
EL  
L
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-143. CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NSLEEP2_MASK  
R/W  
1h  
Masking for NSLEEP2 pin(s) and NSLEEP2B bit:  
(Default from NVM memory)  
0h = NSLEEP2(B) affects FSM state transitions.  
1h = NSLEEP2(B) does not affect FSM state transitions.  
6
NSLEEP1_MASK  
R/W  
1h  
Masking for NSLEEP1 pin(s) and NSLEEP1B bit:  
(Default from NVM memory)  
0h = NSLEEP1(B) affects FSM state transitions.  
1h = NSLEEP1(B) does not affect FSM state transitions.  
5
4
EN_ILIM_FSM_CTRL  
I2C2_HS  
R/W  
R/W  
0h  
0h  
(Default from NVM memory)  
0h = Buck/LDO regulators ILIM interrupts do not affect FSM triggers.  
1h = Buck/LDO regulators ILIM interrupts affect FSM triggers.  
Select I2C2 speed (input filter)  
(Default from NVM memory)  
0h = Standard, fast or fast+ by default, can be set to Hs-mode by Hs-  
mode controller code.  
1h = Forced to Hs-mode  
3
I2C1_HS  
R/W  
0h  
Select I2C1 speed (input filter)  
(Default from NVM memory)  
0h = Standard, fast or fast+ by default, can be set to Hs-mode by Hs-  
mode controller code.  
1h = Forced to Hs-mode  
2
1
RESERVED  
R/W  
R/W  
0h  
0h  
TSD_ORD_LEVEL  
Thermal shutdown threshold level.  
(Default from NVM memory)  
0h = 140C  
1h = 145C  
0
TWARN_LEVEL  
R/W  
0h  
Thermal warning threshold level.  
(Default from NVM memory)  
0h = 130C  
1h = 140C  
Copyright © 2022 Texas Instruments Incorporated  
284 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.120 CONFIG_2 Register (Offset = 7Eh) [Reset = 00h]  
CONFIG_2 is shown in 8-176 and described in 8-144.  
Return to the 8-23.  
8-181. CONFIG_2 Register  
7
6
5
4
3
2
1
0
BB_EOC_RDY  
RESERVED  
BB_VEOC  
R/W-0h  
BB_ICHR  
BB_CHARGER  
_EN  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-144. CONFIG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BB_EOC_RDY  
R
0h  
Backup end of charge indication  
0h = Charging active or not enabled  
1h = Charger has reached termination voltage set by BB_VEOC  
register  
6-4  
3-2  
RESERVED  
BB_VEOC  
R/W  
R/W  
0h  
0h  
End of charge voltage for backup battery charger:  
(Default from NVM memory)  
0h = 2.5V  
1h = 2.8V  
2h = 3.0V  
3h = 3.3V  
1
0
BB_ICHR  
R/W  
R/W  
0h  
0h  
Backup battery charging current:  
(Default from NVM memory)  
0h = 100uA  
1h = 500uA  
BB_CHARGER_EN  
Backup battery charging:  
0h = Disabled  
1h = Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 285  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.121 ENABLE_DRV_REG Register (Offset = 80h) [Reset = 00h]  
ENABLE_DRV_REG is shown in 8-177 and described in 8-145.  
Return to the 8-23.  
8-182. ENABLE_DRV_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
ENABLE_DRV  
R/W-0h  
8-145. ENABLE_DRV_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
ENABLE_DRV  
0h  
Control for EN_DRV pin:  
FORCE_EN_DRV_LOW must be 0 to control EN_DRV pin.  
Otherwise EN_DRV pin is low.  
0h = Low  
1h = High  
Copyright © 2022 Texas Instruments Incorporated  
286 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.122 MISC_CTRL Register (Offset = 81h) [Reset = 00h]  
MISC_CTRL is shown in 8-178 and described in 8-146.  
Return to the 8-23.  
8-183. MISC_CTRL Register  
7
6
5
4
3
2
1
0
SYNCCLKOUT_FREQ_SEL  
SEL_EXT_CLK AMUXOUT_EN CLKMON_EN  
LPM_EN  
NRSTOUT_SO  
C
NRSTOUT  
R/W-0h  
R/W-0h R/W-0h R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-146. MISC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SYNCCLKOUT_FREQ_S R/W  
EL  
0h  
SYNCCLKOUT enable/frequency select:  
0h = SYNCCLKOUT off  
1h = 1.1 MHz  
2h = 2.2 MHz  
3h = 4.4 MHz  
5
SEL_EXT_CLK  
R/W  
0h  
Selection of external clock:  
0h = Forced to internal RC oscillator.  
1h = Automatic external clock used when available, interrupt is  
generated if the external clock is expected (SEL_EXT_CLK = 1), but  
it is not available or the clock frequency is not within the valid range.  
4
3
2
AMUXOUT_EN  
CLKMON_EN  
LPM_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Control bandgap voltage to AMUXOUT pin.  
0h = Disabled  
1h = Enabled  
Control of internal clock monitoring.  
0h = Disabled  
1h = Enabled  
Low power mode control.  
LPM_EN sets device in a low power mode. Intended use case is for  
the PFSM to set LPM_EN upon entering a deep sleep state. The end  
objective is to disable the digital oscillator to reduce power  
consumption.  
The following functions are disabled when LPM_EN=1.  
-TSD cycling of all sensors/thresholds  
-regmap/SRAM CRC continuous checking  
-SPMI WD NVM_ID request/response polling  
-Disable clock monitoring  
0h = Low power mode disabled  
1h = Low power mode enabled  
1
0
NRSTOUT_SOC  
NRSTOUT  
R/W  
R/W  
0h  
0h  
Control for nRSTOUT_SOC signal:  
0h = Low  
1h = High  
Control for nRSTOUT signal:  
0h = Low  
1h = High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 287  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.123 ENABLE_DRV_STAT Register (Offset = 82h) [Reset = 08h]  
ENABLE_DRV_STAT is shown in 8-179 and described in 8-147.  
Return to the 8-23.  
8-184. ENABLE_DRV_STAT Register  
7
6
5
4
3
2
1
0
RESERVED  
SPMI_LPM_EN FORCE_EN_D NRSTOUT_SO NRSTOUT_IN  
EN_DRV_IN  
RV_LOW  
C_IN  
R/W-0h  
R/W-0h  
R/W-1h  
R-0h  
R-0h  
R-0h  
8-147. ENABLE_DRV_STAT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
RESERVED  
SPMI_LPM_EN  
0h  
0h  
This bit is read/write for PFSM and read-only for I2C/SPI  
SPMI low power mode control.  
SPMI_LPM_EN sets SPMI in a low power mode which stops SPMI  
WD (Bus heartbeat). PMICs enters SPMI_LPM_EN=1 at similar  
times to prevent SPMI WD failures. Therefore to mitigate clock  
variations, setting SPMI_LPM_EN=1 must be done early in the  
sequence.  
The following functions are disabled when SPMI_LPM_EN=1.  
-SPMI WD NVM_ID request/response polling  
0h = SPMI low power mode disabled  
1h = SPMI low power mode enabled  
3
FORCE_EN_DRV_LOW  
R/W  
1h  
This bit is read/write for PFSM and read-only for I2C/SPI  
0h = ENABLE_DRV bit can be written by I2C/SPI  
1h = ENABLE_DRV bit is forced low and cannot be written high by  
I2C/SPI  
2
1
0
NRSTOUT_SOC_IN  
NRSTOUT_IN  
R
R
R
0h  
0h  
0h  
Level of NRSTOUT_SOC pin:  
0h = Low  
1h = High  
Level of NRSTOUT pin:  
0h = Low  
1h = High  
EN_DRV_IN  
Level of EN_DRV pin:  
0h = Low  
1h = High  
Copyright © 2022 Texas Instruments Incorporated  
288 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.124 RECOV_CNT_REG_1 Register (Offset = 83h) [Reset = 00h]  
RECOV_CNT_REG_1 is shown in 8-180 and described in 8-148.  
Return to the 8-23.  
8-185. RECOV_CNT_REG_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
RECOV_CNT  
R-0h  
8-148. RECOV_CNT_REG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
RECOV_CNT  
R
0h  
Recovery counter status. Counter value is incremented each time  
PMIC goes through warm reset.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 289  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.125 RECOV_CNT_REG_2 Register (Offset = 84h) [Reset = 00h]  
RECOV_CNT_REG_2 is shown in 8-181 and described in 8-149.  
Return to the 8-23.  
8-186. RECOV_CNT_REG_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
RECOV_CNT_  
CLR  
RECOV_CNT_THR  
R/W-0h  
R/W-0h  
R/WSelfClrF-0h  
8-149. RECOV_CNT_REG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
RECOV_CNT_CLR  
R/W  
0h  
R/WSelfClrF 0h  
Recovery counter clear. Write 1 to clear the counter. This bit is  
automatically set back to 0.  
3-0  
RECOV_CNT_THR  
R/W 0h  
Recovery counter threshold value for immediate power-down of all  
supply rails.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
290 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.126 FSM_I2C_TRIGGERS Register (Offset = 85h) [Reset = 00h]  
FSM_I2C_TRIGGERS is shown in 8-182 and described in 8-150.  
Return to the 8-23.  
8-187. FSM_I2C_TRIGGERS Register  
7
6
5
4
3
2
1
0
TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_  
7
6
5
4
3
2
1
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/WSelfClrF-0h R/WSelfClrF-0h R/WSelfClrF-0h R/WSelfClrF-0h  
8-150. FSM_I2C_TRIGGERS Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TRIGGER_I2C_7  
TRIGGER_I2C_6  
TRIGGER_I2C_5  
TRIGGER_I2C_4  
TRIGGER_I2C_3  
0h  
Trigger for PFSM program.  
Trigger for PFSM program.  
Trigger for PFSM program.  
Trigger for PFSM program.  
6
0h  
5
0h  
4
0h  
3
R/WSelfClrF 0h  
R/WSelfClrF 0h  
R/WSelfClrF 0h  
R/WSelfClrF 0h  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
2
1
0
TRIGGER_I2C_2  
TRIGGER_I2C_1  
TRIGGER_I2C_0  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 291  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.127 FSM_NSLEEP_TRIGGERS Register (Offset = 86h) [Reset = 00h]  
FSM_NSLEEP_TRIGGERS is shown in 8-183 and described in 8-151.  
Return to the 8-23.  
8-188. FSM_NSLEEP_TRIGGERS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NSLEEP2B  
R/W-0h  
NSLEEP1B  
R/W-0h  
8-151. FSM_NSLEEP_TRIGGERS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1
RESERVED  
NSLEEP2B  
0h  
0h  
Parallel register bit for NSLEEP2 function:  
0h = NSLEEP2 low  
1h = NSLEEP2 high  
0
NSLEEP1B  
R/W  
0h  
Parallel register bit for NSLEEP1 function:  
0h = NSLEEP1 low  
1h = NSLEEP1 high  
Copyright © 2022 Texas Instruments Incorporated  
292 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.128 BUCK_RESET_REG Register (Offset = 87h) [Reset = 00h]  
BUCK_RESET_REG is shown in 8-184 and described in 8-152.  
Return to the 8-23.  
8-189. BUCK_RESET_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
BUCK5_RESET BUCK4_RESET BUCK3_RESET BUCK2_RESET BUCK1_RESET  
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h  
8-152. BUCK_RESET_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
RESERVED  
0h  
BUCK5_RESET  
0h  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
3
2
1
0
BUCK4_RESET  
BUCK3_RESET  
BUCK2_RESET  
BUCK1_RESET  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 293  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.129 SPREAD_SPECTRUM_1 Register (Offset = 88h) [Reset = 00h]  
SPREAD_SPECTRUM_1 is shown in 8-185 and described in 8-153.  
Return to the 8-23.  
8-190. SPREAD_SPECTRUM_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SS_EN  
R/W-0h  
SS_DEPTH  
R/W-0h  
8-153. SPREAD_SPECTRUM_1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-3  
2
RESERVED  
SS_EN  
0h  
0h  
Spread spectrum enable.  
(Default from NVM memory)  
0h = Spread spectrum disabled  
1h = Spread spectrum enabled  
1-0  
SS_DEPTH  
R/W  
0h  
Spread spectrum modulation depth.  
(Default from NVM memory)  
0h = No modulation  
1h = +/- 6.3%  
2h = +/- 8.4%  
3h = RESERVED  
Copyright © 2022 Texas Instruments Incorporated  
294 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.130 FREQ_SEL Register (Offset = 8Ah) [Reset = 00h]  
FREQ_SEL is shown in 8-186 and described in 8-154.  
Return to the 8-23.  
8-191. FREQ_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
BUCK5_FREQ_ BUCK4_FREQ_ BUCK3_FREQ_ BUCK2_FREQ_ BUCK1_FREQ_  
SEL  
SEL  
SEL  
SEL  
SEL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-154. FREQ_SEL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
RESERVED  
0h  
BUCK5_FREQ_SEL  
0h  
Buck5 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0h = 2.2 MHz  
1h = 4.4 MHz  
3
2
1
0
BUCK4_FREQ_SEL  
BUCK3_FREQ_SEL  
BUCK2_FREQ_SEL  
BUCK1_FREQ_SEL  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Buck4 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0h = 2.2 MHz  
1h = 4.4 MHz  
Buck3 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0h = 2.2 MHz  
1h = 4.4 MHz  
Buck2 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0h = 2.2 MHz  
1h = 4.4 MHz  
Buck1 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0h = 2.2 MHz  
1h = 4.4 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 295  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.131 FSM_STEP_SIZE Register (Offset = 8Bh) [Reset = 00h]  
FSM_STEP_SIZE is shown in 8-187 and described in 8-155.  
Return to the 8-23.  
8-192. FSM_STEP_SIZE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
PFSM_DELAY_STEP  
R/W-0h  
8-155. FSM_STEP_SIZE Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4-0  
RESERVED  
0h  
PFSM_DELAY_STEP  
0h  
Step size for PFSM sequence counter.  
Step size is 50ns * 2PFSM_DELAY_STEP  
(Default from NVM memory)  
.
Copyright © 2022 Texas Instruments Incorporated  
296 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.132 USER_SPARE_REGS Register (Offset = 8Eh) [Reset = 00h]  
USER_SPARE_REGS is shown in 8-188 and described in 8-156.  
Return to the 8-23.  
8-193. USER_SPARE_REGS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
USER_SPARE_ USER_SPARE_ USER_SPARE_ USER_SPARE_  
4
3
2
1
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-156. USER_SPARE_REGS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
7-4  
3
RESERVED  
0h  
USER_SPARE_4  
USER_SPARE_3  
USER_SPARE_2  
USER_SPARE_1  
0h  
(Default from NVM memory)  
(Default from NVM memory)  
(Default from NVM memory)  
(Default from NVM memory)  
2
0h  
1
0h  
0
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 297  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.133 ESM_MCU_START_REG Register (Offset = 8Fh) [Reset = 00h]  
ESM_MCU_START_REG is shown in 8-189 and described in 8-157.  
Return to the 8-23.  
8-194. ESM_MCU_START_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
ESM_MCU_ST  
ART  
R/W-0h  
R/W-0h  
8-157. ESM_MCU_START_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
ESM_MCU_START  
0h  
Control bit to start the ESM_MCU:  
0h = ESM_MCU not started. Device clears ENABLE_DRV bit when  
bit ESM_MCU_EN=1  
1h = ESM_MCU started.  
Copyright © 2022 Texas Instruments Incorporated  
298 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.134 ESM_MCU_DELAY1_REG Register (Offset = 90h) [Reset = 00h]  
ESM_MCU_DELAY1_REG is shown in 8-190 and described in 8-158.  
Return to the 8-23.  
8-195. ESM_MCU_DELAY1_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_DELAY1  
R/W-0h  
8-158. ESM_MCU_DELAY1_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_MCU_DELAY1  
R/W  
0h  
These bits configure the duration of the ESM_MCU delay-1 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 299  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.135 ESM_MCU_DELAY2_REG Register (Offset = 91h) [Reset = 00h]  
ESM_MCU_DELAY2_REG is shown in 8-191 and described in 8-159.  
Return to the 8-23.  
8-196. ESM_MCU_DELAY2_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_DELAY2  
R/W-0h  
8-159. ESM_MCU_DELAY2_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_MCU_DELAY2  
R/W  
0h  
These bits configure the duration of the ESM_MCU delay-2 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
300 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.136 ESM_MCU_MODE_CFG Register (Offset = 92h) [Reset = 00h]  
ESM_MCU_MODE_CFG is shown in 8-192 and described in 8-160.  
Return to the 8-23.  
8-197. ESM_MCU_MODE_CFG Register  
7
6
5
4
3
2
1
0
ESM_MCU_MO ESM_MCU_EN ESM_MCU_EN  
RESERVED  
ESM_MCU_ERR_CNT_TH  
R/W-0h  
DE  
DRV  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-160. ESM_MCU_MODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ESM_MCU_MODE  
R/W  
0h  
This bit selects the mode for the ESM_MCU:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0h = Level Mode  
1h = PWM Mode  
6
ESM_MCU_EN  
R/W  
0h  
ESM_MCU enable configuration bit:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0h = ESM_MCU disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt bits are cleared  
1h = ESM_MCU enabled. MCU can set ENABLE_DRV bit to 1 if:  
- bit ESM_MCU_START=1, and  
- (ESM_MCU_FAIL_INT=0 or ESM_MCU_ENDRV=0), and  
- ESM_MCU_RST_INT=0, and  
- all other interrupt bits are cleared  
5
ESM_MCU_ENDRV  
RESERVED  
R/W  
R/W  
0h  
Configuration bit to select ENABLE_DRV clear on ESM-error for  
ESM_MCU:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0h = ENABLE_DRV not cleared when ESM_MCU_FAIL_INT=1  
1h = ENABLE_DRV cleared when ESM_MCU_FAIL_INT=1  
4
0h  
0h  
3-0  
ESM_MCU_ERR_CNT_T R/W  
H
Configuration bits for the threshold of the ESM_MCU error-counter.  
The ESM_MCU starts the Error Handling Procedure (see Error  
Signal Monitor chapter) if ESM_MCU_ERR_CNT[4:0] >  
ESM_MCU_ERR_CNT_TH[3:0].  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 301  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.137 ESM_MCU_HMAX_REG Register (Offset = 93h) [Reset = 00h]  
ESM_MCU_HMAX_REG is shown in 8-193 and described in 8-161.  
Return to the 8-23.  
8-198. ESM_MCU_HMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_HMAX  
R/W-0h  
8-161. ESM_MCU_HMAX_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_MCU_HMAX  
R/W  
0h  
These bits configure the the maximum high-pulse time-threshold  
(tHIGH_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
302 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.138 ESM_MCU_HMIN_REG Register (Offset = 94h) [Reset = 00h]  
ESM_MCU_HMIN_REG is shown in 8-194 and described in 8-162.  
Return to the 8-23.  
8-199. ESM_MCU_HMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_HMIN  
R/W-0h  
8-162. ESM_MCU_HMIN_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_MCU_HMIN  
R/W  
0h  
These bits configure the the minimum high-pulse time-threshold  
(tHIGH_MIN_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 303  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.139 ESM_MCU_LMAX_REG Register (Offset = 95h) [Reset = 00h]  
ESM_MCU_LMAX_REG is shown in 8-195 and described in 8-163.  
Return to the 8-23.  
8-200. ESM_MCU_LMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_LMAX  
R/W-0h  
8-163. ESM_MCU_LMAX_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_MCU_LMAX  
R/W  
0h  
These bits configure the the maximum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
304 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.140 ESM_MCU_LMIN_REG Register (Offset = 96h) [Reset = 00h]  
ESM_MCU_LMIN_REG is shown in 8-196 and described in 8-164.  
Return to the 8-23.  
8-201. ESM_MCU_LMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_LMIN  
R/W-0h  
8-164. ESM_MCU_LMIN_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_MCU_LMIN  
R/W  
0h  
These bits configure the the minimum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 305  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.141 ESM_MCU_ERR_CNT_REG Register (Offset = 97h) [Reset = 00h]  
ESM_MCU_ERR_CNT_REG is shown in 8-197 and described in 8-165.  
Return to the 8-23.  
8-202. ESM_MCU_ERR_CNT_REG Register  
7
6
5
4
3
2
ESM_MCU_ERR_CNT  
R-0h  
1
0
RESERVED  
R-0h  
8-165. ESM_MCU_ERR_CNT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R
0h  
ESM_MCU_ERR_CNT  
R
0h  
Status bits to indicate the value of the ESM_MCU Error-Counter. The  
device clears these bits when ESM_MCU_START bit is 0, or when  
the device resets the MCU.  
Copyright © 2022 Texas Instruments Incorporated  
306 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.142 ESM_SOC_START_REG Register (Offset = 98h) [Reset = 00h]  
ESM_SOC_START_REG is shown in 8-198 and described in 8-166.  
Return to the 8-23.  
8-203. ESM_SOC_START_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
ESM_SOC_ST  
ART  
R/W-0h  
R/W-0h  
8-166. ESM_SOC_START_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
ESM_SOC_START  
0h  
Control bit to start the ESM_SoC:  
0h = ESM_SoC not started. Device clears ENABLE_DRV bit when  
bit ESM_SOC_EN=1  
1h = ESM_SoC started  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 307  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.143 ESM_SOC_DELAY1_REG Register (Offset = 99h) [Reset = 00h]  
ESM_SOC_DELAY1_REG is shown in 8-199 and described in 8-167.  
Return to the 8-23.  
8-204. ESM_SOC_DELAY1_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_DELAY1  
R/W-0h  
8-167. ESM_SOC_DELAY1_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_SOC_DELAY1  
R/W  
0h  
These bits configure the duration of the ESM_SoC delay-1 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
308 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.144 ESM_SOC_DELAY2_REG Register (Offset = 9Ah) [Reset = 00h]  
ESM_SOC_DELAY2_REG is shown in 8-200 and described in 8-168.  
Return to the 8-23.  
8-205. ESM_SOC_DELAY2_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_DELAY2  
R/W-0h  
8-168. ESM_SOC_DELAY2_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_SOC_DELAY2  
R/W  
0h  
These bits configure the duration of the ESM_SoC delay-2 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 309  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.145 ESM_SOC_MODE_CFG Register (Offset = 9Bh) [Reset = 00h]  
ESM_SOC_MODE_CFG is shown in 8-201 and described in 8-169.  
Return to the 8-23.  
8-206. ESM_SOC_MODE_CFG Register  
7
6
5
4
3
2
1
0
ESM_SOC_MO ESM_SOC_EN ESM_SOC_EN  
RESERVED  
ESM_SOC_ERR_CNT_TH  
R/W-0h  
DE  
DRV  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-169. ESM_SOC_MODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ESM_SOC_MODE  
R/W  
0h  
This bit selects the mode for the ESM_SoC:  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
0h = Level Mode  
1h = PWM Mode  
6
ESM_SOC_EN  
R/W  
0h  
ESM_SoC enable configuration bit:  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
0h = ESM_SoC disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt bits are cleared  
1h = ESM_SoC enabled. MCU can set ENABLE_DRV bit to 1 if:  
- bit ESM_SOC_START=1, and  
- (ESM_SOC_FAIL_INT=0 or ESM_SOC_ENDRV=0), and  
- ESM_SOC_RST_INT=0, and  
- all other interrupt bits are cleared.  
5
ESM_SOC_ENDRV  
RESERVED  
R/W  
R/W  
0h  
Configuration bit to select ENABLE_DRV clear on ESM-error for  
ESM_SoC:  
These bits can be only be written when control bit  
ESM_SOC_START=0  
0h = ENABLE_DRV not cleared when ESM_SOC_FAIL_INT=1  
1h = ENABLE_DRV cleared when ESM_SOC_FAIL_INT=1.  
4
0h  
0h  
3-0  
ESM_SOC_ERR_CNT_T R/W  
H
Configuration bits for the threshold of the ESM_SoC error-counter  
The ESM_SoC starts the Error Handling Procedure (see Error Signal  
Monitor chapter) if ESM_SOC_ERR_CNT[4:0] >  
ESM_SOC_ERR_CNT_TH[3:0].  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
310 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.146 ESM_SOC_HMAX_REG Register (Offset = 9Ch) [Reset = 00h]  
ESM_SOC_HMAX_REG is shown in 8-202 and described in 8-170.  
Return to the 8-23.  
8-207. ESM_SOC_HMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_HMAX  
R/W-0h  
8-170. ESM_SOC_HMAX_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_SOC_HMAX  
R/W  
0h  
These bits configure the the maximum high-pulse time-threshold  
(tHIGH_MAX_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
311  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.147 ESM_SOC_HMIN_REG Register (Offset = 9Dh) [Reset = 00h]  
ESM_SOC_HMIN_REG is shown in 8-203 and described in 8-171.  
Return to the 8-23.  
8-208. ESM_SOC_HMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_HMIN  
R/W-0h  
8-171. ESM_SOC_HMIN_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_SOC_HMIN  
R/W  
0h  
These bits configure the the minimum high-pulse time-threshold  
(tHIGH_MIN_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
312 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.148 ESM_SOC_LMAX_REG Register (Offset = 9Eh) [Reset = 00h]  
ESM_SOC_LMAX_REG is shown in 8-204 and described in 8-172.  
Return to the 8-23.  
8-209. ESM_SOC_LMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_LMAX  
R/W-0h  
8-172. ESM_SOC_LMAX_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_SOC_LMAX  
R/W  
0h  
These bits configure the the maximum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 313  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.149 ESM_SOC_LMIN_REG Register (Offset = 9Fh) [Reset = 00h]  
ESM_SOC_LMIN_REG is shown in 8-205 and described in 8-173.  
Return to the 8-23.  
8-210. ESM_SOC_LMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_LMIN  
R/W-0h  
8-173. ESM_SOC_LMIN_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ESM_SOC_LMIN  
R/W  
0h  
These bits configure the the minimum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
314 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.150 ESM_SOC_ERR_CNT_REG Register (Offset = A0h) [Reset = 00h]  
ESM_SOC_ERR_CNT_REG is shown in 8-206 and described in 8-174.  
Return to the 8-23.  
8-211. ESM_SOC_ERR_CNT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ESM_SOC_ERR_CNT  
R-0h  
8-174. ESM_SOC_ERR_CNT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
ESM_SOC_ERR_CNT  
R
0h  
R
0h  
Status bits to indicate the value of the ESM_SoC Error-Counter. The  
device clears these bits when ESM_SOC_START bit is 0, or when  
the device resets the SoC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 315  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.151 REGISTER_LOCK Register (Offset = A1h) [Reset = 00h]  
REGISTER_LOCK is shown in 8-207 and described in 8-175.  
Return to the 8-23.  
8-212. REGISTER_LOCK Register  
7
6
5
4
3
2
1
0
RESERVED  
REGISTER_LO  
CK_STATUS  
R/W-0h  
R/W-0h  
8-175. REGISTER_LOCK Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-1  
0
R/W  
0h  
REGISTER_LOCK_STAT R/W  
US  
0h  
Unlocking registers: write 0x9B to this address.  
Locking registers: write anything else than 0x9B to this address.  
Written 8 bit data to this address is not stored, only lock status can  
be read.  
REGISTER_LOCK_STATUS bit shows the lock status:  
0h = Registers are unlocked  
1h = Registers are locked  
Copyright © 2022 Texas Instruments Incorporated  
316 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.152 MANUFACTURING_VER Register (Offset = A6h) [Reset = 00h]  
MANUFACTURING_VER is shown in 8-208 and described in 8-176.  
Return to the 8-23.  
8-213. MANUFACTURING_VER Register  
7
6
5
4
3
2
1
0
SILICON_REV  
R-0h  
8-176. MANUFACTURING_VER Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SILICON_REV  
R
0h  
SILICON_REV[7:6] - Reserved  
SILICON_REV[5:3] - ALR  
SILICON_REV[2:0] - Metal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 317  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.153 CUSTOMER_NVM_ID_REG Register (Offset = A7h) [Reset = 00h]  
CUSTOMER_NVM_ID_REG is shown in 8-209 and described in 8-177.  
Return to the 8-23.  
8-214. CUSTOMER_NVM_ID_REG Register  
7
6
5
4
3
2
1
0
CUSTOMER_NVM_ID  
R/W-0h  
8-177. CUSTOMER_NVM_ID_REG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Customer defined value if customer programmed part  
Same value as in TI_NVM_ID register if TI programmed part  
CUSTOMER_NVM_ID  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
318 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.154 SOFT_REBOOT_REG Register (Offset = ABh) [Reset = 00h]  
SOFT_REBOOT_REG is shown in 8-210 and described in 8-178.  
Return to the 8-23.  
8-215. SOFT_REBOOT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
SOFT_REBOO  
T
R/W-0h  
R/WSelfClrF-0h  
8-178. SOFT_REBOOT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
R/W  
0h  
SOFT_REBOOT  
R/WSelfClrF 0h  
Write 1 to request a soft reboot.  
This bit is automatically cleared.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 319  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.155 RTC_SECONDS Register (Offset = B5h) [Reset = 00h]  
RTC_SECONDS is shown in 8-211 and described in 8-179.  
Return to the 8-23.  
8-216. RTC_SECONDS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SECOND_1  
R/W-0h  
SECOND_0  
R/W-0h  
8-179. RTC_SECONDS Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
SECOND_1  
SECOND_0  
0h  
6-4  
3-0  
0h  
Second digit of seconds (range is 0 up to 5)  
First digit of seconds (range is 0 up to 9)  
0h  
Copyright © 2022 Texas Instruments Incorporated  
320 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.156 RTC_MINUTES Register (Offset = B6h) [Reset = 00h]  
RTC_MINUTES is shown in 8-212 and described in 8-180.  
Return to the 8-23.  
8-217. RTC_MINUTES Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
MINUTE_1  
R/W-0h  
MINUTE_0  
R/W-0h  
8-180. RTC_MINUTES Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
MINUTE_1  
MINUTE_0  
0h  
6-4  
3-0  
0h  
Second digit of minutes (range is 0 up to 5)  
First digit of minutes (range is 0 up to 9)  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 321  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.157 RTC_HOURS Register (Offset = B7h) [Reset = 00h]  
RTC_HOURS is shown in 8-213 and described in 8-181.  
Return to the 8-23.  
8-218. RTC_HOURS Register  
7
6
5
4
3
2
1
0
PM_NAM  
R/W-0h  
RESERVED  
R/W-0h  
HOUR_1  
R/W-0h  
HOUR_0  
R/W-0h  
8-181. RTC_HOURS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PM_NAM  
R/W  
0h  
Only used in PM_AM mode (otherwise it is set to 0)  
0h = AM  
1h = PM  
6
RESERVED  
HOUR_1  
R/W  
R/W  
R/W  
0h  
0h  
0h  
5-4  
3-0  
Second digit of hours(range is 0 up to 2)  
First digit of hours (range is 0 up to 9)  
HOUR_0  
Copyright © 2022 Texas Instruments Incorporated  
322 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.158 RTC_DAYS Register (Offset = B8h) [Reset = 00h]  
RTC_DAYS is shown in 8-214 and described in 8-182.  
Return to the 8-23.  
8-219. RTC_DAYS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
DAY_1  
R/W-0h  
DAY_0  
R/W-0h  
8-182. RTC_DAYS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
3-0  
RESERVED  
DAY_1  
0h  
0h  
Second digit of days (range is 0 up to 3)  
First digit of days (range is 0 up to 9)  
DAY_0  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 323  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.159 RTC_MONTHS Register (Offset = B9h) [Reset = 00h]  
RTC_MONTHS is shown in 8-215 and described in 8-183.  
Return to the 8-23.  
8-220. RTC_MONTHS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
MONTH_1  
R/W-0h  
MONTH_0  
R/W-0h  
8-183. RTC_MONTHS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7-5  
4
RESERVED  
MONTH_1  
MONTH_0  
0h  
0h  
Second digit of months (range is 0 up to 1)  
First digit of months (range is 0 up to 9)  
3-0  
0h  
Copyright © 2022 Texas Instruments Incorporated  
324 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.160 RTC_YEARS Register (Offset = BAh) [Reset = 00h]  
RTC_YEARS is shown in 8-216 and described in 8-184.  
Return to the 8-23.  
8-221. RTC_YEARS Register  
7
6
5
4
3
2
1
0
YEAR_1  
R/W-0h  
YEAR_0  
R/W-0h  
8-184. RTC_YEARS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3-0  
YEAR_1  
YEAR_0  
0h  
Second digit of years (range is 0 up to 9)  
First digit of years (range is 0 up to 9)  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 325  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.161 RTC_WEEKS Register (Offset = BBh) [Reset = 00h]  
RTC_WEEKS is shown in 8-217 and described in 8-185.  
Return to the 8-23.  
8-222. RTC_WEEKS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
WEEK  
R/W-0h  
8-185. RTC_WEEKS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-3  
2-0  
RESERVED  
WEEK  
0h  
0h  
First digit of day of the week (range is 0 up to 6)  
Copyright © 2022 Texas Instruments Incorporated  
326 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.162 ALARM_SECONDS Register (Offset = BCh) [Reset = 00h]  
ALARM_SECONDS is shown in 8-218 and described in 8-186.  
Return to the 8-23.  
8-223. ALARM_SECONDS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
ALR_SECOND_1  
R/W-0h  
ALR_SECOND_0  
R/W-0h  
8-186. ALARM_SECONDS Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
0h  
6-4  
3-0  
ALR_SECOND_1  
ALR_SECOND_0  
0h  
Second digit of alarm programmation for seconds (range is 0 up to 5)  
First digit of alarm programmation for seconds (range is 0 up to 9)  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 327  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.163 ALARM_MINUTES Register (Offset = BDh) [Reset = 00h]  
ALARM_MINUTES is shown in 8-219 and described in 8-187.  
Return to the 8-23.  
8-224. ALARM_MINUTES Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
ALR_MINUTE_1  
R/W-0h  
ALR_MINUTE_0  
R/W-0h  
8-187. ALARM_MINUTES Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
0h  
6-4  
3-0  
ALR_MINUTE_1  
ALR_MINUTE_0  
0h  
Second digit of alarm programmation for minutes (range is 0 up to 5)  
First digit of alarm programmation for minutes (range is 0 up to 9)  
0h  
Copyright © 2022 Texas Instruments Incorporated  
328 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.164 ALARM_HOURS Register (Offset = BEh) [Reset = 00h]  
ALARM_HOURS is shown in 8-220 and described in 8-188.  
Return to the 8-23.  
8-225. ALARM_HOURS Register  
7
6
5
4
3
2
1
0
ALR_PM_NAM  
R/W-0h  
RESERVED  
R/W-0h  
ALR_HOUR_1  
R/W-0h  
ALR_HOUR_0  
R/W-0h  
8-188. ALARM_HOURS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALR_PM_NAM  
R/W  
0h  
Only used in PM_AM mode for alarm programmation (otherwise it is  
set to 0)  
0h = AM  
1h = PM  
6
RESERVED  
R/W  
R/W  
R/W  
0h  
0h  
0h  
5-4  
3-0  
ALR_HOUR_1  
ALR_HOUR_0  
Second digit of alarm programmation for hours(range is 0 up to 2)  
First digit of alarm programmation for hours (range is 0 up to 9)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 329  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.165 ALARM_DAYS Register (Offset = BFh) [Reset = 00h]  
ALARM_DAYS is shown in 8-221 and described in 8-189.  
Return to the 8-23.  
8-226. ALARM_DAYS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
ALR_DAY_1  
R/W-0h  
ALR_DAY_0  
R/W-0h  
8-189. ALARM_DAYS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
3-0  
RESERVED  
ALR_DAY_1  
ALR_DAY_0  
0h  
0h  
Second digit of alarm programmation for days (range is 0 up to 3)  
First digit of alarm programmation for days (range is 0 up to 9)  
0h  
Copyright © 2022 Texas Instruments Incorporated  
330 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.166 ALARM_MONTHS Register (Offset = C0h) [Reset = 00h]  
ALARM_MONTHS is shown in 8-222 and described in 8-190.  
Return to the 8-23.  
8-227. ALARM_MONTHS Register  
7
6
5
4
3
2
1
0
RESERVED  
ALR_MONTH_  
1
ALR_MONTH_0  
R/W-0h  
R/W-0h  
R/W-0h  
8-190. ALARM_MONTHS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7-5  
4
RESERVED  
0h  
ALR_MONTH_1  
ALR_MONTH_0  
0h  
Second digit of alarm programmation for months (range is 0 up to 1)  
First digit of alarm programmation for months (range is 0 up to 9)  
3-0  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 331  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.167 ALARM_YEARS Register (Offset = C1h) [Reset = 00h]  
ALARM_YEARS is shown in 8-223 and described in 8-191.  
Return to the 8-23.  
8-228. ALARM_YEARS Register  
7
6
5
4
3
2
1
0
ALR_YEAR_1  
R/W-0h  
ALR_YEAR_0  
R/W-0h  
8-191. ALARM_YEARS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3-0  
ALR_YEAR_1  
ALR_YEAR_0  
0h  
Second digit of alarm programmation for years (range is 0 up to 9)  
First digit of alarm programmation for years (range is 0 up to 9)  
0h  
Copyright © 2022 Texas Instruments Incorporated  
332 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.168 RTC_CTRL_1 Register (Offset = C2h) [Reset = 00h]  
RTC_CTRL_1 is shown in 8-224 and described in 8-192.  
Return to the 8-23.  
8-229. RTC_CTRL_1 Register  
7
6
5
4
3
2
1
0
RTC_V_OPT  
GET_TIME  
SET_32_COUN RESERVED  
TER  
MODE_12_24 AUTO_COMP  
R/W-0h R/W-0h  
ROUND_30S  
STOP_RTC  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-192. RTC_CTRL_1 Register Field Descriptions  
Bit  
Field  
RTC_V_OPT  
Type  
Reset  
Description  
7
R/W  
0h  
RTC date / time register selection:  
0h = Read access directly to dynamic registers (RTC_SECONDS,  
RTC_MINUTES, RTC_HOURS, RTC_DAYS, RTC_MONTHS,  
RTC_YEAR, RTC_WEEKS)  
1h = Read access to static shadowed registers: (see GET_TIME bit).  
6
GET_TIME  
R/W  
0h  
When writing a 1 into this register, the content of the dynamic  
registers (RTC_SECONDS, RTC_MINUTES, RTC_HOURS,  
RTC_DAYS, RTC_MONTHS, RTC_YEARS_ and RTC_WEEKS) is  
transferred into static shadowed registers.  
Each update of the shadowed registers needs to be done by re-  
asserting GET_TIME bit to 1 (i.e.: reset it to 0 and then rewrite it to 1)  
Note: Shadowed registers, linked to the GET_TIME feature, are a  
parallel set of calendar static registers, at the same I2C addresses  
as the dynamic registers.  
Note: The GET_TIME feature loads the RTC counter in the shadow  
registers and make the content of the shadow registers available and  
stable for reading.  
Note: The GET_TIME bit has to be set to 0 and again to 1 to get a  
new timing value.  
Note: If the time reading is done without GET_TIME, the read value  
comes directly from the RTC counter and software has to manage  
the counter change during the reading.  
Time reading remains always at the same address, with or without  
using the GET_TIME feature.  
5
SET_32_COUNTER  
R/W  
0h  
Note: This bit must only be used when the RTC is frozen.  
0h = No action  
1h = Set the 32kHz counter with RTC_COMP_MSB_REG/  
RTC_COMP_LSB_REG value  
4
3
RESERVED  
R/W  
R/W  
0h  
0h  
MODE_12_24  
Note: It is possible to switch between the two modes at any time  
without disturbed the RTC, read or write are always performed with  
the current mode.  
0h = 24 hours mode  
1h = 12 hours mode (PM-AM mode)  
2
1
AUTO_COMP  
ROUND_30S  
R/W  
R/W  
0h  
0h  
AUTO_COMP  
0h = No auto compensation  
1h = Auto compensation enabled  
Note: This bit is a toggle bit, the micro-controller can only write one  
and RTC clears it.  
If the micro-controller sets the ROUND_30S bit and then read it, the  
micro-controller reads one until the rounding to the closest minute is  
performed at the next second.  
0h = No update  
1h = When a one is written, the time is rounded to the closest minute  
0
STOP_RTC  
R/W  
0h  
STOP_RTC  
0h = RTC is frozen  
1h = RTC is running  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 333  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.169 RTC_CTRL_2 Register (Offset = C3h) [Reset = 00h]  
RTC_CTRL_2 is shown in 8-225 and described in 8-193.  
Return to the 8-23.  
8-230. RTC_CTRL_2 Register  
7
6
5
4
3
2
1
0
FIRST_START  
UP_DONE  
STARTUP_DEST  
FAST_BIST  
R/W-0h  
LP_STANDBY_  
XTAL_SEL  
R/W-0h  
XTAL_EN  
SEL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8-193. RTC_CTRL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIRST_STARTUP_DONE R/W  
0h  
This bit controls if pre-configured NVM defaults are loaded to RTC  
domain reg bits during NVM read  
0h = pre-configured NVM defaults are loaded to RTC domain bits  
1h = pre-configured NVM defaults are not loaded to RTC domain bits  
6-5  
STARTUP_DEST  
R/W  
0h  
FSM start-up destination select.  
(Default from NVM memory)  
0h = STANDBY/LP_STANDBY based on LP_STANDBY_SEL  
1h = Reserved  
2h = MCU_ONLY  
3h = ACTIVE  
4
3
FAST_BIST  
R/W  
R/W  
0h  
0h  
FAST_BIST  
(Default from NVM memory)  
0h = Logic and analog BIST is run at BOOT BIST.  
1h = Only analog BIST is run at BOOT BIST.  
LP_STANDBY_SEL  
Control to enter low power standby state:  
(Default from NVM memory)  
0h = LDOINT is enabled in standby state.  
1h = Low power standby state is used as standby state (LDOINT is  
disabled).  
2-1  
XTAL_SEL  
XTAL_EN  
R/W  
R/W  
0h  
0h  
Crystal oscillator type select  
(Default from NVM memory)  
0h = 6 pF  
1h = 9 pF  
2h = 12.5 pF  
3h = Reserved  
0
Crystal oscillator enable.  
(Default from NVM memory)  
0h = Crystal oscillator is disabled  
1h = Crystal oscillator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
334 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.170 RTC_STATUS Register (Offset = C4h) [Reset = 80h]  
RTC_STATUS is shown in 8-226 and described in 8-194.  
Return to the 8-23.  
8-231. RTC_STATUS Register  
7
6
5
4
3
2
1
0
POWER_UP  
R/W1C-1h  
ALARM  
R/W1C-0h  
TIMER  
RESERVED  
R/W-0h  
RUN  
R-0h  
RESERVED  
R/W-0h  
R/W1C-0h  
8-194. RTC_STATUS Register Field Descriptions  
Bit  
Field  
POWER_UP  
Type  
Reset  
Description  
7
R/W1C  
1h  
Indicates that a reset occurred (bit cleared to 0 by writing 1) and that  
RTC data are not valid anymore.  
Note: POWER_UP is set by a reset, is cleared by writing one in this  
bit.  
Note: The POWER_UP (RTC_STATUS) and RESET_STATUS  
(RTC_RESET_STATUS) register bits indicate the same information.  
6
5
ALARM  
TIMER  
R/W1C  
R/W1C  
0h  
0h  
Indicates that an alarm interrupt has been generated (bit clear by  
writing 1).  
Indicates that an timer interrupt has been generated (bit clear by  
writing 1).  
4-2  
1
RESERVED  
RUN  
R/W  
R
0h  
0h  
Note: This bit shows the real state of the RTC, indeed because of  
STOP_RTC (RTC_CTRL) signal was resynchronized on 32kHz  
clock, the action of this bit is delayed.  
0h = RTC is frozen  
1h = RTC is running  
0
RESERVED  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 335  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.171 RTC_INTERRUPTS Register (Offset = C5h) [Reset = 00h]  
RTC_INTERRUPTS is shown in 8-227 and described in 8-195.  
Return to the 8-23.  
8-232. RTC_INTERRUPTS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
IT_ALARM  
R/W-0h  
IT_TIMER  
R/W-0h  
EVERY  
R/W-0h  
8-195. RTC_INTERRUPTS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3
RESERVED  
IT_ALARM  
0h  
0h  
Enable one interrupt when the alarm value is reached (TC ALARM  
registers: ALARM_SECONDS, ALARM_MINUTES,  
ALARM_HOURS, ALARM_DAYS, ALARM_MONTHS,  
ALARM_YEARS) by the TC registers  
NOTE: To prevent mis-firing of the ALARM interrupt, set the  
IT_ALARM = 0 prior to configuring the ALARM registers  
0h = interrupt disabled  
1h = interrupt enabled  
2
IT_TIMER  
EVERY  
R/W  
R/W  
0h  
0h  
Enable periodic interrupt  
NOTE: To prevent mis-firing of the TIMER interrupt, set the  
IT_TIMER = 0 prior to configuring the periodic time value  
0h = interrupt disabled  
1h = interrupt enabled  
1-0  
Interrupt period  
0h = every second  
1h = every minute  
2h = every hour  
3h = every day  
Copyright © 2022 Texas Instruments Incorporated  
336 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.172 RTC_COMP_LSB Register (Offset = C6h) [Reset = 00h]  
RTC_COMP_LSB is shown in 8-228 and described in 8-196.  
Return to the 8-23.  
8-233. RTC_COMP_LSB Register  
7
6
5
4
3
2
1
0
COMP_LSB_RTC  
R/W-0h  
8-196. RTC_COMP_LSB Register Field Descriptions  
Bit  
7-0  
Field  
COMP_LSB_RTC  
Type  
Reset  
Description  
R/W  
0h  
This register contains the number of 32kHz periods to be added into  
the 32kHz counter every hour [LSB]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 337  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.173 RTC_COMP_MSB Register (Offset = C7h) [Reset = 00h]  
RTC_COMP_MSB is shown in 8-229 and described in 8-197.  
Return to the 8-23.  
8-234. RTC_COMP_MSB Register  
7
6
5
4
3
2
1
0
COMP_MSB_RTC  
R/W-0h  
8-197. RTC_COMP_MSB Register Field Descriptions  
Bit  
7-0  
Field  
COMP_MSB_RTC  
Type  
Reset  
Description  
R/W  
0h  
This register contains the number of 32kHz periods to be added into  
the 32kHz counter every hour [MSB]  
Copyright © 2022 Texas Instruments Incorporated  
338 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.174 RTC_RESET_STATUS Register (Offset = C8h) [Reset = 00h]  
RTC_RESET_STATUS is shown in 8-230 and described in 8-198.  
Return to the 8-23.  
8-235. RTC_RESET_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
RESET_STATU  
S_RTC  
R/W-0h  
R/W-0h  
8-198. RTC_RESET_STATUS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
RESET_STATUS_RTC  
0h  
This bit can only be set to one and is cleared when a manual reset or  
a POR (case of VOUT_LDO_RTC below the LDO_RTC POR level)  
occur. If this bit is reset it means that the RTC has lost its  
configuration.  
Note: The RESET_STATUS (RTC_RESET_STATUS) and  
POWER_UP (RTC_STATUS) register bits indicate the same  
information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 339  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.175 SCRATCH_PAD_REG_1 Register (Offset = C9h) [Reset = 00h]  
SCRATCH_PAD_REG_1 is shown in 8-231 and described in 8-199.  
Return to the 8-23.  
8-236. SCRATCH_PAD_REG_1 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_1  
R/W-0h  
8-199. SCRATCH_PAD_REG_1 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_1  
R/W  
0h  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
340 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.176 SCRATCH_PAD_REG_2 Register (Offset = CAh) [Reset = 00h]  
SCRATCH_PAD_REG_2 is shown in 8-232 and described in 8-200.  
Return to the 8-23.  
8-237. SCRATCH_PAD_REG_2 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_2  
R/W-0h  
8-200. SCRATCH_PAD_REG_2 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_2  
R/W  
0h  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 341  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.177 SCRATCH_PAD_REG_3 Register (Offset = CBh) [Reset = 00h]  
SCRATCH_PAD_REG_3 is shown in 8-233 and described in 8-201.  
Return to the 8-23.  
8-238. SCRATCH_PAD_REG_3 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_3  
R/W-0h  
8-201. SCRATCH_PAD_REG_3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_3  
R/W  
0h  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
342 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.178 SCRATCH_PAD_REG_4 Register (Offset = CCh) [Reset = 00h]  
SCRATCH_PAD_REG_4 is shown in 8-234 and described in 8-202.  
Return to the 8-23.  
8-239. SCRATCH_PAD_REG_4 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_4  
R/W-0h  
8-202. SCRATCH_PAD_REG_4 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_4  
R/W  
0h  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 343  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.179 PFSM_DELAY_REG_1 Register (Offset = CDh) [Reset = 00h]  
PFSM_DELAY_REG_1 is shown in 8-235 and described in 8-203.  
Return to the 8-23.  
8-240. PFSM_DELAY_REG_1 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY1  
R/W-0h  
8-203. PFSM_DELAY_REG_1 Register Field Descriptions  
Bit  
7-0  
Field  
PFSM_DELAY1  
Type  
Reset  
Description  
R/W  
0h  
Generic delay1 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
344 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.180 PFSM_DELAY_REG_2 Register (Offset = CEh) [Reset = 00h]  
PFSM_DELAY_REG_2 is shown in 8-236 and described in 8-204.  
Return to the 8-23.  
8-241. PFSM_DELAY_REG_2 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY2  
R/W-0h  
8-204. PFSM_DELAY_REG_2 Register Field Descriptions  
Bit  
7-0  
Field  
PFSM_DELAY2  
Type  
Reset  
Description  
R/W  
0h  
Generic delay2 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 345  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.181 PFSM_DELAY_REG_3 Register (Offset = CFh) [Reset = 00h]  
PFSM_DELAY_REG_3 is shown in 8-237 and described in 8-205.  
Return to the 8-23.  
8-242. PFSM_DELAY_REG_3 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY3  
R/W-0h  
8-205. PFSM_DELAY_REG_3 Register Field Descriptions  
Bit  
7-0  
Field  
PFSM_DELAY3  
Type  
Reset  
Description  
R/W  
0h  
Generic delay3 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
346 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.182 PFSM_DELAY_REG_4 Register (Offset = D0h) [Reset = 00h]  
PFSM_DELAY_REG_4 is shown in 8-238 and described in 8-206.  
Return to the 8-23.  
8-243. PFSM_DELAY_REG_4 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY4  
R/W-0h  
8-206. PFSM_DELAY_REG_4 Register Field Descriptions  
Bit  
7-0  
Field  
PFSM_DELAY4  
Type  
Reset  
Description  
R/W  
0h  
Generic delay4 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 347  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.183 WD_ANSWER_REG Register (Offset = 401h) [Reset = 00h]  
WD_ANSWER_REG is shown in 8-239 and described in 8-207.  
Return to the 8-23.  
8-244. WD_ANSWER_REG Register  
7
6
5
4
3
2
1
0
WD_ANSWER  
R/W-0h  
8-207. WD_ANSWER_REG Register Field Descriptions  
Bit  
7-0  
Field  
WD_ANSWER  
Type  
Reset  
Description  
R/W  
0h  
MCU answer byte. The MCU must write the expected reference  
Answer-x into this register.  
Each watchdog question requires four answer bytes:  
- Three answer bytes (Answer-3, Answer-2, Answer-1) must be  
written in Window-1.  
- The fourth (final) answer-byte (Answer-0) must be written in  
Window-2.  
The number of written answer bytes is tracked with the  
WD_ANSW_CNT counter in the WD_QUESTION_ANSW_CNT  
register.  
These bits only apply for Watchdog in Q&A mode.  
Copyright © 2022 Texas Instruments Incorporated  
348 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.184 WD_QUESTION_ANSW_CNT Register (Offset = 402h) [Reset = 30h]  
WD_QUESTION_ANSW_CNT is shown in 8-240 and described in 8-208.  
Return to the 8-23.  
8-245. WD_QUESTION_ANSW_CNT Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
WD_ANSW_CNT  
R-3h  
WD_QUESTION  
R-0h  
8-208. WD_QUESTION_ANSW_CNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
RESERVED  
R
0h  
WD_ANSW_CNT  
R
3h  
Current, received watchdog-answer count state.  
These bits only apply for Watchdog in Q&A mode.  
3-0  
WD_QUESTION  
R
0h  
Watchdog question.  
The MCU must read (or calculate ) the current watchdog question  
value to generate correct answers.  
These bits only apply for Watchdog in Q&A mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 349  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.185 WD_WIN1_CFG Register (Offset = 403h) [Reset = 7Fh]  
WD_WIN1_CFG is shown in 8-241 and described in 8-209.  
Return to the 8-23.  
8-246. WD_WIN1_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
WD_WIN1  
R/W-7Fh  
8-209. WD_WIN1_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
WD_WIN1  
0h  
6-0  
7Fh  
These bits are for programming the duration of Watchdog Window-1  
(see Watchdoc chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
350 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.186 WD_WIN2_CFG Register (Offset = 404h) [Reset = 7Fh]  
WD_WIN2_CFG is shown in 8-242 and described in 8-210.  
Return to the 8-23.  
8-247. WD_WIN2_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
WD_WIN2  
R/W-7Fh  
8-210. WD_WIN2_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
WD_WIN2  
0h  
6-0  
7Fh  
These bits are for programming the duration of Watchdog Window-2  
(see Watchdog chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 351  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.187 WD_LONGWIN_CFG Register (Offset = 405h) [Reset = FFh]  
WD_LONGWIN_CFG is shown in 8-243 and described in 8-211.  
Return to the 8-23.  
8-248. WD_LONGWIN_CFG Register  
7
6
5
4
3
2
1
0
WD_LONGWIN  
R/W-FFh  
8-211. WD_LONGWIN_CFG Register Field Descriptions  
Bit  
7-0  
Field  
WD_LONGWIN  
Type  
Reset  
Description  
R/W  
FFh  
These bits are for programming the duration of Watchdog Long  
Window (see Watchdog chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
352 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.188 WD_MODE_REG Register (Offset = 406h) [Reset = 02h]  
WD_MODE_REG is shown in 8-244 and described in 8-212.  
Return to the 8-23.  
8-249. WD_MODE_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
WD_PWRHOL WD_MODE_SE WD_RETURN_  
D
LECT  
LONGWIN  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
8-212. WD_MODE_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-3  
2
RESERVED  
0h  
WD_PWRHOLD  
0h  
Device sets WD_PWRHOLD if hardware condition on pin  
DISABLE_WDOG (mapped to GPIO8 pin) is applied at start-up (see  
Watchdog chapter).  
MCU can write this bit to 1.  
MCU needs to clear this bit to get out of the Long Window:  
0h = watchdog goes out of the Long Window and starts the first  
watchdog-sequence when the configured Long Window time-interval  
elapses  
1h = watchdog stays in Long Window  
1
0
WD_MODE_SELECT  
R/W  
1h  
0h  
Watchdog mode-select:  
MCU can set this to required value only when watchdog is in the  
Long Window.  
0h = Trigger Mode  
1h = Q&A mode.  
WD_RETURN_LONGWIN R/W  
MCU can set this bit to put the watchdog from operating back to the  
Long Window (see Watchdog chapter):  
0h = Watchdog continues operating  
1h = Watchdog returns to Long-Window after completion of the  
current watchdog-sequence.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 353  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.189 WD_QA_CFG Register (Offset = 407h) [Reset = 0Ah]  
WD_QA_CFG is shown in 8-245 and described in 8-213.  
Return to the 8-23.  
8-250. WD_QA_CFG Register  
7
6
5
4
3
2
1
0
WD_QA_FDBK  
R/W-0h  
WD_QA_LFSR  
R/W-0h  
WD_QUESTION_SEED  
R/W-Ah  
8-213. WD_QA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
WD_QA_FDBK  
R/W  
0h  
Feedback configuration bits for the watchdog question. These bits  
control the sequence of the generated questions and respective  
reference answers (see Watchdog chapter).  
These bits are only used for the watchdog in Q&A mode.  
These bits can be only be written when the watchdog is in the Long  
Window.  
5-4  
3-0  
WD_QA_LFSR  
R/W  
R/W  
0h  
Ah  
LFSR-equation configuration bits for the watchdog question (see  
Watchdog chapter).  
These bits are only used for the watchdog in Q&A mode.  
These bits can be only be written when the watchdog is in the Long  
Window.  
WD_QUESTION_SEED  
The watchdog question-seed value (see Watchdog chapter).  
The MCU updates the question-seed value to generate a set of new  
questions.  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
354 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.190 WD_ERR_STATUS Register (Offset = 408h) [Reset = 00h]  
WD_ERR_STATUS is shown in 8-246 and described in 8-214.  
Return to the 8-23.  
8-251. WD_ERR_STATUS Register  
7
6
5
4
3
2
1
0
WD_RST_INT WD_FAIL_INT WD_ANSW_ER WD_SEQ_ERR WD_ANSW_EA WD_TRIG_EAR WD_TIMEOUT WD_LONGWIN  
R
RLY  
LY  
_TIMEOUT_INT  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
R/W1C-0h  
8-214. WD_ERR_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD_RST_INT  
R/W1C  
0h  
Latched status bit to indicate that the device went through warm  
reset due to WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0]).  
Write 1 to clear.  
6
5
WD_FAIL_INT  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit to indicate that the watchdog has cleared the  
ENABLE_DRV bit due to WD_FAIL_CNT[3:0] > WD_FAIL_TH[2:0].  
Write 1 to clear.  
WD_ANSW_ERR  
Latched status bit to indicate that the watchdog has detected an  
incorrect answer-byte.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
4
3
2
WD_SEQ_ERR  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
Latched status bit to indicate that the watchdog has detected an  
incorrect sequence of the answer-bytes.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
WD_ANSW_EARLY  
WD_TRIG_EARLY  
WD_TIMEOUT  
Latched status bit to indicate that the watchdog has received the final  
answer-byte in Window-1.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
Latched status bit to indicate that the watchdog has received the  
watchdog-trigger in Window-1.  
Write 1 to clear.  
This bit only applies for Watchdog in Trigger mode.  
1
0
0h  
0h  
Latched status bit to indicate that the watchdog has detected a time-  
out event in the started watchdog sequence.  
Write 1 to clear.  
WD_LONGWIN_TIMEOU R/W1C  
T_INT  
Latched status bit to indicate that device went through warm reset  
due to elapse of Long Window time-interval.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 355  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.191 WD_THR_CFG Register (Offset = 409h) [Reset = FFh]  
WD_THR_CFG is shown in 8-247 and described in 8-215.  
Return to the 8-23.  
8-252. WD_THR_CFG Register  
7
6
5
4
3
2
1
0
WD_RST_EN  
R/W-1h  
WD_EN  
R/W-1h  
WD_FAIL_TH  
R/W-7h  
WD_RST_TH  
R/W-7h  
8-215. WD_THR_CFG Register Field Descriptions  
Bit  
Field  
WD_RST_EN  
Type  
Reset  
Description  
7
R/W  
1h  
Watchdog reset configuration bit:  
This bit can be only be written when the watchdog is in the Long  
Window.  
0h = No warm reset when WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0]  
+ WD_RST_TH[2:0])  
1h = Warm reset when WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0]).  
6
WD_EN  
R/W  
1h  
Watchdog enable configuration bit:  
This bit can be only be written when the watchdog is in the Long  
Window.  
(Default from NVM memory)  
0h = watchdog disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt status bits are cleared  
1h = watchdog enabled. MCU can set ENABLE_DRV bit to 1 if:  
- watchdog is out of the Long Window  
- WD_FAIL_CNT[3:0] =< WD_FAIL_TH[2:0]  
- WD_FIRST_OK=1  
- all other interrupt status bits are cleared.  
5-3  
2-0  
WD_FAIL_TH  
WD_RST_TH  
R/W  
R/W  
7h  
7h  
Configuration bits for the 1st threshold of the watchdog fail counter:  
Device clears ENABLE_DRV bit when WD_FAIL_CNT[3:0] >  
WD_FAIL_TH[2:0].  
These bits can be only be written when the watchdog is in the Long  
Window.  
Configuration bits for the 2nd threshold of the watchdog fail counter:  
Device goes through warm reset when WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] + WD_RST_TH[2:0]).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
356 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
8.7.1.192 WD_FAIL_CNT_REG Register (Offset = 40Ah) [Reset = 20h]  
WD_FAIL_CNT_REG is shown in 8-248 and described in 8-216.  
Return to the 8-23.  
8-253. WD_FAIL_CNT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
WD_BAD_EVE WD_FIRST_OK RESERVED  
NT  
WD_FAIL_CNT  
R-0h  
R-0h  
R-0h  
R-1h  
R-0h  
8-216. WD_FAIL_CNT_REG Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
6
WD_BAD_EVENT  
R
0h  
Status bit to indicate that the watchdog has detected a bad event in  
the current watchdog sequence.  
The device clears this bit at the end of the watchdog sequence.  
5
WD_FIRST_OK  
R
1h  
Status bit to indicate that the watchdog has detected a good event.  
The device clears this bit when the watchdog goes to the Long  
Window.  
4
RESERVED  
R
R
0h  
0h  
3-0  
WD_FAIL_CNT  
Status bits to indicate the value of the Watchdog Fail Counter.  
The device clears these bits when the watchdog goes to the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 357  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The following sections provides more detail on the proper utilization of the PMIC. Each orderable part number  
has unique default non-volatile memory settings and the relevant user's guide for that orderable are available in  
the TPS6593-Q1 product folder . Reference these user's guides for specific application information. More  
generic topics and some examples are outlined here.  
To help with new designs, a variety of tools and documents are available in the product folder. Some examples  
are:  
Evaluation module and user guide which allow testing of various orderable part numbers, including multi-  
PMIC operation  
GUI to communicate with the PMIC  
Schematic and layout checklist  
9.2 Typical Application  
The PMIC is generally used to power a processor. The number of regulators needed, the required sequencing,  
the load current requirements, and the voltage characteristics are all critical in determining the number of PMICs  
used in the system as well as the external components used with it. The following section provides a generic  
case. For specific cases, refer to the relevant user's guide based on the orderable part number.  
9.2.1 Powering a Processor  
In this example, a single PMIC is used to power a generic processor. For this case, the PMIC is used in 2+1+1+1  
buck phase configuration where BUCK1 and BUCK2 are used in parallel to supply higher currents.  
Copyright © 2022 Texas Instruments Incorporated  
358 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
TPS6593-Q1  
Processor Supplies  
0.8V  
BUCK1  
(3.5A max)  
3.3V  
VCCA  
POWER DOMAINS  
VDD CORE  
0.8V  
BUCK2  
(3.5A max)  
0.85V  
0.8V (AVS)  
1.1V  
BUCK3  
(3.5A max)  
MCU  
CPU (AVS)  
BUCK4  
(4A max)  
BUCK5  
(2A max)  
VDD DDR  
1.8V  
LDO1  
(500mA max)  
VDDA  
1.8V  
LDO2  
(500mA max)  
1.8V PHYs  
0.8V  
LDO3  
(500mA max)  
0.8V PLLs and DLLs  
3.3V VDDSHVx  
1.8V  
LDO4  
(300mA max)  
VIO_IN  
I2C  
I2C  
nRSTOUT  
PORz  
System  
1.8V  
EN  
3.3V  
Load Switch  
1.1V  
9-1. Example Power Map  
9.2.1.1 Design Requirements  
The design requirements for the sample processor in 9-1 are outlined below:  
VDD CORE rail requires 0.8 V, 5 A  
MCU rail requires 0.85 V, 2 A  
CPU (AVS) rail requires 0.8 V, 3 A and the ability to support Adaptive Voltage Scaling  
LPDDR4 is used, which requires 1.1 V, 1 A and 1.8 V, 200 mA  
1.8V PHYs and 0.8V PLLs and DLLs which are noise sensitive  
VDDA supplies the most noise sensitive components of the processor, requires 100 mA, and requires extra  
low noise  
9.2.1.2 Detailed Design Procedure  
Based on the above requirements, the PMIC has been configured with the connections outlined in 9-1.  
BUCK1 and BUCK2 are used in multiphase operation to support the 5 A current. LDO2 and LDO3 are used to  
power 1.8 V PHYs and 0.8 V PLLs and DLLs because they are lower noise than a buck regulator and it isolates  
them from the noise of VDD CORE and the LPDDR4 1.8 V supply. LDO4 is used to power VDDA because it has  
better noise performance.  
Using this configuration information, components can be chosen to use with the PMIC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 359  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.1.2.1 VCCA  
The VCCA pin provides power to the LDOVINT regulator and other internal functions. This VCCA pin is always  
connected in parallel with the buck input pins (PVIN_Bx pins). The VCCA pin can be connected to an optional  
0.47-µF bypass capacitor close to the pin.  
9-1. Recommended VCCA Components  
EIA SIZE  
CODE  
COMPONENT  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
USED for VALIDATION  
Capacitor  
Capacitor  
Murata  
TDK  
GCM155C71A474KE36  
0.47 µF, 10 V, X7R 0402  
0.47 µF, 10 V, X7R 0402  
1.0 × 0.5  
1.0 × 0.5  
Yes  
CGA2B3X7S1A474K050BB  
Copyright © 2022 Texas Instruments Incorporated  
360 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.1.2.2 Internal LDOs  
The internal LDOs, VOUT_LDOVINT and VOUT_LDOVRTC, require external 2.2 µF capacitors for stabilization.  
The recommended components are shown below.  
9-2. Recommended Internal LDO Components  
COMPONE MANUFACTURE  
NT  
USED for  
VALIDATION  
PART NUMBER  
VALUE  
EIA SIZE CODE  
SIZE (mm)  
1.6 × 0.8  
1.6 × 0.8  
R
2.2 µF, 6.3 V,  
X7R  
Capacitor Murata  
Capacitor TDK  
GCM188R70J225KE22  
0603  
CGA3E1X7S1C225M080 2.2 µF, 6.3 V,  
AC X7R  
0603  
9.2.1.2.3 Crystal Oscillator  
A crystal oscillator can be used for application requiring a high accuracy real-time clock module. The  
OSC32KCAP pin is bypassed with a 100-nF bypass capacitor for noise rejection. For the OSC32KIN and  
OSC32KOUT pins, a simplified oscillator schematic is shown in 9-2 to determine what external load  
capacitors are needed for the crystal.  
9-2. Crystal Oscillator Component Selection  
CIN1 and CIN2 are both 12-pF for this device. CPCB1 and CPCB2 depend on the board but is generally around 1-pF.  
The crystal oscillator chosen must have a required load capacitance of either 6-pF, 9-pF, or 12.5-pF and the  
value of the XTAL_SEL bit in the RTC_CTRL_2 register must be updated based on the oscillator chosen. To  
achieve the required load capacitance (CL) for the oscillator, 方程式 25 is used. This equation assumes that the  
crystal series capacitance is negligible.  
CL = (CL1 + CPCB1 + CIN1) × (CL2 + CPCB2 + CIN2) / ((CL1 + CPCB1 + CIN1) + (CL2 + CPCB2 + CIN2))  
(25)  
Assuming CL1 = CL2, this simplifies to CL1 = 2 × CL - CPCB - CIN. Simplifying this into the standard capacitor  
values typically available results in the following general capacitor recommendations. If more precise matching is  
desired, complete the exercise without series capacitance neglected and with exact PCB parasitic capacitance.  
Too much capacitance results in a lower than expected oscillator frequency, while not enough capacitance has  
the opposite impact.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 361  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9-3. Approximate Crystal Oscillator Load Capacitors  
Crystal CL (pF)  
Component CL1 = CL2 (pF)  
6
9
0
6
12.5  
12.5  
The recommended components using a 9-pF oscillator as an example are in 9-4. If an alternate load  
capacitance crystal is used, the values of the load capacitors must be adjusted to match based on the above.  
9-4. Recommended Crystal Oscillator Components for 9-pF Crystal  
EIA size  
code  
Component  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
Used for Validation  
Capacitor  
Capacitor  
Crystal  
Murata  
TDK  
GCM155R71C104JA55D  
100-nF, 16-V, X7R 0402  
1.0 x 0.5  
Yes  
-
CGA2B1X7R1C104K050BC 100-nF, 16-V, X7R 0402  
1.0 x 0.5  
NDK  
NX3215SD-32.768K-STD-  
MUS-6  
32.768-kHz, ±20  
ppm, 9-pF  
3.2 x 1.5 x 0.9  
Yes  
Crystal  
Abracon  
Murata  
TDK  
ABS07AIG-32.768kHz-9-T  
32.768-kHz, ±20  
ppm, 9-pF  
3.2 x 1.5 x 0.9  
1.0 x 0.5  
-
Capacitor  
Capacitor  
GCM1555C1H6R0CA16  
6-pF, 50-V,  
C0G/NP0  
0402  
0402  
Yes  
-
CGA2B2C0G1H060D050BA 6-pF, 50-V,  
C0G/NP0  
1.0 x 0.5  
Copyright © 2022 Texas Instruments Incorporated  
362 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.1.2.4 Buck Input Capacitors  
For optimal performance, every buck needs an input capacitor, and the capacitor value and voltage rating must  
be at least 10-µF, 10-V and must be placed as close to the buck input pins as possible. If the board size allows a  
larger foot print, a 22-µF, 10-V capacitor is recommended. See 9-5 for the recommended input capacitors,  
and the 11 for more information about component placement.  
9-5. Recommended Buck Input Capacitors  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
EIA size code  
SIZE (mm)  
Used for Validation  
CGA4J1X7S1C106K125AC  
GCM21BR71A106KE22  
10 µF, 16 V, X7R  
10 µF, 10 V, X7R  
0805  
2.0 × 1.25 × 1.25  
2.0 × 1.25 × 1.25  
Yes  
-
Murata  
0805  
9.2.1.2.5 Buck Output Capacitors  
The buck converters have seven potential NVM configurations which can impact the output capacitor selection.  
Refer the part number specific user's guide to identify which configuration applies to each buck regulator. The  
actual minimal capacitance requirements to achieve a specific accuracy or ripple target varies depending on the  
input voltage, output voltage, and load transient characteristics; some guidance, however, is provided below. The  
local output capacitors must be placed as close to the inductor as possible to minimize electromagnetic  
emissions. Every buck output requires a local output capacitor to form the capacitive part of the LC output filter. It  
is recommended to place all large capacitors near the inductor. See 11 for more information about component  
placement. Use ceramic local output capacitors, X7R or X7T types; do not use Y5V or F. DC bias voltage  
characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out current flow  
from the inductor to the load, helps maintain a steady output voltage during transient load changes and reduces  
output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and  
ESL to perform these functions. Minimum effective output capacitance (including the DC voltage roll-off,  
tolerances, aging and temperature effects) is defined in Electrical Characteristics table for different buck  
configurations. The output voltage ripple is caused by the charging and discharging of the output capacitor and  
also due to its RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value  
used for selection process is at the switching frequency of the part.  
To achieve better ripple and transient performance, additional high pass filter caps are recommended to  
compensate for the parasitic impedance due to board routing and provide faster transient response to a load  
step. These caps are placed close to the point of load and are also the input capacitors of the load. These  
capacitors are referred to as POL caps later in this document. POL capacitor usage varies based on the  
application and generally follows the SoC or FPGA input capacitor requirements. Low ESL 3-terminal caps are  
recommended, as their high performance can help reduce the total number of capacitors required which  
simplifies board layout design and saves board area. They also help to reduce the total cost of the solution.  
Note that the output capacitor may be the limiting factor in the output voltage ramp and the maximum total output  
capacitance listed in electrical characteristics must not be exceeded. At shutdown the output capacitors are  
discharged to 0.15-V level using forced-PWM operation. This discharge of the output capacitors can cause an  
increase of the input voltage if the load current is small and the output capacitor is large. Below 0.15-V level the  
output capacitor is discharged by the internal discharge resistor and with large capacitor more time is required to  
settle VOUT down as a consequence of the increased time constant.  
9-3 is an example power distribution network (PDN) of local and POL caps at the output of a buck for optimal  
ripple and transient performance. 9-6 lists the local and POL capacitors used to validate the buck transient  
and ripple performance specified in the parametric table for each of the seven configurations. 9-7 lists the  
actual capacitor part numbers used for the different use case tests, neglecting capacitors below 10-µF. It is  
recommended to simulate and validate that the capacitor network chosen for a particular design meets the  
desired requirements as these are provided as guidelines.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 363  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9-3. Example Power Distribution Network (PDN) of Local and POL Capacitors  
9-6. Local and POL Capacitors used for Buck Use Case Validation  
LPCB per  
Configuration  
COUT  
L
CL / phase  
RPCB per phase1  
CPOL1 (total)  
CPOL2 (total)  
phase2  
2.5 nH  
2.5 nH  
2.5 nH  
2.5 nH  
2.5 nH  
2.5 nH  
6 nH  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
220 nH  
220 nH  
220 nH  
220 nH  
220 nH  
220 nH  
470 nH  
470 nH  
1000 nH  
1000 nH  
470 nH  
470 nH  
1000 nH  
1000 nH  
47 µF × 2  
47 µF × 4  
47 µF × 1  
47 µF × 4  
22 µF × 1  
47 µF × 1  
47 µF × 1  
47 µF × 2  
47 µF × 3  
47 µF × 3  
47 µF × 3  
47 µF × 3  
47 µF × 3  
100 µF × 4  
10 µF × 4  
10 µF × 2  
10 µF × 4  
10 µF × 2  
10 µF × 2  
10 µF × 4  
10 µF × 4  
10 µF × 2  
10 µF × 4  
10 µF × 4  
10 µF × 4  
10 µF × 4  
10 µF × 2  
10 µF × 2  
8 mΩ  
8 mΩ  
4.4 MHz VOUT Less than 1.9 V, Multiphase  
4.4 MHz VOUT Less than 1.9 V, Single  
Phase with high COUT  
8 mΩ  
8 mΩ  
8 mΩ  
4.4 MHz VOUT Less than 1.9 V, Single  
Phase with low COUT  
8 mΩ  
27 mΩ  
27 mΩ  
8 mΩ  
4.4 MHz VOUT Greater than 1.7 V, Single  
Phase Only (VIN Greater than 4.5 V)  
6 nH  
2.5 nH  
2.5 nH  
1.3 nH  
1.3 nH  
1.3 nH  
1.3 nH  
2.2 MHz Full VOUT Range and VIN Greater  
than 4.5 V, Single Phase Only  
680 µF × 1  
680 µF × 1  
8 mΩ  
4.1 mΩ  
4.1 mΩ  
4.1 mΩ  
4.1 mΩ  
2.2 MHz VOUT Less than 1.9 V Multiphase  
or Single Phase  
2.2 MHz Full VOUT and Full VIN Range,  
Single Phase Only  
DDR VTT Termination, 2.2 MHz Single  
Phase Only  
10 µF × 1 + 22 µF x  
1
-
470 nH  
22 µF × 1  
6 nH  
27 mΩ  
1. RPCB is the PCB wiring resistance between local and POL capacitors including both positive and negative  
paths. For multi-phase outputs the total resistance is divided by the number of phases.  
2. LPCB is the PCB wiring inductance between local and POL capacitors including both positive and negative  
paths. For multi-phase outputs the total inductance is divided by the number of phases.  
Power input and output wiring parasitic resistance and inductance must be minimized.  
9-7. Recommended Buck Converter Output Capacitor Components  
MANUFACTURER  
Murata  
PART NUMBER  
VALUE  
EIA Size Code  
SIZE (mm)  
Used for Validation  
NFM15HC105D0G(1)  
1 µF, 4 V, X7S  
1 µF, 6.3 V  
0402  
1.0 × 0.5  
Yes  
TDK  
YFF18AC0J105M(1)  
0603  
0603  
0603  
1206  
0805  
1206  
0805  
1210  
1206  
1210  
1206  
1210  
1210  
2917  
1.6 × 0.8  
-
Murata  
TDK  
NFM18HC106D0G(1)  
10 µF, 4 V, X7S  
4.7 µF, 6.3 V  
1.6 × 0.8  
Yes  
YFF18AC0G475M(1)  
1.6 × 0.8  
-
Murata  
Murata  
TDK  
GCM31CR71A226KE02  
GCM21BD7CGA5L1X7R0J226MT0J226M  
CGA5L1X7R0J226MT  
CGA4J1X7T0J226MT  
22 µF, 10 V, X7R  
22 µF, 6.3 V, X7T  
22 µF, 6.3 V, X7R  
22 µF, 6.3 V, X7T  
47 µF, 6.3 V, X7R  
47 µF, 4 V, X7T  
47 µF, 10 V, X7S  
47 µF, 4 V, X7T  
100 µF, 4 V, X7S  
100 µF, 4 V, X7T  
680 µF, 6.3 V  
3.2 × 1.6  
Yes  
2.0 × 1.25 × 1.25  
3.2 × 1.6  
-
-
TDK  
2.0 × 1.25 × 1.25  
3.2 × 2.5  
-
Murata  
Murata  
TDK  
GCM32ER70J476ME19  
GCM31CD70G476M  
Yes  
3.2 × 1.6  
-
CGA6P1X7S1A476MT  
CGA5L1X7T0G476MT  
GCM32ED70G107MEC4  
CGA6P1X7T0G107MT  
T510X687K006ATA023(2)  
3.2 × 2.5  
-
TDK  
3.2 × 1.6  
-
Murata  
TDK  
3.2 × 2.5  
Yes  
-
3.2 × 2.5  
Kemet  
7.4 × 5.0  
Yes  
(1) Low ESL 3-terminal cap.  
(2) Dependent on availability; may switch to 470 µF.  
Copyright © 2022 Texas Instruments Incorporated  
364 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.1.2.6 Buck Inductors  
Inductor must be chosen based on the buck configuration. See 9-6 for the appropriate nominal inductance.  
Recommended inductors based on these requirements are shown below.  
9-8. Recommended Buck Converter Inductors  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
Used for Validation  
TDK  
TFM322512ALMA1R0MTAA  
DFE322520FD-1R0M=P2  
TFM322512ALMAR47MTAA  
TFM252012ALMAR47MTAA  
DFE2HCAHR47MJ0  
1000 nH, 4 A Max, 150 °C  
3.2 × 2.5 × 1.2  
Yes  
Murata  
TDK  
1000 nH, 4.1 A Max, 125 °C 3.2 x 2.5 x 2.0  
-
470 nH, 5.3 A Max, 150 °C  
470 nH, 4.9 A Max, 150 °C  
470 nH, 4.5 A Max, 150 °C  
220 nH, 7.6 A Max, 150 °C  
220 nH, 5 A Max, 150 °C  
240 nH, 4.2 A Max, 150 °C  
3.2 × 2.5 × 1.2  
2.5 x 2.0 x 1.2  
2.5 × 2.0 × 1.2  
3.2 x 2.5 x 1.2  
2.0 x 1.6 x 1.2  
2.0 x 1.6 x 1.2  
Yes  
TDK  
-
Murata  
TDK  
-
TFM322512ALMAR22MTAA  
TFM201610ALMAR24MTAA  
DFE2MCAHR24MJ0  
Yes  
TDK  
-
-
Murata  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 365  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.1.2.7 LDO Input Capacitors  
All LDO inputs require an input decoupling capacitor to minimize input ripple voltage. Using a 2.2-µF capacitor  
for each LDO is recommended. Depending on the input voltage of the LDO, a 6.3-V, 10-V, or 16-V capacitor can  
be used. For optimal performance, the input capacitors must be placed as close to the LDO input pins as  
possible. See the 11 for more information about component placement. See 9-9 for the recommended  
input capacitors.  
9-9. Recommended LDO Input Capacitors(1)  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
EIA size code  
SIZE (mm)  
1.6 x 0.8  
1.6 x 0.8  
Used for Validation  
CGA3E1X7S1C225M080AC  
GCM188R70J225KE22  
2.2-µF, 16-V, X7S  
2.2-µF, 16-V, X7R  
0603  
Yes  
-
Murata  
0603  
(1) Component minimum and maximum tolerance values are specified in the electrical parameters section of each IP.  
9.2.1.2.8 LDO Output Capacitors  
All LDO outputs require an output capacitor to hold up the output voltage during a load step or changes to the  
input voltage. Using a 2.2-µF capacitor for each LDO output is recommended. Note: this requirement excludes  
any capacitance seen at the load and only refers to the capacitance seen close to the device. Additional  
capacitance placed near the load can be supported, but the end application or system must be evaluated for  
stability. See 9-10 for the specific part number of the recommended output capacitors. For BOM optimization  
purposes, the same capacitor part number was used for LDO input and LDO output.  
9-10. Recommended LDO Output Capacitors  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
EIA size code  
SIZE (mm)  
1.6 × 0.8  
1.6 × 0.8  
Used for Validation  
CGA3E1X7S1C225M080AC  
GCM188R70J225KE22  
2.2-µF, 16-V, X7S  
2.2-µF, 16-V, X7R  
0603  
Yes  
Murata  
0603  
9.2.1.2.9 Digital Signal Connections  
The VIO_IN pin requires a 0.47 µF bypass capacitor close to the pin. See 9-11 for the recommended bypass  
capacitors.  
9-11. Recommended VIO_IN Capacitor  
EIA size  
code  
Component  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
Used for Validation  
Capacitor  
Capacitor  
Murata  
TDK  
GCM155C71A474KE36  
0.47 µF, 10 V, X7S 0402  
0.47 µF, 10 V, X7S 0402  
1.0 x 0.5  
1.0 x 0.5  
Yes  
-
CGA2B3X7S1A474K050BB  
For I2C pull-up resistor values, please refer to the I2C standard for the chosen use-case (standard mode, Fast  
mode, Fast mode+, High-Speed mode with Cb = 100pF or 400pF)  
Copyright © 2022 Texas Instruments Incorporated  
366 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
VPVIN_Bn = 3.3 V, FPWM mode  
VPVIN_Bn = 3.3 V, Auto mode  
VPVIN_Bn = 5 V, FPWM mode  
VPVIN_Bn = 5 V, Auto mode  
Fsw = 2.2 MHz, FPWM mode  
Fsw = 2.2 MHz, Auto mode  
Fsw = 4.4 MHz, FPWM mode  
Fsw = 4.4 MHz, Auto mode  
0.01  
0.05 0.1  
0.5  
1
5
10 20  
0.01  
0.05 0.1  
0.5  
1
5
10 20  
IOUT_Bn (A)  
IOUT_Bn (A)  
VVOUT_Bn = 1.8 V  
Fsw = 2.2 MHz  
4-Phase  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1.8 V  
4-Phase  
9-4. BUCK Efficiency at 3.3 V or 5 V Input Voltage  
9-5. BUCK Efficiency with Fsw = 2.2 MHz or 4.4 MHz  
95  
95  
90  
85  
90  
85  
80  
80  
Fsw = 2.2 MHz, 1 Phase  
Fsw = 2.2 MHz, 1 Phase  
Fsw = 2.2 MHz, 2 Phase  
Fsw = 2.2 MHz, 2 Phase  
Fsw = 2.2 MHz, 3 Phase  
Fsw = 2.2 MHz, 4 Phase  
Fsw = 4.4 MHz, 1 Phase  
Fsw = 2.2 MHz, 3 Phase  
Fsw = 2.2 MHz, 4 Phase  
Fsw = 4.4 MHz, 1 Phase  
75  
75  
Fsw = 4.4 MHz, 2 Phase  
Fsw = 4.4 MHz, 3 Phase  
Fsw = 4.4 MHz, 4 Phase  
Fsw = 4.4 MHz, 2 Phase  
Fsw = 4.4 MHz, 3 Phase  
Fsw = 4.4 MHz, 4 Phase  
70  
65  
70  
65  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V VVOUT_Bn = 1.8 V  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V VVOUT_Bn = 1.8 V  
Auto Mode  
Auto Mode  
9-6. BUCK Efficiency in Varied Phase Configuration, 3.3 V  
9-7. BUCK Efficiency in Varied Phase Configuration, 5 V  
Input  
Input  
100  
80  
100  
80  
60  
60  
40  
40  
VOUT_Bn = 0.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 0.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 0.8 V, Fsw = 2.2 MHz  
VOUT_Bn = 1.2 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.2 V, Fsw = 2.2 MHz  
VOUT_Bn = 0.8 V, Fsw = 2.2 MHz  
VOUT_Bn = 1.2 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.2 V, Fsw = 2.2 MHz  
20  
20  
VOUT_Bn = 1.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.8 V, Fsw = 2.2 MHz  
VOUT_Bn = 1.8 V, Fsw = 2.2 MHz  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Single-Phase  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 5 V Single-Phase  
9-9. BUCK Efficiency with different VOUT_Bn, 5 V Input  
Forced-PWM Mode  
Forced-PWM Mode  
9-8. BUCK Efficiency with different VOUT_Bn, 3.3 V Input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 367  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
90  
100  
80  
60  
40  
20  
0
-40oC  
25oC  
85oC  
125oC  
85  
80  
75  
70  
65  
-40oC  
25oC  
85oC  
125oC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V VVOUT_Bn = 1 V  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V VVOUT_Bn = 1 V  
Single-Phase  
Single-Phase  
9-10. BUCK Efficiency at different TA, Auto Mode  
9-11. BUCK Efficiency at different TA, Forced-PWM Mode  
1.01  
1.01  
1 Phase  
1 Phase  
2 Phase  
3 Phase  
4 Phase  
2 Phase  
3 Phase  
4 Phase  
1.0075  
1.005  
1.0025  
1
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
0.9975  
0.995  
0.9925  
0.99  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-12. Buck Temperature Drift, Auto Mode, Fsw = 2.2 MHz  
9-13. Buck Temperature Drift, Auto Mode, Fsw = 4.4 MHz  
1.01  
1.01  
1 Phase  
1 Phase  
2 Phase  
3 Phase  
4 Phase  
2 Phase  
3 Phase  
4 Phase  
1.0075  
1.005  
1.0025  
1
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
0.9975  
0.995  
0.9925  
0.99  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-14. Buck Temperature Drift, Forced-PWM Mode, Fsw = 2.2  
9-15. Buck Temperature Drift, Forced-PWM Mode, Fsw = 4.4  
MHz  
MHz  
Copyright © 2022 Texas Instruments Incorporated  
368 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
1.01  
1.01  
1.008  
1.006  
1.004  
1.002  
1
Fsw = 2.2 MHz, FPWM mode  
Fsw = 2.2 MHz, FPWM mode  
Fsw = 2.2 MHz, Auto mode  
Fsw = 4.4 MHz, FPWM mode  
Fsw = 4.4 MHz, Auto mode  
1.008  
1.006  
1.004  
1.002  
1
Fsw = 2.2 MHz, Auto mode  
Fsw = 4.4 MHz, FPWM mode  
Fsw = 4.4 MHz, Auto mode  
0.998  
0.996  
0.994  
0.992  
0.99  
0.998  
0.996  
0.994  
0.992  
0.99  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
IOUT_Bn (A)  
IOUT_Bn (A)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
4-Phase  
VPVIN_Bn = 5 V  
VVOUT_Bn = 1 V  
4-Phase  
9-16. Buck Load Regulation with 3.3 V Input  
9-17. Buck Load Regulation with 5 V Input  
1.01  
1.01  
1 Phase  
2 Phase  
3 Phase  
4 Phase  
1 Phase  
1.008  
1.006  
1.004  
1.002  
1
1.008  
1.006  
1.004  
1.002  
1
2 Phase  
3 Phase  
4 Phase  
0.998  
0.996  
0.994  
0.992  
0.99  
0.998  
0.996  
0.994  
0.992  
0.99  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V VVOUT_Bn = 1 V  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V VVOUT_Bn = 1 V  
Auto Mode  
Auto Mode  
9-18. Buck Load Regulation, with Fsw = 2.2 MHz  
9-19. Buck Load Regulation, with Fsw = 4.4 MHz  
1.01  
1.01  
1 Phase  
1 Phase  
1.008  
1.006  
1.004  
1.002  
1
1.008  
1.006  
1.004  
1.002  
1
2 Phase  
3 Phase  
4 Phase  
2 Phase  
3 Phase  
4 Phase  
0.998  
0.996  
0.994  
0.992  
0.99  
0.998  
0.996  
0.994  
0.992  
0.99  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
VPVIN_Bn (V)  
VPVIN_Bn (V)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
Auto Mode  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
Auto Mode  
9-20. Buck Line Regulation, with Fsw = 2.2 MHz  
9-21. Buck Line Regulation, with Fsw = 4.4 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 369  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (40µs/div)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 10 mA  
9-23. Buck Output Ripple - Single Phase, Fsw = 2.2 MHz,  
9-22. Buck Output Ripple - Single Phase, Auto Mode  
Forced-PWM Mode  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (40µs/div)  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
ILOAD = 10 mA  
9-24. Buck Output Ripple - Single Phase, Fsw = 4.4 MHz,  
9-25. Buck Output Ripple - 2-Phase, Auto Mode  
Forced-PWM Mode  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (200ns/div)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
9-27. Buck Output Ripple - 2-Phase, Fsw = 4.4 MHz, Forced-  
9-26. Buck Output Ripple - 2-Phase, Fsw = 2.2 MHz, Forced-  
PWM Mode  
PWM Mode  
Copyright © 2022 Texas Instruments Incorporated  
370 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (5mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (40µs/div)  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
ILOAD = 10 mA  
9-29. Buck Output Ripple - 3-Phase, Fsw = 2.2 MHz, Forced-  
PWM Mode  
9-28. Buck Output Ripple - 3-Phase, Auto Mode  
VVOUT_Bn (5mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (40µs/div)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 10 mA  
Time (200ns/div)  
9-31. Buck Output Ripple - 4-Phase, Auto Mode  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
9-30. Buck Output Ripple - 3-Phase, Fsw = 4.4 MHz, Forced-  
PWM Mode  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (200ns/div)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
9-33. Buck Output Ripple - 4-Phase, Fsw = 4.4 MHz, Forced-  
9-32. Buck Output Ripple - 4-Phase, Fsw = 2.2 MHz, Forced-  
PWM Mode  
PWM Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 371  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (2µs/div)  
VVOUT_Bn = 1 V  
Time (2µs/div)  
VPVIN_Bn = 3.3 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
9-34. Buck Transient from PWM mode to PFM mode, 2.2 MHz,  
9-35. Buck Transient from PWM mode to PFM mode, 4.4 MHz,  
Single Phase  
Single Phase  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
Time (2µs/div)  
VSW_Bn (2V/div)  
Time (2µs/div)  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
ILOAD = 200 mA  
9-36. Buck Transient from PFM mode to PWM mode, 2.2 MHz, 9-37. Buck Transient from PFM mode to PWM mode, 4.4 MHz,  
Single Phase  
Single Phase  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 7 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 7 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-38. Buck Load Step Transient - 4-Phase, 2.2 MHz, Auto  
9-39. Buck Load Step Transient - 4-Phase, 4.4 MHz, Auto  
Mode  
Mode  
Copyright © 2022 Texas Instruments Incorporated  
372 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 7 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 7 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VVOUT_Bn = 1 V  
9-40. Buck Load Step Transient - 4-Phase, 2.2 MHz, Forced-  
9-41. Buck Load Step Transient - 4-Phase, 4.4 MHz, Forced-  
PWM Mode  
PWM Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 5.25 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 5.25 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-42. Buck Load Step Transient - 3-Phase, 2.2 MHz, Auto  
9-43. Buck Load Step Transient - 3-Phase, 4.4 MHz, Auto  
Mode  
Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 5.25 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 5.25 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-45. Buck Load Step Transient - 3-Phase, 4.4 MHz, Forced-  
9-44. Buck Load Step Transient - 3-Phase, 2.2 MHz, Forced-  
PWM Mode  
PWM Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 373  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 3.5 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 3.5 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-46. Buck Load Step Transient - 2-Phase, 2.2 MHz, Auto  
9-47. Buck Load Step Transient - 2-Phase, 4.4 MHz, Auto  
Mode  
Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 3.5 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 3.5 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-49. Buck Load Step Transient - 2-Phase, 4.4 MHz, Forced-  
9-48. Buck Load Step Transient - 2-Phase, 2.2 MHz, Forced-  
PWM Mode  
PWM Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 2 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 2 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-51. Buck Load Step Transient - Buck4, 4.4 MHz, Auto Mode  
9-50. Buck Load Step Transient - Buck4, 2.2 MHz, Auto Mode  
Copyright © 2022 Texas Instruments Incorporated  
374 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 2 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
ILOAD = 0.1 A 2 A 0.1 A, TR = TF = 1 μs  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-53. Buck Load Step Transient - Buck4, 4.4 MHz, Forced-  
9-52. Buck Load Step Transient - Buck4, 2.2 MHz, Forced-  
PWM Mode  
PWM Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (0.4A/div)  
ILOAD (0.4A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 1 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 1 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-54. Buck Load Step Transient - Buck5, 2.2 MHz, Auto Mode  
9-55. Buck Load Step Transient - Buck5, 4.4 MHz, Auto Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (0.4A/div)  
ILOAD (0.4A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A 1 A 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A 1 A 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
VPVIN_Bn = 3.3 V  
VVOUT_Bn = 1 V  
9-56. Buck Load Step Transient - Buck5, 2.2 MHz, Forced-  
9-57. Buck Load Step Transient - Buck5, 4.4 MHz, Forced-  
PWM Mode  
PWM Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 375  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
1.81  
3.005  
3.004  
3.003  
3.002  
3.001  
3
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
1.808  
1.806  
1.804  
1.802  
1.8  
1.798  
1.796  
1.794  
1.792  
1.79  
2.999  
2.998  
2.997  
2.996  
2.995  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Load (A)  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Load (A)  
VIN(LDOn) = 3.3 V  
VOUT(LDOn) = 1.8 V  
VIN(LDOn) = 3.3 V  
VOUT(LDOn) = 3.0 V  
9-58. LDO1/2/3 Load Regulation, Vout = 1.8 V  
9-59. LDO1/2/3 Load Regulation, Vout = 3 V  
0.808  
1.82  
1.815  
1.81  
TA = -40oC  
TA = -40oC  
TA = 0oC  
TA = 0oC  
0.806  
0.804  
0.802  
TA = 20oC  
TA = 20oC  
TA = 80oC  
TA = 125oC  
TA = 80oC  
TA = 125oC  
1.805  
1.8  
0.8  
0.798  
0.796  
0.794  
0.792  
1.795  
1.79  
1.785  
1.78  
1.2  
1.5  
1.8  
2.1  
VIN(LDOn) (V)  
2.4  
2.7  
3
3.3  
3.6  
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
VIN(LDOn) (V)  
3
3.1 3.2 3.3  
VOUT(LDOn) = 0.8 V  
IOUT(LDOn) = 500 mA  
VOUT(LDOn) = 1.8 V  
IOUT(LDOn) = 50 mA  
9-60. LDO1/2/3 Line Regulation over Temperature, Vout = 0.8 9-61. LDO1/2/3 Line Regulation over Temperature, Vout = 1.8  
V
V
3.4  
3.2  
3
3.4  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.8  
1.6  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
VIN(LDOn) = 3.3 V  
IOUT(LDOn) = 50 mA  
VIN(LDOn) = 3.3 V  
IOUT(LDOn) = 50 mA  
9-62. LDO1/2/3 Transition from 3.3 V in Bypass Mode to 1.8 V 9-63. LDO1/2/3 Transition from 1.8 V in Linear Mode to 3.3 V  
Linear Mode  
in Bypass Mode  
Copyright © 2022 Texas Instruments Incorporated  
376 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Application Curves (continued)  
1.81  
1.808  
1.806  
1.804  
1.802  
1.8  
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
VVOUT_Bn (20mV/div)  
1.798  
1.796  
1.794  
1.792  
1.79  
ILOAD (0.2A/div)  
Time (20µs/div)  
ILOAD = 0.1 A 0.4 A 0.1 A, TR = TF = 1 μs  
0
0.05  
0.1  
0.15  
Load (A)  
0.2  
0.25  
0.3  
VIN(LDOn) = 3.3 V  
VOUT(LDOn) = 1 V  
VIN(LDO4) = 3.3 V  
VOUT(LDO4) = 1.8 V  
9-64. LDO1/2/3 Load Step Transient  
9-65. LDO4 Load Regulation, Vout = 1.8 V  
1.82  
3.005  
3.004  
3.003  
3.002  
3.001  
3
TA = -40oC  
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
TA = 0oC  
1.815  
1.81  
TA = 20oC  
TA = 80oC  
TA = 125oC  
1.805  
1.8  
2.999  
2.998  
2.997  
2.996  
2.995  
1.795  
1.79  
1.785  
1.78  
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
VIN(LDOn) (V)  
3
3.1 3.2 3.3  
0
0.05  
0.1  
0.15  
Load (A)  
0.2  
0.25  
0.3  
VIN(LDO4) = 3.3 V  
VOUT(LDO4) = 3.0 V  
VOUT(LDO4) = 1.8 V  
IOUT(LDO4) = 300 mA  
9-66. LDO4 Load Regulation, Vout = 3 V  
9-67. LDO4 Line Regulation over Temperature, Vout = 1.8 V  
VVOUT_Bn (20mV/div)  
ILOAD (0.2A/div)  
Time (20µs/div)  
ILOAD = 0.1 A 0.4 A 0.1 A, TR = TF = 1 μs  
VIN(LDO4) = 3.3 V  
VOUT(LDO4) = = 1 V  
9-68. LDO4 Load Step Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 377  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 3.0 V and 5.5 V. This input supply  
must be well regulated and can withstand maximum input current and keep a stable voltage without voltage drop  
even at load transition condition. The resistance of the input supply rail must be low enough that the input  
current transient does not cause too high drop in the device supply voltage that can cause false UVLO fault  
triggering. If the input supply is located more than a few inches from the device, additional bulk capacitance may  
be required in addition to the ceramic bypass capacitors.  
11 Layout  
11.1 Layout Guidelines  
The high frequency and large switching currents of the TPS6593-Q1 device make the choice of layout important.  
Good power supply results only occur when care is given to correct design and layout. Layout affects noise  
pickup and generation and can cause a good design to perform with less-than-expected results.  
With a range of buck output currents from a few milliampere to 10 A and over, good power supply layout is much  
more difficult than most general PCB design. Use the following steps as a reference to ensure the buck  
regulators are stable and maintain correct voltage and current regulation across its intended operating voltage  
and current range.  
1. Place CIN as close as possible to the PVIN_Bx pin and the PGND/Thermal Pad. Route the VIN trace wide  
and thick to avoid IR drops. The DCR of the trace from the source to the pin must be less than 2 mΩ. The  
trace between the positive node of the input capacitor and the PVIN_Bx pins of the device, as well as the  
trace between the negative node of the input capacitor and PGND/Thermal Pad, must be kept as short as  
possible. The input capacitance provides a low-impedance voltage source for the switching converter. The  
inductance of the connection is the most important parameter of a local decoupling capacitor parasitic  
inductance on these traces must be kept as small as possible for correct device operation. The parasitic  
inductance can be reduced by using a ground plane as close as possible to top layer by using thin dielectric  
layer between top layer and ground plane.  
2. The output filter, consisting of COUT and L, converts the switching signal at SW_Bx to the noiseless output  
voltage. This output filter must be placed as close as possible to the device keeping the switch node small,  
for best EMI behavior. Note that the PVIN_Bx pin is directly adjacent to the SW_Bx pin. The inductor and  
capacitor placement must be made as close as possible without compromising PVIN_Bx. Route the traces  
between the output capacitors of the device and the load direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VCCA and REFGND1/2) must be isolated from noisy signals. Connect VCCA  
directly to a quiet system voltage node and REFGND1/2 to a quiet ground point where no IR drop occurs.  
Place the decoupling capacitor as close as possible to the VCCA pin.  
4. If the processor load supports remote voltage sensing, connect the feedback pins FB_Bx of the device to the  
respective sense pins on the processor. If the processor does not support remote voltage sensing, then  
connect the FB_Bx pin to a representative load capacitor. With differential feedback, also connect the  
negative feedback pin to the negative terminal of the same load capacitor. The minimum recommended  
trace width is 6 mils. The sense lines are susceptible to noise. They must be kept away from noisy signals  
such as PGND, PVIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I2C. Avoid capacitive  
and inductive coupling by keeping the sense lines short, direct, and close to each other. Run the lines in a  
quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible. Running the signal as a  
differential pair is recommended. If series resistors are used for load current measurement, place them after  
connection of the voltage feedback.  
5. PGND, PVIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers,  
which are not able to withstand interference from noisy PGND, PVIN_Bx and SW_Bx.  
For the LDO regulators, the feedback connection is internal. Therefore, it is important to keep the PCB  
resistance between LDO output and target load in the range of the acceptable voltage drop for LDOs. Similar to  
the buck regulators, the input capacitor at the PVIN_LDOx pins and the VCCA pin must be placed as close as  
possible to the PMIC. The impedance from the source of the PVIN_LDOx pins and the VCCA pin must be low  
and the DCR less than 2 mΩ. The output capacitor at the VOUT_LDOx, VOUT_LDOVINT and  
VOUT_LDOVRTC pins must be as close (0.5mm) to the PMIC as possible. The ground connection of these  
Copyright © 2022 Texas Instruments Incorporated  
378 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
capacitors, especially for the capacitor at the VOUT_LDOVINT pin, must have a low impedance of less than 2  
mΩ to the ground (Thermal Pad) of the TPS6593-Q1. For the ground connection of this capacitor at the  
VOUT_LDOVINT pin, use multiple vias (at least three) directly at the ground landing pad of the capacitor. See  
illustration below:  
11-1. Ground connection of capacitor at VOUT_LDOVINT pin  
Due to the overall small solution size, the thermal performance of the PCB layout is important. Many system-  
dependent parameters, such as thermal coupling, airflow, added heat sinks and convection surfaces, and the  
presence of other heat-generating components affect the power dissipation limits of a given component. Proper  
PCB layout, focusing on thermal performance, results in lower die temperatures. Wide and thick power traces  
come with the ability to sink dissipated heat. The capability to sink dissipated heat can be improved further on  
multi-layer PCB designs with vias to different planes. Improved heat-sinking capability results in reduced  
junction-to-ambient (RθJA) and junction-to-board (RθJB) thermal resistances and thereby reduces the device  
junction temperature, TJ. TI strongly recommends to perform a careful system-level 2D or full 3D dynamic  
thermal analysis at the beginning product design process, by using a thermal modeling analysis software.  
Overall recommendation for the PCB is to use at least 12 layers with 60 to 90 mil thickness, and with following  
weights for the Copper layers:  
0.5oz for signal layers  
at least 1.5oz for top layer and other plane layers  
A more complete list of layout recommendations can be found in the Schematic and layout checklist.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 379  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
11.2 Layout Example  
11-2. Example PMIC Layout  
This example shows a top and bottom layout of the key power components and the crystal oscillator based on  
the EVM. Most of the digital routing is neglected in this image, see the EVM design files EVM design files for full  
details. The highest priority must be on the buck input capacitors, followed by the inductors, and the output  
capacitor on the VOUT_LDOVINT pin. Ensure that there are sufficient vias for high current pathways.  
Copyright © 2022 Texas Instruments Incorporated  
380 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Device Nomenclature  
The following acronyms and terms are used in this data sheet. For a detailed list of terms, acronyms, and  
definitions, see the TI glossary.  
ADC  
DAC  
APE  
AVS  
DVS  
GPIO  
LDO  
PM  
Analog-to-Digital Converter  
Digital-to-Analog Converter  
Application Processor Engine  
Adaptive Voltage Scaling  
Dynamic Voltage Scaling  
General-Purpose Input and Output  
Low-Dropout voltage linear regulator  
Power Management  
PMIC  
PSRR  
RTC  
NA  
Power-Management Integrated Circuit  
Power Supply Rejection Ratio  
Real-Time Clock  
Not Applicable  
NVM  
ESR  
DCR  
PDN  
PMU  
PFM  
PWM  
EMC  
PLL  
Non-Volatile Memory  
Equivalent Series Resistance  
DC Resistance of an inductor  
Power Delivery Network  
Power Management Unit  
Pulse Frequency Modulation  
Pulse Width Modulation  
Electromagnetic Compatibility  
Phase Locked Loop  
SPI  
Serial Peripheral Interface  
System Power Management Interface  
Inter-Integrated Circuit  
SPMI  
I2C  
PFSM  
UV  
Pre-configured Finite State Machine  
Undervoltage  
OV  
Overvoltage  
POR  
UVLO  
OVP  
EPC  
FSD  
ESM  
Power On Reset  
Undervoltage Lockout  
Overvoltage Protection  
Embedded Power Controller  
First Supply Detection  
Error Signal Monitor  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 381  
Product Folder Links: TPS6593-Q1  
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
MCU  
SoC  
Micro Controller Unit  
System on Chip  
BIST  
LBIST  
CRC  
Built-In Self-Test  
Logic Built-In Self-Test  
Cyclic Redundancy Check  
Voltage Monitor  
VMON  
PGOOD Power Good (signal which indicates that the monitored power supply rail(s) is (are) in range)  
12.3 Documentation Support  
12.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
382 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
13.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
Orderable Device  
Status (1)  
Pins  
Eco Plan (2)  
MSL Peak Temp (4)  
Op Temp (°C)  
Device Marking(5) (6)  
PTPS6593x  
-Q1  
PRE_PRO  
D
PTPS65931211RWERQ1  
VQFNP  
VQFNP  
RWE  
RWE  
56  
2000  
2000  
RoHS & Green  
NIPDAUAG  
NIPDAUAG  
Level-3-260C-168 HR  
-40 to 125  
PTPS6593x  
-Q1  
PRE_PRO  
D
PTPS65931410RWERQ1  
56  
RoHS & Green  
Level-3-260C-168 HR  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1%  
by weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by  
third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable  
steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain  
information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
383  
Product Folder Links: TPS6593-Q1  
 
 
 
 
 
 
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
13.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTPS65931211RWER  
Q1  
VQFNP  
VQFNP  
RWE  
RWE  
56  
56  
2000  
2000  
330  
330  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
2.25  
2.25  
12  
12  
16  
16  
Q2  
Q2  
PTPS65931410RWER  
Q1  
Copyright © 2022 Texas Instruments Incorporated  
384 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
 
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
2000  
2000  
Length (mm) Width (mm)  
Height (mm)  
43.0  
PTPS65931211RWERQ1  
PTPS65931410RWERQ1  
VQFNP  
VQFNP  
RWE  
RWE  
56  
56  
350.0  
350.0  
350.0  
350.0  
43.0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 385  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
RWE0056C  
VQFNP - 0.9 mm max height  
SCALE 2.000  
PLASTIC QUAD FLATPACK - NO LEAD  
8.1  
7.9  
A
B
0.05  
0.00  
(0.1)  
PIN 1 ID  
DETAIL A  
TYPICAL  
8.1  
7.9  
D
E
T
A
I
L
A
S
C
A
L
E
2
0
.
0
0
0
(
7.75)  
(0.15)  
0.15 0.1  
D
E
T
A
I
L
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9  
12 MAX  
0.8  
C
SEATING PLANE  
0.08 C  
(0.2)  
SEE DETAIL A  
SEE DETAIL B  
4X  
45 X 0.6 MAX  
15  
28  
14  
29  
SYMM  
4X  
57  
5.5 0.05  
6.5  
1
42  
0.3  
56X  
52X 0.5  
56  
43  
0.2  
SYMM  
0.1  
0.05  
C B A  
C
PIN 1 ID  
OPTIONAL  
0.5  
0.3  
56X  
4224586/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
386 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.5)  
SYMM  
56X (0.6)  
56X (0.25)  
56  
43  
1
42  
52X (0.5)  
(7.8)  
SYMM  
57  
(1.32) TYP  
(R0.05)  
TYP  
(2.5)  
TYP  
(
0.2) TYP  
VIA  
29  
14  
15  
28  
(1.32)  
TYP  
(2.5)  
TYP  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224586/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 387  
Product Folder Links: TPS6593-Q1  
TPS6593-Q1  
ZHCSNX8A DECEMBER 2020 REVISED JULY 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(7.8)  
(0.66) TYP  
(1.32)  
TYP  
43  
56  
56X (0.6)  
56X (0.25)  
1
42  
52X (0.5)  
(1.32) TYP  
(0.66) TYP  
SYMM  
57  
(7.8)  
METAL  
TYP  
16X  
1.12)  
(
(R0.05) TYP  
14  
29  
15  
28  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 57:  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4224586/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
388 Submit Document Feedback  
Product Folder Links: TPS6593-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS65930400RWERQ1  
ACTIVE  
VQFNP  
RWE  
56  
2000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RWE 56  
8 x 8, 0.5 mm pitch  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224587/A  
www.ti.com  
PACKAGE OUTLINE  
RWE0056C  
VQFNP - 0.9 mm max height  
SCALE 2.000  
PLASTIC QUAD FLATPACK - NO LEAD  
8.1  
7.9  
A
B
0.05  
0.00  
(0.1)  
PIN 1 ID  
DETAIL A  
8.1  
7.9  
DETAIL  
SCALE 20.000  
A
TYPICAL  
(
7.75)  
(0.15)  
0.15 0.1  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9  
0.8  
12 MAX  
C
SEATING PLANE  
0.08 C  
(0.2)  
(R0.2)  
SEE DETAIL A  
SEE DETAIL B  
4X  
45 X 0.6 MAX  
15  
28  
14  
PIN 1 ID  
29  
OPTIONAL  
SYMM  
57  
4X  
5.5 0.05  
6.5  
1
42  
0.3  
0.2  
52X 0.5  
56X  
56  
43  
SYMM  
0.1  
0.05  
C B A  
C
PIN 1 ID  
OPTIONAL  
0.5  
0.3  
56X  
4224586/B 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.5)  
SYMM  
56X (0.6)  
56X (0.25)  
56  
43  
1
42  
52X (0.5)  
(7.8)  
SYMM  
57  
(1.32) TYP  
(R0.05)  
(2.5)  
TYP  
TYP  
(
0.2) TYP  
VIA  
29  
14  
15  
28  
(1.32)  
TYP  
(2.5)  
TYP  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224586/B 03/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(7.8)  
(0.66) TYP  
(1.32)  
TYP  
43  
56  
56X (0.6)  
56X (0.25)  
1
42  
52X (0.5)  
(1.32) TYP  
(0.66) TYP  
SYMM  
57  
(7.8)  
METAL  
TYP  
16X  
1.12)  
(
(R0.05) TYP  
14  
29  
15  
28  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 57:  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4224586/B 03/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65930

Integrated Power Management Audio Codec (TPS65930 Only)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65930A2ZCH

Integrated Power Management / Audio Codec (TPS65930 Only)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65930A2ZCHR

Integrated Power Management / Audio Codec (TPS65930 Only)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65930BZCH

Integrated Power Management Audio Codec (TPS65930 Only)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65930BZCHR

Integrated Power Management Audio Codec (TPS65930 Only)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65930_11

Integrated Power Management / Audio Codec (TPS65930 Only)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6594-Q1

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6594-Q1_V01

TPS6594-Q1 Power Management IC (PMIC) for Processors with 5 Bucks and 4 LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6594-Q1_V02

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6594-Q1_V03

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65940400RWERQ1

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65941111RWERQ1

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI