TPS65994ADRSLR [TI]

具有集成电源开关的双端口 USB Type-C® 和 USB PD 控制器 | RSL | 48 | -40 to 125;
TPS65994ADRSLR
型号: TPS65994ADRSLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电源开关的双端口 USB Type-C® 和 USB PD 控制器 | RSL | 48 | -40 to 125

开关 控制器 电源开关 光电二极管
文件: 总64页 (文件大小:2803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
TPS65994AD 双端口有集成电源开关、支USB4 和交替模式USB Type-  
C®USB PD 控制器  
1 特性  
2 应用  
• 该器件USB-IF 进行PD3.0 认证  
PC 和笔记本电脑  
PC 和笔记本电脑  
单板计算机  
集线站  
平板监视器  
– 认证新USB PD 设计时需使PD3.0 器件  
TID#3495  
– 有PD2.0 PD3.0 的文章  
TPS65994AD 是完全可配置的双端USB4 和  
Thunderbolt 4 (TBT4) PD3.0 控制器  
3 说明  
– 此器件可用USB4 主机和器件设计  
– 支持工业工作温度范围  
– 用于为各种应用轻松配TPS65994AD GUI  
工具  
– 支DisplayPort 拉电流、Thunderbolt 和用户  
可配置交替模式  
TPS65994AD 是一款高度集成的独立式双端口 USB  
Type-C 和电力输送 (PD) 控制器针对 PC 和笔记本  
电脑应用进行了优化。TPS65994AD 集成了完全管理  
的电源路径与强大的保护功能可提供完整的 USB-C  
PD 解决方案。 TPS65994AD Intel AMD PC 和  
笔记本电脑终端设备参考设计使用了此器件确保 PD  
控制器在这类设计中提供适当的系统级交互。此功能显  
著降低系统设计的复杂性并缩短上市时间。  
– 有关更详尽的选择指南和入门信息请参阅  
www.ti.com/usb-c E2E 指南  
• 完全管理的集成电源路径:  
– 集成两5V3A38mΩ源开关  
UL2367 认证编号E169910  
IEC62368-1 认证编号US-34737-M3-UL  
• 集成强大的电源路径保护  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
TPS65994AD  
QFN (RSL)  
6.0mm × 6.0mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 为拉电流路径集成了过压保护、欠压保护、反向  
电流保护和可调节限流功能  
– 为灌电流路径集成了过压保护、欠压保护和反向  
5A  
5A  
5-20 V  
电流保护  
USB Type-C® 功率传(PD) 控制器  
3.3V  
PP_EXT  
Control  
PP_EXT  
Control  
LDO  
CC1/2  
10 个可配GPIO  
USB  
Type-C  
Connector  
CC  
VCONN  
2
– 符USB PD 3.0 标准  
– 符USB Type-C 规范  
– 线缆连接和方向检测  
– 集成VCONN 开关  
– 集成式无电电Rd  
TPS65994  
3 A  
VBUS  
5 V  
VBUS  
3 A  
Type-C Rp/Rd & state  
CC1/2  
CC  
VCONN  
2
machine,  
VCONN switches,  
USB PD policy engine,  
protocol and physical  
layer  
EC Host  
Interface  
EC  
USB  
Type-C  
Connector  
– 物理层和策略引擎  
TBT  
Controller  
TBT Host  
Interface  
3.3V LDO 输出在电池电量耗尽时提供支持  
– 通3.3V VBUS 源供电  
1 I2C 主端口  
GND  
I2C  
Master  
I2C slaves  
2 ADCIN pins  
(I2C addr &  
config)  
10 GPIO  
2 I2C 次级端口  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFM6  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................19  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................40  
9 Application and Implementation..................................42  
9.1 Application Information............................................. 42  
9.2 Typical Application.................................................... 42  
10 Power Supply Recommendations..............................49  
10.1 3.3-V Power............................................................ 49  
10.2 1.5-V Power............................................................ 49  
10.3 Recommended Supply Load Capacitance..............49  
11 Layout...........................................................................50  
11.1 Layout Guidelines................................................... 50  
11.2 Layout Example...................................................... 50  
11.3 Component Placement............................................50  
11.4 Routing PP_5V, VBUS, VIN_3V3, LDO_3V3,  
LDO_1V5.....................................................................52  
11.5 Routing CC and GPIO.............................................54  
12 Device and Documentation Support..........................56  
12.1 Device Support....................................................... 56  
12.2 Documentation Support.......................................... 56  
12.3 支持资源..................................................................56  
12.4 Trademarks.............................................................56  
12.5 Electrostatic Discharge Caution..............................56  
12.6 术语表..................................................................... 56  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................6  
6.4 Recommended Capacitance ......................................6  
6.5 Thermal Information ...................................................6  
6.6 Power Supply Characteristics ....................................7  
6.7 Power Consumption ...................................................7  
6.8 PP_5V Power Switch Characteristics ........................ 8  
6.9 PP_EXT Power Switch Characteristics ......................9  
6.10 Power Path Supervisory ........................................ 10  
6.11 CC Cable Detection Parameters ............................10  
6.12 CC VCONN Parameters ........................................ 12  
6.13 CC PHY Parameters ..............................................12  
6.14 Thermal Shutdown Characteristics ........................13  
6.15 ADC Characteristics ...............................................13  
6.16 Input/Output (I/O) Characteristics .......................... 14  
6.17 I2C Requirements and Characteristics .................. 14  
6.18 Typical Characteristics ...........................................16  
7 Parameter Measurement Information..........................17  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
Information.................................................................... 56  
13.1 Package Option Addendum....................................57  
4 Revision History  
Changes from Revision * (August 2020) to Revision A (July 2021)  
Page  
• 更改了列表..................................................................................................................................................1  
• 更新了部分..................................................................................................................................................1  
• 更新了部分..................................................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
LDO_1V5  
GPIO1  
PA_VBUS  
PA_VBUS  
PA_VBUS  
PA_VBUS  
PP5V  
I2C2s_IRQ  
I2C_EC_SDA  
I2C2s_SCL  
I2C_EC_SCL  
I2C_EC_IRQ  
I2C2s_SDA  
GPIO0  
Thermal  
Pad  
(GND)  
PA_GATE_VBUS  
PB_GATE_VBUS  
PP5V  
PB_VBUS  
PB_VBUS  
PB_VBUS  
PB_VBUS  
GPIO5  
I2C3m_IRQ  
I2C3m_SDA  
5-1. RSL Package 48-pin QFN Top View  
5-1. Pin Functions  
PIN  
TYPE  
RESET Description  
NAME  
ADCIN1  
ADCIN2  
GND  
NO.  
33  
35  
36  
I
I
Hi-Z  
Hi-Z  
Configuration input. Connect to a resistor divider to LDO_3V3.  
Configuration input. Connect to a resistor divider to LDO_3V3.  
Ground. Connect to ground plane.  
General purpose digital I/O. Tie to PP5V or ground when unused. May be  
used as DisplayPort HPD signal for Port B.  
GPIO0  
GPIO1  
45  
38  
I/O  
I/O  
Hi-Z  
Hi-Z  
General purpose digital I/O. Tie to PP5V or ground when unused. May be  
used as DisplayPort HPD signal for Port A.  
GPIO2  
GPIO3  
9
I/O  
I/O  
Hi-Z  
Hi-Z  
General purpose digital I/O. Tie to PP5V or ground when unused.  
General purpose digital I/O. Tie to PP5V or ground when unused.  
28  
General purpose digital I/O. May be used as an ADC input. Tie to PP5V or  
ground when unused.  
GPIO4  
GPIO5  
2
I/O  
I/O  
Hi-Z  
Hi-Z  
General purpose digital I/O. May be used as an ADC input. Tie to PP5V or  
ground when unused.  
46  
GPIO6  
GPIO7  
GPIO8  
29  
27  
10  
I/O  
I/O  
I/O  
Hi-Z  
Hi-Z  
Hi-Z  
General purpose digital I/O. Tie to PP5V or ground when unused.  
General purpose digital I/O. Tie to PP5V or ground when unused.  
General purpose digital I/O. Tie to PP5V or ground when unused.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
RESET Description  
NAME  
NO.  
GPIO9  
8
O
I
Hi-Z  
Hi-Z  
General purpose digital output. Tie to PP5V or ground when unused.  
I2C slave serial clock input. Tie to pullup voltage through a resistor. May be  
I2C_EC_SCL  
I2C_EC_SDA  
42  
40  
grounded if unused. Connect to Embedded Controller (EC).  
I2C slave serial data. Open-drain input/output. Tie to pullup voltage through a  
resistor. May be grounded if unused. Connect to Embedded Controller (EC).  
I/O  
O
Hi-Z  
Hi-Z  
I2C slave interrupt. Active low. Connect to external voltage through a pull-up  
resistor. Connect to Embedded Controller (EC). This can be re-configured to  
GPIO10. May be grounded if unused.  
I2C_EC_IRQ  
43  
I2C slave serial clock input. Tie to pull-up voltage through a resistor. May be  
grounded if unused.  
I2C2s_SCL  
I2C2s_SDA  
41  
44  
I
Hi-Z  
Hi-Z  
I2C slave serial data. Open-drain input/output. Tie to pullup voltage through a  
resistor. May be grounded if unused.  
I/O  
I2C slave interrupt. Active low. Connect to external voltage through a pull-up  
resistor. Tie to PP5V or ground when unused. This can be re-configured to  
GPIO11.  
I2C2s_IRQ  
39  
O
Hi-Z  
I2C master serial clock. Open-drain output. Tie to pullup voltage through a  
resistor when used or unused.  
I2C3m_SCL  
I2C3m_SDA  
1
O
Hi-Z  
Hi-Z  
I2C master serial data. Open-drain input/output. Tie to pullup voltage through  
a resistor when used or unused.  
48  
I/O  
I2C master interrupt. Active low. Connect to external voltage through a pull-up  
resistor. Tie to PP5V or ground when unused. This can be re-configured to  
GPIO12.  
I2C3m_IRQ  
47  
I
Hi-Z  
Output of the CORE LDO. Bypass with capacitance CLDO_1V5 to GND. This  
pin cannot source current to external circuits.  
LDO_1V5  
LDO_3V3  
PA_CC1  
PA_CC2  
37  
34  
31  
30  
O
O
Output of supply switched from VIN_3V3 or VBUS LDO. Bypass with  
capacitance CLDO_3V3 to GND.  
I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to  
GND (CPx_CCy).  
I/O  
I/O  
Hi-Z  
Hi-Z  
I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to  
GND (CPx_CCy).  
PA_GATE_VSYS  
PA_GATE_VBUS  
5
O
O
Hi-Z  
Hi-Z  
Connect to the PortA N-ch MOSFET that has source tied to VSYS.  
Connect to the N-ch MOSFET that has source tied to PA_VBUS.  
19  
5-V to 20-V input or 5-V output from PP5V. Bypass with capacitance CVBUS to  
GND.  
PA_VBUS  
PB_CC1  
PB_CC2  
21,22,23,24  
I/O  
I/O  
I/O  
I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to  
GND (CPx_CCy).  
6
7
Hi-Z  
Hi-Z  
I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to  
GND (CPx_CCy).  
PB_GATE_VSYS  
PB_GATE_VBUS  
4
O
O
Hi-Z  
Hi-Z  
Connect to the Port B N-ch MOSFET that has source tied to VSYS.  
Connect to the N-ch MOSFET that has source tied to PB_VBUS.  
18  
5-V to 20-V input or 5-V output from PP5V. Bypass with capacitance CVBUS to  
GND.  
PB_VBUS  
PP5V  
13,14,15,16  
I/O  
I
11,12,17,20,25,  
26  
5-V System Supply to VBUS, supply for Px_CCy pins as VCONN.  
High-voltage sinking node in the system. It is used to implement reverse-  
current-protection (RCP) for the external sinking paths controlled by  
PA_GATE_VSYS and PB_GATE_VSYS.  
VSYS  
3
I
I
VIN_3V3  
32  
Supply for core circuitry and I/O. Bypass with capacitance CVIN_3V3 to GND.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS65994AD  
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.5  
MAX  
UNIT  
PP5V  
6
4
VIN_3V3  
V
ADCIN1, ADCIN2  
VSYS, PA_VBUS, PB_VBUS (4)  
4
28  
6
Input voltage range (2)  
PA_CC1, PA_CC2, PB_CC1, PB_CC2  
GPIO0-GPIO9, I2C_EC_IRQ, I2C2s_IRQ,  
I2C3m_IRQ  
-0.3  
6
4
V
V
I2C_EC_SDA, I2C_EC_SCL,I2C2s_SDA,  
I2C2s_SCL, I2C3m_SDA, I2C3m_SCL  
0.3  
LDO_1V5(3)  
Output voltage range (2)  
2
4
0.3  
0.3  
LDO_3V3(3)  
PA_GATE_VBUS, PA_GATE_VSYS,  
Output voltage range (2)  
40  
V
V
0.3  
0.5  
PB_GATE_VBUS, PB_GATE_VSYS (3)  
VGS  
VPx_GATE_VBUS - VPx_VBUS, VPx_GATE_SYS - VVSYS  
Source or sink current PA_VBUS, PB_VBUS  
12  
internally limited  
Positive source current on PA_CC1, PA_CC2,  
PB_CC1, PB_CC2  
1
Positive sink current on PA_CC1, PA_CC2,  
PB_CC1, PB_CC2 while VCONN switch is  
enabled  
1
0.005  
Source current  
A
GPIO0-GPIO9  
positive sink current for I2C_EC_SDA,  
I2C_EC_SCL, I2C2s_SDA, I2C2s_SCL,  
I2C3m_SDA, I2C3m_SCL,  
internally limited  
positive source current for LDO_3V3, LDO_1V5  
internally limited  
TJ Operating junction temperature  
TSTG Storage temperature  
175  
150  
°C  
°C  
40  
55  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network GND. Connect the GND pin directly to the GND plane of the board.  
(3) Do not apply voltage to these pins.  
(4) For Px_VBUS a TVS with a break down voltage falling between the Recommended max and the Abs max value is recommended such  
as TVS2200. For Px_VBUS a Schottky diode is recommended to ensure the MIN voltage is not violated.  
6.2 ESD Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specificationJESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65994AD  
 
 
 
 
 
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
3.0  
4.9  
4
MAX  
3.6  
5.5  
22  
UNIT  
V
VIN_3V3  
VI  
VI  
Input voltage range (1)  
Input voltage range (1)  
PP5V (2)  
(3)  
PA_VBUS, PB_VBUS  
VSYS  
0
22  
V
I2Cx_SDA, I2Cx_SCL, ADCIN1,  
ADCIN2  
0
0
0
3.6  
5.5  
GPIOx, I2C_EC_IRQ, I2C2s_IRQ,  
I2C3m_IRQ  
VIO  
I/O voltage range (1)  
V
PA_CC1, PA_CC2, PB_CC1,  
PB_CC2  
5.5  
3
PA_VBUS, PB_VBUS  
A
IO  
Output current (from PP5V)  
PA_CC1, PA_CC2, PB_CC1,  
PB_CC2  
315  
1
mA  
mA  
mA  
IO  
IO  
Output current (from LDO_3V3)  
Output current (from VBUS LDO)  
GPIOx  
sum of current from LDO_3V3 and  
GPIO0-9.  
5
I
I
PP_5Vx 1.5 A, IPP_5Vy 3.0 A,  
PP_CABLEx 315 mA  
105  
40  
TA  
TJ  
Ambient operating temperature  
Operating junction temperature  
°C  
°C  
I
PP_5Vx 3.0 A, IPP_CABLEx 315  
85  
40  
40  
mA  
125  
(1) All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board.  
(2) Maximum current sourced from PP5V to PA_VBUS or PB_VBUS. Resistance from Px_VBUS to Type-C connector less than or equal  
30 m. Short all PP5V bumps together.  
(3) All PA_VBUS bumps should be shorted together. All PB_VBUS bumps should be shorted together.  
6.4 Recommended Capacitance  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
VOLTAGE RATING  
MIN  
NOM  
10  
MAX  
UNIT  
µF  
CVIN_3V3  
CLDO_3V3  
CLDO_1V5  
CPx_VBUS  
CPP5V  
Capacitance on VIN_3V3  
6.3 V  
6.3 V  
4 V  
5
5
Capacitance on LDO_3V3  
Capacitance on LDO_1V5  
Capacitance on VBUS(4)  
Capacitance on PP5V  
10  
25  
12  
10  
µF  
4.5  
µF  
25 V  
10 V  
1
4.7  
µF  
120(2)  
µF  
Capacitance on VSYS Sink from  
VBUS  
CVSYS  
25 V  
47  
100  
480  
µF  
pF  
CPx_CCy  
Capacitance on Px_CCy pins(3)  
6.3 V  
200  
320  
(1) Capacitance values do not include any derating factors. For example, if 5.0 µF is required and the external capacitor value reduces by  
50% at the required operating voltage, then the required external capacitor value would be 10 µF.  
(2) This is a requirement from USB PD (cSrcBulkShared). Keep at least 10 µF tied directly to PP5V.  
(3) This includes all capacitance to the Type-C receptacle.  
(4) The device can be configured to quickly disable PP_EXT upon certain events. When such a configuration is used, a capacitance on  
the higher side of this range is recommended.  
6.5 Thermal Information  
DEVICE  
THERMAL METRIC  
QFN (RSL)  
48 PINS  
26.8  
UNIT  
RθJA  
θJC (top)  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
R
Junction-to-case (top) thermal resistance  
15.4  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
 
 
 
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.5 Thermal Information (continued)  
DEVICE  
THERMAL METRIC  
QFN (RSL)  
48 PINS  
8.5  
UNIT  
RθJB  
Junction-to-board thermal resistance  
°C/W  
°C/W  
Junction-to-top characterization parameter  
0.2  
ψJT  
Junction-to-board characterization  
parameter  
8.5  
1.8  
°C/W  
°C/W  
ψJB  
Junction-to-case (bottom GND pad)  
thermal resistance  
RθJC (bottom)  
6.6 Power Supply Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIN_3V3, Px_VBUS  
rising, VPx_VBUS=0  
2.56  
2.44  
2.66  
2.54  
0.12  
2.76  
2.64  
voltage required on VIN_3V3 for  
power on  
VVIN3V3_UVLO  
falling, VPx_VBUS=0  
hysteresis  
rising  
3.6  
3.5  
3.9  
3.8  
VVBUS_UVLO  
UVLO comparator for Px_VBUS falling  
hysteresis  
V
0.1  
3.4  
LDO_3V3, LDO_1V5  
VVIN_3V3 = 0V, ILDO_3V3 5 mA,  
PA_VBUS 3.9V or VPB_VBUS  
3.9V  
VLDO_3V3  
voltage on LDO_3V3  
2.7  
3.6  
1.5  
V
V
RLDO_3V3  
VLDO_1V5  
Rdson of VIN_3V3 to LDO_3V3 ILDO_3V3=50mA  
up to maximum internal loading  
condition.  
Ω
Output voltage of LDO_1V5  
1.55  
V
6.7 Power Consumption  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V, no loading on GPIO pins  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IVIN_3V3,ActSrc  
IVIN_3V3,ActSnk  
IVSYS  
current into VIN_3V3  
Active Source mode: VPP5V=5.0V, VVIN_3V3=3.3V  
4.5  
12 mA  
Active Sink mode: 22V VPA_VBUS 4.0V, 22V ≥  
current into VIN_3V3  
current into VSYS  
4.8  
10  
12 mA  
µA  
V
PB_VBUS 4.0V, VVIN_3V3=3.3V  
Idle Source mode: VPA_VBUS=5.0V, VPB_VBUS=5.0V,  
VVIN_3V3=3.3V  
IVIN_3V3,IdlSrc  
current into VIN_3V3  
1.1  
mA  
Idle Sink mode: 22V VPA_VBUS 4.0V, 22V VPB_VBUS  
4.0V, VVIN_3V3=3.3V  
IVIN_3V3,IdlSnk  
current into VIN_3V3  
1.1  
3.7  
mA  
Power drawn into PP5V  
and VIN_3V3 in Modern  
Standby Sink Mode  
Modern Standby Sink Mode: VPP5V = 5V, VVIN_3V3=3.3V,  
VPA_VBUS=5.0V, VPB_VBUS=0V  
PMstbySnk  
mW  
Power drawn into PP5V  
and VIN_3V3 in Modern  
Standby Source Mode  
Modern Standby Source Mode: VPP5V = 5V, VVIN_3V3=3.3V,  
IPx_VBUS=0  
PMstbySrc  
4.5  
67  
mW  
µA  
Sleep mode: VPA_VBUS=0V, VPB_VBUS=0V, VVIN_3V3=3.3V, TJ  
25 oC  
IVIN_3V3,Sleep  
current into VIN_3V3  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.8 PP_5V Power Switch Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6V  
PARAMETER  
TEST CONDITIONS  
ILOAD = 3 A, TJ25oC  
ILOAD = 3 A, TJ125oC  
MIN  
TYP  
37.7  
37.7  
MAX  
41.5  
57  
UNIT  
RPP_5V  
Resistance from PP5V to Px_VBUS  
mΩ  
VPP5V = 0V, VPx_VBUS  
=
5.5V, PP_5V disabled,  
IPP5V_REV  
Px_VBUS to PP5V leakage current  
PP5V to Px_VBUS leakage current  
0
0
3
µA  
µA  
TJ85oC, measure IPP5V  
VPP5V = 5.5V, VPx_VBUS  
0V, PP_5V disabled,  
TJ85oC, measure  
IPx_VBUS  
=
IPP5V_FWD  
15  
ILIM5V  
ILIM5V  
ILIM5V  
ILIM5V  
ILIM5V  
Current limit setting  
Current limit setting  
Current limit setting  
Current limit setting  
Current limit setting  
Configure to setting 0  
configure to setting 1  
configure to setting 2  
configure to setting 3  
configure to setting 4  
1.15  
1.61  
2.3  
1.36  
1.90  
2.70  
3.58  
3.78  
A
A
A
A
A
3.04  
3.22  
PP5V to Px_VBUS current sense  
accuracy  
3.0A IPx_VBUS 1A,  
VVIN_3V3=3.3V  
IPx_VBUS  
2.8  
3.4  
15  
4.1  
A/V  
RCP clears and PP_5Vx starts  
turning on when VPx_VBUS VPP5V  
<
VPP_5V_RCP  
10  
20  
mV  
VPP_5V_RCP. Measure VPx_VBUS  
VPP5V  
Px_VBUS to GND through  
10mΩ, CPx_VBUS=0  
tiOS_PP_5V  
response time to VBUS short circuit  
1.15  
4.5  
µs  
µs  
Enable PP_5Vx, ramp  
VPx_VBUS from 4V to 20V at  
100 V/ms  
response time to VPx_VBUS  
VOVP4RCP  
>
tPP_5V_ovp  
response time to VPP5V  
VPP5V_UVLO, PP_VBUS is deemed off  
when VPx_VBUS < 0.8V  
<
RL = 100 Ω, no external  
capacitance on Px_VBUS  
tPP_5V_uvlo  
4
µs  
µs  
VPP5V=5.5V,enable  
PP_5Vx, ramp VPx_VBUS  
from 4V to 21.5V at 10 V/µs  
response time to VPP5V  
VPx_VBUS+VPP_5V_RCP  
<
tPP_5V_rcp  
0.7  
Initial VPx_VBUS = 0V, 2µF  
CPx_VBUS 20µF, 0 ≤  
Time allowed to enable the pass FET  
in PP_5Vx with 3A current limit.  
tFRS_on  
54  
150  
µs  
I
Px_VBUS 0.5 A, FET is  
deemed enabled when  
VPx_VBUS > 4.75V.  
tILIM  
tON  
Current clamping deglitch time  
5
ms  
ms  
from enable signal to Px_VBUS at  
90% of final value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
2.6  
0.30  
1.2  
3.5  
4.4  
0.6  
from disable signal to Px_VBUS at  
10% of final value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
tOFF  
tRISE  
tFALL  
0.45  
1.7  
ms  
ms  
ms  
Px_VBUS from 10% to 90% of final  
value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
2.2  
Px_VBUS from 90% to 10% of initial  
value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
0.06  
0.1  
0.14  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.9 PP_EXT Power Switch Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0 VPx_GATE_VSYS-VVSYS  
6 V, 0 V VVSYS 22  
V, VPx_VBUS > 4 V, measure  
IPx_GATE_VSYS  
8.5  
10  
11.5  
µA  
IPx_GATE_ON  
Gate driver sourcing current  
0 VPx_GATE_VBUS  
-
V
V
Px_VBUS 6 V, 4 V ≤  
Px_VBUS 22 V, measure  
8.5  
6
10  
11.5  
12  
µA  
V
IPx_GATE_VBUS  
0 VVSYS 22 V,  
IPx_GATE_VSYS < 4 µA,  
measure VPx_GATE_VSYS  
VVSYS, VPx_VBUS > 4 V.  
VPx_GATE_ON  
sourcing voltage (ON)  
4 V VPx_VBUS 22 V,  
IPx_GATE_VBUS < 4 µA,  
measure VPx_GATE_VBUS  
6
12  
V
VPx_VBUS  
.
setting 0, 4 V ≤  
2
4
6
8
6
8
10  
12  
14  
16  
mV  
mV  
mV  
mV  
V
V
Px_VBUS 22 V,  
VIN_3V3 3.63 V  
setting 1, 4 V ≤  
V
V
Px_VBUS 22 V,  
VIN_3V3 3.63 V  
comparator mode RCP threshold,  
VRCP  
VVSYS - VPx_VBUS  
.
setting 2, 4 V ≤  
V
V
10  
12  
Px_VBUS 22 V,  
VIN_3V3 3.63 V  
setting 3, 4 V ≤  
V
V
Px_VBUS 22 V,  
VIN_3V3 3.63 V  
normal turnoff: VVSYS = 5V,  
VPx_GATE_VSYS=6V  
13  
13  
µA  
µA  
IPx_GATE_OFF  
Sinking strength  
Sinking strength  
normal turnoff: VPx_VBUS  
5V, VPx_GATE_VBUS=6V,  
VVSYS = 5 V  
=
fast turnoff: VVSYS = 5V,  
VPx_GATE_VSYS=6V,  
85  
85  
RPx_GATE_FSD  
fast turnoff: VPx_VBUS = 5V,  
VPx_GATE_VBUS=6V, VVSYS  
5 V  
=
VVIN_3V3=0V,  
RPx_GATE_OFF_UVLO  
Sinking strength in UVLO (safety)  
VPx_VBUS=3.0V,  
VPx_GATE_VSYS=0.1V  
1.5  
MΩ  
V/ms  
µs  
soft start slew rate for  
Px_GATE_VSYS, setting 0  
0.35  
0.67  
1.33  
2.88  
0.47  
0.91  
1.83  
3.90  
4 V VPx_VBUS 22 V,  
500pF < CPx_GATE_VSYS  
16 nF, measure slope from  
10% to 90% of final  
Px_GATE_VSYS value,  
soft start slew rate for  
Px_GATE_VSYS, setting 1  
<
SS  
soft start slew rate for  
Px_GATE_VSYS, setting 2  
soft start slew rate for  
Px_GATE_VSYS, setting 3  
Time allowed to disable the external  
FET via Px_GATE_VBUS in normal  
shutdown mode.(1)  
VPx_VBUS=20V, Gate is off  
when VGS < 1 V  
tPx_GATE_VBUS_OFF  
260  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.9 PP_EXT Power Switch Characteristics (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time allowed to disable the external OVP: VOVP4RCP= setting  
FET via Px_GATE_VBUS in fast  
shutdown mode (VOVP4RCP  
exceeded).(1)  
57, VPx_VBUS=20V initially,  
then raised to 23V in 50ns,  
Gate is off when VGS < 1 V  
tPx_GATE_VBUS_OVP  
3
µs  
RCP: VRCP= setting 0,  
Time allowed to disable the external VPx_VBUS=5V, VVSYS=5V  
tPx_GATE_VBUS_RCP  
FET via Px_GATE_VBUS in fast  
initially, then raised to 5.5V  
1.2  
µs  
shutdown mode (VRCP exceeded).(1) in 50ns, Gate is off when  
VGS < 1 V  
Time allowed to disable the external  
VVSYS=20V, Gate is off  
tPx_GATE_VSYS_OFF  
FET via Px_GATE_VSYS in normal  
when VGS < 1 V  
0.25  
ms  
shutdown mode(1)  
VVSYS=VVBUS=20V initially,  
Time allowed to disable the external  
then VVBUS raised to 23V in  
tPx_GATE_VSYS_FSD  
FET via Px_GATE_VSYS in fast  
50ns, Gate is off when  
0.25  
0.25  
μs  
shutdown mode (OVP or FRS)(1)  
VGS< 1 V  
measure time from when  
time to enable Px_GATE_VBUS (1)  
tPx_GATE_VBUS_ON  
ms  
VGS=0V until VGS>3V  
(1) These values depend upon the characteristics of the external N-ch MOSFET. The typical values were measured when  
Px_GATE_VSYS and Px_GATE_VBUS were used to drive two CSD17571Q2 in common drain back-to-back configuration.  
6.10 Power Path Supervisory  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
5.25  
-5  
TYP  
MAX  
22.9  
5
UNIT  
VBUS over voltage protection typical  
threshold for RCP programmable  
range (setting 0 to setting 63).  
OVP detected when  
VPx_VBUS > VOVP4RCP  
VOVP4RCP  
V
Tolernance of VOVP4RCP threshold  
%
VBUS over voltage protection range  
for RCP  
VOVPLSB  
280  
mV  
VOVP4RCPH  
hysteresis  
1.75  
1
2
1
2.25  
1
%
setting 0  
setting 1  
setting 2  
setting 3  
V/V  
V/V  
V/V  
V/V  
Configurable ratio of OVP comparator  
thresholds. rOVP*VOVP4VSYS  
VOVP4RCP  
0.925  
0.875  
0.85  
0.95  
0.90  
0.875  
0.975  
0.925  
0.9  
rOVP  
=
VBUS over voltage protection range  
for VSYS protection  
OVP detected when  
rOVP*VPx_VBUS > VOVP4RCP  
VOVP4VSYS  
VOVP4VSYS  
5
27.5  
V
VBUS falling, % of  
VOVP4VSYS  
hysteresis  
2
%
rising  
3.9  
3.8  
4.1  
4.0  
0.1  
4.3  
4.2  
VPP5V_UVLO  
Voltage required on PP5V  
VBUS discharge current (1)  
falling  
V
hysteresis  
VPx_VBUS = 22V, measure  
IPx_VBUS  
IDSCH  
4
13  
mA  
(1) The discharge is enabled automatically when needed to meet USB specifications. It is not always enabled.  
6.11 CC Cable Detection Parameters  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Type-C Source (Rp pull-up)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.11 CC Cable Detection Parameters (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VLDO_3V3_UVLO < VLDO_3V3 < 3.6 V,  
RCC = 47 kΩ  
Unattached Px_CCy open circuit  
voltage while Rp enabled, no load  
VOC_3.3  
VOC_5  
1.85  
V
VPP5V_UVLO < VPP5V < 5.5 V, RCC  
=
Attached Px_CCy open circuit  
voltage while Rp enabled, no load  
2.95  
V
47 kΩ  
VPx_CCy = 5.5V, VPx_CCx = 0V,  
VLDO_3V3_UVLO < VLDO_3V3 < 3.6 V,  
VPP5V = 3.8 V , measure current  
into Px_CCy  
10  
10  
Unattached reverse current on  
Px_CCy  
IRev  
µA  
VPx_CCy = 5.5V, VPx_CCx = 0V,  
VLDO_3V3_UVLO < VLDO_3V3 < 3.6 V,  
VPP5V = 0, -10oCTJ85oC,  
measure current into Px_CCy  
0 < VPx_CCy < 1.0 V, measure  
IPx_CCy  
IRpDef  
IRp1.5  
IRp3.0  
current source - USB Default  
current source - 1.5A  
64  
166  
304  
80  
180  
330  
96  
194  
356  
µA  
µA  
µA  
4.75 V < VPP5V < 5.5 V, 0 <  
VPx_CCy < 1.5 V, measure IPx_CCy  
4.75 V < VPP5V < 5.5 V, 0 <  
VPx_CCy < 2.45 V, measure IPx_CCy  
current source - 3.0A  
Type-C Sink (Rd pull-down)  
Open/Default detection threshold  
rising  
falling  
0.2  
0.24  
0.20  
V
V
when Rd applied to Px_CCy  
VSNK1  
VSNK2  
VSNK3  
Open/Default detection threshold  
when Rd applied to Px_CCy  
0.16  
hysteresis  
0.04  
V
V
V
V
Default/1.5A detection threshold  
Default/1.5A detection threshold  
hysteresis  
falling  
rising  
0.62  
0.63  
0.68  
0.69  
0.66  
0.01  
1.5A/3.0A detection threshold  
when Rd applied to Px_CCy  
falling  
rising  
1.17  
1.22  
1.25  
1.3  
V
1.5A/3.0A detection threshold  
when Rd applied to Px_CCy  
V
V
hysteresis  
0.05  
0.25 V VPx_CCy 2.1 V,  
measure resistance on Px_CCy  
RSNK  
Rd pulldown resistance  
4.1  
4.1  
6.1  
6.1  
kΩ  
0V VPx_CCy 5.5 V, measure  
resistance on Px_CCy  
RVCONN_DIS  
VCONN discharge resistance  
Dead battery Rd clamp  
kΩ  
VVIN_3V3=0V, 64 µA < IPx_CCy<96  
µA  
0.25  
0.65  
1.20  
1.32  
1.32  
2.18  
VVIN_3V3=0V, 166 µA <  
IPx_CCy<194 µA  
VCLAMP  
V
VVIN_3V3=0V, 304 µA < IPx_CCy  
356 µA  
<
VPx_VBUS = 0, VVIN_3V3=3.3V,  
VPx_CCy=5 V, measure resistance  
on Px_CCy  
500  
500  
495  
kΩ  
kΩ  
resistance from Px_CCy to GND  
when configured as open.  
ROpen  
VPx_VBUS = 5V, VVIN_3V3 = 0,  
VPx_CCy=5 V, measure resistance  
on Px_CCy  
Fast Role swap request voltage  
detection threshold on Px_CCy  
(falling)  
VFRS  
VFRS  
515  
535  
mV  
V
hysteresis  
0.01  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65994AD  
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.11 CC Cable Detection Parameters (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPx_CCy must be below VFRS for at  
least this long before the FRS  
signal is detected  
Fast role swap signal detection  
time  
tFRS_DET  
30  
35  
µs  
response time of the Fast role  
swap comparator (rising)  
tFRS_Resp  
VPx_CCy rises from 0.24V to 0.64V  
0.6  
µs  
Common (Source and Sink)  
deglitch time for comparators on  
Px_CCy  
tCC  
3.2  
ms  
6.12 CC VCONN Parameters  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
Rdson of the VCONN path  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
VPP5V=5V, IL = 250 mA,  
measure resistance from PP5V  
to Px_CCy  
RPP_CABLE  
0.4  
0.7  
Ω
setting 0, VPP5V=5V,  
RL=10m, measure IPx_CCy  
ILIMVC  
ILIMVC  
short circuit current limit  
short circuit current limit  
350  
540  
410  
605  
470  
670  
mA  
mA  
setting 1, VPP5V=5V,  
RL=10m, measure IPx_CCy  
VCONN disabled, TJ 85 oC,  
VPx_CCy = 5.5 V, VPP5V=0 V,  
VPx_VBUS=5V, LDO forced to  
draw from VBUS, measure  
IPx_CCy  
Reverse leakage current  
through VCONN FET  
ICC2PP5V  
0
10  
µA  
tVCILIM  
Current clamp deglitch time  
1.28  
171  
ms  
µs  
from disable signal to Px_CCy  
at 10% of final value  
tPP_CABLE_off  
IL = 250 mA, VPP5V = 5V, CL=0  
100  
300  
VPP5V=5V, for short circuit RL =  
10mΩ.  
tiOS_PP_CABLE  
response time to short circuit  
2
µs  
6.13 CC PHY Parameters  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V or VPx_ VBUS 3.9 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Transmitter  
VTXHI  
Transmit high voltage on Px_CCy Standard External load  
1.05  
-75  
1.125  
1.2  
75  
V
VTXLO  
Transmit low voltage on Px_CCy  
Standard External load  
measured at 750 kHz  
mV  
Transmit output impedance while  
driving the CC line using Px_CCy  
ZDRIVER  
33  
75  
Ω
Rise time. 10 % to 90 % amplitude  
points on Px_CCy, minimum is  
under an unloaded condition.  
Maximum set by TX mask  
tRise  
CPx_CCy= 520 pF  
300  
ns  
Fall time. 90 % to 10 % amplitude  
points on Px_CCy, minimum is  
under an unloaded condition.  
Maximum set by TX mask  
tFall  
CPx_CCy= 520 pF  
300  
ns  
Receiver  
Does not include pull-up or  
pulldown resistance from cable  
detect. Transmitter is Hi-Z.  
receiver input impedance on  
Px_CCy  
ZBMCRX  
1
MΩ  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.13 CC PHY Parameters (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V or VPx_ VBUS 3.9 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Receiver capacitance on  
Px_CCy(1)  
Capacitance looking into the CC  
pin when in receiver mode  
CCC  
120  
pF  
Rising threshold on Px_CCy for  
receiver comparator  
VRX_SNK_R  
VRX_SRC_R  
VRX_SNK_F  
VRX_SRC_F  
sink mode (rising)  
source mode (rising)  
sink mode (falling)  
source mode (falling)  
499  
784  
230  
523  
525  
825  
250  
550  
551  
866  
270  
578  
mV  
mV  
mV  
mV  
Rising threshold on Px_CCy for  
receiver comparator  
Falling threshold on Px_CCy for  
receiver comparator  
Falling threshold on Px_CCy for  
receiver comparator  
(1) CCC includes only the internal capacitance on a Px_CCy pin when the pin is configured to be receiving BMC data. External  
capacitance is needed to meet the required minimum capacitance per the USB-PD Specifications (cReceiver). Therefore, TI  
recommends adding CPx_CCy externally.  
6.14 Thermal Shutdown Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Temperature rising  
hysteresis  
MIN  
TYP  
160  
15  
MAX  
UNIT  
°C  
145  
175  
TSD_MAIN  
Temperature shutdown threshold  
°C  
Temperature controlled shutdown Temperature rising  
threshold. The power paths for  
135  
150  
165  
°C  
each port sourcing from PP5V  
TSD_PP5V  
have local sensors that disables  
them when this temperature is  
exceeded.  
hysteresis  
5
°C  
6.15 ADC Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.6V max scaling, voltage  
divider of 3  
14  
mV  
LSB  
least significant bit  
25.2V max scaling, voltage  
divider of 21  
98  
mV  
mA  
4.07A max scaling  
16.5  
0.05V VADCINx  
3.6V, VADCINx VLDO_3V3  
2.7  
2.7  
0.05V VGPIOx 3.6V, VGPIOx  
VLDO_3V3  
GAIN_ERR  
Gain error  
%
2.4  
2.1  
2.7V VLDO_3V3 3.6V  
0.6V VPx_VBUS 22V  
2.4  
2.1  
0.05V VADCINx  
3.6V, VADCINx VLDO_3V3  
4.1  
4.1  
0.05V VGPIOx 3.6V, VGPIOx  
VLDO_3V3  
VOS_ERR  
Offset error(1)  
mV  
-4.1  
-4.1  
4.1  
4.1  
2.7V VLDO_3V3 3.6V  
0.6V VPx_VBUS 22V  
(1) The offset error is specified after the voltage divider.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65994AD  
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.16 Input/Output (I/O) Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GPIO0-8 (Inputs)  
GPIO_VIH  
GPIOx high-Level input voltage VLDO_3V3 = 3.3V  
GPIOx low-level input voltage VLDO_3V3 = 3.3V  
GPIOx input hysteresis voltage VLDO_3V3 = 3.3V  
1.3  
V
V
GPIO_VIL  
0.54  
GPIO_HYS  
0.09  
1  
50  
V
GPIO_ILKG  
GPIO_RPU  
GPIOx leakage current  
GPIOx internal pull-up  
GPIOx internal pull-down  
GPIOx input deglitch  
VGPIOx = 3.45 V  
pull-up enabled  
pull-down enabled  
1
150  
150  
µA  
100  
100  
20  
kΩ  
kΩ  
ns  
GPIO_RPD  
50  
GPIO_DG  
GPIO0-9 (Outputs)  
GPIO_VOH  
GPIOx output high voltage  
GPIOx output low voltage  
VLDO_3V3 = 3.3V, IGPIOx= -2mA  
VLDO_3V3 = 3.3V, IGPIOx=2mA  
2.9  
V
V
GPIO_VOL  
0.4  
1
ADCIN1, ADCIN2  
ADCIN_ILKG  
ADCINx leakage current  
µA  
ms  
V
ADCINx VLDO_3V3  
1  
time from LDO_3V3 going high  
until ADCINx is read for  
configuration  
tBOOT  
10  
6.17 I2C Requirements and Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C_EC_IRQ , I2C2s_IRQ  
OD_VOL_IRQ  
OD_LKG_IRQ  
I2C3m_IRQ  
IRQ_VIH  
Low level output voltage  
Leakage Current  
IOL = 2 mA  
0.4  
1
V
Output is Hi-Z, VI2Cx_IRQ = 3.45 V  
µA  
1  
High-Level input voltage  
VLDO_3V3 = 3.3V  
1.3  
V
V
IRQ_VIH_THRESH  
IRQ_VIL  
High-Level input voltage threshold VLDO_3V3 = 3.3V  
0.72  
1.3  
0.54  
1.08  
low-level input voltage  
low-level input voltage threshold  
input hysteresis voltage  
input deglitch  
VLDO_3V3 = 3.3V  
VLDO_3V3 = 3.3V  
VLDO_3V3 = 3.3V  
V
IRQ_VIL_THRESH  
IRQ_HYS  
0.54  
0.09  
V
V
IRQ_DEG  
20  
ns  
µA  
IRQ_ILKG  
I2C3m_IRQ leakage current  
VI2C3m_IRQ = 3.45 V  
1
1  
SDA and SCL Common Characteristics (Master, Slave)  
VIL  
Input low signal  
VLDO_3V3=3.3V,  
0.54  
V
V
VIH  
Input high signal  
VLDO_3V3=3.3V,  
1.3  
VHYS  
VOL  
ILEAK  
IOL  
Input hysteresis  
VLDO_3V3=3.3V  
0.165  
V
Output low voltage  
Input leakage current  
Max output low current  
Max output low current  
IOL=3 mA  
0.36  
3
V
Voltage on pin = VLDO_3V3  
VOL=0.4 V  
µA  
mA  
mA  
ns  
ns  
ns  
pF  
3  
15  
20  
12  
12  
IOL  
VOL=0.6 V  
80  
150  
50  
VDD = 1.8V, 10 pF Cb 400 pF  
VDD = 3.3V, 10 pF Cb 400 pF  
tf  
Fall time from 0.7*VDD to 0.3*VDD  
tSP  
CI  
I2C pulse width surpressed  
pin capacitance (internal)  
10  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.17 I2C Requirements and Characteristics (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pF  
Capacitive load for each bus line  
(external)  
Cb  
400  
tHD;DAT  
Serial data hold time  
VDD = 1.8V or 3.3V  
0
ns  
SDA and SCL Standard Mode Characteristics (Slave)  
fSCLS  
Clock frequency  
Valid data time  
VDD = 1.8V or 3.3V  
100  
kHz  
µs  
Transmitting Data, VDD = 1.8V or  
3.3V, SCL low to SDA output valid  
tVD;DAT  
3.45  
Transmitting Data, VDD = 1.8V or  
3.3V, ACK signal from SCL low to  
SDA (out) low  
tVD;ACK  
Valid data time of ACK condition  
3.45  
µs  
SDA and SCL Fast Mode Characteristics (Slave)  
fSCLS  
Clock frequency  
Valid data time  
VDD = 1.8V or 3.3V  
100  
400  
0.9  
kHz  
µs  
Transmitting data, VDD = 1.8V,  
SCL low to SDA output valid  
tVD;DAT  
Transmitting data, VDD = 1.8V or  
3.3V, ACK signal from SCL low to  
SDA (out) low  
tVD;ACK  
Valid data time of ACK condition  
0.9  
µs  
SDA and SCL Fast Mode Plus Characteristics (Slave)  
VDD = 1.8V or 3.3V, master  
controls SCL frequency such that:  
tLOW > tVD;ACK + tSU;DAT, TJ ≤  
65oC  
(1)  
fSCLS  
Clock frequency  
400  
1000  
kHz  
Transmitting data, VDD = 1.8V or  
3.3V, SCL low to SDA output valid,  
TJ 65 oC  
tVD;DAT  
Valid data time  
0.55  
0.55  
µs  
µs  
Transmitting data, VDD = 1.8V or  
3.3V, ACK signal from SCL low to  
SDA (out) low, TJ 65 oC  
tVD;ACK  
Valid data time of ACK condition  
SDA and SCL Fast Mode Characteristics (Master)  
VDD = 3.3V(4)  
VDD = 1.8V  
400  
390  
410  
400  
fSCLM  
Clock frequency for master(3)  
kHz  
µs  
Start or repeated start  
condition hold time  
tHD;STA  
VDD = 3.3V  
0.6  
tLOW  
tHIGH  
Clock low time  
Clock high time  
VDD = 3.3V  
VDD = 3.3V  
1.3  
0.6  
µs  
µs  
Start or repeated start  
condition setup time  
tSU;STA  
VDD = 3.3V  
0.6  
µs  
tSU;DAT  
tSU;STO  
Serial data setup time  
Transmitting data, VDD = 3.3V  
VDD = 3.3V  
100  
0.6  
ns  
µs  
Stop condition setup time  
Bus free time between stop and  
start  
tBUF  
VDD = 3.3V  
1.3  
µs  
µs  
Transmitting data, VDD = 3.3V,  
SCL low to SDA output valid  
tVD;DAT  
Valid data time  
0.9  
0.9  
Transmitting data, VDD = 3.3V,  
ACK signal from SCL low to SDA  
(out) low  
tVD;ACK  
Valid data time of ACK condition  
µs  
(1) Fast Mode Plus is only recommended during boot when the device is in PTCH mode.  
(2) The master or slave connected to the device follows I2C specifications.  
(3) Actual frequency is dependent upon bus capacitance and pull-up resistance.  
(4) Measured at 400kHz with Rp=1kand Cb=145pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65994AD  
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
6.18 Typical Characteristics  
50  
47.5  
45  
0.575  
0.55  
0.525  
0.5  
42.5  
40  
0.475  
0.45  
37.5  
35  
0.425  
0.4  
32.5  
30  
0.375  
0.35  
0.325  
27.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (oC)  
TJ (oC)  
TypG  
TypG  
6-2. PP_CABLEx Rdson vs. Temperature  
6-1. PP_5Vx Rdson vs. Temperature  
5.9  
5.82  
5.815  
5.81  
5.85  
5.8  
VPx_VBUS = 4V  
VPx_VBUS = 22V  
5.75  
5.7  
5.805  
5.8  
5.65  
5.6  
5.55  
5.5  
5.795  
5.79  
5.45  
5.4  
5.785  
5.78  
5.35  
5.3  
5.775  
5.25  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (oC)  
TJ (oC)  
TypG  
TypG  
6-4. VOVP4RCP (Setting 2) vs. Temperature  
6-3. VRCP vs. Temperature  
9
8.8  
8.6  
8.4  
8.2  
8
11  
10.5  
10  
Px_GATE_VBUS  
Px_GATE_VSYS  
Px_GATE_VSYS: VVSYS=0V  
Px_GATE_VSYS: VVSYS=22V  
Px_GATE_VBUS: 4V < VVBUS < 22V  
9.5  
9
7.8  
7.6  
7.4  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (oC)  
TJ (oC)  
TypG  
TypG  
6-6. IPx_GATE_ON vs. Temperature  
6-5. VPx_GATE_ON vs. Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
t
f
t
r
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
cont.  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
SCL  
cont.  
t
HD;STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD;ACK  
t
t
t
t
SU;STO  
SU;STA  
HD;STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
002aac938  
7-1. I2C Slave Interface Timing  
ILIM5V, ILIMVC  
tiOS_PP_5V, tiOS_PP_CABLE  
7-2. Short-Circuit Response Time for Internal Power Paths PP_5Vx and PP_CABLEx  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS65994AD is a fully-integrated USB Power Delivery (USB-PD) management device providing cable plug  
and orientation detection for two USB Type-C and PD receptacles. The TPS65994AD communicates with the  
cable and another USB Type-C and PD device at the opposite end of the cable, enables integrated port power  
switch for sourcing, controls a high current port power switch for sinking and negotiates alternate modes for each  
port. The TPS65994AD may also control an attached super-speed multiplexer to simultaneously support USB  
data and DisplayPort video.  
Each Type-C port controlled by the TPS65994AD is functionally identical and supports the full range of the USB  
Type-C and PD standards.  
The TPS65994AD is divided into several main sections: the USB-PD controller, the cable plug and orientation  
detection circuitry, the port power switches, the power management circuitry and the digital core.  
The USB-PD controller provides the physical layer (PHY) functionality of the USB-PD protocol. The USB-PD  
data is output through either the Px_CC1 pin or the Px_CC2 pin, depending on the orientation of the reversible  
USB Type-C cable. For a high-level block diagram of the USB-PD physical layer, a description of its features and  
more detailed circuitry, see the USB-PD Physical Layer section.  
The cable plug and orientation detection analog circuitry automatically detects a USB Type-C cable plug  
insertion and also automatically detects the cable orientation. For a high-level block diagram of cable plug and  
orientation detection, a description of its features and more detailed circuitry, see the Cable Plug and Orientation  
Detection.  
The port power switches provide power to the Px_VBUS pin and also to the Px_CC1 or Px_CC2 pins based on  
the detected plug orientation. For a high-level block diagram of the port power switches, a description of its  
features and more detailed circuitry, see the Power Paths.  
The power management circuitry receives and provides power to the TPS65994AD internal circuitry and to the  
LDO_3V3 output. See the Power Management section for more information.  
The digital core provides the engine for receiving, processing and sending all USB-PD packets as well as  
handling control of all other TPS65994AD functionality. A portion of the digital core contains ROM memory which  
contains all the necessary firmware required to execute Type-C and PD applications. In addition, a section of the  
ROM, called boot code, is capable of initializing the TPS65994AD, loading of device configuration information  
and loading any code patches into volatile memory in the digital core. For a high-level block diagram of the  
digital core, a description of its features and more detailed circuitry, see the Digital Core section.  
The digital core of the TPS65994AD also interprets and uses information provided by the analog-to-digital  
converter ADC (see the ADC), is configurable to read the status of general purpose inputs and trigger events  
accordingly, and controls general outputs which are configurable as push-pull or open-drain types with integrated  
pull-up or pull-down resistors. The TPS65994AD has two I2C slave ports to be controlled by host processors ,  
and one I2C master to write to and read from external slave devices such as multiplexor, retimer, or an optional  
external EEPROM memory (see the I2C Interface).  
The TPS65994AD also integrates a thermal shutdown mechanism and runs off of accurate clocks provided by  
the integrated oscillator.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.2 Functional Block Diagram  
PB_VBUS  
PA_VBUS  
3A  
3A  
PP5V  
LDO_3V3  
LDO_1V5  
VSYS  
Power Supervisor  
VIN_3V3  
GND  
PB_CC1  
ADCIN1  
ADCIN2  
Cable Detect, Cable Power, & USB PD PHY  
PB_CC2  
I2C_EC_SDA/SCL/IRQ  
I2C2s_SDA/SCL/IRQ  
I2C3m_SDA/SCL/IRQ  
GPIO0-9  
3
3
Core & Other Digital  
PA_CC1  
PA_CC2  
3
10  
Cable Detect, Cable Power, & USB PD PHY  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 USB-PD Physical Layer  
8-1 shows the USB PD physical layer block surrounded by a simplified version of the analog plug and  
orientation detection block. This block is duplicated for the second TPS65994AD port.  
Fast  
current  
limit  
IVCON  
PP5V  
Px_CC1 Gate Control and  
Current Limit  
LDO_3V3  
IRp  
+
œ
RSNK  
Px_CC1  
Digital  
Core  
USB-PD PHY  
(Rx/Tx)  
Px_CC2  
LDO_3V3  
IRp  
RSNK  
Px_CC1 Gate Control and  
Current Limit  
Fast  
current  
limit  
8-1. USB-PD Physical Layer and Simplified Plug and Orientation Detection Circuitry  
USB-PD messages are transmitted in a USB Type-C system using a BMC signaling. The BMC signal is output  
on the same pin (Px_CC1 or Px_CC2) that is DC biased due to the Rp (or Rd) cable attach mechanism.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.3.1.1 USB-PD Encoding and Signaling  
8-2 illustrates the high-level block diagram of the baseband USB-PD transmitter. 8-3 illustrates the high-  
level block diagram of the baseband USB-PD receiver.  
4b5b  
Encoder  
BMC  
Encoder  
Data  
to PD_TX  
CRC  
8-2. USB-PD Baseband Transmitter Block Diagram  
Data  
BMC  
Decoder  
SOP  
Detect  
4b5b  
Decoder  
from PD_RX  
CRC  
8-3. USB-PD Baseband Receiver Block Diagram  
8.3.1.2 USB-PD Bi-Phase Marked Coding  
The USB-PD physical layer implemented in the TPS65994AD is compliant to the USB-PD Specifications. The  
encoding scheme used for the baseband PD signal is a version of Manchester coding called Biphase Mark  
Coding (BMC). In this code, there is a transition at the start of every bit time and there is a second transition in  
the middle of the bit cell when a 1 is transmitted. This coding scheme is nearly DC balanced with limited disparity  
(limited to 1/2 bit over an arbitrary packet, so a very low DC level). 8-4 illustrates Biphase Mark Coding.  
0
1
0
1
0
1
0
1
0
0
0
1
1
0
0
0
1
1
Data in  
BMC  
8-4. Biphase Mark Coding Example  
The USB PD baseband signal is driven onto the Px_CC1 or Px_CC2 pin with a tri-state driver. The tri-state driver  
is slew rate to limit coupling to D+/Dand to other signal lines in the Type-C fully featured cables. When  
sending the USB-PD preamble, the transmitter starts by transmitting a low level. The receiver at the other end  
tolerates the loss of the first edge. The transmitter terminates the final bit by an edge to ensure the receiver  
clocks the final bit of EOP.  
8.3.1.3 USB-PD Transmit (TX) and Receive (Rx) Masks  
The USB-PD driver meets the defined USB-PD BMC TX masks. Since a BMC coded 1contains a signal  
edge at the beginning and middle of the UI, and the BMC coded 0contains only an edge at the beginning,  
the masks are different for each. The USB-PD receiver meets the defined USB-PD BMC Rx masks. The  
boundaries of the Rx outer mask are specified to accommodate a change in signal amplitude due to the ground  
offset through the cable. The Rx masks are therefore larger than the boundaries of the TX outer mask. Similarly,  
the boundaries of the Rx inner mask are smaller than the boundaries of the TX inner mask. Triangular time  
masks are superimposed on the TX outer masks and defined at the signal transitions to require a minimum edge  
rate that has minimal impact on adjacent higher speed lanes. The TX inner mask enforces the maximum limits  
on the rise and fall times. Refer to the USB-PD Specifications for more details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.3.1.4 USB-PD BMC Transmitter  
The TPS65994AD transmits and receives USB-PD data over one of the Px_CCy pins for a given CC pin pair  
(one pair per USB Type-C port). The Px_CCy pins are also used to determine the cable orientation and maintain  
the cable/device attach detection. Thus, a DC bias exists on the Px_CCy pins. The transmitter driver overdrives  
the Px_CCy DC bias while transmitting, but returns to a Hi-Z state allowing the DC voltage to return to the  
Px_CCy pin when not transmitting. While either Px_CC1 or Px_CC2 may be used for transmitting and receiving,  
during a given connection only the one that mates with the CC pin of the plug is used; so there is no dynamic  
switching between Px_CC1 and Px_CC2. 8-5 shows the USB-PD BMC TX and RX driver block diagram.  
LDO_3V3  
Level Shifter  
PD_TX  
Driver  
Px_CC1  
Px_CC2  
+
Level Shifter  
PD_RX  
œ
Digitally  
Adjustable  
VREF (VRXHI, VRXLO  
)
USB-PD Modem  
8-5. USB-PD BMC TX/Rx Block Diagram  
8-6 shows the transmission of the BMC data on top of the DC bias. Note, The DC bias can be anywhere  
between the minimum and maximum threshold for detecting a Sink attach. This means that the DC bias can be  
above or below the VOH of the transmitter driver.  
VOH  
DC Bias  
DC Bias  
VOL  
VOH  
DC Bias  
DC Bias  
VOL  
8-6. TX Driver Transmission with DC Bias  
The transmitter drives a digital signal onto the Px_CCy lines. The signal peak, VTXHI, is set to meet the TX  
masks defined in the USB-PD Specifications. Note that the TX mask is measured at the far-end of the cable.  
When driving the line, the transmitter driver has an output impedance of ZDRIVER. ZDRIVER is determined by the  
driver resistance and the shunt capacitance of the source and is frequency dependent. ZDRIVER impacts the  
noise ingression in the cable.  
8-7 shows the simplified circuit determining ZDRIVER. It is specified such that noise at the receiver is bounded.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
RDRIVER  
ZDRIVER  
Driver  
CDRIVER  
8-7. ZDRIVER Circuit  
8.3.1.5 USB-PD BMC Receiver  
The receiver block of the TPS65994AD receives a signal that follows the allowed Rx masks defined in the USB  
PD specification. The receive thresholds and hysteresis come from this mask.  
8-8 shows an example of a multi-drop USB-PD connection (only the CC wire). This connection has the typical  
Sink (device) to Source (host) connection, but also includes cable USB-PD Tx/Rx blocks. Only one system can  
be transmitting at a time. All other systems are Hi-Z (ZBMCRX). The USB-PD Specification also specifies the  
capacitance that can exist on the wire as well as a typical DC bias setting circuit for attach detection.  
Source  
System  
Sink  
System  
Pullup for  
Attach  
Detection  
Connector  
Connector  
Cable  
CC wire  
Tx  
Tx  
CRECEIVER  
CRECEIVER  
Rx  
Rx  
CCablePlug_CC  
CCablePlug_CC  
RD for  
Attach  
Detection  
Rx  
Rx  
Tx  
Tx  
SOP‘ PD  
communication only  
(eMarker #1)  
SOP‘‘ PD  
communication only  
(eMarker #2)  
8-8. Example USB-PD Multi-Drop Configuration  
8.3.1.6 Squelch Receiver  
The TPS65994AD has a squelch receiver to monitor for the bus idle condition as defined by the USB PD  
specification.  
8.3.2 Power Management  
The TPS65994AD power management block receives power and generates voltages to provide power to the  
TPS65994AD internal circuitry. These generated power rails are LDO_3V3 and LDO_1V5. LDO_3V3 may also  
be used as a low power output for external EEPROM memory. The power supply path is shown in 8-9.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
PB_VBUS  
RLDO_3V3  
VIN_3V3  
PA_VBUS  
VREF  
LDO  
LDO_3V3  
VREF  
LDO_1V5  
LDO  
8-9. Power Supplies  
The TPS65994AD is powered from either VIN_3V3, PA_VBUS, or PB_VBUS. The normal power supply input is  
VIN_3V3. When powering from VIN_3V3, current flows from VIN_3V3 to LDO_3V3 to power the core 3.3-V  
circuitry and I/Os. A second LDO steps the voltage down from LDO_3V3 to LDO_1V5 to power the 1.5-V core  
digital circuitry. When VIN_3V3 power is unavailable and power is available on PA_VBUS, or PB_VBUS it is  
referred to as the dead-battery startup condition. In a dead-battery startup condition, the TPS65994AD opens  
the VIN_3V3 switch until the host clears the dead-battery flag via I2C. Therefore, the TPS65994AD is powered  
from the VBUS input with the higher voltage during the dead-battery startup condition and until the dead-battery  
flag is cleared. When powering from a VBUS input, the voltage on PA_VBUS, or PB_VBUS is stepped down  
through an LDO to LDO_3V3.  
8.3.2.1 Power-On And Supervisory Functions  
A power-on reset (POR) circuit monitors each supply. This POR allows active circuitry to turn on only when a  
good supply is present.  
8.3.2.2 VBUS LDO  
The TPS65994AD contains an internal high-voltage LDO which is capable of converting Px_VBUS to 3.3 V for  
powering internal device circuitry. The VBUS LDO is only used when VIN_3V3 is low (the dead-battery  
condition). The VBUS LDO is powered from either PA_VBUS, or PB_VBUS ; the one with the highest voltage.  
8.3.3 Power Paths  
The TPS65994AD has internal sourcing power paths: PP_5V1, PP_5V2, PP_CABLE1, and PP_CABLE2. It also  
has control for external power paths: PP_EXT1, and PP_EXT2. Each power path is described in detail in this  
section.  
8.3.3.1 Internal Sourcing Power Paths  
8-10 shows the TPS65994AD internal sourcing power paths. The TPS65994AD features four internal 5-V  
sourcing power paths. The path from PP5V to PA_VBUS is called PP_5V1 , and the path from PP5V to  
PB_VBUS is called PP_5V2. The path from PP5V to PA_CCx is called PP_CABLE1 , and the path from PP5V to  
PB_CCy is called PP_CABLE2. Each path contains current clamping protection, overvoltage protection, UVLO  
protection and temperature sensing circuitry. PP_5V1 and PP_5V2 may each conduct up to 3 A continuously,  
while PP_CABLE1 and PP_CABLE2 may conduct up to 315 mA continuously. When disabled, the blocking FET  
protects the PP5V rail from high-voltage that may appear on Px_VBUS.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
3A  
Fast current clamp, ILIM5V  
PA_VBUS  
Temp  
Sensor  
PP_VBUS1 Gate Control and Sense  
PP_5V1  
PP_CABLE1  
PA_CC1 Gate Control  
TSD_PP5V  
Fast current limit, IVCON  
PA_CC1  
PA_CC2 Gate Control  
Temp  
Sensor  
PP5V  
PA_CC2  
3A  
Fast current clamp, ILIM5V  
PB_VBUS  
Temp  
Sensor  
PP_VBUS2 Gate Control and Sense  
PP_5V2  
TSD_PP5V  
PP_CABLE2  
PB_CC1 Gate Control  
Fast current limit, IVCON  
PB_CC1  
PB_CC2 Gate Control  
Temp  
Sensor  
PB_CC2  
8-10. Port Power Switches  
8.3.3.1.1 PP_5Vx Current Clamping  
The current through the internal PP_5Vx paths are current limited to ILIM5V. The ILIM5V value is configured by  
application firmware. When the current through the switch exceeds ILIM5V, the current limiting circuit activates  
within tiOS_PP_5V and the path behaves as a constant current source. If the duration of the overcurrent event  
exceeds tILIM, the PP_5V switch is disabled.  
8.3.3.1.2 PP_5Vx Local Overtemperature Shut Down (OTSD)  
When PP_5Vx clamps the current, the temperature of the switch will begin to increase. When the local  
temperature sensors of PP_5Vx or PP_CABLEx detect that TJ>TSD_PP5V the PP_5Vx switch is disabled and the  
affected port enters the USB Type-C ErrorRecovery state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.3.3.1.3 PP_5Vx Current Sense  
The current from PP5V to Px_VBUS is sensed through the switch and passed to the internal ADC.  
8.3.3.1.4 PP_5Vx OVP  
The overvoltage protection level is automatically configured based on the expected maximum VBUS voltage,  
which depends upon the USB PD contract. When the voltage on a port's Px_VBUS pin exceeds the configured  
value (VOVP4RCP) while PP_5Vx is enabled, then PP_5Vx is disabled within tPP_5V_ovp and the affected port  
enters into the Type-C ErrorRecovery state.  
8.3.3.1.5 PP_5Vx UVLO  
If the PP5V pin voltage falls below its undervoltage lock out threshold (VPP5V_UVLO) while PP_5Vx is enabled,  
then PP_5Vx is disabled within tPP_5V_uvlo and the port that had PP_5Vx enabled enters into the Type-C  
ErrorRecovery state.  
8.3.3.1.6 PP_5Vx Reverse Current Protection  
If VPx_VBUS - VPP5V > VPP_5V_RCP, then the PP_5Vx path is automatically disabled within tPP_5V_rcp. If the RCP  
condition clears, then the PP_5Vx path is automatically enabled within tON  
.
8.3.3.1.7 Fast Role Swap  
The TPS65994AD supports Fast Role Swap as defined by USB PD. The PP_5Vx path has a fast turn-on mode  
that application firmware selectively enables to support Fast Role Swap. When enabled it is engaged when  
VPx_VBUS - VPP5V<VPP_5V_RCP, and turns on the switch within tFRS_on  
.
8.3.3.1.8 PP_CABLE Current Clamp  
When enabled and providing VCONN power the TPS65994AD PP_CABLE power switches clamp the current to  
IVCON. When the current through the PP_CABLEx switch exceeds IVCON, the current clamping circuit activates  
within tiOS_PP_CABLE and the switch behaves as a constant current source. The switches do not have reverse  
current blocking when the switch is enabled and current is flowing to either Px_CC1 or Px_CC2.  
8.3.3.1.9 PP_CABLE Local Overtemperature Shut Down (OTSD)  
When PP_CABLEx clamps the current, the temperature of the switch will begin to increase. When the local  
temperature sensors of PP_5Vx or PP_CABLEx detect that TJ>TSD_PP5V the PP_CABLEx switch is disabled and  
latched off within tPP_CABLE_off. The port then enters the USB Type-C ErrorRecovery state.  
8.3.3.1.10 PP_CABLE UVLO  
If the PP5V pin voltage falls below its undervoltage lock out threshold (VPP5V_UVLO), then both PP_CABLE1 and  
PP_CABLE2 switches are automatically disabled within tPP_CABLE_off  
.
8.3.3.2 Sink Path Control  
The sink-path control includes overvoltage protection (OVP), and reverse current protection (RCP).  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
3A  
PP_EXT1  
PP_EXT2  
3A  
PP_EXT2 Gate Control and  
Sense  
PP_EXT1 Gate Control and Sense  
8-11. Sink Path Control  
The following figure shows the Px_GATE_VSYS gate driver in more detail.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65994AD  
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
switch enabled when  
gate driver is disabled and  
VVIN_3V3 < VVIN_3V3_UVLO  
VPx_GATE_ON  
RPx_GATE_FSD  
Regular enable/  
disable  
Fast  
disable  
IPx_GATE_OFF  
IPx_GATE_ON  
Charge  
Pump  
Px_VBUS  
RPx_GATE_OFF_UVLO  
8-12. Details of the Px_GATE_VSYS gate driver.  
8.3.3.2.1 Overvoltage Protection (OVP)  
The application firmware enables the OVP and configures it based on the expected Px_VBUS voltage. If the  
voltage on Px_VBUS surpasses the configured threshold VOVP4VSYS = VOVP4RCP/rOVP, then Px_GATE_VSYS is  
automatically disabled within tPx_GATE_VSYS_FSD to protect the system. If the voltage on Px_VBUS surpasses the  
configured threshold VOVP4RCP then Px_GATE_VBUS is automatically disabled within tPx_GATE_VBUS_OVP. When  
VPx_VBUS falls below VOVP4RCP - VOVP4RCPHPx_GATE_VBUS is automatically re-enabled within  
tPx_GATE_VBUS_ON since the OVP condition has cleared. This allows two sinking power paths to be enabled  
simultaneously and Px_GATE_VBUS will be disabled when necessary to ensure that VPx_VBUS remains below  
VOVP4RCP  
.
While the TPS65994AD is in the BOOT mode in a dead-battery scenario (that is VIN_3V3 is low) it handles an  
OVP condition slightly differently. As long as the OVP condition is present Px_GATE_VBUS and  
Px_GATE_VSYS are disabled. Once the OVP condition clears, both Px_GATE_VBUS and Px_GATE_VSYS are  
re-enabled (unless ADCINx are configured in SafeMode). Since this is a dead-battery condition, the  
TPS65994AD will be drawing approximately IVIN_3V3,ActSnk from PA_VBUS or PB_VBUS during this time to help  
discharge it.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
Power Path Supervisor  
VOVP4RCP  
VOVP4VSYS = VOVP4RCP / rOVP  
8-13. Diagram for OVP Comparators  
8.3.3.2.2 Reverse-Current Protection (RCP)  
The VSYS gate control circuit monitors the VSYS and Px_VBUS voltages and detects reverse current when the  
VVSYS surpasses VPx_VBUS by more than VRCP. When the reverse current condition is detected,  
Px_GATE_VBUS is disabled within tPx_GATE_VBUS_RCP. When the reverse current condition is cleared,  
Px_GATE_VBUS is re-enabled within tPx_GATE_VBUS_ON. This limits the amount of reverse current that may flow  
from VSYS to Px_VBUS through the external N-ch MOSFETs.  
In reverse current protection mode, the power switch controlled by Px_GATE_VBUS is allowed to behave  
resistively until the current reaches VRCP/ RON and then blocks reverse current from VSYS to Px_VBUS , where  
RON is the resistance of the external back-to-back N-ch MOSFET. 8-14 shows the behavior of the switch.  
I
1/RON  
-VRCP  
V=VPx_VBUS - VVSYS  
VRCP/RON  
8-14. Switch I-V Curve for RCP on External Switches  
8.3.3.2.3 VBUS UVLO  
The TPS65994AD monitors Px_VBUS voltage and detects when it falls below VVBUS_UVLO. When the UVLO  
condition is detected, Px_GATE_VBUS is disabled within tPx_GATE_VBUS_RCP. When the UVLO condition is  
cleared, Px_GATE_VBUS is re-enabled within tPx_GATE_VBUS_ON  
.
8.3.3.2.4 Discharging VBUS to Safe Voltage  
The TPS65994AD has an integrated active pull-down (IDSCH) on Px_VBUS for discharging from high voltage to  
VSAFE0V (0.8 V). This discharge is applied when it is in an Unattached Type-C state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.3.4 Cable Plug and Orientation Detection  
8-15 shows the plug and orientation detection block at each Px_CCy pin (PA_CC1, PA_CC2, PB_CC1,  
PB_CC2). Each pin has identical detection circuitry.  
IRpDef  
IRp1.5  
IRp3.0  
VREF1  
VREF2  
VREF3  
Px_CCy  
RSNK  
8-15. Plug and Orientation Detection Block  
8.3.4.1 Configured as a Source  
When configured as a source, the TPS65994AD detects when a cable or a Sink is attached using the Px_CC1  
and Px_CC2 pins. When in a disconnected state, the TPS65994AD monitors the voltages on these pins to  
determine what, if anything, is connected. See USB Type-C Specification for more information.  
8-1 shows the Cable Detect States for a Source.  
8-1. Cable Detect States for a Source  
Px_CC1 Px_CC2  
CONNECTION STATE  
Open Nothing attached  
Open Sink attached  
RESULTING ACTION  
Continue monitoring both Px_CCy pins for attach. Power is not applied to Px_VBUS  
or VCONN.  
Open  
Rd  
Monitor Px_CC1 for detach. Power is applied to Px_VBUS but not to VCONN  
(Px_CC2).  
Monitor Px_CC2 for detach. Power is applied to Px_VBUS but not to VCONN  
(Px_CC1).  
Open  
Ra  
Rd  
Open  
Ra  
Sink attached  
Powered Cable-No UFP  
attached  
Monitor Px_CC2 for a Sink attach and Px_CC1 for cable detach. Power is not  
applied to Px_VBUS or VCONN (Px_CC1).  
Powered Cable-No UFP  
attached  
Monitor Px_CC1 for a Sink attach and Px_CC2 for cable detach. Power is not  
applied to Px_VBUS or VCONN (Px_CC1).  
Open  
Ra  
Provide power on Px_VBUS and VCONN (Px_CC1) then monitor Px_CC2 for a Sink  
detach. Px_CC1 is not monitored for a detach.  
Rd  
Powered Cable-UFP Attached  
Powered Cable-UFP attached  
Provide power on Px_VBUS and VCONN (Px_CC2) then monitor Px_CC1 for a Sink  
detach. Px_CC2 is not monitored for a detach.  
Rd  
Ra  
Debug Accessory Mode  
attached  
Rd  
Rd  
Sense either Px_CCy pin for detach.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8-1. Cable Detect States for a Source (continued)  
Px_CC1 Px_CC2  
CONNECTION STATE  
RESULTING ACTION  
Audio Adapter Accessory  
Mode attached  
Ra  
Ra  
Sense either Px_CCy pin for detach.  
When a TPS65994AD port is configured as a Source, a current IRpDef is driven out each Px_CCy pin and each  
pin is monitored for different states. When a Sink is attached to the pin a pull-down resistance of Rd to GND  
exists. The current IRpDef is then forced across the resistance Rd generating a voltage at the Px_CCy pin. The  
TPS65994AD applies IRpDef until it closes the switch from PP5V to Px_VBUS, at which time application firmware  
may change to IRp1.5A or IRp3.0A  
.
When the Px_CCy pin is connected to an active cable VCONN input, the pull-down resistance is different (Ra).  
In this case the voltage on the Px_CCy pin will be lower and the TPS65994AD recognizes it as an active cable.  
The voltage on Px_CCy is monitored to detect a disconnection depending upon which Rp current source is  
active. When a connection has been recognized and the voltage on Px_CCy subsequently rises above the  
disconnect threshold for tCC, the system registers a disconnection.  
8.3.4.2 Configured as a Sink  
When a TPS65994AD port is configured as a Sink, the TPS65994AD presents a pull-down resistance RSNK on  
each Px_CCy pin and waits for a Source to attach and pull-up the voltage on the pin. The Sink detects an  
attachment by the presence of VBUS. The Sink determines the advertised current from the Source based on the  
voltage on the Px_CCy pin.  
8.3.4.3 Configured as a DRP  
When a TPS65994AD port is configured as a DRP, the TPS65994AD alternates the port's Px_CCy pins between  
the pull-down resistance, RSNK, and pull-up current source, IRp.  
8.3.4.4 Fast Role Swap Signal Detection  
The TPS65994AD cable plug block contains additional circuitry that may be used to support the Fast Role Swap  
(FRS) behavior defined in the USB Power Delivery Specification. The circuitry provided for this functionality is  
detailed in 8-16.  
Px_CC1  
To Cable Detect and  
Orientation  
Px_CC2  
To Digital Core  
VFRS  
8-16. Fast Role Swap Detection and Signaling  
When a TPS65994AD port is operating as a sink with FRS enabled, the TPS65994AD monitors the CC pin  
voltage. If the CC voltage falls below VFRS for tFRS_DET a fast role swap signal is detected and indicated to the  
digital core. When this signal is detected the TPS65994AD ceases operating as a sink (disables  
Px_GATE_VSYS and Px_GATE_VBUS) and begins operating as a source.  
8.3.4.5 Dead Battery Advertisement  
The TPS65994AD supports booting from no-battery or dead-battery conditions by receiving power from  
Px_VBUS. Type-C USB ports require a sink to present Rd on the CC pin before a USB Type-C source provides  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
a voltage on VBUS. TPS65994AD hardware is configured to present this Rd during a dead-battery or no-battery  
condition. Additional circuitry provides a mechanism to turn off this Rd once the device no longer requires power  
from VBUS.  
8.3.5 Default Behavior Configuration (ADCIN1, ADCIN2)  
Note  
This functionality is firmware controlled and subject to change.  
The ADCINx inputs to the internal ADC control the behavior of the TPS65994AD in response to PA_VBUS or  
PB_VBUS being supplied when VIN_3V3 is low (that is the dead-battery scenario). The ADCINx pins must be  
externally tied to the LDO_3V3 pin via a resistive divider as shown in the following figure. At power-up the ADC  
converts the ADCINx voltage and the digital core uses these two values to determine start-up behavior. The  
available start-up configurations include options for I2C slave address of I2C_EC_SCL/SDA, sink path control in  
dead-battery, and default configuration.  
LDO_3V3  
Mux and  
ADC  
Dividers  
ADCINx  
8-17. ADCINx Resistor Divider  
The device behavior is determined in several ways depending upon the decoded value of the ADCIN1 and  
ADCIN2 pins. The following table shows the decoded values for different resistor divider ratios. See Pin  
Strapping to Configure Default Behavior for details on how the ADCINx configurations determine default device  
behavior. See I2C Address Setting for details on how ADCINx decoded values affects default I2C slave address.  
8-2. Decoding of ADCIN1 and ADCIN2 Pins  
(1)  
DIV = RDOWN / (RUP + RDOWN  
)
Without using RUP  
or RDOWN  
ADCINx decoded value  
MIN  
0
Target  
0.0114  
0.0475  
0.1074  
0.1899  
0.3022  
0.5368  
0.8062  
MAX  
0.0228  
0.0722  
0.1425  
0.2372  
0.3671  
0.7064  
0.9060  
tie to GND  
0
1
2
3
4
5
6
0.0229  
0.0723  
0.1425  
0.2373  
0.3672  
0.7065  
N/A  
N/A  
N/A  
N/A  
tie to LDO_1V5  
N/A  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8-2. Decoding of ADCIN1 and ADCIN2 Pins (continued)  
(1)  
DIV = RDOWN / (RUP + RDOWN  
)
Without using RUP  
or RDOWN  
ADCINx decoded value  
MIN  
Target  
MAX  
0.9061  
0.9530  
1.0  
tie to LDO_3V3  
7
(1) External resistor tolerance of 1% is recommended. Resistor values must be chosen to yield a DIV value centered nominally between  
listed MIN and MAX values. For convenience, the Target column shows this value.  
8.3.6 ADC  
The TPS65994AD ADC is shown in 8-18. The ADC is an 8-bit successive approximation ADC. The input to  
the ADC is an analog input mux that supports multiple inputs from various voltages and currents in the device.  
The output from the ADC is available to be read and used by application firmware.  
Voltage  
Px_VBUS  
Divider 2  
Voltage  
Divider 1  
LDO_3V3  
8 bits  
Input  
Mux  
ADC  
GPIO4  
Buffers &  
Voltage  
Divider 1  
ADCIN1  
ADCIN2  
GPIO5  
I_Px_VBUS  
I-to-V  
8-18. SAR ADC  
8.3.7 DisplayPort Hot-Plug Detect (HPD)  
The TPS65994AD supports the DisplayPort alternate mode as a DP source . It is recommended to use the  
virtual HPD functionality through I2C. However, the TPS65994AD also supports the HPD converter functions on  
GPIO pins (See 8-3). The core will translate PD messaging events onto the HPD pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
VBUS  
PD Controller  
(PD to HPD converter)  
CC1  
CC2  
DisplayPort  
Transmitter System  
Type-C Connector  
HPD  
detector  
GPIO1 / HPD_Tx  
GND  
VBUS  
PD Controller  
(HPD to PD converter)  
CC1  
CC2  
DisplayPort  
Receiver System  
Type-C Connector  
HPD  
driver  
HPD_Rx  
GND  
8-19. Illustration of how a PD-to-HPD Converter Passes the HPD Signal Along in a DisplayPort System  
8.3.8 Digital Interfaces  
The TPS65994AD contains several different digital interfaces which may be used for communicating with other  
devices. The available interfaces include two I2C Slaves and one I2C Master, and additional GPIOs.  
8.3.8.1 General GPIO  
GPIOn pins can be mapped to USB Type-C, USB PD, and application-specific events to control other ICs,  
interrupt a host processor, or receive input from another IC. This buffer is configurable to be a push-pull output, a  
weak push-pull, or open drain output. When configured as an input, the signal can be a de-glitched digital input  
or an analog input to the ADC (only a subset of the GPIO's are ADC inputs see table below). The push-pull  
output is a simple CMOS output with independent pull-down control allowing open-drain connections. The weak  
push-pull is also a CMOS output, but with GPIO_RPU resistance in series with the drain. The supply voltage to  
the output buffer is LDO_3V3 and LDO_1V5 to the input buffer. When interfacing with non 3.3-V I/O devices the  
output buffer may be configured as an open drain output and an external pull-up resistor attached to the GPIO  
pin. The pull-up and pull-down output drivers are independently controlled from the input and are enabled or  
disabled via application code in the digital core.  
8-3. GPIO Functionality Table  
Pin Name  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Special Functionality  
HPD_Tx for Port B  
HPD_Tx for Port A  
ADC Input,  
ADC Input,  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8-3. GPIO Functionality Table (continued)  
Pin Name  
Type  
Special Functionality  
GPIO9  
O
O
O
I
PROCHOT#  
I2C_EC_IRQ(GPIO10)  
I2C2s_IRQ(GPIO11)  
I2C3m_IRQ(GPIO12)  
IRQ for I2C_EC, or used as a general-purpose output  
IRQ for I2C2, or used as a general-purpose output  
IRQ for I2C3, or used as a general-purpose input  
8.3.8.2 I2C Interface  
The TPS65994AD features three I2C interfaces that each use an I2C I/O driver like the one shown in 8-20.  
This I/O consists of an open-drain output and in input comparator with de-glitching.  
50ns  
I2C_DI  
Deglitch  
I2C_SDA/SCL  
I2C_DO  
8-20. I2C Buffer  
8.3.9 Digital Core  
8-21 shows a simplified block diagram of the digital core.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
GPIO0-9  
I2C_EC_SDA  
I2C  
Port 1  
(slave)  
I2C to  
System Control  
I2C_EC_SCL  
I2C_EC_IRQ  
I2C2s_SDA  
I2C  
Port 2  
(slave)  
I2C to  
Thunderbolt Controller  
I2C2s_SCL  
Digital Core  
CBL_DET  
Bias CTL  
and USB-PD  
I2C2s_IRQ  
USB PD Phy  
I2C3m_SDA  
I2C to  
Thunderbolt Retimer  
I2C3m_SCL  
I2C  
Port 3  
(master)  
I2C3m_IRQ  
OSC  
ADC Read  
Temp  
Sense  
Thermal  
Shutdown  
ADC  
8-21. Digital Core Block Diagram  
8.3.10 I2C Interface  
The TPS65994AD has two I2C slave interface ports: I2C_EC and I2C2s. I2C port I2C_EC is comprised of the  
I2C_EC_SDA, I2C_EC_SCL, and I2C_EC_IRQ pins. I2C I2C2s is comprised of the I2C2s_SDA, I2C2s_SCL,  
and I2C2s_IRQ pins. These interfaces provide general status information about the TPS65994AD, as well as the  
ability to control the TPS65994AD behavior, supporting communications to/from a connected device and/or  
cable supporting BMC USB-PD, and providing information about connections detected at the USB-C receptacle.  
When the TPS65994AD is in 'APP ' mode it is recommended to use Standard Mode or Fast Mode (that is a clock  
speed no higher than 400 kHz). However, in the 'BOOT' mode when a patch bundle is loaded Fast Mode Plus  
may be used (see fSCLS).  
The TPS65994AD has one I2C master interface port: I2C3m. I2C3m is comprised of the I2C3m_SDA,  
I2C3m_SCL, and I2C3m_IRQ1 pins. This interface can be used to read from or write to external slave devices.  
During boot the TPS65994AD attempts to read patch and Application Configuration data from an external  
EEPROM with a 7-bit slave address of 0x50. The EEPROM should be at least kilo-bytes.  
8-4. I2C Summary  
I2C Bus  
I2C_EC  
I2C2s  
Type  
Slave  
Slave  
Typical Usage  
Connect to an Embedded Controller (EC). Used to load the patch and application configuration.  
Connect to a TBT controller or second master.  
Connect to a TBT retimer, USB Type-C mux, I2C EEPROM, or other slave. Use the LDO_3V3 pin as  
the pull-up voltage. Multi-master configuration is not supported.  
I2C3m  
Master  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.3.10.1 I2C Interface Description  
The TPS65994AD supports Standard and Fast mode I2C interfaces. The bidirectional I2C bus consists of the  
serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply through a pull-up  
resistor. Data transfer may be initiated only when the bus is not busy.  
A master sending a Start condition, a high-to-low transition on the SDA input and output, while the SCL input is  
high initiates I2C communication. After the Start condition, the device address byte is sent, most significant bit  
(MSB) first, including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/  
output during the high of the ACK-related clock pulse. On the I2C bus, only one data bit is transferred during  
each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period as  
changes in the data line at this time are interpreted as control commands (Start or Stop). The master sends a  
Stop condition, a low-to-high transition on the SDA input and output while the SCL input is high.  
Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period. When a  
slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must  
generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to  
ensure proper operation.  
A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after  
the last byte has been clocked out of the slave. The master receiver holding the SDA line high does this. In this  
event, the transmitter must release the data line to enable the master to generate a Stop condition.  
8-22 shows the start and stop conditions of the transfer. 8-23 shows the SDA and SCL signals for  
transferring a bit. 8-24 shows a data transfer sequence with the ACK or NACK at the last clock pulse.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
8-22. I2C Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line  
Change  
8-23. I2C Bit Transfer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
Data Output  
by Transmitter  
Nack  
Data Output  
by Receiver  
SCL From  
Master  
Ack  
1
2
8
9
S
Clock Pulse for  
Acknowledgement  
Start  
Condition  
8-24. I2C Acknowledgment  
8.3.10.2 I2C Clock Stretching  
The TPS65994AD features clock stretching for the I2C protocol. The TPS65994AD slave I2C port may hold the  
clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data.  
The master communicating with the slave must not finish the transmission of the current bit and must wait until  
the clock line actually goes high. When the slave is clock stretching, the clock line remains low.  
The master must wait until it observes the clock line transitioning high plus an additional minimum time (4 μs for  
standard 100-kbps I2C) before pulling the clock low again.  
Any clock pulse may be stretched but typically it is the interval before or after the acknowledgment bit.  
8.3.10.3 I2C Address Setting  
The host should only use I2C_EC_SCL/SDA for loading a patch bundle. Once the boot process is complete,  
each port has a unique slave address on the I2C_EC_SCL/SDA bus as selected by the ADCINx pins. The slave  
address used by each port on the I2C2s bus are determined from the application configuration. The Port A slave  
address should be used for pushing the patch bundle since the Port B slave address is not available during the  
BOOT mode.  
8-5. I2C Default Slave Address for I2C_EC_SCL/SDA.  
I2C address index  
(decoded from ADCIN1  
and ADCIN2)(1)  
Slave Address  
Available During  
BOOT  
Port  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
#1  
#1  
#2  
#2  
#3  
#3  
#4  
#4  
A
B
A
B
A
B
A
B
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
(1) See 8-2 details about ADCIN1 and ADCIN2 decoding.  
8.3.10.4 Unique Address Interface  
The Unique Address Interface allows for complex interaction between an I2C master and a single TPS65994AD.  
The I2C Slave sub-address is used to receive or respond to Host Interface protocol commands. 8-25 and 图  
8-26 show the write and read protocol for the I2C slave interface, and a key is included in 8-27 to explain the  
terminology used. The TPS65994AD Host interface utilizes a different unique address to identify each of the two  
USB Type-C ports controlled by the TPS65994AD. The key to the protocol diagrams is in the SMBus  
Specification and is repeated here in part.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
1
7
1
1
8
1
8
1
8
1
S
Unique Address  
Wr  
A
Register Number  
A
Byte Count = N  
A
Data Byte 1  
A
8
1
8
1
Data Byte 2  
A
Data Byte N  
A
P
8-25. I2C Unique Address Write Register Protocol  
1
S
7
1
1
8
1
1
7
1
1
8
1
Unique Address  
Wr  
A
Register Number  
A
Sr  
Unique Address  
Rd  
A
Byte Count = N  
A
8
1
8
1
8
1
Data Byte 1  
A
Data Byte 2  
A
Data Byte N  
A
1
P
8-26. I2C Unique Address Read Register Protocol  
1
7
1
1
A
x
8
1
A
x
1
S
Slave Address  
Wr  
Data Byte  
P
S
Start Condition  
SR  
Rd  
Wr  
x
Repeated Start Condition  
Read (bit value of 1)  
Write (bit value of 0)  
Field is required to have the value x  
Acknowledge (this bit position may be 0 for an ACK or  
1 for a NACK)  
A
P
Stop Condition  
Master-to-Slave  
Slave-to-Master  
Continuation of protocol  
8-27. I2C Read/Write Protocol Key  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Pin Strapping to Configure Default Behavior  
During the boot procedure, the device will read the ADCINx pins and set the configurations based on the table  
below. Then it will attempt to load a configuration from an external EEPROM on the I2C3m bus. If no EEPROM  
is detected, then the device will wait for an EC to load a configuration.  
When an external EEPROM is used, each device is connected to a unique EEPROM, it cannot be shared for  
multiple devices. The external EEPROM shall be at 7-bit slave address 0x50.  
8-6. Device Configuration using ADCIN1 and ADCIN2  
ADCIN1 decoded  
value (2)  
ADCIN2 decoded  
value (2)  
I2C address Index (1)  
Dead Battery Configuration  
7
5
2
1
7
4
3
2
7
6
6
6
7
3
4
3
5
5
0
7
4
4
0
7
6
6
5
7
3
3
0
7
#1  
#2  
#3  
#4  
#1  
#2  
#3  
#4  
#1  
#2  
#3  
#4  
#1  
#2  
#3  
#4  
AlwaysEnableSink: The device always enables the sink path  
regardless of the amount of current the attached source is  
offering. USB PD is disabled until configuration is loaded.  
SinkRequires_3.0A: The device only enables the sink path if the  
attached source is offering at least 3.0A. USB PD is disabled  
until configuration is loaded.  
SinkRequires_1.5A: The device only enables the sink path if the  
attached source is offering at least 1.5A. USB PD is disabled  
until configuration is loaded.  
NegotiateHighVoltage: The device always enables the sink path  
during the initial implicit contract regardless of the amount of  
current the attached source is offering. The PD controller will  
enter the 'APP ' mode, enable USB PD PHY and negotiate a  
contract for the highest power contract that is offered up to 20 V.  
This cannot be used when a patch is loaded from EEPROM.  
7
0
6
5
0
0
0
7
#1  
#2  
#3  
#4  
SafeMode: The device does not enable the sink path. USB PD is  
disabled until configuration is loaded. Note that the configuration  
could put the device into a source-only mode. This is  
recommended when the application loads the patch from  
EEPROM.  
(1) See 8-5 to see the exact meaning of I2C Address Index.  
(2) See 8-2 for how to configure a given ADCINx decoded value.  
8.4.2 Power States  
The TPS65994AD may operate in one of three different power states: Active, Idle, or Sleep. The Modern  
Standby mode is a special case of the Idle mode. The functionality available in each state is summarized in the  
following table. The device will automatically transition between the three power states based on the circuits that  
are active and required, see the following figure. In the Sleep State the TPS65994AD will detect a Type-C  
connection. Transitioning between the Active mode to the Idle mode requires a period of time (T) without any of  
the following activity:  
Incoming USB PD message.  
Change in CC status.  
GPIO input event.  
I2C transactions.  
Voltage alert.  
Fault alert.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
8-28. Flow Diagram For Power States  
8-7. Power Consumption States  
Modern  
Standby  
Modern  
Active Source  
Mode(1)  
Active Sink  
Mode(6)  
Idle Source  
Mode(2)  
Idle Sink  
Mode(7)  
Standby Sink Sleep Mode(3)  
Mode(5)  
Source Mode(4)  
PP_5V1  
enabled  
enabled  
disabled  
disabled  
enabled  
enabled  
disabled  
disabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
disabled  
disabled  
enabled  
enabled  
disabled  
disabled  
enabled  
enabled  
enabled  
enabled  
enabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
disabled  
PP_5V2  
PP_EXT 1  
PP_EXT2  
PP_CABLE1  
PP_CABLE2  
external  
PA_CC1  
termination  
Rd  
open  
Rd  
Rp 3.0A  
open  
Rd  
open  
Rd  
Rp 3.0A  
open  
Rd  
Rp 3.0A  
open  
open  
open  
open  
open  
external  
PA_CC2  
termination  
open  
open  
open  
external  
PB_CC1  
termination  
Rp 3.0A  
open  
Rp 3.0A  
open  
open  
external  
PB_CC2  
termination  
open  
open  
open  
(1) This mode is used for: IVIN_3V3,ActSrc  
(2) This mode is used for: IVIN_3V3,IdlSrc  
(3) This mode is used for: IVIN_3V3,Sleep  
(4) This mode is used for: PMstbySrc  
(5) This mode is used for: PMstbySnk  
.
(6) This mode is used for: IVIN_3V3,ActSnk  
(7) This mode is used for: IVIN_3V3,IdlSnk  
8.4.3 Thermal Shutdown  
The TPS65994AD features a central thermal shutdown as well as independent thermal sensors for each internal  
power path. The central thermal shutdown monitors the overall temperature of the die and disables all functions  
except for supervisory circuitry when die temperature goes above a rising temperature of TSD_MAIN. The  
temperature shutdown has a hysteresis of TSDH_MAIN and when the temperature falls back below this value, the  
device resumes normal operation.  
The power path thermal shutdown monitors the temperature of each internal PP5V-to-VBUS power path and  
disables both power paths and the VCONN power path when either exceeds TSD_PP5V. Once the temperature  
falls by at least TSDH_PP5V the path can be configured to resume operation or remain disabled until re-enabled by  
firmware.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS65994AD  
 
 
 
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS65994AD firmware implements a host interface over I2C to allow for the configuration and control of all  
device options. Initial device configuration is configured through a configuration bundle loaded on to the device  
during boot.The bundle may be loaded through the I2C_EC port or it may be loaded over I2C3m from an  
external EEPROM.The TPS65994AD configuration bundle and host interface allow the device to be customized  
for each specific application. The configuration bundle can be generated through the Application Customization  
Tool.  
9.2 Typical Application  
9.2.1 Type-C VBUS Design Considerations  
USB Type-C and PD allows for voltages up to 20 V with currents up to 5 A. This introduces power levels that  
could damage components touching or hanging off of VBUS. Under normal conditions, all high power PD  
contracts should start at 5 V and then transition to a higher voltage. However, there are some devices that are  
not compliant to the USB Type-C and Power Delivery standards and could have 20 V on VBUS. This could  
cause a 20-V hot plug that can ring above 30 V. Adequate design considerations are recommended below for  
these non-compliant devices.  
9.2.1.1 Design Requirements  
9-1 shows VBUS conditions that can be introduced to a USB Type-C and PD Sink. The system should be  
able to handle these conditions to ensure that the system is protected from non-compliant and/or damaged USB  
PD sources. A USB Sink should be able to protect from the following conditions being applied to its VBUS. The  
Detailed Design Procedure section explains how to protect from these conditions.  
9-1. VBUS Conditions  
CONDITION  
VOLTAGE APPLIED  
4 V - 21.5 V  
Abnormal VBUS Hot Plug  
VBUS Transient Spikes  
4 V - 43 V  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Type-C Connector VBUS Capacitors  
The first level of protection starts at the Type-C connector and the VBUS pin capacitors. These capacitors help  
filter out high frequency noise but can also help absorb short voltage transients. Each VBUS pin should have a  
10-nF capacitor rated at or above 25 V and placed as close to the pin as possible. The GND pin on the  
capacitors should have very short path to GND on the connector. The derating factor of ceramic capacitors  
should be taken into account as they can lose more than 50% of their effective capacitance when biased. Adding  
the VBUS capacitors can help reduce voltage spikes by 2 V to 3 V.  
9.2.1.2.2 VBUS Schottky and TVS Diodes  
TVS Diodes help suppress and clamp transient voltages. Most TVS diodes can fully clamp around 10 ns and can  
keep the VBUS at their clamping voltage for a period of time. Looking at the clamping voltage of TVS diodes  
after they settle during a transient will help decide which TVS diode to use. The peak power rating of a TVS  
diode must be able to handle the worst case conditions in the system.  
To prevent the possibility of large ground currents into the TPS65994AD during sudden disconnects due to  
inductive effects in a cable, it is recommended that a Schottky diode be placed from VBUS to ground.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
The TVS2200 can serve to clamp the VBUS voltage and prevent large ground currents into the PD controller as  
shown in 9-1  
PP5V  
PA_VBUS  
TVS2200  
PP5V  
PB_VBUS  
TVS2200  
GND  
9-1. TVS2200 for VBUS clamping and current surge protection  
9.2.1.3 Application Curves  
9-2. VBUS Short to Ground (Zoomed In)  
9-3. VBUS Short to Ground (Zoomed Out)  
9.2.2 Notebook Design Supporting PD Charging  
The TPS65994AD works very well in dual port Notebooks that support PD charging. The internal power paths for  
the TPS65994AD source System 5 V from PP5V to the respective VBUS pins. Additionally, the TPS65994AD  
can control two external Common Drain N-FET power paths to sink power into the system. The TPS65994AD  
offers full reverse-current protection on these external power paths through the N-FET gate driver. The System  
5-V connected to the PP5V pin on the TPS65994AD also supplies power to VCONN of Type-C e-marked cables  
and Type-C accessories. An embedded controller EC is used for additional control of the TPS65994AD and to  
relay information back to the operating system. An embedded controller enables features such as entering and  
exiting sleep modes, changing source and sink capabilities depending on the state of the battery, UCSI support,  
control alternate modes and so forth.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
9.2.2.1 USB and DisplayPort Notebook Supporting PD Charging  
USB SSTX/RX  
I2C  
USB3.1 Source  
SSTX/RX  
SBU1/2  
SS Mux Control  
DP1.4 Source  
TUSB1046  
DP ML  
USB2.0 Source  
Port A Type C  
Receptacle  
SSTX/RX  
SBU1/2  
USB2.0  
PA_HV_GATE  
GPIO  
PP5V  
SS Mux Control*  
System 5V  
CC1/2  
VBUS  
PA_CC1/2  
VIN  
BAT  
+
BQ Battery  
Charger  
VIN_3V3  
PP5V  
System 3.3V  
TPS65994  
Port B Type C  
Receptacle  
I2C  
VBUS  
CC1/2  
PB_CC1/2  
I2C3m  
I2C_EC  
SS Mux Control*  
USB2.0  
SBU1/2  
SSTX/RX  
EC  
PB_HV_GATE  
I2C MASTER  
USB2.0 Source  
DP ML  
I2C  
DP1.4 Source  
SS Mux Control  
USB3.1 Source  
SBU1/2  
TUSB1046  
SSTX/RX  
USB SSTX/RX  
9-4. USB and DisplayPort Notebook Supporting PD Charging  
9.2.2.1.1 Design Requirements  
9-2 summarizes the Power Design parameters for an USB Type-C PD Notebook.  
9-2. Power Design Parameters  
POWER DESIGN PARAMETERS  
PP5V Input Voltage, Current  
NFET PP_EXT Voltage, Current  
VIN_3V3 Voltage, Current  
VALUE  
CURRENT PATH  
5 V, 4 A  
VBUS 1 & 2 Source & VCONN 1 & 2 Source  
VBUS 1 & 2 Sink  
5 V 20 V, 3 A (5-A Maximum)  
3.3 V, 50 mA  
Internal TPS65994AD Circuitry  
9.2.2.1.2 Detailed Design Procedure  
9.2.2.1.2.1 USB Power Delivery Source Capabilities  
Most Type-C dongles (video and data) draw less than 900 mA and supplying 1.5 A on each Type-C port is  
sufficient for a notebook supporting USB and DisplayPort. 9-3 shows the PDO for the Type-C port.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
9-3. Source PDOs  
SOURCE PDO  
PDO1  
PDO TYPE  
VOLTAGE  
CURRENT  
Fixed  
5 V  
1.5 A  
9.2.2.1.2.2 USB Power Delivery Sink Capabilities  
Most notebooks support buck and boost charging which allows them to charge the battery from 5 V to 20 V. USB  
PD sources must also follow the Source Power Rules defined by the USB Power Delivery specification. It is  
recommended for notebooks to support all the voltages in the Source Power Rules to ensure compatibility with  
most PD chargers and adapters.  
9-4. Sink PDOs  
SINK PDO  
PDO1  
PDO TYPE  
Fixed  
VOLTAGE  
CURRENT  
5 V  
3 A  
3 A  
PDO2  
Fixed  
9 V  
PDO3  
Fixed  
15 V  
3 A  
PDO4  
Fixed  
20 V  
3 A (5 A Max)  
9.2.2.1.2.3 USB and DisplayPort Supported Data Modes  
9-5 summarizes the data capabilities of the notebook supporting USB3 and DisplayPort.  
9-5. Data Capabilities  
PROTOCOL  
DATA  
USB3.1 Gen2  
DP1.4  
DATA ROLE  
USB Data  
Host  
DisplayPort  
Host DFP_D (Pin Assignment C, D, and E)  
9.2.2.1.2.4 TUSB1046 Super Speed Mux GPIO Control  
The TUSB1046 requires GPIO control in GPIO control mode to determine whether if there is USB or DisplayPort  
data connection. 9-6 summarizes the TPS65994AD GPIO Events and the control pins for the TUSB1046.  
Note that the pin strapping on the TUSB1046 will set the GPIO control mode and the required equalizer settings.  
For more details refer to the TUSB1046 datasheet.  
9-6. GPIO Events for Super Speed Mux  
TPS65994AD GPIO EVENT  
Cable_Orientation_Event_Port1  
USB3_Event_Port1  
TUSB1046 CONTROL  
FLIP  
CTL0  
CTL1  
DP_Mode_Selection_Event_Port1  
9.2.2.2 Thunderbolt Notebook Supporting PD Charging  
A Thunderbolt system is capable of sourcing USB, DisplayPort, and Thunderbolt data. There is an I2C  
connection between the TPS65994AD and the Thunderbolt controller. The TPS65994AD will determine the  
connection on the Type-C port and will generate an interrupt to the Thunderbolt controller to generate the  
appropriate data output. An external mux for SBU may be needed to mux the LSTX/RX and AUX_P/N signal  
from the Thunderbolt controller to the Type-C Connector. The TPD6S300 provides additional protection such as  
short to VBUS on the CC and SBU pins and ESD for the USB2 DN/P. See 9-5 for a block diagram of the  
system.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
PB_TX0/1/RX0/1  
SBU Mux Control  
PA_LSTX/RX  
LSTX/RX  
AUXP/N  
SBU1/2  
TS3DS10224  
PA_DPSRC_AUX_P/N  
USB2.0 Source  
U1_TBT_I2C_SDA  
U2_TBT_I2C_SCL  
Thunderbolt  
Controller I2C Master  
Port A Type C  
Receptacle  
J4_TBTA_I2C_IRQZ  
E2_TBTB_I2C_IRQZ  
SSTX/RX  
SBU1/2  
GPIO  
SBU Mux Control  
System 5V  
PA_HV_GATE  
TBT RESETN  
RESETN  
USB2.0  
TPD6S300  
CC1/2  
VBUS  
PA_CC1/2  
PP5V  
VIN  
BAT  
+
BQ Battery  
Charger  
Thunderbolt Controller  
(AR)  
VIN_3V3  
System 3.3V  
TPS65994  
Port B Type C  
Receptacle  
I2C  
PP5V  
VBUS  
CC1/2  
PB_CC1/2  
Thunderbolt  
Controller I2C Master  
I2C2s  
USB2.0  
SBU1/2  
SSTX/RX  
TPD6S300  
EC  
I2C_EC  
PB_HV_GATE  
I2C MASTER  
USB2.0 Source  
AUXP/N  
LSTX/RX  
PB_DPSRC_AUX_P/N  
PB_LSTX/RX  
SBU1/2  
TS3DS10224  
SBU Mux Control  
PB_TX0/1/RX0/1  
9-5. Thunderbolt Notebook Supporting PD Charging  
9.2.2.2.1 Design Requirements  
9-7 summarizes the Power Design parameters for an USB Type-C PD Thunderbolt Notebook.  
9-7. Power Design Parameters  
POWER DESIGN PARAMETERS  
PP5V Input Voltage, Current  
NFET PP_EXT Voltage, Current  
VIN_3V3 Voltage, Current  
VALUE  
CURRENT PATH  
VBUS 1 & 2 Source & VCONN 1 & 2 Source  
VBUS 1 & 2 Sink  
5 V, 7 A  
5 V 20 V, 3 A (5-A Maximum)  
3.3 V, 50 mA  
Internal TPS65994AD Circuitry  
9.2.2.2.2 Detailed Design Procedure  
9.2.2.2.2.1 USB Power Delivery Source Capabilities  
All Type-C Ports that support Thunderbolt must support sourcing 5 V at 3 A (15 W). See 9-8 for the PDO  
information.  
9-8. Source PDOs  
SOURCE PDO  
PDO TYPE  
VOLTAGE  
CURRENT  
PDO1  
Fixed  
5 V  
3 A  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
9.2.2.2.2.2 USB Power Delivery Sink Capabilities  
Most notebooks support buck and boost charging which allows them to charge the battery from 5 V to 20 V. USB  
PD sources must also follow the Source Power Rules defined by the USB Power Delivery specification. It is  
recommended for notebooks to support all the voltages in the Source Power Rules to ensure compatibility with  
most PD chargers and adapters.  
9-9. Sink PDOs  
SINK PDO  
PDO1  
PDO TYPE  
Fixed  
VOLTAGE  
CURRENT  
5 V  
3 A  
PDO2  
Fixed  
9 V  
3 A  
3 A  
PDO3  
Fixed  
15 V  
PDO4  
Fixed  
20 V  
3 A (5-A Maximum)  
9.2.2.2.2.3 Thunderbolt Supported Data Modes  
Thunderbolt Controllers are capable of generating USB3, DisplayPort and Thunderbolt Data. The Thunderbolt  
controller is also capable of muxing the appropriate super speed signal to the Type-C connector. Thunderbolt  
systems do not need a super speed mux for the Type-C connector. 9-10 summarizes the data capabilities of  
each Type-C port supporting Thunderbolt.  
9-10. Data Capabilities  
PROTOCOL  
USB Data  
DATA  
USB3.1 Gen2  
DP1.4  
DATA ROLE  
Host  
DisplayPort  
Thunderbolt  
Host DFP_D (Pin Assignment C, D, and E)  
Host/Device  
PCIe/DP  
9.2.2.2.2.4 I2C Design Requirements  
The I2C connection from the TPS65994AD and the Thunderbolt control allows the Thunderbolt controller to read  
the current data status from the TPS65994AD when there is a connection on either Type-C port. The  
Thunderbolt controller has an interrupt assigned for the TPS65994AD and the Thunderbolt controller will read  
the I2C address corresponding to the Type-C port. The I2C2s on the TPS65994AD is always connected to the  
Thunderbolt controller.  
9.2.2.2.2.5 TS3DS10224 SBU Mux for AUX and LSTX/RX  
The SBU signals must be muxed from the Type-C connector to the Thunderbolt controller. The AUX for  
DisplayPort and LSTX/RX for Thunderbolt are connected to the TS3DS10224 and then muxed to the SBU pins.  
The SBU mux is controlled through GPIOs from the TPS65994AD. 9-11 shows the TPS65994AD GPIO  
events and the control signals from the TS3DS10224.  
9-11. GPIO Events for SBU Mux  
TPS65994AD GPIO EVENT  
Cable_Orientation_Event_Port1  
DP_Mode_Selection_Event_Port1  
TBT_Mode_Selection_Event_Por1  
N/A  
TS3DS10224 CONTROL  
SAO, SBO  
ENA  
ENB  
SAI tied to VCC  
SBI tied to GND  
N/A  
9-12 shows the connections for the AUX, LSTXRX, and SBU pins for the TS3DS10224.  
9-12. TS3DS10224 Pin Connections  
TS3DS10224 PIN  
SIGNAL  
INA+  
INA-  
SBU1  
SBU2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS65994AD  
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
9-12. TS3DS10224 Pin Connections (continued)  
TS3DS10224 PIN  
OUTB0+  
OUTB0-  
SIGNAL  
LSTX  
LSRX  
OUTB1+  
OUTB1-  
LSRX  
LSTX  
OUTA0+  
OUTA0-  
AUX_P  
AUX_N  
AUX_N  
AUX_P  
OUTA1+  
OUTA1-  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 3.3-V Power  
10.1.1 VIN_3V3 Input Switch  
The VIN_3V3 input is the main supply of the TPS65994AD device. The VIN_3V3 switch (see Power  
Management) is a uni-directional switch from VIN_3V3 to LDO_3V3, not allowing current to flow backwards from  
LDO_3V3 to VIN_3V3. This switch is on when the 3.3 V supply is availableand the dead-battery flag is cleared.  
The recommended capacitance CVIN_3V3 (see the Recommended Capacitance in the Specifications section)  
should be connected from the VIN_3V3 pin to the GND pin.  
10.1.2 VBUS 3.3-V LDO  
The 3.3 V LDO from Px_VBUS to LDO_3V3 steps down voltage from the PA_VBUS pin to LDO_3V3 which  
allows the TPS65994AD device to be powered from VBUS when VIN_3V3 is unavailable. This LDO steps down  
any recommended voltage on the PA_VBUS pin. When VBUS reaches 20 V, which is allowable by USB PD, the  
internal circuitry of the TPS65994AD device operates without triggering thermal shutdown; however, a significant  
external load on the LDO_3V3 pin or any GPIOx pin can increase temperature enough to trigger thermal  
shutdown. Keep the total load on LDO_3V3 within the limits from the Recommended Operating Conditions in the  
Specifications section. Connect the recommended capacitance CPx_VBUS (see Recommended Capacitance in  
the Specifications section) from the VBUS pin to the GND pin.  
10.2 1.5-V Power  
The internal circuitry is powered from 1.5 V. The 1.5-V LDO steps the voltage down from LDO_3V3 to 1.5 V. The  
1.5-V LDO provides power to all internal low-voltage digital circuits which includes the digital core, and memory.  
The 1.5-V LDO also provides power to all internal low-voltage analog circuits. Connect the recommended  
capacitance CLDO_1V5 (see the Recommended Capacitance in the Specifications section) from the LDO_1V5 pin  
to the GND pin.  
10.3 Recommended Supply Load Capacitance  
The Recommended Capacitance in the Specifications section lists the recommended board capacitances for the  
various supplies. The typical capacitance is the nominally rated capacitance that must be placed on the board as  
close to the pin as possible. The maximum capacitance must not be exceeded on pins for which it is specified.  
The minimum capacitance is minimum capacitance allowing for tolerances and voltage derating ensuring proper  
operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS65994AD  
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Proper routing and placement will maintain signal integrity for high speed signals and improve the heat  
dissipation from the power paths. The combination of power and high speed data signals are easily routed if the  
following guidelines are followed. It is a best practice to consult with board manufacturing to verify manufacturing  
capabilities.  
11.1.1 Top TPS65994AD Placement and Bottom Component Placement and Layout  
When the TPS65994AD is placed on top and its components on bottom the solution size will be at its smallest.  
11.2 Layout Example  
Follow the differential impedances for Super and High Speed signals defined by their specifications (DisplayPort  
- AUXN/P and USB2.0). All I/O will be fanned out to provide an example for routing out all pins, not all designs  
will utilize all of the I/O on the TPS65994AD.  
Q1  
A1  
B1  
D1  
E1  
CSD87501L  
A2  
B2  
D2  
E2  
PPHV  
PA_VBUS  
PA_GATE_VSYS  
PA_GATE_VBUS  
PP5V  
11  
31  
30  
PA_CC1  
PA_CC2  
PP5V  
PP5V  
PP5V  
PP5V  
PP5V  
PP5V  
PA_CC1  
PA_CC2  
12  
17  
20  
25  
26  
C1  
10uF  
C2  
10uF  
C3  
220pF  
C4  
220pF  
P3V3  
PA_VBUS  
21  
22  
23  
24  
PA_VBUS  
PA_VBUS  
PA_VBUS  
PA_VBUS  
PA_VBUS  
GND  
32  
VIN_3V3  
GND  
C5  
10uF  
PA_GATE_VBUS  
19  
PA_GATE_VBUS  
33  
35  
ADCIN1  
ADCIN1  
ADCIN2  
ADCIN2  
GND  
PA_GATE_VSYS  
PPHV  
45  
38  
9
5
3
4
PB_HPD  
PA_HPD  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
PA_GATE_VSYS  
VSYS  
PA_POL  
28  
2
PB_USB3  
PB_DP_MODE  
PA_USB3  
GPIO6  
PB_GATE_VSYS  
PB_GATE_VSYS  
46  
29  
27  
10  
8
GPIO7  
PB_GATE_VBUS  
PB_VBUS  
18  
PA_DP_MODE  
PB_POL  
PB_GATE_VBUS  
13  
14  
15  
16  
PB_VBUS  
PB_VBUS  
PB_VBUS  
PB_VBUS  
PB_VBUS  
42  
40  
43  
I2C1_SCL  
I2C1_SDA  
I2C1_IRQZ  
I2C_EC_SCL  
I2C_EC_SDA  
I2C_EC_IRQ  
PB_CC1  
PB_CC2  
41  
44  
39  
I2C2_SCL  
I2C2_SDA  
I2C2_IRQZ  
I2C2s_SCL  
I2C2s_SDA  
I2C2s_IRQ  
6
7
PB_CC1  
PB_CC2  
C8  
220pF  
C9  
220pF  
1
48  
47  
I2C3_SCL  
I2C3_SDA  
I2C3_IRQZ  
I2C3m_SCL  
I2C3m_SDA  
I2C3m_IRQ  
34  
37  
LDO_3V3  
LDO_3V3  
LDO_1V5  
GND  
LDO_1V5  
C10  
10uF  
36  
49  
GND  
GND  
C11  
10uF  
U1  
TPS65994ADRSLR  
GND  
GND  
GND  
PB_GATE_VSYS  
PB_GATE_VBUS  
PPHV  
E2  
D2  
B2  
A2  
E1  
D1  
B1  
A1  
PB_VBUS  
CSD87501L  
Q2  
11-1. Example Schematic  
11.3 Component Placement  
Top and bottom placement is used for this example to minimize solution size. The TPS65994AD is placed on the  
top side of the board and the majority of its components are placed on the bottom side. When placing the  
components on the bottom side, it is recommended that they are placed directly under the TPS65994AD. When  
placing the VBUS and PPHV capacitors it is easiest to place them with the GND terminal of the capacitors to  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
face outward from the TPS65994AD or to the side since the drain connection pads on the bottom layer should  
not be connected to anything and left floating. All other components that are for pins on the GND pad side of the  
TPS65994AD should be placed where the GND terminal is underneath the GND pad.  
The CC capacitors should be placed on the same side as the TPS65994AD close to the respective CC1 and  
CC2 pins. Do NOT via to another layer in between the CC pins to the CC capacitor, placing a via after the CC  
capacitor is recommended.  
The ADCIN1/2 voltage divider resistors can be placed where convenient. In this layout example they are placed  
on the opposite layer of the TPS65994AD close to the LDO_3V3 pin to simplify routing.  
The figures below show the placement in 2-D and 3-D.  
11-3. Bottom View Layout (Flipped)  
11-2. Top View Layout  
11-5. Bottom View 3-D  
11-4. Top View 3-D  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
11.4 Routing PP_5V, VBUS, VIN_3V3, LDO_3V3, LDO_1V5  
On the top side, create pours for PP_5V and VBUS1/2. Connect PP5V from the top layer to the bottom layer  
using at least 7 8-mil hole and 16-mil diameter vias. See 11-6 and 11-7 for top and bottom layer via  
placement and copper pours respectively.  
11-6. VBUS1 and VBUS2 Copper Pours and Via Placement (Top)  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
11-7. PP5V Copper Pours and Via Placement (Bottom)  
Next, VIN_3V3, LDO_3V3, and LDO_1V5 will be routed to their respective decoupling capacitors. This is  
highlighted in Figure 8. Connect the bottom side VIN_3V3, LDO_1V5, and LDO_3V3 capacitors with traces  
through a via. The vias should have a straight connection to the respective pins.  
As shown in 11-5 (3D view) these decoupling capacitors are in the bottom layer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
11-8. VIN_3V3, LDO_3V3, and LDO_1V5 Routing  
11.5 Routing CC and GPIO  
Routing the CC lines with a 10-mil trace will ensure the needed current for supporting powered Type-C cables  
through VCONN. For more information on VCONN refer to the Type-C specification. For capacitor GND pin use  
a 16-mil trace if possible.  
Most of the GPIO signals can be fanned out on the top or bottom layer using either a 6-mil trace or a 8-mil trace.  
The following images highlight how the CC lines and GPIOs are routed out.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
11-9. Top Layer GPIO Routing  
11-1. Routing Widths  
ROUTE  
WIDTH (mil minimum)  
PA_CC1, PA_CC2, PB_CC1, PB_CC2  
VIN_3V3, LDO_3V3, LDO_1V5  
Component GND  
8
6
10  
4
GPIO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS65994AD  
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
USB-PD Specifications  
USB Power Delivery Specification  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
USB Type-C® is a registered trademark of USB Implementers Forum.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS65994AD  
 
 
 
 
 
 
 
 
TPS65994AD  
ZHCSLY5A AUGUST 2020 REVISED JULY 2021  
www.ti.com.cn  
13.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Package  
Drawing  
Lead/Ball  
Finish(3)  
MSL Peak  
Temp(4)  
Device  
Status(1)  
Package Type  
Pins  
Package Qty  
Eco Plan(2)  
Op Temp  
Marking(5) (6)  
TPS65994  
AD  
TPS65994ADRSL  
R
Green (RoHS& no  
Sb/Br)  
NiPdAu /  
NiPdAuAg  
Level-2-260C-1  
YEAR  
ACTIVE  
VQFN  
RSL  
48  
2500  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1%  
by weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by  
third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable  
steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain  
information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS65994AD  
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65994ADRSLR  
ACTIVE  
VQFN  
RSL  
48  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
TPS65994  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
A
6.1  
5.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.4  
13  
24  
44X 0.4  
12  
23  
SYMM  
49  
4.5  
4.3  
4.4  
1
36  
0.25  
0.15  
48X  
PIN 1 IDENTIFICATION  
(OPTIONAL)  
37  
48  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
0.05  
48X  
4219205/A 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
(
4.4)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
36  
44X (0.4)  
SYMM  
(5.8)  
10X (1.12)  
49  
6X (0.83)  
(R0.05) TYP  
12  
25  
13  
6X (0.83)  
24  
(Ø0.2) VIA  
10X (1.12)  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.05 MAX  
0.05 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219205/A 02/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
49  
36  
44X (0.4)  
16X  
(
0.92)  
SYMM  
8X (0.56)  
(5.8)  
8X (1.12)  
(R0.05) TYP  
12  
25  
13  
8X (1.12)  
24  
METAL TYP  
8X (0.56)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
70% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4219205/A 02/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65994AE

具有支持 USB4 和交替模式的集成电源开关的双端口 USB-C® PD 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65994AERSLR

具有支持 USB4 和交替模式的集成电源开关的双端口 USB-C® PD 控制器 | RSL | 48 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66020

具有 3.3V 无电电池 LDO 的 USB-C/PD 20V、灌电流和 5V、拉电流电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66020YBGR

具有 3.3V 无电电池 LDO 的 USB-C/PD 20V、灌电流和 5V、拉电流电源开关 | YBG | 28 | -10 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66021

具有 5V 无电电池 LDO 的 USB-C/PD 20V、灌电流和 5V、拉电流电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66021YBGR

具有 5V 无电电池 LDO 的 USB-C/PD 20V、灌电流和 5V、拉电流电源开关 | YBG | 28 | -10 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66120

适用于具有 3.3V 无电电池 LDO 灌电流的 USB-C/PD 高压电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66120YBGR

适用于具有 3.3V 无电电池 LDO 灌电流的 USB-C/PD 高压电源开关 | YBG | 28 | -10 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66121

适用于具有 5V 无电电池 LDO 灌电流的 USB-C/PD 高压电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS66121YBGR

适用于具有 5V 无电电池 LDO 灌电流的 USB-C/PD 高压电源开关 | YBG | 28 | -10 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6734

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6734I

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI