TPS78512QWDRBRQ1 [TI]

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable;
TPS78512QWDRBRQ1
型号: TPS78512QWDRBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

文件: 总42页 (文件大小:2978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
TPS785-Q1  
1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications:  
Temperature grade 1: –40°C to +125°C, TA  
Device junction temperature: –40°C to +150°C, TJ  
Input voltage range: 1.7 V to 6.0 V  
Available output voltages:  
– Adjustable option: 1.2 V to 5.5 V  
– Fixed options: 0.65 V to 5.0 V  
Output accuracy: 0.5% typical, 1.7% maximum  
Low IQ: 25 μA (typical)  
The TPS785-Q1 ultra low-dropout regulator (LDO) is  
a small, low quiescent current LDO that can source  
1 A with excellent line and load transient performance.  
The low output noise and great PSRR performance  
make the device suitable to power-sensitive analog  
loads. The TPS785-Q1 is a flexible device for post  
regulation because this device supports an input  
voltage range from 1.7 V to 6.0 V and offers an  
adjustable output range of 1.2 V to 5.5 V. The device  
also features fixed output voltages from 0.65 V to  
5.0 V for powering common voltage rails.  
Ultra-low dropout:  
– 315 mV (max) at 1 A (3.3 VOUT  
)
Internal 550 μs soft-start time to reduce inrush  
current  
Active output discharge  
Packages:  
– 3-mm × 3-mm wettable flank VSON (8)  
– 5-pin TO-252, RθJA = 31.6°C/W  
The TPS785-Q1 offers foldback current limit to reduce  
power dissipation during a over current condition. The  
EN input helps with power sequencing requirements  
of the system. The internal soft-start provides a  
controlled start up reducing the inrush current allowing  
for lower input capacitance to be used.  
2 Applications  
The TPS785-Q1 provides an active pulldown circuit to  
quickly discharge output loads when disabled.  
Automotive head units  
Hybrid instrument clusters  
Telematics control units  
Medium- and short-range radar  
DC/DC converters  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
3.00 mm x 3.00 mm  
6.10 mm x 6.60 mm  
Wettable flank  
VSON (8)  
TPS785-Q1  
TO-252 (5)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
VIN  
VOUT  
IN  
OUT  
IN  
OUT  
CIN  
COUT  
COUT  
DC/DC  
Converter  
TPS785-Q1  
GND GND  
EN  
GND  
GND  
VEN  
GND  
GND  
Typical Application Circuit  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagrams....................................... 14  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application.................................................... 26  
9 Power Supply Recommendations................................27  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Examples.................................................... 29  
11 Device and Documentation Support..........................30  
11.1 Device Support........................................................30  
11.2 Documentation Support.......................................... 30  
11.3 Receiving Notification of Documentation Updates..30  
11.4 Support Resources................................................. 30  
11.5 Trademarks............................................................. 30  
11.6 Electrostatic Discharge Caution..............................30  
11.7 Glossary..................................................................30  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 30  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (January 2021) to Revision A (April 2021)  
Page  
Changed document status from advance information to production data.......................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
5 Pin Configuration and Functions  
1
2
8
7
OUT  
NC  
IN  
1
2
8
7
OUT  
FB  
IN  
EN  
EN  
Thermal  
Pad  
Thermal  
Pad  
3
4
6
5
NC  
NC  
NC  
3
4
6
5
NC  
NC  
NC  
GND  
GND  
Figure 5-1. DRB Package (Fixed), 8-Pin VSON,  
Top View  
Figure 5-2. DRB Package (Adjustable), 8-Pin VSON,  
Top View  
Thermal Pad  
Thermal Pad  
Not to scale  
Not to scale  
Figure 5-3. KVU Package (Fixed), 5-Pin TO-252,  
Top View  
Figure 5-4. KVU Package (Adjustable), 5-Pin  
TO-252, Top View  
Table 5-1. Pin Functions  
PIN  
DRB  
I/O  
DESCRIPTION  
DRB  
(Fixed)  
KVU  
(Fixed)  
KVU  
(Adjustable)  
NAME  
(Adjustable)  
Enable pin. Driving this pin to logic high enables the device; driving this  
pin to logic low disables the device. Do not float this pin. If not used,  
connect EN to IN.  
EN  
7
7
1
1
Input  
Feedback pin. Input to the control-loop error amplifier. This pin is used to  
set the output voltage of the device with the use of external resistors. Do  
not float this pin. For adjustable-voltage version devices only.  
FB  
5
2
5
3
5
3
Input  
GND  
Ground pin. This pin must be connected to ground on the board.  
Input pin. For best performance, place the nominal recommended value  
or larger ceramic capacitor from IN to GND; see the Recommended  
Operating Conditions table. Place the input capacitor as close to the  
input of the device as possible.  
IN  
8
8
2
5
2
Input  
No connect pin. This pin is not internally connected. Connect to ground  
for best thermal performance or leave floating.  
NC  
2, 3, 4, 6  
3, 4, 6  
A 0.47-µF or greater effective capacitance is required from OUT to  
ground for stability. For best transient response, use a 1-µF or larger  
ceramic capacitor from OUT to ground. Place the output capacitor  
as close to output of the device as possible; see the Recommended  
Operating Conditions table.  
OUT  
1
1
4
4
Output  
The thermal pad is electrically connected to the GND pin. Connect  
the thermal pad to a large-area GND plane for improved thermal  
performance.  
Thermal  
Pad  
Pad  
Pad  
Pad  
Pad  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
Supply, VIN  
6.5  
V
V
V
V
Enable, VEN  
6.5  
VIN + 0.3(2)  
2
Voltage  
Output, VOUT  
Feedback, VFB  
Current  
Output, IOUT  
Internally limited  
Operating junction, TJ  
Storage, Tstg  
–40  
–65  
150  
150  
°C  
°C  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 6.5 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
 
 
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
1.2  
0.65  
0.1  
1(1)  
0
NOM  
MAX  
6.0  
UNIT  
VIN  
Input voltage  
V
Adjustable output  
Fixed output  
5.5  
VOUT  
Output voltage  
V
5.0  
CIN  
Input capacitor  
1
µF  
µF  
nF  
A
COUT  
CFF  
Output capacitor  
200  
100  
1
Feed-forward capacitor(2)  
Output current  
10  
IOUT  
COUT,ESR  
VEN  
0
Output capacitor ESR  
Enable voltage  
0.001  
0
1
Ω
6
V
FEN  
Enable toggle frequency  
Junction temperature  
10  
150  
kHz  
°C  
TJ  
–40  
(1) The minimum effective capacitance is 0.47 µF.  
(2) Feed-forward capacitor is optional and not required for stability.  
6.4 Thermal Information  
TPS785-Q1  
THERMAL METRIC(1)  
DRB (VSON)  
8 PINS  
59.5  
KVU (TO-252)  
5 PINS  
31.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67  
40.4  
31.4  
10.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.5  
4.6  
ψJB  
31.3  
10.3  
RθJC(bot)  
15.7  
3.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS785-Q1  
 
 
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.5 Electrical Characteristics  
at operating temperature range (TJ = –40°C to +150°C), VIN = VOUT(nom) + 0.75 V or 2.0 V (whichever is greater), IOUT  
1 mA, VEN = VIN, and CIN = COUT = 1 µF, unless otherwise noted. All typical values at TJ = 25°C.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN  
Input voltage  
1.7  
6.0  
5.5  
5.0  
0.5  
1
V
Adjustable output  
Fixed output  
1.2  
VOUT  
Output voltage  
V
0.65  
–0.5  
–1  
1 mA ≤ IOUT ≤ 1 A,  
TJ = 25°C  
VOUT(nom) + 0.75 V or 2.0 V  
(whichever is greater) ≤ VIN  
6.0 V  
VOUT  
VOUT  
VOUT  
Output accuracy(5) (1)  
Line regulation  
–40°C ≤ TJ ≤ 85°C  
–40°C ≤ TJ ≤ 150°C  
%
–1.7  
1.7  
VOUT(nom) + 0.75 V or 2.0 V (whichever is greater) ≤ VIN  
6.0 V  
0.3  
mV  
mV  
0.1 mA ≤ IOUT ≤ 1 A  
–40°C ≤ TJ ≤ 85°C  
VOUT ≤ 3.3 V  
–7.5  
–7.5  
–7.5  
7.5  
15  
20  
Load regulation  
0.1 mA ≤ IOUT ≤ 1 A,  
–40°C ≤ TJ ≤ 150°C  
VOUT > 3.3 V  
Load transient response  
settling time(2) (3)  
IOUT = 300 mA to  
700 mA  
10  
µs  
IOUT = 300 mA to  
700 mA  
–2%  
%VOUT  
ΔVOUT  
tR = tF = 1 µs, COUT = 10 µF  
Load transient response  
IOUT = 700 mA to  
300 mA  
10% %VOUT  
%VOUT  
overshoot, undershoot (3) (6)  
IOUT = 0 mA to  
1000 mA  
–10%  
15  
IOUT = 0 mA  
TJ = 25°C  
25  
33  
33  
35  
40  
44  
47  
50  
µA  
µA  
µA  
µA  
µA  
µA  
VOUT(nom) + 0.5 V or 2.0 V  
(whichever is greater) ≤ VIN  
6.0 V  
–40°C ≤ TJ ≤ 85°C  
–40°C ≤ TJ ≤ 150°C  
TJ = 25°C  
IOUT = 500 µA  
VOUT(nom) + 0.5 V or 2.0 V  
(whichever is greater) ≤ VIN  
6.0 V  
IGND  
Ground current  
–40°C ≤ TJ ≤ 85°C  
–40°C ≤ TJ ≤ 150°C  
IOUT = 100 µA  
VOUT(nom) + 0.5 V or 2.0 V  
(whichever is greater) ≤ VIN  
6.0 V  
–40°C ≤ TJ ≤ 85°C  
45  
µA  
µA  
VEN ≤ 0.3 V  
TJ = 25°C  
0.01  
0.05  
0.25  
3
VOUT(nom) + 0.5 V or 2.0 V  
(whichever is greater) ≤ VIN  
6.0 V  
ISHDN  
Shutdown current  
–40°C ≤ TJ ≤ 85°C  
–40°C ≤ TJ ≤ 150°C  
VFB  
IFB  
Feedback voltage  
Adjustable output only  
Adjustable output only  
1.182  
–0.05  
1.2  
1.218  
0.05  
V
Feedback pin current  
0.01  
µA  
VIN = VOUT(nom) + 1.25 V or 2.0 V (whichever is greater),  
VOUT = 0.9 x VOUT(nom)  
ICL  
ISC  
Output current limit  
1.04  
1.65  
A
(4)  
Short-circuit current limit  
VOUT = 0 V  
550  
mA  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
at operating temperature range (TJ = –40°C to +150°C), VIN = VOUT(nom) + 0.75 V or 2.0 V (whichever is greater), IOUT  
1 mA, VEN = VIN, and CIN = COUT = 1 µF, unless otherwise noted. All typical values at TJ = 25°C.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1130  
960  
0.65 V ≤ VOUT < 0.8 V  
0.8 V ≤ VOUT < 1.0 V  
1.0 V ≤ VOUT < 1.2 V  
1.2 V ≤ VOUT < 1.5 V  
1.5 V ≤ VOUT < 1.8 V  
1.8 V ≤ VOUT < 2.5 V  
2.5 V ≤ VOUT < 3.3 V  
3.3 V ≤ VOUT ≤ 5.5 V  
0.65 V ≤ VOUT < 0.8 V  
0.8 V ≤ VOUT < 1.0 V  
1.0 V ≤ VOUT < 1.2 V  
1.2 V ≤ VOUT < 1.5 V  
1.5 V ≤ VOUT < 1.8 V  
1.8 V ≤ VOUT < 2.5 V  
2.5 V ≤ VOUT < 3.3 V  
3.3 V ≤ VOUT ≤ 5.5 V  
800  
725  
Dropout voltage (DRB  
package)  
IOUT = 1 A,  
VOUT = 0.95 x VOUT(nom)  
500  
425  
350  
315  
1225  
1070  
mV  
VDO  
915  
755  
605  
540  
455  
425  
IOUT = 1 A,  
VOUT = 0.95 x VOUT(nom)  
Dropout voltage (KVU  
package)  
IOUT = 850 mA,  
VOUT = 0.95 x VOUT(nom)  
VOUT = 1.8 V  
VOUT = 1.2 V  
500  
500  
IOUT = 500 mA,  
VOUT = 0.95 x VOUT(nom)  
f = 1 kHz  
60  
45  
IOUT = 1 A, VIN  
VOUT + 1 V  
=
PSRR  
Power-supply rejection ratio  
f = 100 kHz  
f = 1 MHz  
dB  
30  
Vn  
Output noise voltage  
UVLO threshold  
BW = 10 Hz to 100 kHz, VOUT = 1.2 V  
30  
µVRMS  
VIN rising  
1.28  
1.17  
1.42  
1.29  
130  
550  
1.62  
V
VUVLO  
VIN falling  
1.42  
VUVLO(HYST)  
tSTR  
UVLO hysteresis  
VIN hysteresis  
mV  
Start-up time  
From EN low-to-high transition to VOUT = VOUT(nom) x 92%  
280  
0.9  
785  
0.3  
µs  
VEN(HI)  
EN pin logic high voltage  
EN pin logic low voltage  
Enable pin current  
Pulldown resistance  
V
VEN(LOW)  
IEN  
VIN = VEN = 6.0 V  
VIN = 3.3 V  
10  
nA  
Ω
RPULLDOWN  
100  
Thermal shutdown  
temperature  
TSD(shutdown)  
TSD(reset)  
Shutdown, temperature increasing  
Reset, temperature decreasing  
170  
155  
°C  
Thermal shutdown reset  
temperature  
(1) Resistor tolerance is not included in overall accuracy in the adjustable version.  
(2) The settling time is measured from when IOUT is stepped from 300 mA to 700 mA to when the output voltage recovers to VOUT  
VOUT(nom) - 5 mV.  
=
(3) This specification is verified by design.  
(4) The output is being forced to 90% of the nominal VOUT value.  
(5) Based on ambient temperature power dissipation should be limited to avoid thermal shutdown.  
(6) This specification is in relation to the change from the nominal output voltage (VOUT(nom)).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS785-Q1  
 
 
 
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 1.0 V, CIN = 1.0 µF, COUT = 1.0 µF, and VIN = VOUT(NOM) + 0.75 V or  
1.7 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
TJ  
TJ  
-55èC  
-40èC  
0èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
25èC  
5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95  
Input Voltage (V)  
6
3.8 4.05 4.3 4.55 4.8 5.05 5.3 5.55 5.8  
Input Voltage (V)  
6
VOUT = 5.0 V  
VOUT = 3.3 V  
Figure 6-2. Output Accuracy vs VIN  
Figure 6-1. Output Accuracy vs VIN  
0.2  
0.15  
0.1  
0.2  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
0.05  
300 mA  
500 mA  
1 A  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature èC  
1.5  
2
2.5  
3
3.5 4  
Input Voltage (V)  
4.5  
5
5.5  
6
VOUT = 1.2 V  
Figure 6-4. Output Accuracy vs Temperature  
IOUT = 50 mA, VOUT = 1.2 V  
Figure 6-3. Output Accuracy vs VIN  
0.2  
0.15  
0.1  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
0.05  
0
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-0.05  
-0.1  
0.5  
1
1.5  
2
2.5  
3
3.5  
Output Voltage (V)  
4
4.5  
5
5.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
IOUT = 1 A  
Figure 6-6. Dropout vs Output Voltage  
VOUT = 1.2 V  
Figure 6-5. Output Accuracy vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 1.0 V, CIN = 1.0 µF, COUT = 1.0 µF, and VIN = VOUT(NOM) + 0.75 V or  
1.7 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
50  
45  
40  
35  
30  
25  
1000  
700  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
500  
300  
200  
100  
70  
50  
30  
20  
10  
1E-6  
1E-5  
0.0001 0.001  
Output Current (A)  
0.01  
0.1  
0.5  
1
1.5  
2
2.5  
3 4  
Input Voltage (V)  
3.5  
4.5  
5
5.5  
6
IOUT = 500 µA  
Figure 6-8. IGND vs IOUT  
Figure 6-7. IGND vs VIN  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
38  
36  
34  
32  
30  
28  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
1.00E-6 0.15  
0.30  
0.45 0.60  
Output Current (A)  
0.75  
0.90  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
VOUT = 1.2 V, VIN = 2 V  
IOUT = 500 µA  
Figure 6-9. IGND vs IOUT  
Figure 6-10. 500-µA Ground Current vs Temperature  
396  
394  
392  
390  
388  
386  
384  
382  
380  
3.5  
TJ  
50 mA  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
VEN = 0.3 V  
Figure 6-12. ISHDN vs VIN  
IOUT = 50 mA  
Figure 6-11. 50-mA Ground Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS785-Q1  
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 1.0 V, CIN = 1.0 µF, COUT = 1.0 µF, and VIN = VOUT(NOM) + 0.75 V or  
1.7 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
0.8  
0.75  
0.7  
300  
250  
200  
150  
100  
50  
VEN(HI)  
VEN(LO)  
TJ  
-55èC  
-40èC  
0èC  
25èC  
150èC  
85èC  
125èC  
0.65  
0.6  
0.55  
0.5  
0.45  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
VIN = 2 V  
VEN = 0.3 V  
Figure 6-14. VEN(HI) and VEN(LOW) Thresholds vs Temperature  
Figure 6-13. Pulldown Resistor (RPulldown) vs VIN  
0.85  
20  
17.5  
15  
5
VEN(HI)  
VEN(LO)  
4.5  
4
0.8  
12.5  
10  
3.5  
3
0.75  
0.7  
VOUT  
VIN  
7.5  
5
2.5  
2
0.65  
0.6  
2.5  
0
1.5  
1
-2.5  
-5  
0.5  
0
0.55  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
Temperature (èC)  
VIN = 6 V  
VOUT = 3.3 V, IOUT = 1 mA, slew rate = 1 V/µs  
Figure 6-16. Line Transient  
Figure 6-15. VEN(HI) and VEN(LOW) Thresholds vs Temperature  
6
5.5  
5
14  
12  
10  
8
6
5.5  
5
14  
12  
10  
8
4.5  
4
4.5  
4
6
6
3.5  
3
4
3.5  
3
4
2
2
2.5  
2
0
2.5  
2
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
1.5  
1
1.5  
1
VIN  
VIN  
-40èC  
25èC  
85èC  
150èC  
-40èC  
25èC  
85èC  
0.5  
0
0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 3.3 V, IOUT = 300 mA, slew rate = 1 V/µs  
VOUT = 3.3 V, IOUT = 1 A, slew rate = 1 V/µs  
Figure 6-17. Line Transient vs Temperature  
Figure 6-18. Line Transient vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 1.0 V, CIN = 1.0 µF, COUT = 1.0 µF, and VIN = VOUT(NOM) + 0.75 V or  
1.7 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
6
5.5  
5
14  
12  
10  
8
50  
40  
1500  
1200  
900  
30  
4.5  
4
20  
600  
6
10  
300  
3.5  
3
4
0
0
2
-10  
-20  
-30  
-40  
-50  
-300  
-600  
-900  
-1200  
-1500  
2.5  
2
0
-2  
-4  
-6  
-8  
-10  
-40èC  
25èC  
150èC  
IOUT  
1.5  
1
VIN  
-40èC  
25èC  
85èC  
0.5  
0
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 3.3 V, IOUT = 300 mA to 700 mA, rise time = 1 µs  
VOUT = 3.3 V, IOUT = 500 mA, slew rate = 1 V/µs  
Figure 6-20. Load Transient vs Temperature  
Figure 6-19. Line Transient vs Temperature  
75  
450  
300  
150  
0
150  
100  
50  
1500  
1000  
500  
50  
25  
0
0
0
-50  
-100  
-150  
-500  
-1000  
-1500  
-25  
-50  
-75  
-150  
-300  
-450  
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
VOUT = 3.3 V, IOUT = 0 mA to 1 A, rise time = 1 µs  
VOUT = 3.3 V, IOUT = 0 mA to 100 mA, rise time = 1 µs  
Figure 6-21. Load Transient vs Temperature  
Figure 6-22. Load Transient vs Temperature  
10  
10  
5
0 nF (151 mVRMS  
)
5
1 nF (55.2 mVRMS  
)
3
2
3
2
4.7 nF (49.1 mVRMS  
10 nF (39.7 mVRMS  
100 nF (30.1 mVRMS  
)
)
)
1
1
0.5  
0.5  
0.3  
0.2  
0.3  
0.2  
0.1  
0.1  
0.05  
0.05  
1.2 V (29.7 mVRMS  
)
)
0.03  
0.02  
0.03  
0.02  
3.3 V (151 mVRMS  
5.0 V (190 mVRMS  
)
0.01  
0.01  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 3.3 V, IOUT = 1 A  
Figure 6-23. Noise vs CFF  
IOUT = 1 A  
Figure 6-24. Noise vs VOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS785-Q1  
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 1.0 V, CIN = 1.0 µF, COUT = 1.0 µF, and VIN = VOUT(NOM) + 0.75 V or  
1.7 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.75 V VIN  
3.85 V VIN  
3.95 V VIN  
4.05 V VIN  
4.15 V VIN  
4.3 V VIN  
1 mF  
4.7 mF  
10 mF  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 3.3 V, IOUT = 1 A  
VOUT = 3.3 V, IOUT = 1 A  
Figure 6-25. PSRR vs VIN  
Figure 6-26. PSRR vs COUT  
8
7
40  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
6
0
5
-20  
-40  
-60  
-80  
-100  
-120  
-140  
4
VIN  
VEN  
VOUT  
IIN  
3
2
1
0
-1  
1 A  
500 mA  
300 mA  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VIN = 5.5 V, CIN = 0 µF, COUT = 1 µF, VOUT = 5.0 V,  
IOUT = 0 mA  
VOUT = 3.3 V  
Figure 6-27. PSRR vs IOUT  
Figure 6-28. Start-Up Inrush Current With  
COUT = 1 µF  
7
6
280  
7
280  
Input Voltage  
Enable Voltage  
Output Voltage  
Output Current  
Input Voltage  
Enable Voltage  
Output Voltage  
Output Current  
240  
200  
160  
120  
80  
6
5
240  
200  
160  
120  
80  
5
4
4
3
3
2
2
1
40  
1
40  
0
0
0
0
-1  
-40  
-1  
-40  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ms)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ms)  
VIN = VEN = 5.5 V, CIN = 0 µF, COUT = 1 µF, VOUT = 1.2 V,  
IOUT = 50 mA, TA = -40°C  
VIN = VEN = 5.5 V, CIN = 0 µF, COUT = 1 µF, VOUT = 1.2 V,  
IOUT = 50 mA, TA = 25°C  
Figure 6-29. Start Up  
Figure 6-30. Start Up  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 1.0 V, CIN = 1.0 µF, COUT = 1.0 µF, and VIN = VOUT(NOM) + 0.75 V or  
1.7 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
8
7
40  
7
6
280  
240  
200  
160  
120  
80  
Input Voltage  
Enable Voltage  
Output Voltage  
Output Current  
20  
6
0
5
5
-20  
-40  
-60  
-80  
-100  
-120  
-140  
4
4
VIN  
VEN  
VOUT  
IIN  
3
3
2
2
1
1
40  
0
0
0
-1  
-1  
-40  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ms)  
VIN = VEN = 5.5 V, CIN = 0 µF, COUT = 1 µF, VOUT = 5.0 V,  
IOUT = 0 mA  
VIN = VEN = 5.5 V, CIN = 0 µF, COUT = 1 µF, VOUT = 1.2 V,  
IOUT = 50 mA, TA = 150°C  
Figure 6-32. Start-Up Inrush Current With  
COUT = 1 µF  
Figure 6-31. Start Up  
8
7
6
5
4
160  
80  
5
2
1
0
0.5  
-80  
0.2  
0.1  
-160  
-240  
-320  
-400  
-480  
-560  
0.05  
3
2
VIN  
VEN  
VOUT  
IIN  
Stable region  
0.02  
0.01  
0.005  
1
0.002  
0.001  
0
-1  
0.0005  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
0.5  
1
2
3 4 567 10  
20 30 50 70100 200  
500  
COUT (mF)  
VIN = 5.5 V, CIN = 0 µF, COUT = 4.7 µF, VOUT = 5.0 V,  
IOUT = 0 mA  
COUT denotes nominal capacitor size  
(not effective capacitance)  
Figure 6-33. Start-Up Inrush Current With  
COUT = 4.7 µF  
Figure 6-34. ESR vs COUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS785-Q1  
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS785-Q1 is an ultra low-dropout, high PSRR, high-accuracy linear voltage regulator that is optimized for  
excellent transient performance. These characteristics make the device ideal for most automotive applications.  
This regulator offers foldback current limit, output enable, active discharge, undervoltage lockout (UVLO), and  
thermal protection.  
7.2 Functional Block Diagrams  
Current  
Limit  
IN  
OUT  
1.2-V  
Bandgap  
120 Ω  
UVLO  
FB  
Internal  
Controller  
Thermal  
Shutdown  
GND  
EN  
Figure 7-1. Adjustable Version Block Diagram  
Current  
Limit  
IN  
OUT  
1.2-V  
Bandgap  
2.18 M  
120 Ω  
UVLO  
2.42 Mꢀ  
550 kꢀ  
Internal  
Controller  
Thermal  
Shutdown  
GND  
EN  
Figure 7-2. Fixed Version Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
7.3 Feature Description  
7.3.1 Foldback Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a hybrid brickwall-foldback scheme. The current limit transitions from a  
brickwall scheme to a foldback scheme at the foldback voltage (VFOLDBACK). In a high-load current fault with  
the output voltage above VFOLDBACK, the brickwall scheme limits the output current to the current limit (ICL).  
When the voltage drops below VFOLDBACK, a foldback current limit activates that scales back the current as the  
output voltage approaches GND. When the output is shorted, the device supplies a typical current called the  
short-circuit current limit (ISC). ICL and ISC are listed in the Electrical Characteristics table.  
For this device, VFOLDBACK = 0.4 × VOUT(NOM)  
.
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. When the device output is shorted and the output  
is below VFOLDBACK, the pass transistor dissipates power [(VIN – VOUT) × ISC]. If thermal shutdown is triggered,  
the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on.  
If the output current fault condition continues, the device cycles between current limit and thermal shutdown. For  
more information on current limits, see the Know Your Limits application report.  
Figure 7-3 shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
Figure 7-3. Foldback Current Limit  
7.3.2 Output Enable  
The enable pin (EN) is active high. Enable the device by forcing the voltage of the enable pin to exceed the  
minimum EN pin high-level input voltage (see the Electrical Characteristics table). Turn off the device by forcing  
the voltage of the enable pin to drop below the maximum EN pin low-level input voltage (see the Electrical  
Characteristics table). If shutdown capability is not required, connect EN to IN.  
This device has an internal pulldown circuit that activates when the device is disabled to actively discharge the  
output voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS785-Q1  
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
7.3.3 Active Discharge  
The device has an internal pulldown MOSFET that connects an RPULLDOWN resistor to ground when the device is  
disabled to actively discharge the output voltage. The active discharge circuit is activated by the enable pin.  
Do not rely on the active discharge circuit to discharge the output voltage after the input supply has collapsed  
because reverse current can possibly flow from the output to the input. This reverse current flow can cause  
damage to the device, especially when a large output capacitor is used. Limit reverse current to no more than  
5% of the device rated current for a short period of time.  
7.3.4 Undervoltage Lockout (UVLO) Operation  
The UVLO circuit ensures that the device stays disabled before its input supply reaches the minimum  
operational voltage range, and ensures that the device shuts down when the input supply collapses. Figure  
7-4 shows the UVLO circuit response to various input voltage events. The diagram can be separated into the  
following parts:  
Region A: The device does not start until the input reaches the UVLO rising threshold.  
Region B: Normal operation, regulating device.  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold – UVLO hysteresis). The  
output may fall out of regulation but the device remains enabled.  
Region D: Normal operation, regulating device.  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases and the  
output falls because of the load and active discharge circuit. The device is reenabled when the UVLO rising  
threshold is reached by the input voltage and a normal start-up follows.  
Region F: Normal operation followed by the input falling to the UVLO falling threshold.  
Region G: The device is disabled when the input voltage falls below the UVLO falling threshold to 0 V. The  
output falls because of the load and active discharge circuit.  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
Figure 7-4. Typical UVLO Operation  
7.3.5 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
7.3.6 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off  
when thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can  
be high from large VIN – VOUT voltage drops across the device or from high inrush currents charging large  
output capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS785-Q1  
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO)  
The output current is less than the current limit (IOUT < ICL)  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold  
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than the maximum  
EN pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor is  
turned off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an internal  
discharge circuit from the output to ground.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output. Multilayer ceramic capacitors have become the industry standard for these types of applications and  
are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
C0G-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of  
Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, expect the effective capacitance to decrease by as much as 50%. The input  
and output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
8.1.2 Input and Output Capacitor Requirements  
The device requires an input capacitor of 1.0 µF or larger as specified in the Recommended Operating  
Conditions table for stability. A higher value capacitor may be necessary if large, fast rise-time load or line  
transients are anticipated or if the device is located several inches from the input power source.  
The device also requires an output capacitor of 1.0 µF or larger as specified in the Recommended Operating  
Conditions table for stability. Dynamic performance of the device is improved by using a higher capacitor than  
the minimum output capacitor.  
8.1.3 Adjustable Device Feedback Resistors  
The device requires external feedback divider resistors to set the output voltage. Figure 8-1 shows how the  
output voltage of an adjustable device can be configured from 1.2 V to 5.5 V by using a resistor divider network.  
Feed-forward capacitor CFF is not required for stability (optional)  
VIN  
OUT  
VOUT  
COUT  
IN  
CFF  
CIN  
R1  
R2  
FB  
TPS785-Q1  
GND  
EN  
GND  
VEN  
GND  
Figure 8-1. Adjustable Operation  
Equation 2 calculates the values of the R1 and R2 resistors to set the output voltage:  
VOUT = VFB × (1 + R1 / R2) + IFB × R1  
(2)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS785-Q1  
 
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
To disregard the effect of the FB pin current error term in Equation 2 and to achieve best accuracy, choose  
R2 to be equal to or smaller than 550 kΩ so that the current flowing through R1 and R2 is at least 100 times  
larger than the IFB current listed in the Electrical Characteristics table. Lowering the value of R2 increases the  
immunity against noise injection. Increasing the value of R2 reduces the quiescent current for achieving higher  
efficiency at low load currents. Equation 3 calculates the setting that provides the maximum feedback divider  
series resistance.  
(R1 + R2) ≤ VOUT / (IFB × 100)  
(3)  
8.1.4 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. There are two key transitions during a load transient response: the  
transition from a light to a heavy load and the transition from a heavy to a light load. The regions shown in Figure  
8-2 are broken down as follows. Regions A, E, and H are where the output voltage is in steady-state.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
Figure 8-2. Load Transient Waveform  
During transitions from a light load to a heavy load, the:  
Initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B)  
Recovery from the dip results from the LDO increasing its sourcing current, and leads to output voltage  
regulation (region C)  
Initial voltage rise results from the LDO sourcing a large current, and leads to the output capacitor charge to  
increase (region F)  
Recovery from the rise results from the LDO decreasing its sourcing current in combination with the load  
discharging the output capacitor (region G)  
A larger output capacitance reduces the peaks during a load transient but slows down the response time of the  
device. A larger DC load also reduces the peaks because the amplitude of the transition is lowered and a higher  
current discharge path is provided for the output capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
8.1.5 Exiting Dropout  
Some applications have transients that place the LDO into dropout, such as slower ramps on VIN during start-up.  
As with other LDOs, the output can overshoot on recovery from these conditions. A ramping input supply causes  
an LDO to overshoot on start-up, as shown in Figure 8-3, when the slew rate and voltage levels are in the  
correct range. Use an enable signal to avoid this condition.  
Input Voltage  
Response time for  
LDO to get back into  
regulation.  
Load current discharges  
output voltage.  
VIN = VOUT(nom) + VDO  
Output Voltage  
Dropout  
VOUT = VIN - VDO  
Output Voltage in  
normal regulation.  
Time  
Figure 8-3. Start-Up Into Dropout  
Line transients out of dropout can also cause overshoot on the output of the regulator. These overshoots are  
caused by the error amplifier having to drive the gate capacitance of the pass element and bring the gate back to  
the correct voltage for proper regulation. Figure 8-4 illustrates what is happening internally with the gate voltage  
and how overshoot can be caused during operation. When the LDO is placed in dropout, the gate voltage (VGS  
)
is pulled all the way down to ground to give the pass device the lowest on-resistance as possible. However, if  
a line transient occurs when the device is in dropout, the loop is not in regulation and can cause the output to  
overshoot until the loop responds and the output current pulls the output voltage back down into regulation. If  
these transients are not acceptable, then continue to add input capacitance in the system until the transient is  
slow enough to reduce the overshoot.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
Transient response  
time of the LDO  
Input Voltage  
Load current  
discharges  
output  
voltage  
Dropout  
VOUT = VIN - VDO  
Output Voltage  
VDO  
Output Voltage in  
normal regulation  
Time  
VGS voltage  
(pass device  
fully off)  
Input Voltage  
VGS voltage for  
normal operation  
VGS voltage for  
normal operation  
Gate Voltage  
VGS voltage in  
dropout (pass device  
fully on)  
Time  
Figure 8-4. Line Transients From Dropout  
8.1.6 Dropout Voltage  
The device uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout  
voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the  
RDS(ON) of the PMOS pass element. VDO scales approximately with output current because the PMOS device  
behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as  
(VIN – VOUT) approaches dropout operation.  
8.1.7 Reverse Current  
As with most LDOs, excessive reverse current can damage this device.  
Reverse current flows through the body diode on the pass element instead of the normal conducting channel.  
At high magnitudes, this current flow degrades the long-term reliability of the device as a result of one of the  
following conditions:  
Degradation caused by electromigration  
Excessive heat dissipation  
Potential for a latch-up condition  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT > VIN + 0.3 V:  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If reverse current flow is expected in the application, external protection must be used to protect the device.  
Figure 8-5 shows one approach of protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
Device  
COUT  
CIN  
GND  
Figure 8-5. Example Circuit for Reverse Current Protection Using a Schottky Diode  
8.1.8 Feed-Forward Capacitor (CFF)  
For the adjustable-voltage version device, a feed-forward capacitor (CFF) can be connected from the OUT pin  
to the FB pin. CFF improves transient, noise, and PSRR performance, but is not required for regulator stability.  
Recommended CFF values are listed in the Recommended Operating Conditions table. A higher capacitance  
CFF can be used; however, the startup time increases. For a detailed description of CFF tradeoffs, see the Pros  
and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator application report.  
8.1.9 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. Use Equation 4 to approximate PD:  
PD = (VIN – VOUT) × IOUT  
(4)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low  
dropout of the TPS785-Q1 allows for maximum efficiency across a wide range of output voltages.  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that  
conduct heat to any inner plane areas or to a bottom-side copper plane.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to Equation 5, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient  
air (TA). Equation 6 rearranges Equation 5 for output current.  
TJ = TA + (RθJA × PD)  
(5)  
(6)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS785-Q1  
 
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
of the planes. The RθJA recorded in the Recommended Operating Conditions table is determined by the  
JEDEC standard, PCB, and copper-spreading area, and is only used as a relative measure of package thermal  
performance. For a well-designed thermal layout, RθJA is actually the sum of the VSON package junction-to-case  
(bottom) thermal resistance (RθJC(bot)) plus the thermal resistance contribution by the PCB copper.  
8.1.9.1 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with Equation 7 and are given in the Recommended Operating Conditions table.  
ΨJT : TJ = TT + ΨJT × PD and ΨJB : TJ = TB + ΨJB × PD  
(7)  
where:  
PD is the power dissipated as explained in Equation 4  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
8.1.9.2 Recommended Area for Continuous Operation  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator is given in Figure 8-6 and can be  
separated into the following parts:  
Dropout voltage limits the minimum differential voltage between the input and the output (VIN – VOUT) at a  
given output current level. See the Dropout Voltage section for more details.  
The rated output currents limits the maximum recommended output current level. Exceeding this rating  
causes the device to fall out of specification.  
The rated junction temperature limits the maximum junction temperature of the device. Exceeding this rating  
causes the device to fall out of specification and reduces long-term reliability.  
– The shape of the slope is given by Equation 6. The slope is nonlinear because the maximum rated  
junction temperature of the LDO is controlled by the power dissipation across the LDO; thus when VIN  
VOUT increases the output current must decrease.  
The rated input voltage range governs both the minimum and maximum of VIN – VOUT.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
Figure 8-6 shows the recommended area of operation for this device on a JEDEC-standard high-K board with a  
RθJA as given in the Recommended Operating Conditions table.  
Output current limited  
by dropout  
Rated output  
current  
Output current limited by thermals  
Limited by  
minimum VIN  
Limited by  
maximum VIN  
VIN œ VOUT (V)  
Figure 8-6. Region Description of Continuous Operation Regime  
8.1.9.3 Power Dissipation versus Ambient Temperature  
Figure 8-7 is based off of a JESD51-7 four-layer high-K board. The allowable power dissipation was estimated  
using the following equation. As disscussed in the An empirical analysis of the impact of board layout on  
LDO thermal performance application report, thermal dissipation can be improved in the JEDEC high-K layout  
by adding top layer copper and increasing the number of thermal vias. If a good thermal layout is used, the  
allowable thermal dissipation can be improved by up to 50%.  
TA + RθJA x PD ≤ 150°C  
(8)  
4.5  
4
DRB Package  
KVU Package  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temerature (èC)  
Figure 8-7. Allowable Power Dissipation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS785-Q1  
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
8.2 Typical Application  
VIN  
VOUT  
IN  
OUT  
IN  
OUT  
CIN  
COUT  
COUT  
DC/DC  
Converter  
TPS785-Q1  
GND GND  
EN  
GND  
GND  
VEN  
GND  
GND  
Figure 8-8. Operation From a DC/DC Converter  
8.2.1 Design Requirements  
Table 8-1 summarizes the design requirement for this application.  
Table 8-1. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
Input voltage  
Output voltage  
4.05 V  
3.3 V, ±1.5%  
600 mA  
10 µF  
Output load  
Output capacitor  
Maximum ambient temperature  
85°C  
8.2.2 Detailed Design Procedure  
For this design example, the 3.3-V, fixed-version device is selected. The device is powered of a DC/DC  
converter connected to a battery. A 750-mV headroom between VIN and VOUT is used to keep the device within  
the dropout voltage specification and to ensure the device stays in regulation under all load and temperature  
conditions for this design.  
8.2.3 Application Curve  
A 10-µF capacitor is used to reduce overshoot and undershoot of output voltage during load transients with  
ramps rates greater than 1 A/μs. Figure 8-9 shows a capture of load transient behavior for this application.  
60  
40  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
VOUT  
IOUT  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
600  
400  
200  
0
2,000  
0
400  
800  
1,200  
1,600  
Time (ms)  
VIN = 4.05 V, VOUT = 3.3 V, COUT = 10 µF,  
IOUT slew rate = 1 A/µs  
Figure 8-9. IOUT Transient From 1 mA to 600 mA  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 1.95 V to 6.0 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the output voltage is well regulated and dynamic  
performance is optimum, the input supply must be at least VOUT(nom) + 0.75 V. TI requires using a 1-µF or greater  
input capacitor to reduce the impedance of the input supply, especially during transients.  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible.  
Use copper planes for device connections in order to optimize thermal performance.  
Place thermal vias around the device to distribute the heat.  
Only place tented thermal vias directly beneath the thermal pad of the DRB package. An untented via can  
wick solder or solder paste away from the thermal pad joint during the soldering process, leading to a  
compromised solder joint on the thermal pad.  
10.1.1 Additional Layout Considerations  
The high impedance of the FB pin makes the regulator sensitive to parasitic capacitances that may couple  
undesirable signals from nearby components (especially from logic and digital devices, such as microcontrollers  
and microprocessors); these capacitively coupled signals may produce undesirable output voltage transients. In  
these cases, TI recommends using a fixed-voltage version of the device, or isolating the FB node by placing a  
copper ground plane on the layer directly underneath the LDO circuitry and FB pin to minimize any undesirable  
signal coupling.  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1oz PCB  
2oz PCB  
1oz PCB  
2oz PCB  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
PCB Copper Area (cm2)  
PCB Copper Area (cm2)  
4-layer PCB  
2-layer PCB  
Figure 10-1. Junction-to-Ambient Thermal  
Resistance (RθJA) vs PCB Copper Area (DRB  
Package)  
Figure 10-2. Junction-to-Ambient Thermal  
Resistance (RθJA) vs PCB Copper Area (DRB  
Package)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS785-Q1  
 
 
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
1oz PCB  
2oz PCB  
1oz PCB  
2oz PCB  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
PCB Cuppoer Area (cm2)  
PCB Copper Area (cm2)  
4-layer PCB  
2-layer PCB  
Figure 10-3. Junction-to-Board Characterization  
Parameter (ψJB) vs PCB Copper Area (DRB  
Package)  
Figure 10-4. Junction-to-Board Characterization  
Parameter (ψJB) vs PCB Copper Area (DRB  
Package)  
105  
22  
2 Layer PCB, 1 oz copper  
2 Layer PCB, 1 oz copper  
95  
85  
75  
65  
55  
45  
35  
25  
15  
2 Layer PCB, 2 oz copper  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
2 Layer PCB, 2 oz copper  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
20  
18  
16  
14  
12  
10  
8
6
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Cu Area Per Layer (cm2)  
Cu Area Per Layer (cm2)  
Figure 10-5. Junction-to-Ambient Thermal  
Resistance (RθJA) vs PCB Copper Area (KVU  
Package)  
Figure 10-6. Junction-to-Board Characterization  
Parameter (ψJB) vs PCB Copper Area (KVU  
Package)  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
10.2 Layout Examples  
COUT  
COUT  
CIN  
CIN  
R1 OUT  
FB  
1
2
3
4
8
7
6
5
IN  
OUT  
NC  
1
2
3
4
8
7
6
5
IN  
CFF  
EN  
NC  
EN  
R2  
NC  
GND  
NC  
NC  
NC  
GND  
NC  
GND PLANE  
GND PLANE  
Represents a thermal via  
Represents a thermal via  
Figure 10-8. Layout Example for the DRB Package  
Fixed Version  
Figure 10-7. Layout Example for the DRB Package  
Adjustable Version  
GND PLANE  
GND PLANE  
Thermal Pad  
Thermal Pad  
1
2
3
4
5
1
2
3
4
5
GND  
CFF  
COUT  
GND  
CIN  
R2  
R1  
CIN  
COUT  
OUT  
EN IN  
FB  
OUT  
EN IN  
NC  
Feed-forward capacitor  
CFF is not required for  
stability (optional)  
Routing via  
Thermal via  
Routing via  
Thermal via  
Figure 10-10. Layout Example for the KVU Package  
Fixed Version  
Figure 10-9. Layout Example for the KVU Package  
Adjustable Version  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS785-Q1  
 
TPS785-Q1  
SBVS388A – JANUARY 2021 – REVISED APRIL 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Table 11-1. Device Nomenclature  
PRODUCT(1) (2)  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are used  
in the ordering number; otherwise, three digits are used (for example, 28 = 2.8 V or 01 = adjustable).  
W denotes a wettable flank package.  
TPS785xx(x)Q(W)yyyRQ1  
yyy is the package designator.  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
(2) Output voltages from 0.65 V to 5.5 V in 50-mV increments are available. Contact the factory for details and availability.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Universal Low-Dropout (LDO) Linear Voltage Regulator MultiPkgLDOEVM-823 Evaluation  
Module user's guide  
Texas Instruments, Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator  
application report  
Texas Instruments, An empirical analysis of the impact of board layout on LDO thermal performance  
application report  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS785-Q1  
 
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS78501QKVURQ1  
PTPS78501QWDRBRQ1  
PTPS78518QKVURQ1  
PTPS78518QWDRBRQ1  
PTPS78533QKVURQ1  
PTPS78533QWDRBRQ1  
PTPS78550QKVURQ1  
PTPS78550QWDRBRQ1  
ACTIVE  
TO-252  
SON  
KVU  
5
8
5
8
5
8
5
8
2500  
3000  
2500  
3000  
2500  
3000  
2500  
3000  
Non-RoHS &  
Non-Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DRB  
KVU  
Non-RoHS &  
Non-Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TO-252  
SON  
Non-RoHS &  
Non-Green  
DRB  
KVU  
Non-RoHS &  
Non-Green  
TO-252  
SON  
Non-RoHS &  
Non-Green  
DRB  
KVU  
Non-RoHS &  
Non-Green  
TO-252  
SON  
Non-RoHS &  
Non-Green  
DRB  
Non-RoHS &  
Non-Green  
TPS78501QKVURQ1  
TPS78501QWDRBRQ1  
TPS785075QWDRBRQ1  
TPS78510QKVURQ1  
TPS78510QWDRBRQ1  
TPS78511QKVURQ1  
TPS78511QWDRBRQ1  
TPS78512QKVURQ1  
TPS78512QWDRBRQ1  
TPS78518QKVURQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TO-252  
SON  
KVU  
DRB  
DRB  
KVU  
DRB  
KVU  
DRB  
KVU  
DRB  
KVU  
5
8
8
5
8
5
8
5
8
5
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
SN  
NIPDAU  
NIPDAU  
SN  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
8501QKVU  
8501QW  
SON  
85075Q  
TO-252  
SON  
8510QKVU  
8510QW  
NIPDAU  
SN  
TO-252  
SON  
8511QKVU  
8511QW  
NIPDAU  
SN  
TO-252  
SON  
8512QKVU  
8512QW  
NIPDAU  
SN  
TO-252  
8518QKVU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Apr-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS78518QWDRBRQ1  
TPS78533QKVURQ1  
TPS78533QWDRBRQ1  
TPS78550QKVURQ1  
TPS78550QWDRBRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SON  
TO-252  
SON  
DRB  
KVU  
DRB  
KVU  
DRB  
8
5
8
5
8
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
8518QW  
SN  
8533QKVU  
8533QW  
NIPDAU  
SN  
TO-252  
SON  
8550QKVU  
8550QW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Apr-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS78501QKVURQ1  
TPS78510QKVURQ1  
TPS78511QKVURQ1  
TPS78512QKVURQ1  
TPS78518QKVURQ1  
TPS78533QKVURQ1  
TPS78550QKVURQ1  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
KVU  
KVU  
KVU  
KVU  
KVU  
KVU  
KVU  
5
5
5
5
5
5
5
2500  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.9  
6.9  
6.9  
6.9  
6.9  
6.9  
6.9  
10.5  
10.5  
10.5  
10.5  
10.5  
10.5  
10.5  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS78501QKVURQ1  
TPS78510QKVURQ1  
TPS78511QKVURQ1  
TPS78512QKVURQ1  
TPS78518QKVURQ1  
TPS78533QKVURQ1  
TPS78550QKVURQ1  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
KVU  
KVU  
KVU  
KVU  
KVU  
KVU  
KVU  
5
5
5
5
5
5
5
2500  
2500  
2500  
2500  
2500  
2500  
2500  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
340.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
0.26  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
C
SYMM  
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
(1.65)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
6X (0.65)  
SYMM  
9
(1.95) (2.4)  
(0.95)  
(R0.05) TYP  
4
5
(Ø 0.2) VIA  
TYP  
(0.575)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225036/A 06/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS78518BQWDRBRQ1

TPS785-Q1 Automotive, 1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78518QKVURQ1

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78518QWDRBRQ1

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78525BQWDRBRQ1

TPS785-Q1 Automotive, 1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78533

FAST-TRANSIENT RESPONSE 3-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78533BQWDRBRQ1

TPS785-Q1 Automotive, 1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78533QKVURQ1

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78533QWDRBRQ1

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78550QKVURQ1

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78550QWDRBRQ1

1-A, High-PSRR Low-Dropout Voltage Regulator With High Accuracy and Enable

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS786

具有使能功能的 1.5A、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS78601

ULTRALOW-NOISE, HIGH PSRR, FAST RF 1.5 A LOW-DROPOUT LINEAR REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI