TPS78633KTTRG3 [TI]

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS; 超低噪声,高PSRR ,快速射频, 1.5 -A低压差线性稳压器
TPS78633KTTRG3
型号: TPS78633KTTRG3
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
超低噪声,高PSRR ,快速射频, 1.5 -A低压差线性稳压器

线性稳压器IC 调节器 电源电路 射频 输出元件 信息通信管理
文件: 总21页 (文件大小:753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A  
LOW-DROPOUT LINEAR REGULATORS  
FEATURES  
DESCRIPTION  
1.5-A Low-Dropout Regulator With Enable  
The TPS786xx family of low-dropout (LDO)  
low-power linear voltage regulators features high  
power-supply rejection ratio (PSRR), ultralow noise,  
fast start-up, and excellent line and load transient  
responses in small outline, SOT223-6 and DDPAK-5  
packages. Each device in the family is stable, with a  
small 1-µF ceramic capacitor on the output. The  
family uses an advanced, proprietary BiCMOS  
fabrication process to yield extremely low dropout  
voltages (for example, 390 mV at 1.5 A). Each  
device achieves fast start-up times (approximately 50  
Available in Fixed and Adjustable (1.2-V to  
5.5-V) Output Versions  
High PSRR (49 dB at 10 kHz)  
Ultralow Noise (48 µVRMS, TPS78630)  
Fast Start-Up Time (50 µs)  
Stable With a 1-µF Ceramic Capacitor  
Excellent Load/Line Transient Response  
Very Low Dropout Voltage (390 mV at Full  
Load, TPS78630)  
µs with  
a 0.001 µF bypass capacitor) while  
consuming very low quiescent current (265 µA,  
typical). Moreover, when the device is placed in  
standby mode, the supply current is reduced to less  
than 1 µA. The TPS78630 exhibits approximately 48  
µVRMS of output voltage at 3.0 V output noise with a  
0.1 µF bypass capacitor. Applications with analog  
components that are noise sensitive, such as  
portable RF electronics, benefit from the high PSRR,  
low noise features, and the fast response time.  
6-Pin SOT223 and 5-Pin DDPAK Package  
APPLICATIONS  
RF: VCOs, Receivers, ADCs  
Audio  
Bluetooth®, Wireless LAN  
Cellular and Cordless Telephones  
Handheld Organizers, PDAs  
TPS78630  
TPS78630  
DCQ PACKAGE  
SOT223-6  
(TOP VIEW)  
RIPPLE REJECTION  
vs  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
FREQUENCY  
FREQUENCY  
1
2
3
4
EN  
IN  
GND  
OUT  
NR/FB  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
= 4 V  
IN  
V
= 5.5 V  
= 2.2 µF  
6
GND  
IN  
C
C
= 10 µF  
C
C
OUT  
= 0.01 µF  
OUT  
= 0.1 µF  
I
= 1 mA  
= 1.5 A  
OUT  
NR  
NR  
5
I
OUT  
KTT PACKAGE  
DDPAK-5  
(TOP VIEW)  
I
= 1 mA  
OUT  
EN  
1
2
IN  
GND  
I
= 1.5 A  
OUT  
TAB  
GND  
3
4
OUT  
1
10  
100  
1k  
10k 100k 1M 10M  
100  
1k  
10k  
100k  
NR/FB  
Frequency (Hz)  
Frequency (Hz)  
5
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2002–2006, Texas Instruments Incorporated  
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
ORDERING INFORMATION(1)  
(2)  
PRODUCT  
VOUT  
TPS786xxyyyz  
XX is nominal output voltage (for example, 28 = 2.8 V, 285 = 2.85 V, 01 = Adjustable).  
YYY is package designator.  
Z is package quantity.  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) Output voltages from 1.3 V to 5.0 V in 100 mV increments are available; minimum order quantities may apply. Contact factory for details  
and availability.  
ABSOLUTE MAXIMUM RATINGS  
over operating temperature (unless otherwise noted)(1)  
VALUE  
VIN range  
–0.3 V to 6 V  
–0.3 V to VIN + 0.3 V  
6 V  
VEN range  
VOUT range  
Peak output current  
ESD rating, HBM  
Internally limited  
2 kV  
ESD rating, CDM  
500 V  
Continuous total power dissipation  
Junction temperature range, TJ  
Storage temperature range, Tstg  
See Dissipation Ratings table  
–40°C to +150°C  
–65°C to +150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
PACKAGE DISSIPATION RATINGS  
PACKAGE  
DDPAK  
BOARD  
High-K(1)  
Low-K(2)  
RθJC  
RθJA  
2 °C/W  
15 °C/W  
23 °C/W  
53 °C/W  
SOT223  
(1) The JEDEC high-K (2s2p) board design used to derive this data was a 3-in x 3-in (7,5-cm x 7,5-cm), multilayer board with 1 ounce  
internal power and ground planes and 2 ounce copper traces on top and bottom of the board.  
(2) The JEDEC low-K (1s) board design used to derive this data was a 3-in x 3-in (7,5-cm x 7,5cm), two-layered board with 2 ounce copper  
traces on top of the board.  
2
Submit Documentation Feedback  
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
ELECTRICAL CHARACTERISTICS  
Over recommended operating temperature range (TJ = –40°C to +125°C), VEN = VIN, VIN = VOUT(nom) + 1 V(1), IOUT = 1 mA,  
COUT = 10 µF, CNR = 0.01 µF, unless otherwise noted. Typical values are at +25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
V
(1)  
Input voltage, VIN  
Internal reference, VFB (TPS78601)  
Continuous output current IOUT  
1.200  
0
1.225  
1.250  
V
1.5  
A
Output voltage range TPS78601  
1.225  
(0.98)VOUT  
–2.0  
5.5 – VDO  
V
Output  
voltage  
TPS78601(2) 0 µA IOUT 1.5 A, VOUT + 1 V VIN 5.5 V(1)  
VOUT (1.02)VOUT  
+2.0  
V
Accuracy  
Fixed VOUT  
0 µA IOUT 1.5 A, VOUT + 1 V VIN 5.5 V  
VOUT + 1 V VIN 5.5 V  
0 µA IOUT 1.5 A  
IOUT = 1.5 A  
%
(1)  
Output voltage line regulation (VOUT%/VIN  
)
5
7
12  
%/V  
mV  
Load regulation (VOUT%/VOUT  
)
TPS78628  
TPS78630  
TPS78633  
410  
390  
340  
580  
550  
510  
4.2  
385  
1
Dropout voltage(3)  
VIN = VOUT(nom)– 0.1 V  
IOUT = 1.5 A  
mV  
IOUT = 1.5 A  
Output current limit  
Ground pin current  
Shutdown current(4)  
FB pin current  
VOUT = 0 V  
2.4  
A
0 µA IOUT 1.5 A  
VEN = 0 V, 2.7 V VIN 5.5 V  
VFB = 1.225 V  
260  
µA  
µA  
µA  
0.07  
1
f = 100 Hz, IOUT = 10 mA  
f = 100 Hz, IOUT = 1.5 A  
f = 10 kHz, IOUT = 1.5 A  
f = 100 kHz, IOUT = 1.5 A  
CNR = 0.001 µF  
59  
52  
49  
32  
66  
51  
49  
48  
50  
75  
110  
Power-supply ripple rejection  
TPS78630  
dB  
CNR = 0.0047 µF  
BW = 100 Hz to 100 kHz,  
Output noise voltage (TPS78630)  
Time, start-up (TPS78630)  
µVRMS  
IOUT = 1.5 A  
CNR = 0.01 µF  
CNR = 0.1 µF  
CNR = 0.001 µF  
RL = 2 , COUT = 1 µF  
CNR = 0.0047 µF  
CNR = 0.01 µF  
µs  
High-level enable input voltage  
Low-level enable input voltage  
EN pin current  
2.7 V VIN 5.5 V  
2.7 V VIN 5.5 V  
VEN = 0  
1.7  
0
VIN  
0.7  
1
V
V
–1  
µA  
V
UVLO threshold  
VCC rising  
2.25  
2.65  
UVLO hysteresis  
100  
mV  
(1) Minimum VIN = VOUT + VDO or 2.7 V, whichever is greater.  
(2) Tolerance of external resistors not included in this specification.  
(3) Dropout is not measured for TPS78618 or TPS78625 since minimum VIN = 2.7 V.  
(4) For adjustable version, this applies only after VIN is applied; then VEN transitions high to low.  
3
Submit Documentation Feedback  
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSION  
IN  
OUT  
300  
Current  
Sense  
UVLO  
Overshoot  
Detect  
GND  
EN  
ILIM  
SHUTDOWN  
R1  
R2  
FB  
UVLO  
Thermal  
Shutdown  
Quickstart  
External to  
the Device  
Bandgap  
Reference  
1.225 V  
VREF  
VIN  
250 k  
FUNCTIONAL BLOCK DIAGRAM—FIXED VERSION  
IN  
OUT  
300  
Current  
Sense  
UVLO  
Overshoot  
Detect  
GND  
EN  
ILIM  
SHUTDOWN  
R1  
R2  
UVLO  
Thermal  
Shutdown  
R2 = 40 k  
Quickstart  
Bandgap  
Reference  
1.225 V  
VREF  
VIN  
NR  
250 k  
Terminal Functions  
TERMINAL  
DCQ  
KTT  
NAME  
(SOT223)  
(DDPAK)  
DESCRIPTION  
Noise-reduction pin for fixed versions only. An external bypass capacitor, connected to this terminal, in conjunction  
with an internal resistor, creates a low-pass filter to further reduce regulator noise.  
NR  
5
1
5
The EN terminal is an input that enables or shuts down the device. When EN is a logic high, the device is enabled.  
When the device is a logic low, the device is in shutdown mode.  
EN  
1
FB  
GND  
IN  
5
3, 6  
2
5
Feedback input voltage for the adjustable device.  
Regulator ground  
3, TAB  
2
4
Input supply  
OUT  
4
Regulator output  
4
Submit Documentation Feedback  
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
TYPICAL CHARACTERISTICS  
TPS78630  
TPS78628  
TPS78628  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
GROUND CURRENT  
vs OUTPUT CURRENT  
vs JUNCTION TEMPERATURE  
vs JUNCTION TEMPERATURE  
2.798  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
350  
V
C
= 4 V  
= 10 µF  
OUT  
= 25°C  
V
C
= 3.8 V  
V
= 3.8 V  
IN  
IN  
IN  
= 10 µF  
C
OUT  
= 10 µF  
OUT  
340  
330  
320  
310  
300  
290  
2.794  
T
J
I
= 1 mA  
OUT  
2.790  
I
= 1.5 A  
OUT  
2.786  
I
= 1.5 A  
OUT  
I
= 1 mA  
OUT  
2.782  
2.778  
0.0  
0.3  
0.6  
0.9  
(A)  
1.2  
1.5  
−402510  
5
20 35 50 65 80 95 110 125  
(°C)  
−402510  
5
20 35 50 65 80 95 110 125  
(°C)  
I
T
J
T
J
OUT  
Figure 1.  
Figure 2.  
Figure 3.  
TPS78630  
TPS78630  
TPS78630  
OUTPUT SPECTRAL  
NOISE DENSITY  
vs FREQUENCY  
OUTPUT SPECTRAL  
NOISE DENSITY  
vs FREQUENCY  
OUTPUT SPECTRAL  
NOISE DENSITY  
vs FREQUENCY  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
V
C
C
= 5.5 V  
V
C
C
= 5.5 V  
V
= 5.5 V  
IN  
= 10 µF  
OUT  
= 1.5 A  
IN  
IN  
= 2.2 µF  
= 10 µF  
C
I
OUT  
= 0.1 µF  
OUT  
= 0.1 µF  
NR  
NR  
OUT  
I
= 1.5 A  
OUT  
C
NR  
= 0.1 µF  
C
NR  
= 0.0047 µF  
I
= 1 mA  
C
NR  
= 0.01 µF  
OUT  
C
= 0.001 µF  
NR  
I
= 1 mA  
OUT  
I
= 1.5 A  
OUT  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Figure 4.  
Figure 5.  
Figure 6.  
TPS78630  
ROOT MEAN SQUARED  
OUTPUT NOISE  
TPS78628  
TPS78630  
RIPPLE REJECTION  
vs FREQUENCY  
DROPOUT VOLTAGE  
vs BYPASS CAPACITANCE  
vs JUNCTION TEMPERATURE  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
C
C
= 4 V  
V
= 2.7 V  
= 10 µF  
OUT  
= 1.5 A  
IN  
IN  
= 10 µF  
C
I
OUT  
= 0.01 µF  
I
= 1 mA  
OUT  
NR  
OUT  
I
= 1.5 A  
OUT  
I
C
= 1.5 A  
= 10 µF  
OUT  
OUT  
BW = 100 Hz to 100 kHz  
0.001 µF  
0.0047 µF  
0.01 µF  
(µF)  
0.1 µF  
−402510  
5
20 35 50 65 80 95 110 125  
(°C)  
1
10  
100  
1k 10k 100k 1M 10M  
C
NR  
f (Hz)  
T
J
Figure 7.  
Figure 8.  
Figure 9.  
5
Submit Documentation Feedback  
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
TYPICAL CHARACTERISTICS (continued)  
TPS78630  
RIPPLE REJECTION  
vs FREQUENCY  
TPS78630  
RIPPLE REJECTION  
vs FREQUENCY  
TPS78630  
RIPPLE REJECTION  
vs FREQUENCY  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
C
C
= 4 V  
V
C
C
= 4 V  
V
C
C
= 4 V  
IN  
= 2.2 µF  
OUT  
= 0.01 µF  
NR  
IN  
IN  
= 2.2 µF  
= 10 µF  
OUT  
= 0.1 µF  
OUT  
= 0.1 µF  
I
= 1 mA  
I
= 1 mA  
I
= 1 mA  
= 1.5 A  
OUT  
OUT  
OUT  
NR  
NR  
I
OUT  
I
= 1.5 A  
OUT  
I
= 1.5 A  
OUT  
1
10  
100  
1k 10k 100k 1M 10M  
1
10  
100  
1k 10k 100k 1M 10M  
1
10  
100  
1k 10k 100k 1M 10M  
f (Hz)  
f (Hz)  
f (Hz)  
Figure 10.  
Figure 11.  
Figure 12.  
TPS78618  
LINE TRANSIENT RESPONSE  
TPS78630  
LINE TRANSIENT RESPONSE  
TPS78628  
LOAD TRANSIENT RESPONSE  
5
4
3
2
2
1
0
6
5
4
3
V
C
C
= 3.8 V  
I
C
C
= 1.5 A  
IN  
di  
dt  
dv  
dt  
OUT  
1.5 A  
ms  
1 V  
ms  
dv  
dt  
1 V  
ms  
−1  
I
C
C
= 1.5 A  
= 10 µF  
OUT  
= 0.01 µF  
OUT  
+
+
+
= 10 µF  
= 10 µF  
OUT  
= 0.01 µF  
OUT  
= 0.01 µF  
NR  
NR  
60  
30  
150  
75  
80  
40  
NR  
0
0
0
−30  
−60  
−75  
−150  
−40  
−80  
0
20 40 60 80 100 120 140 160 180 200  
0
100 200 300 400 500 600 700 800 900 1000  
0
20 40 60 80 100 120 140 160 180 200  
t (µs)  
t (µs)  
t s)  
Figure 13.  
Figure 14.  
Figure 15.  
TPS78625  
POWER UP/  
POWER DOWN  
TPS78630  
DROPOUT VOLTAGE  
vs OUTPUT CURRENT  
TPS78601  
DROPOUT VOLTAGE  
vs INPUT VOLTAGE  
600  
4.0  
3.5  
3.0  
2.5  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
R
C
= 2.5 V  
= 1.6  
= 0.01 µF  
OUT  
L
500  
400  
300  
200  
100  
0
NR  
T
= 125°C  
= 25°C  
J
T
= 125°C  
J
T
J
T
J
= 25°C  
2.0  
1.5  
1.0  
0.5  
0
T
J
= −40°C  
V
IN  
T
J
= −40°C  
I
= 1.5 A  
OUT  
V
OUT  
C
C
= 10 µF  
OUT  
= 0.01 µF  
NR  
0
0
200 400 600 800 1000 1200 1400  
(mA)  
0
400  
800  
1200  
1600  
2000  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
I
V
Time (µs)  
OUT  
IN  
Figure 16.  
Figure 17.  
Figure 18.  
6
Submit Documentation Feedback  
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
TYPICAL CHARACTERISTICS (continued)  
TPS78630  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
(ESR)  
TPS78630  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
(ESR)  
MINIMUM REQUIRED  
INPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs OUTPUT CURRENT  
vs OUTPUT CURRENT  
100  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
100  
C
OUT  
= 1 µF  
C
OUT  
= 2.2 µF  
I
= 1.5 A  
OUT  
Region of  
Instability  
Region of  
Instability  
10  
10  
T
J
= 125°C  
1
0.1  
1
0.1  
Region of Stability  
Region of Stability  
T
J
= −40°C  
T
J
= 25°C  
0.01  
0.01  
1
30  
125  
500  
(mA)  
1000  
1500  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
1
30  
125  
500  
(mA)  
1000  
1500  
I
I
OUT  
OUT  
V
OUT  
Figure 19.  
Figure 20.  
Figure 21.  
TPS78630  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
(ESR)  
vs OUTPUT CURRENT  
START-UP  
100  
10  
3
2.75  
2.50  
2.25  
2
V
C
= 4 V,  
IN  
C
OUT  
= 10 µF  
C
=
NR  
= 10 µF,  
OUT  
0.0047 µF  
I
= 1.5 A  
IN  
Region of  
Instability  
Enable  
C
=
NR  
0.001 µF  
1.75  
1.50  
1.25  
1
1
0.1  
C
=
NR  
0.01 µF  
Region of Stability  
0.75  
0.50  
0.25  
0
0.01  
0
100  
200  
300  
400  
500  
600  
1
30  
125  
500  
(mA)  
1000  
1500  
t (µs)  
I
OUT  
Figure 22.  
Figure 23.  
7
Submit Documentation Feedback  
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
APPLICATION INFORMATION  
because any leakage current creates an IR drop  
across the internal resistor, thus creating an output  
error. Therefore, the bypass capacitor must have  
minimal leakage current. The bypass capacitor  
should be no more than 0.1-µF to ensure that it is  
fully charged during the quickstart time provided by  
the internal switch shown in the functional block  
diagram.  
The TPS786xx family of low-dropout (LDO)  
regulators has been optimized for use in  
noise-sensitive equipment. The device features  
extremely low dropout voltages, high PSRR, ultralow  
output noise, low quiescent current (265 µA,  
typically), and enable input to reduce supply currents  
to less than 1 µA when the regulator is turned off.  
A typical application circuit is shown in Figure 24.  
For example, the TPS78630 exhibits only 48 µVRMS  
of output voltage noise using a 0.1-µF ceramic  
bypass capacitor and  
a 10-µF ceramic output  
VIN  
VOUT  
capacitor. Note that the output starts up slower as  
the bypass capacitance increases due to the RC  
time constant at the bypass pin that is created by the  
internal 250-kresistor and external capacitor.  
IN  
OUT  
TPS786xx  
GND  
µ
µ
F
0.1  
F
2.2  
EN  
NR  
µ
0.01  
F
BOARD LAYOUT RECOMMENDATIONS TO  
IMPROVE PSRR AND NOISE  
PERFORMANCE  
Figure 24. Typical Application Circuit  
To improve ac measurements like PSRR, output  
noise, and transient response, it is recommended  
that the board be designed with separate ground  
planes for VIN and VOUT, with each ground plane  
connected only at the ground pin of the device. In  
addition, the ground connection for the bypass  
capacitor should connect directly to the ground pin of  
the device.  
EXTERNAL CAPACITOR REQUIREMENTS  
A 2.2-µF or larger ceramic input bypass capacitor,  
connected between IN and GND and located close  
to the TPS786xx, is required for stability and  
improves transient response, noise rejection, and  
ripple rejection. A higher-value input capacitor may  
be necessary if large, fast-rise-time load transients  
are anticipated and the device is located several  
inches from the power source.  
REGULATOR MOUNTING  
The tab of the SOT223-6 package is electrically  
connected to ground. For best thermal performance,  
the tab of the surface-mount version should be  
soldered directly to a circuit-board copper area.  
Increasing the copper area improves heat  
dissipation.  
Like most low-dropout regulators, the TPS786xx  
requires an output capacitor connected between  
OUT and GND to stabilize the internal control loop.  
The minimum recommended capacitor is 1 µF. Any  
1 µF or larger ceramic capacitor is suitable.  
Solder pad footprint recommendations for the  
devices are presented in Application Report  
SBFA015, Solder Pad Recommendations for  
Surface-Mount Devices, available from the TI web  
site at www.ti.com.  
The internal voltage reference is a key source of  
noise in an LDO regulator. The TPS786xx has an  
NR pin which is connected to the voltage reference  
through a 250-kinternal resistor. The 250-kΩ  
internal resistor, in conjunction with an external  
bypass capacitor connected to the NR pin, creates a  
low pass filter to reduce the voltage reference noise  
and, therefore, the noise at the regulator output. In  
order for the regulator to operate properly, the  
current flow out of the NR pin must be at a minimum,  
8
Submit Documentation Feedback  
 
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
PROGRAMMING THE TPS78601  
ADJUSTABLE LDO REGULATOR  
In order to improve the stability of the adjustable  
version, it is suggested that a small compensation  
capacitor be placed between OUT and FB.  
The output voltage of the TPS78601 adjustable  
regulator is programmed using an external resistor  
divider as shown in Figure 25. The output voltage is  
calculated using Equation 1:  
The approximate value of this capacitor can be  
calculated using Equation 3:  
−7  
(3 x 10 ) x (R ) R )  
1
2
C
+
1
R
ǒ Ǔ  
(R x R )  
1
1
2
(3)  
V
+ V  
 
1 )  
OUT  
REF  
R
2
(1)  
The suggested value of this capacitor for several  
resistor ratios is shown in the table below. If this  
capacitor is not used (such as in a unity-gain  
configuration), then the minimum recommended  
output capacitor is 2.2 µF instead of 1 µF.  
where:  
VREF = 1.2246 V typ (the internal reference  
voltage)  
Resistors R1 and R2 should be chosen for  
approximately 40-µA divider current. Lower value  
resistors can be used for improved noise  
performance, but the device wastes more power.  
Higher values should be avoided, as leakage current  
at FB increases the output voltage error.  
REGULATOR PROTECTION  
The TPS786xx PMOS-pass transistor has a built-in  
back diode that conducts reverse current when the  
input voltage drops below the output voltage (for  
example, during power down). Current is conducted  
from the output to the input and is not internally  
limited. If extended reverse voltage operation is  
anticipated, external limiting might be appropriate.  
The recommended design procedure is to choose  
R2 = 30.1 kto set the divider current at 40 µA,  
C1 = 15 pF for stability, and then calculate R1 using  
Equation 2:  
The TPS786xx features internal current limiting and  
thermal protection. During normal operation, the  
TPS786xx limits output current to approximately  
2.8 A. When current limiting engages, the output  
voltage scales back linearly until the overcurrent  
condition ends. While current limiting is designed to  
prevent gross device failure, care should be taken  
not to exceed the power dissipation ratings of the  
package. If the temperature of the device exceeds  
approximately 165°C, thermal-protection circuitry  
shuts it down. Once the device has cooled down to  
below approximately 140°C, regulator operation  
resumes.  
V
ǒ Ǔ  
OUT  
R +  
* 1   R  
1
2
V
REF  
(2)  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
VIN  
VOUT  
IN  
EN  
OUT  
FB  
OUTPUT  
TPS78601  
R1  
R2  
C1  
µ
1
F
VOLTAGE  
R
1
R
2
C
1
µ
2.2  
F
GND  
1.8 V  
14.0 k  
57.9 kΩ  
30.1 kΩ  
30.1 kΩ  
33 pF  
15 pF  
3.6 V  
Figure 25. TPS78601 Adjustable LDO Regulator Programming  
9
Submit Documentation Feedback  
 
 
 
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
THERMAL INFORMATION  
increase in temperature due to the regulator power  
dissipation. The temperature rise is computed by  
multiplying the maximum expected power dissipation  
by the sum of the thermal resistances between the  
junction and the case (RθJC), the case to heatsink  
(RθCS), and the heatsink to ambient (RθSA). Thermal  
resistances are measures of how effectively an  
object dissipates heat. Typically, the larger the  
device, the more surface area available for power  
dissipation and the lower the object's thermal  
resistance.  
The amount of heat that an LDO linear regulator  
generates is directly proportional to the amount of  
power it dissipates during operation. All integrated  
circuits have  
a
maximum allowable junction  
temperature (TJmax) above which normal operation  
is not assured. A system designer must design the  
operating environment so that the operating junction  
temperature (TJ) does not exceed the maximum  
junction temperature (TJmax). The two main  
environmental variables that a designer can use to  
improve thermal performance are air flow and  
external heatsinks. The purpose of this information is  
to aid the designer in determining the proper  
operating environment for a linear regulator that is  
operating at a specific power level.  
Figure 26 illustrates these thermal resistances for (a)  
a SOT223 package mounted in a JEDEC low-K  
board, and (b) a DDPAK package mounted on a  
JEDEC high-K board.  
In general, the maximum expected power (PDmax)  
consumed by a linear regulator is computed as  
shown in Equation 4:  
Equation 5 summarizes the computation:  
ǒ
qSAǓ  
(5)  
T
+ T ) P max   R  
) R  
) R  
qCS  
J
A
D
qJC  
ǒ
Ǔ
PD max + VIN(avg) * VOUT(avg)   IOUT(avg) ) VIN(avg)   IQ  
The RθJC is specific to each regulator as determined  
by its package, lead frame, and die size provided in  
the regulator data sheet. The RθSA is a function of  
the type and size of heatsink. For example, black  
body radiator type heatsinks can have RθCS values  
ranging from 5°C/W for very large heatsinks to  
50°C/W for very small heatsinks. The RθCS is a  
function of how the package is attached to the  
heatsink. For example, if a thermal compound is  
used to attach a heatsink to a SOT223 package,  
(4)  
where:  
VIN(avg) is the average input voltage.  
VOUT(avg) is the average output voltage.  
IOUT(avg) is the average output current.  
IQ is the quiescent current.  
For most TI LDO regulators, the quiescent current is  
insignificant compared to the average output current;  
therefore, the term VIN(avg)× IQ can be neglected. The  
operating junction temperature is computed by  
adding the ambient temperature (TA) and the  
RθCS of 1°C/W is reasonable.  
T
T
A
J
A
CIRCUIT BOARD COPPER AREA  
R
θ
JC  
B
C
B
C
B
R
θ
θ
CS  
A
C
R
SA  
C
DDPAK Package  
(b)  
SOT223 Package  
(a)  
T
A
Figure 26. Thermal Resistances  
10  
Submit Documentation Feedback  
 
 
 
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
Even if no external black body radiator type heatsink  
is attached to the package, the board on which the  
regulator is mounted provides some heatsinking  
through the pin solder connections. Some packages,  
like the DDPAK and SOT223 packages, use a  
copper plane underneath the package or the circuit  
board ground plane for additional heatsinking to  
improve their thermal performance. Computer-aided  
thermal modeling can be used to compute very  
accurate approximations of an integrated circuit's  
From Figure 27, DDPAK Thermal Resistance vs  
Copper Heatsink Area, the ground plane needs to be  
1 cm2 for the part to dissipate 2.5 W. The operating  
environment used in the computer model to construct  
Figure 27 consisted of a standard JEDEC High-K  
board (2S2P) with a 1 oz. internal copper plane and  
ground plane. The package is soldered to a 2 oz.  
copper pad. The pad is tied through thermal vias to  
the 1 oz. ground plane. Figure 28 shows the side  
view of the operating environment used in the  
computer model.  
thermal  
performance  
in  
different  
operating  
environments (for example, different types of circuit  
boards, different types and sizes of heatsinks,  
different air flows, etc.). Using these models, the  
three thermal resistances can be combined into one  
thermal resistance between junction and ambient  
(RθJA). This RθJA is valid only for the specific  
operating environment used in the computer model.  
40  
No Air Flow  
35  
150 LFM  
30  
Equation 5 simplifies into Equation 6:  
T
+ T ) P max   R  
250 LFM  
25  
J
A D qJA  
(6)  
(7)  
Rearranging Equation 6 gives Equation 7:  
T * T  
+
J
A
20  
15  
R
qJA  
P max  
D
Using Equation 6 and the computer model generated  
curves shown in Figure 27 and Figure 30, a designer  
can quickly compute the required heatsink thermal  
0.1  
1
10  
100  
2
PCB Copper Area (cm )  
resistance/board area for  
a
given ambient  
temperature, power dissipation, and operating  
environment.  
Figure 27. DDPAK Thermal Resistance  
vs PCB Copper Area  
DDPAK POWER DISSIPATION  
The DDPAK package provides an effective means of  
managing power dissipation in surface mount  
applications. The DDPAK package dimensions are  
provided in the mechanical drawing section at the  
end of the data sheet. The addition of a copper plane  
directly underneath the DDPAK package enhances  
the thermal performance of the package.  
2 oz. Copper Solder Pad  
with 25 Thermal Vias  
1 oz. Copper  
Power Plane  
To illustrate, the TPS78625 in a DDPAK package  
was chosen. For this example, the average input  
voltage is 5 V, the output voltage is 2.5 V, the  
Thermal Vias,  
0.3 mm Diameter,  
1.5 mm Pitch  
average output current is  
1
A, the ambient  
1 oz. Copper  
Ground Plane  
temperature 55°C, the air flow is 150 LFM, and the  
operating environment is the same as documented  
below. Neglecting the quiescent current, the  
maximum average power is shown in Equation 8:  
Figure 28. DDPAK Thermal Resistance  
Computer Model  
(
)
P max + 5 * 2.5 V   1 A + 2.5 W  
D
(8)  
Substituting TJmax for TJ into Equation 6 gives  
Equation 9:  
R
max + (125 * 55)°Cń2.5 W + 28°CńW  
qJA  
(9)  
11  
Submit Documentation Feedback  
 
 
 
 
 
 
TPS786xx  
www.ti.com  
SLVS389GSEPTEMBER 2002REVISED JULY 2006  
From the data in Figure 29 and rearranging  
Equation 6, the maximum power dissipation for a  
different ground plane area and a specific ambient  
temperature can be computed.  
180  
160  
No Air Flow  
140  
120  
100  
80  
5
T
A
= 55°C  
250 LFM  
4
3
60  
150 LFM  
40  
20  
No Air Flow  
0
0.1  
1
10  
2
1
2
PCB Copper Area (in )  
Figure 30. SOT223 Thermal Resistance  
vs PCB Copper Area  
0.1  
1
10  
2
100  
PCB Copper Area (cm )  
From the data in Figure 30 and rearranging  
Equation 6, the maximum power dissipation for a  
different ground plane area and a specific ambient  
temperature can be computed, as shown in  
Figure 31.  
Figure 29. DDPAK Maximum Power Dissipation  
vs PCB Copper Area  
SOT223 POWER DISSIPATION  
The SOT223 package provides an effective means  
of managing power dissipation in surface-mount  
applications. The SOT223 package dimensions are  
provided in the mechanical drawing section at the  
end of the data sheet. The addition of a copper plane  
directly underneath the SOT223 package enhances  
the thermal performance of the package.  
6
T
A
= 25°C  
5
4
3
2
1
0
2
4 in PCB Area  
To illustrate, the TPS78625 in a SOT223 package  
was chosen. For this example, the average input  
voltage is 3.3 V, the output voltage is 2.5 V, the  
2
0.5 in PCB Area  
average output current is  
1
A, the ambient  
temperature 55°C, no air flow is present, and the  
operating environment is the same as documented  
below. Neglecting the quiescent current, the  
maximum average power is calculated as shown in  
Equation 10:  
0
25  
50  
75  
100  
125  
150  
T
A
− Ambient Temperature (°C)  
(
)
P max + 3.3 * 2.5 V   1 A + 800 mW  
D
(10)  
Substituting TJmax for TJ into Equation 6 gives  
Equation 11:  
Figure 31. SOT223 Maximum Power Dissipation  
vs Ambient Temperature  
R
max + (125 * 55)°Cń800 mW + 87.5°CńW  
qJA  
(11)  
From Figure 30, RθJA vs PCB Copper Area, the  
ground plane needs to be 0.55 in2 for the part to  
dissipate 800 mW. The operating environment used  
to construct Figure 30 consisted of a board with 1 oz.  
copper planes. The package is soldered to a 1 oz.  
copper pad on the top of the board. The pad is tied  
through thermal vias to the 1 oz. ground plane.  
12  
Submit Documentation Feedback  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Apr-2008  
PACKAGING INFORMATION  
Orderable Device  
TPS78601DCQ  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-223  
DCQ  
6
6
6
6
5
5
5
5
5
6
6
6
6
5
5
5
5
5
5
6
6
6
6
5
5
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS78601DCQG4  
TPS78601DCQR  
TPS78601DCQRG4  
TPS78601KTT  
SOT-223  
SOT-223  
SOT-223  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS78601KTTR  
TPS78601KTTRG3  
TPS78601KTTT  
TPS78601KTTTG3  
TPS78618DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS78618DCQG4  
TPS78618DCQR  
TPS78618DCQRG4  
TPS78618KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS78618KTTR  
TPS78618KTTRE3  
TPS78618KTTRG3  
TPS78618KTTT  
TPS78618KTTTG3  
TPS78625DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS78625DCQG4  
TPS78625DCQR  
TPS78625DCQRG4  
TPS78625KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
Call TI  
TPS78625KTTR  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Apr-2008  
Orderable Device  
TPS78625KTTRG3  
TPS78625KTTT  
TPS78625KTTTG3  
TPS78628DCQ  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
DDPAK/  
TO-263  
KTT  
5
5
5
6
6
6
6
5
5
5
5
5
6
6
6
6
5
5
5
5
5
6
6
6
6
5
500 Green (RoHS &  
no Sb/Br)  
CU SN  
CU SN  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS78628DCQG4  
TPS78628DCQR  
TPS78628DCQRG4  
TPS78628KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS78628KTTR  
TPS78628KTTRG3  
TPS78628KTTT  
TPS78628KTTTG3  
TPS78630DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS78630DCQG4  
TPS78630DCQR  
TPS78630DCQRG4  
TPS78630KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS78630KTTR  
TPS78630KTTRG3  
TPS78630KTTT  
TPS78630KTTTG3  
TPS78633DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS78633DCQG4  
TPS78633DCQR  
TPS78633DCQRG4  
TPS78633KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
Call TI  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Apr-2008  
Orderable Device  
TPS78633KTTR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
DDPAK/  
TO-263  
KTT  
5
5
5
5
5
500 Green (RoHS &  
no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
TPS78633KTTRE3  
TPS78633KTTRG3  
TPS78633KTTT  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
TPS78633KTTTG3  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
TPS78650DCQR  
TPS78650DCQT  
PREVIEW  
PREVIEW  
SOT-223  
SOT-223  
DCQ  
DCQ  
6
6
2500  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TPS78601DCQR  
TPS78618DCQR  
TPS78625DCQR  
TPS78628DCQR  
TPS78630DCQR  
TPS78633DCQR  
SOT-223 DCQ  
SOT-223 DCQ  
SOT-223 DCQ  
SOT-223 DCQ  
SOT-223 DCQ  
SOT-223 DCQ  
6
6
6
6
6
6
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.88  
1.88  
1.88  
1.88  
1.88  
1.88  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS78601DCQR  
TPS78618DCQR  
TPS78625DCQR  
TPS78628DCQR  
TPS78630DCQR  
TPS78633DCQR  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
DCQ  
DCQ  
DCQ  
DCQ  
DCQ  
DCQ  
6
6
6
6
6
6
2500  
2500  
2500  
2500  
2500  
2500  
358.0  
358.0  
358.0  
358.0  
358.0  
358.0  
335.0  
335.0  
335.0  
335.0  
335.0  
335.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TPS78633KTTT

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78633KTTT

3.3V FIXED POSITIVE LDO REGULATOR, 0.51V DROPOUT, PSSO5, GREEN, PLASTIC, TO-263, D2PAK-5
ROCHESTER

TPS78633KTTTG3

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78650DCQR

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78650DCQT

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS786XX

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS788

具有使能功能的 150mA、10V、低 IQ、低压降稳压器
TI

TPS78825

150-mA LOW-NOISE LDO WITH IN-RUSH CURRENT CONTROL FOR USB APPLICATION
TI

TPS78825DBVR

Analog IC
TI

TPS78825DBVRG4

2.5V FIXED POSITIVE LDO REGULATOR, 0.3V DROPOUT, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
TI

TPS78825DBVT

Analog IC
TI

TPS78833

150-mA LOW-NOISE LDO WITH IN-RUSH CURRENT CONTROL FOR USB APPLICATION
TI