TPS7A1018PDSET [TI]

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125;
TPS7A1018PDSET
型号: TPS7A1018PDSET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

稳压器
文件: 总40页 (文件大小:2644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
TPS7A10 300mA 低输入电压、低输出电压、超低压降稳压器  
1 特性  
3 说明  
1
超低输入电压范围:0.75V 3.3V  
可实现最低功率损耗的超低压降:  
TPS7A10 是一款超小型低静态电流低压降稳压器  
(LDO),它能够实现 300mA 的拉电流并具有出色的交  
流性能(负载和线路瞬态响应)。该器件具有 0.75V  
3.3V 的输入范围以及 0.5V 3.0V 的输出范围,并  
在负载、线路和温度上具有 1.5% 的极高精度。此性能  
非常适合于为更低的现代 MCU 内核电压和模拟传感器  
供电。  
300mA 下为 70mV(最大值)(VOUT  
1.0V)YKA 封装  
>
低静态电流:  
VIN IQ= 1.6µA(典型值)  
VBIAS IQ= 6µA(典型值)  
负载、线路和温度上的精度为 1.5%  
PSRR:频率 1kHz 时为 60dB  
可提供固定输出电压:  
主要电源路径通过 VIN,可连接至高于输出电压的值低  
70mV 的电源。该器件使用一个用于为 LDO 的内部  
电路供电的附加 VBIAS 电源轨,支持极低的输入电压。  
VIN VBIAS 分别消耗 1.6µA 6µA 的极低静态电  
流。低 IQ 和超低压降 特性 有助于提高功耗敏感型应  
用中解决方案的 效率。例如,VIN 可以是高效直流/直  
流降压稳压器的输出,而 VBIAS 引脚可以连接至一个可  
再充电电池。  
0.5V 3.0V(阶跃 为 50mV)  
BIAS 范围:1.7V 5.5V  
V
封装:  
0.74mm × 1.09mm WCSP-5  
1.50mm × 1.50mm WSON-6  
内置软启动功能,具有单调 VOUT 上升  
TPS7A10 配备了一个有源下拉电路,用于在处于禁用  
状态时对输出进行快速放电,并提供已知的启动状态。  
有源输出放电  
2 应用  
TPS7A10 可采用超小型 5 引脚 DSBGA (YKA) 封装,  
从而使其非常适合空间受限的 应用。该器件还可采用  
6 引脚 WSON (DSE) 封装。  
智能手表、健身追踪器  
无线耳机和耳塞  
摄像头模块  
器件信息(1)  
智能手机和平板电脑  
便携式医疗设备  
器件型号  
封装  
WSON (6)  
封装尺寸(标称值)  
1.50mm × 1.50mm  
0.74mm ×  
1.09mm0.35mm  
间距)  
TPS7A10  
DSBGA (5)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
压降与 IOUT 和温度间的关系(YKA 封装)  
典型应用电路  
VBATTERY  
80  
TJ  
CBIAS  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
60  
40  
20  
0
BIAS  
VOUT  
IN  
OUT  
Standalone  
IN  
OUT  
CIN  
COUT  
TPS7A10  
DC/DC Converter  
or PMU  
EN  
GND  
GND  
VEN  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
D013  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS314  
 
 
 
 
 
 
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 17  
8
9
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application .................................................. 22  
Power Supply Recommendations...................... 24  
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Examples................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 器件支持 ............................................................... 25  
11.2 文档支持................................................................ 25  
11.3 接收文档更新通知 ................................................. 25  
11.4 社区资源................................................................ 25  
11.5 ....................................................................... 25  
11.6 静电放电警告......................................................... 25  
11.7 术语表 ................................................................... 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (June 2018) to Revision B  
Page  
已添加 YKA 封装 添加至以下章节的可实现最低功率损耗的超低压降 项目的子项目: ......................................................... 1  
已添加 在 部分中添加了最后一个句子说明 部分的关断相关文字 ........................................................................................... 1  
已更改 将 WSON (DSE) 封装从预告信息更改为生产数据(正在供货)” ........................................................................... 1  
已添加 YKA 封装 添加至压降与 IOUT 和温度间的关系(YKA 封装) 一图的标题中 ............................................................... 1  
已添加 YKA Package to captions of Output Accuracy Over Temperature, YKA Package and Output Accuracy Over  
Temperature, YKA Package figures....................................................................................................................................... 7  
已添加 Output Accuracy Over Temperature, DSE Package and Output Accuracy Over Temperature, DSE Package  
figures..................................................................................................................................................................................... 7  
已添加 YKA Package to caption of Dropout vs IIOUT and Temperature, YKA Package figure ............................................... 7  
已添加 Dropout vs IIOUT and Temperature, DSE Package figure .......................................................................................... 8  
Changes from Original (March 2018) to Revision A  
Page  
已更改 从预告信息更改为生产数据(正在供货)” .............................................................................................................. 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
DSE Package  
6-Pin WSON  
Top View  
YKA Package  
5-Pin DSBGA  
Top View  
OUT  
1
2
3
6
5
IN  
IN  
GND  
BIAS  
A1  
A3  
OUT  
GND  
BIAS  
B2  
EN  
4
C1  
C3  
EN  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DSE  
YKA  
Input pin. For best transient response and to minimize input impedance, use the  
recommended or larger value ceramic capacitor from IN to ground. as listed in the  
Recommended Operation Conditions. Place the input capacitor as close as possible to input  
of the device.  
IN  
6
A1  
I
Regulated output pin. A capacitor is required from OUT to ground for stability. For best  
transient response, use larger than the minimum recommended value ceramic capacitor.  
Follow the recommended capacitor value as listed in the Recommended Operation  
Conditions. Place the output capacitor as close as possible to output of the device.  
OUT  
GND  
BIAS  
1
5
4
A3  
B2  
C1  
O
I
Ground pin. This pin must be connected to ground.  
BIAS pin. This pin enables the use of low-input voltage, low-output voltage conditions, (LILO).  
For best response, use the recommended or larger value ceramic capacitor from BIAS to  
ground as listed in the Recommended Operation Conditions. Place the bias capacitor as  
close as possible to input of the device.  
Enable pin. Driving this pin to logic high enables the device. Driving this pin to logic low  
disables the device. If enable functionality is not required, this pin must be connected to IN or  
BIAS; however, connecting EN to IN is only acceptable if the VIN voltage is greater than 0.9 V.  
EN  
3
C3  
I
Copyright © 2018, Texas Instruments Incorporated  
3
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range unless otherwise noted.(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX UNIT  
Supply, VIN  
3.6  
Enable, VEN  
Voltage  
6.0  
V
Bias, VBIAS  
6.0  
VIN + 0.3(2)  
Output, VOUT  
Current  
Maximum output current  
Internally limited  
A
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
°C  
°C  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The absolute maximum rating is 3.6 or (VIN + 0.3) , whichever is less.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted).  
MIN  
0.75  
1.7  
0.5  
0
NOM  
MAX  
3.3  
UNIT  
V
VIN  
Input voltage  
VBIAS  
VOUT  
IOUT  
CIN  
Bias voltage  
5.5  
V
Output voltage  
3.0  
V
Peak output current  
Input capacitor  
300  
mA  
µF  
µF  
µF  
2.2  
CBIAS  
COUT  
TJ  
Bias capacitor  
0.1  
(1)  
Output capacitor  
Operating junction temperature  
2.2  
22  
–40  
125  
(1) Maximum ESR must be lower than 250 mΩ  
6.4 Thermal Information  
TPS7A10  
YKA (WSCP)  
THERMAL METRIC(1)  
DSE (WSON)  
6 PINS  
188.8  
82.9  
UNIT  
5 PINS  
169.4  
1.1  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
101.0  
6.6  
55.4  
1.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
100.4  
N/A  
55.6  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics .  
4
Copyright © 2018, Texas Instruments Incorporated  
 
 
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
6.5 Electrical Characteristics  
over TJ = –40°C to +125°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = 1.0 V, CIN = 2.2 μF, COUT  
2.2 μF, and CBIAS = 0.1 μF ( unless otherwise noted); all typical values are at TJ = 25°C .  
=
PARAMETER  
Nominal Accuracy  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TJ = 25°C  
–0.5  
0.5  
–20°C TJ 85, DSE package  
VOUT(NOM) + 0.5 V VIN 3.3 V,  
VOUT(NOM) + 1.4 V VBIAS 5.5 V,  
1 mA IOUT 300 mA  
–1.25  
–1.25  
1.25  
–40°C TJ 85, YKA package  
VOUT(NOM) + 0.5 V VIN 3.3 V,  
VOUT(NOM) + 1.4 V VBIAS 5.5 V,  
1 mA IOUT 300 mA  
%
Accuracy over  
temperature  
1.25  
1.5  
–40°C TJ 125, DSE and YKA  
package  
VOUT(NOM) + 0.5 V VIN 3.3 V,  
VOUT(NOM) + 1.4 V VBIAS 5.5 V,  
1 mA IOUT 300 mA  
–1.5  
ΔVOUT / ΔVIN  
ΔVOUT / ΔVBIAS  
ΔVOUT / ΔIOUT  
VIN line regulation  
VBIAS line regulation  
Load regulation  
VOUT(NOM) + 0.5 V VIN 3.3 V  
VOUT(NOM) + 1.4 V VBIAS 5.5 V  
0.1 mA IOUT 300 mA  
TJ = 25°C, IOUT = 0 mA  
–40°C < TJ < 85°C, IOUT = 0 mA  
IOUT = 0 mA  
0.001  
0.03  
0.2  
%/V  
%/V  
%/A  
3
6
8
11  
14  
60  
2.1  
2.3  
2.6  
9
IQ(BIAS)  
Bias pin current  
µA  
µA  
IOUT = 300 mA  
TJ = 25°C, IOUT = 0 mA  
–40°C < TJ < 85°C, IOUT = 0 mA  
IOUT = 0 mA  
1.6  
IQ(IN)  
Input pin current(1)  
IOUT = 300 mA  
–40°C < TJ < 85°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN 0.4 V  
400  
1200  
1
ISHDN(BIAS)  
VBIAS shutdown current  
VIN shutdown current  
nA  
µA  
–40°C < TJ < 125°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN 0.4 V  
–40°C < TJ < 85°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN 0.4 V  
ISHDN(IN)  
–40°C < TJ < 125°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN 0.4 V  
3
VOUT = 0.9 × VOUT(NOM), YKA package  
VOUT = 0.9 × VOUT(NOM), DSE package  
VOUT = 0 V  
325  
350  
450  
450  
150  
600  
625  
mA  
mA  
mA  
ICL  
ISC  
Output current limit  
Short circuit current limit  
VIN = VOUT(NOM) – 0.1 V, IOUT = 300 mA,  
YKA package  
40  
55  
70  
90  
VDO(IN)  
VIN dropout voltage(2)  
VBIAS dropout voltage(2)  
mV  
V
VIN = VOUT(NOM) – 0.1 V, IOUT = 300 mA,  
DSE package  
IOUT = 300 mA  
IOUT = 150 mA  
0.85  
0.75  
1.05  
0.95  
VDO(BIAS)  
(1) This current flowing from VIN to GND.  
(2) Dropout is not measured for VOUT < 1.0 V  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over TJ = –40°C to +125°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = 1.0 V, CIN = 2.2 μF, COUT  
2.2 μF, and CBIAS = 0.1 μF ( unless otherwise noted); all typical values are at TJ = 25°C .  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
f = 1 kHz,  
VOUT = 1.1 V, IOUT = 50 mA  
60  
f = 100 kHz,  
VOUT = 1.1 V, IOUT = 50 mA  
36  
32  
VIN power-supply rejection  
ratio  
VIN PSRR  
dB  
f = 1 MHz,  
VOUT = 1.1 V, IOUT = 50 mA  
f = 1.5 MHz,  
VOUT = 1.1 V, IOUT = 50 mA  
35  
f = 1 kHz,  
VOUT = 1.1 V, IOUT = 300 mA  
60  
f = 100 kHz,  
VOUT = 1.1 V, IOUT = 300 mA  
VBIAS power-supply  
rejection ratio  
VBIAS PSRR  
40  
dB  
f = 1 MHz,  
VOUT = 1.1 V, IOUT = 300 mA  
35  
Bandwidth = 10 Hz to 100 kHz,  
VOUT = 1.0 V, IOUT = 50 mA  
Vn  
Output voltage noise  
93.9  
µVRMS  
V
VBIAS rising  
VBIAS falling  
VBIAS hysteresis  
VIN rising  
1.46  
1.35  
1.54  
1.44  
80  
1.63  
1.55  
VUVLO(BIAS)  
VUVLO_HYST(BIAS)  
VUVLO(IN)  
Bias supply UVLO  
Bias supply hysteresis  
Input supply UVLO  
mV  
mV  
mV  
mV  
µs  
V
645  
565  
675  
600  
75  
710  
640  
VIN falling  
VUVLO_HYST(IN)  
tSTR  
Input supply hysteresis  
Start-up time(3)  
VIN hysteresis  
525  
1200  
0.4  
VHI(EN)  
EN pin logic high voltage  
EN pin logic low voltage  
EN pin current  
0.9  
VLO(EN)  
IEN  
V
EN = 5.5 V  
10  
120  
160  
145  
nA  
Ω
RPULLDOWN  
Pulldown resistor  
VBIAS = 3.3 V, P version only  
Shutdown, temperature rising  
Reset, temperature falling  
Thermal shutdown  
temperature  
TSD  
°C  
(3) Startup time = time from EN assertion to 0.95 × VOUT(NOM).  
6
版权 © 2018, Texas Instruments Incorporated  
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
6.6 Typical Characteristics  
at TJ = –40 °C to +125 °C, VIN = VOUT(NOM)+ 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = 2.2 µF, COUT  
2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted); typical values are at TJ = 25°C  
=
0.25  
0.2  
0.25  
0.2  
TJ  
TJ  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
Input Voltage (V)  
3
3.2 3.4  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
VOUT = 1.0 V  
VOUT = 1.0 V  
1. Output Accuracy Over Temperature, YKA Package  
0.5  
2. Output Accuracy Over Temperature, YKA Package  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
TJ  
25 èC  
85 èC  
TJ  
25 èC  
85 èC  
-40 èC  
0 èC  
105 èC  
125 èC  
-40 èC  
0 èC  
105 èC  
125 èC  
1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
Input Voltage (V)  
3
3.2 3.4  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
VOUT = 1.0 V  
VOUT = 1.0 V  
3. Output Accuracy Over Temperature, DSE Package  
0.25  
4. Output Accuracy Over Temperature, DSE Package  
80  
TJ  
TJ  
0.2  
0.15  
0.1  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
60  
40  
20  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
Bias Voltage (V)  
D013  
VOUT = 1.0 V  
VOUT = 1.0 V  
5. Output Accuracy Over Temperature and VBIAS  
6. Dropout vs IIOUT and Temperature, YKA Package  
版权 © 2018, Texas Instruments Incorporated  
7
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40 °C to +125 °C, VIN = VOUT(NOM)+ 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = 2.2 µF, COUT  
2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted); typical values are at TJ = 25°C  
=
100  
80  
60  
40  
20  
0
1100  
1000  
900  
800  
700  
600  
500  
400  
TJ  
-40 èC  
85 èC  
105 èC  
125 èC  
0 èC  
25 èC  
TJ  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
D013  
VOUT = 1.0 V  
8. Dropout vs VBIAS and Temperature  
VOUT = 1.0 V  
7. Dropout vs IIOUT and Temperature, DSE Package  
200  
100  
0
700  
200  
700  
600  
500  
400  
300  
200  
100  
0
VOUT  
IOUT  
VOUT  
IOUT  
600  
500  
400  
300  
200  
100  
0
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-100  
0
100 200 300 400 500 600 700 800 900 1000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (µs)  
Time (µs)  
D028  
VOUT = 1.1 V, IOUT = 0 mA to 150 mA  
VOUT = 1.1 V, IOUT = 1 mA to 150 mA  
9. IOUT Transient  
10. IOUT Transient  
200  
100  
0
700  
200  
100  
0
700  
VOUT  
IOUT  
VOUT  
IOUT  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-100  
0
100 200 300 400 500 600 700 800 900 1000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (µs)  
Time (µs)  
D028  
VOUT = 1.1 V, IOUT = 0 mA to 300 mA  
VOUT = 1.1 V, IOUT = 1 mA to 300 mA  
11. IOUT Transient  
12. IOUT Transient  
8
版权 © 2018, Texas Instruments Incorporated  
 
 
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TJ = –40 °C to +125 °C, VIN = VOUT(NOM)+ 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = 2.2 µF, COUT  
2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted); typical values are at TJ = 25°C  
=
6
5.5  
5
100  
6
5.5  
5
100  
50  
50  
0
0
4.5  
4
-50  
4.5  
4
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
VIN  
VOUT  
VIN  
VOUT  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
VOUT = 1.1 V, IOUT = 300 mA  
VOUT = 1.1 V, IOUT = 1 mA  
13. VIN Transient  
14. VIN Transient  
1.2  
1
12  
10  
8
TJ  
0.8  
0.6  
0.4  
0.2  
0
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
6
4
TJ  
2
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
0
100  
150  
200  
250  
300  
350  
400  
450  
500  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (mA)  
Bias Voltage (V)  
D012  
D007  
IOUT = 0 mA  
15. Foldback Current Limit Over Temperature  
16. IQ (VBIAS) Over Temperature  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
TJ  
TJ  
-40 °C  
0 °C  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
85 °C  
105 °C  
125 °C  
25 °C  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
3.25 3.5  
Bias Voltage (V)  
Input Voltage (V)  
D007  
D008  
IOUT = 300 mA  
17. IQ (VBIAS) Over Temperature  
IOUT = 0 mA  
18. IQ (VIN) Over Temperature  
版权 © 2018, Texas Instruments Incorporated  
9
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40 °C to +125 °C, VIN = VOUT(NOM)+ 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = 2.2 µF, COUT  
2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted); typical values are at TJ = 25°C  
=
10  
3.5  
TJ  
-40 °C  
0 °C  
25 °C  
85 °C  
105 °C  
125 °C  
3
8
2.5  
2
6
1.5  
1
4
0.5  
0
2
TJ  
25 °C  
85 °C  
-40 °C  
0 °C  
105 °C  
0
-0.5  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
3.25 3.5  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
Input Voltage (V)  
Input Voltage (V)  
D009  
D011  
IOUT = 300 mA  
VOUT = 1.0 V, VEN < 0.4 V  
19. IQ (VIN) Over Temperature  
20. ISHDN (VIN) Over Temperature  
3
2.5  
2
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.5  
1
1.25  
1
0.75  
0.5  
0.5  
0
0.25  
0
VIN  
VOUT  
VBIAS  
VEN  
VIN  
VOUT  
VBIAS  
VEN  
-0.5  
-0.25  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
VOUT = 1.1 V  
VOUT = 1.1 V  
21. Startup With VEN = VIN  
22. Startup With Separated VEN  
2
1.5  
1
2
1.5  
1
VIN  
VOUT  
VEN  
VBIAS  
VIN  
VOUT  
VEN  
VBIAS  
0.5  
0
0.5  
0
-0.5  
-0.5  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
VOUT = 0.5 V  
VOUT = 0.5 V  
23. Startup With VEN and VBIAS Powering Up  
24. Startup With VBIAS Powering Up After VIN and VEN  
Simultaneously  
10  
版权 © 2018, Texas Instruments Incorporated  
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TJ = –40 °C to +125 °C, VIN = VOUT(NOM)+ 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = 2.2 µF, COUT  
2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted); typical values are at TJ = 25°C  
=
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
I OUT  
1 mA  
10 mA  
50 mA  
I OUT  
1 mA  
10 mA  
50 mA  
100 mA  
200 mA  
300 mA  
100 mA  
200 mA  
300 mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CIN = 0 µF, VOUT = 1.1 V, VBIAS = 2.5 V, CBIAS = 0.1 µF  
CIN = 0 µF, VOUT = 0.5 V, VBIAS = 1.9 V, CBIAS = 0.1 µF  
25. PSRR vs Frequency and IOUT  
26. PSRR vs Frequency and IOUT  
80  
80  
2.2 mF Cout  
22 mF Cout  
2.2mF Cout  
22mF Cout  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CIN = 0 µF, VOUT = 1.1 V, VBIAS = 2.5 V, CBIAS = 0.1 µF  
CIN = 0 µF, VOUT = 0.5 V, VBIAS = 1.9 V, CBIAS = 0.1 µF  
27. PSRR vs Frequency and COUT  
28. PSRR vs Frequency and COUT  
80  
80  
VDO  
200mV  
400mV  
600mV  
800mV  
1.0V  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
VIN-VOUT  
200mV  
400mV  
600mV  
800mV  
1.0V  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CIN = 0 µF, VOUT = 1.1 V, IOUT = 300 mA, VBIAS = 2.5 V,  
CBIAS = 0.1 µF  
CIN = 0 µF, VOUT = 0.5 V, IOUT = 300 mA, VBIAS = 1.9 V,  
CBIAS = 0.1 µF  
29. PSRR vs Frequency and VDO  
30. PSRR vs Frequency and VDO  
版权 © 2018, Texas Instruments Incorporated  
11  
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40 °C to +125 °C, VIN = VOUT(NOM)+ 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = 2.2 µF, COUT  
2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted); typical values are at TJ = 25°C  
=
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
VOUT = 0.5 V, 42.3 µVRMS  
VOUT = 1.0 V, 87.6 µVRMS  
VOUT = 3.0 V, 201.1 µVRMS  
10  
1
0.1  
VBIAS  
2.5V  
3.0V  
3.5V  
4.0V  
4.5V  
5.0V  
5.5V  
0.01  
0.005  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
D023  
VOUT = 1.1 V, IOUT = 300 mA, CBIAS = 0 µF  
IOUT = 300 mA  
31. VBIAS PSRR vs Frequency and VBIAS  
32. Output Noise vs Frequency and VOUT  
20  
20  
10  
IOUT, (mVRMS  
50 mA, (93.9)  
100 mA, (90.8)  
150 mA, (89.6)  
)
COUT, (mVRMS  
)
10  
200 mA, (88.8)  
250 mA, (87.8)  
300 mA, (87.6)  
2.2 µF, (87.6)  
4.7 µF, (85.1)  
10 µF, (89.4)  
1
1
0.1  
0.1  
0.01  
0.01  
0.005  
0.005  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
D025  
VOUT = 1.0 V, VBIAS = 2.5 V  
33. Output Noise vs Frequency and IOUT  
VEN(LO)  
VOUT = 1.0 V, IOUT = 300 mA  
34. Output Noise vs Frequency and COUT  
0.605  
0.595  
0.585  
0.575  
0.565  
0.555  
0.545  
0.535  
0.525  
0.515  
0.69  
0.68  
0.67  
0.66  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
VEN(HI)  
VIN UVLO (Falling)  
VIN UVLO (Rising)  
0.59  
0.58  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (°C)  
D014  
D015  
35. Enable High and Low Thresholds vs Temperature  
36. VUVLO(IN) Rising and Falling Thresholds vs  
Temperature  
12  
版权 © 2018, Texas Instruments Incorporated  
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TJ = –40 °C to +125 °C, VIN = VOUT(NOM)+ 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = 2.2 µF, COUT  
=
2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted); typical values are at TJ = 25°C  
1.65  
1.6  
1.55  
1.5  
1.45  
1.4  
1.35  
VBIAS UVLO (Falling)  
VBIAS UVLO (Rising)  
1.3  
-40  
-20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
D016  
37. VUVLO(BIAS) Rising and Falling Thresholds vs Temperature  
版权 © 2018, Texas Instruments Incorporated  
13  
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7A10 is a low input, ultra-low dropout, and low quiescent current linear regulator that is optimized for  
excellent transient performance. These characteristics make the device ideal for most battery-powered  
applications. The implementation of the BIAS pin on the TPS7A10 vastly improves efficiency of low-voltage  
output applications by allowing the use of a preregulated, low-voltage input supply that offers sub-band-gap  
output voltages. The high power-supply rejection ratio (PSRR), low noise, low ground pin current, and ultra-small  
packaging make this device suitable for ultra-portable applications. This device also offers high output voltage  
accuracy of 1.5% over the recommended junction temperature range.  
7.2 Functional Block Diagram  
Current  
Limit  
IN  
BIAS  
EN  
OUT  
Thermal  
Shutdown  
+
Global  
UVLO  
Active Discharge  
P-Version Only  
œ
Bandgap  
GND  
Internal  
Controller  
14  
版权 © 2018, Texas Instruments Incorporated  
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
7.3 Feature Description  
7.3.1 Excellent Transient Response  
The TPS7A10 responds quickly to a transient on the input supply (line transient) or the output current (load  
transient) that results from the device high input impedance and low output impedance across frequency. This  
same capability also means that the device has a high power-supply rejection ratio (PSRR) and low internal  
noise floor (en). The low-dropout regulator (LDO) approximates an ideal power supply in ac (small-signal) and dc  
(large-signal) conditions.  
The choice of external component values optimizes the small- and large-signal response; see the Input and  
Output Capacitor Requirements section for proper selection.  
7.3.2 Global Undervoltage Lockout (UVLO)  
The TPS7A10 uses two undervoltage lockout (UVLO) circuits: one on the BIAS pin and one on the IN pin to  
prevent the device from turning on before both VBIAS and VIN rise above their lockout voltages. The two UVLO  
signals are connected internally through an AND gate, as shown in 38. This internal connection allows the  
device to be turned off when either rail is below its lockout voltage.  
UVLO(IN)  
Global UVLO  
UVLO(BIAS)  
38. Global UVLO circuit  
7.3.3 Active Discharge  
The active discharge option (P version only) have internal pulldown MOSFET that connects a 120-Ω resistor to  
ground when the device is disabled in order to actively discharge the output voltage. The active discharge circuit  
is activated by driving the enable pin to logic low to disable the device, or when the device is in thermal  
shutdown.  
The discharge time after disabling the device depends on the output capacitance (COUT) and the load resistance  
(RL) in parallel with the 120-Ω pulldown resistor. 公式 1 calculates the discharge time constant:  
120 · RL  
t =  
· COUT  
120 + RL  
(1)  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply collapses because reverse current can possibly flow from the output to the input. This reverse current flow  
can cause damage to the device. Limit reverse current to no more than 5% of the device-rated current.  
7.3.4 Enable  
The enable pin for this device is active high. The output of the device is turned on when the enable pin voltage is  
greater than the EN pin logic high voltage, and the output of the device is turned off when the enable pin voltage  
is less than the EN pin voltage logic low .  
The EN pin can be tied to the IN pin, the BIAS pin, or can be driven separately to enable and disable the device;  
however, connecting the EN pin to the IN pin is only acceptable if the VIN voltage is greater than 0.9 V.  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5 Sequencing Requirement  
The VIN, VBIAS, and VEN voltages can be sequenced in any order without causing damage to the device. The start  
up is always monotonic regardless of the sequencing order or the ramp rates of IN, BIAS, and EN pins. For  
optimum device performance, have VBIAS present before enabling the device in any sequence order between VIN  
and VEN because the device internal circuitry is powered off the VBIAS, refer to Recommended Operating  
Conditions for proper voltage ranges of VIN, VBIAS, and VEN  
.
7.3.6 Internal Foldback Current Limit  
The internal foldback current limit circuit is used to protect the LDO against high-load current faults or shorting  
events. The foldback mechanism lowers the current limit as the output voltage decreases, and limits power  
dissipation during short-circuit events while still allowing for the device to operate at the rated output current; see  
15.  
For example, when VOUT is 90% of VOUT(nom), the current limit is ICL (typical); however, if VOUT is forced to 0 V, the  
current limit is ISC (typical).  
In many LDOs, the foldback current limit can prevent start up into a constant-current load or a negatively-biased  
output. A brick-wall current limit is when there is an abrupt current stop after the current limit is reached. The  
foldback mechanism for this device goes into a brick-wall current limit when VOUT > 500 mV (typical), thus limiting  
current to ICL (typical). When VOUT is approximately 0 V, current is limited to ISC (typical) in order to provide  
normal start up into a variety of loads.  
Thermal shutdown can activate during a current-limit event because of the high power dissipation typically found  
in these conditions. To provide proper operation of the current limit, minimize the inductances to the input and  
load. Continuous operation in current limit is not recommended.  
7.3.7 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the thermal junction  
temperature (TJ) of the main pass-FET rises to the thermal shutdown temperature (TSD ) for shutdown listed in  
the Electrical Characteristics. Thermal shutdown hysteresis makes sure that the LDO resets again (turns on)  
when the temperature falls to the TSD for reset.  
The thermal time constant of the semiconductor die is fairly short, and thus the device may cycle on and off  
when thermal shutdown is reached until the power dissipation is reduced.  
For reliable operation, limit the junction temperature to a maximum of 125°C. Operation above 125°C causes the  
device to exceed the operational specifications. Although the internal protection circuitry of the device is  
designed to protect against thermal overload conditions, this circuitry is not intended to replace proper heat  
sinking. Continuously running the device into thermal shutdown or above a junction temperature of 125°C  
reduces long-term reliability.  
A fast start up when TJ > the TSD for reset causes the device thermal shutdown to assert at TSD for reset, and  
prevents the device from turning on until the junction temperature is reduced below TSD for reset.  
16  
版权 © 2018, Texas Instruments Incorporated  
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
7.4 Device Functional Modes  
The device has the following modes of operation:  
Normal operation: The device regulates to the nominal output voltage.  
Dropout operation: The pass element operates as a resistor and the output voltage is set as VIN – VDO  
Disabled: The output of the device is disabled and the discharge circuit is activated.  
.
1 shows the conditions that lead to the different modes of operation.  
1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VBIAS  
VEN  
IOUT  
TJ  
Normal mode  
Dropout mode  
VIN > VOUT(nom) + VDO and VIN > VIN(min) VBIAS > VOUT + 1.05 V  
VEN > VHI(EN)  
VEN > VHI(EN)  
IOUT < ICL  
IOUT < ICL  
TJ < TSD for shutdown  
TJ < TSD for shutdown  
VIN(min) < VIN < VOUT(nom) + VDO  
VIN < VUVLO(IN)  
VBIAS < VOUT + 1.05 V  
VBIAS < VBIAS(UVLO)  
Disabled mode  
(any true condition  
disables the device)  
VEN < VLO(EN)  
TJ > TSD for shutdown  
7.4.1 Normal Mode  
The device regulates the output to the nominal output voltage when all normal mode conditions in 1 are met.  
7.4.2 Dropout Mode  
The device is not in regulation, and the output voltage tracks the input voltage minus the voltage drop across the  
pass element of the device. In this mode, PSRR and the noise performance of the device are significantly  
degraded.  
7.4.3 Disable Mode  
In this mode, the pass element is turned off, the internal circuits are shut down, and the output voltage is actively  
discharged to ground by an internal resistor.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Successfully implementing an LDO in an application depends on the application requirements. This section  
discusses key device features and the best implementation to achieve a reliable design.  
8.1.1 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input,  
output, and BIAS pins. Multilayer ceramic capacitors are the industry standard for these types of applications, but  
must be used with good judgment. Ceramic capacitors that use X7R-, X5R-, and COG-rated dielectric materials  
provide relatively good capacitive stability across temperature. Avoid Y5V-rated capacitors because of large  
variations in capacitance.  
Regardless of the ceramic capacitor type selected, ceramic capacitance varies with operating voltage and  
temperature. As a rule of thumb, assume that effective capacitance decreases by as much as 50%. The input,  
output, and bias capacitors recommended in the Recommended Operating Conditions table account for an  
effective capacitance of approximately 50% of the nominal value.  
8.1.2 Input and Output Capacitor Requirements  
A minimum 2.2-µF ceramic capacitor at the input is required for stability, A minimum 2.2-µF ceramic capacitor  
with a maximum ESR value of less than 250 mΩ at the output is also required for stability. The input capacitor  
counteracts reactive input sources and improves transient response, input ripple, and PSRR. A higher-value  
input capacitor may be necessary if large, fast rise-time load or line transients are anticipated, or if the device is  
located several inches from the input power source. Dynamic performance of the device is improved with the use  
of an output capacitor larger than the minimum value specified in the Recommended Operating Conditions table.  
Although a bias capacitor is not required, connect a 0.1-µF ceramic capacitor from BIAS to GND for best analog  
design practice. This capacitor counteracts reactive bias sources if the source impedance is not sufficiently low.  
Place the input, output, and bias capacitors as close as possible to the device to minimize traces parasitics.  
18  
版权 © 2018, Texas Instruments Incorporated  
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
Application Information (接下页)  
8.1.3 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current while output  
voltage regulation is maintained. See 9, 10, 11, and 12 for typical load transient response. There are  
two key transitions during a load transient response: the transition from a light to a heavy load, and the transition  
from a heavy to a light load. The regions in 39 are broken down as described in this section. Regions A, E,  
and H are where the output voltage is in steady-state operation.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
39. Load Transient Waveform  
During transitions from a light load to a heavy load:  
The initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B)  
Recovery from the dip results from the LDO increasing the sourcing current, and leads to output voltage  
regulation (region C)  
During transitions from a heavy load to a light load:  
The initial voltage rise results from the LDO sourcing a large current, and leads to the output capacitor charge  
to increase (region F)  
Recovery from the rise results from the LDO decreasing the sourcing current in combination with the load  
discharging the output capacitor (region G)  
A larger output capacitance reduces the peaks during a load transient, but slows down the response time of the  
device. A larger dc load also reduces the peaks because the amplitude of the transition is lowered, and a higher  
current discharge path is provided for the output capacitor.  
8.1.4 Dropout Voltage  
Generally, dropout voltage refers to the minimum voltage difference between the input and output voltage (VDO  
=
VIN – VOUT ) that is required for regulation. When VIN – VOUT drops below the required VDO for the given load  
current, the device functions as a resistive switch and does not regulate output voltage. Dropout voltage is  
proportional to the output current because the device is operating as a resistive switch.  
Dropout voltage is affected by the drive strength of the pass-element gate. This drive strength is nonlinear with  
respect to VIN on this device.  
8.1.5 Behavior During Transition From Dropout Into Regulation  
Some applications may have transients that place this device into dropout, especially when this device can be  
powered from a battery with relatively high ESR. The load transient saturates the output stage of the error  
amplifier when the pass element is driven fully on, making the pass element function like a resistor from VIN to  
VOUT. The error amplifier response time to this load transient is limited because the error amplifier must first  
recover from saturation and then place the pass element back into active mode. During this time, VOUT  
overshoots because the pass element is functioning as a resistor from VIN to VOUT  
.
When VIN ramps up slowly for start-up, the slow ramp-up voltage may place the device in dropout. As with many  
other LDOs, the output can overshoot on recovery from this condition. However, this condition is easily avoided  
through the use of the enable signal.  
If operating under these conditions, apply a higher dc load or increase the output capacitance to reduce the  
overshoot. These solutions provide a path to dissipate the excess charge.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Application Information (接下页)  
8.1.6 Undervoltage Lockout Circuit Operation  
The VIN UVLO circuit makes sure that the device remains disabled before the input supply reaches the minimum  
operational voltage range. The VIN UVLO circuit also makes sure that the device shuts down when the input  
supply collapses. Similarly, the VBIAS UVLO circuit makes sure that the device stays disabled before the bias  
supply reaches the minimum operational voltage range. The VBIAS UVLO circuit also makes sure that the device  
shuts down when the bias supply collapses.  
40 depicts the UVLO circuit response to various input or bias voltage events. This figure can be separated into  
the following parts:  
Region A: The device does not start until the input or bias voltage reaches the UVLO rising threshold.  
Region B: Normal operation, regulating device  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold – UVLO hysteresis). The  
output may fall out of regulation, but the device is still enabled.  
Region D: Normal operation, regulating device  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases, and the  
output falls as a result of the load and active discharge circuit. The device is re-enabled when the UVLO  
rising threshold is reached, and a normal start-up follows.  
Region F: Normal operation followed by the input or bias falling to the UVLO falling threshold  
Region G: The device is disabled as the input or bias voltages fall below the UVLO falling threshold to 0 V.  
The output falls as a result of the load and active discharge circuit.  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN / VBIAS  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
40. Typical VIN or VBIAS UVLO Circuit Operation  
8.1.7 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
公式 2 calculates the maximum allowable power dissipation for the device in a given package:  
PD-MAX = [(TJ – TA) / RθJA  
]
(2)  
公式 3 represents the actual power being dissipated in the device:  
PD = (IGND+ IOUT) × (VIN – VOUT  
)
(3)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low  
dropout of the TPS7A10 allows for maximum efficiency across a wide range of output voltages.  
The main heat conduction path for the device depends on the ambient temperature and the thermal resistance  
across the various interfaces between the die junction and ambient air.  
20  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
Application Information (接下页)  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to 公式 4, maximum power dissipation and junction temperature are most often related by the junction-  
to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the  
ambient air (TA). The equation is rearranged in 公式 5 for output current.  
TJ = TA + (RθJA × PD)  
(4)  
(5)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The RθJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB, and  
copper-spreading area, and is only used as a relative measure of package thermal performance.  
8.1.7.1 Estimating Junction Temperature  
The JEDEC standard recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of  
the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with 公式 6 and are given in the Thermal Information table.  
ΨJT : TJ = TT + ΨJT × PD and ΨJB : TJ = TB + ΨJB × PD  
where:  
PD is the power dissipated as explained in 公式 3  
TT is the temperature at the center-top of the device package  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(6)  
8.1.7.2 Recommended Area for Continuous Operation  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator is shown in 41, and can be  
separated into the following regions:  
Dropout voltage limits the minimum differential voltage between the input and the output (VIN – VOUT) at a  
given output current level.  
The rated output currents limits the maximum recommended output current level. Exceeding this rating  
causes the device to fall out of specification.  
The rated junction temperature limits the maximum junction temperature of the device. Exceeding this rating  
causes the device to fall out of specification and reduces long-term reliability.  
公式 5 provides the shape of the slope. The slope is nonlinear because the maximum rated junction  
temperature of the LDO is controlled by the power dissipation across the LDO, thus when VIN – VOUT  
increases, the output current must decrease.  
The rated input voltage range governs both the minimum and maximum of VIN – VOUT.  
Output Current Limited  
by Dropout  
Rated Output  
Current  
Output Current Limited  
by Thermals  
Limited by  
Limited by  
Minimum VIN  
Maximum VIN  
VIN œ VOUT (V)  
41. Region Description of Continuous Operation Regime  
版权 © 2018, Texas Instruments Incorporated  
21  
 
 
 
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8.2 Typical Application  
VBATTERY  
CBIAS  
BIAS  
1.4 V  
1.2 V  
COUT  
IN  
VOUT  
OUT  
Standalone  
DC/DC Converter  
or PMU  
CIN  
TPS7A10  
EN  
GND  
VEN  
42. Supplying a Clean DC Voltage  
8.2.1 Design Requirements  
2 summarizes the design requirements for 42.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
1.4 V  
2.7 V  
1.2 V  
VBIAS  
VOUT  
IOUT  
10-mA typical, 300-mA peak  
65°C  
Maximum ambient temperature  
8.2.2 Detailed Design Procedure  
For this design example, the 1.2-V, fixed-version TPS7A1012 device is selected. Use a 4.7-µF input capacitor to  
minimize transient currents drawn from the DC/DC convertor. Use a 4.7-µF output capacitor for optimized load  
transient response. The dropout voltage (VDO) is kept within the TPS7A10 dropout voltage specification for the  
1.2-V output voltage option inorder to keep the device in regulation under all load and temperature conditions for  
this design. The high-PSRR and low-noise measurements for this design example are given in the Thermal  
Dissipation section.  
8.2.2.1 Input Current  
During normal operation, the input current to the LDO is approximately equal to the output current of the LDO.  
During startup, the input current is higher as a result of the inrush current charging the output capacitor. Use 公式  
7 to calculate the current through the input.  
C
OUT ´ dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t)  
=
+
dt  
where:  
VOUT(t) is the instantaneous output voltage of the turnon ramp  
dVOUT(t) / dt is the slope of the VOUT ramp  
RLOAD is the resistive load impedance  
(7)  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
8.2.2.2 Thermal Dissipation  
The junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total  
power dissipation (PD). Use 公式 8 to calculate the power dissipation. As 公式 9 shows, multiply PD by RθJA and  
add the ambient temperature (TA) to calculate the junction temperature (TJ).  
PD = (IGND+ IOUT) × (VIN – VOUT  
)
(8)  
(9)  
TJ = RθJA × PD + TA  
If the (TJ(MAX)) value does not exceed 125°C, use 公式 10 to calculate the maximum ambient temperature. 公式  
11 calculates the maximum ambient temperature with a value of 99.59°C.  
TA(MAX) = TJ(MAX) – RθJA × PD  
(10)  
(11)  
TA(MAX) = 125°C – 169.4 × (1.4 V – 1.2 V) × (0.3 A) = 114.84°C  
8.2.3 Application Curve  
90  
IOUT  
10 mA  
40 mA  
80 mA  
120 mA  
80  
70  
60  
50  
40  
30  
20  
10  
0
160 mA  
200 mA  
250 mA  
300 mA  
-10  
10  
100  
1k  
10k  
100k  
1M  
10M  
Input Voltage (V)  
D036  
VIN = 1.4 V, VOUT = 1.2 V, VBIAS = 2.7 V,  
CIN = 4.7 µF, COUT = 4.7 µF, CBIAS = 0.1 µF  
43. PSRR vs Frequency and IOUT  
版权 © 2018, Texas Instruments Incorporated  
23  
 
 
 
 
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 0.75 V to 3.3 V, and a bias supply  
voltage range of 1.7 V to 5.5 V. The input and bias supplies must be well regulated and free of spurious noise.  
To make sure that the output voltage is well regulated and dynamic performance is optimum, the input supply  
must be at least VOUT(nom) + 0.5 V and VBIAS = VOUT(nom) + 1.05 V.  
10 Layout  
10.1 Layout Guidelines  
For correct printed circuit board (PCB) layout, follow these guidelines:  
Place input, output, and bias capacitors as close to the device as possible.  
Use copper planes for device connections to optimize thermal performance.  
Place thermal vias around the device to distribute heat.  
10.2 Layout Examples  
OUT  
COUT  
IN  
CIN  
A1  
C1  
A3  
C3  
GND  
B2  
CBIAS  
BIAS  
EN  
44. Recommended Layout for the YKA Package  
OUT  
COUT  
NC  
1
IN  
6
CIN  
2
3
5
4
GND  
CBIAS  
BIAS  
EN  
45. Recommended Layout for the DSE Package  
24  
版权 © 2018, Texas Instruments Incorporated  
TPS7A10  
www.ti.com.cn  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
我们为您提供了评估模块 (EVM),可以借此来对使用 TPS7A10 时的电路性能进行初始评估。可通过德州仪器 (TI)  
网站上的产品文件夹申请获取 TPS7A10EVM,也可以直接从 TI eStore 购买。  
11.1.1.2 Spice 模型  
可以通过 TPS7A10 产品文件夹的工具与软件选项卡获取该器件的 Spice 模型。  
11.1.2 器件命名规则  
3. 器件命名规则(1)(2)  
产品  
VOUT  
xx(x) 为标称输出电压。对于分辨率为 50mV 的输出电压,订货编号中使用两位数字;否则,使用三位数  
字(例如,28 = 2.8V125 = 1.25 V)。  
yyy 为封装标识符。  
TPS7A10xx(x)yyyz  
z 为封装数量。R 表示卷,T 表示带。  
(1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。  
(2) 可提供 0.5V 3.0V 的输出电压(以 50mV 为单位增量)。有关器件的详细信息和供货情况,请联系制造商。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TPS7A10EVM-004 评估模块》用户指南  
德州仪器 (TI)《使用新的热度量指标》应用报告  
德州仪器 (TI)AN-1112 DSBGA 晶圆级芯片级封装》应用报告  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
版权 © 2018, Texas Instruments Incorporated  
25  
TPS7A10  
ZHCSHU2B MARCH 2018REVISED OCTOBER 2018  
www.ti.com.cn  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A1006PDSER  
TPS7A1006PDSET  
TPS7A1006PYKAR  
TPS7A1008PDSER  
TPS7A1008PDSET  
TPS7A1008PYKAR  
TPS7A10105PDSER  
TPS7A10105PDSET  
TPS7A10105PYKAR  
TPS7A1010PDSER  
TPS7A1010PDSET  
TPS7A1010PYKAR  
TPS7A1011PDSER  
TPS7A1011PDSET  
TPS7A1011PYKAR  
TPS7A1012PDSER  
TPS7A1012PDSET  
TPS7A1012PYKAR  
TPS7A1015PDSER  
TPS7A1015PDSET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
EF  
EF  
T
NIPDAUAG  
SNAGCU  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
E2  
E2  
A
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
DZ  
DZ  
C
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
E1  
E1  
B
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
DX  
DX  
D
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
DW  
DW  
E
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
DV  
DV  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A1015PYKAR  
TPS7A1018PDSER  
TPS7A1018PDSET  
TPS7A1018PYKAR  
TPS7A1025PDSER  
TPS7A1025PDSET  
TPS7A1025PYKAR  
TPS7A1028PDSER  
TPS7A1028PDSET  
TPS7A1028PYKAR  
TPS7A1030PDSER  
TPS7A1030PDSET  
TPS7A1030PYKAR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
5
6
6
5
6
6
5
6
6
5
6
6
5
12000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F
NIPDAUAG  
NIPDAUAG  
SNAGCU  
DU  
DU  
G
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
DT  
DT  
H
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
DS  
DS  
I
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
SNAGCU  
DR  
DR  
J
250  
RoHS & Green  
12000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jan-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A1006PDSER  
TPS7A1006PDSET  
TPS7A1006PYKAR  
TPS7A1008PDSER  
TPS7A1008PDSET  
TPS7A1008PYKAR  
TPS7A10105PDSER  
TPS7A10105PDSET  
TPS7A10105PYKAR  
TPS7A1010PDSER  
TPS7A1010PDSET  
TPS7A1010PYKAR  
TPS7A1011PDSER  
TPS7A1011PDSET  
TPS7A1011PYKAR  
TPS7A1012PDSER  
TPS7A1012PDSET  
TPS7A1012PYKAR  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.83  
1.83  
0.9  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jan-2019  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A1015PDSER  
TPS7A1015PDSET  
TPS7A1015PYKAR  
TPS7A1018PDSER  
TPS7A1018PDSET  
TPS7A1018PYKAR  
TPS7A1025PDSER  
TPS7A1025PDSET  
TPS7A1025PYKAR  
TPS7A1028PDSER  
TPS7A1028PDSET  
TPS7A1028PYKAR  
TPS7A1030PDSER  
TPS7A1030PDSET  
TPS7A1030PYKAR  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.83  
1.83  
0.9  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
1.83  
1.83  
1.25  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
0.89  
0.89  
0.48  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
3000  
250  
1.83  
1.83  
0.9  
12000  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A1006PDSER  
TPS7A1006PDSET  
WSON  
WSON  
DSE  
DSE  
6
6
3000  
250  
183.0  
183.0  
183.0  
183.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jan-2019  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A1006PYKAR  
TPS7A1008PDSER  
TPS7A1008PDSET  
TPS7A1008PYKAR  
TPS7A10105PDSER  
TPS7A10105PDSET  
TPS7A10105PYKAR  
TPS7A1010PDSER  
TPS7A1010PDSET  
TPS7A1010PYKAR  
TPS7A1011PDSER  
TPS7A1011PDSET  
TPS7A1011PYKAR  
TPS7A1012PDSER  
TPS7A1012PDSET  
TPS7A1012PYKAR  
TPS7A1015PDSER  
TPS7A1015PDSET  
TPS7A1015PYKAR  
TPS7A1018PDSER  
TPS7A1018PDSET  
TPS7A1018PYKAR  
TPS7A1025PDSER  
TPS7A1025PDSET  
TPS7A1025PYKAR  
TPS7A1028PDSER  
TPS7A1028PDSET  
TPS7A1028PYKAR  
TPS7A1030PDSER  
TPS7A1030PDSET  
TPS7A1030PYKAR  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
DSE  
DSE  
YKA  
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
12000  
3000  
250  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
183.0  
183.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
Pack Materials-Page 3  
PACKAGE OUTLINE  
YKA0005  
DSBGA - 0.4 mm max height  
SCALE 13.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
INDEX AREA  
D
0.4 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL  
TYP  
0.35  
C
B
A
0.7  
SYMM  
D: Max = 1.12 mm, Min = 1.06 mm  
E: Max = 0.77 mm, Min = 0.71 mm  
0.35  
0.24  
5X  
1
2
3
0.19  
0.015  
C A B  
SYMM  
4223737/B 05/2017  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0005  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35)  
2
5X ( 0.2)  
1
3
A
B
(0.35)  
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:50X  
(
0.2)  
0.0325 MAX  
0.0325 MIN  
METAL  
UNDER  
METAL  
SOLDER MASK  
EXSPOSED  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
(
0.2)  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223737/B 05/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0005  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35)  
2
5X ( 0.21)  
(R0.05) TYP  
1
3
A
B
(0.35)  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:50X  
4223737/B 05/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A1018PYKAR

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1025PDSER

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1025PDSET

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1025PYKAR

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1028PDSER

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1028PDSET

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1028PYKAR

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1030PDSER

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1030PDSET

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1030PYKAR

具有使能功能的 300mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A11

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1105PYKAR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI