TPS7A1650AQDGNRQ1 [TI]

脱离电池 (60V) 运行、具有电源正常指示功能的汽车类 100mA、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 125;
TPS7A1650AQDGNRQ1
型号: TPS7A1650AQDGNRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

脱离电池 (60V) 运行、具有电源正常指示功能的汽车类 100mA、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 125

电池 稳压器
文件: 总28页 (文件大小:1956K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
具有使能端和电源正常指示功能的  
TPS7A16A-Q1 60V5µA IQ100mA、低压降稳压器  
1 特性  
3 说明  
1
适用于汽车 应用  
下列性能符合 AEC-Q100 标准:  
TPS7A16A-Q1 超低功耗、低压降 (LDO) 稳压器具有  
超低静态电流、高输入电压以及微型高热性能封装等诸  
多优势。  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
TPS7A16A-Q1 专为连续或断续(备用电源)电池供电  
的 应用 而设计,超低静态电流在此类应用中对于延长  
系统电池寿命至关重要。  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C3B  
宽输入电压范围:3V 60V  
超低静态电流:5 µA  
停机时静态电流:1µA  
输出电流:100 mA  
TPS7A16A-Q1 提供了一个与标准互补金属氧化物半导  
(CMOS) 逻辑兼容的使能引脚 (EN) 以及一个具有用  
户可编程延迟的集成开漏高电平有效电源正常输出  
(PG)。这些引脚专用于需要进行电源轨排序、 基于 微  
控制器的电池供电类应用。  
低压差电压:电流为 20mA 时电压为 60mV  
精度:2%  
可提供:  
此外,TPS7A16A-Q1 非常适合通过多节电池解决方案  
生成低电压电源(从高电池节数电动工具组到汽车 应  
用;TPS7A16A-Q1 器件不但能够提供一个稳压良好的  
电压轨,还能够承受瞬态电压并在电压瞬态期间保持稳  
压状态。这些 特性 意味着电涌保护电路更加简单且更  
为经济高效。  
固定输出电压:3.3V5V  
可调节输出电压:大约 1.2 18.5V  
具有可编程延迟的电源正常指示功能  
电流限制和热关断保护  
与陶瓷输出电容器一起工作时保持稳定:  
2.2µF  
器件信息(1)  
封装:高热性能 HVSSOP-8 PowerPAD™  
器件型号  
封装  
HVSSOP (8)  
封装尺寸(标称值)  
TPS7A16A-Q1  
3.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
紧急呼叫 (eCall)  
电池管理系统 (BMS)  
典型应用原理图  
车载充电器 (OBC) 和无线充电器  
直流/直流转换器  
VIN  
60 V  
12 V  
t
VOUT  
VIN  
OUT  
VCC  
mC2  
IN  
CIN  
COUT  
EN  
RPG  
TPS7A16A-Q1  
VEN  
EN  
DELAY  
PG  
IO1  
GND  
VPG  
CDELAY  
IO3  
mC1  
IO2  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS342  
 
 
 
 
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Applications ................................................ 11  
Power Supply Recommendations...................... 15  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description .................................................. 9  
8
9
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Examples................................................... 16  
11 器件和文档支持 ..................................................... 18  
11.1 接收文档更新通知 ................................................. 18  
11.2 社区资源................................................................ 18  
11.3 ....................................................................... 18  
11.4 静电放电警告......................................................... 18  
11.5 术语表 ................................................................... 18  
12 机械、封装和可订购信息....................................... 18  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (February 2019) to Revision A  
Page  
已更改 将状态从预告信息更改为生产数据” ......................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
5 Pin Configuration and Functions  
DGN Package  
8-Pin HVSSOP With Exposed Thermal Pad  
Top View  
OUT  
FB/DNC  
PG  
1
2
3
4
8
7
6
5
IN  
DELAY  
NC  
Thermal pad  
GND  
EN  
Not to scale  
NC – No internal connection  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Delay pin. Connect a capacitor to GND to adjust the PG delay time; leave open if the reset function is not  
needed.  
DELAY  
7
O
I
Enable pin. This pin turns the regulator on or off.  
If VEN VEN_HI, the regulator is enabled.  
If VEN VEN_LO, the regulator is disabled.  
EN  
5
If not used, the EN pin can be connected to IN. Make sure that VEN VIN at all times.  
For the adjustable version, the feedback pin is the input to the control-loop error amplifier. This pin is used to  
set the output voltage of the device when the regulator output voltage is set by external resistors.  
For the fixed-voltage versions, do not connect to this pin. Do not route this pin to any electrical net, not even  
to GND or IN.  
FB/DNC  
GND  
IN  
2
4
8
I
I
Ground pin  
Regulator input supply pin. A capacitor > 0.1 µF must be tied from this pin to ground to assure stability. TI  
recommends connecting a 10-µF ceramic capacitor from IN to GND (as close to the device as possible) to  
reduce circuit sensitivity to printed-circuit-board (PCB) layout, especially when long input tracer or high source  
impedances are encountered.  
NC  
6
1
---  
O
This pin can be left open or tied to any voltage between GND and IN.  
Regulator output pin. A capacitor > 2.2 µF must be tied from this pin to ground to assure stability. TI  
recommends connecting a 10-µF ceramic capacitor from OUT to GND (as close to the device as possible) to  
maximize ac performance.  
OUT  
Power-good pin. Open-collector output; leave open or connect to GND if the power-good function is not  
needed.  
PG  
3
O
Thermal  
pad  
Solder to the printed circuit board (PCB) to enhance thermal performance. Although the thermal pad can be left  
floating, TI highly recommends connecting the thermal pad to the GND plane.  
Pad  
---  
Copyright © 2019, Texas Instruments Incorporated  
3
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
IN pin to GND pin  
OUT pin to GND pin  
OUT pin to IN pin  
FB pin to GND pin  
62  
20  
–0.3  
–62  
0.3  
3
–0.3  
Voltage  
FB pin to IN pin  
–62  
0.3  
0.3  
62  
V
EN pin to IN pin  
–62  
EN pin to GND pin  
–0.3  
PG pin to GND pin  
–0.3  
5.5  
5.5  
DELAY pin to GND pin  
Peak output  
Operating virtual junction, TJ, absolute maximum(2)  
–0.3  
Current  
Internally limited  
–40  
150  
150  
Temperature  
°C  
Storage, TSTG  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Permanent damage does not occur to the part operating within this range, though electrical performance is not guaranteed outside the  
operating ambient temperature range.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
Corner pins (OUT, GND, IN,  
and EN)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged-device model (CDM), per JEDEC  
specification JESD22-C101(2)  
Other pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
60  
UNIT  
V
VIN  
Input voltage  
VOUT  
Output voltage  
1.2  
0
18.5  
VIN  
1.5  
5
V
EN pin voltage  
V
EN  
EN pin slew-rate, voltage ramp-up  
Delay pin voltage  
V/µs  
V
DELAY  
PG  
0
0
Power-good pin voltage  
5
V
6.4 Thermal Information  
TPS7A16A-Q1  
THERMAL METRIC(1)  
DGN (HVSSOP)  
UNIT  
8 PINS  
52.5  
72.2  
24.1  
2.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
24.0  
10.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
6.5 Electrical Characteristics  
at TA= –40°C to +125°C, VIN = VOUT(NOM) + 500 mV or VIN = 3 V (whichever is greater), VEN = VIN, IOUT = 10 µA, CIN = 2.2 μF,  
COUT = 2.2 μF, and FB tied to OUT (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C, VFB = VREF, VIN = 3 V, IOUT = 10 μA  
VIN VOUT(NOM) + 0.5 V  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
3
60  
V
V
V
V
VREF  
VUVLO  
VOUT  
Internal reference  
1.169  
1.193  
2
1.217  
Undervoltage lockout threshold  
Output voltage range  
VREF  
–2%  
18.5  
2%  
VOUT(NOM) + 0.5 V VIN 60 V(1)  
10 µA IOUT 100 mA  
,
Overall VOUT accuracy  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
Line regulation  
Load regulation  
3 V VIN 60 V  
±1  
±1  
%VOUT  
%VOUT  
10 µA IOUT 100 mA  
VIN = 0.95xVOUT(NOM), IOUT = 20 mA  
VIN = 0.95xVOUT(NOM), IOUT = 100 mA  
VOUT = 90% VOUT(NOM), VIN = VOUT(NOM) + 1 V(2)  
VOUT = 90% VOUT(NOM), VIN = 3 V(3)  
3 V VIN 60 V, IOUT = 10 µA  
60  
VDO  
Dropout voltage  
Current limit  
mV  
mA  
μA  
265  
225  
225  
5
500  
400  
400  
15  
101  
101  
ILIM  
IGND  
Ground current  
IOUT = 100 mA, VOUT = 1.2 V  
60  
ISHDN  
I FB  
Shutdown supply current  
Feedback current(4)  
VEN = 0.4 V, VIN = 12 V  
0.59  
0.0  
0.01  
5.0  
1
μA  
µA  
μA  
V
–1  
–1  
IEN  
Enable current  
3 V VIN 12 V, VIN = VEN  
1
VEN_HI  
VEN_LO  
Enable high-level voltage  
Enable low-level voltage  
1.2  
0.3  
95  
93  
V
OUT pin floating, VFB increasing, VIN VIN_MIN  
OUT pin floating, VFB decreasing, VIN VIN_MIN  
85  
83  
VIT  
PG trip threshold  
%VOUT  
VHYS  
PG trip hysteresis  
PG output low voltage  
PG leakage current  
DELAY pin current  
2.3  
%VOUT  
V
VPG, LO  
IPG, LKG  
IDELAY  
OUT pin floating, VFB = 80% VREF, IPG = 100 µA  
VPG = VOUT(NOM)  
0.4  
1
–1  
μA  
1
2
μA  
VIN = 3 V, VOUT(NOM) = VREF, COUT = 10 μF,  
f = 100 Hz  
PSRR  
TSD  
Power-supply rejection ratio  
50  
dB  
°C  
Shutdown, temperature increasing  
Reset, temperature decreasing  
175  
155  
Thermal shutdown temperature  
(1) Maximum input voltage is limited to 24 V because of the package power dissipation limitations at full load (P (VIN – VOUT) × IOUT  
=
(24 V – VREF) × 50 mA 1.14 W). The device is capable of sourcing a maximum current of 50 mA at higher input voltages as long as  
the power dissipated is within the thermal limits of the package plus any external heatsinking.  
(2) For fixed output voltages only.  
(3) For adjustable output only, where VOUT = 1.2 V  
(4) IFB > 0 µA flows out of the device.  
版权 © 2019, Texas Instruments Incorporated  
5
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = –40°C to 125°C, VIN = VOUT(NOM) + 0.5 V or VIN = 3 V (whichever is greater), VEN = VIN, IOUT = 10 µA, CIN = 1 µF, COUT  
= 2.2 µF, and FB tied to OUT (unless otherwise noted)  
10  
9
8
7
6
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
VEN = 0.4 V  
IOUT = 0mA  
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Input Voltage (V)  
Input Voltage (V)  
2. Shutdown Current vs Input Voltage  
1. Quiescent Current vs Input Voltage  
1000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
20  
40  
60  
80  
100  
Output Current (mA)  
Output Current (mA)  
3. Quiescent Current vs Output Current  
4. Dropout Voltage vs Output Current  
1.294  
1.244  
1.194  
1.144  
1.094  
10  
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
7.5  
5
2.5  
0
−2.5  
−5  
−7.5  
−10  
10  
20  
30  
Input Voltage (V)  
40  
50  
60  
0
10  
20  
30  
Input Voltage (V)  
40  
50  
60  
5. Feedback Voltage vs Input Voltage  
6. Line Regulation  
6
版权 © 2019, Texas Instruments Incorporated  
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
Typical Characteristics (接下页)  
at TA = –40°C to 125°C, VIN = VOUT(NOM) + 0.5 V or VIN = 3 V (whichever is greater), VEN = VIN, IOUT = 10 µA, CIN = 1 µF, COUT  
= 2.2 µF, and FB tied to OUT (unless otherwise noted)  
10  
7.5  
5
300  
250  
200  
150  
100  
50  
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
2.5  
0
−2.5  
−5  
− 40°C  
+ 25°C  
+ 85°C  
+ 105°C  
+ 125°C  
−7.5  
−10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
2
4
6
8
10  
12  
Output Current (mA)  
Input Voltage (V)  
7. Load Regulation  
8. Current Limit vs Input Voltage  
95  
93  
91  
89  
87  
85  
2.5  
2
PG Rising  
1.5  
1
OFF−TO−ON  
ON−TO−OFF  
0.5  
PG Falling  
0
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
9. Power-Good Threshold Voltage vs Temperature  
10. Enable Threshold Voltage vs Temperature  
100  
10  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
0.01  
0.001  
VIN = 3V  
VOUT = ~1.2V  
COUT = 10µF  
VIN = 3V  
VOUT = 1.2V  
COUT = 2.2µF  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
11. Power-Supply Rejection Ratio vs Frequency  
12. Output Spectral Noise Density  
版权 © 2019, Texas Instruments Incorporated  
7
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = –40°C to 125°C, VIN = VOUT(NOM) + 0.5 V or VIN = 3 V (whichever is greater), VEN = VIN, IOUT = 10 µA, CIN = 1 µF, COUT  
= 2.2 µF, and FB tied to OUT (unless otherwise noted)  
VIN (2 V/div)  
VPG (2 V/div)  
VIN = 1 V ® 6.5 V  
IOUT = 1 mA  
VOUT (1 V/div)  
COUT = 10 mF  
CFF = 0 nF  
Time (5 ms/div)  
13. Power-Good Delay  
8
版权 © 2019, Texas Instruments Incorporated  
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
7 Detailed Description  
7.1 Overview  
The TPS7A16A-Q1 is an ultra-low-power, low-dropout (LDO) voltage regulator that offers the benefits of ultra-low  
quiescent current, high input voltage, and miniaturized, high thermal-performance packaging. The TPS7A16A-Q1  
also offers an enable pin (EN) and an integrated open-drain, active-high, power-good output (PG) with a user-  
programmable delay.  
7.2 Functional Block Diagram  
IN  
OUT  
UVLO  
Pass  
Device  
Thermal  
Shutdown  
Current  
Limit  
Error  
Amp  
Enable  
FB  
EN  
PG  
Power  
Good  
Control  
DELAY  
7.3 Feature Description  
7.3.1 Enable (EN)  
The enable pin is a high-voltage-tolerant pin. A high input on EN actives the device and turns on the regulator.  
For self-bias applications, connect this input to the IN pin. Ensure that VEN VIN at all times.  
When the enable signal is comprised of pulse-width modulation (PWM) pulses, the slew rate of the rising and  
falling edges must be less than 1.5 V/µs. Adding a 0.1-µF capacitor from the EN pin to GND is recommended.  
7.3.2 Regulated Output (VOUT  
)
The OUT pin is the regulated output based on the required voltage. The output has current limitation. During  
initial power up, the regulator has a soft-start incorporated to control the initial current through the pass element.  
In the event that the regulator drops out of regulation, the output tracks the input minus a drop based on the load  
current. When the input voltage drops below the undervoltage lockout (UVLO) threshold, the regulator shuts  
down until the input voltage recovers above the minimum start-up level.  
7.3.3 PG Delay Timer (DELAY)  
The power-good delay time (tDELAY) is defined as the time period from when VOUT exceeds the PG trip threshold  
voltage (VIT) to when the PG output is high. This power-good delay time is set by an external capacitor (CDELAY  
)
connected from the DELAY pin to GND; this capacitor is charged from 0 V to approximately 1.8 V by the DELAY  
pin current (IDELAY) when VOUT exceeds the PG trip threshold (VIT).  
版权 © 2019, Texas Instruments Incorporated  
9
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Power-Good  
The power-good (PG) pin is an open-drain output and can be connected to any 5.5-V or lower rail through an  
external pullup resistor. When no CDELAY is used, the PG output is high-impedance when VOUT is greater than the  
PG trip threshold (VIT). If VOUT drops below VIT, the open-drain output turns on and pulls the PG output low. If  
output voltage monitoring is not needed, the PG pin can be left floating or connected to GND.  
To ensure proper operation of the power-good feature, maintain VIN 3 V (VIN_MIN).  
7.4.1.1 Power-Good Delay and Delay Capacitor  
The power-good delay time (tDELAY) is defined as the time period from when VOUT exceeds the PG trip threshold  
voltage (VIT) to when the PG output is high. This power-good delay time is set by an external capacitor (CDELAY  
)
connected from the DELAY pin to GND; this capacitor is charged from 0 V to ap 1.8 V by the DELAY pin current  
(IDELAY) once VOUT exceeds the PG trip threshold (VIT).  
When CDELAY is used, the PG output is high-impedance when VOUT exceeds VIT, and VDELAY exceeds VREF  
.
The power-good delay time can be calculated using: tDELAY = (CDELAY × VREF)/IDELAY. For example, when CDELAY  
= 10 nF, the PG delay time is approximately 12 ms; that is, (10 nF × 1.193 V) / 1 µA = 11.93 ms.  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7A16A-Q1 offers the benefit of ultra-low quiescent current, high input voltage, and miniaturized, high-  
thermal-performance packaging.  
The TPS7A16A-Q1 is designed for continuous or sporadic (power backup) battery-operated applications where  
ultra-low quiescent current is critical to extending system battery life.  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
8.2 Typical Applications  
8.2.1 TPS7A16A-Q1 Circuit as an Adjustable Regulator  
VIN  
VOUT  
OUT  
IN  
COUT  
CIN  
R1  
CFF  
VOUT  
TPS7A16A-Q1  
Where: R1 = R2  
- 1  
RPG  
VEN  
EN  
FB  
VREF  
R2  
VPG  
DELAY  
PG  
GND  
CDELAY  
14. The TPS7A16A-Q1 Circuit as an Adjustable Regulator Schematic  
8.2.1.1 Design Requirements  
1 lists the design parameters for this application.  
1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
5.5 V to 40 V  
5 V  
Output current rating  
Output capacitor range  
Delay capacitor range  
100 mA  
2.2 µF to 100 µF  
100 pF to 100 nF  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Adjustable Voltage Operation  
The TPS7A16A-Q1 has an output voltage range from 1.194 V to 20 V. As shown in 15, the nominal output of  
the device is set by two external resistors.  
VIN  
IN  
PG  
CIN  
RPG  
0.1 mF  
1 MW  
VOUT  
5 V  
EN  
OUT  
COUT  
R1  
2.2 mF  
3.4 MW  
DELAY  
CDELAY  
FB  
0.1 mF  
R2  
GND  
1.07 MW  
15. Adjustable Operation  
公式 1 can calculate R1 and R2 for any output voltage range:  
VOUT  
R1 = R2  
- 1  
VREF  
(1)  
8.2.1.2.1.1 Resistor Selection  
Use resistors in the order of MΩ to keep the overall quiescent current of the system as low as possible (by  
making the current used by the resistor divider negligible compared to the quiescent current of the device).  
If greater voltage accuracy is required, take into account the voltage offset contributions as a result of feedback  
current and use 0.1% tolerance resistors.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
 
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
2 shows the resistor combination to achieve an output for a few of the most common rails using commercially  
available 0.1% tolerance resistors to maximize nominal voltage accuracy, while adhering to the formula shown in  
公式 1.  
2. Selected Resistor Combinations  
VOUT  
1.194 V  
1.8 V  
2..5 V  
3.3 V  
5 V  
R1  
R2  
VOUT/(R1 + R2) « IQ  
0 µA  
NOMINAL ACCURACY  
±2%  
0 Ω  
1.18 MΩ  
1.5 MΩ  
2 MΩ  
2.32 MΩ  
1.37 MΩ  
1.13 MΩ  
1.07 MΩ  
1.07 MΩ  
1.58 MΩ  
3.65 MΩ  
1.15 MΩ  
514 nA  
±(2% + 0.14%)  
±(2% + 0.16%)  
±(2% + 0.35%)  
±(2% + 0.39%)  
±(2% + 0.42%)  
±(2% + 0.18%)  
±(2% + 0.19%)  
±(2% + 0.26%)  
871 nA  
1056 nA  
1115 nA  
1115 nA  
755 nA  
3.4 MΩ  
7.87 MΩ  
14.3 MΩ  
42.2 MΩ  
16.2 MΩ  
10 V  
12 V  
15 V  
327 nA  
18 V  
1038 nA  
Close attention must be paid to board contamination when using high-value resistors; board contaminants can  
significantly impact voltage accuracy. If board cleaning measures cannot be ensured, consider using a fixed-  
voltage version of the TPS7A16A-Q1 or using resistors in the order of hundreds or tens of kΩ.  
8.2.1.2.2 Capacitor Recommendations  
Use low equivalent-series-resistance (ESR) capacitors for the input, output, and feed-forward capacitors.  
Ceramic capacitors with X7R and X5R dielectrics are preferred. These dielectrics offer more stable  
characteristics. Ceramic X7R capacitors offer improved overtemperature performance, but ceramic X5R  
capacitors are the most cost-effective and are available in higher values.  
However, high-ESR capacitors can degrade PSRR.  
8.2.1.2.3 Input and Output Capacitor Requirements  
The TPS7A16A-Q1 ultra-low-power, high-voltage linear regulator achieves stability with a minimum input  
capacitance of 0.1 µF and output capacitance of 2.2 µF; however, TI recommends using a 10-µF ceramic  
capacitor to maximize ac performance.  
8.2.1.2.4 Feed-Forward Capacitor (Only for Adjustable Version)  
Although a feed-forward capacitor (CFF) from OUT to FB is not needed to achieve stability, TI recommends using  
a 0.01-µF feed-forward capacitor to maximize ac performance.  
8.2.1.2.5 Transient Response  
As with any regulator, increasing the size of the output capacitor reduces over- and undershoot magnitude but  
increases the duration of the transient response.  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
8.2.1.3 Application Curves  
16. Channel 1 is VOUT, Channel 2 is PG, Channel 4 is  
17. Channel1 is VOUT, Channel 2 is PG, Channel 3 is EN,  
IOUT, VIN is 12 V and Ready Before EN  
Channel4 is IOUT, VIN is 12 V Connected to EN  
版权 © 2019, Texas Instruments Incorporated  
13  
 
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
8.2.2 Automotive Applications  
The TPS7A16A-Q1 maximum input voltage of 60 V makes the device ideal for use in automotive applications  
where high-voltage transients are present.  
Events such as load-dump overvoltage (where the battery is disconnected while the alternator is providing  
current to a load) can cause voltage spikes from 25 V to 60 V. In order to prevent any damage to sensitive  
circuitry, local transient voltage suppressors can be used to cap voltage spikes to lower, more manageable  
voltages.  
The TPS7A16A-Q1 can be used to simplify and lower costs in such cases. The very high voltage range allows  
this regulator not only to withstand the voltages coming out of these local transient voltage suppressors, but even  
replace them, thus lowering system cost and complexity. 18 shows a circuit diagram of an example  
automotive application.  
VIN  
60 V  
12 V  
t
VOUT  
VIN  
OUT  
VCC  
mC2  
IN  
CIN  
COUT  
EN  
RPG  
TPS7A16A-Q1  
VEN  
EN  
DELAY  
PG  
IO1  
GND  
VPG  
CDELAY  
IO3  
mC1  
IO2  
18. Low-Power Microcontroller Rail Sequencing in Automotive Applications Subjected to Load-Dump  
Transients  
8.2.2.1 Design Requirements  
3 lists the design parameters for this application.  
3. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
5.5 V to 60 V  
5 V  
Output current rating  
Output capacitor range  
Delay capacitor range  
100 mA  
2.2 µF to 100 µF  
100 pF to 100 nF  
8.2.2.2 Detailed Design Procedure  
See the Capacitor Recommendations and Input and Output Capacitor Requirements sections.  
8.2.2.2.1 Device Recommendations  
The output is fixed, so choose the TPS7A16A-Q1.  
8.2.2.3 Application Curves  
See 16 and 17.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
9 Power Supply Recommendations  
Design of the device is for operation from an input voltage supply with a range between 3 V and 60 V. This input  
supply must be well regulated. The TPS7A16A-Q1 ultra-low-power, high-voltage linear regulator achieves  
stability with a minimum input capacitance of 0.1 µF and output capacitance of 2.2 µF; however, TI recommends  
using a 10-µF ceramic capacitor to maximize AC performance.  
10 Layout  
10.1 Layout Guidelines  
To improve ac performance such as PSRR, output noise, and transient response, the board is recommended to  
be designed with separate ground planes for IN and OUT, with each ground plane connected only at the GND  
pin of the device. This grounding scheme is commonly referred to as star grounding. In addition, directly connect  
the ground connection for the output capacitor to the GND pin of the device.  
Equivalent series inductance (ESL) and ESR must be minimized in order to maximize performance and ensure  
stability. Every capacitor must be placed as close as possible to the device and on the same side of the PCB as  
the regulator itself.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use  
of vias and long traces is strongly discouraged because they can impact system performance negatively and  
even cause instability.  
If possible, and to ensure the maximum performance denoted in this document, use the same layout pattern  
used for the TPS7A16A-Q1 evaluation board, available at www.ti.com.  
Layout is a critical part of good power-supply design. There are several signal paths that conduct fast-changing  
currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade  
the power-supply performance. To help eliminate these problems, bypass the IN pin to ground with a low-ESR  
ceramic bypass capacitor with X5R or X7R dielectric.  
Acceptable performance can be obtained with alternative PCB layouts; however, the layout and the schematic  
have been shown to produce good results and are meant as a guideline.  
19 illustrates the schematic for the suggested layout. 20 and 21 depict the top and bottom printed circuit  
board (PCB) layers for the suggested layout, respectively.  
10.1.1 Additional Layout Considerations  
The high impedance of the FB pin makes the regulator sensitive to parasitic capacitances that can couple  
undesirable signals from nearby components (especially from logic and digital devices, such as microcontrollers  
and microprocessors); these capacitively-coupled signals can produce undesirable output voltage transients. In  
these cases, use a fixed-voltage version of the TPS7A16A-Q1, or isolate the FB node by flooding the local PCB  
area with ground-plane copper to minimize any undesirable signal coupling.  
10.1.2 Power Dissipation  
The ability to remove heat from the die is different for each package type, presenting different considerations in  
the PCB layout. The PCB area around the device that is free of other components moves the heat from the  
device to the ambient air. Using heavier copper increases the effectiveness of removing heat from the device.  
The addition of plated through-holes to heat dissipating layers also improves the heatsink effectiveness.  
Power dissipation depends on input voltage and load conditions. As 公式 2 shows, power dissipation (PD) is  
equal to the product of the output current times the voltage drop across the output pass element:  
PD = (VIN - VOUT) IOUT  
(2)  
版权 © 2019, Texas Instruments Incorporated  
15  
 
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.3 Thermal Considerations  
Thermal protection disables the output when the junction temperature rises to approximately 170°C, allowing the  
device to cool. When the junction temperature cools to approximately 150°C, the output circuitry is enabled.  
Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This cycling limits the dissipation of the regulator, protecting the regulator from damage as a  
result of overheating.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heat-spreading area. For reliable operation, limit junction temperature to a maximum of 125°C at the worst-case  
ambient temperature for a given application. To estimate the margin of safety in a complete design (including the  
copper heat-spreading area), increase the ambient temperature until the thermal protection is triggered; use  
worst-case loads and signal conditions. For good reliability, trigger thermal protection at least 45°C above the  
maximum expected ambient condition of the particular application. This configuration produces a worst-case  
junction temperature of 125°C at the highest expected ambient temperature and worst-case load.  
The internal protection circuitry of the TPS7A16A-Q1 is designed to protect against overload conditions. This  
circuitry is not intended to replace proper heatsinking. Continuously running the TPS7A16A-Q1 into thermal  
shutdown degrades device reliability.  
10.2 Layout Examples  
TPS7A16A-Q1  
19. Schematic for Suggested Layout  
16  
版权 © 2019, Texas Instruments Incorporated  
TPS7A16A-Q1  
www.ti.com.cn  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
Layout Examples (接下页)  
TPS7A16A  
1300 mil  
2200 mil  
20. Suggested Layout: Top Layer  
1300 mil  
2200 mil  
21. Suggested Layout: Bottom Layer  
版权 © 2019, Texas Instruments Incorporated  
17  
TPS7A16A-Q1  
ZHCSJD1A FEBRUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A1601AQDGNRQ1  
TPS7A1633AQDGNRQ1  
TPS7A1650AQDGNRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
HVSSOP  
HVSSOP  
HVSSOP  
DGN  
DGN  
DGN  
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
1NT1  
1NU1  
1NV1  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A1601AQDGNRQ1 HVSSOP DGN  
TPS7A1633AQDGNRQ1 HVSSOP DGN  
TPS7A1650AQDGNRQ1 HVSSOP DGN  
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
3.3  
3.3  
3.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A1601AQDGNRQ1  
TPS7A1633AQDGNRQ1  
TPS7A1650AQDGNRQ1  
HVSSOP  
HVSSOP  
HVSSOP  
DGN  
DGN  
DGN  
8
8
8
2500  
2500  
2500  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
38.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DGN 8  
3 x 3, 0.65 mm pitch  
PowerPAD VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225482/A  
www.ti.com  
PACKAGE OUTLINE  
DGN0008C  
HVSSOP - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE PACKAGE  
C
5.05  
4.75  
TYP  
A
0.1 C  
SEATING  
PLANE  
PIN 1 INDEX AREA  
6X 0.65  
8
1
2X  
3.1  
2.9  
1.95  
NOTE 3  
4
5
0.37  
8X  
0.26  
0.1  
C A B  
3.1  
2.9  
B
NOTE 4  
0.23  
0.13  
SEE DETAIL A  
EXPOSED THERMAL PAD  
4
5
0.25  
GAGE PLANE  
1.92  
1.66  
9
1.1 MAX  
8
1
0.15  
0.05  
0.7  
0.4  
0 -8  
A
20  
DETAIL A  
1.60  
1.34  
TYPICAL  
4218838/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGN0008C  
HVSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(2)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(1.6)  
SOLDER MASK  
DEFINED PAD  
(R0.05) TYP  
SYMM  
8X (1.4)  
8
8X (0.45)  
1
(3)  
NOTE 9  
SYMM  
9
(1.92)  
(1.1)  
6X (0.65)  
4
5
(
0.2) TYP  
VIA  
SEE DETAILS  
(0.55)  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4218838/A 11/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGN0008C  
HVSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(1.6)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
(R0.05) TYP  
8X (1.4)  
8
1
8X (0.45)  
(1.92)  
BASED ON  
SYMM  
0.125 THICK  
STENCIL  
6X (0.65)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
(4.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD 9:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
1.79 X 2.15  
1.60 X 1.92 (SHOWN)  
1.46 X 1.75  
0.125  
0.15  
0.175  
1.35 X 1.62  
4218838/A 11/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7A1650DGNR

60-V, 5-μA IQ, 100-mA, Low-Dropout VOLTAGE REGULATOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1650DGNT

60-V, 5-μA IQ, 100-mA, Low-Dropout VOLTAGE REGULATOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1650DRBR

TPS7A16 60-V, 5-μA IQ, 100-mA, Low-Dropout Voltage Regulator With Enable and Power-Good

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1650DRBT

TPS7A16 60-V, 5-μA IQ, 100-mA, Low-Dropout Voltage Regulator With Enable and Power-Good

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1650QDGNRQ1

60-V, 5-μA IQ, 100-mA, Low-Dropout VOLTAGE REGULATOR With Enable and Power-Good

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A16A

具有电源正常指示和使能功能的 100mA 60V 5μA 静态电流低压降 (LDO) 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A16A-Q1

脱离电池 (60V) 运行、具有电源正常指示功能的汽车类 100mA、超低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A16_15

TPS7A16 60-V, 5-μA IQ, 100-mA, Low-Dropout Voltage Regulator With Enable and Power-Good

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A19

具有电源正常指示和使能功能的 450mA、40V、低 IQ、可调节低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1901DRBR

具有电源正常指示和使能功能的 450mA、40V、低 IQ、可调节低压降稳压器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A1901DRBT

具有电源正常指示和使能功能的 450mA、40V、低 IQ、可调节低压降稳压器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A20

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI