TPS7A24125DBVR [TI]

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125;
TPS7A24125DBVR
型号: TPS7A24125DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

稳压器
文件: 总29页 (文件大小:1558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7A24  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
TPS7A24 200mA18V、超IQ 低压降稳压器  
1 特性  
3 说明  
• 超IQ2.0μA  
• 输入电压2.4 V 18 V  
• 可用输出电压选项:  
TPS7A24 低压降 (LDO) 线性稳压器支持 2.4V 18V  
的输入电压范围并具有超低的静态电流 (IQ)。这些特  
性能帮助现代电器满足日益严苛的能源要求并有助于  
延长便携式电源解决方案的电池寿命。  
– 固定1.25 V 5.5 V  
– 可调节1.24 V 17.75 V  
• 在温度范围内的精度1.25%  
• 低压降200 mA 250 mV最大值)  
• 主动过冲下拉保护  
TPS7A24 有固定电压和可调节电压两种版本可供选  
用。固定电压版本无需外部电阻器可最大限度减小印  
刷电路板 (PCB) 尺寸。为获得更大的灵活性或更高的  
输出电压可调节电压版本使用反馈电阻器将输出电压  
设置1.24V 17.75V 之间。两种版本都具1.25%  
的输出调节精度可对微控制器 (MCU) 基准电压进行  
精密调节。  
• 热关断保护和过流保护  
• 工作结温40°C +125°C  
1µF 输出电容器一起工作时保持稳定  
• 封装5 SOT-23 封装  
在电流为 200mA TPS7A24 LDO 的最大压降小于  
250mV因此它比标准线性稳压器的工作效率更高。  
此最大压降使得在 3.55V 输入电压 (VIN) 3.3V 输出  
(VOUT) 范围内的效率达到92.8%。  
2 应用  
烟雾和热量探测器  
恒温器  
运动检测器PIRuWave )  
无线电动工具  
电器电池组  
电表  
水表  
封装信息(1)  
封装尺寸标称值)  
器件型号  
TPS7A24  
封装  
DBVSOT-235)  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装请参阅产品说明书末尾的封装选项附  
录。  
典型应用电路  
静态电流与输入电压  
(VOUT = 1.24VIOUT = 0A)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS386  
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
Table of Contents  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Application.................................................... 17  
8.3 Power Supply Recommendations.............................19  
8.4 Layout....................................................................... 20  
9 Device and Documentation Support............................21  
9.1 Device Support......................................................... 21  
9.2 接收文档更新通知..................................................... 21  
9.3 支持资源....................................................................21  
9.4 Trademarks...............................................................21  
9.5 Electrostatic Discharge Caution................................21  
9.6 术语表....................................................................... 21  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagrams....................................... 10  
7.3 Feature Description...................................................11  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (May 2022) to Revision E (September 2022)  
Page  
Changed Dropout Voltage vs VIN and Dropout Voltage vs IOUT figures in Typical Characteristics section.........7  
Changes from Revision C (January 2022) to Revision D (May 2022)  
Page  
Added Output voltage accuracy at 25 to Electrical Characteristics table......................................................6  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
5 Pin Configuration and Functions  
IN  
GND  
EN  
1
2
3
5
OUT  
IN  
GND  
EN  
1
2
3
5
OUT  
4
FB  
4
NC  
Not to scale  
Not to scale  
5-1. DBV Package (Adjustable),  
5-2. DBV Package (Fixed), 5-Pin SOT-23 (Top  
5-Pin SOT-23 (Top View)  
View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
DBV  
(Adjustable)  
DBV  
(Fixed)  
NAME  
Enable pin. Drive EN greater than VEN(HI) to enable the regulator. Drive EN  
less than VEN(LOW) to put the regulator into low-current shutdown. Do not  
float this pin. If not used, connect EN to IN.  
EN  
FB  
3
3
Input  
Feedback pin. Input to the control-loop error amplifier. This pin is used to set  
the output voltage of the device with the use of external resistors. For  
adjustable-voltage version devices only.  
4
2
Input  
GND  
IN  
2
Ground pin.  
Input pin. For best transient response and to minimize input impedance, use  
the recommended value or larger capacitor from IN to ground as listed in the  
Recommended Operating Conditions table. Place the input capacitor as  
close to the IN and GND pins of the device as possible.  
1
1
4
Input  
No internal connection. For fixed-voltage version devices only. This pin can  
be floated but the device has better thermal performance with this pin tied to  
GND.  
NC  
Output pin. A capacitor is required from OUT to ground for stability. For best  
transient response, use the nominal recommended value or larger capacitor  
from OUT to ground. Follow the recommended capacitor value as listed in  
the Recommended Operating Conditions table. Place the output capacitor as  
close to the OUT and GND pins of the device as possible.  
OUT  
5
5
Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7A24  
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
VIN  
20  
VIN + 0.3(3)  
5.5  
VOUT  
0.3  
Voltage(2)  
V
VFB  
0.3  
VEN  
20  
0.3  
Current  
Maximum output  
Operating junction, TJ  
Storage, Tstg  
Internally limited  
50  
A
150  
150  
Temperature  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages with respect to GND.  
(3) VIN + 0.3 V or 20 V (whichever is smaller).  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 2-kV HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
 
 
 
 
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
6.3 Recommended Operating Conditions  
MIN  
2.4  
1.24  
1.25  
0
NOM  
MAX  
18  
UNIT  
V
VIN  
Input voltage  
VOUT  
VOUT  
IOUT  
VEN  
Output voltage (adjustable version)  
Output voltage (fixed version)  
Output current  
18 - VDO  
5.5  
V
V
200  
mA  
V
Enable voltage  
0
18  
(1)  
CIN  
COUT  
TJ  
Input capacitor  
1
μF  
μF  
°C  
(1)  
Output capacitor  
1
2.2  
100  
125  
Operating junction temperature  
40  
(1) All capacitor values are assumed to derate to 50% of the nominal capacitor value.  
6.4 Thermal Information  
TPS7A24  
THERMAL METRIC(1)  
DBV (SOT23-5)  
5 PINS  
167.8  
86.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
38.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
14.5  
ψJT  
38.1  
ψJB  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
reports application report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7A24  
 
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
6.5 Electrical Characteristics  
specified at TJ = 40°C to + 125°C, VIN = VOUT(nom) + 0.5 V or VIN = 2.4 V (whichever is greater), FB tied to OUT, IOUT = 1  
mA, VEN = 2 V, and CIN = 1 μF, COUT = 2.2 μF ceramic (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
Adjustable version, VOUT = VFB  
Fixed output versions, TJ = -40to 125℃  
Fixed output versions, TJ = 25 ℃  
Adjustable version only  
MIN  
TYP  
MAX  
1.26  
1.25  
0.5  
UNIT  
1.22  
1.24  
V
VOUT  
Output voltage accuracy  
%
1.25  
0.5  
VOUT  
Output voltage accuracy  
Feedback voltage  
Line regulation(1)  
%
VFB  
1.24  
V
0.25  
0.5  
%
ΔVOUT(ΔVIN)  
ΔVOUT(ΔIOUT)  
(VOUT(nom) + 0.5 V or 2.4 V) VIN 18 V  
1 mA IOUT 200 mA  
0.25  
0.5  
Load regulation  
%
IOUT = 0 mA  
2
15  
4.5  
IGND  
Ground pin current  
µA  
IOUT = 1 mA  
ISHUTDOWN  
Shutdown current  
Output current limit  
FB pin current  
325  
410  
10  
650  
620  
nA  
mA  
nA  
VEN 0.4 V, VIN = 2.4 V, Iout = 0 mA  
VOUT = 0.9 × VOUT(nom)  
ICL  
IFB  
250  
IOUT = 100 mA  
110  
160  
75  
160  
250  
VDO  
Dropout voltage(2)  
mV  
IOUT = 200 mA  
f = 10 Hz  
Power-supply rejection  
ratio  
PSRR  
f = 100 Hz  
70  
dB  
f = 1 kHz  
62  
Vn  
Output noise voltage  
UVLO threshold rising  
UVLO hysteresis  
BW = 10 Hz to 100 kHz, VOUT = 1.24 V  
VIN rising  
300  
2.15  
70  
μVRMS  
VUVLO(RISING)  
VUVLO(HYS)  
VUVLO(FALLING)  
1.95  
2.35  
2.25  
V
mV  
V
UVLO threshold falling  
VIN falling  
1.85  
0.9  
2.09  
Enable pin high-level input  
voltage  
VEN(HI)  
Device enabled  
V
Enable pin low-level input  
voltage  
VEN(LOW)  
IEN  
Device disabled  
0.4  
V
EN pin current  
VEN = 18 V  
10  
nA  
°C  
Thermal shutdown  
temperature  
TSD(shutdown)  
Shutdown, temperature increasing  
165  
Thermal shutdown reset  
temperature  
TSD(reset)  
Reset, temperature decreasing  
145  
°C  
(1) Vout(nom) + 0.5 V or 2.4 V (whichever is greater).  
(2) VDO is measured with VIN = 0.97 × VOUT(nom) for fixed output voltage versions. VDO is not measured for fixed output voltage versions  
when VOUT 2.5 V. For the adjustable output device, VDO is measured with VFB = 0.97 × VFB(nom).  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or  
2.4 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
1
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.3  
0.2  
0.1  
0
Tj  
-50èC  
-40èC  
0èC  
25èC  
TJ  
85èC  
125èC  
150èC  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2  
Output Current (A)  
2
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
D002  
VOUT = 1.24 V  
IOUT = 1 mA  
6-2. Load Regulation vs IOUT  
6-1. Line Regulation vs VIN  
135  
200  
180  
160  
140  
120  
100  
80  
TJ  
TJ  
120  
105  
90  
75  
60  
45  
30  
15  
0
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
60  
40  
20  
0
2
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
IOUT = 100 mA  
6-4. Dropout Voltage vs VIN  
IOUT = 10 mA  
6-3. Dropout Voltage vs VIN  
250  
240  
210  
180  
150  
120  
90  
TJ  
-50°C  
225  
200  
175  
150  
125  
100  
75  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
60  
50  
TJ  
30  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
25  
0
0
2
4
6
8
10  
12  
14  
16  
18  
0
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2  
Output Current (A)  
Input Voltage (V)  
IOUT = 200 mA  
6-5. Dropout Voltage vs VIN  
VIN = 2.4 V  
6-6. Dropout Voltage vs IOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7A24  
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or  
2.4 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
240  
210  
180  
150  
120  
90  
0.54  
0.52  
0.5  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0.48  
0.46  
0.44  
0.42  
0.4  
60  
30  
0.38  
0.36  
0
0
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2  
Output Current (A)  
2
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
VIN = 18 V  
6-7. Dropout Voltage vs IOUT  
6-8. Current Limit vs VIN  
30  
25  
20  
15  
10  
5
Tj  
-50èC  
-40èC  
0èC  
85èC  
125èC  
150èC  
25èC  
0
2
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
VOUT = 1.24 V, IOUT = 1 mA  
VOUT = 1.24 V, IOUT = 0 A  
6-10. IQ vs VIN  
6-9. IGND vs VIN  
36  
32  
28  
24  
20  
16  
12  
8
240  
210  
180  
150  
120  
90  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
Tj  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
60  
30  
4
0
0
2.4  
2.7  
3
3.3  
3.6 3.9  
Input Voltage (V)  
4.2  
4.5  
4.8  
5.1  
0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2  
Output Current (A)  
VOUT = 3.3 V, IOUT = 0 A  
VOUT = 1.24 V  
6-11. IQ vs VIN  
6-12. IGND vs IOUT  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7A24  
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or  
2.4 V (whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
2.3  
2.2  
2.1  
2
VEN(LOW)  
VEN(HIGH)  
VUVLO- (VIN Falling)  
VUVLO+ (VIN Rising)  
1.9  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
VOUT = 1.24 V, IOUT = 1 mA  
VOUT = 1.24 V, 2.4 V VIN 18 V  
6-13. VEN vs Temperature  
6-14. UVLO Thresholds vs Temperature  
100  
10  
5
IOUT  
10 mA  
100 mA  
200 mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1
0.5  
0.2  
0.1  
0.05  
IOUT  
0.02  
0.01  
0.01A, RMS Noise = 280.2 mVRMS  
0.1A, RMS Noise = 283.2 mVRMS  
0.2 A, RMS Noise = 285.2 mVRMS  
0.005  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 1.24 V, CIN = 1 μF, COUT = 1 μF, CFF = 10 nF, VRMS  
VOUT = 1.24 V, CIN = 0 μF, COUT = 1 μF  
6-15. PSRR vs Frequency and IOUT  
BW = 10 Hz to 100 kHz  
6-16. Output Noise (Vn) vs Frequency and IOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7A24  
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
7 Detailed Description  
7.1 Overview  
The TPS7A24 is an 18-V, low quiescent current, low-dropout (LDO) linear regulator. The low IQ performance  
makes the TPS7A24 an excellent choice for battery-powered or line-power applications that are expected to  
meet increasingly stringent standby-power standards. The fixed-output versions have the advantage of providing  
better accuracy with fewer external components, whereas the adjustable version has the flexibility for a far wider  
output voltage range.  
The 1.25% accuracy over temperature makes this device an excellent choice for meeting a wide range of  
microcontroller power requirements.  
For increased reliability, the TPS7A24 also incorporates overcurrent, overshoot pulldown, and thermal shutdown  
protection. The operating junction temperature is 40°C to +125°C, and adds margin for applications concerned  
with higher working ambient temperatures.  
7.2 Functional Block Diagrams  
TPS7A2401  
(Adjustable Version)  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
FB  
œ
+
UVLO  
Band-Gap  
Reference  
EN  
GND  
Logic  
7-1. Adjustable Version Block Diagram  
TPS7A24  
(Fixed Version)  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
R1  
œ
+
UVLO  
R2  
Band-Gap  
Reference  
EN  
GND  
Logic  
7-2. Fixed Version Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
7.3 Feature Description  
7.3.1 Output Enable  
The enable pin for the device is an active-high pin. The output voltage is enabled when the voltage of the enable  
pin is greater than the high-level input voltage of the EN pin and disabled with the enable pin voltage is less than  
the low-level input voltage of the EN pin. If independent control of the output voltage is not needed, connect the  
enable pin to the input of the device.  
7.3.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
7.3.3 Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a brick-wall scheme. In a high-load current fault, the brick-wall scheme  
limits the output current to the current limit (ICL). ICL is listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brick-wall current  
limit, the pass transistor dissipates power [(VIN VOUT) × ICL]. If thermal shutdown is triggered, the device turns  
off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output  
current fault condition continues, the device cycles between current limit and thermal shutdown. For more  
information on current limits, see the Know Your Limits application report.  
7-3 shows a diagram of the current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
0 V  
IOUT  
IRATED  
0 mA  
ICL  
7-3. Current Limit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7A24  
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
7.3.4 Undervoltage Lockout (UVLO)  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.5 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during start up can be high  
from large VIN VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before start up  
completes.  
When the thermal limit is triggered with load currents near the value of the current limit, the output may oscillate  
prior to the output switching off.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
7.3.6 Active Overshoot Pulldown Circuitry  
This device has pulldown circuitry connected to VOUT. This circuitry is a 100-μA current sink, in series with a  
5.5-kΩ resistor, controlled by VEN. When VEN is below VEN(LOW), the pulldown circuitry is disabled and the LDO  
output is in high-impedance mode.  
If the output voltage is more than 2% above nominal voltage when VEN VEN(LOW), the pulldown circuitry turns  
on and the output is pulled down until the output voltage is within 2% from the nominal voltage. This feature  
helps reduce overshoot during the transient response.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7A24  
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
7-1 shows the conditions that lead to the different modes of operation. See the Electrical Characteristics table  
for parameter values.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
The output current is less than the current limit (IOUT < ICL)  
)
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold  
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during start up), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than the maximum EN  
pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor is turned  
off and internal circuits are shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7A24  
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Adjustable Device Feedback Resistors  
The adjustable-version device requires external feedback divider resistors to set the output voltage. VOUT is set  
using the feedback divider resistors, R1 and R2, according to the following equation:  
VOUT = VFB × (1 + R1 / R2)  
(2)  
To ignore the FB pin current error term in the VOUT equation, set the feedback divider current to 100x the FB pin  
current listed in the Electrical Characteristics table. This setting provides the maximum feedback divider series  
resistance, as shown in the following equation:  
R1 + R2 VOUT / (IFB × 100)  
(3)  
8.1.2 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) capacitors at the input and  
output. Multilayer ceramic capacitors have become the industry standard for these types of applications and are  
recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and C0G-  
rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of Y5V-  
rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, expect the effective capacitance to decrease by as much as 50%. The input  
and output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
8.1.3 Input and Output Capacitor Requirements  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple,  
and PSRR. An input capacitor is recommended if the source impedance is more than 0.5 Ω. A higher value  
capacitor may be necessary if large, fast load transient or line transients are anticipated or if the device is  
located several inches from the input power source.  
Dynamic performance of the device is improved with the use of an output capacitor. Use an output capacitor  
within the range specified in the Recommended Operating Conditions table for stability.  
The effective output capacitance value is recommended to not exceed 50 µF.  
8.1.4 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
If reverse current flow is expected in the application, external protection is recommended to protect the device.  
Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation  
is anticipated.  
8-1 shows one approach for protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
Device  
COUT  
CIN  
GND  
8-1. Example Circuit for Reverse Current Protection Using a Schottky Diode  
8-2 shows another, more commonly used, approach in high input voltage applications.  
IN  
OUT  
Device  
COUT  
CIN  
GND  
8-2. Reverse Current Prevention Using a Diode Before the LDO  
8.1.5 Feed-Forward Capacitor (CFF)  
For the adjustable-voltage version device, a feed-forward capacitor (CFF) can be connected from the OUT pin to  
the FB pin. CFF improves transient, noise, and PSRR performance, but is not required for regulator stability.  
Recommended CFF values are listed in the Recommended Operating Conditions table. A higher capacitance  
CFF can be used; however, the start-up time increases. For a detailed description of CFF tradeoffs, see the Pros  
and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator application report.  
8.1.6 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed  
circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few  
or no other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. 方程4 calculates power dissipation (PD).  
PD = (VIN VOUT) × IOUT  
(4)  
备注  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct  
selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage  
required for correct output regulation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7A24  
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to 方程式 5, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the  
ambient air (TA).  
TJ = TA + (RθJA × PD)  
(5)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.7 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi  
metrics are determined to be significantly independent of the copper area available for heat-spreading. The  
Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two  
methods for calculating the junction temperature (TJ). As described in 程式 6, use the junction-to-top  
characterization parameter (ψJT) with the temperature at the center-top of device package (TT) to calculate the  
junction temperature. As described in 方程式 7, use the junction-to-board characterization parameter (ψJB) with  
the PCB surface temperature 1 mm from the device package (TB) to calculate the junction temperature.  
TJ = TT + ψJT × PD  
(6)  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
TJ = TB + ψJB × PD  
(7)  
where  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
8.1.8 Special Consideration for Line Transients  
During a line transient, the response of this LDO to a very large or fast input voltage change can cause a brief  
shutdown lasting up to a few hundred microseconds from the voltage transition. This shutdown can be avoided  
by reducing the voltage step size, increasing the transition time, or a combination of both. 8-3 provides a  
boundary to follow to avoid this behavior. If necessary, reduce slew rate and the voltage step size to stay below  
the curve.  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
VIN Delta  
0
0
1
2
3
4
5
6
7
Input Voltage Step Size (V)  
8
9
10 11 12 13 14 15  
8-3. Recommended Input Voltage Step and Slew Rate in a Line Transient  
8.2 Typical Application  
8-4. Generating a 3.3-V Rail From a Multicell Power Bank  
8.2.1 Design Requirements  
8-1 summarizes the design requirements for 8-4.  
8-1. Design Parameters  
PARAMETER  
DESIGN VALUES  
5.3 V  
VIN  
VOUT  
3.3 V ±1.25%  
< 5 μA  
I(IN) (no load)  
IOUT (max)  
TA  
200 mA  
57.88°C (max)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7A24  
 
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
8.2.2 Detailed Design Procedure  
Select a 3.3-V output, fixed or adjustable device to generate the 3.3-V rail. The fixed-version LDO has internal  
feedback divider resistors, and thus has lower quiescent current. The adjustable-version LDO requires external  
feedback divider resistors, and is described in the Selecting Feedback Divider Resistors section.  
8.2.2.1 Transient Response  
As with any regulator, increasing the output capacitor value reduces over- and undershoot magnitude, but  
increases transient response duration.  
8.2.2.2 Selecting Feedback Divider Resistors  
For this design example, VOUT is set to 5 V. The following equations set the output voltage:  
VOUT = VFB × (1 + R1 / R2)  
(8)  
(9)  
R1 + R2 VOUT / (IFB × 100)  
For improved output accuracy, use 方程式 9 and IFB(TYP) = 10 nA as listed in the Electrical Characteristics table  
to calculate the upper limit for series feedback resistance, R1 + R2 5 MΩ.  
The control-loop error amplifier drives the FB pin to the same voltage as the internal reference (VFB = 1.24 V as  
listed in the Electrical Characteristics table). Use 方程式 8 to determine the ratio of R1 / R2 = 1.66. Use this ratio  
and solve 方程式 9 for R2. Now calculate the upper limit for R2 1.24 MΩ. Select a standard value resistor of  
R2 = 1.18 MΩ.  
Reference 方程8 and solve for R1:  
R1 = (VOUT / VFB 1) × R2  
(10)  
From 方程10, R1 = 1.96 MΩcan be determined. From 方程8, select VOUT = 3.299 V.  
8.2.2.3 Thermal Dissipation  
Junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total  
power dissipation (PD). Use 方程式 11 to calculate the power dissipation. Multiply PD by RθJA and add the  
ambient temperature (TA), as 方程12 shows, to calculate the junction temperature (TJ).  
PD = (IGND+ IOUT) × (VIN VOUT  
)
(11)  
(12)  
TJ = RθJA × PD + TA  
方程式 13 calculates the maximum ambient temperature. 程式 14 calculates the maximum ambient  
temperature for typical design applications.  
TA(MAX) = TJ(MAX) (RθJA × PD)  
(13)  
(14)  
TA(MAX) = 125°C [167.8°C/W × (5.3 V 3.3 V) × 0.2A] = 57.88°C  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
 
 
 
 
 
 
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
8.2.3 Application Curve  
20  
10  
12  
11  
10  
9
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
8
7
6
5
4
VOUT  
VIN  
3
2
-450 -300 -150  
0
150 300 450 600 750 900 1050  
Time (µsec)  
8-5. Line Transient (4.3 V to 5.3 V)  
8.3 Power Supply Recommendations  
The device is designed to operate with an input supply range of 2.4 V to 18 V. If the input supply is noisy,  
additional input capacitors with low ESR can help improve output noise performance. Connect a low output  
impedance power supply to the input pin of the TPS7A24. In order to optimize regulation, see the Feature  
Description section for more information on operation modes and performance features.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7A24  
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
8.4 Layout  
8.4.1 Layout Guidelines  
Place input and output capacitors as close to the device pins as possible  
Use copper planes for device connections to optimize thermal performance  
Place thermal vias around the device to distribute heat  
8.4.2 Layout Examples  
GND  
VIN  
VOUT  
PLANE  
COUT  
CIN  
R1  
R2  
GND  
PLANE  
EN  
8-6. Adjustable Version Layout Example  
VOUT  
VIN  
5
1
CIN  
COUT  
2
3
4
EN  
GND PLANE  
Represents via used for  
application specific connections  
8-7. Fixed Version Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7A24  
 
TPS7A24  
www.ti.com.cn  
ZHCSK49E AUGUST 2019 REVISED SEPTEMBER 2022  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Device Nomenclature  
9-1. Device Nomenclature(1)  
PRODUCT  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are  
used in the ordering number; for output voltages with a resolution of 50 mV, three digits are used  
(for example, 28 = 2.8 V; 125 = 1.25 V). 01 indicates adjustable output version.  
yyy is the package designator.  
TPS7A24xx(x)yyyz  
z is the package quantity. R is for large quantity reel  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7A24  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A2401DBVR  
TPS7A24125DBVR  
TPS7A2418DBVR  
TPS7A2425DBVR  
TPS7A2430DBVR  
TPS7A2433DBVR  
TPS7A2436DBVR  
TPS7A2450DBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1XFF  
1XTF  
1XLF  
1XKF  
1XJF  
1XHF  
1XIF  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
1XGF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A2401DBVR  
TPS7A2401DBVR  
TPS7A24125DBVR  
TPS7A24125DBVR  
TPS7A2418DBVR  
TPS7A2418DBVR  
TPS7A2425DBVR  
TPS7A2425DBVR  
TPS7A2430DBVR  
TPS7A2433DBVR  
TPS7A2436DBVR  
TPS7A2450DBVR  
TPS7A2450DBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A2401DBVR  
TPS7A2401DBVR  
TPS7A24125DBVR  
TPS7A24125DBVR  
TPS7A2418DBVR  
TPS7A2418DBVR  
TPS7A2425DBVR  
TPS7A2425DBVR  
TPS7A2430DBVR  
TPS7A2433DBVR  
TPS7A2436DBVR  
TPS7A2450DBVR  
TPS7A2450DBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A2418DBVR

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2425DBVR

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2430DBVR

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2433DBVR

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2436DBVR

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2450DBVR

具有使能功能的 200mA、18V、超低 IQ、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A25

具有电源正常指示功能的 300mA、18V、超低 IQ、高精度、可调节低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2501DRVR

具有电源正常指示功能的 300mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2501DRVT

具有电源正常指示功能的 300mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A25125DRVR

具有电源正常指示功能的 300mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2518DRVR

具有电源正常指示功能的 300mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2525DRVR

具有电源正常指示功能的 300mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI