TPS7A5301RPST [TI]

3A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RPS | 12 | -40 to 125;
TPS7A5301RPST
型号: TPS7A5301RPST
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RPS | 12 | -40 to 125

稳压器
文件: 总47页 (文件大小:4053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
TPS7A53 3A、高精度 (0.5%)、低噪声 (4.4µVRMS) LDO 稳压器  
1 特性  
3 说明  
1
线路、负载和温度范围内的最大精度为 0.5%,有  
偏置  
TPS7A53 是一款低噪声 (4.4µVRMS)、超低压降线性稳  
压器 (LDO),可提供 3A 电流,最大压降仅为  
110mV。该器件的输出电压可通过外部电阻分压器进  
行调节,范围为 0.8V 5.2V。  
输出电压噪声:4.4µVRMS  
低压降:3A 电流时为 110mV(最大值,有偏置)  
电源抑制比:  
TPS7A53 集低噪声 (4.4µVRMS)、高 PSRR 和高输出  
电流能力等特性于一体,非常适合为高速通信、视频、  
医疗或测试和测量 应用中的噪声敏感型组件供电。该  
器件具有高性能,可抑制电源产生的相位噪声和时钟抖  
动,因此非常适合为高性能串行器和解串器  
500kHz 时为 40dB  
输入电压范围:  
无偏置:1.4V 6.5V  
有偏置:1.1V 6.5V  
可调节输出电压范围:0.8V 5.2V  
可调软启动浪涌控制  
(SerDes)、模数转换器 (ADC) 和数模转换器 (DAC) 供  
电。该器件具有高性能和高达 5.2V 的输出能力,尤其  
适合射频放大器使用。  
开漏电源正常状态 (PG) 输出  
2.2mm × 2.5mm 12 引脚 VQFN 封装  
对于需要以低输入和低输出 (LILO) 电压运行的数字负  
载(例如专用集成电路 (ASIC)、现场可编程门阵列  
(FPGA) 和数字信号处理器 (DSP)),TPS7A53 所具  
备的出色精度(在负载和温度范围内可达 0.5%)、遥  
感功能、出色的瞬态性能和软启动功能可实现出色的系  
统性能。  
2 应用  
宏远程无线电单元 (RRU)  
室外回程单元  
有源天线系统 mMIMO (AAS)  
超声波扫描仪  
实验室和现场仪表  
传感器、成像和雷达  
作为可调节稳压器,TPS7A53 可实现多用途设计,因  
此适用于 VCOADCDAC 和成像传感器等模拟负载  
以及串行器/解串器、FPGA DSP 等数字负载。  
器件信息(1)  
器件型号  
TPS7A53  
封装  
VQFN (12)  
封装尺寸(标称值)  
2.20mm × 2.50mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
为射频组件供电  
为数字负载供电  
Bias Supply  
TPS7A53  
BIAS  
Input Supply  
Input Supply  
IN  
OUT  
IN  
TPS7A53  
OUT  
EN Signal  
PG  
EN  
PG  
VDD  
VCC  
DSP,  
ASIC,  
FPGA  
EN  
GPIO  
CMOS Sensor  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS297  
 
 
 
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 19  
8
9
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application .................................................. 31  
Power Supply Recommendations...................... 32  
10 Layout................................................................... 32  
10.1 Layout Guidelines ................................................. 32  
10.2 Layout Example .................................................... 33  
11 器件和文档支持 ..................................................... 34  
11.1 器件支持................................................................ 34  
11.2 文档支持................................................................ 34  
11.3 接收文档更新通知 ................................................. 34  
11.4 社区资源................................................................ 34  
11.5 ....................................................................... 35  
11.6 静电放电警告......................................................... 35  
11.7 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 36  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2019) to Revision A  
Page  
已更改 将文档状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
5 Pin Configuration and Functions  
RPS Package  
2.2-mm × 2.5-mm, 12-Pin VQFN  
Top View  
IN  
IN  
1
11  
OUT  
12  
10  
2
OUT  
FB  
EN  
3
4
9
8
6
NR/SS  
BIAS  
PG  
5
7
GND  
Not to scale  
Pin Functions  
PIN  
NO.  
NAME  
I/O  
DESCRIPTION  
BIAS supply voltage. This pin enables the use of low-input voltage, low-output (LILO) voltage conditions  
(that is, VIN = 1.2 V, VOUT = 1 V) to reduce power dissipation across the die. The use of a BIAS voltage  
improves dc and ac performance for VIN 2.2 V. A 10-µF capacitor or larger must be connected between  
this pin and ground. If not used, this pin must be left floating or tied to ground.  
BIAS  
5
I
Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low disables the  
device. If enable functionality is not required, this pin must be connected to IN or BIAS.  
EN  
FB  
3
9
I
I
Feedback pin connected to the error amplifier. Although not required, a 10-nF feed-forward capacitor from  
FB to OUT (as close to the device as possible) is recommended to maximize ac performance. The use of  
a feed-forward capacitor can disrupt PG (power good) functionality.  
Ground pin. These pins must be connected to ground, the thermal pad, and each other with a low-  
impedance connection.  
GND  
IN  
6, 7, 12  
1, 2  
I
Input supply voltage pin. A 10-µF or larger ceramic capacitor (5 µF or greater of capacitance) from IN to  
ground is recommended to reduce the impedance of the input supply. Place the input capacitor as close  
to the input as possible.  
Noise-reduction and soft-start pin. Connecting an external capacitor between this pin and ground reduces  
reference voltage noise and also enables the soft-start function. Although not required, a 10-nF or larger  
capacitor is recommended to be connected from NR/SS to GND (as close to the pin as possible) to  
maximize ac performance.  
NR/SS  
4
Regulated output pin. A 47-µF or larger ceramic capacitor (25 µF or greater of capacitance) from OUT to  
ground is required for stability and must be placed as close to the output as possible. Minimize the  
impedance from the OUT pin to the load.  
OUT  
PG  
10, 11  
8
O
O
Active-high, power-good pin. An open-drain output indicates when the output voltage reaches VIT(PG) of  
the target. The use of a feed-forward capacitor can disrupt PG (power good) functionality.  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
7.0  
VIN + 0.3(2)  
UNIT  
IN, BIAS, PG, EN  
Voltage  
SNS, OUT  
V
NR/SS, FB  
3.6  
OUT  
Internally limited  
A
Current  
PG (sink current into device)  
Operating junction, TJ  
Storage, Tstg  
5
125  
150  
mA  
–55  
–55  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 7.0 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.1  
3.0  
0.8  
0
NOM  
MAX  
6.5  
UNIT  
V
VIN  
Input supply voltage range  
Bias supply voltage range  
Output voltage range(1)  
VBIAS  
VOUT  
VEN  
IOUT  
CIN  
6.5  
V
5.15  
6.5  
V
Enable voltage range  
V
Output current  
0
4
A
Input capacitor  
22  
22  
1
47  
47  
3000  
3000  
100  
µF  
µF  
kΩ  
nF  
nF  
kΩ  
kΩ  
°C  
COUT  
RPG  
CNR/SS  
CFF  
R1  
Output capacitor  
Power-good pullup resistance  
NR/SS capacitor  
10  
10  
Feed-forward capacitor  
Top resistor value in feedback network for adjustable operation  
Bottom resistor value in feedback network for adjustable operation  
Operating junction temperature  
12.1  
R2  
160(2)  
125  
TJ  
–40  
(1) This output voltage range does not include device accuracy or accuracy of the feedback resistors.  
(2) The upper limit for the R2 resistor is to ensure accuracy by making the current through the feedback network much larger than the  
leakage current into the feedback node.  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
6.4 Thermal Information  
TPS7A53  
(2)  
THERMAL METRIC(1)  
RPS (VQFN)  
12 PINS  
68.7  
RPS (VQFN)(3)  
UNIT  
12 PINS  
46.5  
43.8  
N/A  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
43.8  
19.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
4.5  
ΨJB  
18.9  
22  
RθJC(bot)  
4.2  
11.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) JEDEC standard. (2s2p, no vias to internal plane and bottom layer)  
(3) EVM model.  
6.5 Electrical Characteristics  
over operating junction temperature range (TJ = –40°C to +125°C), VIN = 1.4 V or VIN = VOUT(nom) + 0.5 V (whichever is  
greater), VBIAS = open, VOUT(nom) = 0.8 V(1), OUT connected to 50 Ω to GND, VEN = 1.1 V, CIN = 10 µF, COUT = 47 µF, CNR/SS  
0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted); typical values are at TJ = 25°C  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.8  
MAX UNIT  
VFB  
Feedback voltage  
NR/SS pin voltage  
V
V
VNR/SS  
0.8  
Rising input supply  
UVLO with BIAS  
VUVLO+(IN)  
VUVLO-(IN)  
VUVLO+(IN)  
VUVLO-(IN)  
VUVLO+(BIAS)  
VUVLO-(BIAS)  
VIN rising with VBIAS = 3 V  
1.02  
0.7  
1.085  
1.39  
2.9  
V
V
V
V
V
Falling input supply  
UVLO with BIAS  
VIN falling with VBIAS = 3 V  
VIN rising  
0.55  
0.65  
Rising input supply  
UVLO without BIAS  
1.31  
1.057  
2.83  
2.54  
Falling input supply  
UVLO without BIAS  
VIN falling  
Rising bias supply  
UVLO  
VBIAS rising, VIN = 1.1 V  
VBIAS falling, VIN = 1.1 V  
Falling bias supply  
UVLO  
2.45  
0.8  
V
V
Output voltage range  
5.15  
0.75  
1.4 V VIN 6.5 V,  
0.8 V VOUT 5.15 V,  
5 mA IOUT 3 A  
-0.75  
-0.5  
%
VOUT  
Output voltage  
accuracy  
VIN =1.1 V,  
5 mA IOUT 3 A,  
3 V VBIAS 6.5 V  
0.5  
%
IOUT = 5 mA,  
1.4 V VIN 6.5 V  
DVOUT/ΔVIN  
DVOUT/ΔVIN  
Line regulation  
0.03  
mV/V  
mV/A  
5 mA IOUT 3 A  
3 V VBIAS 6.5 V  
VIN = 1.1V  
Load regulation  
Load regulation  
0.07  
DVOUT/ΔVIN  
5 mA IOUT 3 A  
0.012  
mV/A  
mV  
VIN = 1.4 V, IOUT = 5 mA;  
-40 TJ +125 ℃  
Error amplifier offset  
voltage  
VOS  
-2.5  
2.5  
(1) VOUT(nom) is the calculated VOUT target value from the ANY-OUT in a fixed configuration. In an adjustable configuration, VOUT(nom) is the  
expected VOUT value set by the external feedback resistors.  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating junction temperature range (TJ = –40°C to +125°C), VIN = 1.4 V or VIN = VOUT(nom) + 0.5 V (whichever is  
greater), VBIAS = open, VOUT(nom) = 0.8 V(1), OUT connected to 50 Ω to GND, VEN = 1.1 V, CIN = 10 µF, COUT = 47 µF, CNR/SS  
0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted); typical values are at TJ = 25°C  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 1.4 V, IOUT = 3 A,  
VFB = 0.8 V – 3%  
105  
175  
280  
375  
VIN = 5.4 V, IOUT = 3 A,  
VFB = 0.8 V – 3%  
170  
215  
VDO  
Dropout voltage  
mV  
VIN = 5.6 V, IOUT = 3 A,  
VFB = 0.8 V – 3%  
VIN = 1.1 V,  
3.0 V VBIAS 6.5 V,  
IOUT = 3 A, VFB = 0.8 V – 3%  
60  
110  
4.9  
VOUT forced at 0.9 × VOUT(nom)  
VIN = VOUT(nom) + 0.4 V  
,
ILIM  
ISC  
Output current limit  
3.6  
4.2  
2
A
Short-circuit current  
limit  
RLOAD = 20 mΩ  
VIN = 6.5 V, IOUT = 5 mA  
VIN = 1.4 V, IOUT = 3 A  
2.8  
4.8  
4
mA  
5.5  
IGND  
GND pin current  
Shutdown, PG = open,  
VIN = 6.5 V, VEN = 0.5 V  
25  
0.5  
3.5  
0.5  
6.5  
µA  
µA  
mA  
V
VIN = 6.5 V,  
VEN = 0 V and 6.5 V  
IEN  
EN pin current  
VIN = 1.1 V, VBIAS = 6.5 V,  
VOUT(nom) = 0.8 V, IOUT = 3 A  
IBIAS  
BIAS pin current  
2.3  
EN pin low-level input  
voltage (disable device)  
VIL(EN)  
VIH(EN)  
0
EN pin high-level input  
voltage (enable device)  
1.1  
V
VIT-(PG)  
VIT+(PG)  
Falling PG pin threshold For falling VOUT  
Rising PG pin threshold For rising VOUT  
82% × VOUT 88.3% × VOUT  
84% × VOUT 89.3% × VOUT  
93% × VOUT  
95% × VOUT  
V
V
VOUT < VIT(PG)  
IPG = –1 mA (current into device)  
,
PG pin low-level output  
voltage  
VOL(PG)  
Ilkg(PG)  
INR/SS  
0.4  
1
V
PG pin leakage current VOUT > VIT(PG), VPG = 6.5 V  
µA  
µA  
NR/SS pin charging  
VNR/SS = GND, VIN = 6.5 V  
current  
4
6.2  
9
IFB  
FB pin leakage current VIN = 6.5 V  
NR resistor value  
100  
nA  
RNR  
250  
kΩ  
VIN – VOUT = 0.4 V, VOUT = 0.8 V,  
VBIAS = 5 V, IOUT = 3 A,  
CNR/SS = 10 nF, CFF = 10 nF,  
COUT = 47 µF || 10 µF || 10 µF,  
f = 10 kHz  
35  
44  
Power-supply rejection  
ratio  
PSRR  
dB  
VIN – VOUT = 0.4 V, VOUT = 0.8 V,  
VBIAS = 5 V, IOUT = 3 A,  
CNR/SS = 10 nF, CFF = 10 nF,  
COUT = 47 µF || 10 µF || 10 µF,  
f = 500 kHz  
6
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
Electrical Characteristics (continued)  
over operating junction temperature range (TJ = –40°C to +125°C), VIN = 1.4 V or VIN = VOUT(nom) + 0.5 V (whichever is  
greater), VBIAS = open, VOUT(nom) = 0.8 V(1), OUT connected to 50 Ω to GND, VEN = 1.1 V, CIN = 10 µF, COUT = 47 µF, CNR/SS  
0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted); typical values are at TJ = 25°C  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Bandwidth = 10 Hz to 100 kHz,  
VIN = 1.1 V, VOUT = 0.8 V,  
VBIAS = 5 V, IOUT = 3 A,  
4.4  
CNR/SS = 10 nF, CFF = 10 nF,  
COUT = 47 µF || 10 µF || 10 µF  
Vn  
Output noise voltage  
µVRMS  
Bandwidth = 10 Hz to 100 kHz,  
VOUT = 5 V, IOUT = 3 A,  
CNR/SS = 10 nF, CFF = 10 nF,  
COUT = 47 µF || 10 µF || 10 µF  
8.4  
Thermal shutdown  
temperature increasing  
Tsd+  
Tsd-  
Shutdown, temperature increasing  
Reset, temperature decreasing  
160  
140  
°C  
Thermal shutdown  
temperature decreasing  
版权 © 2019–2020, Texas Instruments Incorporated  
7
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.4 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT  
= 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
0.1 A  
VIN  
1.10 V  
1.15 V  
1.20 V  
1.25 V  
1.30 V  
1.35 V  
1.40 V  
0.5 A  
1 A  
2 A  
3 A  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
IOUT = 3 A, VBIAS = 5 V,  
VIN = 1.2 V, VBIAS = 5 V,  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF  
2. PSRR vs Frequency and VIN With Bias  
1. PSRR vs Frequency and IOUT  
100  
100  
90  
80  
70  
60  
50  
VBias  
0 V  
3.0 V  
5.0 V  
6.5 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
VIN  
30  
20  
10  
0
1.1 V (VBIAS = 5 V)  
1.2 V (VBIAS = 5 V)  
1.4 V (VBIAS = 0 V)  
1.4 V (VBIAS = 5 V)  
2.5 V (VBIAS = 0 V)  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VIN = 1.4 V, IOUT = 1 A,  
IOUT = 1 A,  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF  
3. PSRR vs Frequency and VBIAS  
4. PSRR vs Frequency and VIN  
100  
100  
VOUT  
1.1 V  
1.2 V  
VIN  
3.70 V  
3.75 V  
90  
90  
0.8 V  
0.9 V  
1.5 V  
1.8 V  
2.5 V  
3.60 V  
3.65 V  
3.80 V  
3.85 V  
3.90 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VIN = VOUT + 0.4 V, VBIAS = 5.0 V, IOUT = 3 A,  
IOUT = 3 A,  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF  
5. PSRR vs Frequency and VOUT With Bias  
6. PSRR vs Frequency and VIN for VOUT = 3.3 V  
8
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.4 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT  
= 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
COUT  
100 mF  
200 mF  
IOUT  
0.1 A  
47 mF  
67 mF  
500 mF  
0.5 A  
1 A  
2 A  
3 A  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
VIN = VOUT + 0.4 V, VOUT = 1 V, IOUT = 3 A,  
CNR/SS = 10 nF, CFF = 10 nF  
VIN = VOUT + 0.6 V,  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF  
7. PSRR vs Frequency and COUT  
8. PSRR vs Frequency and IOUT for VOUT = 5 V  
15  
13.5  
12  
2
IOUT = 1.0 A  
IOUT = 2.0 A  
IOUT = 3.0 A  
IOUT = 4.0 A  
VOUT = 0.8 V, 4.5 mVRMS  
1
VOUT = 1.5 V, 5.4 mVRMS  
VOUT = 3.3 V, 8.5 mVRMS  
VOUT = 5.0 V, 12.4 mVRMS  
0.5  
0.2  
0.1  
10.5  
9
0.05  
0.02  
0.01  
7.5  
6
0.005  
4.5  
3
0.002  
0.001  
0.6  
1.2  
1.8  
2.4  
Output Voltage (V)  
3
3.6  
4.2  
4.8  
5.4  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
VIN = VOUT + 0.4 V and VBIAS = 5 V for VOUT 2.2 V,  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF,  
RMS noise BW = 10 Hz to 100 kHz  
VIN = VOUT + 0.4 V and VBIAS = 5 V for VOUT 2.2 V, IOUT = 4 A,  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF,  
RMS noise BW = 10 Hz to 100 kHz  
9. Output Voltage Noise vs Output Voltage and IOUT  
10. Output Voltage Noise vs Frequency and VOUT  
2
2
VIN = 1.4 V, VBIAS = 5.0 V, 4.5 mVRMS  
VIN = 1.4 V, 6.0 mVRMS  
CNR/SS = 0 nF, 6.2 mVRMS  
CNR/SS = 1 nF, 4.9 mVRMS  
1
1
VIN = 1.5 V, 4.5 mVRMS  
VIN = 1.8 V, 4.5 mVRMS  
VIN = 2.5 V, 4.6 mVRMS  
VIN = 5.0 V, 5.15 mVRMS  
CNR/SS = 10 nF, 4.5 mVRMS  
CNR/SS = 100 nF, 4.4 mVRMS  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
IOUT = 1 A,  
VIN = VOUT + 0.4 V, VBIAS = 5 V, IOUT = 4 A,  
COUT = 47 µF || 10 µF || 10 µF, CFF = 10 nF,  
RMS noise BW = 10 Hz to 100 kHz  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = 10 nF, CFF = 10 nF,  
RMS noise BW = 10 Hz to 100 kHz  
11. Output Voltage Noise vs Frequency and VIN  
12. Output Voltage Noise vs Frequency and CNR/SS  
版权 © 2019–2020, Texas Instruments Incorporated  
9
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.4 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT  
= 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)  
2
2
CFF = 0 nF, 6.2 mVRMS  
CFF = 0.1 nF, 5.8 mVRMS  
CFF = 1 nF, 4.9 mVRMS  
CFF = 10 nF, 4.5mVRMS  
CFF = 100 nF, 4.4 mVRMS  
CNR/SS = 10 nF, 12.3 mVRMS  
CNR/SS = 100 nF, 8.4 mVRMS  
CFF = CNR/SS = 100 nF, 6.6 mVRMS  
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
VIN = VOUT + 0.4 V, VBIAS = 5 V, IOUT = 4 A, sequencing with a  
DC/DC converter and PG, COUT = 47 µF || 10 µF || 10 µF,  
CNR/SS = 10 nF, RMS noise BW = 10 Hz to 100 kHz  
VIN = 5.6 V, IOUT = 4 A,  
COUT = 47 µF || 10 µF || 10 µF, CFF = 10 nF,  
RMS noise BW = 10 Hz to 100 kHz  
13. Output Voltage Noise vs Frequency and CFF  
14. Output Voltage Noise vs Frequency at 5.0-V Output  
1.2  
10  
50  
40  
30  
20  
10  
0
Output Current  
VOUT = 0.9 V  
VOUT = 1.1 V  
VOUT = 1.2 V  
VOUT = 1.8 V  
9
8
7
6
5
4
3
2
1
0
1
0.8  
0.6  
0.4  
-10  
-20  
-30  
-40  
-50  
VEN  
0.2  
0
VOUT, CNR/SS = 0 nF  
VOUT, CNR/SS = 10 nF  
VOUT, CNR/SS = 47 nF  
VOUT, CNR/SS = 100 nF  
-0.2  
0
5
10  
15  
20  
25  
Time (ms)  
30  
35  
40  
45  
50  
0
0.25  
0.5  
0.75 1  
Time (ms)  
1.25  
1.5  
1.75  
VIN = 1.2 V, VOUT = 0.9 V, VBIAS = 5.0 V, IOUT = 4 A,  
COUT = 47 µF || 10 µF || 10 µF, CFF = 10 nF  
VIN = VOUT + 0.3 V, VBIAS = 5 V, IOUT, DC = 100 mA, slew rate =  
1 A/µs, CNR/SS = CFF = 10 nF, COUT = 47 µF || 10 µF || 10 µF  
16. Load Transient vs Time and VOUT With Bias  
15. Start-Up Waveform vs Time and CNR/SS  
10  
9
8
7
6
5
4
3
2
1
0
50  
50  
Output Current  
VOUT = 0.9 V  
VOUT = 1.1 V  
VOUT, 0.5 A/ms  
VOUT, 1 A/ms  
VOUT, 2 A/ms  
40  
30  
25  
0
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-25  
-50  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
Time (ms)  
2
0
0.4  
0.8  
Time (ms)  
1.2  
1.6  
2
IOUT, DC = 100 mA, COUT = 47 µF || 10 µF || 10 µF,  
CNR/SS = CFF = 10 nF, slew rate = 1 A/µs  
VOUT = 5 V, IOUT, DC = 100 mA, IOUT = 100 mA to 4 A,  
COUT = 47 µF || 10 µF || 10 µF, CNR/SS = CFF = 10 nF  
17. Load Transient vs Time and VOUT Without Bias  
18. Load Transient vs Time and Slew Rate  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.4 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT  
= 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
60  
40  
20  
0
TJ  
VOUT, 100 mA to 3 A  
VOUT, 500 mA to 3 A  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
-20  
-40  
0
1
1.5  
2
2.5  
3 4  
Input Voltage (V)  
3.5  
4.5  
5
5.5  
6
0
25  
50  
75  
Time (ms)  
100  
125  
150  
IOUT = 3 A, VBIAS = 0 V  
VIN = 1.2 V, VBIAS = 5.0 V, COUT = 47 µF || 10 µF || 10 µF,  
CNR/SS = CFF = 10 nF, slew rate = 1 A/µs  
20. Dropout Voltage vs Input Voltage Without Bias  
19. Load Transient vs Time and DC Load  
(VOUT = 0.9 V)  
500  
200  
150  
100  
50  
TJ  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
400  
300  
200  
100  
0
0
1
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
IOUT = 3 A, VBIAS = 5 V  
VIN = 1.4 V, VBIAS = 0 V  
21. Dropout Voltage vs Input Voltage With Bias  
22. Dropout Voltage vs Output Current Without Bias  
250  
TJ  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
200  
150  
100  
50  
0
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
VIN = 1.1 V, VBIAS = 3 V  
VIN = 5.5 V  
23. Dropout Voltage vs Output Current With Bias  
24. Dropout Voltage vs Output Current (High VIN  
)
版权 © 2019–2020, Texas Instruments Incorporated  
11  
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.4 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT  
= 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)  
5
5
TJ  
TJ  
4
4
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
VIN = 1.1 V, VBIAS = 5 V  
VIN = 1.4 V, VBIAS = 0 V  
25. Load Regulation With Bias  
26. Load Regulation Without Bias  
0.6  
0.4  
0.2  
0
4.25  
4
TJ  
0°C  
25°C  
TJ  
-55°C  
-40°C  
85°C  
85°C  
135°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
-0.2  
-0.4  
-0.6  
1.75  
1
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
6.5  
1
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
6.5  
VOUT = 0.8 V, VBIAS = 0 V, IOUT = 5 mA  
VBIAS = 0 V, IOUT = 5 mA  
27. Line Regulation Without Bias  
28. Quiescent Current vs Input Voltage  
4
10  
9
8
7
6
5
4
3
2
1
0
TJ  
TJ  
3.75  
3.5  
3.25  
3
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
2.75  
2.5  
2.25  
2
1.75  
3
3.5  
4
4.5  
Bias Voltage (V)  
5
5.5  
6
6.5  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
6
6.5  
VIN = 1.1 V, IOUT = 5 mA  
VBIAS = 0 V  
29. Quiescent Current vs Bias Voltage  
30. Shutdown Current vs Input Voltage  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.4 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT  
= 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)  
10  
9
8
7
6
5
4
3
2
1
0
9
8.5  
8
TJ  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
7.5  
7
6.5  
6
5.5  
5
3
3.5  
4
4.5  
Bias Voltage (V)  
5
5.5  
6
6.5  
1
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
6.5  
150  
4
VIN = 1.1 V  
VBIAS = 0 V  
31. Shutdown Current vs Bias Voltage  
32. NR/SS Current vs Input Voltage  
2
3
2.9  
2.8  
2.7  
2.6  
2.5  
VUVLO+ (VIN Falling without Bias)  
VUVLO- (VIN Falling with Bias)  
VUVLO+ (VIN Rising without Bias)  
VUVLO- (VIN Rising with Bias)  
VUVLO+ (VBIAS Falling)  
VUVLO- (VBIAS Rising)  
1.75  
1.5  
1.25  
1
0.75  
0.5  
-55  
-25  
5
35  
65  
95  
125  
150  
-55  
-25  
5
35  
65  
95  
125  
Temperature (èC)  
Temperature (èC)  
VIN = 1.1 V  
33. VIN UVLO vs Temperature  
34. VBIAS UVLO vs Temperature  
0.85  
0.8  
1
VIH(EN)  
VIL(EN)  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
0.8  
0.75  
0.7  
0.6  
0.4  
0.2  
0
0.65  
0.6  
0.55  
-60  
-30  
0
30  
60  
90  
120  
150  
0
1
2
PG Current (mA)  
3
Temperature (èC)  
VIN = 1.4 V, 6.5 V  
35. Enable Threshold vs Temperature  
36. PG Voltage vs PG Current Sink  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.4 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V, COUT  
= 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ (unless otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
92  
91.5  
91  
TJ  
VIT+(PG)  
VIT-(PG)  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
135°C  
150°C  
90.5  
90  
89.5  
89  
88.5  
88  
0
1
2
PG Current (mA)  
3
4
-55  
-25  
5
35  
65  
95  
125  
150  
Temperature (èC)  
VIN = 6.5 V  
37. PG Voltage vs PG Current Sink  
38. PG Threshold vs Temperature  
100  
90  
80  
70  
60  
TJ  
-50°C  
-40°C  
50  
0°C  
25°C  
40  
85°C  
125°C  
30  
135°C  
150°C  
20  
10  
0
0.5  
1
1.5  
2
2.5  
Output Current (A)  
3
3.5  
4
4.5  
VIN = 1.1 V, VBIAS = 3 V  
39. Foldback Current Limit vs Temperature  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
7 Detailed Description  
7.1 Overview  
The TPS7A52 is a high-current (4 A), low-noise (4.4 µVRMS), high accuracy (1%) low-dropout linear voltage  
regulator with an input range of 1.1 V to 6.5 V and an output voltage range of 0.8 V to 5.1 V. The TPS7A52 has  
an integrated charge pump for ease of use, and an external bias rail to allow for the lowest dropout across the  
entire output voltage range. 1 categorizes the functions shown in the Functional Block Diagram. These  
features make the TPS7A52 a robust solution to solve many challenging problems by generating a clean,  
accurate power supply in a variety of applications.  
1. Device Features  
VOLTAGE REGULATION  
SYSTEM START-UP  
INTERNAL PROTECTION  
High accuracy  
Programmable soft start  
Foldback current limit  
No sequencing requirement between BIAS,  
IN, and EN  
Low-noise, high-PSRR output  
Fast transient response  
Thermal shutdown  
Power-good output  
Start-up with negative bias on OUT  
7.2 Functional Block Diagram  
PSRR  
Boost  
Current  
Limit  
IN  
OUT  
Charge  
Pump  
BIAS  
Active  
Discharge  
RNR/SS = 250 kW  
0.8-V  
VREF  
+
Error  
Amp  
œ
INR/SS  
NR/SS  
200 pF  
FB  
Internal  
Controller  
UVLO  
Circuits  
Thermal  
Shutdown  
PG  
œ
0.88 x VREF  
+
EN  
GND  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
 
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Voltage Regulation Features  
7.3.1.1 DC Regulation  
A low dropout regulator (LDO) functions as a class-B amplifier, as shown in 40, in which the input signal is the  
internal reference voltage (VREF). VREF is designed to have very low bandwidth at the input to the error amplifier  
through the use of a low-pass filter (VNR/SS).  
As such, the reference can be considered as a pure dc input signal. The low output impedance of an LDO comes  
from the combination of the output capacitor and pass element. The pass element also presents a high input  
impedance to the source voltage when operating as a current source. A positive LDO can only source current  
because of the class-B architecture.  
This device achieves a maximum of 1% output voltage accuracy primarily because of the high-precision band-  
gap voltage (VBG) that creates VREF. The low dropout voltage (VDO) reduces the thermal power dissipation  
required by the device to regulate the output voltage at a given current level, thereby improving system  
efficiency. These features combine to make this device a good approximation of an ideal voltage source.  
VIN  
To Load  
R1  
VREF  
R2  
GND  
NOTE: VOUT = VREF × (1 + R1 / R2).  
40. Simplified Regulation Circuit  
7.3.1.2 AC and Transient Response  
The LDO responds quickly to a transient (large-signal response) on the input supply (line transient) or the output  
current (load transient) resulting from the LDO high-input impedance and low output-impedance across  
frequency. This same capability also means that the LDO has a high power-supply rejection ratio (PSRR) and,  
when coupled with a low internal noise-floor (Vn), the LDO approximates an ideal power supply in ac (small-  
signal) and large-signal conditions.  
The choice of external component values optimizes the small- and large-signal response. The NR/SS capacitor  
(CNR/SS) and feed-forward capacitor (CFF) easily reduce the device noise floor and improve PSRR.  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
Feature Description (接下页)  
7.3.2 System Start-Up Features  
In many different applications, the power-supply output must turn on within a specific window of time to either  
provide proper operation of the load or to minimize the loading on the input supply or other sequencing  
requirements. The LDO start-up is well-controlled and user-adjustable, solving the demanding requirements  
faced by many power-supply design engineers in a simple fashion.  
7.3.2.1 Programmable Soft Start (NR/SS Pin)  
Soft start directly controls the output start-up time and indirectly controls the output current during start-up (inrush  
current).  
As shown in 41, the external capacitor at the NR/SS pin (CNR/SS) sets the output start-up time by setting the  
rise time of the internal reference (VNR/SS).  
SW  
INR/SS  
RNR  
VREF  
+
CNR/SS  
œ
VFB  
GND  
41. Simplified Soft-Start Circuit  
7.3.2.2 Internal Sequencing  
Controlling when a single power supply turns on can be difficult in a power distribution network (PDN) because of  
the high power levels inherent in a PDN, and the variations between all of the supplies. As shown in 42 and 表  
2, the LDO turnon and turnoff time is set by the enable circuit (EN) and undervoltage lockout circuits (UVLO1,2(IN)  
and UVLOBIAS).  
EN  
UVLOBIAS  
UVLO1,2(IN)  
Internal Enable  
Control  
42. Simplified Turnon Control  
2. Internal Sequencing Functionality Table  
ENABLE  
STATUS  
LDO  
STATUS  
ACTIVE  
DISCHARGE  
POWER  
GOOD  
INPUT VOLTAGE  
BIAS VOLTAGE  
PG = 1 when  
EN = 1  
EN = 0  
On  
Off  
On  
VOUT VIT(PG)  
VBIAS VUVLO(BIAS)  
VIN VUVLO_1,2(IN)  
Off  
Off  
Off  
Off  
VBIAS < VUVLO(BIAS) + VHYS(BIAS)  
BIAS = don't care  
PG = 0  
VIN < VUVLO_1,2(IN) – VHYS1,2(IN)  
IN = don't care  
EN = don't care  
On(1)  
VBIAS VUVLO(BIAS)  
(1) The active discharge remains on as long as VIN or VBIAS provide enough headroom for the discharge circuit to function.  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
 
 
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
7.3.2.2.1 Enable (EN)  
The enable signal (VEN) is an active-high digital control that enables the LDO when the enable voltage is past the  
rising threshold (VEN VIH(EN)) and disables the LDO when the enable voltage is below the falling threshold (VEN  
VIL(EN)). The exact enable threshold is between VIH(EN) and VIL(EN) because EN is a digital control. Connect EN  
to VIN if enable functionality is not desired.  
7.3.2.2.2 Undervoltage Lockout (UVLO) Control  
The UVLO circuits respond quickly to glitches on IN or BIAS and attempts to disable the output of the device if  
either of these rails collapse.  
7.3.2.2.3 Active Discharge  
When either EN or UVLO are low, the device connects a resistor of several hundred ohms from VOUT to GND,  
discharging the output capacitance.  
Do not rely on the active discharge circuit for discharging large output capacitors when the input voltage drops  
below the targeted output voltage. Current flows from the output to the input (reverse current) when VOUT > VIN,  
which can cause damage to the device (when VOUT > VIN + 0.3 V).  
7.3.2.3 Power-Good Output (PG)  
The PG signal provides an easy solution to meet demanding sequencing requirements because PG signals  
when the output nears its nominal value. PG can be used to signal other devices in a system when the output  
voltage is near, at, or above the set output voltage (VOUT(nom)). 43 shows a simplified schematic.  
The PG signal is an open-drain digital output that requires a pullup resistor to a voltage source and is active high.  
The PG circuit sets the PG pin into a high-impedance state to indicate that the power is good.  
Using a large feed-forward capacitor (CFF) delays the output voltage and, because the PG circuit monitors the FB  
pin, the PG signal can indicate a false positive.  
VPG  
VBG  
VIN  
œ
VFB  
+
GND  
GND  
UVLOBIAS  
UVLOIN  
EN  
GND  
43. Simplified PG Circuit  
7.3.3 Internal Protection Features  
In many applications, fault events can occur that damage devices in the system. Short circuits and excessive  
heat are the most common fault events for power supplies. The TPS7A52 implements circuitry to protect the  
device and its load during these events. Continuously operating in these fault conditions or above a junction  
temperature of 140°C is not recommended because the long-term reliability of the device is reduced.  
7.3.3.1 Foldback Current Limit (ICL  
)
The internal current limit circuit is used to protect the LDO against high load-current faults or shorting events.  
During a current-limit event, the LDO sources constant current; therefore, the output voltage falls with decreased  
load impedance. Thermal shutdown can activate during a current limit event because of the high power  
dissipation typically found in these conditions. For proper operation of the current limit, minimize the inductances  
to the input and load. Continuous operation in current limit is not recommended.  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
7.3.3.2 Thermal Protection (Tsd)  
The thermal shutdown circuit protects the LDO against excessive heat in the system, either resulting from current  
limit or high ambient temperature.  
The output of the LDO turns off when the LDO temperature (junction temperature, TJ) exceeds the rising thermal  
shutdown temperature. The output turns on again after TJ decreases below the falling thermal shutdown  
temperature.  
A high power dissipation across the device, combined with a high ambient temperature (TA), can cause TJ to be  
greater than or equal to Tsd, triggering the thermal shutdown and causing the output to fall to 0 V. The LDO can  
cycle on and off when thermal shutdown is reached under these conditions.  
7.4 Device Functional Modes  
3 provides a quick comparison between the regulation and disabled operation.  
3. Device Functional Modes Comparison  
PARAMETER  
EN  
OPERATING  
MODE  
VIN  
VBIAS  
IOUT  
IOUT < ICL  
TJ  
Regulation(1)  
Disabled(3)  
VIN > VOUT(nom) + VDO  
VIN < VUVLO_1,2(IN)  
V
BIAS VUVLO(BIAS)  
VEN > VIH(EN)  
VEN < VIL(EN)  
TJ TJ(maximum)  
TJ > Tsd  
(2)  
VBIAS < VUVLO(BIAS)  
(1) All table conditions must be met.  
(2) VBIAS is only required for VIN < 1.4 V.  
(3) The device is disabled when any condition is met.  
7.4.1 Regulation  
The device regulates the output to the nominal output voltage when all conditions in 3 are met.  
7.4.2 Disabled  
When disabled, the pass device is turned off, the internal circuits are shut down, and the output voltage is  
actively discharged to ground by an internal resistor from the output to ground. See the Active Discharge section  
for additional information.  
7.4.3 Current Limit Operation  
During a current-limit event, the LDO regulates the output current instead of the output voltage; therefore, the  
output voltage falls with decreased load impedance..  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Successfully implementing an LDO in an application depends on the application requirements. This section  
discusses key device features and how to best implement them to achieve a reliable design.  
8.1.1 Recommended Capacitor Types  
The TPS7A52 is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the  
input, output, and noise-reduction pin (NR, pin 13). Multilayer ceramic capacitors have become the industry  
standard for these types of applications and are recommended, but must be used with good judgment. Ceramic  
capacitors that employ X7R-, X5R-, and COG-rated dielectric materials provide relatively good capacitive stability  
across temperature. The use of Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, ceramic capacitance varies with operating voltage and  
temperature. Make sure to derate ceramic capacitors by at least 50%. The input and output capacitors  
recommended herein account for a capacitance derating of approximately 50%, but at high VIN and VOUT  
conditions (VIN = 5.5 V to VOUT = 5.0 V), the derating can be greater than 50%, and must be taken into  
consideration.  
8.1.1.1 Input and Output Capacitor Requirements (CIN and COUT  
)
The TPS7A52 is designed and characterized for operation with ceramic capacitors of 47 µF or greater (22 µF or  
greater of capacitance) at the output and 10 µF or greater (5 µF or greater of capacitance) at the input. Use at  
least a 47-µF capacitor at the input to minimize input impedance. Place the input and output capacitors as near  
as practical to the respective input and output pins in order to minimize trace parasitics. If the trace inductance  
from the input supply to the TPS7A52 is high, a fast current transient can cause VIN to ring above the absolute  
maximum voltage rating and damage the device. This situation can be mitigated by additional input capacitors to  
dampen and keep the ringing below the device absolute maximum ratings.  
A combination of multiple output capacitors boosts the high-frequency PSRR. The combination of one 0805-  
sized, 47-µF ceramic capacitor in parallel with two 0805-sized, 10-µF ceramic capacitors with a sufficient voltage  
rating, in conjunction with the PSRR boost circuit, optimizes PSRR for the frequency range of 400 kHz to  
700 kHz, a typical range for dc/dc supply switching frequency. This 47-µF || 10-µF || 10-µF capacitor combination  
also makes certain that at high input voltage and high output voltage configurations, the minimum effective  
capacitance is met. Many 0805-sized, 47-µF ceramic capacitors have a voltage derating of approximately 60% to  
80% at 5.0 V, so the addition of the two 10-µF capacitors makes sure that the capacitance is at or above 22 µF.  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
Application Information (接下页)  
8.1.1.2 Noise-Reduction and Soft-Start Capacitor (CNR/SS  
)
The TPS7A52 features a programmable, monotonic, voltage-controlled soft start that is set with an external  
capacitor (CNR/SS). Use an external CNR/SS to minimize inrush current into the output capacitors. This soft-start  
feature eliminates power-up initialization problems when powering field-programmable gate arrays (FPGAs),  
digital signal processors (DSPs), or other processors. The controlled voltage ramp of the output also reduces  
peak inrush current during start-up, minimizing start-up transients to the input power bus.  
To achieve a monotonic start-up, the TPS7A52 error amplifier tracks the voltage ramp of the external soft-start  
capacitor until the voltage approaches the internal reference. The soft-start ramp time depends on the soft-start  
charging current (INR/SS), the soft-start capacitance (CNR/SS), and the internal reference (VNR/SS). Use 公式 1 to  
calculate the soft-start ramp time:  
tSS = (VNR/SS × CNR/SS) / INR/SS  
(1)  
INR/SS is provided in the Electrical Characteristics table and has a typical value of 6.2 µA.  
The noise-reduction capacitor, in conjunction with the noise-reduction resistor, forms a low-pass filter (LPF) that  
filters out the noise from the reference before being gained up with the error amplifier, thereby reducing the  
device noise floor. The LPF is a single-pole filter and 公式 2 can calculate the cutoff frequency. The typical value  
of RNR is 250 kΩ. Increasing the CNR/SS capacitor has a greater affect because the output voltage increases  
when the noise from the reference is gained up even more at higher output voltages. For low-noise applications,  
a 10-nF to 1-µF CNR/SS is recommended.  
fcutoff = 1 / (2 × π × RNR × CNR/SS  
)
(2)  
8.1.1.3 Feed-Forward Capacitor (CFF)  
Although a feed-forward capacitor (CFF) from the FB pin to the OUT pin is not required to achieve stability, a  
10-nF external feed-forward capacitor optimizes the transient, noise, and PSRR performance. A higher  
capacitance CFF can be used; however, the start-up time is longer and the power-good signal can incorrectly  
indicate that the output voltage is settled. For a detailed description, see the Pros and Cons of Using a Feed-  
Forward Capacitor with a Low Dropout Regulator application report.  
8.1.2 Soft Start and Inrush Current  
Soft start refers to the ramp-up characteristic of the output voltage during LDO turnon after EN and UVLO  
achieve threshold voltage. The noise-reduction capacitor serves a dual purpose of both governing output noise  
reduction and programming the soft-start ramp during turnon.  
Inrush current is defined as the current into the LDO at the IN pin during start-up. Inrush current then consists  
primarily of the sum of load current and the current used to charge the output capacitor. This current is difficult to  
measure because the input capacitor must be removed, which is not recommended. However, 公式 3 can  
estimate this soft-start current:  
C
OUT ´ dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t)  
=
+
dt  
where:  
VOUT(t) is the instantaneous output voltage of the turnon ramp  
dVOUT(t) / dt is the slope of the VOUT ramp  
RLOAD is the resistive load impedance  
(3)  
版权 © 2019–2020, Texas Instruments Incorporated  
21  
 
 
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Application Information (接下页)  
8.1.3 Optimizing Noise and PSRR  
Improve the ultra-low noise floor and PSRR of the device by careful selection of:  
CNR/SS for the low-frequency range  
CFF in the midband frequency range  
COUT for the high-frequency range  
VIN – VOUT for all frequencies  
VBIAS at lower input voltages  
A larger noise-reduction capacitor improves low-frequency PSRR by filtering any noise coupling from the input  
into the reference. To improve midband PSRR, use the feed-forward capacitor to place a zero-pole pair near the  
edge of the loop bandwidth and push out the loop bandwidth. Use larger output capacitors to improve high-  
frequency PSRR.  
A higher input voltage improves PSRR by giving the device more headroom to respond to noise on the input. A  
bias rail also improves PSRR at lower input voltages because greater headroom is provided for the internal  
circuits.  
The noise-reduction capacitor filters out low-frequency noise from the reference, and the feed-forward capacitor  
reduces output voltage noise by filtering out midband frequency noise. However, a large feed-forward capacitor  
can create new issues that are discussed in the Pros and Cons of Using a Feed-Forward Capacitor with a Low  
Dropout Regulator application report.  
Use a large output capacitor to reduce high-frequency output voltage noise. Additionally, a bias rail or higher  
input voltage improves noise because greater headroom is provided for the internal circuits.  
4 lists the output voltage noise for the 10-Hz to 100-kHz band at a 5.0-V output for a variety of conditions with  
an input voltage of 5.5 V, an R1 of 12.1 kΩ, and a load current of 4 A. The 5.0-V output is used because this  
output is the worst-case condition for output voltage noise.  
4. Output Noise Voltage at a 5.0-V Output  
OUTPUT VOLTAGE NOISE  
CNR/SS  
(nF)  
CFF  
(nF)  
COUT  
(µF)  
(µVRMS  
11.7  
7.7  
)
10  
10  
10  
47 || 10 || 10  
47 || 10 || 10  
47 || 10 || 10  
1000  
100  
100  
100  
100  
6
100  
10  
7.4  
5.8  
100  
1000  
8.1.4 Charge Pump Noise  
The device internal charge pump generates a minimal amount of noise. Use a bias rail to minimize the internal  
charge pump noise when the internal voltage is clamped, thereby reducing the overall output noise floor.  
The high-frequency components of the output voltage noise density curve are filtered out in most applications by  
using 10-nF to 100-nF bypass capacitors close to the load. Using a ferrite bead between the LDO output and the  
load input capacitors forms a pi-filter, further reducing the high-frequency noise contribution.  
8.1.5 Current Sharing  
There are two main current sharing implementations:  
1. Through the use of external operational amplifiers. For more details, see the Current-Sharing Dual LDOs  
reference guide and 6 A Current-Sharing Dual LDO reference guide.  
2. Through the use of external ballast resistors. For more details of this implementation, see the High-Current  
Low-Noise Parallel LDO reference design.  
22  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
8.1.6 Adjustable Operation  
As shown in 44, the output voltage of the TPS7A52-Q1 is set using external resistors.  
Optional Bias  
CBIAS  
Supply  
BIAS  
EN  
IN  
PG  
RPG  
Input  
Supply  
To Load  
OUT  
CIN  
CFF  
R1  
COUT  
TI-Device™  
FB  
NR/SS  
R2  
CNR/SS  
GND  
44. Adjustable Operation  
Use 公式 4 to calculate R1 and R2. This resistive network must provide a current equal to or greater than 5 µA for  
dc accuracy. To optimize the noise and PSRR, use an R1 of 12.1 kΩ.  
VOUT = VNR/SS × (1 + R1 / R2)  
(4)  
5 shows the resistor combinations required to achieve several common rails using standard 1%-tolerance  
resistors.  
5. Recommended Feedback-Resistor Values  
TARGETED OUTPUT  
FEEDBACK RESISTOR VALUES(1)  
CALCULATED OUTPUT  
VOLTAGE  
(V)  
VOLTAGE  
(V)  
R1 (kΩ)  
R2 (kΩ)  
0.9  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.1  
12.4  
12.1  
12.1  
11.8  
12.1  
11.8  
12.4  
100  
66.5  
49.9  
33.2  
24.9  
14.3  
10  
0.899  
0.949  
0.999  
1.099  
1.198  
1.494  
1.798  
1.89  
0.95  
1.00  
1.10  
1.20  
1.50  
1.80  
1.90  
2.50  
2.85  
3.00  
3.30  
3.60  
4.5  
8.87  
5.9  
2.48  
4.75  
4.42  
3.74  
3.48  
2.55  
2.37  
2.838  
2.990  
3.324  
3.582  
4.502  
4.985  
5.00  
(1) R1 is connected from OUT to FB; R2 is connected from FB to GND.  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
 
 
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
8.1.7 Power-Good Operation  
For proper operation of the power-good circuit, the pullup resistor value must be between 10 kΩ and 100 kΩ. The  
lower limit of 10 kΩ results from the maximum pulldown strength of the power-good transistor, and the upper limit  
of 100 kΩ results from the maximum leakage current at the power-good node. If the pullup resistor is outside of  
this range, then the power-good signal may not read a valid digital logic level.  
Using a large CFF with a small CNR/SS causes the power-good signal to incorrectly indicate that the output voltage  
has settled during turnon. The CFF time constant must be greater than the soft-start time constant for proper  
operation of the PG during start-up. For a detailed description, see the Pros and Cons of Using a Feed-Forward  
Capacitor with a Low Dropout Regulator application report.  
The state of PG is only valid when the device operates above the minimum supply voltage. During short UVLO  
events and at light loads, power-good does not assert because the output voltage is sustained by the output  
capacitance.  
8.1.8 Undervoltage Lockout (UVLO) Operation  
The UVLO circuit makes sure that the device remains disabled before the input or bias supplies reach the  
minimum operational voltage range, and that the device shuts down when the input supply or bias supply falls  
too low.  
The UVLO circuit has a minimum response time of several microseconds to fully assert. During this time, a  
downward line transient below approximately 0.8 V causes the UVLO to assert for a short time; however, the  
UVLO circuit does not have enough stored energy to fully discharge the internal circuits inside of the device.  
When the UVLO circuit does not fully discharge, the internal circuits of the output are not fully disabled.  
The effect of the downward line transient can be mitigated by either using a larger input capacitor to limit the fall  
time of the input supply when operating near the minimum VIN, or by using a bias rail.  
45 shows the UVLO circuit response to various input voltage events. The diagram can be separated into the  
following regions:  
Region A: The device does not turn on until the input reaches the UVLO rising threshold.  
Region B: Normal operation with a regulated output.  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold – UVLO hysteresis). The  
output may fall out of regulation but the device is still enabled.  
Region D: Normal operation with a regulated output.  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases and the  
output falls because of the load and active discharge circuit. The device is reenabled when the UVLO rising  
threshold is reached by the input voltage and a normal start-up then follows.  
Region F: Normal operation followed by the input falling to the UVLO falling threshold.  
Region G: The device is disabled when the input voltage falls below the UVLO falling threshold to 0 V. The  
output falls because of the load and active discharge circuit.  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
45. Typical UVLO Operation  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
8.1.9 Dropout Voltage (VDO  
)
Generally speaking, the dropout voltage often refers to the minimum voltage difference between the input and  
output voltage (VDO = VIN – VOUT) that is required for regulation. When VIN drops below the required VDO for the  
given load current, the device functions as a resistive switch and does not regulate output voltage. Dropout  
voltage is proportional to the output current because the device is operating as a resistive switch.  
Dropout voltage is affected by the drive strength for the gate of the pass element, which is nonlinear with respect  
to VIN on this device because of the internal charge pump. The charge pump causes a higher dropout voltage at  
lower input voltages when a bias rail is not used.  
For this device, dropout voltage increases exponentially when the input voltage nears its maximum operating  
voltage because the charge pump is internally clamped to 8.0 V.  
8.1.10 Device Behavior During Transition From Dropout Into Regulation  
Some applications have transients that place the device into dropout, especially with a device such as a high-  
current linear regulator. A typical application with these transient conditions may require setting VIN (VOUT  
+
VDO) in order to keep the device junction temperature within the specified operating range. A load transient or  
line transient with these conditions can place the device into dropout; for example, a load transient from 1 A to 4  
A at 1 A/µs when operating with a VIN of 5.4 V and a VOUT of 5.0 V.  
The load transient saturates the error amplifier output stage when the gate of the pass element is driven as high  
as possible by the error amplifier, thus making the pass element function like a resistor from VIN to VOUT. The  
error amplifier response time to this load transient (IOUT = 4 A to 1 A at 1 A/µs) is limited because the error  
amplifier must first recover from saturation, and then place the pass element back into active mode. During the  
recovery from the load transient, VOUT overshoots because the pass element is functioning as a resistor from VIN  
to VOUT. If operating under these conditions, apply a higher dc load or increase the output capacitance in order to  
reduce the overshoot.  
8.1.11 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. There are two key transitions during a load transient response: the  
transition from a light to a heavy load, and the transition from a heavy to a light load. The regions shown in 46  
are broken down in this section. Regions A, E, and H are where the output voltage is in steady-state regulation.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
46. Load Transient Waveform  
During transitions from a light load to a heavy load:  
Initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B).  
Recovery from the dip results from the LDO increasing its sourcing current, and leads to output voltage  
regulation (region C).  
During transitions from a heavy load to a light load:  
Initial voltage rise results from the LDO sourcing a large current, and leads to the output capacitor charge to  
increase (region F).  
Recovery from the rise results from the LDO decreasing its sourcing current in combination with the load  
discharging the output capacitor (region G).  
版权 © 2019–2020, Texas Instruments Incorporated  
25  
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Transitions between current levels changes the internal power dissipation because the TPS7A52 is a high-  
current device (region D). The change in power dissipation changes the die temperature during these transitions,  
and leads to a slightly different voltage level. This different output voltage level shows up in the various load  
transient responses.  
A larger output capacitance reduces the peaks during a load transient but slows down the response time of the  
device. A larger dc load also reduces the peaks because the amplitude of the transition is lowered and a higher  
current discharge path is provided for the output capacitor.  
8.1.12 Reverse Current Protection Considerations  
As with most LDOs, this device can be damaged by excessive reverse current.  
Conditions where excessive reverse current can occur are outlined in this section, all of which can exceed the  
absolute maximum rating of VOUT > VIN + 0.3 V:  
If the device has a large COUT, then the input supply collapses quickly and the load current becomes very  
small  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If an excessive reverse current flow is expected in the application, then external protection must be used to  
protect the device. 47 shows one approach of protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
Device  
COUT  
CIN  
GND  
47. Example Circuit for Reverse Current Protection Using a Schottky Diode  
26  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
8.1.13 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. 公式 5 calculates PD:  
PD = (VOUT - VIN) ´ IOUT  
(5)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper  
selection of the system voltage rails. Proper selection allows the minimum input-to-output  
voltage differential to be obtained. The low dropout of the TPS7A52 allows for maximum  
efficiency across a wide range of output voltages.  
The primary heat conduction path for the package is through the thermal pad to the PCB. Solder the thermal pad  
to a copper pad area under the device. This pad area contains an array of plated vias that conduct heat to any  
inner plane areas or to a bottom-side copper plane.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(RθJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to 公式  
6. The equation is rearranged for output current in 公式 7.  
TJ = TA = (RθJA × PD)  
(6)  
(7)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The RθJA recorded in the Electrical Characteristics table is determined by the JEDEC standard, PCB, and  
copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-  
designed thermal layout, RθJA is actually the sum of the VQFN package junction-to-case (bottom) thermal  
resistance (RθJCbot) plus the thermal resistance contribution by the PCB copper.  
8.1.14 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with 公式 8 and are given in the Electrical Characteristics table.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in 公式 5  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(8)  
版权 © 2019–2020, Texas Instruments Incorporated  
27  
 
 
 
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
8.1.15 TPS7A52EVM Thermal Analysis  
The TPS7A53EVM is used to develop the TPS7A5401RPS thermal model. The RPS package is a 2.2-mm × 2.5-  
mm, 12-pin VQFN with 25-µm plating on each via. The EVM is a 3-inch by 3-inch (7.62 mm × 7.62 mm) PCB  
comprised of four layers. 6 lists an overview of the EVM stackup. 48 to 52 provide layer details for the  
EVM.  
6. Stackup  
LAYER  
NAME  
MATERIAL  
THICKNESS (mil)  
1
2
Top overlay  
Top solder  
Top layer  
Solder resist  
Copper  
0.40  
1.40  
18.50  
1.40  
18.60  
1.40  
18.50  
1.40  
0.40  
3
4
Dielectric 1  
Mid layer 1  
Dielectric 2  
Mid layer 2  
Dielectric 3  
Bottom layer  
Bottom solder  
FR-4, high TG  
Copper  
5
6
FR-4, high TG  
Copper  
7
8
FR-4, high TG  
Copper  
9
10  
Solder resist  
48. Top Composite View  
49. Top Layer Routing  
28  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
50. Mid Layer 1 Routing  
51. Mid Layer 2 Routing  
52. Bottom Layer Routing  
版权 © 2019–2020, Texas Instruments Incorporated  
29  
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
53 shows the thermal gradient on the PCB that results when a 1-W power dissipation is used through the  
PassFET with a 25°C ambient temperature.  
53. PCB Thermal Gradient  
For additional information on the PCB, see the TPS7A53EVM user guide.  
30  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
8.2 Typical Application  
This section discusses the implementation of the TPS7A52 using an adjustable feedback network to regulate a  
4-A load requiring good PSRR at high frequency with low-noise at an output voltage of 0.9 V. 54 provides a  
schematic for this typical application circuit.  
Optional Bias  
CBIAS  
Supply  
BIAS  
EN  
IN  
PG  
RPG  
Input  
Supply  
To Load  
OUT  
CIN  
CFF  
R1  
COUT  
TI-Device™  
FB  
NR/SS  
R2  
CNR/SS  
GND  
54. Typical Application for a 0.9-V Rail  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 7 as the input parameters.  
7. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
1.2 V, ±3%, provided by the dc/dc converter switching at 500 kHz  
Bias voltage  
5V, ±5%  
0.9 V, ±1%  
Output voltage  
Output current  
4.0 A (maximum), 100 mA (minimum)  
< 10 µVRMS  
RMS noise, 10 Hz to 100 kHz  
PSRR at 500 kHz  
Start-up time  
> 40 dB  
< 25 ms  
8.2.2 Detailed Design Procedure  
At 4.0 A and 0.9 VOUT, the dropout of the TPS7A52 has a 240-mV maximum dropout over temperature; thus, a  
300-mV headroom is sufficient for operation over both input and output voltage accuracy. At full load and high  
temperature on some devices, the TPS7A52 can enter dropout if both the input and output supply are beyond  
the edges of the respective accuracy specification.  
For a 0.9-V output. use external adjustable resistors. See the resistor values in listed 5 for choosing resistors  
for a 0.9 V output.  
Input and output capacitors are selected in accordance with the Recommended Capacitor Types section.  
Ceramic capacitances of 47 µF for the input and one 47-µF capacitor in parallel with two 10-µF capacitors for the  
output are selected.  
To satisfy the required start-up time and still maintain low noise performance, a 100-nF CNR/SS is selected. 公式 9  
calculates this value.  
tSS = (VNR/SS × CNR/SS) / INR/SS  
(9)  
At the 4.0-A maximum load, the internal power dissipation is 1.2 W and corresponds to a 52°C junction  
temperature rise for the RPS package on a standard JEDEC board. With a 55°C maximum ambient temperature,  
the junction temperature is at 107.0°C. To further minimize noise, a feed-forward capacitance (CFF) of 10 nF is  
selected.  
版权 © 2019–2020, Texas Instruments Incorporated  
31  
 
 
 
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
8.2.3 Application Curves  
100  
100  
80  
60  
40  
20  
0
IOUT = 0.1 A  
IOUT = 0.5 A  
IOUT = 1.0 A  
IOUT = 2.0 A  
IOUT = 2.5 A  
IOUT = 3.0 A  
VIN = 5.30 V  
VIN = 5.35 V  
VIN = 5.40 V  
VIN = 5.45 V  
VIN = 5.50 V  
VIN = 5.55 V  
VIN = 5.60 V  
80  
60  
40  
20  
0
1x101  
1x102  
1x103  
1x104  
Frequency (Hz)  
1x105  
1x106  
1x107  
1x101  
1x102  
1x103  
1x104  
Frequency (Hz)  
1x105  
1x106  
1x107  
55. PSRR vs Frequency and IOUT for VOUT = 5.0 V  
56. PSRR vs Frequency and VIN for VOUT = 5.0 V at IOUT  
= 4.0 A  
9 Power Supply Recommendations  
The TPS7A52 is designed to operate from an input voltage supply range between 1.1 V and 6.5 V. If the input  
supply is less than 1.4 V, then a bias rail of at least 3.0 V must be used. The input voltage range provides  
adequate headroom in order for the device to have a regulated output. This input supply must be well regulated.  
If the input supply is noisy, use additional input capacitors with low ESR to help improve output noise  
performance.  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Board Layout  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close to each other as possible, connected by a wide, component-side,  
copper surface. To avoid negative system performance, do not use of vias and long traces to the input and  
output capacitors. The grounding and layout scheme illustrated in 57 minimizes inductive parasitics, and  
thereby reduces load-current transients, minimizes noise, and increases circuit stability.  
To improve performance, use a ground reference plane, either embedded in the PCB itself or placed on the  
bottom side of the PCB opposite the components. This reference plane serves to assure accuracy of the output  
voltage, shield noise, and behaves similar to a thermal plane to spread (or sink) heat from the LDO device when  
connected to the thermal pad. In most applications, this ground plane is necessary to meet thermal requirements.  
32  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
10.2 Layout Example  
Ground Plane and Signal Ground  
CIN  
COUT  
Output Power Plane  
Input Power Plane  
OUT  
IN  
IN  
IN  
OUT  
OUT  
FB  
CFF  
FB  
R1  
R2  
EN  
Enable Signal  
EN  
To Signal Ground  
NR/SS  
To Signal Ground  
NR/SS  
PG  
PG  
To PG Pullup Supply  
RPG  
CNR/SS  
GND  
BIAS BIAS  
To Bias Supply  
PG Output  
CBIAS  
Ground Plane and Signal Ground  
Vias used for application purposes.  
57. Example Layout  
版权 © 2019–2020, Texas Instruments Incorporated  
33  
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
我们为您提供了评估模块 (EVM),可以借此来对使用 TPS7A53 时的电路性能进行初始评估。8 显示了此装置的  
摘要信息。  
8. 设计套件与评估模块  
名称  
文献编号  
TPS7A5300EVM-TDB 评估模块  
SBVS059  
可通过德州仪器 (TI) 网站上的 TPS7A53 产品文件夹来申请获取该 EVM。  
11.1.1.2 Spice 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以通过 TPS7A53 产  
品文件夹在仿真模型下获取 TPS7A53 SPICE 模型。  
11.1.2 器件命名规则  
9. 订购信息(1)  
产品  
说明  
YYY 为封装标识符。  
Z 为封装数量。  
TPS7A5301YYYZ  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com.cn 查看器件产品文件夹。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TPS3702 高精度、过压和欠压监视器》 数据表  
德州仪器 (TI)TPS7A53EVM-031 评估模块》 用户指南  
德州仪器 (TI)《使用前馈电容器和低压降稳压器的优缺点》 应用报告  
德州仪器 (TI)6A 电流均流双路 LDO参考指南  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
34  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2019–2020, Texas Instruments Incorporated  
35  
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
36  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPS0012A  
2.3  
2.1  
A
B
PIN 1 INDEX AREA  
2.6  
2.4  
1 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
C
1.5  
(0.1) TYP  
4X 0.75  
(
0.15) TYP  
0.7  
0.5  
6
4X 0.4875  
5
7
0.3  
0.2  
8X  
PKG  
0.1  
0.05  
C
A
A
B
B
1.975  
C
4X 0.5  
0.275  
4X  
0.175  
0.1  
0.05  
C
11  
1
C
12  
0.5  
0.3  
5X  
0.45  
0.35  
PKG  
4X  
PIN 1 ID  
OPTIONAL  
0.1  
0.05  
C A B  
0.95  
0.75  
2X  
C
4224847/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2019–2020, Texas Instruments Incorporated  
37  
TPS7A53  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
RPS0012A  
PLASTIC QUAD FLATPACK-NO LEAD  
(1.55)  
PKG  
12  
4X (0.4)  
2X (1.05)  
4X (0.225)  
4X (0.4875)  
11  
1
8X (0.25)  
4X (0.5)  
PKG  
(1.975)  
(R0.05)  
4X (0.75)  
5
(0.8)  
7
4X  
(0.575)  
6
5X (0.6)  
4X (0.75)  
(1.5)  
(2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224847/A 03/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
38  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7A53  
www.ti.com.cn  
ZHCSHB6A NOVEMBER 2019REVISED MARCH 2020  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPS0012A  
(1.55)  
PKG  
12  
4X (0.4)  
2X (1.05)  
4X (0.225)  
4X (0.4875)  
11  
1
8X (0.25)  
4X (0.5)  
PKG  
(1.975)  
(R0.05)  
4X (0.75)  
5
(0.8)  
7
4X  
(0.575)  
6
5X (0.6)  
4X (0.75)  
(1.5)  
(2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 25X  
4224847/A 03/2019  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2019–2020, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS7A5301RPSR  
TPS7A5301RPSR  
OBSOLETE VQFN-HR  
RPS  
RPS  
12  
12  
TBD  
Call TI  
Call TI  
ACTIVE  
VQFN-HR  
3000 RoHS & Green  
MATTE SN  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
21BH  
21BH  
Samples  
Samples  
TPS7A5301RPST  
ACTIVE  
VQFN-HR  
RPS  
12  
250 RoHS & Green  
MATTE SN  
Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS7A53 :  
Automotive : TPS7A53-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jun-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A5301RPSR  
TPS7A5301RPST  
VQFN-  
HR  
RPS  
RPS  
12  
12  
3000  
250  
180.0  
12.4  
2.45  
2.75  
1.2  
4.0  
12.0  
Q1  
VQFN-  
HR  
180.0  
12.4  
2.45  
2.75  
1.2  
4.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jun-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A5301RPSR  
TPS7A5301RPST  
VQFN-HR  
VQFN-HR  
RPS  
RPS  
12  
12  
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPS0012A  
2.3  
2.1  
A
B
PIN 1 INDEX AREA  
2.6  
2.4  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.5  
(0.1) TYP  
4X 0.75  
(
0.15) TYP  
0.7  
0.5  
6
4X 0.4875  
5
7
0.3  
0.2  
8X  
PKG  
0.1  
C A B  
1.975  
0.05  
C
4X 0.5  
0.275  
0.175  
4X  
0.1  
C A B  
11  
1
0.05  
C
12  
0.5  
0.3  
5X  
0.45  
0.35  
PKG  
4X  
PIN 1 ID  
OPTIONAL  
0.1  
0.05  
C A B  
0.95  
0.75  
2X  
C
4224847/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPS0012A  
(1.55)  
PKG  
12  
4X (0.4)  
2X (1.05)  
4X (0.225)  
4X (0.4875)  
11  
1
8X (0.25)  
4X (0.5)  
PKG  
(1.975)  
(R0.05)  
4X (0.75)  
5
(0.8)  
7
4X  
(0.575)  
6
5X (0.6)  
4X (0.75)  
(1.5)  
(2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224847/A 03/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPS0012A  
(1.55)  
PKG  
12  
4X (0.4)  
2X (1.05)  
4X (0.225)  
4X (0.4875)  
11  
1
8X (0.25)  
4X (0.5)  
PKG  
(1.975)  
(R0.05)  
4X (0.75)  
5
(0.8)  
7
4X  
(0.575)  
6
5X (0.6)  
4X (0.75)  
(1.5)  
(2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 25X  
4224847/A 03/2019  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A5301WQRTKRQ1

汽车类 3A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RTK | 20 | -40 to 150
TI

TPS7A5310AQWRTJRQ1

汽车类 3A、低 VIN、5.6µVRMS、低噪声、高精度、超低压降稳压器 | RTJ | 20 | -40 to 150
TI

TPS7A53A-Q1

汽车类 3A、低 VIN、5.6µVRMS、低噪声、高精度、超低压降稳压器
TI

TPS7A54

4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器
TI

TPS7A54-Q1

汽车类 4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器
TI

TPS7A5401QRGRRQ1

汽车类 4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RGR | 20 | -40 to 150
TI

TPS7A5401RPSR

4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RPS | 12 | -40 to 125
TI

TPS7A5401RPST

4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RPS | 12 | -40 to 125
TI

TPS7A57

5A、低输入电压、低噪声、高精度、低压降 (LDO) 稳压器
TI

TPS7A5701RTER

5A、低输入电压、低噪声、高精度、低压降 (LDO) 稳压器 | RTE | 16 | -40 to 125
TI

TPS7A60-Q1

具有电源正常指示功能的汽车类 300mA、电池供电运行 (40V)、低 IQ、低压降稳压器
TI

TPS7A6033-Q1

300-mA 40-V LOW-DROPOUT REGULATOR WITH 25-μA QUIESCENT CURRENT
TI